1 //===- Metadata.cpp - Implement Metadata classes --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Metadata classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Metadata.h" 14 #include "LLVMContextImpl.h" 15 #include "MetadataImpl.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/Constant.h" 31 #include "llvm/IR/ConstantRange.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DebugInfoMetadata.h" 34 #include "llvm/IR/DebugLoc.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/GlobalObject.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/IR/ProfDataUtils.h" 43 #include "llvm/IR/TrackingMDRef.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/IR/Value.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/MathExtras.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstddef> 52 #include <cstdint> 53 #include <type_traits> 54 #include <utility> 55 #include <vector> 56 57 using namespace llvm; 58 59 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD) 60 : Value(Ty, MetadataAsValueVal), MD(MD) { 61 track(); 62 } 63 64 MetadataAsValue::~MetadataAsValue() { 65 getType()->getContext().pImpl->MetadataAsValues.erase(MD); 66 untrack(); 67 } 68 69 /// Canonicalize metadata arguments to intrinsics. 70 /// 71 /// To support bitcode upgrades (and assembly semantic sugar) for \a 72 /// MetadataAsValue, we need to canonicalize certain metadata. 73 /// 74 /// - nullptr is replaced by an empty MDNode. 75 /// - An MDNode with a single null operand is replaced by an empty MDNode. 76 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped. 77 /// 78 /// This maintains readability of bitcode from when metadata was a type of 79 /// value, and these bridges were unnecessary. 80 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context, 81 Metadata *MD) { 82 if (!MD) 83 // !{} 84 return MDNode::get(Context, std::nullopt); 85 86 // Return early if this isn't a single-operand MDNode. 87 auto *N = dyn_cast<MDNode>(MD); 88 if (!N || N->getNumOperands() != 1) 89 return MD; 90 91 if (!N->getOperand(0)) 92 // !{} 93 return MDNode::get(Context, std::nullopt); 94 95 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0))) 96 // Look through the MDNode. 97 return C; 98 99 return MD; 100 } 101 102 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) { 103 MD = canonicalizeMetadataForValue(Context, MD); 104 auto *&Entry = Context.pImpl->MetadataAsValues[MD]; 105 if (!Entry) 106 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD); 107 return Entry; 108 } 109 110 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context, 111 Metadata *MD) { 112 MD = canonicalizeMetadataForValue(Context, MD); 113 auto &Store = Context.pImpl->MetadataAsValues; 114 return Store.lookup(MD); 115 } 116 117 void MetadataAsValue::handleChangedMetadata(Metadata *MD) { 118 LLVMContext &Context = getContext(); 119 MD = canonicalizeMetadataForValue(Context, MD); 120 auto &Store = Context.pImpl->MetadataAsValues; 121 122 // Stop tracking the old metadata. 123 Store.erase(this->MD); 124 untrack(); 125 this->MD = nullptr; 126 127 // Start tracking MD, or RAUW if necessary. 128 auto *&Entry = Store[MD]; 129 if (Entry) { 130 replaceAllUsesWith(Entry); 131 delete this; 132 return; 133 } 134 135 this->MD = MD; 136 track(); 137 Entry = this; 138 } 139 140 void MetadataAsValue::track() { 141 if (MD) 142 MetadataTracking::track(&MD, *MD, *this); 143 } 144 145 void MetadataAsValue::untrack() { 146 if (MD) 147 MetadataTracking::untrack(MD); 148 } 149 150 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) { 151 assert(Ref && "Expected live reference"); 152 assert((Owner || *static_cast<Metadata **>(Ref) == &MD) && 153 "Reference without owner must be direct"); 154 if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) { 155 R->addRef(Ref, Owner); 156 return true; 157 } 158 if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) { 159 assert(!PH->Use && "Placeholders can only be used once"); 160 assert(!Owner && "Unexpected callback to owner"); 161 PH->Use = static_cast<Metadata **>(Ref); 162 return true; 163 } 164 return false; 165 } 166 167 void MetadataTracking::untrack(void *Ref, Metadata &MD) { 168 assert(Ref && "Expected live reference"); 169 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) 170 R->dropRef(Ref); 171 else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) 172 PH->Use = nullptr; 173 } 174 175 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) { 176 assert(Ref && "Expected live reference"); 177 assert(New && "Expected live reference"); 178 assert(Ref != New && "Expected change"); 179 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) { 180 R->moveRef(Ref, New, MD); 181 return true; 182 } 183 assert(!isa<DistinctMDOperandPlaceholder>(MD) && 184 "Unexpected move of an MDOperand"); 185 assert(!isReplaceable(MD) && 186 "Expected un-replaceable metadata, since we didn't move a reference"); 187 return false; 188 } 189 190 bool MetadataTracking::isReplaceable(const Metadata &MD) { 191 return ReplaceableMetadataImpl::isReplaceable(MD); 192 } 193 194 SmallVector<Metadata *> ReplaceableMetadataImpl::getAllArgListUsers() { 195 SmallVector<std::pair<OwnerTy, uint64_t> *> MDUsersWithID; 196 for (auto Pair : UseMap) { 197 OwnerTy Owner = Pair.second.first; 198 if (!isa<Metadata *>(Owner)) 199 continue; 200 Metadata *OwnerMD = cast<Metadata *>(Owner); 201 if (OwnerMD->getMetadataID() == Metadata::DIArgListKind) 202 MDUsersWithID.push_back(&UseMap[Pair.first]); 203 } 204 llvm::sort(MDUsersWithID, [](auto UserA, auto UserB) { 205 return UserA->second < UserB->second; 206 }); 207 SmallVector<Metadata *> MDUsers; 208 for (auto *UserWithID : MDUsersWithID) 209 MDUsers.push_back(cast<Metadata *>(UserWithID->first)); 210 return MDUsers; 211 } 212 213 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) { 214 bool WasInserted = 215 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex))) 216 .second; 217 (void)WasInserted; 218 assert(WasInserted && "Expected to add a reference"); 219 220 ++NextIndex; 221 assert(NextIndex != 0 && "Unexpected overflow"); 222 } 223 224 void ReplaceableMetadataImpl::dropRef(void *Ref) { 225 bool WasErased = UseMap.erase(Ref); 226 (void)WasErased; 227 assert(WasErased && "Expected to drop a reference"); 228 } 229 230 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New, 231 const Metadata &MD) { 232 auto I = UseMap.find(Ref); 233 assert(I != UseMap.end() && "Expected to move a reference"); 234 auto OwnerAndIndex = I->second; 235 UseMap.erase(I); 236 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second; 237 (void)WasInserted; 238 assert(WasInserted && "Expected to add a reference"); 239 240 // Check that the references are direct if there's no owner. 