xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Metadata.cpp (revision b9fa1500cb2265b95927e19b9d2119ca26d65be3)
1 //===- Metadata.cpp - Implement Metadata classes --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Metadata classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Metadata.h"
14 #include "LLVMContextImpl.h"
15 #include "MetadataImpl.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/ConstantRange.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DebugInfoMetadata.h"
34 #include "llvm/IR/DebugLoc.h"
35 #include "llvm/IR/DebugProgramInstruction.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalObject.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/ProfDataUtils.h"
44 #include "llvm/IR/TrackingMDRef.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/MathExtras.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstddef>
53 #include <cstdint>
54 #include <type_traits>
55 #include <utility>
56 #include <vector>
57 
58 using namespace llvm;
59 
60 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD)
61     : Value(Ty, MetadataAsValueVal), MD(MD) {
62   track();
63 }
64 
65 MetadataAsValue::~MetadataAsValue() {
66   getType()->getContext().pImpl->MetadataAsValues.erase(MD);
67   untrack();
68 }
69 
70 /// Canonicalize metadata arguments to intrinsics.
71 ///
72 /// To support bitcode upgrades (and assembly semantic sugar) for \a
73 /// MetadataAsValue, we need to canonicalize certain metadata.
74 ///
75 ///   - nullptr is replaced by an empty MDNode.
76 ///   - An MDNode with a single null operand is replaced by an empty MDNode.
77 ///   - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped.
78 ///
79 /// This maintains readability of bitcode from when metadata was a type of
80 /// value, and these bridges were unnecessary.
81 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context,
82                                               Metadata *MD) {
83   if (!MD)
84     // !{}
85     return MDNode::get(Context, std::nullopt);
86 
87   // Return early if this isn't a single-operand MDNode.
88   auto *N = dyn_cast<MDNode>(MD);
89   if (!N || N->getNumOperands() != 1)
90     return MD;
91 
92   if (!N->getOperand(0))
93     // !{}
94     return MDNode::get(Context, std::nullopt);
95 
96   if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0)))
97     // Look through the MDNode.
98     return C;
99 
100   return MD;
101 }
102 
103 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) {
104   MD = canonicalizeMetadataForValue(Context, MD);
105   auto *&Entry = Context.pImpl->MetadataAsValues[MD];
106   if (!Entry)
107     Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD);
108   return Entry;
109 }
110 
111 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context,
112                                               Metadata *MD) {
113   MD = canonicalizeMetadataForValue(Context, MD);
114   auto &Store = Context.pImpl->MetadataAsValues;
115   return Store.lookup(MD);
116 }
117 
118 void MetadataAsValue::handleChangedMetadata(Metadata *MD) {
119   LLVMContext &Context = getContext();
120   MD = canonicalizeMetadataForValue(Context, MD);
121   auto &Store = Context.pImpl->MetadataAsValues;
122 
123   // Stop tracking the old metadata.
124   Store.erase(this->MD);
125   untrack();
126   this->MD = nullptr;
127 
128   // Start tracking MD, or RAUW if necessary.
129   auto *&Entry = Store[MD];
130   if (Entry) {
131     replaceAllUsesWith(Entry);
132     delete this;
133     return;
134   }
135 
136   this->MD = MD;
137   track();
138   Entry = this;
139 }
140 
141 void MetadataAsValue::track() {
142   if (MD)
143     MetadataTracking::track(&MD, *MD, *this);
144 }
145 
146 void MetadataAsValue::untrack() {
147   if (MD)
148     MetadataTracking::untrack(MD);
149 }
150 
151 DPValue *DebugValueUser::getUser() { return static_cast<DPValue *>(this); }
152 const DPValue *DebugValueUser::getUser() const {
153   return static_cast<const DPValue *>(this);
154 }
155 
156 void DebugValueUser::handleChangedValue(void *Old, Metadata *New) {
157   // NOTE: We could inform the "owner" that a value has changed through
158   // getOwner, if needed.
159   auto OldMD = static_cast<Metadata **>(Old);
160   ptrdiff_t Idx = std::distance(&*DebugValues.begin(), OldMD);
161   resetDebugValue(Idx, New);
162 }
163 
164 void DebugValueUser::trackDebugValue(size_t Idx) {
165   assert(Idx < 3 && "Invalid debug value index.");
166   Metadata *&MD = DebugValues[Idx];
167   if (MD)
168     MetadataTracking::track(&MD, *MD, *this);
169 }
170 
171 void DebugValueUser::trackDebugValues() {
172   for (Metadata *&MD : DebugValues)
173     if (MD)
174       MetadataTracking::track(&MD, *MD, *this);
175 }
176 
177 void DebugValueUser::untrackDebugValue(size_t Idx) {
178   assert(Idx < 3 && "Invalid debug value index.");
179   Metadata *&MD = DebugValues[Idx];
180   if (MD)
181     MetadataTracking::untrack(MD);
182 }
183 
184 void DebugValueUser::untrackDebugValues() {
185   for (Metadata *&MD : DebugValues)
186     if (MD)
187       MetadataTracking::untrack(MD);
188 }
189 
190 void DebugValueUser::retrackDebugValues(DebugValueUser &X) {
191   assert(DebugValueUser::operator==(X) && "Expected values to match");
192   for (const auto &[MD, XMD] : zip(DebugValues, X.DebugValues))
193     if (XMD)
194       MetadataTracking::retrack(XMD, MD);
195   X.DebugValues.fill(nullptr);
196 }
197 
198 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) {
199   assert(Ref && "Expected live reference");
200   assert((Owner || *static_cast<Metadata **>(Ref) == &MD) &&
201          "Reference without owner must be direct");
202   if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) {
203     R->addRef(Ref, Owner);
204     return true;
205   }
206   if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) {
207     assert(!PH->Use && "Placeholders can only be used once");
208     assert(!Owner && "Unexpected callback to owner");
209     PH->Use = static_cast<Metadata **>(Ref);
210     return true;
211   }
212   return false;
213 }
214 
215 void MetadataTracking::untrack(void *Ref, Metadata &MD) {
216   assert(Ref && "Expected live reference");
217   if (auto *R = ReplaceableMetadataImpl::getIfExists(MD))
218     R->dropRef(Ref);
219   else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD))
220     PH->Use = nullptr;
221 }
222 
223 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) {
224   assert(Ref && "Expected live reference");
225   assert(New && "Expected live reference");
226   assert(Ref != New && "Expected change");
227   if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) {
228     R->moveRef(Ref, New, MD);
229     return true;
230   }
231   assert(!isa<DistinctMDOperandPlaceholder>(MD) &&
232          "Unexpected move of an MDOperand");
233   assert(!isReplaceable(MD) &&
234          "Expected un-replaceable metadata, since we didn't move a reference");
235   return false;
236 }
237 
238 bool MetadataTracking::isReplaceable(const Metadata &MD) {
239   return ReplaceableMetadataImpl::isReplaceable(MD);
240 }
241 
242 SmallVector<Metadata *> ReplaceableMetadataImpl::getAllArgListUsers() {
243   SmallVector<std::pair<OwnerTy, uint64_t> *> MDUsersWithID;
244   for (auto Pair : UseMap) {
245     OwnerTy Owner = Pair.second.first;
246     if (Owner.isNull())
247       continue;
248     if (!isa<Metadata *>(Owner))
249       continue;
250     Metadata *OwnerMD = cast<Metadata *>(Owner);
251     if (OwnerMD->getMetadataID() == Metadata::DIArgListKind)
252       MDUsersWithID.push_back(&UseMap[Pair.first]);
253   }
254   llvm::sort(MDUsersWithID, [](auto UserA, auto UserB) {
255     return UserA->second < UserB->second;
256   });
257   SmallVector<Metadata *> MDUsers;
258   for (auto *UserWithID : MDUsersWithID)
259     MDUsers.push_back(cast<Metadata *>(UserWithID->first));
260   return MDUsers;
261 }
262 
263 SmallVector<DPValue *> ReplaceableMetadataImpl::getAllDPValueUsers() {
264   SmallVector<std::pair<OwnerTy, uint64_t> *> DPVUsersWithID;
265   for (auto Pair : UseMap) {
266     OwnerTy Owner = Pair.second.first;
267     if (Owner.isNull())
268       continue;
269     if (!Owner.is<DebugValueUser *>())
270       continue;
271     DPVUsersWithID.push_back(&UseMap[Pair.first]);
272   }
273   // Order DPValue users in reverse-creation order. Normal dbg.value users
274   // of MetadataAsValues are ordered by their UseList, i.e. reverse order of
275   // when they were added: we need to replicate that here. The structure of
276   // debug-info output depends on the ordering of intrinsics, thus we need
277   // to keep them consistent for comparisons sake.
