xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Metadata.cpp (revision 38a52bd3b5cac3da6f7f6eef3dd050e6aa08ebb3)
1 //===- Metadata.cpp - Implement Metadata classes --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Metadata classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Metadata.h"
14 #include "LLVMContextImpl.h"
15 #include "MetadataImpl.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringMap.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/IR/Argument.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/ConstantRange.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DebugInfoMetadata.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalObject.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/TrackingMDRef.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/MathExtras.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstddef>
52 #include <cstdint>
53 #include <type_traits>
54 #include <utility>
55 #include <vector>
56 
57 using namespace llvm;
58 
59 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD)
60     : Value(Ty, MetadataAsValueVal), MD(MD) {
61   track();
62 }
63 
64 MetadataAsValue::~MetadataAsValue() {
65   getType()->getContext().pImpl->MetadataAsValues.erase(MD);
66   untrack();
67 }
68 
69 /// Canonicalize metadata arguments to intrinsics.
70 ///
71 /// To support bitcode upgrades (and assembly semantic sugar) for \a
72 /// MetadataAsValue, we need to canonicalize certain metadata.
73 ///
74 ///   - nullptr is replaced by an empty MDNode.
75 ///   - An MDNode with a single null operand is replaced by an empty MDNode.
76 ///   - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped.
77 ///
78 /// This maintains readability of bitcode from when metadata was a type of
79 /// value, and these bridges were unnecessary.
80 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context,
81                                               Metadata *MD) {
82   if (!MD)
83     // !{}
84     return MDNode::get(Context, None);
85 
86   // Return early if this isn't a single-operand MDNode.
87   auto *N = dyn_cast<MDNode>(MD);
88   if (!N || N->getNumOperands() != 1)
89     return MD;
90 
91   if (!N->getOperand(0))
92     // !{}
93     return MDNode::get(Context, None);
94 
95   if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0)))
96     // Look through the MDNode.
97     return C;
98 
99   return MD;
100 }
101 
102 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) {
103   MD = canonicalizeMetadataForValue(Context, MD);
104   auto *&Entry = Context.pImpl->MetadataAsValues[MD];
105   if (!Entry)
106     Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD);
107   return Entry;
108 }
109 
110 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context,
111                                               Metadata *MD) {
112   MD = canonicalizeMetadataForValue(Context, MD);
113   auto &Store = Context.pImpl->MetadataAsValues;
114   return Store.lookup(MD);
115 }
116 
117 void MetadataAsValue::handleChangedMetadata(Metadata *MD) {
118   LLVMContext &Context = getContext();
119   MD = canonicalizeMetadataForValue(Context, MD);
120   auto &Store = Context.pImpl->MetadataAsValues;
121 
122   // Stop tracking the old metadata.
123   Store.erase(this->MD);
124   untrack();
125   this->MD = nullptr;
126 
127   // Start tracking MD, or RAUW if necessary.
128   auto *&Entry = Store[MD];
129   if (Entry) {
130     replaceAllUsesWith(Entry);
131     delete this;
132     return;
133   }
134 
135   this->MD = MD;
136   track();
137   Entry = this;
138 }
139 
140 void MetadataAsValue::track() {
141   if (MD)
142     MetadataTracking::track(&MD, *MD, *this);
143 }
144 
145 void MetadataAsValue::untrack() {
146   if (MD)
147     MetadataTracking::untrack(MD);
148 }
149 
150 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) {
151   assert(Ref && "Expected live reference");
152   assert((Owner || *static_cast<Metadata **>(Ref) == &MD) &&
153          "Reference without owner must be direct");
154   if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) {
155     R->addRef(Ref, Owner);
156     return true;
157   }
158   if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) {
159     assert(!PH->Use && "Placeholders can only be used once");
160     assert(!Owner && "Unexpected callback to owner");
161     PH->Use = static_cast<Metadata **>(Ref);
162     return true;
163   }
164   return false;
165 }
166 
167 void MetadataTracking::untrack(void *Ref, Metadata &MD) {
168   assert(Ref && "Expected live reference");
169   if (auto *R = ReplaceableMetadataImpl::getIfExists(MD))
170     R->dropRef(Ref);
171   else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD))
172     PH->Use = nullptr;
173 }
174 
175 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) {
176   assert(Ref && "Expected live reference");
177   assert(New && "Expected live reference");
178   assert(Ref != New && "Expected change");
179   if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) {
180     R->moveRef(Ref, New, MD);
181     return true;
182   }
183   assert(!isa<DistinctMDOperandPlaceholder>(MD) &&
184          "Unexpected move of an MDOperand");
185   assert(!isReplaceable(MD) &&
186          "Expected un-replaceable metadata, since we didn't move a reference");
187   return false;
188 }
189 
190 bool MetadataTracking::isReplaceable(const Metadata &MD) {
191   return ReplaceableMetadataImpl::isReplaceable(MD);
192 }
193 
194 SmallVector<Metadata *> ReplaceableMetadataImpl::getAllArgListUsers() {
195   SmallVector<std::pair<OwnerTy, uint64_t> *> MDUsersWithID;
196   for (auto Pair : UseMap) {
197     OwnerTy Owner = Pair.second.first;
198     if (!Owner.is<Metadata *>())
199       continue;
200     Metadata *OwnerMD = Owner.get<Metadata *>();
201     if (OwnerMD->getMetadataID() == Metadata::DIArgListKind)
202       MDUsersWithID.push_back(&UseMap[Pair.first]);
203   }
204   llvm::sort(MDUsersWithID, [](auto UserA, auto UserB) {
205     return UserA->second < UserB->second;
206   });
207   SmallVector<Metadata *> MDUsers;
208   for (auto UserWithID : MDUsersWithID)
209     MDUsers.push_back(UserWithID->first.get<Metadata *>());
210   return MDUsers;
211 }
212 
213 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) {
214   bool WasInserted =
215       UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex)))
216           .second;
217   (void)WasInserted;
218   assert(WasInserted && "Expected to add a reference");
219 
220   ++NextIndex;
221   assert(NextIndex != 0 && "Unexpected overflow");
222 }
223 
224 void ReplaceableMetadataImpl::dropRef(void *Ref) {
225   bool WasErased = UseMap.erase(Ref);
226   (void)WasErased;
227   assert(WasErased && "Expected to drop a reference");
228 }
229 
230 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New,
231                                       const Metadata &MD) {
232   auto I = UseMap.find(Ref);
233   assert(I != UseMap.end() && "Expected to move a reference");
234   auto OwnerAndIndex = I->second;
235   UseMap.erase(I);
236   bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second;
237   (void)WasInserted;
238   assert(WasInserted && "Expected to add a reference");
239 
240   // Check that the references are direct if there's no owner.
