1 //===- Metadata.cpp - Implement Metadata classes --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Metadata classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Metadata.h" 14 #include "LLVMContextImpl.h" 15 #include "MetadataImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/APFloat.h" 18 #include "llvm/ADT/APInt.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringMap.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/IR/Argument.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantRange.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DebugInfoMetadata.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalObject.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/MDBuilder.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/TrackingMDRef.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/IR/ValueHandle.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/MathExtras.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <cstddef> 54 #include <cstdint> 55 #include <iterator> 56 #include <tuple> 57 #include <type_traits> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD) 64 : Value(Ty, MetadataAsValueVal), MD(MD) { 65 track(); 66 } 67 68 MetadataAsValue::~MetadataAsValue() { 69 getType()->getContext().pImpl->MetadataAsValues.erase(MD); 70 untrack(); 71 } 72 73 /// Canonicalize metadata arguments to intrinsics. 74 /// 75 /// To support bitcode upgrades (and assembly semantic sugar) for \a 76 /// MetadataAsValue, we need to canonicalize certain metadata. 77 /// 78 /// - nullptr is replaced by an empty MDNode. 79 /// - An MDNode with a single null operand is replaced by an empty MDNode. 80 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped. 81 /// 82 /// This maintains readability of bitcode from when metadata was a type of 83 /// value, and these bridges were unnecessary. 84 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context, 85 Metadata *MD) { 86 if (!MD) 87 // !{} 88 return MDNode::get(Context, None); 89 90 // Return early if this isn't a single-operand MDNode. 91 auto *N = dyn_cast<MDNode>(MD); 92 if (!N || N->getNumOperands() != 1) 93 return MD; 94 95 if (!N->getOperand(0)) 96 // !{} 97 return MDNode::get(Context, None); 98 99 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0))) 100 // Look through the MDNode. 101 return C; 102 103 return MD; 104 } 105 106 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) { 107 MD = canonicalizeMetadataForValue(Context, MD); 108 auto *&Entry = Context.pImpl->MetadataAsValues[MD]; 109 if (!Entry) 110 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD); 111 return Entry; 112 } 113 114 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context, 115 Metadata *MD) { 116 MD = canonicalizeMetadataForValue(Context, MD); 117 auto &Store = Context.pImpl->MetadataAsValues; 118 return Store.lookup(MD); 119 } 120 121 void MetadataAsValue::handleChangedMetadata(Metadata *MD) { 122 LLVMContext &Context = getContext(); 123 MD = canonicalizeMetadataForValue(Context, MD); 124 auto &Store = Context.pImpl->MetadataAsValues; 125 126 // Stop tracking the old metadata. 127 Store.erase(this->MD); 128 untrack(); 129 this->MD = nullptr; 130 131 // Start tracking MD, or RAUW if necessary. 132 auto *&Entry = Store[MD]; 133 if (Entry) { 134 replaceAllUsesWith(Entry); 135 delete this; 136 return; 137 } 138 139 this->MD = MD; 140 track(); 141 Entry = this; 142 } 143 144 void MetadataAsValue::track() { 145 if (MD) 146 MetadataTracking::track(&MD, *MD, *this); 147 } 148 149 void MetadataAsValue::untrack() { 150 if (MD) 151 MetadataTracking::untrack(MD); 152 } 153 154 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) { 155 assert(Ref && "Expected live reference"); 156 assert((Owner || *static_cast<Metadata **>(Ref) == &MD) && 157 "Reference without owner must be direct"); 158 if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) { 159 R->addRef(Ref, Owner); 160 return true; 161 } 162 if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) { 163 assert(!PH->Use && "Placeholders can only be used once"); 164 assert(!Owner && "Unexpected callback to owner"); 165 PH->Use = static_cast<Metadata **>(Ref); 166 return true; 167 } 168 return false; 169 } 170 171 void MetadataTracking::untrack(void *Ref, Metadata &MD) { 172 assert(Ref && "Expected live reference"); 173 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) 174 R->dropRef(Ref); 175 else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) 176 PH->Use = nullptr; 177 } 178 179 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) { 180 assert(Ref && "Expected live reference"); 181 assert(New && "Expected live reference"); 182 assert(Ref != New && "Expected change"); 183 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) { 184 R->moveRef(Ref, New, MD); 185 return true; 186 } 187 assert(!isa<DistinctMDOperandPlaceholder>(MD) && 188 "Unexpected move of an MDOperand"); 189 assert(!isReplaceable(MD) && 190 "Expected un-replaceable metadata, since we didn't move a reference"); 191 return false; 192 } 193 194 bool MetadataTracking::isReplaceable(const Metadata &MD) { 195 return ReplaceableMetadataImpl::isReplaceable(MD); 196 } 197 198 SmallVector<Metadata *> ReplaceableMetadataImpl::getAllArgListUsers() { 199 SmallVector<std::pair<OwnerTy, uint64_t> *> MDUsersWithID; 200 for (auto Pair : UseMap) { 201 OwnerTy Owner = Pair.second.first; 202 if (!Owner.is<Metadata *>()) 203 continue; 204 Metadata *OwnerMD = Owner.get<Metadata *>(); 205 if (OwnerMD->getMetadataID() == Metadata::DIArgListKind) 206 MDUsersWithID.push_back(&UseMap[Pair.first]); 207 } 208 llvm::sort(MDUsersWithID, [](auto UserA, auto UserB) { 209 return UserA->second < UserB->second; 210 }); 211 SmallVector<Metadata *> MDUsers; 212 for (auto UserWithID : MDUsersWithID) 213 MDUsers.push_back(UserWithID->first.get<Metadata *>()); 214 return MDUsers; 215 } 216 217 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) { 218 bool WasInserted = 219 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex))) 220 .second; 221 (void)WasInserted; 222 assert(WasInserted && "Expected to add a reference"); 223 224 ++NextIndex; 225 assert(NextIndex != 0 && "Unexpected overflow"); 226 } 227 228 void ReplaceableMetadataImpl::dropRef(void *Ref) { 229 bool WasErased = UseMap.erase(Ref); 230 (void)WasErased; 231 assert(WasErased && "Expected to drop a reference"); 232 } 233 234 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New, 235 const Metadata &MD) { 236 auto I = UseMap.find(Ref); 237 assert(I != UseMap.end() && "Expected to move a reference"); 238 auto OwnerAndIndex = I->second; 239 UseMap.erase(I); 240 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second; 241 (void)WasInserted; 242 assert(WasInserted && "Expected to add a reference"); 243 244 // Check that the references are direct if there's no owner. 