278   llvm::sort(DPVUsersWithID, [](auto UserA, auto UserB) {
279     return UserA->second > UserB->second;
280   });
281   SmallVector<DPValue *> DPVUsers;
282   for (auto UserWithID : DPVUsersWithID)
283     DPVUsers.push_back(UserWithID->first.get<DebugValueUser *>()->getUser());
284   return DPVUsers;
285 }
286 
287 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) {
288   bool WasInserted =
289       UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex)))
290           .second;
291   (void)WasInserted;
292   assert(WasInserted && "Expected to add a reference");
293 
294   ++NextIndex;
295   assert(NextIndex != 0 && "Unexpected overflow");
296 }
297 
298 void ReplaceableMetadataImpl::dropRef(void *Ref) {
299   bool WasErased = UseMap.erase(Ref);
300   (void)WasErased;
301   assert(WasErased && "Expected to drop a reference");
302 }
303 
304 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New,
305                                       const Metadata &MD) {
306   auto I = UseMap.find(Ref);
307   assert(I != UseMap.end() && "Expected to move a reference");
308   auto OwnerAndIndex = I->second;
309   UseMap.erase(I);
310   bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second;
311   (void)WasInserted;
312   assert(WasInserted && "Expected to add a reference");
313 
314   // Check that the references are direct if there's no owner.
315   (void)MD;
316   assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) &&
317          "Reference without owner must be direct");
318   assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) &&
319          "Reference without owner must be direct");
320 }
321 
322 void ReplaceableMetadataImpl::SalvageDebugInfo(const Constant &C) {
323   if (!C.isUsedByMetadata()) {
324     return;
325   }
326 
327   LLVMContext &Context = C.getType()->getContext();
328   auto &Store = Context.pImpl->ValuesAsMetadata;
329   auto I = Store.find(&C);
330   ValueAsMetadata *MD = I->second;
331   using UseTy =
332       std::pair<void *, std::pair<MetadataTracking::OwnerTy, uint64_t>>;
333   // Copy out uses and update value of Constant used by debug info metadata with undef below
334   SmallVector<UseTy, 8> Uses(MD->UseMap.begin(), MD->UseMap.end());
335 
336   for (const auto &Pair : Uses) {
337     MetadataTracking::OwnerTy Owner = Pair.second.first;
338     if (!Owner)
339       continue;
340     if (!isa<Metadata *>(Owner))
341       continue;
342     auto *OwnerMD = dyn_cast_if_present<MDNode>(cast<Metadata *>(Owner));
343     if (!OwnerMD)
344       continue;
345     if (isa<DINode>(OwnerMD)) {
346       OwnerMD->handleChangedOperand(
347           Pair.first, ValueAsMetadata::get(UndefValue::get(C.getType())));
348     }
349   }
350 }
351 
352 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) {
353   if (UseMap.empty())
354     return;
355 
356   // Copy out uses since UseMap will get touched below.
357   using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>;
358   SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
359   llvm::sort(Uses, [](const UseTy &L, const UseTy &R) {
360     return L.second.second < R.second.second;
361   });
362   for (const auto &Pair : Uses) {
363     // Check that this Ref hasn't disappeared after RAUW (when updating a
364     // previous Ref).
365     if (!UseMap.count(Pair.first))
366       continue;
367 
368     OwnerTy Owner = Pair.second.first;
369     if (!Owner) {
370       // Update unowned tracking references directly.
371       Metadata *&Ref = *static_cast<Metadata **>(Pair.first);
372       Ref = MD;
373       if (MD)
374         MetadataTracking::track(Ref);
375       UseMap.erase(Pair.first);
376       continue;
377     }
378 
379     // Check for MetadataAsValue.
380     if (isa<MetadataAsValue *>(Owner)) {
381       cast<MetadataAsValue *>(Owner)->handleChangedMetadata(MD);
382       continue;
383     }
384 
385     if (Owner.is<DebugValueUser *>()) {
386       Owner.get<DebugValueUser *>()->handleChangedValue(Pair.first, MD);
387       continue;
388     }
389 
390     // There's a Metadata owner -- dispatch.
391     Metadata *OwnerMD = cast<Metadata *>(Owner);
392     switch (OwnerMD->getMetadataID()) {
393 #define HANDLE_METADATA_LEAF(CLASS)                                            \
394   case Metadata::CLASS##Kind:                                                  \
395     cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD);                \
396     continue;
397 #include "llvm/IR/Metadata.def"
398     default:
399       llvm_unreachable("Invalid metadata subclass");
400     }
401   }
402   assert(UseMap.empty() && "Expected all uses to be replaced");
403 }
404 
405 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) {
406   if (UseMap.empty())
407     return;
408 
409   if (!ResolveUsers) {
410     UseMap.clear();
411     return;
412   }
413 
414   // Copy out uses since UseMap could get touched below.
415   using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>;
416   SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
417   llvm::sort(Uses, [](const UseTy &L, const UseTy &R) {
418     return L.second.second < R.second.second;
419   });
420   UseMap.clear();
421   for (const auto &Pair : Uses) {
422     auto Owner = Pair.second.first;
423     if (!Owner)
424       continue;
425     if (!Owner.is<Metadata *>())
426       continue;
427 
428     // Resolve MDNodes that point at this.
429     auto *OwnerMD = dyn_cast_if_present<MDNode>(cast<Metadata *>(Owner));
430     if (!OwnerMD)
431       continue;
432     if (OwnerMD->isResolved())
433       continue;
434     OwnerMD->decrementUnresolvedOperandCount();
435   }
436 }
437 
438 // Special handing of DIArgList is required in the RemoveDIs project, see
439 // commentry in DIArgList::handleChangedOperand for details. Hidden behind
440 // conditional compilation to avoid a compile time regression.
441 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) {
442   if (auto *N = dyn_cast<MDNode>(&MD)) {
443     return !N->isResolved() || N->isAlwaysReplaceable()
444                ? N->Context.getOrCreateReplaceableUses()
445                : nullptr;
446   }
447   if (auto ArgList = dyn_cast<DIArgList>(&MD))
448     return ArgList;
449   return dyn_cast<ValueAsMetadata>(&MD);
450 }
451 
452 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) {
453   if (auto *N = dyn_cast<MDNode>(&MD)) {
454     return !N->isResolved() || N->isAlwaysReplaceable()
455                ? N->Context.getReplaceableUses()
456                : nullptr;
457   }
458   if (auto ArgList = dyn_cast<DIArgList>(&MD))
459     return ArgList;
460   return dyn_cast<ValueAsMetadata>(&MD);
461 }
462 
463 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) {
464   if (auto *N = dyn_cast<MDNode>(&MD))
465     return !N->isResolved() || N->isAlwaysReplaceable();
466   return isa<ValueAsMetadata>(&MD) || isa<DIArgList>(&MD);
467 }
468 
469 static DISubprogram *getLocalFunctionMetadata(Value *V) {
470   assert(V && "Expected value");
471   if (auto *A = dyn_cast<Argument>(V)) {
472     if (auto *Fn = A->getParent())
473       return Fn->getSubprogram();
474     return nullptr;
475   }
476 
477   if (BasicBlock *BB = cast<Instruction>(V)->getParent()) {
478     if (auto *Fn = BB->getParent())
479       return Fn->getSubprogram();
480     return nullptr;
481   }
482 
483   return nullptr;
484 }
485 
486 ValueAsMetadata *ValueAsMetadata::get(Value *V) {
487   assert(V && "Unexpected null Value");
488 
489   auto &Context = V->getContext();
490   auto *&Entry = Context.pImpl->ValuesAsMetadata[V];
491   if (!Entry) {
492     assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
493            "Expected constant or function-local value");
494     assert(!V->IsUsedByMD && "Expected this to be the only metadata use");
495     V->IsUsedByMD = true;
496     if (auto *C = dyn_cast<Constant>(V))
497       Entry = new ConstantAsMetadata(C);
498     else
499       Entry = new LocalAsMetadata(V);
500   }
501 
502   return Entry;
503 }
504 
505 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) {
506   assert(V && "Unexpected null Value");
507   return V->getContext().pImpl->ValuesAsMetadata.lookup(V);
508 }
509 
510 void ValueAsMetadata::handleDeletion(Value *V) {
511   assert(V && "Expected valid value");
512 
513   auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata;
514   auto I = Store.find(V);
515   if (I == Store.end())
516     return;
517 
518   // Remove old entry from the map.
