xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Metadata.cpp (revision 3dd5524264095ed8612c28908e13f80668eff2f9)
1 //===- Metadata.cpp - Implement Metadata classes --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Metadata classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Metadata.h"
14 #include "LLVMContextImpl.h"
15 #include "MetadataImpl.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringMap.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/IR/Argument.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/ConstantRange.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DebugInfoMetadata.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalObject.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/TrackingMDRef.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/MathExtras.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstddef>
52 #include <cstdint>
53 #include <type_traits>
54 #include <utility>
55 #include <vector>
56 
57 using namespace llvm;
58 
59 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD)
60     : Value(Ty, MetadataAsValueVal), MD(MD) {
61   track();
62 }
63 
64 MetadataAsValue::~MetadataAsValue() {
65   getType()->getContext().pImpl->MetadataAsValues.erase(MD);
66   untrack();
67 }
68 
69 /// Canonicalize metadata arguments to intrinsics.
70 ///
71 /// To support bitcode upgrades (and assembly semantic sugar) for \a
72 /// MetadataAsValue, we need to canonicalize certain metadata.
73 ///
74 ///   - nullptr is replaced by an empty MDNode.
75 ///   - An MDNode with a single null operand is replaced by an empty MDNode.
76 ///   - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped.
77 ///
78 /// This maintains readability of bitcode from when metadata was a type of
79 /// value, and these bridges were unnecessary.
80 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context,
81                                               Metadata *MD) {
82   if (!MD)
83     // !{}
84     return MDNode::get(Context, None);
85 
86   // Return early if this isn't a single-operand MDNode.
87   auto *N = dyn_cast<MDNode>(MD);
88   if (!N || N->getNumOperands() != 1)
89     return MD;
90 
91   if (!N->getOperand(0))
92     // !{}
93     return MDNode::get(Context, None);
94 
95   if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0)))
96     // Look through the MDNode.
97     return C;
98 
99   return MD;
100 }
101 
102 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) {
103   MD = canonicalizeMetadataForValue(Context, MD);
104   auto *&Entry = Context.pImpl->MetadataAsValues[MD];
105   if (!Entry)
106     Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD);
107   return Entry;
108 }
109 
110 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context,
111                                               Metadata *MD) {
112   MD = canonicalizeMetadataForValue(Context, MD);
113   auto &Store = Context.pImpl->MetadataAsValues;
114   return Store.lookup(MD);
115 }
116 
117 void MetadataAsValue::handleChangedMetadata(Metadata *MD) {
118   LLVMContext &Context = getContext();
119   MD = canonicalizeMetadataForValue(Context, MD);
120   auto &Store = Context.pImpl->MetadataAsValues;
121 
122   // Stop tracking the old metadata.
123   Store.erase(this->MD);
124   untrack();
125   this->MD = nullptr;
126 
127   // Start tracking MD, or RAUW if necessary.
128   auto *&Entry = Store[MD];
129   if (Entry) {
130     replaceAllUsesWith(Entry);
131     delete this;
132     return;
133   }
134 
135   this->MD = MD;
136   track();
137   Entry = this;
138 }
139 
140 void MetadataAsValue::track() {
141   if (MD)
142     MetadataTracking::track(&MD, *MD, *this);
143 }
144 
145 void MetadataAsValue::untrack() {
146   if (MD)
147     MetadataTracking::untrack(MD);
148 }
149 
150 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) {
151   assert(Ref && "Expected live reference");
152   assert((Owner || *static_cast<Metadata **>(Ref) == &MD) &&
153          "Reference without owner must be direct");
154   if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) {
155     R->addRef(Ref, Owner);
156     return true;
157   }
158   if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) {
159     assert(!PH->Use && "Placeholders can only be used once");
160     assert(!Owner && "Unexpected callback to owner");
161     PH->Use = static_cast<Metadata **>(Ref);
162     return true;
163   }
164   return false;
165 }
166 
167 void MetadataTracking::untrack(void *Ref, Metadata &MD) {
168   assert(Ref && "Expected live reference");
169   if (auto *R = ReplaceableMetadataImpl::getIfExists(MD))
170     R->dropRef(Ref);
171   else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD))
172     PH->Use = nullptr;
173 }
174 
175 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) {
176   assert(Ref && "Expected live reference");
177   assert(New && "Expected live reference");
178   assert(Ref != New && "Expected change");
179   if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) {
180     R->moveRef(Ref, New, MD);
181     return true;
182   }
183   assert(!isa<DistinctMDOperandPlaceholder>(MD) &&
184          "Unexpected move of an MDOperand");
185   assert(!isReplaceable(MD) &&
186          "Expected un-replaceable metadata, since we didn't move a reference");
187   return false;
188 }
189 
190 bool MetadataTracking::isReplaceable(const Metadata &MD) {
191   return ReplaceableMetadataImpl::isReplaceable(MD);
192 }
193 
194 SmallVector<Metadata *> ReplaceableMetadataImpl::getAllArgListUsers() {
195   SmallVector<std::pair<OwnerTy, uint64_t> *> MDUsersWithID;
196   for (auto Pair : UseMap) {
197     OwnerTy Owner = Pair.second.first;
198     if (!Owner.is<Metadata *>())
199       continue;
200     Metadata *OwnerMD = Owner.get<Metadata *>();
201     if (OwnerMD->getMetadataID() == Metadata::DIArgListKind)
202       MDUsersWithID.push_back(&UseMap[Pair.first]);
203   }
204   llvm::sort(MDUsersWithID, [](auto UserA, auto UserB) {
205     return UserA->second < UserB->second;
206   });
207   SmallVector<Metadata *> MDUsers;
208   for (auto UserWithID : MDUsersWithID)
209     MDUsers.push_back(UserWithID->first.get<Metadata *>());
210   return MDUsers;
211 }
212 
213 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) {
214   bool WasInserted =
215       UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex)))
216           .second;
217   (void)WasInserted;
218   assert(WasInserted && "Expected to add a reference");
219 
220   ++NextIndex;
221   assert(NextIndex != 0 && "Unexpected overflow");
222 }
223 
224 void ReplaceableMetadataImpl::dropRef(void *Ref) {
225   bool WasErased = UseMap.erase(Ref);
226   (void)WasErased;
227   assert(WasErased && "Expected to drop a reference");
228 }
229 
230 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New,
231                                       const Metadata &MD) {
232   auto I = UseMap.find(Ref);
233   assert(I != UseMap.end() && "Expected to move a reference");
234   auto OwnerAndIndex = I->second;
235   UseMap.erase(I);
236   bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second;
237   (void)WasInserted;
238   assert(WasInserted && "Expected to add a reference");
239 
240   // Check that the references are direct if there's no owner.