241 (void)MD; 242 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) && 243 "Reference without owner must be direct"); 244 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) && 245 "Reference without owner must be direct"); 246 } 247 248 void ReplaceableMetadataImpl::SalvageDebugInfo(const Constant &C) { 249 if (!C.isUsedByMetadata()) { 250 return; 251 } 252 253 LLVMContext &Context = C.getType()->getContext(); 254 auto &Store = Context.pImpl->ValuesAsMetadata; 255 auto I = Store.find(&C); 256 ValueAsMetadata *MD = I->second; 257 using UseTy = 258 std::pair<void *, std::pair<MetadataTracking::OwnerTy, uint64_t>>; 259 // Copy out uses and update value of Constant used by debug info metadata with undef below 260 SmallVector<UseTy, 8> Uses(MD->UseMap.begin(), MD->UseMap.end()); 261 262 for (const auto &Pair : Uses) { 263 MetadataTracking::OwnerTy Owner = Pair.second.first; 264 if (!Owner) 265 continue; 266 if (!isa<Metadata *>(Owner)) 267 continue; 268 auto *OwnerMD = dyn_cast_if_present<MDNode>(cast<Metadata *>(Owner)); 269 if (!OwnerMD) 270 continue; 271 if (isa<DINode>(OwnerMD)) { 272 OwnerMD->handleChangedOperand( 273 Pair.first, ValueAsMetadata::get(UndefValue::get(C.getType()))); 274 } 275 } 276 } 277 278 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) { 279 if (UseMap.empty()) 280 return; 281 282 // Copy out uses since UseMap will get touched below. 283 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>; 284 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 285 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) { 286 return L.second.second < R.second.second; 287 }); 288 for (const auto &Pair : Uses) { 289 // Check that this Ref hasn't disappeared after RAUW (when updating a 290 // previous Ref). 291 if (!UseMap.count(Pair.first)) 292 continue; 293 294 OwnerTy Owner = Pair.second.first; 295 if (!Owner) { 296 // Update unowned tracking references directly. 297 Metadata *&Ref = *static_cast<Metadata **>(Pair.first); 298 Ref = MD; 299 if (MD) 300 MetadataTracking::track(Ref); 301 UseMap.erase(Pair.first); 302 continue; 303 } 304 305 // Check for MetadataAsValue. 306 if (isa<MetadataAsValue *>(Owner)) { 307 cast<MetadataAsValue *>(Owner)->handleChangedMetadata(MD); 308 continue; 309 } 310 311 // There's a Metadata owner -- dispatch. 312 Metadata *OwnerMD = cast<Metadata *>(Owner); 313 switch (OwnerMD->getMetadataID()) { 314 #define HANDLE_METADATA_LEAF(CLASS) \ 315 case Metadata::CLASS##Kind: \ 316 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \ 317 continue; 318 #include "llvm/IR/Metadata.def" 319 default: 320 llvm_unreachable("Invalid metadata subclass"); 321 } 322 } 323 assert(UseMap.empty() && "Expected all uses to be replaced"); 324 } 325 326 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) { 327 if (UseMap.empty()) 328 return; 329 330 if (!ResolveUsers) { 331 UseMap.clear(); 332 return; 333 } 334 335 // Copy out uses since UseMap could get touched below. 336 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>; 337 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 338 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) { 339 return L.second.second < R.second.second; 340 }); 341 UseMap.clear(); 342 for (const auto &Pair : Uses) { 343 auto Owner = Pair.second.first; 344 if (!Owner) 345 continue; 346 if (isa<MetadataAsValue *>(Owner)) 347 continue; 348 349 // Resolve MDNodes that point at this. 350 auto *OwnerMD = dyn_cast_if_present<MDNode>(cast<Metadata *>(Owner)); 351 if (!OwnerMD) 352 continue; 353 if (OwnerMD->isResolved()) 354 continue; 355 OwnerMD->decrementUnresolvedOperandCount(); 356 } 357 } 358 359 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) { 360 if (auto *N = dyn_cast<MDNode>(&MD)) 361 return N->isResolved() ? nullptr : N->Context.getOrCreateReplaceableUses(); 362 return dyn_cast<ValueAsMetadata>(&MD); 363 } 364 365 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) { 366 if (auto *N = dyn_cast<MDNode>(&MD)) 367 return N->isResolved() ? nullptr : N->Context.getReplaceableUses(); 368 return dyn_cast<ValueAsMetadata>(&MD); 369 } 370 371 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) { 372 if (auto *N = dyn_cast<MDNode>(&MD)) 373 return !N->isResolved(); 374 return isa<ValueAsMetadata>(&MD); 375 } 376 377 static DISubprogram *getLocalFunctionMetadata(Value *V) { 378 assert(V && "Expected value"); 379 if (auto *A = dyn_cast<Argument>(V)) { 380 if (auto *Fn = A->getParent()) 381 return Fn->getSubprogram(); 382 return nullptr; 383 } 384 385 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) { 386 if (auto *Fn = BB->getParent()) 387 return Fn->getSubprogram(); 388 return nullptr; 389 } 390 391 return nullptr; 392 } 393 394 ValueAsMetadata *ValueAsMetadata::get(Value *V) { 395 assert(V && "Unexpected null Value"); 396 397 auto &Context = V->getContext(); 398 auto *&Entry = Context.pImpl->ValuesAsMetadata[V]; 399 if (!Entry) { 400 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) && 401 "Expected constant or function-local value"); 402 assert(!V->IsUsedByMD && "Expected this to be the only metadata use"); 403 V->IsUsedByMD = true; 404 if (auto *C = dyn_cast<Constant>(V)) 405 Entry = new ConstantAsMetadata(C); 406 else 407 Entry = new LocalAsMetadata(V); 408 } 409 410 return Entry; 411 } 412 413 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) { 414 assert(V && "Unexpected null Value"); 415 return V->getContext().pImpl->ValuesAsMetadata.lookup(V); 416 } 417 418 void ValueAsMetadata::handleDeletion(Value *V) { 419 assert(V && "Expected valid value"); 420 421 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata; 422 auto I = Store.find(V); 423 if (I == Store.end()) 424 return; 425 426 // Remove old entry from the map. 427 ValueAsMetadata *MD = I->second; 428 assert(MD && "Expected valid metadata"); 429 assert(MD->getValue() == V && "Expected valid mapping"); 430 Store.erase(I); 431 432 // Delete the metadata. 433 MD->replaceAllUsesWith(nullptr); 434 delete MD; 435 } 436 437 void ValueAsMetadata::handleRAUW(Value *From, Value *To) { 438 assert(From && "Expected valid value"); 439 assert(To && "Expected valid value"); 440 assert(From != To && "Expected changed value"); 441 assert(From->getType() == To->getType() && "Unexpected type change"); 442 443 LLVMContext &Context = From->getType()->getContext(); 444 auto &Store = Context.pImpl->ValuesAsMetadata; 445 auto I = Store.find(From); 446 if (I == Store.end()) { 447 assert(!From->IsUsedByMD && "Expected From not to be used by metadata"); 448 return; 449 } 450 451 // Remove old entry from the map. 452 assert(From->IsUsedByMD && "Expected From to be used by metadata"); 453 From->IsUsedByMD = false; 454 ValueAsMetadata *MD = I->second; 455 assert(MD && "Expected valid metadata"); 456 assert(MD->getValue() == From && "Expected valid mapping"); 457 Store.erase(I); 458 459 if (isa<LocalAsMetadata>(MD)) { 460 if (auto *C = dyn_cast<Constant>(To)) { 461 // Local became a constant. 462 MD->replaceAllUsesWith(ConstantAsMetadata::get(C)); 463 delete MD; 464 return; 465 } 466 if (getLocalFunctionMetadata(From) && getLocalFunctionMetadata(To) && 467 getLocalFunctionMetadata(From) != getLocalFunctionMetadata(To)) { 468 // DISubprogram changed. 469 MD->replaceAllUsesWith(nullptr); 470 delete MD; 471 return; 472 } 473 } else if (!isa<Constant>(To)) { 474 // Changed to function-local value. 