1 //===- LLVMContextImpl.cpp - Implement LLVMContextImpl --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the opaque LLVMContextImpl. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLVMContextImpl.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/IR/Module.h" 16 #include "llvm/IR/OptBisect.h" 17 #include "llvm/IR/Type.h" 18 #include "llvm/Support/ManagedStatic.h" 19 #include <cassert> 20 #include <utility> 21 22 using namespace llvm; 23 24 LLVMContextImpl::LLVMContextImpl(LLVMContext &C) 25 : DiagHandler(std::make_unique<DiagnosticHandler>()), 26 VoidTy(C, Type::VoidTyID), 27 LabelTy(C, Type::LabelTyID), 28 HalfTy(C, Type::HalfTyID), 29 BFloatTy(C, Type::BFloatTyID), 30 FloatTy(C, Type::FloatTyID), 31 DoubleTy(C, Type::DoubleTyID), 32 MetadataTy(C, Type::MetadataTyID), 33 TokenTy(C, Type::TokenTyID), 34 X86_FP80Ty(C, Type::X86_FP80TyID), 35 FP128Ty(C, Type::FP128TyID), 36 PPC_FP128Ty(C, Type::PPC_FP128TyID), 37 X86_MMXTy(C, Type::X86_MMXTyID), 38 X86_AMXTy(C, Type::X86_AMXTyID), 39 Int1Ty(C, 1), 40 Int8Ty(C, 8), 41 Int16Ty(C, 16), 42 Int32Ty(C, 32), 43 Int64Ty(C, 64), 44 Int128Ty(C, 128) {} 45 46 LLVMContextImpl::~LLVMContextImpl() { 47 // NOTE: We need to delete the contents of OwnedModules, but Module's dtor 48 // will call LLVMContextImpl::removeModule, thus invalidating iterators into 49 // the container. Avoid iterators during this operation: 50 while (!OwnedModules.empty()) 51 delete *OwnedModules.begin(); 52 53 #ifndef NDEBUG 54 // Check for metadata references from leaked Values. 55 for (auto &Pair : ValueMetadata) 56 Pair.first->dump(); 57 assert(ValueMetadata.empty() && "Values with metadata have been leaked"); 58 #endif 59 60 // Drop references for MDNodes. Do this before Values get deleted to avoid 61 // unnecessary RAUW when nodes are still unresolved. 62 for (auto *I : DistinctMDNodes) 63 I->dropAllReferences(); 64 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 65 for (auto *I : CLASS##s) \ 66 I->dropAllReferences(); 67 #include "llvm/IR/Metadata.def" 68 69 // Also drop references that come from the Value bridges. 70 for (auto &Pair : ValuesAsMetadata) 71 Pair.second->dropUsers(); 72 for (auto &Pair : MetadataAsValues) 73 Pair.second->dropUse(); 74 75 // Destroy MDNodes. 76 for (MDNode *I : DistinctMDNodes) 77 I->deleteAsSubclass(); 78 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 79 for (CLASS * I : CLASS##s) \ 80 delete I; 81 #include "llvm/IR/Metadata.def" 82 83 // Free the constants. 84 for (auto *I : ExprConstants) 85 I->dropAllReferences(); 86 for (auto *I : ArrayConstants) 87 I->dropAllReferences(); 88 for (auto *I : StructConstants) 89 I->dropAllReferences(); 90 for (auto *I : VectorConstants) 91 I->dropAllReferences(); 92 ExprConstants.freeConstants(); 93 ArrayConstants.freeConstants(); 94 StructConstants.freeConstants(); 95 VectorConstants.freeConstants(); 96 InlineAsms.freeConstants(); 97 98 CAZConstants.clear(); 99 CPNConstants.clear(); 100 UVConstants.clear(); 101 PVConstants.clear(); 102 IntConstants.clear(); 103 FPConstants.clear(); 104 CDSConstants.clear(); 105 106 // Destroy attribute node lists. 107 for (FoldingSetIterator<AttributeSetNode> I = AttrsSetNodes.begin(), 108 E = AttrsSetNodes.end(); I != E; ) { 109 FoldingSetIterator<AttributeSetNode> Elem = I++; 110 delete &*Elem; 111 } 112 113 // Destroy MetadataAsValues. 114 { 115 SmallVector<MetadataAsValue *, 8> MDVs; 116 MDVs.reserve(MetadataAsValues.size()); 117 for (auto &Pair : MetadataAsValues) 118 MDVs.push_back(Pair.second); 119 MetadataAsValues.clear(); 120 for (auto *V : MDVs) 121 delete V; 122 } 123 124 // Destroy ValuesAsMetadata. 