xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Instructions.cpp (revision b4af4f93c682e445bf159f0d1ec90b636296c946)
1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Constant.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/AtomicOrdering.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/TypeSize.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstdint>
45 #include <vector>
46 
47 using namespace llvm;
48 
49 //===----------------------------------------------------------------------===//
50 //                            AllocaInst Class
51 //===----------------------------------------------------------------------===//
52 
53 Optional<uint64_t>
54 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
55   uint64_t Size = DL.getTypeAllocSizeInBits(getAllocatedType());
56   if (isArrayAllocation()) {
57     auto C = dyn_cast<ConstantInt>(getArraySize());
58     if (!C)
59       return None;
60     Size *= C->getZExtValue();
61   }
62   return Size;
63 }
64 
65 //===----------------------------------------------------------------------===//
66 //                            CallSite Class
67 //===----------------------------------------------------------------------===//
68 
69 User::op_iterator CallSite::getCallee() const {
70   return cast<CallBase>(getInstruction())->op_end() - 1;
71 }
72 
73 //===----------------------------------------------------------------------===//
74 //                              SelectInst Class
75 //===----------------------------------------------------------------------===//
76 
77 /// areInvalidOperands - Return a string if the specified operands are invalid
78 /// for a select operation, otherwise return null.
79 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
80   if (Op1->getType() != Op2->getType())
81     return "both values to select must have same type";
82 
83   if (Op1->getType()->isTokenTy())
84     return "select values cannot have token type";
85 
86   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
87     // Vector select.
88     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
89       return "vector select condition element type must be i1";
90     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
91     if (!ET)
92       return "selected values for vector select must be vectors";
93     if (ET->getNumElements() != VT->getNumElements())
94       return "vector select requires selected vectors to have "
95                    "the same vector length as select condition";
96   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
97     return "select condition must be i1 or <n x i1>";
98   }
99   return nullptr;
100 }
101 
102 //===----------------------------------------------------------------------===//
103 //                               PHINode Class
104 //===----------------------------------------------------------------------===//
105 
106 PHINode::PHINode(const PHINode &PN)
107     : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
108       ReservedSpace(PN.getNumOperands()) {
109   allocHungoffUses(PN.getNumOperands());
110   std::copy(PN.op_begin(), PN.op_end(), op_begin());
111   std::copy(PN.block_begin(), PN.block_end(), block_begin());
112   SubclassOptionalData = PN.SubclassOptionalData;
113 }
114 
115 // removeIncomingValue - Remove an incoming value.  This is useful if a
116 // predecessor basic block is deleted.
117 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
118   Value *Removed = getIncomingValue(Idx);
119 
120   // Move everything after this operand down.
121   //
122   // FIXME: we could just swap with the end of the list, then erase.  However,
123   // clients might not expect this to happen.  The code as it is thrashes the
124   // use/def lists, which is kinda lame.
125   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
126   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
127 
128   // Nuke the last value.
129   Op<-1>().set(nullptr);
130   setNumHungOffUseOperands(getNumOperands() - 1);
131 
132   // If the PHI node is dead, because it has zero entries, nuke it now.
133   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
134     // If anyone is using this PHI, make them use a dummy value instead...
135     replaceAllUsesWith(UndefValue::get(getType()));
136     eraseFromParent();
137   }
138   return Removed;
139 }
140 
141 /// growOperands - grow operands - This grows the operand list in response
142 /// to a push_back style of operation.  This grows the number of ops by 1.5
143 /// times.
144 ///
145 void PHINode::growOperands() {
146   unsigned e = getNumOperands();
147   unsigned NumOps = e + e / 2;
148   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
149 
150   ReservedSpace = NumOps;
151   growHungoffUses(ReservedSpace, /* IsPhi */ true);
152 }
153 
154 /// hasConstantValue - If the specified PHI node always merges together the same
155 /// value, return the value, otherwise return null.
156 Value *PHINode::hasConstantValue() const {
157   // Exploit the fact that phi nodes always have at least one entry.
158   Value *ConstantValue = getIncomingValue(0);
159   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
160     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
161       if (ConstantValue != this)
162         return nullptr; // Incoming values not all the same.
163        // The case where the first value is this PHI.
164       ConstantValue = getIncomingValue(i);
165     }
166   if (ConstantValue == this)
167     return UndefValue::get(getType());
168   return ConstantValue;
169 }
170 
171 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
172 /// together the same value, assuming that undefs result in the same value as
173 /// non-undefs.
174 /// Unlike \ref hasConstantValue, this does not return a value because the
175 /// unique non-undef incoming value need not dominate the PHI node.
176 bool PHINode::hasConstantOrUndefValue() const {
177   Value *ConstantValue = nullptr;
178   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
179     Value *Incoming = getIncomingValue(i);
180     if (Incoming != this && !isa<UndefValue>(Incoming)) {
181       if (ConstantValue && ConstantValue != Incoming)
182         return false;
183       ConstantValue = Incoming;
184     }
185   }
186   return true;
187 }
188 
189 //===----------------------------------------------------------------------===//
190 //                       LandingPadInst Implementation
191 //===----------------------------------------------------------------------===//
192 
193 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
194                                const Twine &NameStr, Instruction *InsertBefore)
195     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
196   init(NumReservedValues, NameStr);
197 }
198 
199 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
200                                const Twine &NameStr, BasicBlock *InsertAtEnd)
201     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
202   init(NumReservedValues, NameStr);
203 }
204 
205 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
206     : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
207                   LP.getNumOperands()),
208       ReservedSpace(LP.getNumOperands()) {
209   allocHungoffUses(LP.getNumOperands());
210   Use *OL = getOperandList();
211   const Use *InOL = LP.getOperandList();
212   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
213     OL[I] = InOL[I];
214 
215   setCleanup(LP.isCleanup());
216 }
217 
218 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
219                                        const Twine &NameStr,
220                                        Instruction *InsertBefore) {
221   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
222 }
223 
224 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
225                                        const Twine &NameStr,
226                                        BasicBlock *InsertAtEnd) {
227   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
228 }
229 
230 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
231   ReservedSpace = NumReservedValues;
232   setNumHungOffUseOperands(0);
233   allocHungoffUses(ReservedSpace);
234   setName(NameStr);
235   setCleanup(false);
236 }
237 
238 /// growOperands - grow operands - This grows the operand list in response to a
239 /// push_back style of operation. This grows the number of ops by 2 times.
240 void LandingPadInst::growOperands(unsigned Size) {
241   unsigned e = getNumOperands();
242   if (ReservedSpace >= e + Size) return;
243   ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
244   growHungoffUses(ReservedSpace);
245 }
246 
247 void LandingPadInst::addClause(Constant *Val) {
248   unsigned OpNo = getNumOperands();
249   growOperands(1);
250   assert(OpNo < ReservedSpace && "Growing didn't work!");
251   setNumHungOffUseOperands(getNumOperands() + 1);
252   getOperandList()[OpNo] = Val;
253 }
254 
255 //===----------------------------------------------------------------------===//
256 //                        CallBase Implementation
257 //===----------------------------------------------------------------------===//
258 
259 Function *CallBase::getCaller() { return getParent()->getParent(); }
260 
261 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
262   assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
263   return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
264 }
265 
266 bool CallBase::isIndirectCall() const {
267   const Value *V = getCalledValue();
268   if (isa<Function>(V) || isa<Constant>(V))
269     return false;
270   if (const CallInst *CI = dyn_cast<CallInst>(this))
271     if (CI->isInlineAsm())
272       return false;
273   return true;
274 }
275 
276 /// Tests if this call site must be tail call optimized. Only a CallInst can
277 /// be tail call optimized.
278 bool CallBase::isMustTailCall() const {
279   if (auto *CI = dyn_cast<CallInst>(this))
280     return CI->isMustTailCall();
281   return false;
282 }
283 
284 /// Tests if this call site is marked as a tail call.
285 bool CallBase::isTailCall() const {
286   if (auto *CI = dyn_cast<CallInst>(this))
287     return CI->isTailCall();
288   return false;
289 }
290 
291 Intrinsic::ID CallBase::getIntrinsicID() const {
292   if (auto *F = getCalledFunction())
293     return F->getIntrinsicID();
294   return Intrinsic::not_intrinsic;
295 }
296 
297 bool CallBase::isReturnNonNull() const {
298   if (hasRetAttr(Attribute::NonNull))
299     return true;
300 
301   if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
302            !NullPointerIsDefined(getCaller(),
303                                  getType()->getPointerAddressSpace()))
304     return true;
305 
306   return false;
307 }
308 
309 Value *CallBase::getReturnedArgOperand() const {
310   unsigned Index;
311 
312   if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
313     return getArgOperand(Index - AttributeList::FirstArgIndex);
314   if (const Function *F = getCalledFunction())
315     if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
316         Index)
317       return getArgOperand(Index - AttributeList::FirstArgIndex);
318 
319   return nullptr;
320 }
321 
322 bool CallBase::hasRetAttr(Attribute::AttrKind Kind) const {
323   if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind))
324     return true;
325 
326   // Look at the callee, if available.