475 MD->replaceAllUsesWith(nullptr); 476 delete MD; 477 return; 478 } 479 480 auto *&Entry = Store[To]; 481 if (Entry) { 482 // The target already exists. 483 MD->replaceAllUsesWith(Entry); 484 delete MD; 485 return; 486 } 487 488 // Update MD in place (and update the map entry). 489 assert(!To->IsUsedByMD && "Expected this to be the only metadata use"); 490 To->IsUsedByMD = true; 491 MD->V = To; 492 Entry = MD; 493 } 494 495 //===----------------------------------------------------------------------===// 496 // MDString implementation. 497 // 498 499 MDString *MDString::get(LLVMContext &Context, StringRef Str) { 500 auto &Store = Context.pImpl->MDStringCache; 501 auto I = Store.try_emplace(Str); 502 auto &MapEntry = I.first->getValue(); 503 if (!I.second) 504 return &MapEntry; 505 MapEntry.Entry = &*I.first; 506 return &MapEntry; 507 } 508 509 StringRef MDString::getString() const { 510 assert(Entry && "Expected to find string map entry"); 511 return Entry->first(); 512 } 513 514 //===----------------------------------------------------------------------===// 515 // MDNode implementation. 516 // 517 518 // Assert that the MDNode types will not be unaligned by the objects 519 // prepended to them. 520 #define HANDLE_MDNODE_LEAF(CLASS) \ 521 static_assert( \ 522 alignof(uint64_t) >= alignof(CLASS), \ 523 "Alignment is insufficient after objects prepended to " #CLASS); 524 #include "llvm/IR/Metadata.def" 525 526 void *MDNode::operator new(size_t Size, size_t NumOps, StorageType Storage) { 527 // uint64_t is the most aligned type we need support (ensured by static_assert 528 // above) 529 size_t AllocSize = 530 alignTo(Header::getAllocSize(Storage, NumOps), alignof(uint64_t)); 531 char *Mem = reinterpret_cast<char *>(::operator new(AllocSize + Size)); 532 Header *H = new (Mem + AllocSize - sizeof(Header)) Header(NumOps, Storage); 533 return reinterpret_cast<void *>(H + 1); 534 } 535 536 void MDNode::operator delete(void *N) { 537 Header *H = reinterpret_cast<Header *>(N) - 1; 538 void *Mem = H->getAllocation(); 539 H->~Header(); 540 ::operator delete(Mem); 541 } 542 543 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage, 544 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2) 545 : Metadata(ID, Storage), Context(Context) { 546 unsigned Op = 0; 547 for (Metadata *MD : Ops1) 548 setOperand(Op++, MD); 549 for (Metadata *MD : Ops2) 550 setOperand(Op++, MD); 551 552 if (!isUniqued()) 553 return; 554 555 // Count the unresolved operands. If there are any, RAUW support will be 556 // added lazily on first reference. 557 countUnresolvedOperands(); 558 } 559 560 TempMDNode MDNode::clone() const { 561 switch (getMetadataID()) { 562 default: 563 llvm_unreachable("Invalid MDNode subclass"); 564 #define HANDLE_MDNODE_LEAF(CLASS) \ 565 case CLASS##Kind: \ 566 return cast<CLASS>(this)->cloneImpl(); 567 #include "llvm/IR/Metadata.def" 568 } 569 } 570 571 MDNode::Header::Header(size_t NumOps, StorageType Storage) { 572 IsLarge = isLarge(NumOps); 573 IsResizable = isResizable(Storage); 574 SmallSize = getSmallSize(NumOps, IsResizable, IsLarge); 575 if (IsLarge) { 576 SmallNumOps = 0; 577 new (getLargePtr()) LargeStorageVector(); 578 getLarge().resize(NumOps); 579 return; 580 } 581 SmallNumOps = NumOps; 582 MDOperand *O = reinterpret_cast<MDOperand *>(this) - SmallSize; 583 for (MDOperand *E = O + SmallSize; O != E;) 584 (void)new (O++) MDOperand(); 585 } 586 587 MDNode::Header::~Header() { 588 if (IsLarge) { 589 getLarge().~LargeStorageVector(); 590 return; 591 } 592 MDOperand *O = reinterpret_cast<MDOperand *>(this); 593 for (MDOperand *E = O - SmallSize; O != E; --O) 594 (void)(O - 1)->~MDOperand(); 595 } 596 597 void *MDNode::Header::getSmallPtr() { 598 static_assert(alignof(MDOperand) <= alignof(Header), 599 "MDOperand too strongly aligned"); 600 return reinterpret_cast<char *>(const_cast<Header *>(this)) - 601 sizeof(MDOperand) * SmallSize; 602 } 603 604 void MDNode::Header::resize(size_t NumOps) { 605 assert(IsResizable && "Node is not resizable"); 606 if (operands().size() == NumOps) 607 return; 608 609 if (IsLarge) 610 getLarge().resize(NumOps); 611 else if (NumOps <= SmallSize) 612 resizeSmall(NumOps); 613 else 614 resizeSmallToLarge(NumOps); 615 } 616 617 void MDNode::Header::resizeSmall(size_t NumOps) { 618 assert(!IsLarge && "Expected a small MDNode"); 619 assert(NumOps <= SmallSize && "NumOps too large for small resize"); 620 621 MutableArrayRef<MDOperand> ExistingOps = operands(); 622 assert(NumOps != ExistingOps.size() && "Expected a different size"); 623 624 int NumNew = (int)NumOps - (int)ExistingOps.size(); 625 MDOperand *O = ExistingOps.end(); 626 for (int I = 0, E = NumNew; I < E; ++I) 627 (O++)->reset(); 628 for (int I = 0, E = NumNew; I > E; --I) 629 (--O)->reset(); 630 SmallNumOps = NumOps; 631 assert(O == operands().end() && "Operands not (un)initialized until the end"); 632 } 633 634 void MDNode::Header::resizeSmallToLarge(size_t NumOps) { 635 assert(!IsLarge && "Expected a small MDNode"); 636 assert(NumOps > SmallSize && "Expected NumOps to be larger than allocation"); 637 LargeStorageVector NewOps; 638 NewOps.resize(NumOps); 639 llvm::move(operands(), NewOps.begin()); 640 resizeSmall(0); 641 new (getLargePtr()) LargeStorageVector(std::move(NewOps)); 642 IsLarge = true; 643 } 644 645 static bool isOperandUnresolved(Metadata *Op) { 646 if (auto *N = dyn_cast_or_null<MDNode>(Op)) 647 return !N->isResolved(); 648 return false; 649 } 650 651 void MDNode::countUnresolvedOperands() { 652 assert(getNumUnresolved() == 0 && "Expected unresolved ops to be uncounted"); 653 assert(isUniqued() && "Expected this to be uniqued"); 654 setNumUnresolved(count_if(operands(), isOperandUnresolved)); 655 } 656 657 void MDNode::makeUniqued() { 658 assert(isTemporary() && "Expected this to be temporary"); 659 assert(!isResolved() && "Expected this to be unresolved"); 660 661 // Enable uniquing callbacks. 662 for (auto &Op : mutable_operands()) 663 Op.reset(Op.get(), this); 664 665 // Make this 'uniqued'. 666 Storage = Uniqued; 667 countUnresolvedOperands(); 668 if (!getNumUnresolved()) { 669 dropReplaceableUses(); 670 assert(isResolved() && "Expected this to be resolved"); 671 } 672 673 assert(isUniqued() && "Expected this to be uniqued"); 674 } 675 676 void MDNode::makeDistinct() { 677 assert(isTemporary() && "Expected this to be temporary"); 678 assert(!isResolved() && "Expected this to be unresolved"); 679 680 // Drop RAUW support and store as a distinct node. 681 dropReplaceableUses(); 682 storeDistinctInContext(); 683 684 assert(isDistinct() && "Expected this to be distinct"); 685 assert(isResolved() && "Expected this to be resolved"); 686 } 687 688 void MDNode::resolve() { 689 assert(isUniqued() && "Expected this to be uniqued"); 690 assert(!isResolved() && "Expected this to be unresolved"); 691 692 setNumUnresolved(0); 693 dropReplaceableUses(); 694 695 assert(isResolved() && "Expected this to be resolved"); 696 } 697 698 void MDNode::dropReplaceableUses() { 699 assert(!getNumUnresolved() && "Unexpected unresolved operand"); 700 701 // Drop any RAUW support. 