519   ValueAsMetadata *MD = I->second;
520   assert(MD && "Expected valid metadata");
521   assert(MD->getValue() == V && "Expected valid mapping");
522   Store.erase(I);
523 
524   // Delete the metadata.
525   MD->replaceAllUsesWith(nullptr);
526   delete MD;
527 }
528 
529 void ValueAsMetadata::handleRAUW(Value *From, Value *To) {
530   assert(From && "Expected valid value");
531   assert(To && "Expected valid value");
532   assert(From != To && "Expected changed value");
533   assert(&From->getContext() == &To->getContext() && "Expected same context");
534 
535   LLVMContext &Context = From->getType()->getContext();
536   auto &Store = Context.pImpl->ValuesAsMetadata;
537   auto I = Store.find(From);
538   if (I == Store.end()) {
539     assert(!From->IsUsedByMD && "Expected From not to be used by metadata");
540     return;
541   }
542 
543   // Remove old entry from the map.
544   assert(From->IsUsedByMD && "Expected From to be used by metadata");
545   From->IsUsedByMD = false;
546   ValueAsMetadata *MD = I->second;
547   assert(MD && "Expected valid metadata");
548   assert(MD->getValue() == From && "Expected valid mapping");
549   Store.erase(I);
550 
551   if (isa<LocalAsMetadata>(MD)) {
552     if (auto *C = dyn_cast<Constant>(To)) {
553       // Local became a constant.
554       MD->replaceAllUsesWith(ConstantAsMetadata::get(C));
555       delete MD;
556       return;
557     }
558     if (getLocalFunctionMetadata(From) && getLocalFunctionMetadata(To) &&
559         getLocalFunctionMetadata(From) != getLocalFunctionMetadata(To)) {
560       // DISubprogram changed.
561       MD->replaceAllUsesWith(nullptr);
562       delete MD;
563       return;
564     }
565   } else if (!isa<Constant>(To)) {
566     // Changed to function-local value.
567     MD->replaceAllUsesWith(nullptr);
568     delete MD;
569     return;
570   }
571 
572   auto *&Entry = Store[To];
573   if (Entry) {
574     // The target already exists.
575     MD->replaceAllUsesWith(Entry);
576     delete MD;
577     return;
578   }
579 
580   // Update MD in place (and update the map entry).
581   assert(!To->IsUsedByMD && "Expected this to be the only metadata use");
582   To->IsUsedByMD = true;
583   MD->V = To;
584   Entry = MD;
585 }
586 
587 //===----------------------------------------------------------------------===//
588 // MDString implementation.
589 //
590 
591 MDString *MDString::get(LLVMContext &Context, StringRef Str) {
592   auto &Store = Context.pImpl->MDStringCache;
593   auto I = Store.try_emplace(Str);
594   auto &MapEntry = I.first->getValue();
595   if (!I.second)
596     return &MapEntry;
597   MapEntry.Entry = &*I.first;
598   return &MapEntry;
599 }
600 
601 StringRef MDString::getString() const {
602   assert(Entry && "Expected to find string map entry");
603   return Entry->first();
604 }
605 
606 //===----------------------------------------------------------------------===//
607 // MDNode implementation.
608 //
609 
610 // Assert that the MDNode types will not be unaligned by the objects
611 // prepended to them.
612 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
613   static_assert(                                                               \
614       alignof(uint64_t) >= alignof(CLASS),                                     \
615       "Alignment is insufficient after objects prepended to " #CLASS);
616 #include "llvm/IR/Metadata.def"
617 
618 void *MDNode::operator new(size_t Size, size_t NumOps, StorageType Storage) {
619   // uint64_t is the most aligned type we need support (ensured by static_assert
620   // above)
621   size_t AllocSize =
622       alignTo(Header::getAllocSize(Storage, NumOps), alignof(uint64_t));
623   char *Mem = reinterpret_cast<char *>(::operator new(AllocSize + Size));
624   Header *H = new (Mem + AllocSize - sizeof(Header)) Header(NumOps, Storage);
625   return reinterpret_cast<void *>(H + 1);
626 }
627 
628 void MDNode::operator delete(void *N) {
629   Header *H = reinterpret_cast<Header *>(N) - 1;
630   void *Mem = H->getAllocation();
631   H->~Header();
632   ::operator delete(Mem);
633 }
634 
635 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
636                ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2)
637     : Metadata(ID, Storage), Context(Context) {
638   unsigned Op = 0;
639   for (Metadata *MD : Ops1)
640     setOperand(Op++, MD);
641   for (Metadata *MD : Ops2)
642     setOperand(Op++, MD);
643 
644   if (!isUniqued())
645     return;
646 
647   // Count the unresolved operands.  If there are any, RAUW support will be
648   // added lazily on first reference.
649   countUnresolvedOperands();
650 }
651 
652 TempMDNode MDNode::clone() const {
653   switch (getMetadataID()) {
654   default:
655     llvm_unreachable("Invalid MDNode subclass");
656 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
657   case CLASS##Kind:                                                            \
658     return cast<CLASS>(this)->cloneImpl();
659 #include "llvm/IR/Metadata.def"
660   }
661 }
662 
663 MDNode::Header::Header(size_t NumOps, StorageType Storage) {
664   IsLarge = isLarge(NumOps);
665   IsResizable = isResizable(Storage);
666   SmallSize = getSmallSize(NumOps, IsResizable, IsLarge);
667   if (IsLarge) {
668     SmallNumOps = 0;
669     new (getLargePtr()) LargeStorageVector();
670     getLarge().resize(NumOps);
671     return;
672   }
673   SmallNumOps = NumOps;
674   MDOperand *O = reinterpret_cast<MDOperand *>(this) - SmallSize;
675   for (MDOperand *E = O + SmallSize; O != E;)
676     (void)new (O++) MDOperand();
677 }
678 
679 MDNode::Header::~Header() {
680   if (IsLarge) {
681     getLarge().~LargeStorageVector();
682     return;
683   }
684   MDOperand *O = reinterpret_cast<MDOperand *>(this);
685   for (MDOperand *E = O - SmallSize; O != E; --O)
686     (void)(O - 1)->~MDOperand();
687 }
688 
689 void *MDNode::Header::getSmallPtr() {
690   static_assert(alignof(MDOperand) <= alignof(Header),
691                 "MDOperand too strongly aligned");
692   return reinterpret_cast<char *>(const_cast<Header *>(this)) -
693          sizeof(MDOperand) * SmallSize;
694 }
695 
696 void MDNode::Header::resize(size_t NumOps) {
697   assert(IsResizable && "Node is not resizable");
698   if (operands().size() == NumOps)
699     return;
700 
701   if (IsLarge)
702     getLarge().resize(NumOps);
703   else if (NumOps <= SmallSize)
704     resizeSmall(NumOps);
705   else
706     resizeSmallToLarge(NumOps);
707 }
708 
709 void MDNode::Header::resizeSmall(size_t NumOps) {
710   assert(!IsLarge && "Expected a small MDNode");
711   assert(NumOps <= SmallSize && "NumOps too large for small resize");
712 
713   MutableArrayRef<MDOperand> ExistingOps = operands();
714   assert(NumOps != ExistingOps.size() && "Expected a different size");
715 
716   int NumNew = (int)NumOps - (int)ExistingOps.size();
717   MDOperand *O = ExistingOps.end();
718   for (int I = 0, E = NumNew; I < E; ++I)
719     (O++)->reset();
720   for (int I = 0, E = NumNew; I > E; --I)
721     (--O)->reset();
722   SmallNumOps = NumOps;
723   assert(O == operands().end() && "Operands not (un)initialized until the end");
724 }
725 
726 void MDNode::Header::resizeSmallToLarge(size_t NumOps) {
727   assert(!IsLarge && "Expected a small MDNode");
728   assert(NumOps > SmallSize && "Expected NumOps to be larger than allocation");
729   LargeStorageVector NewOps;
730   NewOps.resize(NumOps);
731   llvm::move(operands(), NewOps.begin());
732   resizeSmall(0);
733   new (getLargePtr()) LargeStorageVector(std::move(NewOps));
734   IsLarge = true;
735 }
736 
737 static bool isOperandUnresolved(Metadata *Op) {
738   if (auto *N = dyn_cast_or_null<MDNode>(Op))
739     return !N->isResolved();
740   return false;
741 }
742 
743 void MDNode::countUnresolvedOperands() {
744   assert(getNumUnresolved() == 0 && "Expected unresolved ops to be uncounted");
745   assert(isUniqued() && "Expected this to be uniqued");
746   setNumUnresolved(count_if(operands(), isOperandUnresolved));
747 }
748 
749 void MDNode::makeUniqued() {
750   assert(isTemporary() && "Expected this to be temporary");
751   assert(!isResolved() && "Expected this to be unresolved");
752 
753   // Enable uniquing callbacks.