241   (void)MD;
242   assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) &&
243          "Reference without owner must be direct");
244   assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) &&
245          "Reference without owner must be direct");
246 }
247 
248 void ReplaceableMetadataImpl::SalvageDebugInfo(const Constant &C) {
249   if (!C.isUsedByMetadata()) {
250     return;
251   }
252 
253   LLVMContext &Context = C.getType()->getContext();
254   auto &Store = Context.pImpl->ValuesAsMetadata;
255   auto I = Store.find(&C);
256   ValueAsMetadata *MD = I->second;
257   using UseTy =
258       std::pair<void *, std::pair<MetadataTracking::OwnerTy, uint64_t>>;
259   // Copy out uses and update value of Constant used by debug info metadata with undef below
260   SmallVector<UseTy, 8> Uses(MD->UseMap.begin(), MD->UseMap.end());
261 
262   for (const auto &Pair : Uses) {
263     MetadataTracking::OwnerTy Owner = Pair.second.first;
264     if (!Owner)
265       continue;
266     if (!Owner.is<Metadata *>())
267       continue;
268     auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>());
269     if (!OwnerMD)
270       continue;
271     if (isa<DINode>(OwnerMD)) {
272       OwnerMD->handleChangedOperand(
273           Pair.first, ValueAsMetadata::get(UndefValue::get(C.getType())));
274     }
275   }
276 }
277 
278 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) {
279   if (UseMap.empty())
280     return;
281 
282   // Copy out uses since UseMap will get touched below.
283   using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>;
284   SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
285   llvm::sort(Uses, llvm::less_second());
286   for (const auto &Pair : Uses) {
287     // Check that this Ref hasn't disappeared after RAUW (when updating a
288     // previous Ref).
289     if (!UseMap.count(Pair.first))
290       continue;
291 
292     OwnerTy Owner = Pair.second.first;
293     if (!Owner) {
294       // Update unowned tracking references directly.
295       Metadata *&Ref = *static_cast<Metadata **>(Pair.first);
296       Ref = MD;
297       if (MD)
298         MetadataTracking::track(Ref);
299       UseMap.erase(Pair.first);
300       continue;
301     }
302 
303     // Check for MetadataAsValue.
304     if (Owner.is<MetadataAsValue *>()) {
305       Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD);
306       continue;
307     }
308 
309     // There's a Metadata owner -- dispatch.
310     Metadata *OwnerMD = Owner.get<Metadata *>();
311     switch (OwnerMD->getMetadataID()) {
312 #define HANDLE_METADATA_LEAF(CLASS)                                            \
313   case Metadata::CLASS##Kind:                                                  \
314     cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD);                \
315     continue;
316 #include "llvm/IR/Metadata.def"
317     default:
318       llvm_unreachable("Invalid metadata subclass");
319     }
320   }
321   assert(UseMap.empty() && "Expected all uses to be replaced");
322 }
323 
324 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) {
325   if (UseMap.empty())
326     return;
327 
328   if (!ResolveUsers) {
329     UseMap.clear();
330     return;
331   }
332 
333   // Copy out uses since UseMap could get touched below.
334   using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>;
335   SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
336   llvm::sort(Uses, [](const UseTy &L, const UseTy &R) {
337     return L.second.second < R.second.second;
338   });
339   UseMap.clear();
340   for (const auto &Pair : Uses) {
341     auto Owner = Pair.second.first;
342     if (!Owner)
343       continue;
344     if (Owner.is<MetadataAsValue *>())
345       continue;
346 
347     // Resolve MDNodes that point at this.
348     auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>());
349     if (!OwnerMD)
350       continue;
351     if (OwnerMD->isResolved())
352       continue;
353     OwnerMD->decrementUnresolvedOperandCount();
354   }
355 }
356 
357 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) {
358   if (auto *N = dyn_cast<MDNode>(&MD))
359     return N->isResolved() ? nullptr : N->Context.getOrCreateReplaceableUses();
360   return dyn_cast<ValueAsMetadata>(&MD);
361 }
362 
363 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) {
364   if (auto *N = dyn_cast<MDNode>(&MD))
365     return N->isResolved() ? nullptr : N->Context.getReplaceableUses();
366   return dyn_cast<ValueAsMetadata>(&MD);
367 }
368 
369 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) {
370   if (auto *N = dyn_cast<MDNode>(&MD))
371     return !N->isResolved();
372   return isa<ValueAsMetadata>(&MD);
373 }
374 
375 static DISubprogram *getLocalFunctionMetadata(Value *V) {
376   assert(V && "Expected value");
377   if (auto *A = dyn_cast<Argument>(V)) {
378     if (auto *Fn = A->getParent())
379       return Fn->getSubprogram();
380     return nullptr;
381   }
382 
383   if (BasicBlock *BB = cast<Instruction>(V)->getParent()) {
384     if (auto *Fn = BB->getParent())
385       return Fn->getSubprogram();
386     return nullptr;
387   }
388 
389   return nullptr;
390 }
391 
392 ValueAsMetadata *ValueAsMetadata::get(Value *V) {
393   assert(V && "Unexpected null Value");
394 
395   auto &Context = V->getContext();
396   auto *&Entry = Context.pImpl->ValuesAsMetadata[V];
397   if (!Entry) {
398     assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
399            "Expected constant or function-local value");
400     assert(!V->IsUsedByMD && "Expected this to be the only metadata use");
401     V->IsUsedByMD = true;
402     if (auto *C = dyn_cast<Constant>(V))
403       Entry = new ConstantAsMetadata(C);
404     else
405       Entry = new LocalAsMetadata(V);
406   }
407 
408   return Entry;
409 }
410 
411 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) {
412   assert(V && "Unexpected null Value");
413   return V->getContext().pImpl->ValuesAsMetadata.lookup(V);
414 }
415 
416 void ValueAsMetadata::handleDeletion(Value *V) {
417   assert(V && "Expected valid value");
418 
419   auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata;
420   auto I = Store.find(V);
421   if (I == Store.end())
422     return;
423 
424   // Remove old entry from the map.
425   ValueAsMetadata *MD = I->second;
426   assert(MD && "Expected valid metadata");
427   assert(MD->getValue() == V && "Expected valid mapping");
428   Store.erase(I);
429 
430   // Delete the metadata.
431   MD->replaceAllUsesWith(nullptr);
432   delete MD;
433 }
434 
435 void ValueAsMetadata::handleRAUW(Value *From, Value *To) {
436   assert(From && "Expected valid value");
437   assert(To && "Expected valid value");
438   assert(From != To && "Expected changed value");
439   assert(From->getType() == To->getType() && "Unexpected type change");
440 
441   LLVMContext &Context = From->getType()->getContext();
442   auto &Store = Context.pImpl->ValuesAsMetadata;
443   auto I = Store.find(From);
444   if (I == Store.end()) {
445     assert(!From->IsUsedByMD && "Expected From not to be used by metadata");
446     return;
447   }
448 
449   // Remove old entry from the map.
450   assert(From->IsUsedByMD && "Expected From to be used by metadata");
451   From->IsUsedByMD = false;
452   ValueAsMetadata *MD = I->second;
453   assert(MD && "Expected valid metadata");
454   assert(MD->getValue() == From && "Expected valid mapping");
455   Store.erase(I);
456 
457   if (isa<LocalAsMetadata>(MD)) {
458     if (auto *C = dyn_cast<Constant>(To)) {
459       // Local became a constant.