245 (void)MD; 246 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) && 247 "Reference without owner must be direct"); 248 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) && 249 "Reference without owner must be direct"); 250 } 251 252 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) { 253 if (UseMap.empty()) 254 return; 255 256 // Copy out uses since UseMap will get touched below. 257 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>; 258 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 259 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) { 260 return L.second.second < R.second.second; 261 }); 262 for (const auto &Pair : Uses) { 263 // Check that this Ref hasn't disappeared after RAUW (when updating a 264 // previous Ref). 265 if (!UseMap.count(Pair.first)) 266 continue; 267 268 OwnerTy Owner = Pair.second.first; 269 if (!Owner) { 270 // Update unowned tracking references directly. 271 Metadata *&Ref = *static_cast<Metadata **>(Pair.first); 272 Ref = MD; 273 if (MD) 274 MetadataTracking::track(Ref); 275 UseMap.erase(Pair.first); 276 continue; 277 } 278 279 // Check for MetadataAsValue. 280 if (Owner.is<MetadataAsValue *>()) { 281 Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD); 282 continue; 283 } 284 285 // There's a Metadata owner -- dispatch. 286 Metadata *OwnerMD = Owner.get<Metadata *>(); 287 switch (OwnerMD->getMetadataID()) { 288 #define HANDLE_METADATA_LEAF(CLASS) \ 289 case Metadata::CLASS##Kind: \ 290 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \ 291 continue; 292 #include "llvm/IR/Metadata.def" 293 default: 294 llvm_unreachable("Invalid metadata subclass"); 295 } 296 } 297 assert(UseMap.empty() && "Expected all uses to be replaced"); 298 } 299 300 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) { 301 if (UseMap.empty()) 302 return; 303 304 if (!ResolveUsers) { 305 UseMap.clear(); 306 return; 307 } 308 309 // Copy out uses since UseMap could get touched below. 310 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>; 311 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 312 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) { 313 return L.second.second < R.second.second; 314 }); 315 UseMap.clear(); 316 for (const auto &Pair : Uses) { 317 auto Owner = Pair.second.first; 318 if (!Owner) 319 continue; 320 if (Owner.is<MetadataAsValue *>()) 321 continue; 322 323 // Resolve MDNodes that point at this. 324 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>()); 325 if (!OwnerMD) 326 continue; 327 if (OwnerMD->isResolved()) 328 continue; 329 OwnerMD->decrementUnresolvedOperandCount(); 330 } 331 } 332 333 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) { 334 if (auto *N = dyn_cast<MDNode>(&MD)) 335 return N->isResolved() ? nullptr : N->Context.getOrCreateReplaceableUses(); 336 return dyn_cast<ValueAsMetadata>(&MD); 337 } 338 339 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) { 340 if (auto *N = dyn_cast<MDNode>(&MD)) 341 return N->isResolved() ? nullptr : N->Context.getReplaceableUses(); 342 return dyn_cast<ValueAsMetadata>(&MD); 343 } 344 345 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) { 346 if (auto *N = dyn_cast<MDNode>(&MD)) 347 return !N->isResolved(); 348 return isa<ValueAsMetadata>(&MD); 349 } 350 351 static DISubprogram *getLocalFunctionMetadata(Value *V) { 352 assert(V && "Expected value"); 353 if (auto *A = dyn_cast<Argument>(V)) { 354 if (auto *Fn = A->getParent()) 355 return Fn->getSubprogram(); 356 return nullptr; 357 } 358 359 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) { 360 if (auto *Fn = BB->getParent()) 361 return Fn->getSubprogram(); 362 return nullptr; 363 } 364 365 return nullptr; 366 } 367 368 ValueAsMetadata *ValueAsMetadata::get(Value *V) { 369 assert(V && "Unexpected null Value"); 370 371 auto &Context = V->getContext(); 372 auto *&Entry = Context.pImpl->ValuesAsMetadata[V]; 373 if (!Entry) { 374 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) && 375 "Expected constant or function-local value"); 376 assert(!V->IsUsedByMD && "Expected this to be the only metadata use"); 377 V->IsUsedByMD = true; 378 if (auto *C = dyn_cast<Constant>(V)) 379 Entry = new ConstantAsMetadata(C); 380 else 381 Entry = new LocalAsMetadata(V); 382 } 383 384 return Entry; 385 } 386 387 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) { 388 assert(V && "Unexpected null Value"); 389 return V->getContext().pImpl->ValuesAsMetadata.lookup(V); 390 } 391 392 void ValueAsMetadata::handleDeletion(Value *V) { 393 assert(V && "Expected valid value"); 394 395 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata; 396 auto I = Store.find(V); 397 if (I == Store.end()) 398 return; 399 400 // Remove old entry from the map. 401 ValueAsMetadata *MD = I->second; 402 assert(MD && "Expected valid metadata"); 403 assert(MD->getValue() == V && "Expected valid mapping"); 404 Store.erase(I); 405 406 // Delete the metadata. 