125 for (auto &Pair : ValuesAsMetadata) 126 delete Pair.second; 127 } 128 129 void LLVMContextImpl::dropTriviallyDeadConstantArrays() { 130 SmallSetVector<ConstantArray *, 4> WorkList; 131 132 // When ArrayConstants are of substantial size and only a few in them are 133 // dead, starting WorkList with all elements of ArrayConstants can be 134 // wasteful. Instead, starting WorkList with only elements that have empty 135 // uses. 136 for (ConstantArray *C : ArrayConstants) 137 if (C->use_empty()) 138 WorkList.insert(C); 139 140 while (!WorkList.empty()) { 141 ConstantArray *C = WorkList.pop_back_val(); 142 if (C->use_empty()) { 143 for (const Use &Op : C->operands()) { 144 if (auto *COp = dyn_cast<ConstantArray>(Op)) 145 WorkList.insert(COp); 146 } 147 C->destroyConstant(); 148 } 149 } 150 } 151 152 void Module::dropTriviallyDeadConstantArrays() { 153 Context.pImpl->dropTriviallyDeadConstantArrays(); 154 } 155 156 namespace llvm { 157 158 /// Make MDOperand transparent for hashing. 159 /// 160 /// This overload of an implementation detail of the hashing library makes 161 /// MDOperand hash to the same value as a \a Metadata pointer. 162 /// 163 /// Note that overloading \a hash_value() as follows: 164 /// 165 /// \code 166 /// size_t hash_value(const MDOperand &X) { return hash_value(X.get()); } 167 /// \endcode 168 /// 169 /// does not cause MDOperand to be transparent. In particular, a bare pointer 170 /// doesn't get hashed before it's combined, whereas \a MDOperand would. 171 static const Metadata *get_hashable_data(const MDOperand &X) { return X.get(); } 172 173 } // end namespace llvm 174 175 unsigned MDNodeOpsKey::calculateHash(MDNode *N, unsigned Offset) { 176 unsigned Hash = hash_combine_range(N->op_begin() + Offset, N->op_end()); 177 #ifndef NDEBUG 178 { 179 SmallVector<Metadata *, 8> MDs(drop_begin(N->operands(), Offset)); 180 unsigned RawHash = calculateHash(MDs); 181 assert(Hash == RawHash && 182 "Expected hash of MDOperand to equal hash of Metadata*"); 183 } 184 #endif 185 return Hash; 186 } 187 188 unsigned MDNodeOpsKey::calculateHash(ArrayRef<Metadata *> Ops) { 189 return hash_combine_range(Ops.begin(), Ops.end()); 190 } 191 192 StringMapEntry<uint32_t> *LLVMContextImpl::getOrInsertBundleTag(StringRef Tag) { 193 uint32_t NewIdx = BundleTagCache.size(); 194 return &*(BundleTagCache.insert(std::make_pair(Tag, NewIdx)).first); 195 } 196 197 void LLVMContextImpl::getOperandBundleTags(SmallVectorImpl<StringRef> &Tags) const { 198 Tags.resize(BundleTagCache.size()); 199 for (const auto &T : BundleTagCache) 200 Tags[T.second] = T.first(); 201 } 202 203 uint32_t LLVMContextImpl::getOperandBundleTagID(StringRef Tag) const { 204 auto I = BundleTagCache.find(Tag); 205 assert(I != BundleTagCache.end() && "Unknown tag!"); 206 return I->second; 207 } 208 209 SyncScope::ID LLVMContextImpl::getOrInsertSyncScopeID(StringRef SSN) { 210 auto NewSSID = SSC.size(); 211 assert(NewSSID < std::numeric_limits<SyncScope::ID>::max() && 212 "Hit the maximum number of synchronization scopes allowed!"); 213 return SSC.insert(std::make_pair(SSN, SyncScope::ID(NewSSID))).first->second; 214 } 215 216 void LLVMContextImpl::getSyncScopeNames( 217 SmallVectorImpl<StringRef> &SSNs) const { 218 SSNs.resize(SSC.size()); 219 for (const auto &SSE : SSC) 220 SSNs[SSE.second] = SSE.first(); 221 } 222 223 /// Gets the OptPassGate for this LLVMContextImpl, which defaults to the 224 /// singleton OptBisect if not explicitly set. 225 OptPassGate &LLVMContextImpl::getOptPassGate() const { 226 if (!OPG) 227 OPG = &(*OptBisector); 228 return *OPG; 229 } 230 231 void LLVMContextImpl::setOptPassGate(OptPassGate& OPG) { 232 this->OPG = &OPG; 233 } 234