460       MD->replaceAllUsesWith(ConstantAsMetadata::get(C));
461       delete MD;
462       return;
463     }
464     if (getLocalFunctionMetadata(From) && getLocalFunctionMetadata(To) &&
465         getLocalFunctionMetadata(From) != getLocalFunctionMetadata(To)) {
466       // DISubprogram changed.
467       MD->replaceAllUsesWith(nullptr);
468       delete MD;
469       return;
470     }
471   } else if (!isa<Constant>(To)) {
472     // Changed to function-local value.
473     MD->replaceAllUsesWith(nullptr);
474     delete MD;
475     return;
476   }
477 
478   auto *&Entry = Store[To];
479   if (Entry) {
480     // The target already exists.
481     MD->replaceAllUsesWith(Entry);
482     delete MD;
483     return;
484   }
485 
486   // Update MD in place (and update the map entry).
487   assert(!To->IsUsedByMD && "Expected this to be the only metadata use");
488   To->IsUsedByMD = true;
489   MD->V = To;
490   Entry = MD;
491 }
492 
493 //===----------------------------------------------------------------------===//
494 // MDString implementation.
495 //
496 
497 MDString *MDString::get(LLVMContext &Context, StringRef Str) {
498   auto &Store = Context.pImpl->MDStringCache;
499   auto I = Store.try_emplace(Str);
500   auto &MapEntry = I.first->getValue();
501   if (!I.second)
502     return &MapEntry;
503   MapEntry.Entry = &*I.first;
504   return &MapEntry;
505 }
506 
507 StringRef MDString::getString() const {
508   assert(Entry && "Expected to find string map entry");
509   return Entry->first();
510 }
511 
512 //===----------------------------------------------------------------------===//
513 // MDNode implementation.
514 //
515 
516 // Assert that the MDNode types will not be unaligned by the objects
517 // prepended to them.
518 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
519   static_assert(                                                               \
520       alignof(uint64_t) >= alignof(CLASS),                                     \
521       "Alignment is insufficient after objects prepended to " #CLASS);
522 #include "llvm/IR/Metadata.def"
523 
524 void *MDNode::operator new(size_t Size, size_t NumOps, StorageType Storage) {
525   // uint64_t is the most aligned type we need support (ensured by static_assert
526   // above)
527   size_t AllocSize =
528       alignTo(Header::getAllocSize(Storage, NumOps), alignof(uint64_t));
529   char *Mem = reinterpret_cast<char *>(::operator new(AllocSize + Size));
530   Header *H = new (Mem + AllocSize - sizeof(Header)) Header(NumOps, Storage);
531   return reinterpret_cast<void *>(H + 1);
532 }
533 
534 void MDNode::operator delete(void *N) {
535   Header *H = reinterpret_cast<Header *>(N) - 1;
536   void *Mem = H->getAllocation();
537   H->~Header();
538   ::operator delete(Mem);
539 }
540 
541 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
542                ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2)
543     : Metadata(ID, Storage), Context(Context) {
544   unsigned Op = 0;
545   for (Metadata *MD : Ops1)
546     setOperand(Op++, MD);
547   for (Metadata *MD : Ops2)
548     setOperand(Op++, MD);
549 
550   if (!isUniqued())
551     return;
552 
553   // Count the unresolved operands.  If there are any, RAUW support will be
554   // added lazily on first reference.
555   countUnresolvedOperands();
556 }
557 
558 TempMDNode MDNode::clone() const {
559   switch (getMetadataID()) {
560   default:
561     llvm_unreachable("Invalid MDNode subclass");
562 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
563   case CLASS##Kind:                                                            \
564     return cast<CLASS>(this)->cloneImpl();
565 #include "llvm/IR/Metadata.def"
566   }
567 }
568 
569 MDNode::Header::Header(size_t NumOps, StorageType Storage) {
570   IsLarge = isLarge(NumOps);
571   IsResizable = isResizable(Storage);
572   SmallSize = getSmallSize(NumOps, IsResizable, IsLarge);
573   if (IsLarge) {
574     SmallNumOps = 0;
575     new (getLargePtr()) LargeStorageVector();
576     getLarge().resize(NumOps);
577     return;
578   }
579   SmallNumOps = NumOps;
580   MDOperand *O = reinterpret_cast<MDOperand *>(this) - SmallSize;
581   for (MDOperand *E = O + SmallSize; O != E;)
582     (void)new (O++) MDOperand();
583 }
584 
585 MDNode::Header::~Header() {
586   if (IsLarge) {
587     getLarge().~LargeStorageVector();
588     return;
589   }
590   MDOperand *O = reinterpret_cast<MDOperand *>(this);
591   for (MDOperand *E = O - SmallSize; O != E; --O)
592     (void)(O - 1)->~MDOperand();
593 }
594 
595 void *MDNode::Header::getSmallPtr() {
596   static_assert(alignof(MDOperand) <= alignof(Header),
597                 "MDOperand too strongly aligned");
598   return reinterpret_cast<char *>(const_cast<Header *>(this)) -
599          sizeof(MDOperand) * SmallSize;
600 }
601 
602 void MDNode::Header::resize(size_t NumOps) {
603   assert(IsResizable && "Node is not resizable");
604   if (operands().size() == NumOps)
605     return;
606 
607   if (IsLarge)
608     getLarge().resize(NumOps);
609   else if (NumOps <= SmallSize)
610     resizeSmall(NumOps);
611   else
612     resizeSmallToLarge(NumOps);
613 }
614 
615 void MDNode::Header::resizeSmall(size_t NumOps) {
616   assert(!IsLarge && "Expected a small MDNode");
617   assert(NumOps <= SmallSize && "NumOps too large for small resize");
618 
619   MutableArrayRef<MDOperand> ExistingOps = operands();
620   assert(NumOps != ExistingOps.size() && "Expected a different size");
621 
622   int NumNew = (int)NumOps - (int)ExistingOps.size();
623   MDOperand *O = ExistingOps.end();
624   for (int I = 0, E = NumNew; I < E; ++I)
625     (O++)->reset();
626   for (int I = 0, E = NumNew; I > E; --I)
627     (--O)->reset();
628   SmallNumOps = NumOps;
629   assert(O == operands().end() && "Operands not (un)initialized until the end");
630 }
631 
632 void MDNode::Header::resizeSmallToLarge(size_t NumOps) {
633   assert(!IsLarge && "Expected a small MDNode");
634   assert(NumOps > SmallSize && "Expected NumOps to be larger than allocation");
635   LargeStorageVector NewOps;
636   NewOps.resize(NumOps);
637   llvm::move(operands(), NewOps.begin());
638   resizeSmall(0);
639   new (getLargePtr()) LargeStorageVector(std::move(NewOps));
640   IsLarge = true;
641 }
642 
643 static bool isOperandUnresolved(Metadata *Op) {
644   if (auto *N = dyn_cast_or_null<MDNode>(Op))
645     return !N->isResolved();
646   return false;
647 }
648 
649 void MDNode::countUnresolvedOperands() {
650   assert(getNumUnresolved() == 0 && "Expected unresolved ops to be uncounted");
651   assert(isUniqued() && "Expected this to be uniqued");
652   setNumUnresolved(count_if(operands(), isOperandUnresolved));
653 }
654 
655 void MDNode::makeUniqued() {
656   assert(isTemporary() && "Expected this to be temporary");
657   assert(!isResolved() && "Expected this to be unresolved");
658 
659   // Enable uniquing callbacks.