407 MD->replaceAllUsesWith(nullptr); 408 delete MD; 409 } 410 411 void ValueAsMetadata::handleRAUW(Value *From, Value *To) { 412 assert(From && "Expected valid value"); 413 assert(To && "Expected valid value"); 414 assert(From != To && "Expected changed value"); 415 assert(From->getType() == To->getType() && "Unexpected type change"); 416 417 LLVMContext &Context = From->getType()->getContext(); 418 auto &Store = Context.pImpl->ValuesAsMetadata; 419 auto I = Store.find(From); 420 if (I == Store.end()) { 421 assert(!From->IsUsedByMD && "Expected From not to be used by metadata"); 422 return; 423 } 424 425 // Remove old entry from the map. 426 assert(From->IsUsedByMD && "Expected From to be used by metadata"); 427 From->IsUsedByMD = false; 428 ValueAsMetadata *MD = I->second; 429 assert(MD && "Expected valid metadata"); 430 assert(MD->getValue() == From && "Expected valid mapping"); 431 Store.erase(I); 432 433 if (isa<LocalAsMetadata>(MD)) { 434 if (auto *C = dyn_cast<Constant>(To)) { 435 // Local became a constant. 436 MD->replaceAllUsesWith(ConstantAsMetadata::get(C)); 437 delete MD; 438 return; 439 } 440 if (getLocalFunctionMetadata(From) && getLocalFunctionMetadata(To) && 441 getLocalFunctionMetadata(From) != getLocalFunctionMetadata(To)) { 442 // DISubprogram changed. 443 MD->replaceAllUsesWith(nullptr); 444 delete MD; 445 return; 446 } 447 } else if (!isa<Constant>(To)) { 448 // Changed to function-local value. 449 MD->replaceAllUsesWith(nullptr); 450 delete MD; 451 return; 452 } 453 454 auto *&Entry = Store[To]; 455 if (Entry) { 456 // The target already exists. 457 MD->replaceAllUsesWith(Entry); 458 delete MD; 459 return; 460 } 461 462 // Update MD in place (and update the map entry). 463 assert(!To->IsUsedByMD && "Expected this to be the only metadata use"); 464 To->IsUsedByMD = true; 465 MD->V = To; 466 Entry = MD; 467 } 468 469 //===----------------------------------------------------------------------===// 470 // MDString implementation. 471 // 472 473 MDString *MDString::get(LLVMContext &Context, StringRef Str) { 474 auto &Store = Context.pImpl->MDStringCache; 475 auto I = Store.try_emplace(Str); 476 auto &MapEntry = I.first->getValue(); 477 if (!I.second) 478 return &MapEntry; 479 MapEntry.Entry = &*I.first; 480 return &MapEntry; 481 } 482 483 StringRef MDString::getString() const { 484 assert(Entry && "Expected to find string map entry"); 485 return Entry->first(); 486 } 487 488 //===----------------------------------------------------------------------===// 489 // MDNode implementation. 490 // 491 492 // Assert that the MDNode types will not be unaligned by the objects 493 // prepended to them. 494 #define HANDLE_MDNODE_LEAF(CLASS) \ 495 static_assert( \ 496 alignof(uint64_t) >= alignof(CLASS), \ 497 "Alignment is insufficient after objects prepended to " #CLASS); 498 #include "llvm/IR/Metadata.def" 499 500 void *MDNode::operator new(size_t Size, unsigned NumOps) { 501 size_t OpSize = NumOps * sizeof(MDOperand); 502 // uint64_t is the most aligned type we need support (ensured by static_assert 503 // above) 504 OpSize = alignTo(OpSize, alignof(uint64_t)); 505 void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize; 506 MDOperand *O = static_cast<MDOperand *>(Ptr); 507 for (MDOperand *E = O - NumOps; O != E; --O) 508 (void)new (O - 1) MDOperand; 509 return Ptr; 510 } 511 512 // Repress memory sanitization, due to use-after-destroy by operator 513 // delete. Bug report 24578 identifies this issue. 514 LLVM_NO_SANITIZE_MEMORY_ATTRIBUTE void MDNode::operator delete(void *Mem) { 515 MDNode *N = static_cast<MDNode *>(Mem); 516 size_t OpSize = N->NumOperands * sizeof(MDOperand); 517 OpSize = alignTo(OpSize, alignof(uint64_t)); 518 519 MDOperand *O = static_cast<MDOperand *>(Mem); 520 for (MDOperand *E = O - N->NumOperands; O != E; --O) 521 (O - 1)->~MDOperand(); 522 ::operator delete(reinterpret_cast<char *>(Mem) - OpSize); 523 } 524 525 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage, 526 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2) 527 : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()), 528 NumUnresolved(0), Context(Context) { 529 unsigned Op = 0; 530 for (Metadata *MD : Ops1) 531 setOperand(Op++, MD); 532 for (Metadata *MD : Ops2) 533 setOperand(Op++, MD); 534 535 if (!isUniqued()) 536 return; 537 538 // Count the unresolved operands. If there are any, RAUW support will be 539 // added lazily on first reference. 540 countUnresolvedOperands(); 541 } 542 543 TempMDNode MDNode::clone() const { 544 switch (getMetadataID()) { 545 default: 546 llvm_unreachable("Invalid MDNode subclass"); 547 #define HANDLE_MDNODE_LEAF(CLASS) \ 548 case CLASS##Kind: \ 549 return cast<CLASS>(this)->cloneImpl(); 550 #include "llvm/IR/Metadata.def" 551 } 552 } 553 554 static bool isOperandUnresolved(Metadata *Op) { 555 if (auto *N = dyn_cast_or_null<MDNode>(Op)) 556 return !N->isResolved(); 557 return false; 558 } 559 560 void MDNode::countUnresolvedOperands() { 561 assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted"); 562 assert(isUniqued() && "Expected this to be uniqued"); 563 NumUnresolved = count_if(operands(), isOperandUnresolved); 564 } 565 566 void MDNode::makeUniqued() { 567 assert(isTemporary() && "Expected this to be temporary"); 568 assert(!isResolved() && "Expected this to be unresolved"); 569 570 // Enable uniquing callbacks. 571 for (auto &Op : mutable_operands()) 572 Op.reset(Op.get(), this); 573 574 // Make this 'uniqued'. 575 Storage = Uniqued; 576 countUnresolvedOperands(); 577 if (!NumUnresolved) { 578 dropReplaceableUses(); 579 assert(isResolved() && "Expected this to be resolved"); 580 } 581 582 assert(isUniqued() && "Expected this to be uniqued"); 583 } 584 585 void MDNode::makeDistinct() { 586 assert(isTemporary() && "Expected this to be temporary"); 587 assert(!isResolved() && "Expected this to be unresolved"); 588 589 // Drop RAUW support and store as a distinct node. 590 dropReplaceableUses(); 591 storeDistinctInContext(); 592 593 assert(isDistinct() && "Expected this to be distinct"); 594 assert(isResolved() && "Expected this to be resolved"); 595 } 596 597 void MDNode::resolve() { 598 assert(isUniqued() && "Expected this to be uniqued"); 599 assert(!isResolved() && "Expected this to be unresolved"); 600 601 NumUnresolved = 0; 602 dropReplaceableUses(); 603 604 assert(isResolved() && "Expected this to be resolved"); 605 } 606 607 void MDNode::dropReplaceableUses() { 608 assert(!NumUnresolved && "Unexpected unresolved operand"); 609 610 // Drop any RAUW support. 