327   if (const Function *F = getCalledFunction())
328     return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind);
329   return false;
330 }
331 
332 /// Determine whether the argument or parameter has the given attribute.
333 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
334   assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
335 
336   if (Attrs.hasParamAttribute(ArgNo, Kind))
337     return true;
338   if (const Function *F = getCalledFunction())
339     return F->getAttributes().hasParamAttribute(ArgNo, Kind);
340   return false;
341 }
342 
343 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
344   if (const Function *F = getCalledFunction())
345     return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
346   return false;
347 }
348 
349 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
350   if (const Function *F = getCalledFunction())
351     return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
352   return false;
353 }
354 
355 CallBase::op_iterator
356 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
357                                      const unsigned BeginIndex) {
358   auto It = op_begin() + BeginIndex;
359   for (auto &B : Bundles)
360     It = std::copy(B.input_begin(), B.input_end(), It);
361 
362   auto *ContextImpl = getContext().pImpl;
363   auto BI = Bundles.begin();
364   unsigned CurrentIndex = BeginIndex;
365 
366   for (auto &BOI : bundle_op_infos()) {
367     assert(BI != Bundles.end() && "Incorrect allocation?");
368 
369     BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
370     BOI.Begin = CurrentIndex;
371     BOI.End = CurrentIndex + BI->input_size();
372     CurrentIndex = BOI.End;
373     BI++;
374   }
375 
376   assert(BI == Bundles.end() && "Incorrect allocation?");
377 
378   return It;
379 }
380 
381 //===----------------------------------------------------------------------===//
382 //                        CallInst Implementation
383 //===----------------------------------------------------------------------===//
384 
385 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
386                     ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
387   this->FTy = FTy;
388   assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
389          "NumOperands not set up?");
390   setCalledOperand(Func);
391 
392 #ifndef NDEBUG
393   assert((Args.size() == FTy->getNumParams() ||
394           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
395          "Calling a function with bad signature!");
396 
397   for (unsigned i = 0; i != Args.size(); ++i)
398     assert((i >= FTy->getNumParams() ||
399             FTy->getParamType(i) == Args[i]->getType()) &&
400            "Calling a function with a bad signature!");
401 #endif
402 
403   llvm::copy(Args, op_begin());
404 
405   auto It = populateBundleOperandInfos(Bundles, Args.size());
406   (void)It;
407   assert(It + 1 == op_end() && "Should add up!");
408 
409   setName(NameStr);
410 }
411 
412 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
413   this->FTy = FTy;
414   assert(getNumOperands() == 1 && "NumOperands not set up?");
415   setCalledOperand(Func);
416 
417   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
418 
419   setName(NameStr);
420 }
421 
422 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
423                    Instruction *InsertBefore)
424     : CallBase(Ty->getReturnType(), Instruction::Call,
425                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
426   init(Ty, Func, Name);
427 }
428 
429 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
430                    BasicBlock *InsertAtEnd)
431     : CallBase(Ty->getReturnType(), Instruction::Call,
432                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
433   init(Ty, Func, Name);
434 }
435 
436 CallInst::CallInst(const CallInst &CI)
437     : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
438                OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
439                CI.getNumOperands()) {
440   setTailCallKind(CI.getTailCallKind());
441   setCallingConv(CI.getCallingConv());
442 
443   std::copy(CI.op_begin(), CI.op_end(), op_begin());
444   std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
445             bundle_op_info_begin());
446   SubclassOptionalData = CI.SubclassOptionalData;
447 }
448 
449 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
450                            Instruction *InsertPt) {
451   std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
452 
453   auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledValue(),
454                                  Args, OpB, CI->getName(), InsertPt);
455   NewCI->setTailCallKind(CI->getTailCallKind());
456   NewCI->setCallingConv(CI->getCallingConv());
457   NewCI->SubclassOptionalData = CI->SubclassOptionalData;
458   NewCI->setAttributes(CI->getAttributes());
459   NewCI->setDebugLoc(CI->getDebugLoc());
460   return NewCI;
461 }
462 
463 // Update profile weight for call instruction by scaling it using the ratio
464 // of S/T. The meaning of "branch_weights" meta data for call instruction is
465 // transfered to represent call count.
466 void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
467   auto *ProfileData = getMetadata(LLVMContext::MD_prof);
468   if (ProfileData == nullptr)
469     return;
470 
471   auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
472   if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
473                         !ProfDataName->getString().equals("VP")))
474     return;
475 
476   if (T == 0) {
477     LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
478                          "div by 0. Ignoring. Likely the function "
479                       << getParent()->getParent()->getName()
480                       << " has 0 entry count, and contains call instructions "
481                          "with non-zero prof info.");
482     return;
483   }
484 
485   MDBuilder MDB(getContext());
486   SmallVector<Metadata *, 3> Vals;
487   Vals.push_back(ProfileData->getOperand(0));
488   APInt APS(128, S), APT(128, T);
489   if (ProfDataName->getString().equals("branch_weights") &&
490       ProfileData->getNumOperands() > 0) {
491     // Using APInt::div may be expensive, but most cases should fit 64 bits.
492     APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
493                        ->getValue()
494                        .getZExtValue());
495     Val *= APS;
496     Vals.push_back(MDB.createConstant(ConstantInt::get(
497         Type::getInt64Ty(getContext()), Val.udiv(APT).getLimitedValue())));
498   } else if (ProfDataName->getString().equals("VP"))
499     for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
500       // The first value is the key of the value profile, which will not change.
501       Vals.push_back(ProfileData->getOperand(i));
502       // Using APInt::div may be expensive, but most cases should fit 64 bits.
503       APInt Val(128,
504                 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
505                     ->getValue()
506                     .getZExtValue());
507       Val *= APS;
508       Vals.push_back(MDB.createConstant(
509           ConstantInt::get(Type::getInt64Ty(getContext()),
510                            Val.udiv(APT).getLimitedValue())));
511     }
512   setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
513 }
514 
515 /// IsConstantOne - Return true only if val is constant int 1
516 static bool IsConstantOne(Value *val) {
517   assert(val && "IsConstantOne does not work with nullptr val");
518   const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
519   return CVal && CVal->isOne();
520 }
521 
522 static Instruction *createMalloc(Instruction *InsertBefore,
523                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
524                                  Type *AllocTy, Value *AllocSize,
525                                  Value *ArraySize,
526                                  ArrayRef<OperandBundleDef> OpB,
527                                  Function *MallocF, const Twine &Name) {
528   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
529          "createMalloc needs either InsertBefore or InsertAtEnd");
530 
531   // malloc(type) becomes:
532   //       bitcast (i8* malloc(typeSize)) to type*
533   // malloc(type, arraySize) becomes:
534   //       bitcast (i8* malloc(typeSize*arraySize)) to type*
535   if (!ArraySize)
536     ArraySize = ConstantInt::get(IntPtrTy, 1);
537   else if (ArraySize->getType() != IntPtrTy) {
538     if (InsertBefore)
539       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
540                                               "", InsertBefore);
541     else
542       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
543                                               "", InsertAtEnd);
544   }
545 
546   if (!IsConstantOne(ArraySize)) {
547     if (IsConstantOne(AllocSize)) {
548       AllocSize = ArraySize;         // Operand * 1 = Operand
549     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
550       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
551                                                      false /*ZExt*/);
552       // Malloc arg is constant product of type size and array size
553       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
554     } else {
555       // Multiply type size by the array size...
556       if (InsertBefore)
557         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
558                                               "mallocsize", InsertBefore);
559       else
560         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
561                                               "mallocsize", InsertAtEnd);
562     }
563   }
564 
565   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
566   // Create the call to Malloc.
567   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
568   Module *M = BB->getParent()->getParent();
569   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
570   FunctionCallee MallocFunc = MallocF;
571   if (!MallocFunc)
572     // prototype malloc as "void *malloc(size_t)"
573     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
574   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
575   CallInst *MCall = nullptr;
576   Instruction *Result = nullptr;
577   if (InsertBefore) {
578     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
579                              InsertBefore);
580     Result = MCall;
581     if (Result->getType() != AllocPtrType)
582       // Create a cast instruction to convert to the right type...
583       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
584   } else {
585     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
586     Result = MCall;
587     if (Result->getType() != AllocPtrType) {
588       InsertAtEnd->getInstList().push_back(MCall);
589       // Create a cast instruction to convert to the right type...
590       Result = new BitCastInst(MCall, AllocPtrType, Name);
591     }
592   }
593   MCall->setTailCall();
594   if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
595     MCall->setCallingConv(F->getCallingConv());
596     if (!F->returnDoesNotAlias())
597       F->setReturnDoesNotAlias();
598   }
599   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
600 
601   return Result;
602 }
603 
604 /// CreateMalloc - Generate the IR for a call to malloc:
605 /// 1. Compute the malloc call's argument as the specified type's size,
606 ///    possibly multiplied by the array size if the array size is not
607 ///    constant 1.
608 /// 2. Call malloc with that argument.
609 /// 3. Bitcast the result of the malloc call to the specified type.