660   for (auto &Op : mutable_operands())
661     Op.reset(Op.get(), this);
662 
663   // Make this 'uniqued'.
664   Storage = Uniqued;
665   countUnresolvedOperands();
666   if (!getNumUnresolved()) {
667     dropReplaceableUses();
668     assert(isResolved() && "Expected this to be resolved");
669   }
670 
671   assert(isUniqued() && "Expected this to be uniqued");
672 }
673 
674 void MDNode::makeDistinct() {
675   assert(isTemporary() && "Expected this to be temporary");
676   assert(!isResolved() && "Expected this to be unresolved");
677 
678   // Drop RAUW support and store as a distinct node.
679   dropReplaceableUses();
680   storeDistinctInContext();
681 
682   assert(isDistinct() && "Expected this to be distinct");
683   assert(isResolved() && "Expected this to be resolved");
684 }
685 
686 void MDNode::resolve() {
687   assert(isUniqued() && "Expected this to be uniqued");
688   assert(!isResolved() && "Expected this to be unresolved");
689 
690   setNumUnresolved(0);
691   dropReplaceableUses();
692 
693   assert(isResolved() && "Expected this to be resolved");
694 }
695 
696 void MDNode::dropReplaceableUses() {
697   assert(!getNumUnresolved() && "Unexpected unresolved operand");
698 
699   // Drop any RAUW support.
700   if (Context.hasReplaceableUses())
701     Context.takeReplaceableUses()->resolveAllUses();
702 }
703 
704 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) {
705   assert(isUniqued() && "Expected this to be uniqued");
706   assert(getNumUnresolved() != 0 && "Expected unresolved operands");
707 
708   // Check if an operand was resolved.
709   if (!isOperandUnresolved(Old)) {
710     if (isOperandUnresolved(New))
711       // An operand was un-resolved!
712       setNumUnresolved(getNumUnresolved() + 1);
713   } else if (!isOperandUnresolved(New))
714     decrementUnresolvedOperandCount();
715 }
716 
717 void MDNode::decrementUnresolvedOperandCount() {
718   assert(!isResolved() && "Expected this to be unresolved");
719   if (isTemporary())
720     return;
721 
722   assert(isUniqued() && "Expected this to be uniqued");
723   setNumUnresolved(getNumUnresolved() - 1);
724   if (getNumUnresolved())
725     return;
726 
727   // Last unresolved operand has just been resolved.
728   dropReplaceableUses();
729   assert(isResolved() && "Expected this to become resolved");
730 }
731 
732 void MDNode::resolveCycles() {
733   if (isResolved())
734     return;
735 
736   // Resolve this node immediately.
737   resolve();
738 
739   // Resolve all operands.
740   for (const auto &Op : operands()) {
741     auto *N = dyn_cast_or_null<MDNode>(Op);
742     if (!N)
743       continue;
744 
745     assert(!N->isTemporary() &&
746            "Expected all forward declarations to be resolved");
747     if (!N->isResolved())
748       N->resolveCycles();
749   }
750 }
751 
752 static bool hasSelfReference(MDNode *N) {
753   return llvm::is_contained(N->operands(), N);
754 }
755 
756 MDNode *MDNode::replaceWithPermanentImpl() {
757   switch (getMetadataID()) {
758   default:
759     // If this type isn't uniquable, replace with a distinct node.
760     return replaceWithDistinctImpl();
761 
762 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS)                                    \
763   case CLASS##Kind:                                                            \
764     break;
765 #include "llvm/IR/Metadata.def"
766   }
767 
768   // Even if this type is uniquable, self-references have to be distinct.
769   if (hasSelfReference(this))
770     return replaceWithDistinctImpl();
771   return replaceWithUniquedImpl();
772 }
773 
774 MDNode *MDNode::replaceWithUniquedImpl() {
775   // Try to uniquify in place.
776   MDNode *UniquedNode = uniquify();
777 
778   if (UniquedNode == this) {
779     makeUniqued();
780     return this;
781   }
782 
783   // Collision, so RAUW instead.
784   replaceAllUsesWith(UniquedNode);
785   deleteAsSubclass();
786   return UniquedNode;
787 }
788 
789 MDNode *MDNode::replaceWithDistinctImpl() {
790   makeDistinct();
791   return this;
792 }
793 
794 void MDTuple::recalculateHash() {
795   setHash(MDTupleInfo::KeyTy::calculateHash(this));
796 }
797 
798 void MDNode::dropAllReferences() {
799   for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
800     setOperand(I, nullptr);
801   if (Context.hasReplaceableUses()) {
802     Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false);
803     (void)Context.takeReplaceableUses();
804   }
805 }
806 
807 void MDNode::handleChangedOperand(void *Ref, Metadata *New) {
808   unsigned Op = static_cast<MDOperand *>(Ref) - op_begin();
809   assert(Op < getNumOperands() && "Expected valid operand");
810 
811   if (!isUniqued()) {
812     // This node is not uniqued.  Just set the operand and be done with it.
813     setOperand(Op, New);
814     return;
815   }
816 
817   // This node is uniqued.
818   eraseFromStore();
819 
820   Metadata *Old = getOperand(Op);
821   setOperand(Op, New);
822 
823   // Drop uniquing for self-reference cycles and deleted constants.
824   if (New == this || (!New && Old && isa<ConstantAsMetadata>(Old))) {
825     if (!isResolved())
826       resolve();
827     storeDistinctInContext();
828     return;
829   }
830 
831   // Re-unique the node.
832   auto *Uniqued = uniquify();
833   if (Uniqued == this) {
834     if (!isResolved())
835       resolveAfterOperandChange(Old, New);
836     return;
837   }
838 
839   // Collision.
840   if (!isResolved()) {
841     // Still unresolved, so RAUW.
842     //
843     // First, clear out all operands to prevent any recursion (similar to
844     // dropAllReferences(), but we still need the use-list).
845     for (unsigned O = 0, E = getNumOperands(); O != E; ++O)
846       setOperand(O, nullptr);
847     if (Context.hasReplaceableUses())
848       Context.getReplaceableUses()->replaceAllUsesWith(Uniqued);
849     deleteAsSubclass();
850     return;
851   }
852 
853   // Store in non-uniqued form if RAUW isn't possible.
854   storeDistinctInContext();
855 }
856 
857 void MDNode::deleteAsSubclass() {
858   switch (getMetadataID()) {
859   default:
860     llvm_unreachable("Invalid subclass of MDNode");
861 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
862   case CLASS##Kind:                                                            \
863     delete cast<CLASS>(this);                                                  \
864     break;
865 #include "llvm/IR/Metadata.def"
866   }
867 }
868 
869 template <class T, class InfoT>
870 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) {
871   if (T *U = getUniqued(Store, N))
872     return U;
873 
874   Store.insert(N);
875   return N;
876 }
877 
878 template <class NodeTy> struct MDNode::HasCachedHash {
879   using Yes = char[1];
880   using No = char[2];
881   template <class U, U Val> struct SFINAE {};
882 
883   template <class U>
884   static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *);
885   template <class U> static No &check(...);
886 
887   static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes);
888 };
889 
890 MDNode *MDNode::uniquify() {
891   assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node");
892 
893   // Try to insert into uniquing store.