754   for (auto &Op : mutable_operands())
755     Op.reset(Op.get(), this);
756 
757   // Make this 'uniqued'.
758   Storage = Uniqued;
759   countUnresolvedOperands();
760   if (!getNumUnresolved()) {
761     dropReplaceableUses();
762     assert(isResolved() && "Expected this to be resolved");
763   }
764 
765   assert(isUniqued() && "Expected this to be uniqued");
766 }
767 
768 void MDNode::makeDistinct() {
769   assert(isTemporary() && "Expected this to be temporary");
770   assert(!isResolved() && "Expected this to be unresolved");
771 
772   // Drop RAUW support and store as a distinct node.
773   dropReplaceableUses();
774   storeDistinctInContext();
775 
776   assert(isDistinct() && "Expected this to be distinct");
777   assert(isResolved() && "Expected this to be resolved");
778 }
779 
780 void MDNode::resolve() {
781   assert(isUniqued() && "Expected this to be uniqued");
782   assert(!isResolved() && "Expected this to be unresolved");
783 
784   setNumUnresolved(0);
785   dropReplaceableUses();
786 
787   assert(isResolved() && "Expected this to be resolved");
788 }
789 
790 void MDNode::dropReplaceableUses() {
791   assert(!getNumUnresolved() && "Unexpected unresolved operand");
792 
793   // Drop any RAUW support.
794   if (Context.hasReplaceableUses())
795     Context.takeReplaceableUses()->resolveAllUses();
796 }
797 
798 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) {
799   assert(isUniqued() && "Expected this to be uniqued");
800   assert(getNumUnresolved() != 0 && "Expected unresolved operands");
801 
802   // Check if an operand was resolved.
803   if (!isOperandUnresolved(Old)) {
804     if (isOperandUnresolved(New))
805       // An operand was un-resolved!
806       setNumUnresolved(getNumUnresolved() + 1);
807   } else if (!isOperandUnresolved(New))
808     decrementUnresolvedOperandCount();
809 }
810 
811 void MDNode::decrementUnresolvedOperandCount() {
812   assert(!isResolved() && "Expected this to be unresolved");
813   if (isTemporary())
814     return;
815 
816   assert(isUniqued() && "Expected this to be uniqued");
817   setNumUnresolved(getNumUnresolved() - 1);
818   if (getNumUnresolved())
819     return;
820 
821   // Last unresolved operand has just been resolved.
822   dropReplaceableUses();
823   assert(isResolved() && "Expected this to become resolved");
824 }
825 
826 void MDNode::resolveCycles() {
827   if (isResolved())
828     return;
829 
830   // Resolve this node immediately.
831   resolve();
832 
833   // Resolve all operands.
834   for (const auto &Op : operands()) {
835     auto *N = dyn_cast_or_null<MDNode>(Op);
836     if (!N)
837       continue;
838 
839     assert(!N->isTemporary() &&
840            "Expected all forward declarations to be resolved");
841     if (!N->isResolved())
842       N->resolveCycles();
843   }
844 }
845 
846 static bool hasSelfReference(MDNode *N) {
847   return llvm::is_contained(N->operands(), N);
848 }
849 
850 MDNode *MDNode::replaceWithPermanentImpl() {
851   switch (getMetadataID()) {
852   default:
853     // If this type isn't uniquable, replace with a distinct node.
854     return replaceWithDistinctImpl();
855 
856 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS)                                    \
857   case CLASS##Kind:                                                            \
858     break;
859 #include "llvm/IR/Metadata.def"
860   }
861 
862   // Even if this type is uniquable, self-references have to be distinct.
863   if (hasSelfReference(this))
864     return replaceWithDistinctImpl();
865   return replaceWithUniquedImpl();
866 }
867 
868 MDNode *MDNode::replaceWithUniquedImpl() {
869   // Try to uniquify in place.
870   MDNode *UniquedNode = uniquify();
871 
872   if (UniquedNode == this) {
873     makeUniqued();
874     return this;
875   }
876 
877   // Collision, so RAUW instead.
878   replaceAllUsesWith(UniquedNode);
879   deleteAsSubclass();
880   return UniquedNode;
881 }
882 
883 MDNode *MDNode::replaceWithDistinctImpl() {
884   makeDistinct();
885   return this;
886 }
887 
888 void MDTuple::recalculateHash() {
889   setHash(MDTupleInfo::KeyTy::calculateHash(this));
890 }
891 
892 void MDNode::dropAllReferences() {
893   for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
894     setOperand(I, nullptr);
895   if (Context.hasReplaceableUses()) {
896     Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false);
897     (void)Context.takeReplaceableUses();
898   }
899 }
900 
901 void MDNode::handleChangedOperand(void *Ref, Metadata *New) {
902   unsigned Op = static_cast<MDOperand *>(Ref) - op_begin();
903   assert(Op < getNumOperands() && "Expected valid operand");
904 
905   if (!isUniqued()) {
906     // This node is not uniqued.  Just set the operand and be done with it.
907     setOperand(Op, New);
908     return;
909   }
910 
911   // This node is uniqued.
912   eraseFromStore();
913 
914   Metadata *Old = getOperand(Op);
915   setOperand(Op, New);
916 
917   // Drop uniquing for self-reference cycles and deleted constants.
918   if (New == this || (!New && Old && isa<ConstantAsMetadata>(Old))) {
919     if (!isResolved())
920       resolve();
921     storeDistinctInContext();
922     return;
923   }
924 
925   // Re-unique the node.
926   auto *Uniqued = uniquify();
927   if (Uniqued == this) {
928     if (!isResolved())
929       resolveAfterOperandChange(Old, New);
930     return;
931   }
932 
933   // Collision.
934   if (!isResolved()) {
935     // Still unresolved, so RAUW.
936     //
937     // First, clear out all operands to prevent any recursion (similar to
938     // dropAllReferences(), but we still need the use-list).
939     for (unsigned O = 0, E = getNumOperands(); O != E; ++O)
940       setOperand(O, nullptr);
941     if (Context.hasReplaceableUses())
942       Context.getReplaceableUses()->replaceAllUsesWith(Uniqued);
943     deleteAsSubclass();
944     return;
945   }
946 
947   // Store in non-uniqued form if RAUW isn't possible.
948   storeDistinctInContext();
949 }
950 
951 void MDNode::deleteAsSubclass() {
952   switch (getMetadataID()) {
953   default:
954     llvm_unreachable("Invalid subclass of MDNode");
955 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
956   case CLASS##Kind:                                                            \
957     delete cast<CLASS>(this);                                                  \
958     break;
959 #include "llvm/IR/Metadata.def"
960   }
961 }
962 
963 template <class T, class InfoT>
964 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) {
965   if (T *U = getUniqued(Store, N))
966     return U;
967 
968   Store.insert(N);
969   return N;
970 }
971 
972 template <class NodeTy> struct MDNode::HasCachedHash {
973   using Yes = char[1];
974   using No = char[2];
975   template <class U, U Val> struct SFINAE {};
976 
977   template <class U>
978   static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *);
979   template <class U> static No &check(...);
980 
981   static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes);
982 };
983 
984 MDNode *MDNode::uniquify() {
985   assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node");
986 
987   // Try to insert into uniquing store.