610 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
611                                     Type *IntPtrTy, Type *AllocTy,
612                                     Value *AllocSize, Value *ArraySize,
613                                     Function *MallocF,
614                                     const Twine &Name) {
615   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
616                       ArraySize, None, MallocF, Name);
617 }
618 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
619                                     Type *IntPtrTy, Type *AllocTy,
620                                     Value *AllocSize, Value *ArraySize,
621                                     ArrayRef<OperandBundleDef> OpB,
622                                     Function *MallocF,
623                                     const Twine &Name) {
624   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
625                       ArraySize, OpB, MallocF, Name);
626 }
627 
628 /// CreateMalloc - Generate the IR for a call to malloc:
629 /// 1. Compute the malloc call's argument as the specified type's size,
630 ///    possibly multiplied by the array size if the array size is not
631 ///    constant 1.
632 /// 2. Call malloc with that argument.
633 /// 3. Bitcast the result of the malloc call to the specified type.
634 /// Note: This function does not add the bitcast to the basic block, that is the
635 /// responsibility of the caller.
636 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
637                                     Type *IntPtrTy, Type *AllocTy,
638                                     Value *AllocSize, Value *ArraySize,
639                                     Function *MallocF, const Twine &Name) {
640   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
641                       ArraySize, None, MallocF, Name);
642 }
643 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
644                                     Type *IntPtrTy, Type *AllocTy,
645                                     Value *AllocSize, Value *ArraySize,
646                                     ArrayRef<OperandBundleDef> OpB,
647                                     Function *MallocF, const Twine &Name) {
648   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
649                       ArraySize, OpB, MallocF, Name);
650 }
651 
652 static Instruction *createFree(Value *Source,
653                                ArrayRef<OperandBundleDef> Bundles,
654                                Instruction *InsertBefore,
655                                BasicBlock *InsertAtEnd) {
656   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
657          "createFree needs either InsertBefore or InsertAtEnd");
658   assert(Source->getType()->isPointerTy() &&
659          "Can not free something of nonpointer type!");
660 
661   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
662   Module *M = BB->getParent()->getParent();
663 
664   Type *VoidTy = Type::getVoidTy(M->getContext());
665   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
666   // prototype free as "void free(void*)"
667   FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
668   CallInst *Result = nullptr;
669   Value *PtrCast = Source;
670   if (InsertBefore) {
671     if (Source->getType() != IntPtrTy)
672       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
673     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
674   } else {
675     if (Source->getType() != IntPtrTy)
676       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
677     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
678   }
679   Result->setTailCall();
680   if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
681     Result->setCallingConv(F->getCallingConv());
682 
683   return Result;
684 }
685 
686 /// CreateFree - Generate the IR for a call to the builtin free function.
687 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
688   return createFree(Source, None, InsertBefore, nullptr);
689 }
690 Instruction *CallInst::CreateFree(Value *Source,
691                                   ArrayRef<OperandBundleDef> Bundles,
692                                   Instruction *InsertBefore) {
693   return createFree(Source, Bundles, InsertBefore, nullptr);
694 }
695 
696 /// CreateFree - Generate the IR for a call to the builtin free function.
697 /// Note: This function does not add the call to the basic block, that is the
698 /// responsibility of the caller.
699 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
700   Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
701   assert(FreeCall && "CreateFree did not create a CallInst");
702   return FreeCall;
703 }
704 Instruction *CallInst::CreateFree(Value *Source,
705                                   ArrayRef<OperandBundleDef> Bundles,
706                                   BasicBlock *InsertAtEnd) {
707   Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
708   assert(FreeCall && "CreateFree did not create a CallInst");
709   return FreeCall;
710 }
711 
712 //===----------------------------------------------------------------------===//
713 //                        InvokeInst Implementation
714 //===----------------------------------------------------------------------===//
715 
716 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
717                       BasicBlock *IfException, ArrayRef<Value *> Args,
718                       ArrayRef<OperandBundleDef> Bundles,
719                       const Twine &NameStr) {
720   this->FTy = FTy;
721 
722   assert((int)getNumOperands() ==
723              ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
724          "NumOperands not set up?");
725   setNormalDest(IfNormal);
726   setUnwindDest(IfException);
727   setCalledOperand(Fn);
728 
729 #ifndef NDEBUG
730   assert(((Args.size() == FTy->getNumParams()) ||
731           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
732          "Invoking a function with bad signature");
733 
734   for (unsigned i = 0, e = Args.size(); i != e; i++)
735     assert((i >= FTy->getNumParams() ||
736             FTy->getParamType(i) == Args[i]->getType()) &&
737            "Invoking a function with a bad signature!");
738 #endif
739 
740   llvm::copy(Args, op_begin());
741 
742   auto It = populateBundleOperandInfos(Bundles, Args.size());
743   (void)It;
744   assert(It + 3 == op_end() && "Should add up!");
745 
746   setName(NameStr);
747 }
748 
749 InvokeInst::InvokeInst(const InvokeInst &II)
750     : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
751                OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
752                II.getNumOperands()) {
753   setCallingConv(II.getCallingConv());
754   std::copy(II.op_begin(), II.op_end(), op_begin());
755   std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
756             bundle_op_info_begin());
757   SubclassOptionalData = II.SubclassOptionalData;
758 }
759 
760 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
761                                Instruction *InsertPt) {
762   std::vector<Value *> Args(II->arg_begin(), II->arg_end());
763 
764   auto *NewII = InvokeInst::Create(II->getFunctionType(), II->getCalledValue(),
765                                    II->getNormalDest(), II->getUnwindDest(),
766                                    Args, OpB, II->getName(), InsertPt);
767   NewII->setCallingConv(II->getCallingConv());
768   NewII->SubclassOptionalData = II->SubclassOptionalData;
769   NewII->setAttributes(II->getAttributes());
770   NewII->setDebugLoc(II->getDebugLoc());
771   return NewII;
772 }
773 
774 
775 LandingPadInst *InvokeInst::getLandingPadInst() const {
776   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
777 }
778 
779 //===----------------------------------------------------------------------===//
780 //                        CallBrInst Implementation
781 //===----------------------------------------------------------------------===//
782 
783 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
784                       ArrayRef<BasicBlock *> IndirectDests,
785                       ArrayRef<Value *> Args,
786                       ArrayRef<OperandBundleDef> Bundles,
787                       const Twine &NameStr) {
788   this->FTy = FTy;
789 
790   assert((int)getNumOperands() ==
791              ComputeNumOperands(Args.size(), IndirectDests.size(),
792                                 CountBundleInputs(Bundles)) &&
793          "NumOperands not set up?");
794   NumIndirectDests = IndirectDests.size();
795   setDefaultDest(Fallthrough);
796   for (unsigned i = 0; i != NumIndirectDests; ++i)
797     setIndirectDest(i, IndirectDests[i]);
798   setCalledOperand(Fn);
799 
800 #ifndef NDEBUG
801   assert(((Args.size() == FTy->getNumParams()) ||
802           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
803          "Calling a function with bad signature");
804 
805   for (unsigned i = 0, e = Args.size(); i != e; i++)
806     assert((i >= FTy->getNumParams() ||
807             FTy->getParamType(i) == Args[i]->getType()) &&
808            "Calling a function with a bad signature!");
809 #endif
810 
811   std::copy(Args.begin(), Args.end(), op_begin());
812 
813   auto It = populateBundleOperandInfos(Bundles, Args.size());
814   (void)It;
815   assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
816 
817   setName(NameStr);
818 }
819 
820 void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) {
821   assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr");
822   if (BasicBlock *OldBB = getIndirectDest(i)) {
823     BlockAddress *Old = BlockAddress::get(OldBB);
824     BlockAddress *New = BlockAddress::get(B);
825     for (unsigned ArgNo = 0, e = getNumArgOperands(); ArgNo != e; ++ArgNo)
826       if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old)
827         setArgOperand(ArgNo, New);
828   }
829 }
830 
831 CallBrInst::CallBrInst(const CallBrInst &CBI)
832     : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
833                OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
834                CBI.getNumOperands()) {
835   setCallingConv(CBI.getCallingConv());
836   std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
837   std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
838             bundle_op_info_begin());
839   SubclassOptionalData = CBI.SubclassOptionalData;
840   NumIndirectDests = CBI.NumIndirectDests;
841 }
842 
843 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
844                                Instruction *InsertPt) {
845   std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
846 
847   auto *NewCBI = CallBrInst::Create(CBI->getFunctionType(),
848                                     CBI->getCalledValue(),
849                                     CBI->getDefaultDest(),
850                                     CBI->getIndirectDests(),
851                                     Args, OpB, CBI->getName(), InsertPt);
852   NewCBI->setCallingConv(CBI->getCallingConv());
853   NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
854   NewCBI->setAttributes(CBI->getAttributes());
855   NewCBI->setDebugLoc(CBI->getDebugLoc());
856   NewCBI->NumIndirectDests = CBI->NumIndirectDests;
857   return NewCBI;
858 }
859 
860 //===----------------------------------------------------------------------===//
861 //                        ReturnInst Implementation
862 //===----------------------------------------------------------------------===//
863 
864 ReturnInst::ReturnInst(const ReturnInst &RI)
865     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
866                   OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
867                   RI.getNumOperands()) {
868   if (RI.getNumOperands())
869     Op<0>() = RI.Op<0>();
870   SubclassOptionalData = RI.SubclassOptionalData;
871 }
872 
873 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
874     : Instruction(Type::getVoidTy(C), Instruction::Ret,
875                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
876                   InsertBefore) {
877   if (retVal)
878     Op<0>() = retVal;
879 }
880 
881 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
882     : Instruction(Type::getVoidTy(C), Instruction::Ret,
883                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
884                   InsertAtEnd) {
885   if (retVal)
886     Op<0>() = retVal;
887 }
888 
889 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