894   switch (getMetadataID()) {
895   default:
896     llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
897 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS)                                    \
898   case CLASS##Kind: {                                                          \
899     CLASS *SubclassThis = cast<CLASS>(this);                                   \
900     std::integral_constant<bool, HasCachedHash<CLASS>::value>                  \
901         ShouldRecalculateHash;                                                 \
902     dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash);              \
903     return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s);           \
904   }
905 #include "llvm/IR/Metadata.def"
906   }
907 }
908 
909 void MDNode::eraseFromStore() {
910   switch (getMetadataID()) {
911   default:
912     llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
913 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS)                                    \
914   case CLASS##Kind:                                                            \
915     getContext().pImpl->CLASS##s.erase(cast<CLASS>(this));                     \
916     break;
917 #include "llvm/IR/Metadata.def"
918   }
919 }
920 
921 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
922                           StorageType Storage, bool ShouldCreate) {
923   unsigned Hash = 0;
924   if (Storage == Uniqued) {
925     MDTupleInfo::KeyTy Key(MDs);
926     if (auto *N = getUniqued(Context.pImpl->MDTuples, Key))
927       return N;
928     if (!ShouldCreate)
929       return nullptr;
930     Hash = Key.getHash();
931   } else {
932     assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
933   }
934 
935   return storeImpl(new (MDs.size(), Storage)
936                        MDTuple(Context, Storage, Hash, MDs),
937                    Storage, Context.pImpl->MDTuples);
938 }
939 
940 void MDNode::deleteTemporary(MDNode *N) {
941   assert(N->isTemporary() && "Expected temporary node");
942   N->replaceAllUsesWith(nullptr);
943   N->deleteAsSubclass();
944 }
945 
946 void MDNode::storeDistinctInContext() {
947   assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses");
948   assert(!getNumUnresolved() && "Unexpected unresolved nodes");
949   Storage = Distinct;
950   assert(isResolved() && "Expected this to be resolved");
951 
952   // Reset the hash.
953   switch (getMetadataID()) {
954   default:
955     llvm_unreachable("Invalid subclass of MDNode");
956 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
957   case CLASS##Kind: {                                                          \
958     std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \
959     dispatchResetHash(cast<CLASS>(this), ShouldResetHash);                     \
960     break;                                                                     \
961   }
962 #include "llvm/IR/Metadata.def"
963   }
964 
965   getContext().pImpl->DistinctMDNodes.push_back(this);
966 }
967 
968 void MDNode::replaceOperandWith(unsigned I, Metadata *New) {
969   if (getOperand(I) == New)
970     return;
971 
972   if (!isUniqued()) {
973     setOperand(I, New);
974     return;
975   }
976 
977   handleChangedOperand(mutable_begin() + I, New);
978 }
979 
980 void MDNode::setOperand(unsigned I, Metadata *New) {
981   assert(I < getNumOperands());
982   mutable_begin()[I].reset(New, isUniqued() ? this : nullptr);
983 }
984 
985 /// Get a node or a self-reference that looks like it.
986 ///
987 /// Special handling for finding self-references, for use by \a
988 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from
989 /// when self-referencing nodes were still uniqued.  If the first operand has
990 /// the same operands as \c Ops, return the first operand instead.
991 static MDNode *getOrSelfReference(LLVMContext &Context,
992                                   ArrayRef<Metadata *> Ops) {
993   if (!Ops.empty())
994     if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0]))
995       if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) {
996         for (unsigned I = 1, E = Ops.size(); I != E; ++I)
997           if (Ops[I] != N->getOperand(I))
998             return MDNode::get(Context, Ops);
999         return N;
1000       }
1001 
1002   return MDNode::get(Context, Ops);
1003 }
1004 
1005 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) {
1006   if (!A)
1007     return B;
1008   if (!B)
1009     return A;
1010 
1011   SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end());
1012   MDs.insert(B->op_begin(), B->op_end());
1013 
1014   // FIXME: This preserves long-standing behaviour, but is it really the right
1015   // behaviour?  Or was that an unintended side-effect of node uniquing?
1016   return getOrSelfReference(A->getContext(), MDs.getArrayRef());
1017 }
1018 
1019 MDNode *MDNode::intersect(MDNode *A, MDNode *B) {
1020   if (!A || !B)
1021     return nullptr;
1022 
1023   SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end());
1024   SmallPtrSet<Metadata *, 4> BSet(B->op_begin(), B->op_end());
1025   MDs.remove_if([&](Metadata *MD) { return !BSet.count(MD); });
1026 
1027   // FIXME: This preserves long-standing behaviour, but is it really the right
1028   // behaviour?  Or was that an unintended side-effect of node uniquing?
1029   return getOrSelfReference(A->getContext(), MDs.getArrayRef());
1030 }
1031 
1032 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) {
1033   if (!A || !B)
1034     return nullptr;
1035 
1036   // Take the intersection of domains then union the scopes
1037   // within those domains
1038   SmallPtrSet<const MDNode *, 16> ADomains;
1039   SmallPtrSet<const MDNode *, 16> IntersectDomains;
1040   SmallSetVector<Metadata *, 4> MDs;
1041   for (const MDOperand &MDOp : A->operands())
1042     if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp))
1043       if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
1044         ADomains.insert(Domain);
1045 
1046   for (const MDOperand &MDOp : B->operands())
1047     if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp))
1048       if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
1049         if (ADomains.contains(Domain)) {
1050           IntersectDomains.insert(Domain);
1051           MDs.insert(MDOp);
1052         }
1053 
1054   for (const MDOperand &MDOp : A->operands())
1055     if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp))
1056       if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
1057         if (IntersectDomains.contains(Domain))
1058           MDs.insert(MDOp);
1059 
1060   return MDs.empty() ? nullptr
1061                      : getOrSelfReference(A->getContext(), MDs.getArrayRef());
1062 }
1063 
1064 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) {
1065   if (!A || !B)
1066     return nullptr;
1067 
1068   APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF();
1069   APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF();
1070   if (AVal < BVal)
1071     return A;
1072   return B;
1073 }
1074 
1075 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
1076   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
1077 }
1078 
1079 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) {
1080   return !A.intersectWith(B).isEmptySet() || isContiguous(A, B);
1081 }
1082 
1083 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints,
1084                           ConstantInt *Low, ConstantInt *High) {
1085   ConstantRange NewRange(Low->getValue(), High->getValue());
1086   unsigned Size = EndPoints.size();
1087   APInt LB = EndPoints[Size - 2]->getValue();
1088   APInt LE = EndPoints[Size - 1]->getValue();
1089   ConstantRange LastRange(LB, LE);
1090   if (canBeMerged(NewRange, LastRange)) {
1091     ConstantRange Union = LastRange.unionWith(NewRange);
1092     Type *Ty = High->getType();
1093     EndPoints[Size - 2] =
1094         cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower()));
1095     EndPoints[Size - 1] =
1096         cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper()));
1097     return true;
1098   }
1099   return false;
1100 }
1101 
1102 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints,
1103                      ConstantInt *Low, ConstantInt *High) {
1104   if (!EndPoints.empty())
1105     if (tryMergeRange(EndPoints, Low, High))
1106       return;
1107 
1108   EndPoints.push_back(Low);
1109   EndPoints.push_back(High);
1110 }
1111 
1112 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) {
1113   // Given two ranges, we want to compute the union of the ranges. This
1114   // is slightly complicated by having to combine the intervals and merge
1115   // the ones that overlap.