988   switch (getMetadataID()) {
989   default:
990     llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
991 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS)                                    \
992   case CLASS##Kind: {                                                          \
993     CLASS *SubclassThis = cast<CLASS>(this);                                   \
994     std::integral_constant<bool, HasCachedHash<CLASS>::value>                  \
995         ShouldRecalculateHash;                                                 \
996     dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash);              \
997     return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s);           \
998   }
999 #include "llvm/IR/Metadata.def"
1000   }
1001 }
1002 
1003 void MDNode::eraseFromStore() {
1004   switch (getMetadataID()) {
1005   default:
1006     llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
1007 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS)                                    \
1008   case CLASS##Kind:                                                            \
1009     getContext().pImpl->CLASS##s.erase(cast<CLASS>(this));                     \
1010     break;
1011 #include "llvm/IR/Metadata.def"
1012   }
1013 }
1014 
1015 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
1016                           StorageType Storage, bool ShouldCreate) {
1017   unsigned Hash = 0;
1018   if (Storage == Uniqued) {
1019     MDTupleInfo::KeyTy Key(MDs);
1020     if (auto *N = getUniqued(Context.pImpl->MDTuples, Key))
1021       return N;
1022     if (!ShouldCreate)
1023       return nullptr;
1024     Hash = Key.getHash();
1025   } else {
1026     assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
1027   }
1028 
1029   return storeImpl(new (MDs.size(), Storage)
1030                        MDTuple(Context, Storage, Hash, MDs),
1031                    Storage, Context.pImpl->MDTuples);
1032 }
1033 
1034 void MDNode::deleteTemporary(MDNode *N) {
1035   assert(N->isTemporary() && "Expected temporary node");
1036   N->replaceAllUsesWith(nullptr);
1037   N->deleteAsSubclass();
1038 }
1039 
1040 void MDNode::storeDistinctInContext() {
1041   assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses");
1042   assert(!getNumUnresolved() && "Unexpected unresolved nodes");
1043   Storage = Distinct;
1044   assert(isResolved() && "Expected this to be resolved");
1045 
1046   // Reset the hash.
1047   switch (getMetadataID()) {
1048   default:
1049     llvm_unreachable("Invalid subclass of MDNode");
1050 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1051   case CLASS##Kind: {                                                          \
1052     std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \
1053     dispatchResetHash(cast<CLASS>(this), ShouldResetHash);                     \
1054     break;                                                                     \
1055   }
1056 #include "llvm/IR/Metadata.def"
1057   }
1058 
1059   getContext().pImpl->DistinctMDNodes.push_back(this);
1060 }
1061 
1062 void MDNode::replaceOperandWith(unsigned I, Metadata *New) {
1063   if (getOperand(I) == New)
1064     return;
1065 
1066   if (!isUniqued()) {
1067     setOperand(I, New);
1068     return;
1069   }
1070 
1071   handleChangedOperand(mutable_begin() + I, New);
1072 }
1073 
1074 void MDNode::setOperand(unsigned I, Metadata *New) {
1075   assert(I < getNumOperands());
1076   mutable_begin()[I].reset(New, isUniqued() ? this : nullptr);
1077 }
1078 
1079 /// Get a node or a self-reference that looks like it.
1080 ///
1081 /// Special handling for finding self-references, for use by \a
1082 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from
1083 /// when self-referencing nodes were still uniqued.  If the first operand has
1084 /// the same operands as \c Ops, return the first operand instead.
1085 static MDNode *getOrSelfReference(LLVMContext &Context,
1086                                   ArrayRef<Metadata *> Ops) {
1087   if (!Ops.empty())
1088     if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0]))
1089       if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) {
1090         for (unsigned I = 1, E = Ops.size(); I != E; ++I)
1091           if (Ops[I] != N->getOperand(I))
1092             return MDNode::get(Context, Ops);
1093         return N;
1094       }
1095 
1096   return MDNode::get(Context, Ops);
1097 }
1098 
1099 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) {
1100   if (!A)
1101     return B;
1102   if (!B)
1103     return A;
1104 
1105   SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end());
1106   MDs.insert(B->op_begin(), B->op_end());
1107 
1108   // FIXME: This preserves long-standing behaviour, but is it really the right
1109   // behaviour?  Or was that an unintended side-effect of node uniquing?
1110   return getOrSelfReference(A->getContext(), MDs.getArrayRef());
1111 }
1112 
1113 MDNode *MDNode::intersect(MDNode *A, MDNode *B) {
1114   if (!A || !B)
1115     return nullptr;
1116 
1117   SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end());
1118   SmallPtrSet<Metadata *, 4> BSet(B->op_begin(), B->op_end());
1119   MDs.remove_if([&](Metadata *MD) { return !BSet.count(MD); });
1120 
1121   // FIXME: This preserves long-standing behaviour, but is it really the right
1122   // behaviour?  Or was that an unintended side-effect of node uniquing?
1123   return getOrSelfReference(A->getContext(), MDs.getArrayRef());
1124 }
1125 
1126 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) {
1127   if (!A || !B)
1128     return nullptr;
1129 
1130   // Take the intersection of domains then union the scopes
1131   // within those domains
1132   SmallPtrSet<const MDNode *, 16> ADomains;
1133   SmallPtrSet<const MDNode *, 16> IntersectDomains;
1134   SmallSetVector<Metadata *, 4> MDs;
1135   for (const MDOperand &MDOp : A->operands())
1136     if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp))
1137       if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
1138         ADomains.insert(Domain);
1139 
1140   for (const MDOperand &MDOp : B->operands())
1141     if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp))
1142       if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
1143         if (ADomains.contains(Domain)) {
1144           IntersectDomains.insert(Domain);
1145           MDs.insert(MDOp);
1146         }
1147 
1148   for (const MDOperand &MDOp : A->operands())
1149     if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp))
1150       if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
1151         if (IntersectDomains.contains(Domain))
1152           MDs.insert(MDOp);
1153 
1154   return MDs.empty() ? nullptr
1155                      : getOrSelfReference(A->getContext(), MDs.getArrayRef());
1156 }
1157 
1158 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) {
1159   if (!A || !B)
1160     return nullptr;
1161 
1162   APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF();
1163   APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF();
1164   if (AVal < BVal)
1165     return A;
1166   return B;
1167 }
1168 
1169 // Call instructions with branch weights are only used in SamplePGO as
1170 // documented in
1171 /// https://llvm.org/docs/BranchWeightMetadata.html#callinst).
1172 MDNode *MDNode::mergeDirectCallProfMetadata(MDNode *A, MDNode *B,
1173                                             const Instruction *AInstr,
1174                                             const Instruction *BInstr) {
1175   assert(A && B && AInstr && BInstr && "Caller should guarantee");
1176   auto &Ctx = AInstr->getContext();
1177   MDBuilder MDHelper(Ctx);
1178 
1179   // LLVM IR verifier verifies !prof metadata has at least 2 operands.
1180   assert(A->getNumOperands() >= 2 && B->getNumOperands() >= 2 &&
1181          "!prof annotations should have no less than 2 operands");
1182   MDString *AMDS = dyn_cast<MDString>(A->getOperand(0));
1183   MDString *BMDS = dyn_cast<MDString>(B->getOperand(0));
1184   // LLVM IR verfier verifies first operand is MDString.
1185   assert(AMDS != nullptr && BMDS != nullptr &&
1186          "first operand should be a non-null MDString");
1187   StringRef AProfName = AMDS->getString();
1188   StringRef BProfName = BMDS->getString();
1189   if (AProfName.equals("branch_weights") &&
1190       BProfName.equals("branch_weights")) {
1191     ConstantInt *AInstrWeight =
1192         mdconst::dyn_extract<ConstantInt>(A->getOperand(1));
1193     ConstantInt *BInstrWeight =
1194         mdconst::dyn_extract<ConstantInt>(B->getOperand(1));
1195     assert(AInstrWeight && BInstrWeight && "verified by LLVM verifier");
1196     return MDNode::get(Ctx,
1197                        {MDHelper.createString("branch_weights"),
1198                         MDHelper.createConstant(ConstantInt::get(
1199                             Type::getInt64Ty(Ctx),
1200                             SaturatingAdd(AInstrWeight->getZExtValue(),
1201                                           BInstrWeight->getZExtValue())))});
1202   }
1203   return nullptr;
1204 }
1205 
1206 // Pass in both instructions and nodes. Instruction information (e.g.,
1207 // instruction type) helps interpret profiles and make implementation clearer.