702 if (Context.hasReplaceableUses()) 703 Context.takeReplaceableUses()->resolveAllUses(); 704 } 705 706 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) { 707 assert(isUniqued() && "Expected this to be uniqued"); 708 assert(getNumUnresolved() != 0 && "Expected unresolved operands"); 709 710 // Check if an operand was resolved. 711 if (!isOperandUnresolved(Old)) { 712 if (isOperandUnresolved(New)) 713 // An operand was un-resolved! 714 setNumUnresolved(getNumUnresolved() + 1); 715 } else if (!isOperandUnresolved(New)) 716 decrementUnresolvedOperandCount(); 717 } 718 719 void MDNode::decrementUnresolvedOperandCount() { 720 assert(!isResolved() && "Expected this to be unresolved"); 721 if (isTemporary()) 722 return; 723 724 assert(isUniqued() && "Expected this to be uniqued"); 725 setNumUnresolved(getNumUnresolved() - 1); 726 if (getNumUnresolved()) 727 return; 728 729 // Last unresolved operand has just been resolved. 730 dropReplaceableUses(); 731 assert(isResolved() && "Expected this to become resolved"); 732 } 733 734 void MDNode::resolveCycles() { 735 if (isResolved()) 736 return; 737 738 // Resolve this node immediately. 739 resolve(); 740 741 // Resolve all operands. 742 for (const auto &Op : operands()) { 743 auto *N = dyn_cast_or_null<MDNode>(Op); 744 if (!N) 745 continue; 746 747 assert(!N->isTemporary() && 748 "Expected all forward declarations to be resolved"); 749 if (!N->isResolved()) 750 N->resolveCycles(); 751 } 752 } 753 754 static bool hasSelfReference(MDNode *N) { 755 return llvm::is_contained(N->operands(), N); 756 } 757 758 MDNode *MDNode::replaceWithPermanentImpl() { 759 switch (getMetadataID()) { 760 default: 761 // If this type isn't uniquable, replace with a distinct node. 762 return replaceWithDistinctImpl(); 763 764 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 765 case CLASS##Kind: \ 766 break; 767 #include "llvm/IR/Metadata.def" 768 } 769 770 // Even if this type is uniquable, self-references have to be distinct. 771 if (hasSelfReference(this)) 772 return replaceWithDistinctImpl(); 773 return replaceWithUniquedImpl(); 774 } 775 776 MDNode *MDNode::replaceWithUniquedImpl() { 777 // Try to uniquify in place. 778 MDNode *UniquedNode = uniquify(); 779 780 if (UniquedNode == this) { 781 makeUniqued(); 782 return this; 783 } 784 785 // Collision, so RAUW instead. 786 replaceAllUsesWith(UniquedNode); 787 deleteAsSubclass(); 788 return UniquedNode; 789 } 790 791 MDNode *MDNode::replaceWithDistinctImpl() { 792 makeDistinct(); 793 return this; 794 } 795 796 void MDTuple::recalculateHash() { 797 setHash(MDTupleInfo::KeyTy::calculateHash(this)); 798 } 799 800 void MDNode::dropAllReferences() { 801 for (unsigned I = 0, E = getNumOperands(); I != E; ++I) 802 setOperand(I, nullptr); 803 if (Context.hasReplaceableUses()) { 804 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false); 805 (void)Context.takeReplaceableUses(); 806 } 807 } 808 809 void MDNode::handleChangedOperand(void *Ref, Metadata *New) { 810 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin(); 811 assert(Op < getNumOperands() && "Expected valid operand"); 812 813 if (!isUniqued()) { 814 // This node is not uniqued. Just set the operand and be done with it. 815 setOperand(Op, New); 816 return; 817 } 818 819 // This node is uniqued. 820 eraseFromStore(); 821 822 Metadata *Old = getOperand(Op); 823 setOperand(Op, New); 824 825 // Drop uniquing for self-reference cycles and deleted constants. 826 if (New == this || (!New && Old && isa<ConstantAsMetadata>(Old))) { 827 if (!isResolved()) 828 resolve(); 829 storeDistinctInContext(); 830 return; 831 } 832 833 // Re-unique the node. 834 auto *Uniqued = uniquify(); 835 if (Uniqued == this) { 836 if (!isResolved()) 837 resolveAfterOperandChange(Old, New); 838 return; 839 } 840 841 // Collision. 842 if (!isResolved()) { 843 // Still unresolved, so RAUW. 844 // 845 // First, clear out all operands to prevent any recursion (similar to 846 // dropAllReferences(), but we still need the use-list). 847 for (unsigned O = 0, E = getNumOperands(); O != E; ++O) 848 setOperand(O, nullptr); 849 if (Context.hasReplaceableUses()) 850 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued); 851 deleteAsSubclass(); 852 return; 853 } 854 855 // Store in non-uniqued form if RAUW isn't possible. 856 storeDistinctInContext(); 857 } 858 859 void MDNode::deleteAsSubclass() { 860 switch (getMetadataID()) { 861 default: 862 llvm_unreachable("Invalid subclass of MDNode"); 863 #define HANDLE_MDNODE_LEAF(CLASS) \ 864 case CLASS##Kind: \ 865 delete cast<CLASS>(this); \ 866 break; 867 #include "llvm/IR/Metadata.def" 868 } 869 } 870 871 template <class T, class InfoT> 872 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) { 873 if (T *U = getUniqued(Store, N)) 874 return U; 875 876 Store.insert(N); 877 return N; 878 } 879 880 template <class NodeTy> struct MDNode::HasCachedHash { 881 using Yes = char[1]; 882 using No = char[2]; 883 template <class U, U Val> struct SFINAE {}; 884 885 template <class U> 886 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *); 887 template <class U> static No &check(...); 888 889 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes); 890 }; 891 892 MDNode *MDNode::uniquify() { 893 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node"); 894 895 // Try to insert into uniquing store. 896 switch (getMetadataID()) { 897 default: 898 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 899 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 900 case CLASS##Kind: { \ 901 CLASS *SubclassThis = cast<CLASS>(this); \ 902 std::integral_constant<bool, HasCachedHash<CLASS>::value> \ 903 ShouldRecalculateHash; \ 904 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \ 905 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \ 906 } 907 #include "llvm/IR/Metadata.def" 908 } 909 } 910 911 void MDNode::eraseFromStore() { 912 switch (getMetadataID()) { 913 default: 914 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 915 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 916 case CLASS##Kind: \ 917 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \ 918 break; 919 #include "llvm/IR/Metadata.def" 920 } 921 } 922 923 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs, 924 StorageType Storage, bool ShouldCreate) { 925 unsigned Hash = 0; 926 if (Storage == Uniqued) { 927 MDTupleInfo::KeyTy Key(MDs); 928 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key)) 929 return N; 930 if (!ShouldCreate) 931 return nullptr; 932 Hash = Key.getHash(); 933 } else { 934 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 935 } 936 937 return storeImpl(new (MDs.size(), Storage) 938 MDTuple(Context, Storage, Hash, MDs), 939 Storage, Context.pImpl->MDTuples); 940 } 941 942 void MDNode::deleteTemporary(MDNode *N) { 943 assert(N->isTemporary() && "Expected temporary node"); 944 