890     : Instruction(Type::getVoidTy(Context), Instruction::Ret,
891                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
892 
893 //===----------------------------------------------------------------------===//
894 //                        ResumeInst Implementation
895 //===----------------------------------------------------------------------===//
896 
897 ResumeInst::ResumeInst(const ResumeInst &RI)
898     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
899                   OperandTraits<ResumeInst>::op_begin(this), 1) {
900   Op<0>() = RI.Op<0>();
901 }
902 
903 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
904     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
905                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
906   Op<0>() = Exn;
907 }
908 
909 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
910     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
911                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
912   Op<0>() = Exn;
913 }
914 
915 //===----------------------------------------------------------------------===//
916 //                        CleanupReturnInst Implementation
917 //===----------------------------------------------------------------------===//
918 
919 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
920     : Instruction(CRI.getType(), Instruction::CleanupRet,
921                   OperandTraits<CleanupReturnInst>::op_end(this) -
922                       CRI.getNumOperands(),
923                   CRI.getNumOperands()) {
924   setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
925   Op<0>() = CRI.Op<0>();
926   if (CRI.hasUnwindDest())
927     Op<1>() = CRI.Op<1>();
928 }
929 
930 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
931   if (UnwindBB)
932     setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
933 
934   Op<0>() = CleanupPad;
935   if (UnwindBB)
936     Op<1>() = UnwindBB;
937 }
938 
939 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
940                                      unsigned Values, Instruction *InsertBefore)
941     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
942                   Instruction::CleanupRet,
943                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
944                   Values, InsertBefore) {
945   init(CleanupPad, UnwindBB);
946 }
947 
948 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
949                                      unsigned Values, BasicBlock *InsertAtEnd)
950     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
951                   Instruction::CleanupRet,
952                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
953                   Values, InsertAtEnd) {
954   init(CleanupPad, UnwindBB);
955 }
956 
957 //===----------------------------------------------------------------------===//
958 //                        CatchReturnInst Implementation
959 //===----------------------------------------------------------------------===//
960 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
961   Op<0>() = CatchPad;
962   Op<1>() = BB;
963 }
964 
965 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
966     : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
967                   OperandTraits<CatchReturnInst>::op_begin(this), 2) {
968   Op<0>() = CRI.Op<0>();
969   Op<1>() = CRI.Op<1>();
970 }
971 
972 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
973                                  Instruction *InsertBefore)
974     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
975                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
976                   InsertBefore) {
977   init(CatchPad, BB);
978 }
979 
980 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
981                                  BasicBlock *InsertAtEnd)
982     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
983                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
984                   InsertAtEnd) {
985   init(CatchPad, BB);
986 }
987 
988 //===----------------------------------------------------------------------===//
989 //                       CatchSwitchInst Implementation
990 //===----------------------------------------------------------------------===//
991 
992 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
993                                  unsigned NumReservedValues,
994                                  const Twine &NameStr,
995                                  Instruction *InsertBefore)
996     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
997                   InsertBefore) {
998   if (UnwindDest)
999     ++NumReservedValues;
1000   init(ParentPad, UnwindDest, NumReservedValues + 1);
1001   setName(NameStr);
1002 }
1003 
1004 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1005                                  unsigned NumReservedValues,
1006                                  const Twine &NameStr, BasicBlock *InsertAtEnd)
1007     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1008                   InsertAtEnd) {
1009   if (UnwindDest)
1010     ++NumReservedValues;
1011   init(ParentPad, UnwindDest, NumReservedValues + 1);
1012   setName(NameStr);
1013 }
1014 
1015 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1016     : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1017                   CSI.getNumOperands()) {
1018   init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1019   setNumHungOffUseOperands(ReservedSpace);
1020   Use *OL = getOperandList();
1021   const Use *InOL = CSI.getOperandList();
1022   for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1023     OL[I] = InOL[I];
1024 }
1025 
1026 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1027                            unsigned NumReservedValues) {
1028   assert(ParentPad && NumReservedValues);
1029 
1030   ReservedSpace = NumReservedValues;
1031   setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1032   allocHungoffUses(ReservedSpace);
1033 
1034   Op<0>() = ParentPad;
1035   if (UnwindDest) {
1036     setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
1037     setUnwindDest(UnwindDest);
1038   }
1039 }
1040 
1041 /// growOperands - grow operands - This grows the operand list in response to a
1042 /// push_back style of operation. This grows the number of ops by 2 times.
1043 void CatchSwitchInst::growOperands(unsigned Size) {
1044   unsigned NumOperands = getNumOperands();
1045   assert(NumOperands >= 1);
1046   if (ReservedSpace >= NumOperands + Size)
1047     return;
1048   ReservedSpace = (NumOperands + Size / 2) * 2;
1049   growHungoffUses(ReservedSpace);
1050 }
1051 
1052 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1053   unsigned OpNo = getNumOperands();
1054   growOperands(1);
1055   assert(OpNo < ReservedSpace && "Growing didn't work!");
1056   setNumHungOffUseOperands(getNumOperands() + 1);
1057   getOperandList()[OpNo] = Handler;
1058 }
1059 
1060 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1061   // Move all subsequent handlers up one.
1062   Use *EndDst = op_end() - 1;
1063   for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1064     *CurDst = *(CurDst + 1);
1065   // Null out the last handler use.
1066   *EndDst = nullptr;
1067 
1068   setNumHungOffUseOperands(getNumOperands() - 1);
1069 }
1070 
1071 //===----------------------------------------------------------------------===//
1072 //                        FuncletPadInst Implementation
1073 //===----------------------------------------------------------------------===//
1074 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1075                           const Twine &NameStr) {
1076   assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1077   llvm::copy(Args, op_begin());
1078   setParentPad(ParentPad);
1079   setName(NameStr);
1080 }
1081 
1082 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1083     : Instruction(FPI.getType(), FPI.getOpcode(),
1084                   OperandTraits<FuncletPadInst>::op_end(this) -
1085                       FPI.getNumOperands(),
1086                   FPI.getNumOperands()) {
1087   std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1088   setParentPad(FPI.getParentPad());
1089 }
1090 
1091 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1092                                ArrayRef<Value *> Args, unsigned Values,
1093                                const Twine &NameStr, Instruction *InsertBefore)
1094     : Instruction(ParentPad->getType(), Op,
1095                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1096                   InsertBefore) {
1097   init(ParentPad, Args, NameStr);
1098 }
1099 
1100 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1101                                ArrayRef<Value *> Args, unsigned Values,
1102                                const Twine &NameStr, BasicBlock *InsertAtEnd)
1103     : Instruction(ParentPad->getType(), Op,
1104                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1105                   InsertAtEnd) {
1106   init(ParentPad, Args, NameStr);
1107 }
1108 
1109 //===----------------------------------------------------------------------===//
1110 //                      UnreachableInst Implementation
1111 //===----------------------------------------------------------------------===//
1112 
1113 UnreachableInst::UnreachableInst(LLVMContext &Context,
1114                                  Instruction *InsertBefore)
1115     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1116                   0, InsertBefore) {}
1117 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1118     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1119                   0, InsertAtEnd) {}
1120 
1121 //===----------------------------------------------------------------------===//
1122 //                        BranchInst Implementation
1123 //===----------------------------------------------------------------------===//
1124 
1125 void BranchInst::AssertOK() {
1126   if (isConditional())
1127     assert(getCondition()->getType()->isIntegerTy(1) &&
1128            "May only branch on boolean predicates!");
1129 }
1130 
1131 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1132     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1133                   OperandTraits<BranchInst>::op_end(this) - 1, 1,
1134                   InsertBefore) {
1135   assert(IfTrue && "Branch destination may not be null!");
1136   Op<-1>() = IfTrue;
1137 }
1138 
1139 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1140                        Instruction *InsertBefore)
1141     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1142                   OperandTraits<BranchInst>::op_end(this) - 3, 3,
1143                   InsertBefore) {
1144   Op<-1>() = IfTrue;
1145   Op<-2>() = IfFalse;
1146   Op<-3>() = Cond;
1147 #ifndef NDEBUG
1148   AssertOK();
1149 #endif
1150 }
1151 
1152 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1153     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1154                   OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1155   assert(IfTrue && "Branch destination may not be null!");
1156   Op<-1>() = IfTrue;
1157 }
1158 
1159 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1160                        BasicBlock *InsertAtEnd)
1161     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1162                   OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1163   Op<-1>() = IfTrue;
1164   Op<-2>() = IfFalse;
1165   Op<-3>() = Cond;
1166 #ifndef NDEBUG
1167   AssertOK();
1168 #endif
1169 }
1170 
1171 BranchInst::BranchInst(const BranchInst &BI)
1172     : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1173                   OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1174                   BI.getNumOperands()) {
1175   Op<-1>() = BI.Op<-1>();
1176   if (BI.getNumOperands() != 1) {
1177     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1178     Op<-3>() = BI.Op<-3>();
1179     Op<-2>() = BI.Op<-2>();
1180   }
1181   SubclassOptionalData = BI.SubclassOptionalData;
1182 }
1183 
1184 void BranchInst::swapSuccessors() {
1185   assert(isConditional() &&
1186          "Cannot swap successors of an unconditional branch");
1187   Op<-1>().swap(Op<-2>());
1188 
1189   // Update profile metadata if present and it matches our structural
1190   // expectations.