241   (void)MD;
242   assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) &&
243          "Reference without owner must be direct");
244   assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) &&
245          "Reference without owner must be direct");
246 }
247 
248 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) {
249   if (UseMap.empty())
250     return;
251 
252   // Copy out uses since UseMap will get touched below.
253   using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>;
254   SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
255   llvm::sort(Uses, [](const UseTy &L, const UseTy &R) {
256     return L.second.second < R.second.second;
257   });
258   for (const auto &Pair : Uses) {
259     // Check that this Ref hasn't disappeared after RAUW (when updating a
260     // previous Ref).
261     if (!UseMap.count(Pair.first))
262       continue;
263 
264     OwnerTy Owner = Pair.second.first;
265     if (!Owner) {
266       // Update unowned tracking references directly.
267       Metadata *&Ref = *static_cast<Metadata **>(Pair.first);
268       Ref = MD;
269       if (MD)
270         MetadataTracking::track(Ref);
271       UseMap.erase(Pair.first);
272       continue;
273     }
274 
275     // Check for MetadataAsValue.
276     if (Owner.is<MetadataAsValue *>()) {
277       Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD);
278       continue;
279     }
280 
281     // There's a Metadata owner -- dispatch.
282     Metadata *OwnerMD = Owner.get<Metadata *>();
283     switch (OwnerMD->getMetadataID()) {
284 #define HANDLE_METADATA_LEAF(CLASS)                                            \
285   case Metadata::CLASS##Kind:                                                  \
286     cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD);                \
287     continue;
288 #include "llvm/IR/Metadata.def"
289     default:
290       llvm_unreachable("Invalid metadata subclass");
291     }
292   }
293   assert(UseMap.empty() && "Expected all uses to be replaced");
294 }
295 
296 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) {
297   if (UseMap.empty())
298     return;
299 
300   if (!ResolveUsers) {
301     UseMap.clear();
302     return;
303   }
304 
305   // Copy out uses since UseMap could get touched below.
306   using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>;
307   SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
308   llvm::sort(Uses, [](const UseTy &L, const UseTy &R) {
309     return L.second.second < R.second.second;
310   });
311   UseMap.clear();
312   for (const auto &Pair : Uses) {
313     auto Owner = Pair.second.first;
314     if (!Owner)
315       continue;
316     if (Owner.is<MetadataAsValue *>())
317       continue;
318 
319     // Resolve MDNodes that point at this.
320     auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>());
321     if (!OwnerMD)
322       continue;
323     if (OwnerMD->isResolved())
324       continue;
325     OwnerMD->decrementUnresolvedOperandCount();
326   }
327 }
328 
329 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) {
330   if (auto *N = dyn_cast<MDNode>(&MD))
331     return N->isResolved() ? nullptr : N->Context.getOrCreateReplaceableUses();
332   return dyn_cast<ValueAsMetadata>(&MD);
333 }
334 
335 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) {
336   if (auto *N = dyn_cast<MDNode>(&MD))
337     return N->isResolved() ? nullptr : N->Context.getReplaceableUses();
338   return dyn_cast<ValueAsMetadata>(&MD);
339 }
340 
341 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) {
342   if (auto *N = dyn_cast<MDNode>(&MD))
343     return !N->isResolved();
344   return isa<ValueAsMetadata>(&MD);
345 }
346 
347 static DISubprogram *getLocalFunctionMetadata(Value *V) {
348   assert(V && "Expected value");
349   if (auto *A = dyn_cast<Argument>(V)) {
350     if (auto *Fn = A->getParent())
351       return Fn->getSubprogram();
352     return nullptr;
353   }
354 
355   if (BasicBlock *BB = cast<Instruction>(V)->getParent()) {
356     if (auto *Fn = BB->getParent())
357       return Fn->getSubprogram();
358     return nullptr;
359   }
360 
361   return nullptr;
362 }
363 
364 ValueAsMetadata *ValueAsMetadata::get(Value *V) {
365   assert(V && "Unexpected null Value");
366 
367   auto &Context = V->getContext();
368   auto *&Entry = Context.pImpl->ValuesAsMetadata[V];
369   if (!Entry) {
370     assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
371            "Expected constant or function-local value");
372     assert(!V->IsUsedByMD && "Expected this to be the only metadata use");
373     V->IsUsedByMD = true;
374     if (auto *C = dyn_cast<Constant>(V))
375       Entry = new ConstantAsMetadata(C);
376     else
377       Entry = new LocalAsMetadata(V);
378   }
379 
380   return Entry;
381 }
382 
383 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) {
384   assert(V && "Unexpected null Value");
385   return V->getContext().pImpl->ValuesAsMetadata.lookup(V);
386 }
387 
388 void ValueAsMetadata::handleDeletion(Value *V) {
389   assert(V && "Expected valid value");
390 
391   auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata;
392   auto I = Store.find(V);
393   if (I == Store.end())
394     return;
395 
396   // Remove old entry from the map.
397   ValueAsMetadata *MD = I->second;
398   assert(MD && "Expected valid metadata");
399   assert(MD->getValue() == V && "Expected valid mapping");
400   Store.erase(I);
401 
402   // Delete the metadata.
403   MD->replaceAllUsesWith(nullptr);
404   delete MD;
405 }
406 
407 void ValueAsMetadata::handleRAUW(Value *From, Value *To) {
408   assert(From && "Expected valid value");
409   assert(To && "Expected valid value");
410   assert(From != To && "Expected changed value");
411   assert(From->getType() == To->getType() && "Unexpected type change");
412 
413   LLVMContext &Context = From->getType()->getContext();
414   auto &Store = Context.pImpl->ValuesAsMetadata;
415   auto I = Store.find(From);
416   if (I == Store.end()) {
417     assert(!From->IsUsedByMD && "Expected From not to be used by metadata");
418     return;
419   }
420 
421   // Remove old entry from the map.
422   assert(From->IsUsedByMD && "Expected From to be used by metadata");
423   From->IsUsedByMD = false;
424   ValueAsMetadata *MD = I->second;
425   assert(MD && "Expected valid metadata");
426   assert(MD->getValue() == From && "Expected valid mapping");
427   Store.erase(I);
428 
429   if (isa<LocalAsMetadata>(MD)) {
430     if (auto *C = dyn_cast<Constant>(To)) {
431       // Local became a constant.