1208 MDNode *MDNode::getMergedProfMetadata(MDNode *A, MDNode *B,
1209                                       const Instruction *AInstr,
1210                                       const Instruction *BInstr) {
1211   if (!(A && B)) {
1212     return A ? A : B;
1213   }
1214 
1215   assert(AInstr->getMetadata(LLVMContext::MD_prof) == A &&
1216          "Caller should guarantee");
1217   assert(BInstr->getMetadata(LLVMContext::MD_prof) == B &&
1218          "Caller should guarantee");
1219 
1220   const CallInst *ACall = dyn_cast<CallInst>(AInstr);
1221   const CallInst *BCall = dyn_cast<CallInst>(BInstr);
1222 
1223   // Both ACall and BCall are direct callsites.
1224   if (ACall && BCall && ACall->getCalledFunction() &&
1225       BCall->getCalledFunction())
1226     return mergeDirectCallProfMetadata(A, B, AInstr, BInstr);
1227 
1228   // The rest of the cases are not implemented but could be added
1229   // when there are use cases.
1230   return nullptr;
1231 }
1232 
1233 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
1234   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
1235 }
1236 
1237 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) {
1238   return !A.intersectWith(B).isEmptySet() || isContiguous(A, B);
1239 }
1240 
1241 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints,
1242                           ConstantInt *Low, ConstantInt *High) {
1243   ConstantRange NewRange(Low->getValue(), High->getValue());
1244   unsigned Size = EndPoints.size();
1245   APInt LB = EndPoints[Size - 2]->getValue();
1246   APInt LE = EndPoints[Size - 1]->getValue();
1247   ConstantRange LastRange(LB, LE);
1248   if (canBeMerged(NewRange, LastRange)) {
1249     ConstantRange Union = LastRange.unionWith(NewRange);
1250     Type *Ty = High->getType();
1251     EndPoints[Size - 2] =
1252         cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower()));
1253     EndPoints[Size - 1] =
1254         cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper()));
1255     return true;
1256   }
1257   return false;
1258 }
1259 
1260 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints,
1261                      ConstantInt *Low, ConstantInt *High) {
1262   if (!EndPoints.empty())
1263     if (tryMergeRange(EndPoints, Low, High))
1264       return;
1265 
1266   EndPoints.push_back(Low);
1267   EndPoints.push_back(High);
1268 }
1269 
1270 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) {
1271   // Given two ranges, we want to compute the union of the ranges. This
1272   // is slightly complicated by having to combine the intervals and merge
1273   // the ones that overlap.
1274 
1275   if (!A || !B)
1276     return nullptr;
1277 
1278   if (A == B)
1279     return A;
1280 
1281   // First, walk both lists in order of the lower boundary of each interval.
1282   // At each step, try to merge the new interval to the last one we adedd.
1283   SmallVector<ConstantInt *, 4> EndPoints;
1284   int AI = 0;
1285   int BI = 0;
1286   int AN = A->getNumOperands() / 2;
1287   int BN = B->getNumOperands() / 2;
1288   while (AI < AN && BI < BN) {
1289     ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI));
1290     ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI));
1291 
1292     if (ALow->getValue().slt(BLow->getValue())) {
1293       addRange(EndPoints, ALow,
1294                mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
1295       ++AI;
1296     } else {
1297       addRange(EndPoints, BLow,
1298                mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
1299       ++BI;
1300     }
1301   }
1302   while (AI < AN) {
1303     addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)),
1304              mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
1305     ++AI;
1306   }
1307   while (BI < BN) {
1308     addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)),
1309              mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
1310     ++BI;
1311   }
1312 
1313   // If we have more than 2 ranges (4 endpoints) we have to try to merge
1314   // the last and first ones.
1315   unsigned Size = EndPoints.size();
1316   if (Size > 4) {
1317     ConstantInt *FB = EndPoints[0];
1318     ConstantInt *FE = EndPoints[1];
1319     if (tryMergeRange(EndPoints, FB, FE)) {
1320       for (unsigned i = 0; i < Size - 2; ++i) {
1321         EndPoints[i] = EndPoints[i + 2];
1322       }
1323       EndPoints.resize(Size - 2);
1324     }
1325   }
1326 
1327   // If in the end we have a single range, it is possible that it is now the
1328   // full range. Just drop the metadata in that case.
1329   if (EndPoints.size() == 2) {
1330     ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue());
1331     if (Range.isFullSet())
1332       return nullptr;
1333   }
1334 
1335   SmallVector<Metadata *, 4> MDs;
1336   MDs.reserve(EndPoints.size());
1337   for (auto *I : EndPoints)
1338     MDs.push_back(ConstantAsMetadata::get(I));
1339   return MDNode::get(A->getContext(), MDs);
1340 }
1341 
1342 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) {
1343   if (!A || !B)
1344     return nullptr;
1345 
1346   ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0));
1347   ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0));
1348   if (AVal->getZExtValue() < BVal->getZExtValue())
1349     return A;
1350   return B;
1351 }
1352 
1353 //===----------------------------------------------------------------------===//
1354 // NamedMDNode implementation.
1355 //
1356 
1357 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) {
1358   return *(SmallVector<TrackingMDRef, 4> *)Operands;
1359 }
1360 
1361 NamedMDNode::NamedMDNode(const Twine &N)
1362     : Name(N.str()), Operands(new SmallVector<TrackingMDRef, 4>()) {}
1363 
1364 NamedMDNode::~NamedMDNode() {
1365   dropAllReferences();
1366   delete &getNMDOps(Operands);
1367 }
1368 
1369 unsigned NamedMDNode::getNumOperands() const {
1370   return (unsigned)getNMDOps(Operands).size();
1371 }
1372 
1373 MDNode *NamedMDNode::getOperand(unsigned i) const {
1374   assert(i < getNumOperands() && "Invalid Operand number!");
1375   auto *N = getNMDOps(Operands)[i].get();
1376   return cast_or_null<MDNode>(N);
1377 }
1378 
1379 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); }
1380 
1381 void NamedMDNode::setOperand(unsigned I, MDNode *New) {
1382   assert(I < getNumOperands() && "Invalid operand number");
1383   getNMDOps(Operands)[I].reset(New);
1384 }
1385 
1386 void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); }
1387 
1388 void NamedMDNode::clearOperands() { getNMDOps(Operands).clear(); }
1389 
1390 StringRef NamedMDNode::getName() const { return StringRef(Name); }
1391 
1392 //===----------------------------------------------------------------------===//
1393 // Instruction Metadata method implementations.
1394 //
1395 
1396 MDNode *MDAttachments::lookup(unsigned ID) const {
1397   for (const auto &A : Attachments)
1398     if (A.MDKind == ID)
1399       return A.Node;
1400   return nullptr;
1401 }
1402 
1403 void MDAttachments::get(unsigned ID, SmallVectorImpl<MDNode *> &Result) const {
1404   for (const auto &A : Attachments)
1405     if (A.MDKind == ID)
1406       Result.push_back(A.Node);
1407 }
1408 
1409 void MDAttachments::getAll(
1410     SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1411   for (const auto &A : Attachments)
1412     Result.emplace_back(A.MDKind, A.Node);
1413 
1414   // Sort the resulting array so it is stable with respect to metadata IDs. We
1415   // need to preserve the original insertion order though.
1416   if (Result.size() > 1)
1417     llvm::stable_sort(Result, less_first());
1418 }
1419 
1420 void MDAttachments::set(unsigned ID, MDNode *MD) {
1421   erase(ID);
1422   if (MD)
1423     insert(ID, *MD);
1424 }
1425 
1426 void MDAttachments::insert(unsigned ID, MDNode &MD) {
1427   Attachments.push_back({ID, TrackingMDNodeRef(&MD)});
1428 }
1429 
1430 bool MDAttachments::erase(unsigned ID) {
1431   if (empty())
1432     return false;
1433 
1434   // Common case is one value.