611 if (Context.hasReplaceableUses()) 612 Context.takeReplaceableUses()->resolveAllUses(); 613 } 614 615 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) { 616 assert(isUniqued() && "Expected this to be uniqued"); 617 assert(NumUnresolved != 0 && "Expected unresolved operands"); 618 619 // Check if an operand was resolved. 620 if (!isOperandUnresolved(Old)) { 621 if (isOperandUnresolved(New)) 622 // An operand was un-resolved! 623 ++NumUnresolved; 624 } else if (!isOperandUnresolved(New)) 625 decrementUnresolvedOperandCount(); 626 } 627 628 void MDNode::decrementUnresolvedOperandCount() { 629 assert(!isResolved() && "Expected this to be unresolved"); 630 if (isTemporary()) 631 return; 632 633 assert(isUniqued() && "Expected this to be uniqued"); 634 if (--NumUnresolved) 635 return; 636 637 // Last unresolved operand has just been resolved. 638 dropReplaceableUses(); 639 assert(isResolved() && "Expected this to become resolved"); 640 } 641 642 void MDNode::resolveCycles() { 643 if (isResolved()) 644 return; 645 646 // Resolve this node immediately. 647 resolve(); 648 649 // Resolve all operands. 650 for (const auto &Op : operands()) { 651 auto *N = dyn_cast_or_null<MDNode>(Op); 652 if (!N) 653 continue; 654 655 assert(!N->isTemporary() && 656 "Expected all forward declarations to be resolved"); 657 if (!N->isResolved()) 658 N->resolveCycles(); 659 } 660 } 661 662 static bool hasSelfReference(MDNode *N) { 663 return llvm::is_contained(N->operands(), N); 664 } 665 666 MDNode *MDNode::replaceWithPermanentImpl() { 667 switch (getMetadataID()) { 668 default: 669 // If this type isn't uniquable, replace with a distinct node. 670 return replaceWithDistinctImpl(); 671 672 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 673 case CLASS##Kind: \ 674 break; 675 #include "llvm/IR/Metadata.def" 676 } 677 678 // Even if this type is uniquable, self-references have to be distinct. 679 if (hasSelfReference(this)) 680 return replaceWithDistinctImpl(); 681 return replaceWithUniquedImpl(); 682 } 683 684 MDNode *MDNode::replaceWithUniquedImpl() { 685 // Try to uniquify in place. 686 MDNode *UniquedNode = uniquify(); 687 688 if (UniquedNode == this) { 689 makeUniqued(); 690 return this; 691 } 692 693 // Collision, so RAUW instead. 694 replaceAllUsesWith(UniquedNode); 695 deleteAsSubclass(); 696 return UniquedNode; 697 } 698 699 MDNode *MDNode::replaceWithDistinctImpl() { 700 makeDistinct(); 701 return this; 702 } 703 704 void MDTuple::recalculateHash() { 705 setHash(MDTupleInfo::KeyTy::calculateHash(this)); 706 } 707 708 void MDNode::dropAllReferences() { 709 for (unsigned I = 0, E = NumOperands; I != E; ++I) 710 setOperand(I, nullptr); 711 if (Context.hasReplaceableUses()) { 712 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false); 713 (void)Context.takeReplaceableUses(); 714 } 715 } 716 717 void MDNode::handleChangedOperand(void *Ref, Metadata *New) { 718 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin(); 719 assert(Op < getNumOperands() && "Expected valid operand"); 720 721 if (!isUniqued()) { 722 // This node is not uniqued. Just set the operand and be done with it. 723 setOperand(Op, New); 724 return; 725 } 726 727 // This node is uniqued. 728 eraseFromStore(); 729 730 Metadata *Old = getOperand(Op); 731 setOperand(Op, New); 732 733 // Drop uniquing for self-reference cycles and deleted constants. 734 if (New == this || (!New && Old && isa<ConstantAsMetadata>(Old))) { 735 if (!isResolved()) 736 resolve(); 737 storeDistinctInContext(); 738 return; 739 } 740 741 // Re-unique the node. 742 auto *Uniqued = uniquify(); 743 if (Uniqued == this) { 744 if (!isResolved()) 745 resolveAfterOperandChange(Old, New); 746 return; 747 } 748 749 // Collision. 750 if (!isResolved()) { 751 // Still unresolved, so RAUW. 752 // 753 // First, clear out all operands to prevent any recursion (similar to 754 // dropAllReferences(), but we still need the use-list). 755 for (unsigned O = 0, E = getNumOperands(); O != E; ++O) 756 setOperand(O, nullptr); 757 if (Context.hasReplaceableUses()) 758 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued); 759 deleteAsSubclass(); 760 return; 761 } 762 763 // Store in non-uniqued form if RAUW isn't possible. 764 storeDistinctInContext(); 765 } 766 767 void MDNode::deleteAsSubclass() { 768 switch (getMetadataID()) { 769 default: 770 llvm_unreachable("Invalid subclass of MDNode"); 771 #define HANDLE_MDNODE_LEAF(CLASS) \ 772 case CLASS##Kind: \ 773 delete cast<CLASS>(this); \ 774 break; 775 #include "llvm/IR/Metadata.def" 776 } 777 } 778 779 template <class T, class InfoT> 780 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) { 781 if (T *U = getUniqued(Store, N)) 782 return U; 783 784 Store.insert(N); 785 return N; 786 } 787 788 template <class NodeTy> struct MDNode::HasCachedHash { 789 using Yes = char[1]; 790 using No = char[2]; 791 template <class U, U Val> struct SFINAE {}; 792 793 template <class U> 794 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *); 795 template <class U> static No &check(...); 796 797 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes); 798 }; 799 800 MDNode *MDNode::uniquify() { 801 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node"); 802 803 // Try to insert into uniquing store. 