432       MD->replaceAllUsesWith(ConstantAsMetadata::get(C));
433       delete MD;
434       return;
435     }
436     if (getLocalFunctionMetadata(From) && getLocalFunctionMetadata(To) &&
437         getLocalFunctionMetadata(From) != getLocalFunctionMetadata(To)) {
438       // DISubprogram changed.
439       MD->replaceAllUsesWith(nullptr);
440       delete MD;
441       return;
442     }
443   } else if (!isa<Constant>(To)) {
444     // Changed to function-local value.
445     MD->replaceAllUsesWith(nullptr);
446     delete MD;
447     return;
448   }
449 
450   auto *&Entry = Store[To];
451   if (Entry) {
452     // The target already exists.
453     MD->replaceAllUsesWith(Entry);
454     delete MD;
455     return;
456   }
457 
458   // Update MD in place (and update the map entry).
459   assert(!To->IsUsedByMD && "Expected this to be the only metadata use");
460   To->IsUsedByMD = true;
461   MD->V = To;
462   Entry = MD;
463 }
464 
465 //===----------------------------------------------------------------------===//
466 // MDString implementation.
467 //
468 
469 MDString *MDString::get(LLVMContext &Context, StringRef Str) {
470   auto &Store = Context.pImpl->MDStringCache;
471   auto I = Store.try_emplace(Str);
472   auto &MapEntry = I.first->getValue();
473   if (!I.second)
474     return &MapEntry;
475   MapEntry.Entry = &*I.first;
476   return &MapEntry;
477 }
478 
479 StringRef MDString::getString() const {
480   assert(Entry && "Expected to find string map entry");
481   return Entry->first();
482 }
483 
484 //===----------------------------------------------------------------------===//
485 // MDNode implementation.
486 //
487 
488 // Assert that the MDNode types will not be unaligned by the objects
489 // prepended to them.
490 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
491   static_assert(                                                               \
492       alignof(uint64_t) >= alignof(CLASS),                                     \
493       "Alignment is insufficient after objects prepended to " #CLASS);
494 #include "llvm/IR/Metadata.def"
495 
496 void *MDNode::operator new(size_t Size, unsigned NumOps) {
497   size_t OpSize = NumOps * sizeof(MDOperand);
498   // uint64_t is the most aligned type we need support (ensured by static_assert
499   // above)
500   OpSize = alignTo(OpSize, alignof(uint64_t));
501   void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize;
502   MDOperand *O = static_cast<MDOperand *>(Ptr);
503   for (MDOperand *E = O - NumOps; O != E; --O)
504     (void)new (O - 1) MDOperand;
505   return Ptr;
506 }
507 
508 // Repress memory sanitization, due to use-after-destroy by operator
509 // delete. Bug report 24578 identifies this issue.
510 LLVM_NO_SANITIZE_MEMORY_ATTRIBUTE void MDNode::operator delete(void *Mem) {
511   MDNode *N = static_cast<MDNode *>(Mem);
512   size_t OpSize = N->NumOperands * sizeof(MDOperand);
513   OpSize = alignTo(OpSize, alignof(uint64_t));
514 
515   MDOperand *O = static_cast<MDOperand *>(Mem);
516   for (MDOperand *E = O - N->NumOperands; O != E; --O)
517     (O - 1)->~MDOperand();
518   ::operator delete(reinterpret_cast<char *>(Mem) - OpSize);
519 }
520 
521 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
522                ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2)
523     : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()),
524       NumUnresolved(0), Context(Context) {
525   unsigned Op = 0;
526   for (Metadata *MD : Ops1)
527     setOperand(Op++, MD);
528   for (Metadata *MD : Ops2)
529     setOperand(Op++, MD);
530 
531   if (!isUniqued())
532     return;
533 
534   // Count the unresolved operands.  If there are any, RAUW support will be
535   // added lazily on first reference.
536   countUnresolvedOperands();
537 }
538 
539 TempMDNode MDNode::clone() const {
540   switch (getMetadataID()) {
541   default:
542     llvm_unreachable("Invalid MDNode subclass");
543 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
544   case CLASS##Kind:                                                            \
545     return cast<CLASS>(this)->cloneImpl();
546 #include "llvm/IR/Metadata.def"
547   }
548 }
549 
550 static bool isOperandUnresolved(Metadata *Op) {
551   if (auto *N = dyn_cast_or_null<MDNode>(Op))
552     return !N->isResolved();
553   return false;
554 }
555 
556 void MDNode::countUnresolvedOperands() {
557   assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted");
558   assert(isUniqued() && "Expected this to be uniqued");
559   NumUnresolved = count_if(operands(), isOperandUnresolved);
560 }
561 
562 void MDNode::makeUniqued() {
563   assert(isTemporary() && "Expected this to be temporary");
564   assert(!isResolved() && "Expected this to be unresolved");
565 
566   // Enable uniquing callbacks.
567   for (auto &Op : mutable_operands())
568     Op.reset(Op.get(), this);
569 
570   // Make this 'uniqued'.
571   Storage = Uniqued;
572   countUnresolvedOperands();
573   if (!NumUnresolved) {
574     dropReplaceableUses();
575     assert(isResolved() && "Expected this to be resolved");
576   }
577 
578   assert(isUniqued() && "Expected this to be uniqued");
579 }
580 
581 void MDNode::makeDistinct() {
582   assert(isTemporary() && "Expected this to be temporary");
583   assert(!isResolved() && "Expected this to be unresolved");
584 
585   // Drop RAUW support and store as a distinct node.
586   dropReplaceableUses();
587   storeDistinctInContext();
588 
589   assert(isDistinct() && "Expected this to be distinct");
590   assert(isResolved() && "Expected this to be resolved");
591 }
592 
593 void MDNode::resolve() {
594   assert(isUniqued() && "Expected this to be uniqued");
595   assert(!isResolved() && "Expected this to be unresolved");
596 
597   NumUnresolved = 0;
598   dropReplaceableUses();
599 
600   assert(isResolved() && "Expected this to be resolved");
601 }
602 
603 void MDNode::dropReplaceableUses() {
604   assert(!NumUnresolved && "Unexpected unresolved operand");
605 
606   // Drop any RAUW support.
607   if (Context.hasReplaceableUses())
608     Context.takeReplaceableUses()->resolveAllUses();
609 }
610 
611 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) {
612   assert(isUniqued() && "Expected this to be uniqued");
613   assert(NumUnresolved != 0 && "Expected unresolved operands");
614 
615   // Check if an operand was resolved.
616   if (!isOperandUnresolved(Old)) {
617     if (isOperandUnresolved(New))
618       // An operand was un-resolved!