1435   if (Attachments.size() == 1 && Attachments.back().MDKind == ID) {
1436     Attachments.pop_back();
1437     return true;
1438   }
1439 
1440   auto OldSize = Attachments.size();
1441   llvm::erase_if(Attachments,
1442                  [ID](const Attachment &A) { return A.MDKind == ID; });
1443   return OldSize != Attachments.size();
1444 }
1445 
1446 MDNode *Value::getMetadata(StringRef Kind) const {
1447   if (!hasMetadata())
1448     return nullptr;
1449   unsigned KindID = getContext().getMDKindID(Kind);
1450   return getMetadataImpl(KindID);
1451 }
1452 
1453 MDNode *Value::getMetadataImpl(unsigned KindID) const {
1454   const LLVMContext &Ctx = getContext();
1455   const MDAttachments &Attachements = Ctx.pImpl->ValueMetadata.at(this);
1456   return Attachements.lookup(KindID);
1457 }
1458 
1459 void Value::getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const {
1460   if (hasMetadata())
1461     getContext().pImpl->ValueMetadata.at(this).get(KindID, MDs);
1462 }
1463 
1464 void Value::getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const {
1465   if (hasMetadata())
1466     getMetadata(getContext().getMDKindID(Kind), MDs);
1467 }
1468 
1469 void Value::getAllMetadata(
1470     SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
1471   if (hasMetadata()) {
1472     assert(getContext().pImpl->ValueMetadata.count(this) &&
1473            "bit out of sync with hash table");
1474     const MDAttachments &Info = getContext().pImpl->ValueMetadata.at(this);
1475     Info.getAll(MDs);
1476   }
1477 }
1478 
1479 void Value::setMetadata(unsigned KindID, MDNode *Node) {
1480   assert(isa<Instruction>(this) || isa<GlobalObject>(this));
1481 
1482   // Handle the case when we're adding/updating metadata on a value.
1483   if (Node) {
1484     MDAttachments &Info = getContext().pImpl->ValueMetadata[this];
1485     assert(!Info.empty() == HasMetadata && "bit out of sync with hash table");
1486     if (Info.empty())
1487       HasMetadata = true;
1488     Info.set(KindID, Node);
1489     return;
1490   }
1491 
1492   // Otherwise, we're removing metadata from an instruction.
1493   assert((HasMetadata == (getContext().pImpl->ValueMetadata.count(this) > 0)) &&
1494          "bit out of sync with hash table");
1495   if (!HasMetadata)
1496     return; // Nothing to remove!
1497   MDAttachments &Info = getContext().pImpl->ValueMetadata.find(this)->second;
1498 
1499   // Handle removal of an existing value.
1500   Info.erase(KindID);
1501   if (!Info.empty())
1502     return;
1503   getContext().pImpl->ValueMetadata.erase(this);
1504   HasMetadata = false;
1505 }
1506 
1507 void Value::setMetadata(StringRef Kind, MDNode *Node) {
1508   if (!Node && !HasMetadata)
1509     return;
1510   setMetadata(getContext().getMDKindID(Kind), Node);
1511 }
1512 
1513 void Value::addMetadata(unsigned KindID, MDNode &MD) {
1514   assert(isa<Instruction>(this) || isa<GlobalObject>(this));
1515   if (!HasMetadata)
1516     HasMetadata = true;
1517   getContext().pImpl->ValueMetadata[this].insert(KindID, MD);
1518 }
1519 
1520 void Value::addMetadata(StringRef Kind, MDNode &MD) {
1521   addMetadata(getContext().getMDKindID(Kind), MD);
1522 }
1523 
1524 bool Value::eraseMetadata(unsigned KindID) {
1525   // Nothing to unset.
1526   if (!HasMetadata)
1527     return false;
1528 
1529   MDAttachments &Store = getContext().pImpl->ValueMetadata.find(this)->second;
1530   bool Changed = Store.erase(KindID);
1531   if (Store.empty())
1532     clearMetadata();
1533   return Changed;
1534 }
1535 
1536 void Value::eraseMetadataIf(function_ref<bool(unsigned, MDNode *)> Pred) {
1537   if (!HasMetadata)
1538     return;
1539 
1540   auto &MetadataStore = getContext().pImpl->ValueMetadata;
1541   MDAttachments &Info = MetadataStore.find(this)->second;
1542   assert(!Info.empty() && "bit out of sync with hash table");
1543   Info.remove_if([Pred](const MDAttachments::Attachment &I) {
1544     return Pred(I.MDKind, I.Node);
1545   });
1546 
1547   if (Info.empty())
1548     clearMetadata();
1549 }
1550 
1551 void Value::clearMetadata() {
1552   if (!HasMetadata)
1553     return;
1554   assert(getContext().pImpl->ValueMetadata.count(this) &&
1555          "bit out of sync with hash table");
1556   getContext().pImpl->ValueMetadata.erase(this);
1557   HasMetadata = false;
1558 }
1559 
1560 void Instruction::setMetadata(StringRef Kind, MDNode *Node) {
1561   if (!Node && !hasMetadata())
1562     return;
1563   setMetadata(getContext().getMDKindID(Kind), Node);
1564 }
1565 
1566 MDNode *Instruction::getMetadataImpl(StringRef Kind) const {
1567   const LLVMContext &Ctx = getContext();
1568   unsigned KindID = Ctx.getMDKindID(Kind);
1569   if (KindID == LLVMContext::MD_dbg)
1570     return DbgLoc.getAsMDNode();
1571   return Value::getMetadata(KindID);
1572 }
1573 
1574 void Instruction::eraseMetadataIf(function_ref<bool(unsigned, MDNode *)> Pred) {
1575   if (DbgLoc && Pred(LLVMContext::MD_dbg, DbgLoc.getAsMDNode()))
1576     DbgLoc = {};
1577 
1578   Value::eraseMetadataIf(Pred);
1579 }
1580 
1581 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) {
1582   if (!Value::hasMetadata())
1583     return; // Nothing to remove!
1584 
1585   SmallSet<unsigned, 4> KnownSet;
1586   KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
1587 
1588   // A DIAssignID attachment is debug metadata, don't drop it.
1589   KnownSet.insert(LLVMContext::MD_DIAssignID);
1590 
1591   Value::eraseMetadataIf([&KnownSet](unsigned MDKind, MDNode *Node) {
1592     return !KnownSet.count(MDKind);
1593   });
1594 }
1595 
1596 void Instruction::updateDIAssignIDMapping(DIAssignID *ID) {
1597   auto &IDToInstrs = getContext().pImpl->AssignmentIDToInstrs;
1598   if (const DIAssignID *CurrentID =
1599           cast_or_null<DIAssignID>(getMetadata(LLVMContext::MD_DIAssignID))) {
1600     // Nothing to do if the ID isn't changing.
1601     if (ID == CurrentID)
1602       return;
1603 
1604     // Unmap this instruction from its current ID.
1605     auto InstrsIt = IDToInstrs.find(CurrentID);
1606     assert(InstrsIt != IDToInstrs.end() &&
1607            "Expect existing attachment to be mapped");
1608 
1609     auto &InstVec = InstrsIt->second;
1610     auto *InstIt = llvm::find(InstVec, this);
1611     assert(InstIt != InstVec.end() &&
1612            "Expect instruction to be mapped to attachment");
1613     // The vector contains a ptr to this. If this is the only element in the
1614     // vector, remove the ID:vector entry, otherwise just remove the
1615     // instruction from the vector.
1616     if (InstVec.size() == 1)
1617       IDToInstrs.erase(InstrsIt);
1618     else
1619       InstVec.erase(InstIt);
1620   }
1621 
1622   // Map this instruction to the new ID.
1623   if (ID)
1624     IDToInstrs[ID].push_back(this);
1625 }
1626 
1627 void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
1628   if (!Node && !hasMetadata())
1629     return;
1630 
1631   // Handle 'dbg' as a special case since it is not stored in the hash table.
1632   if (KindID == LLVMContext::MD_dbg) {
1633     DbgLoc = DebugLoc(Node);
1634     return;
1635   }
1636 
1637   // Update DIAssignID to Instruction(s) mapping.
1638   if (KindID == LLVMContext::MD_DIAssignID) {
1639     // The DIAssignID tracking infrastructure doesn't support RAUWing temporary
1640     // nodes with DIAssignIDs. The cast_or_null below would also catch this, but
1641     // having a dedicated assert helps make this obvious.