1116 
1117   if (!A || !B)
1118     return nullptr;
1119 
1120   if (A == B)
1121     return A;
1122 
1123   // First, walk both lists in order of the lower boundary of each interval.
1124   // At each step, try to merge the new interval to the last one we adedd.
1125   SmallVector<ConstantInt *, 4> EndPoints;
1126   int AI = 0;
1127   int BI = 0;
1128   int AN = A->getNumOperands() / 2;
1129   int BN = B->getNumOperands() / 2;
1130   while (AI < AN && BI < BN) {
1131     ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI));
1132     ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI));
1133 
1134     if (ALow->getValue().slt(BLow->getValue())) {
1135       addRange(EndPoints, ALow,
1136                mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
1137       ++AI;
1138     } else {
1139       addRange(EndPoints, BLow,
1140                mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
1141       ++BI;
1142     }
1143   }
1144   while (AI < AN) {
1145     addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)),
1146              mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
1147     ++AI;
1148   }
1149   while (BI < BN) {
1150     addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)),
1151              mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
1152     ++BI;
1153   }
1154 
1155   // If we have more than 2 ranges (4 endpoints) we have to try to merge
1156   // the last and first ones.
1157   unsigned Size = EndPoints.size();
1158   if (Size > 4) {
1159     ConstantInt *FB = EndPoints[0];
1160     ConstantInt *FE = EndPoints[1];
1161     if (tryMergeRange(EndPoints, FB, FE)) {
1162       for (unsigned i = 0; i < Size - 2; ++i) {
1163         EndPoints[i] = EndPoints[i + 2];
1164       }
1165       EndPoints.resize(Size - 2);
1166     }
1167   }
1168 
1169   // If in the end we have a single range, it is possible that it is now the
1170   // full range. Just drop the metadata in that case.
1171   if (EndPoints.size() == 2) {
1172     ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue());
1173     if (Range.isFullSet())
1174       return nullptr;
1175   }
1176 
1177   SmallVector<Metadata *, 4> MDs;
1178   MDs.reserve(EndPoints.size());
1179   for (auto *I : EndPoints)
1180     MDs.push_back(ConstantAsMetadata::get(I));
1181   return MDNode::get(A->getContext(), MDs);
1182 }
1183 
1184 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) {
1185   if (!A || !B)
1186     return nullptr;
1187 
1188   ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0));
1189   ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0));
1190   if (AVal->getZExtValue() < BVal->getZExtValue())
1191     return A;
1192   return B;
1193 }
1194 
1195 //===----------------------------------------------------------------------===//
1196 // NamedMDNode implementation.
1197 //
1198 
1199 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) {
1200   return *(SmallVector<TrackingMDRef, 4> *)Operands;
1201 }
1202 
1203 NamedMDNode::NamedMDNode(const Twine &N)
1204     : Name(N.str()), Operands(new SmallVector<TrackingMDRef, 4>()) {}
1205 
1206 NamedMDNode::~NamedMDNode() {
1207   dropAllReferences();
1208   delete &getNMDOps(Operands);
1209 }
1210 
1211 unsigned NamedMDNode::getNumOperands() const {
1212   return (unsigned)getNMDOps(Operands).size();
1213 }
1214 
1215 MDNode *NamedMDNode::getOperand(unsigned i) const {
1216   assert(i < getNumOperands() && "Invalid Operand number!");
1217   auto *N = getNMDOps(Operands)[i].get();
1218   return cast_or_null<MDNode>(N);
1219 }
1220 
1221 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); }
1222 
1223 void NamedMDNode::setOperand(unsigned I, MDNode *New) {
1224   assert(I < getNumOperands() && "Invalid operand number");
1225   getNMDOps(Operands)[I].reset(New);
1226 }
1227 
1228 void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); }
1229 
1230 void NamedMDNode::clearOperands() { getNMDOps(Operands).clear(); }
1231 
1232 StringRef NamedMDNode::getName() const { return StringRef(Name); }
1233 
1234 //===----------------------------------------------------------------------===//
1235 // Instruction Metadata method implementations.
1236 //
1237 
1238 MDNode *MDAttachments::lookup(unsigned ID) const {
1239   for (const auto &A : Attachments)
1240     if (A.MDKind == ID)
1241       return A.Node;
1242   return nullptr;
1243 }
1244 
1245 void MDAttachments::get(unsigned ID, SmallVectorImpl<MDNode *> &Result) const {
1246   for (const auto &A : Attachments)
1247     if (A.MDKind == ID)
1248       Result.push_back(A.Node);
1249 }
1250 
1251 void MDAttachments::getAll(
1252     SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1253   for (const auto &A : Attachments)
1254     Result.emplace_back(A.MDKind, A.Node);
1255 
1256   // Sort the resulting array so it is stable with respect to metadata IDs. We
1257   // need to preserve the original insertion order though.
1258   if (Result.size() > 1)
1259     llvm::stable_sort(Result, less_first());
1260 }
1261 
1262 void MDAttachments::set(unsigned ID, MDNode *MD) {
1263   erase(ID);
1264   if (MD)
1265     insert(ID, *MD);
1266 }
1267 
1268 void MDAttachments::insert(unsigned ID, MDNode &MD) {
1269   Attachments.push_back({ID, TrackingMDNodeRef(&MD)});
1270 }
1271 
1272 bool MDAttachments::erase(unsigned ID) {
1273   if (empty())
1274     return false;
1275 
1276   // Common case is one value.