619       ++NumUnresolved;
620   } else if (!isOperandUnresolved(New))
621     decrementUnresolvedOperandCount();
622 }
623 
624 void MDNode::decrementUnresolvedOperandCount() {
625   assert(!isResolved() && "Expected this to be unresolved");
626   if (isTemporary())
627     return;
628 
629   assert(isUniqued() && "Expected this to be uniqued");
630   if (--NumUnresolved)
631     return;
632 
633   // Last unresolved operand has just been resolved.
634   dropReplaceableUses();
635   assert(isResolved() && "Expected this to become resolved");
636 }
637 
638 void MDNode::resolveCycles() {
639   if (isResolved())
640     return;
641 
642   // Resolve this node immediately.
643   resolve();
644 
645   // Resolve all operands.
646   for (const auto &Op : operands()) {
647     auto *N = dyn_cast_or_null<MDNode>(Op);
648     if (!N)
649       continue;
650 
651     assert(!N->isTemporary() &&
652            "Expected all forward declarations to be resolved");
653     if (!N->isResolved())
654       N->resolveCycles();
655   }
656 }
657 
658 static bool hasSelfReference(MDNode *N) {
659   return llvm::is_contained(N->operands(), N);
660 }
661 
662 MDNode *MDNode::replaceWithPermanentImpl() {
663   switch (getMetadataID()) {
664   default:
665     // If this type isn't uniquable, replace with a distinct node.
666     return replaceWithDistinctImpl();
667 
668 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS)                                    \
669   case CLASS##Kind:                                                            \
670     break;
671 #include "llvm/IR/Metadata.def"
672   }
673 
674   // Even if this type is uniquable, self-references have to be distinct.
675   if (hasSelfReference(this))
676     return replaceWithDistinctImpl();
677   return replaceWithUniquedImpl();
678 }
679 
680 MDNode *MDNode::replaceWithUniquedImpl() {
681   // Try to uniquify in place.
682   MDNode *UniquedNode = uniquify();
683 
684   if (UniquedNode == this) {
685     makeUniqued();
686     return this;
687   }
688 
689   // Collision, so RAUW instead.
690   replaceAllUsesWith(UniquedNode);
691   deleteAsSubclass();
692   return UniquedNode;
693 }
694 
695 MDNode *MDNode::replaceWithDistinctImpl() {
696   makeDistinct();
697   return this;
698 }
699 
700 void MDTuple::recalculateHash() {
701   setHash(MDTupleInfo::KeyTy::calculateHash(this));
702 }
703 
704 void MDNode::dropAllReferences() {
705   for (unsigned I = 0, E = NumOperands; I != E; ++I)
706     setOperand(I, nullptr);
707   if (Context.hasReplaceableUses()) {
708     Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false);
709     (void)Context.takeReplaceableUses();
710   }
711 }
712 
713 void MDNode::handleChangedOperand(void *Ref, Metadata *New) {
714   unsigned Op = static_cast<MDOperand *>(Ref) - op_begin();
715   assert(Op < getNumOperands() && "Expected valid operand");
716 
717   if (!isUniqued()) {
718     // This node is not uniqued.  Just set the operand and be done with it.
719     setOperand(Op, New);
720     return;
721   }
722 
723   // This node is uniqued.
724   eraseFromStore();
725 
726   Metadata *Old = getOperand(Op);
727   setOperand(Op, New);
728 
729   // Drop uniquing for self-reference cycles and deleted constants.
730   if (New == this || (!New && Old && isa<ConstantAsMetadata>(Old))) {
731     if (!isResolved())
732       resolve();
733     storeDistinctInContext();
734     return;
735   }
736 
737   // Re-unique the node.
738   auto *Uniqued = uniquify();
739   if (Uniqued == this) {
740     if (!isResolved())
741       resolveAfterOperandChange(Old, New);
742     return;
743   }
744 
745   // Collision.
746   if (!isResolved()) {
747     // Still unresolved, so RAUW.
748     //
749     // First, clear out all operands to prevent any recursion (similar to
750     // dropAllReferences(), but we still need the use-list).
751     for (unsigned O = 0, E = getNumOperands(); O != E; ++O)
752       setOperand(O, nullptr);
753     if (Context.hasReplaceableUses())
754       Context.getReplaceableUses()->replaceAllUsesWith(Uniqued);
755     deleteAsSubclass();
756     return;
757   }
758 
759   // Store in non-uniqued form if RAUW isn't possible.
760   storeDistinctInContext();
761 }
762 
763 void MDNode::deleteAsSubclass() {
764   switch (getMetadataID()) {
765   default:
766     llvm_unreachable("Invalid subclass of MDNode");
767 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
768   case CLASS##Kind:                                                            \
769     delete cast<CLASS>(this);                                                  \
770     break;
771 #include "llvm/IR/Metadata.def"
772   }
773 }
774 
775 template <class T, class InfoT>
776 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) {
777   if (T *U = getUniqued(Store, N))
778     return U;
779 
780   Store.insert(N);
781   return N;
782 }
783 
784 template <class NodeTy> struct MDNode::HasCachedHash {
785   using Yes = char[1];
786   using No = char[2];
787   template <class U, U Val> struct SFINAE {};
788 
789   template <class U>
790   static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *);
791   template <class U> static No &check(...);
792 
793   static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes);
794 };
795 
796 MDNode *MDNode::uniquify() {
797   assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node");
798 
799   // Try to insert into uniquing store.
800   switch (getMetadataID()) {
801   default:
802     llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
803 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS)                                    \
804   case CLASS##Kind: {                                                          \
805     CLASS *SubclassThis = cast<CLASS>(this);                                   \
806     std::integral_constant<bool, HasCachedHash<CLASS>::value>                  \
807         ShouldRecalculateHash;                                                 \
808     dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash);              \
809     return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s);           \
810   }
811 #include "llvm/IR/Metadata.def"
812   }
813 }
814 
815 void MDNode::eraseFromStore() {
816   switch (getMetadataID()) {
817   default:
818     llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
819 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS)                                    \
820   case CLASS##Kind:                                                            \
821     getContext().pImpl->CLASS##s.erase(cast<CLASS>(this));                     \
822     break;
823 #include "llvm/IR/Metadata.def"
824   }
825 }
826 
827 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
828                           StorageType Storage, bool ShouldCreate) {
829   unsigned Hash = 0;
830   if (Storage == Uniqued) {
831     MDTupleInfo::KeyTy Key(MDs);
832     if (auto *N = getUniqued(Context.pImpl->MDTuples, Key))
833       return N;
834     if (!ShouldCreate)
835       return nullptr;
836     Hash = Key.getHash();
837   } else {
838     assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
839   }
840 
841   return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs),
842                    Storage, Context.pImpl->MDTuples);
843 }
844 
845 void MDNode::deleteTemporary(MDNode *N) {
846   assert(N->isTemporary() && "Expected temporary node");
847   N->replaceAllUsesWith(nullptr);
848   N->deleteAsSubclass();
849 }
850 
851 void MDNode::storeDistinctInContext() {
852   assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses");
853   assert(!NumUnresolved && "Unexpected unresolved nodes");
854   Storage = Distinct;
855   assert(isResolved() && "Expected this to be resolved");
856 
857   // Reset the hash.