1642     assert((!Node || !Node->isTemporary()) &&
1643            "Temporary DIAssignIDs are invalid");
1644     updateDIAssignIDMapping(cast_or_null<DIAssignID>(Node));
1645   }
1646 
1647   Value::setMetadata(KindID, Node);
1648 }
1649 
1650 void Instruction::addAnnotationMetadata(SmallVector<StringRef> Annotations) {
1651   SmallVector<Metadata *, 4> Names;
1652   if (auto *Existing = getMetadata(LLVMContext::MD_annotation)) {
1653     SmallSetVector<StringRef, 2> AnnotationsSet(Annotations.begin(),
1654                                                 Annotations.end());
1655     auto *Tuple = cast<MDTuple>(Existing);
1656     for (auto &N : Tuple->operands()) {
1657       if (isa<MDString>(N.get())) {
1658         Names.push_back(N);
1659         continue;
1660       }
1661       auto *MDAnnotationTuple = cast<MDTuple>(N);
1662       if (any_of(MDAnnotationTuple->operands(), [&AnnotationsSet](auto &Op) {
1663             return AnnotationsSet.contains(cast<MDString>(Op)->getString());
1664           }))
1665         return;
1666       Names.push_back(N);
1667     }
1668   }
1669 
1670   MDBuilder MDB(getContext());
1671   SmallVector<Metadata *> MDAnnotationStrings;
1672   for (StringRef Annotation : Annotations)
1673     MDAnnotationStrings.push_back(MDB.createString(Annotation));
1674   MDNode *InfoTuple = MDTuple::get(getContext(), MDAnnotationStrings);
1675   Names.push_back(InfoTuple);
1676   MDNode *MD = MDTuple::get(getContext(), Names);
1677   setMetadata(LLVMContext::MD_annotation, MD);
1678 }
1679 
1680 void Instruction::addAnnotationMetadata(StringRef Name) {
1681   SmallVector<Metadata *, 4> Names;
1682   if (auto *Existing = getMetadata(LLVMContext::MD_annotation)) {
1683     auto *Tuple = cast<MDTuple>(Existing);
1684     for (auto &N : Tuple->operands()) {
1685       if (isa<MDString>(N.get()) &&
1686           cast<MDString>(N.get())->getString() == Name)
1687         return;
1688       Names.push_back(N.get());
1689     }
1690   }
1691 
1692   MDBuilder MDB(getContext());
1693   Names.push_back(MDB.createString(Name));
1694   MDNode *MD = MDTuple::get(getContext(), Names);
1695   setMetadata(LLVMContext::MD_annotation, MD);
1696 }
1697 
1698 AAMDNodes Instruction::getAAMetadata() const {
1699   AAMDNodes Result;
1700   // Not using Instruction::hasMetadata() because we're not interested in
1701   // DebugInfoMetadata.
1702   if (Value::hasMetadata()) {
1703     const MDAttachments &Info = getContext().pImpl->ValueMetadata.at(this);
1704     Result.TBAA = Info.lookup(LLVMContext::MD_tbaa);
1705     Result.TBAAStruct = Info.lookup(LLVMContext::MD_tbaa_struct);
1706     Result.Scope = Info.lookup(LLVMContext::MD_alias_scope);
1707     Result.NoAlias = Info.lookup(LLVMContext::MD_noalias);
1708   }
1709   return Result;
1710 }
1711 
1712 void Instruction::setAAMetadata(const AAMDNodes &N) {
1713   setMetadata(LLVMContext::MD_tbaa, N.TBAA);
1714   setMetadata(LLVMContext::MD_tbaa_struct, N.TBAAStruct);
1715   setMetadata(LLVMContext::MD_alias_scope, N.Scope);
1716   setMetadata(LLVMContext::MD_noalias, N.NoAlias);
1717 }
1718 
1719 void Instruction::setNoSanitizeMetadata() {
1720   setMetadata(llvm::LLVMContext::MD_nosanitize,
1721               llvm::MDNode::get(getContext(), std::nullopt));
1722 }
1723 
1724 void Instruction::getAllMetadataImpl(
1725     SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1726   Result.clear();
1727 
1728   // Handle 'dbg' as a special case since it is not stored in the hash table.
1729   if (DbgLoc) {
1730     Result.push_back(
1731         std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode()));
1732   }
1733   Value::getAllMetadata(Result);
1734 }
1735 
1736 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) const {
1737   assert(
1738       (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select ||
1739        getOpcode() == Instruction::Call || getOpcode() == Instruction::Invoke ||
1740        getOpcode() == Instruction::IndirectBr ||
1741        getOpcode() == Instruction::Switch) &&
1742       "Looking for branch weights on something besides branch");
1743 
1744   return ::extractProfTotalWeight(*this, TotalVal);
1745 }
1746 
1747 void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) {
1748   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
1749   Other->getAllMetadata(MDs);
1750   for (auto &MD : MDs) {
1751     // We need to adjust the type metadata offset.
1752     if (Offset != 0 && MD.first == LLVMContext::MD_type) {
1753       auto *OffsetConst = cast<ConstantInt>(
1754           cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue());
1755       Metadata *TypeId = MD.second->getOperand(1);
1756       auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get(
1757           OffsetConst->getType(), OffsetConst->getValue() + Offset));
1758       addMetadata(LLVMContext::MD_type,
1759                   *MDNode::get(getContext(), {NewOffsetMD, TypeId}));
1760       continue;
1761     }
1762     // If an offset adjustment was specified we need to modify the DIExpression
1763     // to prepend the adjustment:
1764     // !DIExpression(DW_OP_plus, Offset, [original expr])
1765     auto *Attachment = MD.second;
1766     if (Offset != 0 && MD.first == LLVMContext::MD_dbg) {
1767       DIGlobalVariable *GV = dyn_cast<DIGlobalVariable>(Attachment);
1768       DIExpression *E = nullptr;
1769       if (!GV) {
1770         auto *GVE = cast<DIGlobalVariableExpression>(Attachment);
1771         GV = GVE->getVariable();
1772         E = GVE->getExpression();
1773       }
1774       ArrayRef<uint64_t> OrigElements;
1775       if (E)
1776         OrigElements = E->getElements();
1777       std::vector<uint64_t> Elements(OrigElements.size() + 2);
1778       Elements[0] = dwarf::DW_OP_plus_uconst;
1779       Elements[1] = Offset;
1780       llvm::copy(OrigElements, Elements.begin() + 2);
1781       E = DIExpression::get(getContext(), Elements);
1782       Attachment = DIGlobalVariableExpression::get(getContext(), GV, E);
1783     }
1784     addMetadata(MD.first, *Attachment);
1785   }
1786 }
1787 
1788 void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) {
1789   addMetadata(
1790       LLVMContext::MD_type,
1791       *MDTuple::get(getContext(),
1792                     {ConstantAsMetadata::get(ConstantInt::get(
1793                          Type::getInt64Ty(getContext()), Offset)),
1794                      TypeID}));
1795 }
1796 
1797 void GlobalObject::setVCallVisibilityMetadata(VCallVisibility Visibility) {
1798   // Remove any existing vcall visibility metadata first in case we are
1799   // updating.
1800   eraseMetadata(LLVMContext::MD_vcall_visibility);
1801   addMetadata(LLVMContext::MD_vcall_visibility,
1802               *MDNode::get(getContext(),
1803                            {ConstantAsMetadata::get(ConstantInt::get(
1804                                Type::getInt64Ty(getContext()), Visibility))}));
1805 }
1806 
1807 GlobalObject::VCallVisibility GlobalObject::getVCallVisibility() const {
1808   if (MDNode *MD = getMetadata(LLVMContext::MD_vcall_visibility)) {
1809     uint64_t Val = cast<ConstantInt>(
1810                        cast<ConstantAsMetadata>(MD->getOperand(0))->getValue())
1811                        ->getZExtValue();
1812     assert(Val <= 2 && "unknown vcall visibility!");
1813     return (VCallVisibility)Val;
1814   }
1815   return VCallVisibility::VCallVisibilityPublic;
1816 }
1817 
1818 void Function::setSubprogram(DISubprogram *SP) {
1819   setMetadata(LLVMContext::MD_dbg, SP);
1820 }
1821 
1822 DISubprogram *Function::getSubprogram() const {
1823   return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg));
1824 }
1825 
1826 bool Function::shouldEmitDebugInfoForProfiling() const {
1827   if (DISubprogram *SP = getSubprogram()) {
1828     if (DICompileUnit *CU = SP->getUnit()) {
1829       return CU->getDebugInfoForProfiling();
1830     }
1831   }
1832   return false;
1833 }
1834 
1835 void GlobalVariable::addDebugInfo(DIGlobalVariableExpression *GV) {
1836   addMetadata(LLVMContext::MD_dbg, *GV);
1837 }
1838 
1839 void GlobalVariable::getDebugInfo(
1840     SmallVectorImpl<DIGlobalVariableExpression *> &GVs) const {
1841   SmallVector<MDNode *, 1> MDs;
1842   getMetadata(LLVMContext::MD_dbg, MDs);
1843   for (MDNode *MD : MDs)
1844     GVs.push_back(cast<DIGlobalVariableExpression>(MD));
1845 }
1846