1191   swapProfMetadata();
1192 }
1193 
1194 //===----------------------------------------------------------------------===//
1195 //                        AllocaInst Implementation
1196 //===----------------------------------------------------------------------===//
1197 
1198 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1199   if (!Amt)
1200     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1201   else {
1202     assert(!isa<BasicBlock>(Amt) &&
1203            "Passed basic block into allocation size parameter! Use other ctor");
1204     assert(Amt->getType()->isIntegerTy() &&
1205            "Allocation array size is not an integer!");
1206   }
1207   return Amt;
1208 }
1209 
1210 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1211                        Instruction *InsertBefore)
1212   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1213 
1214 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1215                        BasicBlock *InsertAtEnd)
1216   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1217 
1218 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1219                        const Twine &Name, Instruction *InsertBefore)
1220     : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/None, Name, InsertBefore) {
1221 }
1222 
1223 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1224                        const Twine &Name, BasicBlock *InsertAtEnd)
1225     : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/None, Name, InsertAtEnd) {}
1226 
1227 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1228                        MaybeAlign Align, const Twine &Name,
1229                        Instruction *InsertBefore)
1230     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1231                        getAISize(Ty->getContext(), ArraySize), InsertBefore),
1232       AllocatedType(Ty) {
1233   setAlignment(MaybeAlign(Align));
1234   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1235   setName(Name);
1236 }
1237 
1238 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1239                        MaybeAlign Align, const Twine &Name,
1240                        BasicBlock *InsertAtEnd)
1241     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1242                        getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1243       AllocatedType(Ty) {
1244   setAlignment(Align);
1245   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1246   setName(Name);
1247 }
1248 
1249 void AllocaInst::setAlignment(MaybeAlign Align) {
1250   assert((!Align || *Align <= MaximumAlignment) &&
1251          "Alignment is greater than MaximumAlignment!");
1252   setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1253                              encode(Align));
1254   if (Align)
1255     assert(getAlignment() == Align->value() &&
1256            "Alignment representation error!");
1257   else
1258     assert(getAlignment() == 0 && "Alignment representation error!");
1259 }
1260 
1261 bool AllocaInst::isArrayAllocation() const {
1262   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1263     return !CI->isOne();
1264   return true;
1265 }
1266 
1267 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1268 /// function and is a constant size.  If so, the code generator will fold it
1269 /// into the prolog/epilog code, so it is basically free.
1270 bool AllocaInst::isStaticAlloca() const {
1271   // Must be constant size.
1272   if (!isa<ConstantInt>(getArraySize())) return false;
1273 
1274   // Must be in the entry block.
1275   const BasicBlock *Parent = getParent();
1276   return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1277 }
1278 
1279 //===----------------------------------------------------------------------===//
1280 //                           LoadInst Implementation
1281 //===----------------------------------------------------------------------===//
1282 
1283 void LoadInst::AssertOK() {
1284   assert(getOperand(0)->getType()->isPointerTy() &&
1285          "Ptr must have pointer type.");
1286   assert(!(isAtomic() && getAlignment() == 0) &&
1287          "Alignment required for atomic load");
1288 }
1289 
1290 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1291                    Instruction *InsertBef)
1292     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1293 
1294 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1295                    BasicBlock *InsertAE)
1296     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1297 
1298 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1299                    Instruction *InsertBef)
1300     : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/None, InsertBef) {}
1301 
1302 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1303                    BasicBlock *InsertAE)
1304     : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/None, InsertAE) {}
1305 
1306 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1307                    MaybeAlign Align, Instruction *InsertBef)
1308     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1309                SyncScope::System, InsertBef) {}
1310 
1311 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1312                    MaybeAlign Align, BasicBlock *InsertAE)
1313     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1314                SyncScope::System, InsertAE) {}
1315 
1316 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1317                    MaybeAlign Align, AtomicOrdering Order, SyncScope::ID SSID,
1318                    Instruction *InsertBef)
1319     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1320   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1321   setVolatile(isVolatile);
1322   setAlignment(MaybeAlign(Align));
1323   setAtomic(Order, SSID);
1324   AssertOK();
1325   setName(Name);
1326 }
1327 
1328 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1329                    MaybeAlign Align, AtomicOrdering Order, SyncScope::ID SSID,
1330                    BasicBlock *InsertAE)
1331     : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1332   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1333   setVolatile(isVolatile);
1334   setAlignment(Align);
1335   setAtomic(Order, SSID);
1336   AssertOK();
1337   setName(Name);
1338 }
1339 
1340 void LoadInst::setAlignment(MaybeAlign Align) {
1341   assert((!Align || *Align <= MaximumAlignment) &&
1342          "Alignment is greater than MaximumAlignment!");
1343   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1344                              (encode(Align) << 1));
1345   assert(getAlign() == Align && "Alignment representation error!");
1346 }
1347 
1348 //===----------------------------------------------------------------------===//
1349 //                           StoreInst Implementation
1350 //===----------------------------------------------------------------------===//
1351 
1352 void StoreInst::AssertOK() {
1353   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1354   assert(getOperand(1)->getType()->isPointerTy() &&
1355          "Ptr must have pointer type!");
1356   assert(getOperand(0)->getType() ==
1357                  cast<PointerType>(getOperand(1)->getType())->getElementType()
1358          && "Ptr must be a pointer to Val type!");
1359   assert(!(isAtomic() && getAlignment() == 0) &&
1360          "Alignment required for atomic store");
1361 }
1362 
1363 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1364     : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1365 
1366 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1367     : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1368 
1369 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1370                      Instruction *InsertBefore)
1371     : StoreInst(val, addr, isVolatile, /*Align=*/None, InsertBefore) {}
1372 
1373 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1374                      BasicBlock *InsertAtEnd)
1375     : StoreInst(val, addr, isVolatile, /*Align=*/None, InsertAtEnd) {}
1376 
1377 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, MaybeAlign Align,
1378                      Instruction *InsertBefore)
1379     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1380                 SyncScope::System, InsertBefore) {}
1381 
1382 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, MaybeAlign Align,
1383                      BasicBlock *InsertAtEnd)
1384     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1385                 SyncScope::System, InsertAtEnd) {}
1386 
1387 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, MaybeAlign Align,
1388                      AtomicOrdering Order, SyncScope::ID SSID,
1389                      Instruction *InsertBefore)
1390     : Instruction(Type::getVoidTy(val->getContext()), Store,
1391                   OperandTraits<StoreInst>::op_begin(this),
1392                   OperandTraits<StoreInst>::operands(this), InsertBefore) {
1393   Op<0>() = val;
1394   Op<1>() = addr;
1395   setVolatile(isVolatile);
1396   setAlignment(Align);
1397   setAtomic(Order, SSID);
1398   AssertOK();
1399 }
1400 
1401 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, MaybeAlign Align,
1402                      AtomicOrdering Order, SyncScope::ID SSID,
1403                      BasicBlock *InsertAtEnd)
1404     : Instruction(Type::getVoidTy(val->getContext()), Store,
1405                   OperandTraits<StoreInst>::op_begin(this),
1406                   OperandTraits<StoreInst>::operands(this), InsertAtEnd) {
1407   Op<0>() = val;
1408   Op<1>() = addr;
1409   setVolatile(isVolatile);
1410   setAlignment(Align);
1411   setAtomic(Order, SSID);
1412   AssertOK();
1413 }
1414 
1415 void StoreInst::setAlignment(MaybeAlign Alignment) {
1416   assert((!Alignment || *Alignment <= MaximumAlignment) &&
1417          "Alignment is greater than MaximumAlignment!");
1418   setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1419                              (encode(Alignment) << 1));
1420   assert(getAlign() == Alignment && "Alignment representation error!");
1421 }
1422 
1423 //===----------------------------------------------------------------------===//
1424 //                       AtomicCmpXchgInst Implementation
1425 //===----------------------------------------------------------------------===//
1426 
1427 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1428                              AtomicOrdering SuccessOrdering,
1429                              AtomicOrdering FailureOrdering,
1430                              SyncScope::ID SSID) {