858   switch (getMetadataID()) {
859   default:
860     llvm_unreachable("Invalid subclass of MDNode");
861 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
862   case CLASS##Kind: {                                                          \
863     std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \
864     dispatchResetHash(cast<CLASS>(this), ShouldResetHash);                     \
865     break;                                                                     \
866   }
867 #include "llvm/IR/Metadata.def"
868   }
869 
870   getContext().pImpl->DistinctMDNodes.push_back(this);
871 }
872 
873 void MDNode::replaceOperandWith(unsigned I, Metadata *New) {
874   if (getOperand(I) == New)
875     return;
876 
877   if (!isUniqued()) {
878     setOperand(I, New);
879     return;
880   }
881 
882   handleChangedOperand(mutable_begin() + I, New);
883 }
884 
885 void MDNode::setOperand(unsigned I, Metadata *New) {
886   assert(I < NumOperands);
887   mutable_begin()[I].reset(New, isUniqued() ? this : nullptr);
888 }
889 
890 /// Get a node or a self-reference that looks like it.
891 ///
892 /// Special handling for finding self-references, for use by \a
893 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from
894 /// when self-referencing nodes were still uniqued.  If the first operand has
895 /// the same operands as \c Ops, return the first operand instead.
896 static MDNode *getOrSelfReference(LLVMContext &Context,
897                                   ArrayRef<Metadata *> Ops) {
898   if (!Ops.empty())
899     if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0]))
900       if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) {
901         for (unsigned I = 1, E = Ops.size(); I != E; ++I)
902           if (Ops[I] != N->getOperand(I))
903             return MDNode::get(Context, Ops);
904         return N;
905       }
906 
907   return MDNode::get(Context, Ops);
908 }
909 
910 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) {
911   if (!A)
912     return B;
913   if (!B)
914     return A;
915 
916   SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end());
917   MDs.insert(B->op_begin(), B->op_end());
918 
919   // FIXME: This preserves long-standing behaviour, but is it really the right
920   // behaviour?  Or was that an unintended side-effect of node uniquing?
921   return getOrSelfReference(A->getContext(), MDs.getArrayRef());
922 }
923 
924 MDNode *MDNode::intersect(MDNode *A, MDNode *B) {
925   if (!A || !B)
926     return nullptr;
927 
928   SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end());
929   SmallPtrSet<Metadata *, 4> BSet(B->op_begin(), B->op_end());
930   MDs.remove_if([&](Metadata *MD) { return !BSet.count(MD); });
931 
932   // FIXME: This preserves long-standing behaviour, but is it really the right
933   // behaviour?  Or was that an unintended side-effect of node uniquing?
934   return getOrSelfReference(A->getContext(), MDs.getArrayRef());
935 }
936 
937 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) {
938   if (!A || !B)
939     return nullptr;
940 
941   // Take the intersection of domains then union the scopes
942   // within those domains
943   SmallPtrSet<const MDNode *, 16> ADomains;
944   SmallPtrSet<const MDNode *, 16> IntersectDomains;
945   SmallSetVector<Metadata *, 4> MDs;
946   for (const MDOperand &MDOp : A->operands())
947     if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp))
948       if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
949         ADomains.insert(Domain);
950 
951   for (const MDOperand &MDOp : B->operands())
952     if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp))
953       if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
954         if (ADomains.contains(Domain)) {
955           IntersectDomains.insert(Domain);
956           MDs.insert(MDOp);
957         }
958 
959   for (const MDOperand &MDOp : A->operands())
960     if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp))
961       if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
962         if (IntersectDomains.contains(Domain))
963           MDs.insert(MDOp);
964 
965   return MDs.empty() ? nullptr
966                      : getOrSelfReference(A->getContext(), MDs.getArrayRef());
967 }
968 
969 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) {
970   if (!A || !B)
971     return nullptr;
972 
973   APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF();
974   APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF();
975   if (AVal < BVal)
976     return A;
977   return B;
978 }
979 
980 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
981   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
982 }
983 
984 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) {
985   return !A.intersectWith(B).isEmptySet() || isContiguous(A, B);
986 }
987 
988 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints,
989                           ConstantInt *Low, ConstantInt *High) {
990   ConstantRange NewRange(Low->getValue(), High->getValue());
991   unsigned Size = EndPoints.size();
992   APInt LB = EndPoints[Size - 2]->getValue();
993   APInt LE = EndPoints[Size - 1]->getValue();
994   ConstantRange LastRange(LB, LE);
995   if (canBeMerged(NewRange, LastRange)) {
996     ConstantRange Union = LastRange.unionWith(NewRange);
997     Type *Ty = High->getType();
998     EndPoints[Size - 2] =
999         cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower()));
1000     EndPoints[Size - 1] =
1001         cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper()));
1002     return true;
1003   }
1004   return false;
1005 }
1006 
1007 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints,
1008                      ConstantInt *Low, ConstantInt *High) {
1009   if (!EndPoints.empty())
1010     if (tryMergeRange(EndPoints, Low, High))
1011       return;
1012 
1013   EndPoints.push_back(Low);
1014   EndPoints.push_back(High);
1015 }
1016 
1017 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) {
1018   // Given two ranges, we want to compute the union of the ranges. This
1019   // is slightly complicated by having to combine the intervals and merge
1020   // the ones that overlap.
1021 
1022   if (!A || !B)
1023     return nullptr;
1024 
1025   if (A == B)
1026     return A;
1027 
1028   // First, walk both lists in order of the lower boundary of each interval.
1029   // At each step, try to merge the new interval to the last one we adedd.
1030   SmallVector<ConstantInt *, 4> EndPoints;
1031   int AI = 0;
1032   int BI = 0;
1033   int AN = A->getNumOperands() / 2;
1034   int BN = B->getNumOperands() / 2;
1035   while (AI < AN && BI < BN) {
1036     ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI));
1037     ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI));
1038 
1039     if (ALow->getValue().slt(BLow->getValue())) {
1040       addRange(EndPoints, ALow,
1041                mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
1042       ++AI;
1043     } else {
1044       addRange(EndPoints, BLow,
1045                mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
1046       ++BI;
1047     }
1048   }
1049   while (AI < AN) {
1050     addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)),
1051              mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
1052     ++AI;
1053   }
1054   while (BI < BN) {
1055     addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)),
1056              mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
1057     ++BI;
1058   }
1059 
1060   // If we have more than 2 ranges (4 endpoints) we have to try to merge
1061   // the last and first ones.