1277   if (Attachments.size() == 1 && Attachments.back().MDKind == ID) {
1278     Attachments.pop_back();
1279     return true;
1280   }
1281 
1282   auto OldSize = Attachments.size();
1283   llvm::erase_if(Attachments,
1284                  [ID](const Attachment &A) { return A.MDKind == ID; });
1285   return OldSize != Attachments.size();
1286 }
1287 
1288 MDNode *Value::getMetadata(unsigned KindID) const {
1289   if (!hasMetadata())
1290     return nullptr;
1291   const auto &Info = getContext().pImpl->ValueMetadata[this];
1292   assert(!Info.empty() && "bit out of sync with hash table");
1293   return Info.lookup(KindID);
1294 }
1295 
1296 MDNode *Value::getMetadata(StringRef Kind) const {
1297   if (!hasMetadata())
1298     return nullptr;
1299   const auto &Info = getContext().pImpl->ValueMetadata[this];
1300   assert(!Info.empty() && "bit out of sync with hash table");
1301   return Info.lookup(getContext().getMDKindID(Kind));
1302 }
1303 
1304 void Value::getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const {
1305   if (hasMetadata())
1306     getContext().pImpl->ValueMetadata[this].get(KindID, MDs);
1307 }
1308 
1309 void Value::getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const {
1310   if (hasMetadata())
1311     getMetadata(getContext().getMDKindID(Kind), MDs);
1312 }
1313 
1314 void Value::getAllMetadata(
1315     SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
1316   if (hasMetadata()) {
1317     assert(getContext().pImpl->ValueMetadata.count(this) &&
1318            "bit out of sync with hash table");
1319     const auto &Info = getContext().pImpl->ValueMetadata.find(this)->second;
1320     assert(!Info.empty() && "Shouldn't have called this");
1321     Info.getAll(MDs);
1322   }
1323 }
1324 
1325 void Value::setMetadata(unsigned KindID, MDNode *Node) {
1326   assert(isa<Instruction>(this) || isa<GlobalObject>(this));
1327 
1328   // Handle the case when we're adding/updating metadata on a value.
1329   if (Node) {
1330     auto &Info = getContext().pImpl->ValueMetadata[this];
1331     assert(!Info.empty() == HasMetadata && "bit out of sync with hash table");
1332     if (Info.empty())
1333       HasMetadata = true;
1334     Info.set(KindID, Node);
1335     return;
1336   }
1337 
1338   // Otherwise, we're removing metadata from an instruction.
1339   assert((HasMetadata == (getContext().pImpl->ValueMetadata.count(this) > 0)) &&
1340          "bit out of sync with hash table");
1341   if (!HasMetadata)
1342     return; // Nothing to remove!
1343   auto &Info = getContext().pImpl->ValueMetadata[this];
1344 
1345   // Handle removal of an existing value.
1346   Info.erase(KindID);
1347   if (!Info.empty())
1348     return;
1349   getContext().pImpl->ValueMetadata.erase(this);
1350   HasMetadata = false;
1351 }
1352 
1353 void Value::setMetadata(StringRef Kind, MDNode *Node) {
1354   if (!Node && !HasMetadata)
1355     return;
1356   setMetadata(getContext().getMDKindID(Kind), Node);
1357 }
1358 
1359 void Value::addMetadata(unsigned KindID, MDNode &MD) {
1360   assert(isa<Instruction>(this) || isa<GlobalObject>(this));
1361   if (!HasMetadata)
1362     HasMetadata = true;
1363   getContext().pImpl->ValueMetadata[this].insert(KindID, MD);
1364 }
1365 
1366 void Value::addMetadata(StringRef Kind, MDNode &MD) {
1367   addMetadata(getContext().getMDKindID(Kind), MD);
1368 }
1369 
1370 bool Value::eraseMetadata(unsigned KindID) {
1371   // Nothing to unset.
1372   if (!HasMetadata)
1373     return false;
1374 
1375   auto &Store = getContext().pImpl->ValueMetadata[this];
1376   bool Changed = Store.erase(KindID);
1377   if (Store.empty())
1378     clearMetadata();
1379   return Changed;
1380 }
1381 
1382 void Value::clearMetadata() {
1383   if (!HasMetadata)
1384     return;
1385   assert(getContext().pImpl->ValueMetadata.count(this) &&
1386          "bit out of sync with hash table");
1387   getContext().pImpl->ValueMetadata.erase(this);
1388   HasMetadata = false;
1389 }
1390 
1391 void Instruction::setMetadata(StringRef Kind, MDNode *Node) {
1392   if (!Node && !hasMetadata())
1393     return;
1394   setMetadata(getContext().getMDKindID(Kind), Node);
1395 }
1396 
1397 MDNode *Instruction::getMetadataImpl(StringRef Kind) const {
1398   return getMetadataImpl(getContext().getMDKindID(Kind));
1399 }
1400 
1401 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) {
1402   if (!Value::hasMetadata())
1403     return; // Nothing to remove!
1404 
1405   if (KnownIDs.empty()) {
1406     // Just drop our entry at the store.
1407     clearMetadata();
1408     return;
1409   }
1410 
1411   SmallSet<unsigned, 4> KnownSet;
1412   KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
1413 
1414   auto &MetadataStore = getContext().pImpl->ValueMetadata;
1415   auto &Info = MetadataStore[this];
1416   assert(!Info.empty() && "bit out of sync with hash table");
1417   Info.remove_if([&KnownSet](const MDAttachments::Attachment &I) {
1418     return !KnownSet.count(I.MDKind);
1419   });
1420 
1421   if (Info.empty()) {
1422     // Drop our entry at the store.
1423     clearMetadata();
1424   }
1425 }
1426 
1427 void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
1428   if (!Node && !hasMetadata())
1429     return;
1430 
1431   // Handle 'dbg' as a special case since it is not stored in the hash table.
1432   if (KindID == LLVMContext::MD_dbg) {
1433     DbgLoc = DebugLoc(Node);
1434     return;
1435   }
1436 
1437   Value::setMetadata(KindID, Node);
1438 }
1439 
1440 void Instruction::addAnnotationMetadata(StringRef Name) {
1441   MDBuilder MDB(getContext());
1442 
1443   auto *Existing = getMetadata(LLVMContext::MD_annotation);
1444   SmallVector<Metadata *, 4> Names;
1445   bool AppendName = true;
1446   if (Existing) {
1447     auto *Tuple = cast<MDTuple>(Existing);
1448     for (auto &N : Tuple->operands()) {
1449       if (cast<MDString>(N.get())->getString() == Name)
1450         AppendName = false;
1451       Names.push_back(N.get());
1452     }
1453   }
1454   if (AppendName)
1455     Names.push_back(MDB.createString(Name));
1456 
1457   MDNode *MD = MDTuple::get(getContext(), Names);
1458   setMetadata(LLVMContext::MD_annotation, MD);
1459 }
1460 
1461 AAMDNodes Instruction::getAAMetadata() const {
1462   AAMDNodes Result;
1463   Result.TBAA = getMetadata(LLVMContext::MD_tbaa);
1464   Result.TBAAStruct = getMetadata(LLVMContext::MD_tbaa_struct);
1465   Result.Scope = getMetadata(LLVMContext::MD_alias_scope);
1466   Result.NoAlias = getMetadata(LLVMContext::MD_noalias);
1467   return Result;
1468 }
1469 
1470 void Instruction::setAAMetadata(const AAMDNodes &N) {
1471   setMetadata(LLVMContext::MD_tbaa, N.TBAA);
1472   setMetadata(LLVMContext::MD_tbaa_struct, N.TBAAStruct);
1473   setMetadata(LLVMContext::MD_alias_scope, N.Scope);
1474   setMetadata(LLVMContext::MD_noalias, N.NoAlias);
1475 }
1476 
1477 MDNode *Instruction::getMetadataImpl(unsigned KindID) const {
1478   // Handle 'dbg' as a special case since it is not stored in the hash table.