1431   Op<0>() = Ptr;
1432   Op<1>() = Cmp;
1433   Op<2>() = NewVal;
1434   setSuccessOrdering(SuccessOrdering);
1435   setFailureOrdering(FailureOrdering);
1436   setSyncScopeID(SSID);
1437 
1438   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1439          "All operands must be non-null!");
1440   assert(getOperand(0)->getType()->isPointerTy() &&
1441          "Ptr must have pointer type!");
1442   assert(getOperand(1)->getType() ==
1443                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1444          && "Ptr must be a pointer to Cmp type!");
1445   assert(getOperand(2)->getType() ==
1446                  cast<PointerType>(getOperand(0)->getType())->getElementType()
1447          && "Ptr must be a pointer to NewVal type!");
1448   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
1449          "AtomicCmpXchg instructions must be atomic!");
1450   assert(FailureOrdering != AtomicOrdering::NotAtomic &&
1451          "AtomicCmpXchg instructions must be atomic!");
1452   assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
1453          "AtomicCmpXchg failure argument shall be no stronger than the success "
1454          "argument");
1455   assert(FailureOrdering != AtomicOrdering::Release &&
1456          FailureOrdering != AtomicOrdering::AcquireRelease &&
1457          "AtomicCmpXchg failure ordering cannot include release semantics");
1458 }
1459 
1460 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1461                                      AtomicOrdering SuccessOrdering,
1462                                      AtomicOrdering FailureOrdering,
1463                                      SyncScope::ID SSID,
1464                                      Instruction *InsertBefore)
1465     : Instruction(
1466           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1467           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1468           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1469   Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1470 }
1471 
1472 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1473                                      AtomicOrdering SuccessOrdering,
1474                                      AtomicOrdering FailureOrdering,
1475                                      SyncScope::ID SSID,
1476                                      BasicBlock *InsertAtEnd)
1477     : Instruction(
1478           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1479           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1480           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1481   Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1482 }
1483 
1484 //===----------------------------------------------------------------------===//
1485 //                       AtomicRMWInst Implementation
1486 //===----------------------------------------------------------------------===//
1487 
1488 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1489                          AtomicOrdering Ordering,
1490                          SyncScope::ID SSID) {
1491   Op<0>() = Ptr;
1492   Op<1>() = Val;
1493   setOperation(Operation);
1494   setOrdering(Ordering);
1495   setSyncScopeID(SSID);
1496 
1497   assert(getOperand(0) && getOperand(1) &&
1498          "All operands must be non-null!");
1499   assert(getOperand(0)->getType()->isPointerTy() &&
1500          "Ptr must have pointer type!");
1501   assert(getOperand(1)->getType() ==
1502          cast<PointerType>(getOperand(0)->getType())->getElementType()
1503          && "Ptr must be a pointer to Val type!");
1504   assert(Ordering != AtomicOrdering::NotAtomic &&
1505          "AtomicRMW instructions must be atomic!");
1506 }
1507 
1508 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1509                              AtomicOrdering Ordering,
1510                              SyncScope::ID SSID,
1511                              Instruction *InsertBefore)
1512   : Instruction(Val->getType(), AtomicRMW,
1513                 OperandTraits<AtomicRMWInst>::op_begin(this),
1514                 OperandTraits<AtomicRMWInst>::operands(this),
1515                 InsertBefore) {
1516   Init(Operation, Ptr, Val, Ordering, SSID);
1517 }
1518 
1519 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1520                              AtomicOrdering Ordering,
1521                              SyncScope::ID SSID,
1522                              BasicBlock *InsertAtEnd)
1523   : Instruction(Val->getType(), AtomicRMW,
1524                 OperandTraits<AtomicRMWInst>::op_begin(this),
1525                 OperandTraits<AtomicRMWInst>::operands(this),
1526                 InsertAtEnd) {
1527   Init(Operation, Ptr, Val, Ordering, SSID);
1528 }
1529 
1530 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1531   switch (Op) {
1532   case AtomicRMWInst::Xchg:
1533     return "xchg";
1534   case AtomicRMWInst::Add:
1535     return "add";
1536   case AtomicRMWInst::Sub:
1537     return "sub";
1538   case AtomicRMWInst::And:
1539     return "and";
1540   case AtomicRMWInst::Nand:
1541     return "nand";
1542   case AtomicRMWInst::Or:
1543     return "or";
1544   case AtomicRMWInst::Xor:
1545     return "xor";
1546   case AtomicRMWInst::Max:
1547     return "max";
1548   case AtomicRMWInst::Min:
1549     return "min";
1550   case AtomicRMWInst::UMax:
1551     return "umax";
1552   case AtomicRMWInst::UMin:
1553     return "umin";
1554   case AtomicRMWInst::FAdd:
1555     return "fadd";
1556   case AtomicRMWInst::FSub:
1557     return "fsub";
1558   case AtomicRMWInst::BAD_BINOP:
1559     return "<invalid operation>";
1560   }
1561 
1562   llvm_unreachable("invalid atomicrmw operation");
1563 }
1564 
1565 //===----------------------------------------------------------------------===//
1566 //                       FenceInst Implementation
1567 //===----------------------------------------------------------------------===//
1568 
1569 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1570                      SyncScope::ID SSID,
1571                      Instruction *InsertBefore)
1572   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1573   setOrdering(Ordering);
1574   setSyncScopeID(SSID);
1575 }
1576 
1577 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1578                      SyncScope::ID SSID,
1579                      BasicBlock *InsertAtEnd)
1580   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1581   setOrdering(Ordering);
1582   setSyncScopeID(SSID);
1583 }
1584 
1585 //===----------------------------------------------------------------------===//
1586 //                       GetElementPtrInst Implementation
1587 //===----------------------------------------------------------------------===//
1588 
1589 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1590                              const Twine &Name) {
1591   assert(getNumOperands() == 1 + IdxList.size() &&
1592          "NumOperands not initialized?");
1593   Op<0>() = Ptr;
1594   llvm::copy(IdxList, op_begin() + 1);
1595   setName(Name);
1596 }
1597 
1598 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1599     : Instruction(GEPI.getType(), GetElementPtr,
1600                   OperandTraits<GetElementPtrInst>::op_end(this) -
1601                       GEPI.getNumOperands(),
1602                   GEPI.getNumOperands()),
1603       SourceElementType(GEPI.SourceElementType),
1604       ResultElementType(GEPI.ResultElementType) {
1605   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1606   SubclassOptionalData = GEPI.SubclassOptionalData;
1607 }
1608 
1609 /// getIndexedType - Returns the type of the element that would be accessed with
1610 /// a gep instruction with the specified parameters.
1611 ///
1612 /// The Idxs pointer should point to a continuous piece of memory containing the
1613 /// indices, either as Value* or uint64_t.
1614 ///
1615 /// A null type is returned if the indices are invalid for the specified
1616 /// pointer type.
1617 ///
1618 template <typename IndexTy>
1619 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
1620   // Handle the special case of the empty set index set, which is always valid.
1621   if (IdxList.empty())
1622     return Agg;
1623 
1624   // If there is at least one index, the top level type must be sized, otherwise
1625   // it cannot be 'stepped over'.
1626   if (!Agg->isSized())
1627     return nullptr;
1628 
1629   unsigned CurIdx = 1;
1630   for (; CurIdx != IdxList.size(); ++CurIdx) {
1631     CompositeType *CT = dyn_cast<CompositeType>(Agg);
1632     if (!CT || CT->isPointerTy()) return nullptr;
1633     IndexTy Index = IdxList[CurIdx];
1634     if (!CT->indexValid(Index)) return nullptr;
1635     Agg = CT->getTypeAtIndex(Index);
1636   }
1637   return CurIdx == IdxList.size() ? Agg : nullptr;
1638 }
1639 
1640 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1641   return getIndexedTypeInternal(Ty, IdxList);
1642 }
1643 
1644 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1645                                         ArrayRef<Constant *> IdxList) {
1646   return getIndexedTypeInternal(Ty, IdxList);
1647 }
1648 
1649 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1650   return getIndexedTypeInternal(Ty, IdxList);
1651 }
1652 
1653 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1654 /// zeros.  If so, the result pointer and the first operand have the same
1655 /// value, just potentially different types.
1656 bool GetElementPtrInst::hasAllZeroIndices() const {
1657   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1658     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1659       if (!CI->isZero()) return false;
1660     } else {
1661       return false;
1662     }
1663   }
1664   return true;
1665 }
1666 
1667 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1668 /// constant integers.  If so, the result pointer and the first operand have
1669 /// a constant offset between them.
1670 bool GetElementPtrInst::hasAllConstantIndices() const {
1671   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1672     if (!isa<ConstantInt>(getOperand(i)))
1673       return false;
1674   }
1675   return true;
1676 }
1677 
1678 void GetElementPtrInst::setIsInBounds(bool B) {
1679   cast<GEPOperator>(this)->setIsInBounds(B);
1680 }
1681 
1682 bool GetElementPtrInst::isInBounds() const {
1683   return cast<GEPOperator>(this)->isInBounds();
1684 }
1685 
1686 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1687                                                  APInt &Offset) const {
1688   // Delegate to the generic GEPOperator implementation.