804 switch (getMetadataID()) { 805 default: 806 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 807 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 808 case CLASS##Kind: { \ 809 CLASS *SubclassThis = cast<CLASS>(this); \ 810 std::integral_constant<bool, HasCachedHash<CLASS>::value> \ 811 ShouldRecalculateHash; \ 812 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \ 813 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \ 814 } 815 #include "llvm/IR/Metadata.def" 816 } 817 } 818 819 void MDNode::eraseFromStore() { 820 switch (getMetadataID()) { 821 default: 822 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 823 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 824 case CLASS##Kind: \ 825 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \ 826 break; 827 #include "llvm/IR/Metadata.def" 828 } 829 } 830 831 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs, 832 StorageType Storage, bool ShouldCreate) { 833 unsigned Hash = 0; 834 if (Storage == Uniqued) { 835 MDTupleInfo::KeyTy Key(MDs); 836 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key)) 837 return N; 838 if (!ShouldCreate) 839 return nullptr; 840 Hash = Key.getHash(); 841 } else { 842 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 843 } 844 845 return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs), 846 Storage, Context.pImpl->MDTuples); 847 } 848 849 void MDNode::deleteTemporary(MDNode *N) { 850 assert(N->isTemporary() && "Expected temporary node"); 851 N->replaceAllUsesWith(nullptr); 852 N->deleteAsSubclass(); 853 } 854 855 void MDNode::storeDistinctInContext() { 856 assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses"); 857 assert(!NumUnresolved && "Unexpected unresolved nodes"); 858 Storage = Distinct; 859 assert(isResolved() && "Expected this to be resolved"); 860 861 // Reset the hash. 862 switch (getMetadataID()) { 863 default: 864 llvm_unreachable("Invalid subclass of MDNode"); 865 #define HANDLE_MDNODE_LEAF(CLASS) \ 866 case CLASS##Kind: { \ 867 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \ 868 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \ 869 break; \ 870 } 871 #include "llvm/IR/Metadata.def" 872 } 873 874 getContext().pImpl->DistinctMDNodes.push_back(this); 875 } 876 877 void MDNode::replaceOperandWith(unsigned I, Metadata *New) { 878 if (getOperand(I) == New) 879 return; 880 881 if (!isUniqued()) { 882 setOperand(I, New); 883 return; 884 } 885 886 handleChangedOperand(mutable_begin() + I, New); 887 } 888 889 void MDNode::setOperand(unsigned I, Metadata *New) { 890 assert(I < NumOperands); 891 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr); 892 } 893 894 /// Get a node or a self-reference that looks like it. 895 /// 896 /// Special handling for finding self-references, for use by \a 897 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from 898 /// when self-referencing nodes were still uniqued. If the first operand has 899 /// the same operands as \c Ops, return the first operand instead. 900 static MDNode *getOrSelfReference(LLVMContext &Context, 901 ArrayRef<Metadata *> Ops) { 902 if (!Ops.empty()) 903 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0])) 904 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) { 905 for (unsigned I = 1, E = Ops.size(); I != E; ++I) 906 if (Ops[I] != N->getOperand(I)) 907 return MDNode::get(Context, Ops); 908 return N; 909 } 910 911 return MDNode::get(Context, Ops); 912 } 913 914 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) { 915 if (!A) 916 return B; 917 if (!B) 918 return A; 919 920 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 921 MDs.insert(B->op_begin(), B->op_end()); 922 923 // FIXME: This preserves long-standing behaviour, but is it really the right 924 // behaviour? Or was that an unintended side-effect of node uniquing? 925 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 926 } 927 928 MDNode *MDNode::intersect(MDNode *A, MDNode *B) { 929 if (!A || !B) 930 return nullptr; 931 932 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 933 SmallPtrSet<Metadata *, 4> BSet(B->op_begin(), B->op_end()); 934 MDs.remove_if([&](Metadata *MD) { return !BSet.count(MD); }); 935 936 // FIXME: This preserves long-standing behaviour, but is it really the right 937 // behaviour? Or was that an unintended side-effect of node uniquing? 938 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 939 } 940 941 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) { 942 if (!A || !B) 943 return nullptr; 944 945 // Take the intersection of domains then union the scopes 946 // within those domains 947 SmallPtrSet<const MDNode *, 16> ADomains; 948 SmallPtrSet<const MDNode *, 16> IntersectDomains; 949 SmallSetVector<Metadata *, 4> MDs; 950 for (const MDOperand &MDOp : A->operands()) 951 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 952 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 953 ADomains.insert(Domain); 954 955 for (const MDOperand &MDOp : B->operands()) 956 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 957 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 958 if (ADomains.contains(Domain)) { 959 IntersectDomains.insert(Domain); 960 MDs.insert(MDOp); 961 } 962 963 for (const MDOperand &MDOp : A->operands()) 964 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 965 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 966 if (IntersectDomains.contains(Domain)) 967 MDs.insert(MDOp); 968 969 return MDs.empty() ? nullptr 970 : getOrSelfReference(A->getContext(), MDs.getArrayRef()); 971 } 972 973 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) { 974 if (!A || !B) 975 return nullptr; 976 977 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF(); 978 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF(); 979 if (AVal < BVal) 980 return A; 981 return B; 982 } 983 984 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 985 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 986 } 987 988 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) { 989 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B); 990 } 991 992 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints, 993 ConstantInt *Low, ConstantInt *High) { 994 ConstantRange NewRange(Low->getValue(), High->getValue()); 995 unsigned Size = EndPoints.size(); 996 APInt LB = EndPoints[Size - 2]->getValue(); 997 APInt LE = EndPoints[Size - 1]->getValue(); 998 ConstantRange LastRange(LB, LE); 999 if (canBeMerged(NewRange, LastRange)) { 1000 ConstantRange Union = LastRange.unionWith(NewRange); 1001 Type *Ty = High->getType(); 1002 EndPoints[Size - 2] = 1003 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower())); 1004 EndPoints[Size - 1] = 1005 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper())); 1006 return true; 1007 } 1008 return false; 1009 } 1010 1011 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints, 1012 ConstantInt *Low, ConstantInt *High) { 1013 if (!EndPoints.empty()) 1014 if (tryMergeRange(EndPoints, Low, High)) 1015 return; 1016 1017 EndPoints.push_back(Low); 1018 EndPoints.push_back(High); 1019 } 1020 1021 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) { 1022 // Given two ranges, we want to compute the union of the ranges. This 1023 // is slightly complicated by having to combine the intervals and merge 1024 // the ones that overlap. 