1062   unsigned Size = EndPoints.size();
1063   if (Size > 4) {
1064     ConstantInt *FB = EndPoints[0];
1065     ConstantInt *FE = EndPoints[1];
1066     if (tryMergeRange(EndPoints, FB, FE)) {
1067       for (unsigned i = 0; i < Size - 2; ++i) {
1068         EndPoints[i] = EndPoints[i + 2];
1069       }
1070       EndPoints.resize(Size - 2);
1071     }
1072   }
1073 
1074   // If in the end we have a single range, it is possible that it is now the
1075   // full range. Just drop the metadata in that case.
1076   if (EndPoints.size() == 2) {
1077     ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue());
1078     if (Range.isFullSet())
1079       return nullptr;
1080   }
1081 
1082   SmallVector<Metadata *, 4> MDs;
1083   MDs.reserve(EndPoints.size());
1084   for (auto *I : EndPoints)
1085     MDs.push_back(ConstantAsMetadata::get(I));
1086   return MDNode::get(A->getContext(), MDs);
1087 }
1088 
1089 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) {
1090   if (!A || !B)
1091     return nullptr;
1092 
1093   ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0));
1094   ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0));
1095   if (AVal->getZExtValue() < BVal->getZExtValue())
1096     return A;
1097   return B;
1098 }
1099 
1100 //===----------------------------------------------------------------------===//
1101 // NamedMDNode implementation.
1102 //
1103 
1104 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) {
1105   return *(SmallVector<TrackingMDRef, 4> *)Operands;
1106 }
1107 
1108 NamedMDNode::NamedMDNode(const Twine &N)
1109     : Name(N.str()), Operands(new SmallVector<TrackingMDRef, 4>()) {}
1110 
1111 NamedMDNode::~NamedMDNode() {
1112   dropAllReferences();
1113   delete &getNMDOps(Operands);
1114 }
1115 
1116 unsigned NamedMDNode::getNumOperands() const {
1117   return (unsigned)getNMDOps(Operands).size();
1118 }
1119 
1120 MDNode *NamedMDNode::getOperand(unsigned i) const {
1121   assert(i < getNumOperands() && "Invalid Operand number!");
1122   auto *N = getNMDOps(Operands)[i].get();
1123   return cast_or_null<MDNode>(N);
1124 }
1125 
1126 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); }
1127 
1128 void NamedMDNode::setOperand(unsigned I, MDNode *New) {
1129   assert(I < getNumOperands() && "Invalid operand number");
1130   getNMDOps(Operands)[I].reset(New);
1131 }
1132 
1133 void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); }
1134 
1135 void NamedMDNode::clearOperands() { getNMDOps(Operands).clear(); }
1136 
1137 StringRef NamedMDNode::getName() const { return StringRef(Name); }
1138 
1139 //===----------------------------------------------------------------------===//
1140 // Instruction Metadata method implementations.
1141 //
1142 
1143 MDNode *MDAttachments::lookup(unsigned ID) const {
1144   for (const auto &A : Attachments)
1145     if (A.MDKind == ID)
1146       return A.Node;
1147   return nullptr;
1148 }
1149 
1150 void MDAttachments::get(unsigned ID, SmallVectorImpl<MDNode *> &Result) const {
1151   for (const auto &A : Attachments)
1152     if (A.MDKind == ID)
1153       Result.push_back(A.Node);
1154 }
1155 
1156 void MDAttachments::getAll(
1157     SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1158   for (const auto &A : Attachments)
1159     Result.emplace_back(A.MDKind, A.Node);
1160 
1161   // Sort the resulting array so it is stable with respect to metadata IDs. We
1162   // need to preserve the original insertion order though.
1163   if (Result.size() > 1)
1164     llvm::stable_sort(Result, less_first());
1165 }
1166 
1167 void MDAttachments::set(unsigned ID, MDNode *MD) {
1168   erase(ID);
1169   if (MD)
1170     insert(ID, *MD);
1171 }
1172 
1173 void MDAttachments::insert(unsigned ID, MDNode &MD) {
1174   Attachments.push_back({ID, TrackingMDNodeRef(&MD)});
1175 }
1176 
1177 bool MDAttachments::erase(unsigned ID) {
1178   if (empty())
1179     return false;
1180 
1181   // Common case is one value.
1182   if (Attachments.size() == 1 && Attachments.back().MDKind == ID) {
1183     Attachments.pop_back();
1184     return true;
1185   }
1186 
1187   auto OldSize = Attachments.size();
1188   llvm::erase_if(Attachments,
1189                  [ID](const Attachment &A) { return A.MDKind == ID; });
1190   return OldSize != Attachments.size();
1191 }
1192 
1193 MDNode *Value::getMetadata(unsigned KindID) const {
1194   if (!hasMetadata())
1195     return nullptr;
1196   const auto &Info = getContext().pImpl->ValueMetadata[this];
1197   assert(!Info.empty() && "bit out of sync with hash table");
1198   return Info.lookup(KindID);
1199 }
1200 
1201 MDNode *Value::getMetadata(StringRef Kind) const {
1202   if (!hasMetadata())
1203     return nullptr;
1204   const auto &Info = getContext().pImpl->ValueMetadata[this];
1205   assert(!Info.empty() && "bit out of sync with hash table");
1206   return Info.lookup(getContext().getMDKindID(Kind));
1207 }
1208 
1209 void Value::getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const {
1210   if (hasMetadata())
1211     getContext().pImpl->ValueMetadata[this].get(KindID, MDs);
1212 }
1213 
1214 void Value::getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const {
1215   if (hasMetadata())
1216     getMetadata(getContext().getMDKindID(Kind), MDs);
1217 }
1218 
1219 void Value::getAllMetadata(
1220     SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
1221   if (hasMetadata()) {
1222     assert(getContext().pImpl->ValueMetadata.count(this) &&
1223            "bit out of sync with hash table");
1224     const auto &Info = getContext().pImpl->ValueMetadata.find(this)->second;
1225     assert(!Info.empty() && "Shouldn't have called this");
1226     Info.getAll(MDs);
1227   }
1228 }
1229 
1230 void Value::setMetadata(unsigned KindID, MDNode *Node) {
1231   assert(isa<Instruction>(this) || isa<GlobalObject>(this));
1232 
1233   // Handle the case when we're adding/updating metadata on a value.