N->replaceAllUsesWith(nullptr); 945 N->deleteAsSubclass(); 946 } 947 948 void MDNode::storeDistinctInContext() { 949 assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses"); 950 assert(!getNumUnresolved() && "Unexpected unresolved nodes"); 951 Storage = Distinct; 952 assert(isResolved() && "Expected this to be resolved"); 953 954 // Reset the hash. 955 switch (getMetadataID()) { 956 default: 957 llvm_unreachable("Invalid subclass of MDNode"); 958 #define HANDLE_MDNODE_LEAF(CLASS) \ 959 case CLASS##Kind: { \ 960 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \ 961 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \ 962 break; \ 963 } 964 #include "llvm/IR/Metadata.def" 965 } 966 967 getContext().pImpl->DistinctMDNodes.push_back(this); 968 } 969 970 void MDNode::replaceOperandWith(unsigned I, Metadata *New) { 971 if (getOperand(I) == New) 972 return; 973 974 if (!isUniqued()) { 975 setOperand(I, New); 976 return; 977 } 978 979 handleChangedOperand(mutable_begin() + I, New); 980 } 981 982 void MDNode::setOperand(unsigned I, Metadata *New) { 983 assert(I < getNumOperands()); 984 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr); 985 } 986 987 /// Get a node or a self-reference that looks like it. 988 /// 989 /// Special handling for finding self-references, for use by \a 990 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from 991 /// when self-referencing nodes were still uniqued. If the first operand has 992 /// the same operands as \c Ops, return the first operand instead. 993 static MDNode *getOrSelfReference(LLVMContext &Context, 994 ArrayRef<Metadata *> Ops) { 995 if (!Ops.empty()) 996 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0])) 997 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) { 998 for (unsigned I = 1, E = Ops.size(); I != E; ++I) 999 if (Ops[I] != N->getOperand(I)) 1000 return MDNode::get(Context, Ops); 1001 return N; 1002 } 1003 1004 return MDNode::get(Context, Ops); 1005 } 1006 1007 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) { 1008 if (!A) 1009 return B; 1010 if (!B) 1011 return A; 1012 1013 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 1014 MDs.insert(B->op_begin(), B->op_end()); 1015 1016 // FIXME: This preserves long-standing behaviour, but is it really the right 1017 // behaviour? Or was that an unintended side-effect of node uniquing? 1018 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 1019 } 1020 1021 MDNode *MDNode::intersect(MDNode *A, MDNode *B) { 1022 if (!A || !B) 1023 return nullptr; 1024 1025 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 1026 SmallPtrSet<Metadata *, 4> BSet(B->op_begin(), B->op_end()); 1027 MDs.remove_if([&](Metadata *MD) { return !BSet.count(MD); }); 1028 1029 // FIXME: This preserves long-standing behaviour, but is it really the right 1030 // behaviour? Or was that an unintended side-effect of node uniquing? 1031 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 1032 } 1033 1034 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) { 1035 if (!A || !B) 1036 return nullptr; 1037 1038 // Take the intersection of domains then union the scopes 1039 // within those domains 1040 SmallPtrSet<const MDNode *, 16> ADomains; 1041 SmallPtrSet<const MDNode *, 16> IntersectDomains; 1042 SmallSetVector<Metadata *, 4> MDs; 1043 for (const MDOperand &MDOp : A->operands()) 1044 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 1045 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 1046 ADomains.insert(Domain); 1047 1048 for (const MDOperand &MDOp : B->operands()) 1049 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 1050 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 1051 if (ADomains.contains(Domain)) { 1052 IntersectDomains.insert(Domain); 1053 MDs.insert(MDOp); 1054 } 1055 1056 for (const MDOperand &MDOp : A->operands()) 1057 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 1058 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 1059 if (IntersectDomains.contains(Domain)) 1060 MDs.insert(MDOp); 1061 1062 return MDs.empty() ? nullptr 1063 : getOrSelfReference(A->getContext(), MDs.getArrayRef()); 1064 } 1065 1066 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) { 1067 if (!A || !B) 1068 return nullptr; 1069 1070 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF(); 1071 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF(); 1072 if (AVal < BVal) 1073 return A; 1074 return B; 1075 } 1076 1077 // Call instructions with branch weights are only used in SamplePGO as 1078 // documented in 1079 /// https://llvm.org/docs/BranchWeightMetadata.html#callinst). 1080 MDNode *MDNode::mergeDirectCallProfMetadata(MDNode *A, MDNode *B, 1081 const Instruction *AInstr, 1082 const Instruction *BInstr) { 1083 assert(A && B && AInstr && BInstr && "Caller should guarantee"); 1084 auto &Ctx = AInstr->getContext(); 1085 MDBuilder MDHelper(Ctx); 1086 1087 // LLVM IR verifier verifies !prof metadata has at least 2 operands. 1088 assert(A->getNumOperands() >= 2 && B->getNumOperands() >= 2 && 1089 "!prof annotations should have no less than 2 operands"); 1090 MDString *AMDS = dyn_cast<MDString>(A->getOperand(0)); 1091 MDString *BMDS = dyn_cast<MDString>(B->getOperand(0)); 1092 // LLVM IR verfier verifies first operand is MDString. 1093 assert(AMDS != nullptr && BMDS != nullptr && 1094 "first operand should be a non-null MDString"); 1095 StringRef AProfName = AMDS->getString(); 1096 StringRef BProfName = BMDS->getString(); 1097 if (AProfName.equals("branch_weights") && 1098 BProfName.equals("branch_weights")) { 1099 ConstantInt *AInstrWeight = 1100 mdconst::dyn_extract<ConstantInt>(A->getOperand(1)); 1101 ConstantInt *BInstrWeight = 1102 mdconst::dyn_extract<ConstantInt>(B->getOperand(1)); 1103 assert(AInstrWeight && BInstrWeight && "verified by LLVM verifier"); 1104 return MDNode::get(Ctx, 1105 {MDHelper.createString("branch_weights"), 1106 MDHelper.createConstant(ConstantInt::get( 1107 Type::getInt64Ty(Ctx), 1108 SaturatingAdd(AInstrWeight->getZExtValue(), 1109 BInstrWeight->getZExtValue())))}); 1110 } 1111 return nullptr; 1112 } 1113 1114 // Pass in both instructions and nodes. Instruction information (e.g., 1115 // instruction type) helps interpret profiles and make implementation clearer. 1116 MDNode *MDNode::getMergedProfMetadata(MDNode *A, MDNode *B, 1117 const Instruction *AInstr, 1118 const Instruction *BInstr) { 1119 if (!(A && B)) { 1120 return A ? A : B; 1121 } 1122 1123 assert(AInstr->getMetadata(LLVMContext::MD_prof) == A && 1124 "Caller should guarantee"); 1125 assert(BInstr->getMetadata(LLVMContext::MD_prof) == B && 1126 "Caller should guarantee"); 1127 1128 const CallInst *ACall = dyn_cast<CallInst>(AInstr); 1129 const CallInst *BCall = dyn_cast<CallInst>(BInstr); 1130 1131 // Both ACall and BCall are direct callsites. 1132 if (ACall && BCall && ACall->getCalledFunction() && 1133 BCall->getCalledFunction()) 1134 return mergeDirectCallProfMetadata(A, B, AInstr, BInstr); 1135 1136 // The rest of the cases are not implemented but could be added 1137 // when there are use cases. 