1025 1026 if (!A || !B) 1027 return nullptr; 1028 1029 if (A == B) 1030 return A; 1031 1032 // First, walk both lists in order of the lower boundary of each interval. 1033 // At each step, try to merge the new interval to the last one we adedd. 1034 SmallVector<ConstantInt *, 4> EndPoints; 1035 int AI = 0; 1036 int BI = 0; 1037 int AN = A->getNumOperands() / 2; 1038 int BN = B->getNumOperands() / 2; 1039 while (AI < AN && BI < BN) { 1040 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI)); 1041 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI)); 1042 1043 if (ALow->getValue().slt(BLow->getValue())) { 1044 addRange(EndPoints, ALow, 1045 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 1046 ++AI; 1047 } else { 1048 addRange(EndPoints, BLow, 1049 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 1050 ++BI; 1051 } 1052 } 1053 while (AI < AN) { 1054 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)), 1055 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 1056 ++AI; 1057 } 1058 while (BI < BN) { 1059 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)), 1060 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 1061 ++BI; 1062 } 1063 1064 // If we have more than 2 ranges (4 endpoints) we have to try to merge 1065 // the last and first ones. 1066 unsigned Size = EndPoints.size(); 1067 if (Size > 4) { 1068 ConstantInt *FB = EndPoints[0]; 1069 ConstantInt *FE = EndPoints[1]; 1070 if (tryMergeRange(EndPoints, FB, FE)) { 1071 for (unsigned i = 0; i < Size - 2; ++i) { 1072 EndPoints[i] = EndPoints[i + 2]; 1073 } 1074 EndPoints.resize(Size - 2); 1075 } 1076 } 1077 1078 // If in the end we have a single range, it is possible that it is now the 1079 // full range. Just drop the metadata in that case. 1080 if (EndPoints.size() == 2) { 1081 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue()); 1082 if (Range.isFullSet()) 1083 return nullptr; 1084 } 1085 1086 SmallVector<Metadata *, 4> MDs; 1087 MDs.reserve(EndPoints.size()); 1088 for (auto *I : EndPoints) 1089 MDs.push_back(ConstantAsMetadata::get(I)); 1090 return MDNode::get(A->getContext(), MDs); 1091 } 1092 1093 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) { 1094 if (!A || !B) 1095 return nullptr; 1096 1097 ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0)); 1098 ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0)); 1099 if (AVal->getZExtValue() < BVal->getZExtValue()) 1100 return A; 1101 return B; 1102 } 1103 1104 //===----------------------------------------------------------------------===// 1105 // NamedMDNode implementation. 1106 // 1107 1108 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) { 1109 return *(SmallVector<TrackingMDRef, 4> *)Operands; 1110 } 1111 1112 NamedMDNode::NamedMDNode(const Twine &N) 1113 : Name(N.str()), Operands(new SmallVector<TrackingMDRef, 4>()) {} 1114 1115 NamedMDNode::~NamedMDNode() { 1116 dropAllReferences(); 1117 delete &getNMDOps(Operands); 1118 } 1119 1120 unsigned NamedMDNode::getNumOperands() const { 1121 return (unsigned)getNMDOps(Operands).size(); 1122 } 1123 1124 MDNode *NamedMDNode::getOperand(unsigned i) const { 1125 assert(i < getNumOperands() && "Invalid Operand number!"); 1126 auto *N = getNMDOps(Operands)[i].get(); 1127 return cast_or_null<MDNode>(N); 1128 } 1129 1130 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); } 1131 1132 void NamedMDNode::setOperand(unsigned I, MDNode *New) { 1133 assert(I < getNumOperands() && "Invalid operand number"); 1134 getNMDOps(Operands)[I].reset(New); 1135 } 1136 1137 void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); } 1138 1139 void NamedMDNode::clearOperands() { getNMDOps(Operands).clear(); } 1140 1141 StringRef NamedMDNode::getName() const { return StringRef(Name); } 1142 1143 //===----------------------------------------------------------------------===// 1144 // Instruction Metadata method implementations. 1145 // 1146 1147 MDNode *MDAttachments::lookup(unsigned ID) const { 1148 for (const auto &A : Attachments) 1149 if (A.MDKind == ID) 1150 return A.Node; 1151 return nullptr; 1152 } 1153 1154 void MDAttachments::get(unsigned ID, SmallVectorImpl<MDNode *> &Result) const { 1155 for (const auto &A : Attachments) 1156 if (A.MDKind == ID) 1157 Result.push_back(A.Node); 1158 } 1159 1160 void MDAttachments::getAll( 1161 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1162 for (const auto &A : Attachments) 1163 Result.emplace_back(A.MDKind, A.Node); 1164 1165 // Sort the resulting array so it is stable with respect to metadata IDs. We 1166 // need to preserve the original insertion order though. 1167 if (Result.size() > 1) 1168 llvm::stable_sort(Result, less_first()); 1169 } 1170 1171 void MDAttachments::set(unsigned ID, MDNode *MD) { 1172 erase(ID); 1173 if (MD) 1174 insert(ID, *MD); 1175 } 1176 1177 void MDAttachments::insert(unsigned ID, MDNode &MD) { 1178 Attachments.push_back({ID, TrackingMDNodeRef(&MD)}); 1179 } 1180 1181 bool MDAttachments::erase(unsigned ID) { 1182 if (empty()) 1183 return false; 1184 1185 // Common case is one value. 