1234   if (Node) {
1235     auto &Info = getContext().pImpl->ValueMetadata[this];
1236     assert(!Info.empty() == HasMetadata && "bit out of sync with hash table");
1237     if (Info.empty())
1238       HasMetadata = true;
1239     Info.set(KindID, Node);
1240     return;
1241   }
1242 
1243   // Otherwise, we're removing metadata from an instruction.
1244   assert((HasMetadata == (getContext().pImpl->ValueMetadata.count(this) > 0)) &&
1245          "bit out of sync with hash table");
1246   if (!HasMetadata)
1247     return; // Nothing to remove!
1248   auto &Info = getContext().pImpl->ValueMetadata[this];
1249 
1250   // Handle removal of an existing value.
1251   Info.erase(KindID);
1252   if (!Info.empty())
1253     return;
1254   getContext().pImpl->ValueMetadata.erase(this);
1255   HasMetadata = false;
1256 }
1257 
1258 void Value::setMetadata(StringRef Kind, MDNode *Node) {
1259   if (!Node && !HasMetadata)
1260     return;
1261   setMetadata(getContext().getMDKindID(Kind), Node);
1262 }
1263 
1264 void Value::addMetadata(unsigned KindID, MDNode &MD) {
1265   assert(isa<Instruction>(this) || isa<GlobalObject>(this));
1266   if (!HasMetadata)
1267     HasMetadata = true;
1268   getContext().pImpl->ValueMetadata[this].insert(KindID, MD);
1269 }
1270 
1271 void Value::addMetadata(StringRef Kind, MDNode &MD) {
1272   addMetadata(getContext().getMDKindID(Kind), MD);
1273 }
1274 
1275 bool Value::eraseMetadata(unsigned KindID) {
1276   // Nothing to unset.
1277   if (!HasMetadata)
1278     return false;
1279 
1280   auto &Store = getContext().pImpl->ValueMetadata[this];
1281   bool Changed = Store.erase(KindID);
1282   if (Store.empty())
1283     clearMetadata();
1284   return Changed;
1285 }
1286 
1287 void Value::clearMetadata() {
1288   if (!HasMetadata)
1289     return;
1290   assert(getContext().pImpl->ValueMetadata.count(this) &&
1291          "bit out of sync with hash table");
1292   getContext().pImpl->ValueMetadata.erase(this);
1293   HasMetadata = false;
1294 }
1295 
1296 void Instruction::setMetadata(StringRef Kind, MDNode *Node) {
1297   if (!Node && !hasMetadata())
1298     return;
1299   setMetadata(getContext().getMDKindID(Kind), Node);
1300 }
1301 
1302 MDNode *Instruction::getMetadataImpl(StringRef Kind) const {
1303   return getMetadataImpl(getContext().getMDKindID(Kind));
1304 }
1305 
1306 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) {
1307   if (!Value::hasMetadata())
1308     return; // Nothing to remove!
1309 
1310   if (KnownIDs.empty()) {
1311     // Just drop our entry at the store.
1312     clearMetadata();
1313     return;
1314   }
1315 
1316   SmallSet<unsigned, 4> KnownSet;
1317   KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
1318 
1319   auto &MetadataStore = getContext().pImpl->ValueMetadata;
1320   auto &Info = MetadataStore[this];
1321   assert(!Info.empty() && "bit out of sync with hash table");
1322   Info.remove_if([&KnownSet](const MDAttachments::Attachment &I) {
1323     return !KnownSet.count(I.MDKind);
1324   });
1325 
1326   if (Info.empty()) {
1327     // Drop our entry at the store.
1328     clearMetadata();
1329   }
1330 }
1331 
1332 void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
1333   if (!Node && !hasMetadata())
1334     return;
1335 
1336   // Handle 'dbg' as a special case since it is not stored in the hash table.
1337   if (KindID == LLVMContext::MD_dbg) {
1338     DbgLoc = DebugLoc(Node);
1339     return;
1340   }
1341 
1342   Value::setMetadata(KindID, Node);
1343 }
1344 
1345 void Instruction::addAnnotationMetadata(StringRef Name) {
1346   MDBuilder MDB(getContext());
1347 
1348   auto *Existing = getMetadata(LLVMContext::MD_annotation);
1349   SmallVector<Metadata *, 4> Names;
1350   bool AppendName = true;
1351   if (Existing) {
1352     auto *Tuple = cast<MDTuple>(Existing);
1353     for (auto &N : Tuple->operands()) {
1354       if (cast<MDString>(N.get())->getString() == Name)
1355         AppendName = false;
1356       Names.push_back(N.get());
1357     }
1358   }
1359   if (AppendName)
1360     Names.push_back(MDB.createString(Name));
1361 
1362   MDNode *MD = MDTuple::get(getContext(), Names);
1363   setMetadata(LLVMContext::MD_annotation, MD);
1364 }
1365 
1366 AAMDNodes Instruction::getAAMetadata() const {
1367   AAMDNodes Result;
1368   Result.TBAA = getMetadata(LLVMContext::MD_tbaa);
1369   Result.TBAAStruct = getMetadata(LLVMContext::MD_tbaa_struct);
1370   Result.Scope = getMetadata(LLVMContext::MD_alias_scope);
1371   Result.NoAlias = getMetadata(LLVMContext::MD_noalias);
1372   return Result;
1373 }
1374 
1375 void Instruction::setAAMetadata(const AAMDNodes &N) {
1376   setMetadata(LLVMContext::MD_tbaa, N.TBAA);
1377   setMetadata(LLVMContext::MD_tbaa_struct, N.TBAAStruct);
1378   setMetadata(LLVMContext::MD_alias_scope, N.Scope);
1379   setMetadata(LLVMContext::MD_noalias, N.NoAlias);
1380 }
1381 
1382 MDNode *Instruction::getMetadataImpl(unsigned KindID) const {
1383   // Handle 'dbg' as a special case since it is not stored in the hash table.
1384   if (KindID == LLVMContext::MD_dbg)
1385     return DbgLoc.getAsMDNode();
1386   return Value::getMetadata(KindID);
1387 }
1388 
1389 void Instruction::getAllMetadataImpl(
1390     SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1391   Result.clear();
1392 
1393   // Handle 'dbg' as a special case since it is not stored in the hash table.