1138 return nullptr; 1139 } 1140 1141 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 1142 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 1143 } 1144 1145 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) { 1146 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B); 1147 } 1148 1149 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints, 1150 ConstantInt *Low, ConstantInt *High) { 1151 ConstantRange NewRange(Low->getValue(), High->getValue()); 1152 unsigned Size = EndPoints.size(); 1153 APInt LB = EndPoints[Size - 2]->getValue(); 1154 APInt LE = EndPoints[Size - 1]->getValue(); 1155 ConstantRange LastRange(LB, LE); 1156 if (canBeMerged(NewRange, LastRange)) { 1157 ConstantRange Union = LastRange.unionWith(NewRange); 1158 Type *Ty = High->getType(); 1159 EndPoints[Size - 2] = 1160 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower())); 1161 EndPoints[Size - 1] = 1162 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper())); 1163 return true; 1164 } 1165 return false; 1166 } 1167 1168 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints, 1169 ConstantInt *Low, ConstantInt *High) { 1170 if (!EndPoints.empty()) 1171 if (tryMergeRange(EndPoints, Low, High)) 1172 return; 1173 1174 EndPoints.push_back(Low); 1175 EndPoints.push_back(High); 1176 } 1177 1178 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) { 1179 // Given two ranges, we want to compute the union of the ranges. This 1180 // is slightly complicated by having to combine the intervals and merge 1181 // the ones that overlap. 1182 1183 if (!A || !B) 1184 return nullptr; 1185 1186 if (A == B) 1187 return A; 1188 1189 // First, walk both lists in order of the lower boundary of each interval. 1190 // At each step, try to merge the new interval to the last one we adedd. 1191 SmallVector<ConstantInt *, 4> EndPoints; 1192 int AI = 0; 1193 int BI = 0; 1194 int AN = A->getNumOperands() / 2; 1195 int BN = B->getNumOperands() / 2; 1196 while (AI < AN && BI < BN) { 1197 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI)); 1198 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI)); 1199 1200 if (ALow->getValue().slt(BLow->getValue())) { 1201 addRange(EndPoints, ALow, 1202 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 1203 ++AI; 1204 } else { 1205 addRange(EndPoints, BLow, 1206 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 1207 ++BI; 1208 } 1209 } 1210 while (AI < AN) { 1211 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)), 1212 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 1213 ++AI; 1214 } 1215 while (BI < BN) { 1216 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)), 1217 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 1218 ++BI; 1219 } 1220 1221 // If we have more than 2 ranges (4 endpoints) we have to try to merge 1222 // the last and first ones. 1223 unsigned Size = EndPoints.size(); 1224 if (Size > 4) { 1225 ConstantInt *FB = EndPoints[0]; 1226 ConstantInt *FE = EndPoints[1]; 1227 if (tryMergeRange(EndPoints, FB, FE)) { 1228 for (unsigned i = 0; i < Size - 2; ++i) { 1229 EndPoints[i] = EndPoints[i + 2]; 1230 } 1231 EndPoints.resize(Size - 2); 1232 } 1233 } 1234 1235 // If in the end we have a single range, it is possible that it is now the 1236 // full range. Just drop the metadata in that case. 1237 if (EndPoints.size() == 2) { 1238 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue()); 1239 if (Range.isFullSet()) 1240 return nullptr; 1241 } 1242 1243 SmallVector<Metadata *, 4> MDs; 1244 MDs.reserve(EndPoints.size()); 1245 for (auto *I : EndPoints) 1246 MDs.push_back(ConstantAsMetadata::get(I)); 1247 return MDNode::get(A->getContext(), MDs); 1248 } 1249 1250 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) { 1251 if (!A || !B) 1252 return nullptr; 1253 1254 ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0)); 1255 ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0)); 1256 if (AVal->getZExtValue() < BVal->getZExtValue()) 1257 return A; 1258 return B; 1259 } 1260 1261 //===----------------------------------------------------------------------===// 1262 // NamedMDNode implementation. 1263 // 1264 1265 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) { 1266 return *(SmallVector<TrackingMDRef, 4> *)Operands; 1267 } 1268 1269 NamedMDNode::NamedMDNode(const Twine &N) 1270 : Name(N.str()), Operands(new SmallVector<TrackingMDRef, 4>()) {} 1271 1272 NamedMDNode::~NamedMDNode() { 1273 dropAllReferences(); 1274 delete &getNMDOps(Operands); 1275 } 1276 1277 unsigned NamedMDNode::getNumOperands() const { 1278 return (unsigned)getNMDOps(Operands).size(); 1279 } 1280 1281 MDNode *NamedMDNode::getOperand(unsigned i) const { 1282 assert(i < getNumOperands() && "Invalid Operand number!"); 1283 auto *N = getNMDOps(Operands)[i].get(); 1284 return cast_or_null<MDNode>(N); 1285 } 1286 1287 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); } 1288 1289 void NamedMDNode::setOperand(unsigned I, MDNode *New) { 1290 assert(I < getNumOperands() && "Invalid operand number"); 1291 getNMDOps(Operands)[I].reset(New); 1292 } 1293 1294 void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); } 1295 1296 void NamedMDNode::clearOperands() { getNMDOps(Operands).clear(); } 1297 1298 StringRef NamedMDNode::getName() const { return StringRef(Name); } 1299 1300 //===----------------------------------------------------------------------===// 1301 // Instruction Metadata method implementations. 1302 // 1303 1304 MDNode *MDAttachments::lookup(unsigned ID) const { 1305 for (const auto &A : Attachments) 1306 if (A.MDKind == ID) 1307 return A.Node; 1308 return nullptr; 1309 } 1310 1311 void MDAttachments::get(unsigned ID, SmallVectorImpl<MDNode *> &Result) const { 1312 for (const auto &A : Attachments) 1313 if (A.MDKind == ID) 1314 Result.push_back(A.Node); 1315 } 1316 1317 void MDAttachments::getAll( 1318 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1319 for (const auto &A : Attachments) 1320 Result.emplace_back(A.MDKind, A.Node); 1321 1322 // Sort the resulting array so it is stable with respect to metadata IDs. We 1323 // need to preserve the original insertion order though. 1324 if (Result.size() > 1) 1325 llvm::stable_sort(Result, less_first()); 1326 } 1327 1328 void MDAttachments::set(unsigned ID, MDNode *MD) { 1329 erase(ID); 1330 if (MD) 1331 insert(ID, *MD); 1332 } 1333 1334 void MDAttachments::insert(unsigned ID, MDNode &MD) { 1335 Attachments.push_back({ID, TrackingMDNodeRef(&MD)}); 1336 } 1337 1338 bool MDAttachments::erase(unsigned ID) { 1339 if (empty()) 1340 return false; 1341 1342 // Common case is one value. 