1479   if (KindID == LLVMContext::MD_dbg)
1480     return DbgLoc.getAsMDNode();
1481   return Value::getMetadata(KindID);
1482 }
1483 
1484 void Instruction::getAllMetadataImpl(
1485     SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1486   Result.clear();
1487 
1488   // Handle 'dbg' as a special case since it is not stored in the hash table.
1489   if (DbgLoc) {
1490     Result.push_back(
1491         std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode()));
1492   }
1493   Value::getAllMetadata(Result);
1494 }
1495 
1496 bool Instruction::extractProfMetadata(uint64_t &TrueVal,
1497                                       uint64_t &FalseVal) const {
1498   assert(
1499       (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select) &&
1500       "Looking for branch weights on something besides branch or select");
1501 
1502   auto *ProfileData = getMetadata(LLVMContext::MD_prof);
1503   if (!ProfileData || ProfileData->getNumOperands() != 3)
1504     return false;
1505 
1506   auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
1507   if (!ProfDataName || !ProfDataName->getString().equals("branch_weights"))
1508     return false;
1509 
1510   auto *CITrue = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
1511   auto *CIFalse = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
1512   if (!CITrue || !CIFalse)
1513     return false;
1514 
1515   TrueVal = CITrue->getValue().getZExtValue();
1516   FalseVal = CIFalse->getValue().getZExtValue();
1517 
1518   return true;
1519 }
1520 
1521 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) const {
1522   assert(
1523       (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select ||
1524        getOpcode() == Instruction::Call || getOpcode() == Instruction::Invoke ||
1525        getOpcode() == Instruction::IndirectBr ||
1526        getOpcode() == Instruction::Switch) &&
1527       "Looking for branch weights on something besides branch");
1528 
1529   TotalVal = 0;
1530   auto *ProfileData = getMetadata(LLVMContext::MD_prof);
1531   if (!ProfileData)
1532     return false;
1533 
1534   auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
1535   if (!ProfDataName)
1536     return false;
1537 
1538   if (ProfDataName->getString().equals("branch_weights")) {
1539     TotalVal = 0;
1540     for (unsigned i = 1; i < ProfileData->getNumOperands(); i++) {
1541       auto *V = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i));
1542       if (!V)
1543         return false;
1544       TotalVal += V->getValue().getZExtValue();
1545     }
1546     return true;
1547   } else if (ProfDataName->getString().equals("VP") &&
1548              ProfileData->getNumOperands() > 3) {
1549     TotalVal = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2))
1550                    ->getValue()
1551                    .getZExtValue();
1552     return true;
1553   }
1554   return false;
1555 }
1556 
1557 void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) {
1558   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
1559   Other->getAllMetadata(MDs);
1560   for (auto &MD : MDs) {
1561     // We need to adjust the type metadata offset.
1562     if (Offset != 0 && MD.first == LLVMContext::MD_type) {
1563       auto *OffsetConst = cast<ConstantInt>(
1564           cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue());
1565       Metadata *TypeId = MD.second->getOperand(1);
1566       auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get(
1567           OffsetConst->getType(), OffsetConst->getValue() + Offset));
1568       addMetadata(LLVMContext::MD_type,
1569                   *MDNode::get(getContext(), {NewOffsetMD, TypeId}));
1570       continue;
1571     }
1572     // If an offset adjustment was specified we need to modify the DIExpression
1573     // to prepend the adjustment:
1574     // !DIExpression(DW_OP_plus, Offset, [original expr])
1575     auto *Attachment = MD.second;
1576     if (Offset != 0 && MD.first == LLVMContext::MD_dbg) {
1577       DIGlobalVariable *GV = dyn_cast<DIGlobalVariable>(Attachment);
1578       DIExpression *E = nullptr;
1579       if (!GV) {
1580         auto *GVE = cast<DIGlobalVariableExpression>(Attachment);
1581         GV = GVE->getVariable();
1582         E = GVE->getExpression();
1583       }
1584       ArrayRef<uint64_t> OrigElements;
1585       if (E)
1586         OrigElements = E->getElements();
1587       std::vector<uint64_t> Elements(OrigElements.size() + 2);
1588       Elements[0] = dwarf::DW_OP_plus_uconst;
1589       Elements[1] = Offset;
1590       llvm::copy(OrigElements, Elements.begin() + 2);
1591       E = DIExpression::get(getContext(), Elements);
1592       Attachment = DIGlobalVariableExpression::get(getContext(), GV, E);
1593     }
1594     addMetadata(MD.first, *Attachment);
1595   }
1596 }
1597 
1598 void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) {
1599   addMetadata(
1600       LLVMContext::MD_type,
1601       *MDTuple::get(getContext(),
1602                     {ConstantAsMetadata::get(ConstantInt::get(
1603                          Type::getInt64Ty(getContext()), Offset)),
1604                      TypeID}));
1605 }
1606 
1607 void GlobalObject::setVCallVisibilityMetadata(VCallVisibility Visibility) {
1608   // Remove any existing vcall visibility metadata first in case we are
1609   // updating.
1610   eraseMetadata(LLVMContext::MD_vcall_visibility);
1611   addMetadata(LLVMContext::MD_vcall_visibility,
1612               *MDNode::get(getContext(),
1613                            {ConstantAsMetadata::get(ConstantInt::get(
1614                                Type::getInt64Ty(getContext()), Visibility))}));
1615 }
1616 
1617 GlobalObject::VCallVisibility GlobalObject::getVCallVisibility() const {
1618   if (MDNode *MD = getMetadata(LLVMContext::MD_vcall_visibility)) {
1619     uint64_t Val = cast<ConstantInt>(
1620                        cast<ConstantAsMetadata>(MD->getOperand(0))->getValue())
1621                        ->getZExtValue();
1622     assert(Val <= 2 && "unknown vcall visibility!");
1623     return (VCallVisibility)Val;
1624   }
1625   return VCallVisibility::VCallVisibilityPublic;
1626 }
1627 
1628 void Function::setSubprogram(DISubprogram *SP) {
1629   setMetadata(LLVMContext::MD_dbg, SP);
1630 }
1631 
1632 DISubprogram *Function::getSubprogram() const {
1633   return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg));
1634 }
1635 
1636 bool Function::isDebugInfoForProfiling() const {
1637   if (DISubprogram *SP = getSubprogram()) {
1638     if (DICompileUnit *CU = SP->getUnit()) {
1639       return CU->getDebugInfoForProfiling();
1640     }
1641   }
1642   return false;
1643 }
1644 
1645 void GlobalVariable::addDebugInfo(DIGlobalVariableExpression *GV) {
1646   addMetadata(LLVMContext::MD_dbg, *GV);
1647 }
1648 
1649 void GlobalVariable::getDebugInfo(
1650     SmallVectorImpl<DIGlobalVariableExpression *> &GVs) const {
1651   SmallVector<MDNode *, 1> MDs;
1652   getMetadata(LLVMContext::MD_dbg, MDs);
1653   for (MDNode *MD : MDs)
1654     GVs.push_back(cast<DIGlobalVariableExpression>(MD));
1655 }
1656