1394   if (DbgLoc) {
1395     Result.push_back(
1396         std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode()));
1397   }
1398   Value::getAllMetadata(Result);
1399 }
1400 
1401 bool Instruction::extractProfMetadata(uint64_t &TrueVal,
1402                                       uint64_t &FalseVal) const {
1403   assert(
1404       (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select) &&
1405       "Looking for branch weights on something besides branch or select");
1406 
1407   auto *ProfileData = getMetadata(LLVMContext::MD_prof);
1408   if (!ProfileData || ProfileData->getNumOperands() != 3)
1409     return false;
1410 
1411   auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
1412   if (!ProfDataName || !ProfDataName->getString().equals("branch_weights"))
1413     return false;
1414 
1415   auto *CITrue = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
1416   auto *CIFalse = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
1417   if (!CITrue || !CIFalse)
1418     return false;
1419 
1420   TrueVal = CITrue->getValue().getZExtValue();
1421   FalseVal = CIFalse->getValue().getZExtValue();
1422 
1423   return true;
1424 }
1425 
1426 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) const {
1427   assert(
1428       (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select ||
1429        getOpcode() == Instruction::Call || getOpcode() == Instruction::Invoke ||
1430        getOpcode() == Instruction::IndirectBr ||
1431        getOpcode() == Instruction::Switch) &&
1432       "Looking for branch weights on something besides branch");
1433 
1434   TotalVal = 0;
1435   auto *ProfileData = getMetadata(LLVMContext::MD_prof);
1436   if (!ProfileData)
1437     return false;
1438 
1439   auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
1440   if (!ProfDataName)
1441     return false;
1442 
1443   if (ProfDataName->getString().equals("branch_weights")) {
1444     TotalVal = 0;
1445     for (unsigned i = 1; i < ProfileData->getNumOperands(); i++) {
1446       auto *V = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i));
1447       if (!V)
1448         return false;
1449       TotalVal += V->getValue().getZExtValue();
1450     }
1451     return true;
1452   } else if (ProfDataName->getString().equals("VP") &&
1453              ProfileData->getNumOperands() > 3) {
1454     TotalVal = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2))
1455                    ->getValue()
1456                    .getZExtValue();
1457     return true;
1458   }
1459   return false;
1460 }
1461 
1462 void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) {
1463   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
1464   Other->getAllMetadata(MDs);
1465   for (auto &MD : MDs) {
1466     // We need to adjust the type metadata offset.
1467     if (Offset != 0 && MD.first == LLVMContext::MD_type) {
1468       auto *OffsetConst = cast<ConstantInt>(
1469           cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue());
1470       Metadata *TypeId = MD.second->getOperand(1);
1471       auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get(
1472           OffsetConst->getType(), OffsetConst->getValue() + Offset));
1473       addMetadata(LLVMContext::MD_type,
1474                   *MDNode::get(getContext(), {NewOffsetMD, TypeId}));
1475       continue;
1476     }
1477     // If an offset adjustment was specified we need to modify the DIExpression
1478     // to prepend the adjustment:
1479     // !DIExpression(DW_OP_plus, Offset, [original expr])
1480     auto *Attachment = MD.second;
1481     if (Offset != 0 && MD.first == LLVMContext::MD_dbg) {
1482       DIGlobalVariable *GV = dyn_cast<DIGlobalVariable>(Attachment);
1483       DIExpression *E = nullptr;
1484       if (!GV) {
1485         auto *GVE = cast<DIGlobalVariableExpression>(Attachment);
1486         GV = GVE->getVariable();
1487         E = GVE->getExpression();
1488       }
1489       ArrayRef<uint64_t> OrigElements;
1490       if (E)
1491         OrigElements = E->getElements();
1492       std::vector<uint64_t> Elements(OrigElements.size() + 2);
1493       Elements[0] = dwarf::DW_OP_plus_uconst;
1494       Elements[1] = Offset;
1495       llvm::copy(OrigElements, Elements.begin() + 2);
1496       E = DIExpression::get(getContext(), Elements);
1497       Attachment = DIGlobalVariableExpression::get(getContext(), GV, E);
1498     }
1499     addMetadata(MD.first, *Attachment);
1500   }
1501 }
1502 
1503 void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) {
1504   addMetadata(
1505       LLVMContext::MD_type,
1506       *MDTuple::get(getContext(),
1507                     {ConstantAsMetadata::get(ConstantInt::get(
1508                          Type::getInt64Ty(getContext()), Offset)),
1509                      TypeID}));
1510 }
1511 
1512 void GlobalObject::setVCallVisibilityMetadata(VCallVisibility Visibility) {
1513   // Remove any existing vcall visibility metadata first in case we are
1514   // updating.
1515   eraseMetadata(LLVMContext::MD_vcall_visibility);
1516   addMetadata(LLVMContext::MD_vcall_visibility,
1517               *MDNode::get(getContext(),
1518                            {ConstantAsMetadata::get(ConstantInt::get(
1519                                Type::getInt64Ty(getContext()), Visibility))}));
1520 }
1521 
1522 GlobalObject::VCallVisibility GlobalObject::getVCallVisibility() const {
1523   if (MDNode *MD = getMetadata(LLVMContext::MD_vcall_visibility)) {
1524     uint64_t Val = cast<ConstantInt>(
1525                        cast<ConstantAsMetadata>(MD->getOperand(0))->getValue())
1526                        ->getZExtValue();
1527     assert(Val <= 2 && "unknown vcall visibility!");
1528     return (VCallVisibility)Val;
1529   }
1530   return VCallVisibility::VCallVisibilityPublic;
1531 }
1532 
1533 void Function::setSubprogram(DISubprogram *SP) {
1534   setMetadata(LLVMContext::MD_dbg, SP);
1535 }
1536 
1537 DISubprogram *Function::getSubprogram() const {
1538   return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg));
1539 }
1540 
1541 bool Function::isDebugInfoForProfiling() const {
1542   if (DISubprogram *SP = getSubprogram()) {
1543     if (DICompileUnit *CU = SP->getUnit()) {
1544       return CU->getDebugInfoForProfiling();
1545     }
1546   }
1547   return false;
1548 }
1549 
1550 void GlobalVariable::addDebugInfo(DIGlobalVariableExpression *GV) {
1551   addMetadata(LLVMContext::MD_dbg, *GV);
1552 }
1553 
1554 void GlobalVariable::getDebugInfo(
1555     SmallVectorImpl<DIGlobalVariableExpression *> &GVs) const {
1556   SmallVector<MDNode *, 1> MDs;
1557   getMetadata(LLVMContext::MD_dbg, MDs);
1558   for (MDNode *MD : MDs)
1559     GVs.push_back(cast<DIGlobalVariableExpression>(MD));
1560 }
1561