1343 if (Attachments.size() == 1 && Attachments.back().MDKind == ID) { 1344 Attachments.pop_back(); 1345 return true; 1346 } 1347 1348 auto OldSize = Attachments.size(); 1349 llvm::erase_if(Attachments, 1350 [ID](const Attachment &A) { return A.MDKind == ID; }); 1351 return OldSize != Attachments.size(); 1352 } 1353 1354 MDNode *Value::getMetadata(unsigned KindID) const { 1355 if (!hasMetadata()) 1356 return nullptr; 1357 const auto &Info = getContext().pImpl->ValueMetadata[this]; 1358 assert(!Info.empty() && "bit out of sync with hash table"); 1359 return Info.lookup(KindID); 1360 } 1361 1362 MDNode *Value::getMetadata(StringRef Kind) const { 1363 if (!hasMetadata()) 1364 return nullptr; 1365 const auto &Info = getContext().pImpl->ValueMetadata[this]; 1366 assert(!Info.empty() && "bit out of sync with hash table"); 1367 return Info.lookup(getContext().getMDKindID(Kind)); 1368 } 1369 1370 void Value::getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const { 1371 if (hasMetadata()) 1372 getContext().pImpl->ValueMetadata[this].get(KindID, MDs); 1373 } 1374 1375 void Value::getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const { 1376 if (hasMetadata()) 1377 getMetadata(getContext().getMDKindID(Kind), MDs); 1378 } 1379 1380 void Value::getAllMetadata( 1381 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { 1382 if (hasMetadata()) { 1383 assert(getContext().pImpl->ValueMetadata.count(this) && 1384 "bit out of sync with hash table"); 1385 const auto &Info = getContext().pImpl->ValueMetadata.find(this)->second; 1386 assert(!Info.empty() && "Shouldn't have called this"); 1387 Info.getAll(MDs); 1388 } 1389 } 1390 1391 void Value::setMetadata(unsigned KindID, MDNode *Node) { 1392 assert(isa<Instruction>(this) || isa<GlobalObject>(this)); 1393 1394 // Handle the case when we're adding/updating metadata on a value. 1395 if (Node) { 1396 auto &Info = getContext().pImpl->ValueMetadata[this]; 1397 assert(!Info.empty() == HasMetadata && "bit out of sync with hash table"); 1398 if (Info.empty()) 1399 HasMetadata = true; 1400 Info.set(KindID, Node); 1401 return; 1402 } 1403 1404 // Otherwise, we're removing metadata from an instruction. 1405 assert((HasMetadata == (getContext().pImpl->ValueMetadata.count(this) > 0)) && 1406 "bit out of sync with hash table"); 1407 if (!HasMetadata) 1408 return; // Nothing to remove! 1409 auto &Info = getContext().pImpl->ValueMetadata[this]; 1410 1411 // Handle removal of an existing value. 1412 Info.erase(KindID); 1413 if (!Info.empty()) 1414 return; 1415 getContext().pImpl->ValueMetadata.erase(this); 1416 HasMetadata = false; 1417 } 1418 1419 void Value::setMetadata(StringRef Kind, MDNode *Node) { 1420 if (!Node && !HasMetadata) 1421 return; 1422 setMetadata(getContext().getMDKindID(Kind), Node); 1423 } 1424 1425 void Value::addMetadata(unsigned KindID, MDNode &MD) { 1426 assert(isa<Instruction>(this) || isa<GlobalObject>(this)); 1427 if (!HasMetadata) 1428 HasMetadata = true; 1429 getContext().pImpl->ValueMetadata[this].insert(KindID, MD); 1430 } 1431 1432 void Value::addMetadata(StringRef Kind, MDNode &MD) { 1433 addMetadata(getContext().getMDKindID(Kind), MD); 1434 } 1435 1436 bool Value::eraseMetadata(unsigned KindID) { 1437 // Nothing to unset. 1438 if (!HasMetadata) 1439 return false; 1440 1441 auto &Store = getContext().pImpl->ValueMetadata[this]; 1442 bool Changed = Store.erase(KindID); 1443 if (Store.empty()) 1444 clearMetadata(); 1445 return Changed; 1446 } 1447 1448 void Value::clearMetadata() { 1449 if (!HasMetadata) 1450 return; 1451 assert(getContext().pImpl->ValueMetadata.count(this) && 1452 "bit out of sync with hash table"); 1453 getContext().pImpl->ValueMetadata.erase(this); 1454 HasMetadata = false; 1455 } 1456 1457 void Instruction::setMetadata(StringRef Kind, MDNode *Node) { 1458 if (!Node && !hasMetadata()) 1459 return; 1460 setMetadata(getContext().getMDKindID(Kind), Node); 1461 } 1462 1463 MDNode *Instruction::getMetadataImpl(StringRef Kind) const { 1464 return getMetadataImpl(getContext().getMDKindID(Kind)); 1465 } 1466 1467 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) { 1468 if (!Value::hasMetadata()) 1469 return; // Nothing to remove! 1470 1471 SmallSet<unsigned, 4> KnownSet; 1472 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1473 1474 // A DIAssignID attachment is debug metadata, don't drop it. 1475 KnownSet.insert(LLVMContext::MD_DIAssignID); 1476 1477 auto &MetadataStore = getContext().pImpl->ValueMetadata; 1478 auto &Info = MetadataStore[this]; 1479 assert(!Info.empty() && "bit out of sync with hash table"); 1480 Info.remove_if([&KnownSet](const MDAttachments::Attachment &I) { 1481 return !KnownSet.count(I.MDKind); 1482 }); 1483 1484 if (Info.empty()) { 1485 // Drop our entry at the store. 1486 clearMetadata(); 1487 } 1488 } 1489 1490 void Instruction::updateDIAssignIDMapping(DIAssignID *ID) { 1491 auto &IDToInstrs = getContext().pImpl->AssignmentIDToInstrs; 1492 if (const DIAssignID *CurrentID = 1493 cast_or_null<DIAssignID>(getMetadata(LLVMContext::MD_DIAssignID))) { 1494 // Nothing to do if the ID isn't changing. 1495 if (ID == CurrentID) 1496 return; 1497 1498 // Unmap this instruction from its current ID. 1499 auto InstrsIt = IDToInstrs.find(CurrentID); 1500 assert(InstrsIt != IDToInstrs.end() && 1501 "Expect existing attachment to be mapped"); 1502 1503 auto &InstVec = InstrsIt->second; 1504 auto *InstIt = std::find(InstVec.begin(), InstVec.end(), this); 1505 assert(InstIt != InstVec.end() && 1506 "Expect instruction to be mapped to attachment"); 1507 // The vector contains a ptr to this. If this is the only element in the 1508 // vector, remove the ID:vector entry, otherwise just remove the 1509 // instruction from the vector. 1510 if (InstVec.size() == 1) 1511 IDToInstrs.erase(InstrsIt); 1512 else 1513 InstVec.erase(InstIt); 1514 } 1515 1516 // Map this instruction to the new ID. 1517 if (ID) 1518 IDToInstrs[ID].push_back(this); 1519 } 1520 1521 void Instruction::setMetadata(unsigned KindID, MDNode *Node) { 1522 if (!Node && !hasMetadata()) 1523 return; 1524 1525 // Handle 'dbg' as a special case since it is not stored in the hash table. 1526 if (KindID == LLVMContext::MD_dbg) { 1527 DbgLoc = DebugLoc(Node); 1528 return; 1529 } 1530 1531 // Update DIAssignID to Instruction(s) mapping. 1532 if (KindID == LLVMContext::MD_DIAssignID) { 1533 // The DIAssignID tracking infrastructure doesn't support RAUWing temporary 1534 // nodes with DIAssignIDs. The cast_or_null below would also catch this, but 1535 // having a dedicated assert helps make this obvious. 