1186 if (Attachments.size() == 1 && Attachments.back().MDKind == ID) { 1187 Attachments.pop_back(); 1188 return true; 1189 } 1190 1191 auto OldSize = Attachments.size(); 1192 llvm::erase_if(Attachments, 1193 [ID](const Attachment &A) { return A.MDKind == ID; }); 1194 return OldSize != Attachments.size(); 1195 } 1196 1197 MDNode *Value::getMetadata(unsigned KindID) const { 1198 if (!hasMetadata()) 1199 return nullptr; 1200 const auto &Info = getContext().pImpl->ValueMetadata[this]; 1201 assert(!Info.empty() && "bit out of sync with hash table"); 1202 return Info.lookup(KindID); 1203 } 1204 1205 MDNode *Value::getMetadata(StringRef Kind) const { 1206 if (!hasMetadata()) 1207 return nullptr; 1208 const auto &Info = getContext().pImpl->ValueMetadata[this]; 1209 assert(!Info.empty() && "bit out of sync with hash table"); 1210 return Info.lookup(getContext().getMDKindID(Kind)); 1211 } 1212 1213 void Value::getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const { 1214 if (hasMetadata()) 1215 getContext().pImpl->ValueMetadata[this].get(KindID, MDs); 1216 } 1217 1218 void Value::getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const { 1219 if (hasMetadata()) 1220 getMetadata(getContext().getMDKindID(Kind), MDs); 1221 } 1222 1223 void Value::getAllMetadata( 1224 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { 1225 if (hasMetadata()) { 1226 assert(getContext().pImpl->ValueMetadata.count(this) && 1227 "bit out of sync with hash table"); 1228 const auto &Info = getContext().pImpl->ValueMetadata.find(this)->second; 1229 assert(!Info.empty() && "Shouldn't have called this"); 1230 Info.getAll(MDs); 1231 } 1232 } 1233 1234 void Value::setMetadata(unsigned KindID, MDNode *Node) { 1235 assert(isa<Instruction>(this) || isa<GlobalObject>(this)); 1236 1237 // Handle the case when we're adding/updating metadata on a value. 1238 if (Node) { 1239 auto &Info = getContext().pImpl->ValueMetadata[this]; 1240 assert(!Info.empty() == HasMetadata && "bit out of sync with hash table"); 1241 if (Info.empty()) 1242 HasMetadata = true; 1243 Info.set(KindID, Node); 1244 return; 1245 } 1246 1247 // Otherwise, we're removing metadata from an instruction. 1248 assert((HasMetadata == (getContext().pImpl->ValueMetadata.count(this) > 0)) && 1249 "bit out of sync with hash table"); 1250 if (!HasMetadata) 1251 return; // Nothing to remove! 1252 auto &Info = getContext().pImpl->ValueMetadata[this]; 1253 1254 // Handle removal of an existing value. 1255 Info.erase(KindID); 1256 if (!Info.empty()) 1257 return; 1258 getContext().pImpl->ValueMetadata.erase(this); 1259 HasMetadata = false; 1260 } 1261 1262 void Value::setMetadata(StringRef Kind, MDNode *Node) { 1263 if (!Node && !HasMetadata) 1264 return; 1265 setMetadata(getContext().getMDKindID(Kind), Node); 1266 } 1267 1268 void Value::addMetadata(unsigned KindID, MDNode &MD) { 1269 assert(isa<Instruction>(this) || isa<GlobalObject>(this)); 1270 if (!HasMetadata) 1271 HasMetadata = true; 1272 getContext().pImpl->ValueMetadata[this].insert(KindID, MD); 1273 } 1274 1275 void Value::addMetadata(StringRef Kind, MDNode &MD) { 1276 addMetadata(getContext().getMDKindID(Kind), MD); 1277 } 1278 1279 bool Value::eraseMetadata(unsigned KindID) { 1280 // Nothing to unset. 1281 if (!HasMetadata) 1282 return false; 1283 1284 auto &Store = getContext().pImpl->ValueMetadata[this]; 1285 bool Changed = Store.erase(KindID); 1286 if (Store.empty()) 1287 clearMetadata(); 1288 return Changed; 1289 } 1290 1291 void Value::clearMetadata() { 1292 if (!HasMetadata) 1293 return; 1294 assert(getContext().pImpl->ValueMetadata.count(this) && 1295 "bit out of sync with hash table"); 1296 getContext().pImpl->ValueMetadata.erase(this); 1297 HasMetadata = false; 1298 } 1299 1300 void Instruction::setMetadata(StringRef Kind, MDNode *Node) { 1301 if (!Node && !hasMetadata()) 1302 return; 1303 setMetadata(getContext().getMDKindID(Kind), Node); 1304 } 1305 1306 MDNode *Instruction::getMetadataImpl(StringRef Kind) const { 1307 return getMetadataImpl(getContext().getMDKindID(Kind)); 1308 } 1309 1310 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) { 1311 if (!Value::hasMetadata()) 1312 return; // Nothing to remove! 1313 1314 if (KnownIDs.empty()) { 1315 // Just drop our entry at the store. 1316 clearMetadata(); 1317 return; 1318 } 1319 1320 SmallSet<unsigned, 4> KnownSet; 1321 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1322 1323 auto &MetadataStore = getContext().pImpl->ValueMetadata; 1324 auto &Info = MetadataStore[this]; 1325 assert(!Info.empty() && "bit out of sync with hash table"); 1326 Info.remove_if([&KnownSet](const MDAttachments::Attachment &I) { 1327 return !KnownSet.count(I.MDKind); 1328 }); 1329 1330 if (Info.empty()) { 1331 // Drop our entry at the store. 1332 clearMetadata(); 1333 } 1334 } 1335 1336 void Instruction::setMetadata(unsigned KindID, MDNode *Node) { 1337 if (!Node && !hasMetadata()) 1338 return; 1339 1340 // Handle 'dbg' as a special case since it is not stored in the hash table. 1341 if (KindID == LLVMContext::MD_dbg) { 1342 DbgLoc = DebugLoc(Node); 1343 return; 1344 } 1345 1346 Value::setMetadata(KindID, Node); 1347 } 1348 1349 void Instruction::addAnnotationMetadata(StringRef Name) { 1350 MDBuilder MDB(getContext()); 1351 1352 auto *Existing = getMetadata(LLVMContext::MD_annotation); 1353 SmallVector<Metadata *, 4> Names; 1354 bool AppendName = true; 1355 if (Existing) { 1356 auto *Tuple = cast<MDTuple>(Existing); 1357 for (auto &N : Tuple->operands()) { 1358 if (cast<MDString>(N.get())->getString() == Name) 1359 AppendName = false; 1360 Names.push_back(N.get()); 1361 } 1362 } 1363 if (AppendName) 1364 Names.push_back(MDB.createString(Name)); 1365 1366 MDNode *MD = MDTuple::get(getContext(), Names); 1367 setMetadata(LLVMContext::MD_annotation, MD); 1368 } 1369 1370 AAMDNodes Instruction::getAAMetadata() const { 1371 AAMDNodes Result; 1372 Result.TBAA = getMetadata(LLVMContext::MD_tbaa); 1373 Result.TBAAStruct = getMetadata(LLVMContext::MD_tbaa_struct); 1374 Result.Scope = getMetadata(LLVMContext::MD_alias_scope); 1375 Result.NoAlias = getMetadata(LLVMContext::MD_noalias); 1376 return Result; 1377 } 1378 1379 void Instruction::setAAMetadata(const AAMDNodes &N) { 1380 setMetadata(LLVMContext::MD_tbaa, N.TBAA); 1381 setMetadata(LLVMContext::MD_tbaa_struct, N.TBAAStruct); 1382 setMetadata(LLVMContext::MD_alias_scope, N.Scope); 1383 setMetadata(LLVMContext::MD_noalias, N.NoAlias); 1384 } 1385 1386 MDNode *Instruction::getMetadataImpl(unsigned KindID) const { 1387 // Handle 'dbg' as a special case since it is not stored in the hash table. 1388 if (KindID == LLVMContext::MD_dbg) 1389 return DbgLoc.getAsMDNode(); 1390 return Value::getMetadata(KindID); 1391 } 1392 1393 void Instruction::getAllMetadataImpl( 1394 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1395 Result.clear(); 1396 1397 // Handle 'dbg' as a special case since it is not stored in the hash table. 