1689   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1690 }
1691 
1692 //===----------------------------------------------------------------------===//
1693 //                           ExtractElementInst Implementation
1694 //===----------------------------------------------------------------------===//
1695 
1696 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1697                                        const Twine &Name,
1698                                        Instruction *InsertBef)
1699   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1700                 ExtractElement,
1701                 OperandTraits<ExtractElementInst>::op_begin(this),
1702                 2, InsertBef) {
1703   assert(isValidOperands(Val, Index) &&
1704          "Invalid extractelement instruction operands!");
1705   Op<0>() = Val;
1706   Op<1>() = Index;
1707   setName(Name);
1708 }
1709 
1710 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1711                                        const Twine &Name,
1712                                        BasicBlock *InsertAE)
1713   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1714                 ExtractElement,
1715                 OperandTraits<ExtractElementInst>::op_begin(this),
1716                 2, InsertAE) {
1717   assert(isValidOperands(Val, Index) &&
1718          "Invalid extractelement instruction operands!");
1719 
1720   Op<0>() = Val;
1721   Op<1>() = Index;
1722   setName(Name);
1723 }
1724 
1725 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1726   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1727     return false;
1728   return true;
1729 }
1730 
1731 //===----------------------------------------------------------------------===//
1732 //                           InsertElementInst Implementation
1733 //===----------------------------------------------------------------------===//
1734 
1735 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1736                                      const Twine &Name,
1737                                      Instruction *InsertBef)
1738   : Instruction(Vec->getType(), InsertElement,
1739                 OperandTraits<InsertElementInst>::op_begin(this),
1740                 3, InsertBef) {
1741   assert(isValidOperands(Vec, Elt, Index) &&
1742          "Invalid insertelement instruction operands!");
1743   Op<0>() = Vec;
1744   Op<1>() = Elt;
1745   Op<2>() = Index;
1746   setName(Name);
1747 }
1748 
1749 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1750                                      const Twine &Name,
1751                                      BasicBlock *InsertAE)
1752   : Instruction(Vec->getType(), InsertElement,
1753                 OperandTraits<InsertElementInst>::op_begin(this),
1754                 3, InsertAE) {
1755   assert(isValidOperands(Vec, Elt, Index) &&
1756          "Invalid insertelement instruction operands!");
1757 
1758   Op<0>() = Vec;
1759   Op<1>() = Elt;
1760   Op<2>() = Index;
1761   setName(Name);
1762 }
1763 
1764 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1765                                         const Value *Index) {
1766   if (!Vec->getType()->isVectorTy())
1767     return false;   // First operand of insertelement must be vector type.
1768 
1769   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1770     return false;// Second operand of insertelement must be vector element type.
1771 
1772   if (!Index->getType()->isIntegerTy())
1773     return false;  // Third operand of insertelement must be i32.
1774   return true;
1775 }
1776 
1777 //===----------------------------------------------------------------------===//
1778 //                      ShuffleVectorInst Implementation
1779 //===----------------------------------------------------------------------===//
1780 
1781 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1782                                      const Twine &Name,
1783                                      Instruction *InsertBefore)
1784 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1785                 cast<VectorType>(Mask->getType())->getElementCount()),
1786               ShuffleVector,
1787               OperandTraits<ShuffleVectorInst>::op_begin(this),
1788               OperandTraits<ShuffleVectorInst>::operands(this),
1789               InsertBefore) {
1790   assert(isValidOperands(V1, V2, Mask) &&
1791          "Invalid shuffle vector instruction operands!");
1792   Op<0>() = V1;
1793   Op<1>() = V2;
1794   Op<2>() = Mask;
1795   setName(Name);
1796 }
1797 
1798 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1799                                      const Twine &Name,
1800                                      BasicBlock *InsertAtEnd)
1801 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1802                 cast<VectorType>(Mask->getType())->getElementCount()),
1803               ShuffleVector,
1804               OperandTraits<ShuffleVectorInst>::op_begin(this),
1805               OperandTraits<ShuffleVectorInst>::operands(this),
1806               InsertAtEnd) {
1807   assert(isValidOperands(V1, V2, Mask) &&
1808          "Invalid shuffle vector instruction operands!");
1809 
1810   Op<0>() = V1;
1811   Op<1>() = V2;
1812   Op<2>() = Mask;
1813   setName(Name);
1814 }
1815 
1816 void ShuffleVectorInst::commute() {
1817   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
1818   int NumMaskElts = getMask()->getType()->getVectorNumElements();
1819   SmallVector<Constant*, 16> NewMask(NumMaskElts);
1820   Type *Int32Ty = Type::getInt32Ty(getContext());
1821   for (int i = 0; i != NumMaskElts; ++i) {
1822     int MaskElt = getMaskValue(i);
1823     if (MaskElt == -1) {
1824       NewMask[i] = UndefValue::get(Int32Ty);
1825       continue;
1826     }
1827     assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
1828     MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1829     NewMask[i] = ConstantInt::get(Int32Ty, MaskElt);
1830   }
1831   Op<2>() = ConstantVector::get(NewMask);
1832   Op<0>().swap(Op<1>());
1833 }
1834 
1835 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1836                                         const Value *Mask) {
1837   // V1 and V2 must be vectors of the same type.
1838   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1839     return false;
1840 
1841   // Mask must be vector of i32.
1842   auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1843   if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1844     return false;
1845 
1846   // Check to see if Mask is valid.
1847   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1848     return true;
1849 
1850   if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1851     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1852     for (Value *Op : MV->operands()) {
1853       if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1854         if (CI->uge(V1Size*2))
1855           return false;
1856       } else if (!isa<UndefValue>(Op)) {
1857         return false;
1858       }
1859     }
1860     return true;
1861   }
1862 
1863   if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1864     unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1865     for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1866       if (CDS->getElementAsInteger(i) >= V1Size*2)
1867         return false;
1868     return true;
1869   }
1870 
1871   // The bitcode reader can create a place holder for a forward reference
1872   // used as the shuffle mask. When this occurs, the shuffle mask will
1873   // fall into this case and fail. To avoid this error, do this bit of
1874   // ugliness to allow such a mask pass.
1875   if (const auto *CE = dyn_cast<ConstantExpr>(Mask))
1876     if (CE->getOpcode() == Instruction::UserOp1)
1877       return true;
1878 
1879   return false;
1880 }
1881 
1882 int ShuffleVectorInst::getMaskValue(const Constant *Mask, unsigned i) {
1883   assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1884   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask))
1885     return CDS->getElementAsInteger(i);
1886   Constant *C = Mask->getAggregateElement(i);
1887   if (isa<UndefValue>(C))
1888     return -1;
1889   return cast<ConstantInt>(C)->getZExtValue();
1890 }
1891 
1892 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
1893                                        SmallVectorImpl<int> &Result) {
1894   unsigned NumElts = Mask->getType()->getVectorNumElements();
1895 
1896   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1897     for (unsigned i = 0; i != NumElts; ++i)
1898       Result.push_back(CDS->getElementAsInteger(i));
1899     return;
1900   }
1901   for (unsigned i = 0; i != NumElts; ++i) {
1902     Constant *C = Mask->getAggregateElement(i);
1903     Result.push_back(isa<UndefValue>(C) ? -1 :
1904                      cast<ConstantInt>(C)->getZExtValue());
1905   }
1906 }
1907 
1908 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1909   assert(!Mask.empty() && "Shuffle mask must contain elements");
1910   bool UsesLHS = false;
1911   bool UsesRHS = false;
1912   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1913     if (Mask[i] == -1)
1914       continue;
1915     assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) &&
1916            "Out-of-bounds shuffle mask element");
1917     UsesLHS |= (Mask[i] < NumOpElts);
1918     UsesRHS |= (Mask[i] >= NumOpElts);
1919     if (UsesLHS && UsesRHS)
1920       return false;
1921   }
1922   assert((UsesLHS ^ UsesRHS) && "Should have selected from exactly 1 source");
1923   return true;
1924 }
1925 
1926 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
1927   // We don't have vector operand size information, so assume operands are the
1928   // same size as the mask.
1929   return isSingleSourceMaskImpl(Mask, Mask.size());
1930 }
1931 
1932 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1933   if (!isSingleSourceMaskImpl(Mask, NumOpElts))
1934     return false;
1935   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1936     if (Mask[i] == -1)
1937       continue;
1938     if (Mask[i] != i && Mask[i] != (NumOpElts + i))
1939       return false;
1940   }
1941   return true;
1942 }
1943 
1944 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
1945   // We don't have vector operand size information, so assume operands are the
1946   // same size as the mask.
1947   return isIdentityMaskImpl(Mask, Mask.size());
1948 }
1949 
1950 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
1951   if (!isSingleSourceMask(Mask))
1952     return false;
1953   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1954     if (Mask[i] == -1)
1955       continue;
1956     if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
1957       return false;
1958   }
1959   return true;
1960 }
1961 
1962 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
1963   if (!isSingleSourceMask(Mask))
1964     return false;
1965   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1966     if (Mask[i] == -1)
1967       continue;
1968     if (Mask[i] != 0 && Mask[i] != NumElts)
1969       return false;
1970   }
1971   return true;
1972 }
1973 
1974 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
1975   // Select is differentiated from identity. It requires using both sources.