1536 assert((!Node || !Node->isTemporary()) && 1537 "Temporary DIAssignIDs are invalid"); 1538 updateDIAssignIDMapping(cast_or_null<DIAssignID>(Node)); 1539 } 1540 1541 Value::setMetadata(KindID, Node); 1542 } 1543 1544 void Instruction::addAnnotationMetadata(SmallVector<StringRef> Annotations) { 1545 SmallSetVector<StringRef, 2> AnnotationsSet(Annotations.begin(), 1546 Annotations.end()); 1547 MDBuilder MDB(getContext()); 1548 1549 auto *Existing = getMetadata(LLVMContext::MD_annotation); 1550 SmallVector<Metadata *, 4> Names; 1551 if (Existing) { 1552 auto *Tuple = cast<MDTuple>(Existing); 1553 for (auto &N : Tuple->operands()) { 1554 if (isa<MDString>(N.get())) { 1555 Names.push_back(N); 1556 continue; 1557 } 1558 auto *MDAnnotationTuple = cast<MDTuple>(N); 1559 if (any_of(MDAnnotationTuple->operands(), [&AnnotationsSet](auto &Op) { 1560 return AnnotationsSet.contains(cast<MDString>(Op)->getString()); 1561 })) 1562 return; 1563 Names.push_back(N); 1564 } 1565 } 1566 1567 SmallVector<Metadata *> MDAnnotationStrings; 1568 for (StringRef Annotation : Annotations) 1569 MDAnnotationStrings.push_back(MDB.createString(Annotation)); 1570 MDNode *InfoTuple = MDTuple::get(getContext(), MDAnnotationStrings); 1571 Names.push_back(InfoTuple); 1572 MDNode *MD = MDTuple::get(getContext(), Names); 1573 setMetadata(LLVMContext::MD_annotation, MD); 1574 } 1575 1576 void Instruction::addAnnotationMetadata(StringRef Name) { 1577 MDBuilder MDB(getContext()); 1578 1579 auto *Existing = getMetadata(LLVMContext::MD_annotation); 1580 SmallVector<Metadata *, 4> Names; 1581 if (Existing) { 1582 auto *Tuple = cast<MDTuple>(Existing); 1583 for (auto &N : Tuple->operands()) { 1584 if (isa<MDString>(N.get()) && 1585 cast<MDString>(N.get())->getString() == Name) 1586 return; 1587 Names.push_back(N.get()); 1588 } 1589 } 1590 1591 Names.push_back(MDB.createString(Name)); 1592 MDNode *MD = MDTuple::get(getContext(), Names); 1593 setMetadata(LLVMContext::MD_annotation, MD); 1594 } 1595 1596 AAMDNodes Instruction::getAAMetadata() const { 1597 AAMDNodes Result; 1598 // Not using Instruction::hasMetadata() because we're not interested in 1599 // DebugInfoMetadata. 1600 if (Value::hasMetadata()) { 1601 const auto &Info = getContext().pImpl->ValueMetadata[this]; 1602 Result.TBAA = Info.lookup(LLVMContext::MD_tbaa); 1603 Result.TBAAStruct = Info.lookup(LLVMContext::MD_tbaa_struct); 1604 Result.Scope = Info.lookup(LLVMContext::MD_alias_scope); 1605 Result.NoAlias = Info.lookup(LLVMContext::MD_noalias); 1606 } 1607 return Result; 1608 } 1609 1610 void Instruction::setAAMetadata(const AAMDNodes &N) { 1611 setMetadata(LLVMContext::MD_tbaa, N.TBAA); 1612 setMetadata(LLVMContext::MD_tbaa_struct, N.TBAAStruct); 1613 setMetadata(LLVMContext::MD_alias_scope, N.Scope); 1614 setMetadata(LLVMContext::MD_noalias, N.NoAlias); 1615 } 1616 1617 void Instruction::setNoSanitizeMetadata() { 1618 setMetadata(llvm::LLVMContext::MD_nosanitize, 1619 llvm::MDNode::get(getContext(), std::nullopt)); 1620 } 1621 1622 MDNode *Instruction::getMetadataImpl(unsigned KindID) const { 1623 // Handle 'dbg' as a special case since it is not stored in the hash table. 1624 if (KindID == LLVMContext::MD_dbg) 1625 return DbgLoc.getAsMDNode(); 1626 return Value::getMetadata(KindID); 1627 } 1628 1629 void Instruction::getAllMetadataImpl( 1630 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1631 Result.clear(); 1632 1633 // Handle 'dbg' as a special case since it is not stored in the hash table. 1634 if (DbgLoc) { 1635 Result.push_back( 1636 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode())); 1637 } 1638 Value::getAllMetadata(Result); 1639 } 1640 1641 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) const { 1642 assert( 1643 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select || 1644 getOpcode() == Instruction::Call || getOpcode() == Instruction::Invoke || 1645 getOpcode() == Instruction::IndirectBr || 1646 getOpcode() == Instruction::Switch) && 1647 "Looking for branch weights on something besides branch"); 1648 1649 return ::extractProfTotalWeight(*this, TotalVal); 1650 } 1651 1652 void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) { 1653 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 1654 Other->getAllMetadata(MDs); 1655 for (auto &MD : MDs) { 1656 // We need to adjust the type metadata offset. 1657 if (Offset != 0 && MD.first == LLVMContext::MD_type) { 1658 auto *OffsetConst = cast<ConstantInt>( 1659 cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue()); 1660 Metadata *TypeId = MD.second->getOperand(1); 1661 auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get( 1662 OffsetConst->getType(), OffsetConst->getValue() + Offset)); 1663 addMetadata(LLVMContext::MD_type, 1664 *MDNode::get(getContext(), {NewOffsetMD, TypeId})); 1665 continue; 1666 } 1667 // If an offset adjustment was specified we need to modify the DIExpression 1668 // to prepend the adjustment: 1669 // !DIExpression(DW_OP_plus, Offset, [original expr]) 1670 auto *Attachment = MD.second; 1671 if (Offset != 0 && MD.first == LLVMContext::MD_dbg) { 1672 DIGlobalVariable *GV = dyn_cast<DIGlobalVariable>(Attachment); 1673 DIExpression *E = nullptr; 1674 if (!GV) { 1675 auto *GVE = cast<DIGlobalVariableExpression>(Attachment); 1676 GV = GVE->getVariable(); 1677 E = GVE->getExpression(); 1678 } 1679 ArrayRef<uint64_t> OrigElements; 1680 if (E) 1681 OrigElements = E->getElements(); 1682 std::vector<uint64_t> Elements(OrigElements.size() + 2); 1683 Elements[0] = dwarf::DW_OP_plus_uconst; 1684 Elements[1] = Offset; 1685 llvm::copy(OrigElements, Elements.begin() + 2); 1686 E = DIExpression::get(getContext(), Elements); 1687 Attachment = DIGlobalVariableExpression::get(getContext(), GV, E); 1688 } 1689 addMetadata(MD.first, *Attachment); 1690 } 1691 } 1692 1693 void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) { 1694 addMetadata( 1695 LLVMContext::MD_type, 1696 *MDTuple::get(getContext(), 1697 {ConstantAsMetadata::get(ConstantInt::get( 1698 Type::getInt64Ty(getContext()), Offset)), 1699 TypeID})); 1700 } 1701 1702 void GlobalObject::setVCallVisibilityMetadata(VCallVisibility Visibility) { 1703 // Remove any existing vcall visibility metadata first in case we are 1704 // updating. 1705 eraseMetadata(LLVMContext::MD_vcall_visibility); 1706 addMetadata(LLVMContext::MD_vcall_visibility, 1707 *MDNode::get(getContext(), 1708 {ConstantAsMetadata::get(ConstantInt::get( 1709 Type::getInt64Ty(getContext()), Visibility))})); 1710 } 1711 1712 GlobalObject::VCallVisibility GlobalObject::getVCallVisibility() const { 1713 if (MDNode *MD = getMetadata(LLVMContext::MD_vcall_visibility)) { 1714 uint64_t Val = cast<ConstantInt>( 1715 cast<ConstantAsMetadata>(MD->getOperand(0))->getValue()) 1716 ->getZExtValue(); 1717 assert(Val <= 2 && "unknown vcall visibility!"); 1718 return (VCallVisibility)Val; 1719 } 1720 return VCallVisibility::VCallVisibilityPublic; 1721 } 1722 1723 void Function::setSubprogram(DISubprogram *SP) { 1724 setMetadata(LLVMContext::MD_dbg, SP); 1725 } 1726 1727 DISubprogram *Function::getSubprogram() const { 1728 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg)); 1729 } 1730 1731 bool Function::shouldEmitDebugInfoForProfiling() const { 1732 if (DISubprogram *SP = getSubprogram()) { 1733 if (DICompileUnit *CU = SP->getUnit()) { 1734 return CU->getDebugInfoForProfiling(); 1735 } 1736 } 1737 return false; 1738 } 1739 1740 void GlobalVariable::addDebugInfo(DIGlobalVariableExpression *GV) { 1741 addMetadata(LLVMContext::MD_dbg, *GV); 1742 } 1743 1744 void GlobalVariable::getDebugInfo( 1745 SmallVectorImpl<DIGlobalVariableExpression *> &GVs) const { 1746 SmallVector<MDNode *, 1> MDs; 1747 getMetadata(LLVMContext::MD_dbg, MDs); 1748 for (MDNode *MD : MDs) 1749 GVs.push_back(cast<DIGlobalVariableExpression>(MD)); 1750 } 1751