1398 if (DbgLoc) { 1399 Result.push_back( 1400 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode())); 1401 } 1402 Value::getAllMetadata(Result); 1403 } 1404 1405 bool Instruction::extractProfMetadata(uint64_t &TrueVal, 1406 uint64_t &FalseVal) const { 1407 assert( 1408 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select) && 1409 "Looking for branch weights on something besides branch or select"); 1410 1411 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1412 if (!ProfileData || ProfileData->getNumOperands() != 3) 1413 return false; 1414 1415 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1416 if (!ProfDataName || !ProfDataName->getString().equals("branch_weights")) 1417 return false; 1418 1419 auto *CITrue = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 1420 auto *CIFalse = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 1421 if (!CITrue || !CIFalse) 1422 return false; 1423 1424 TrueVal = CITrue->getValue().getZExtValue(); 1425 FalseVal = CIFalse->getValue().getZExtValue(); 1426 1427 return true; 1428 } 1429 1430 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) const { 1431 assert( 1432 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select || 1433 getOpcode() == Instruction::Call || getOpcode() == Instruction::Invoke || 1434 getOpcode() == Instruction::IndirectBr || 1435 getOpcode() == Instruction::Switch) && 1436 "Looking for branch weights on something besides branch"); 1437 1438 TotalVal = 0; 1439 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 1440 if (!ProfileData) 1441 return false; 1442 1443 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 1444 if (!ProfDataName) 1445 return false; 1446 1447 if (ProfDataName->getString().equals("branch_weights")) { 1448 TotalVal = 0; 1449 for (unsigned i = 1; i < ProfileData->getNumOperands(); i++) { 1450 auto *V = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i)); 1451 if (!V) 1452 return false; 1453 TotalVal += V->getValue().getZExtValue(); 1454 } 1455 return true; 1456 } else if (ProfDataName->getString().equals("VP") && 1457 ProfileData->getNumOperands() > 3) { 1458 TotalVal = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)) 1459 ->getValue() 1460 .getZExtValue(); 1461 return true; 1462 } 1463 return false; 1464 } 1465 1466 void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) { 1467 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 1468 Other->getAllMetadata(MDs); 1469 for (auto &MD : MDs) { 1470 // We need to adjust the type metadata offset. 1471 if (Offset != 0 && MD.first == LLVMContext::MD_type) { 1472 auto *OffsetConst = cast<ConstantInt>( 1473 cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue()); 1474 Metadata *TypeId = MD.second->getOperand(1); 1475 auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get( 1476 OffsetConst->getType(), OffsetConst->getValue() + Offset)); 1477 addMetadata(LLVMContext::MD_type, 1478 *MDNode::get(getContext(), {NewOffsetMD, TypeId})); 1479 continue; 1480 } 1481 // If an offset adjustment was specified we need to modify the DIExpression 1482 // to prepend the adjustment: 1483 // !DIExpression(DW_OP_plus, Offset, [original expr]) 1484 auto *Attachment = MD.second; 1485 if (Offset != 0 && MD.first == LLVMContext::MD_dbg) { 1486 DIGlobalVariable *GV = dyn_cast<DIGlobalVariable>(Attachment); 1487 DIExpression *E = nullptr; 1488 if (!GV) { 1489 auto *GVE = cast<DIGlobalVariableExpression>(Attachment); 1490 GV = GVE->getVariable(); 1491 E = GVE->getExpression(); 1492 } 1493 ArrayRef<uint64_t> OrigElements; 1494 if (E) 1495 OrigElements = E->getElements(); 1496 std::vector<uint64_t> Elements(OrigElements.size() + 2); 1497 Elements[0] = dwarf::DW_OP_plus_uconst; 1498 Elements[1] = Offset; 1499 llvm::copy(OrigElements, Elements.begin() + 2); 1500 E = DIExpression::get(getContext(), Elements); 1501 Attachment = DIGlobalVariableExpression::get(getContext(), GV, E); 1502 } 1503 addMetadata(MD.first, *Attachment); 1504 } 1505 } 1506 1507 void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) { 1508 addMetadata( 1509 LLVMContext::MD_type, 1510 *MDTuple::get(getContext(), 1511 {ConstantAsMetadata::get(ConstantInt::get( 1512 Type::getInt64Ty(getContext()), Offset)), 1513 TypeID})); 1514 } 1515 1516 void GlobalObject::setVCallVisibilityMetadata(VCallVisibility Visibility) { 1517 // Remove any existing vcall visibility metadata first in case we are 1518 // updating. 1519 eraseMetadata(LLVMContext::MD_vcall_visibility); 1520 addMetadata(LLVMContext::MD_vcall_visibility, 1521 *MDNode::get(getContext(), 1522 {ConstantAsMetadata::get(ConstantInt::get( 1523 Type::getInt64Ty(getContext()), Visibility))})); 1524 } 1525 1526 GlobalObject::VCallVisibility GlobalObject::getVCallVisibility() const { 1527 if (MDNode *MD = getMetadata(LLVMContext::MD_vcall_visibility)) { 1528 uint64_t Val = cast<ConstantInt>( 1529 cast<ConstantAsMetadata>(MD->getOperand(0))->getValue()) 1530 ->getZExtValue(); 1531 assert(Val <= 2 && "unknown vcall visibility!"); 1532 return (VCallVisibility)Val; 1533 } 1534 return VCallVisibility::VCallVisibilityPublic; 1535 } 1536 1537 void Function::setSubprogram(DISubprogram *SP) { 1538 setMetadata(LLVMContext::MD_dbg, SP); 1539 } 1540 1541 DISubprogram *Function::getSubprogram() const { 1542 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg)); 1543 } 1544 1545 bool Function::isDebugInfoForProfiling() const { 1546 if (DISubprogram *SP = getSubprogram()) { 1547 if (DICompileUnit *CU = SP->getUnit()) { 1548 return CU->getDebugInfoForProfiling(); 1549 } 1550 } 1551 return false; 1552 } 1553 1554 void GlobalVariable::addDebugInfo(DIGlobalVariableExpression *GV) { 1555 addMetadata(LLVMContext::MD_dbg, *GV); 1556 } 1557 1558 void GlobalVariable::getDebugInfo( 1559 SmallVectorImpl<DIGlobalVariableExpression *> &GVs) const { 1560 SmallVector<MDNode *, 1> MDs; 1561 getMetadata(LLVMContext::MD_dbg, MDs); 1562 for (MDNode *MD : MDs) 1563 GVs.push_back(cast<DIGlobalVariableExpression>(MD)); 1564 } 1565