1976   if (isSingleSourceMask(Mask))
1977     return false;
1978   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1979     if (Mask[i] == -1)
1980       continue;
1981     if (Mask[i] != i && Mask[i] != (NumElts + i))
1982       return false;
1983   }
1984   return true;
1985 }
1986 
1987 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
1988   // Example masks that will return true:
1989   // v1 = <a, b, c, d>
1990   // v2 = <e, f, g, h>
1991   // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
1992   // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
1993 
1994   // 1. The number of elements in the mask must be a power-of-2 and at least 2.
1995   int NumElts = Mask.size();
1996   if (NumElts < 2 || !isPowerOf2_32(NumElts))
1997     return false;
1998 
1999   // 2. The first element of the mask must be either a 0 or a 1.
2000   if (Mask[0] != 0 && Mask[0] != 1)
2001     return false;
2002 
2003   // 3. The difference between the first 2 elements must be equal to the
2004   // number of elements in the mask.
2005   if ((Mask[1] - Mask[0]) != NumElts)
2006     return false;
2007 
2008   // 4. The difference between consecutive even-numbered and odd-numbered
2009   // elements must be equal to 2.
2010   for (int i = 2; i < NumElts; ++i) {
2011     int MaskEltVal = Mask[i];
2012     if (MaskEltVal == -1)
2013       return false;
2014     int MaskEltPrevVal = Mask[i - 2];
2015     if (MaskEltVal - MaskEltPrevVal != 2)
2016       return false;
2017   }
2018   return true;
2019 }
2020 
2021 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2022                                                int NumSrcElts, int &Index) {
2023   // Must extract from a single source.
2024   if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2025     return false;
2026 
2027   // Must be smaller (else this is an Identity shuffle).
2028   if (NumSrcElts <= (int)Mask.size())
2029     return false;
2030 
2031   // Find start of extraction, accounting that we may start with an UNDEF.
2032   int SubIndex = -1;
2033   for (int i = 0, e = Mask.size(); i != e; ++i) {
2034     int M = Mask[i];
2035     if (M < 0)
2036       continue;
2037     int Offset = (M % NumSrcElts) - i;
2038     if (0 <= SubIndex && SubIndex != Offset)
2039       return false;
2040     SubIndex = Offset;
2041   }
2042 
2043   if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
2044     Index = SubIndex;
2045     return true;
2046   }
2047   return false;
2048 }
2049 
2050 bool ShuffleVectorInst::isIdentityWithPadding() const {
2051   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2052   int NumMaskElts = getType()->getVectorNumElements();
2053   if (NumMaskElts <= NumOpElts)
2054     return false;
2055 
2056   // The first part of the mask must choose elements from exactly 1 source op.
2057   SmallVector<int, 16> Mask = getShuffleMask();
2058   if (!isIdentityMaskImpl(Mask, NumOpElts))
2059     return false;
2060 
2061   // All extending must be with undef elements.
2062   for (int i = NumOpElts; i < NumMaskElts; ++i)
2063     if (Mask[i] != -1)
2064       return false;
2065 
2066   return true;
2067 }
2068 
2069 bool ShuffleVectorInst::isIdentityWithExtract() const {
2070   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2071   int NumMaskElts = getType()->getVectorNumElements();
2072   if (NumMaskElts >= NumOpElts)
2073     return false;
2074 
2075   return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2076 }
2077 
2078 bool ShuffleVectorInst::isConcat() const {
2079   // Vector concatenation is differentiated from identity with padding.
2080   if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()))
2081     return false;
2082 
2083   int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2084   int NumMaskElts = getType()->getVectorNumElements();
2085   if (NumMaskElts != NumOpElts * 2)
2086     return false;
2087 
2088   // Use the mask length rather than the operands' vector lengths here. We
2089   // already know that the shuffle returns a vector twice as long as the inputs,
2090   // and neither of the inputs are undef vectors. If the mask picks consecutive
2091   // elements from both inputs, then this is a concatenation of the inputs.
2092   return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2093 }
2094 
2095 //===----------------------------------------------------------------------===//
2096 //                             InsertValueInst Class
2097 //===----------------------------------------------------------------------===//
2098 
2099 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2100                            const Twine &Name) {
2101   assert(getNumOperands() == 2 && "NumOperands not initialized?");
2102 
2103   // There's no fundamental reason why we require at least one index
2104   // (other than weirdness with &*IdxBegin being invalid; see
2105   // getelementptr's init routine for example). But there's no
2106   // present need to support it.
2107   assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2108 
2109   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2110          Val->getType() && "Inserted value must match indexed type!");
2111   Op<0>() = Agg;
2112   Op<1>() = Val;
2113 
2114   Indices.append(Idxs.begin(), Idxs.end());
2115   setName(Name);
2116 }
2117 
2118 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2119   : Instruction(IVI.getType(), InsertValue,
2120                 OperandTraits<InsertValueInst>::op_begin(this), 2),
2121     Indices(IVI.Indices) {
2122   Op<0>() = IVI.getOperand(0);
2123   Op<1>() = IVI.getOperand(1);
2124   SubclassOptionalData = IVI.SubclassOptionalData;
2125 }
2126 
2127 //===----------------------------------------------------------------------===//
2128 //                             ExtractValueInst Class
2129 //===----------------------------------------------------------------------===//
2130 
2131 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2132   assert(getNumOperands() == 1 && "NumOperands not initialized?");
2133 
2134   // There's no fundamental reason why we require at least one index.
2135   // But there's no present need to support it.
2136   assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2137 
2138   Indices.append(Idxs.begin(), Idxs.end());
2139   setName(Name);
2140 }
2141 
2142 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2143   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2144     Indices(EVI.Indices) {
2145   SubclassOptionalData = EVI.SubclassOptionalData;
2146 }
2147 
2148 // getIndexedType - Returns the type of the element that would be extracted
2149 // with an extractvalue instruction with the specified parameters.
2150 //
2151 // A null type is returned if the indices are invalid for the specified
2152 // pointer type.
2153 //
2154 Type *ExtractValueInst::getIndexedType(Type *Agg,
2155                                        ArrayRef<unsigned> Idxs) {
2156   for (unsigned Index : Idxs) {
2157     // We can't use CompositeType::indexValid(Index) here.
2158     // indexValid() always returns true for arrays because getelementptr allows
2159     // out-of-bounds indices. Since we don't allow those for extractvalue and
2160     // insertvalue we need to check array indexing manually.
2161     // Since the only other types we can index into are struct types it's just
2162     // as easy to check those manually as well.
2163     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2164       if (Index >= AT->getNumElements())
2165         return nullptr;
2166     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2167       if (Index >= ST->getNumElements())
2168         return nullptr;
2169     } else {
2170       // Not a valid type to index into.
2171       return nullptr;
2172     }
2173 
2174     Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
2175   }
2176   return const_cast<Type*>(Agg);
2177 }
2178 
2179 //===----------------------------------------------------------------------===//
2180 //                             UnaryOperator Class
2181 //===----------------------------------------------------------------------===//
2182 
2183 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2184                              Type *Ty, const Twine &Name,
2185                              Instruction *InsertBefore)
2186   : UnaryInstruction(Ty, iType, S, InsertBefore) {
2187   Op<0>() = S;
2188   setName(Name);
2189   AssertOK();
2190 }
2191 
2192 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2193                              Type *Ty, const Twine &Name,
2194                              BasicBlock *InsertAtEnd)
2195   : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2196   Op<0>() = S;
2197   setName(Name);
2198   AssertOK();
2199 }
2200 
2201 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2202                                      const Twine &Name,
2203                                      Instruction *InsertBefore) {
2204   return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2205 }
2206 
2207 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2208                                      const Twine &Name,
2209                                      BasicBlock *InsertAtEnd) {
2210   UnaryOperator *Res = Create(Op, S, Name);
2211   InsertAtEnd->getInstList().push_back(Res);
2212   return Res;
2213 }
2214 
2215 void UnaryOperator::AssertOK() {
2216   Value *LHS = getOperand(0);
2217   (void)LHS; // Silence warnings.
2218 #ifndef NDEBUG
2219   switch (getOpcode()) {
2220   case FNeg:
2221     assert(getType() == LHS->getType() &&
2222            "Unary operation should return same type as operand!");
2223     assert(getType()->isFPOrFPVectorTy() &&
2224            "Tried to create a floating-point operation on a "
2225            "non-floating-point type!");
2226     break;
2227   default: llvm_unreachable("Invalid opcode provided");
2228   }
2229 #endif
2230 }
2231 
2232 //===----------------------------------------------------------------------===//
2233 //                             BinaryOperator Class
2234 //===----------------------------------------------------------------------===//
2235 
2236 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2237                                Type *Ty, const Twine &Name,
2238                                Instruction *InsertBefore)
2239   : Instruction(Ty, iType,
2240                 OperandTraits<BinaryOperator>::op_begin(this),
2241                 OperandTraits<BinaryOperator>::operands(this),
2242                 InsertBefore) {
2243   Op<0>() = S1;
2244   Op<1>() = S2;
2245   setName(Name);
2246   AssertOK();
2247 }
2248 
2249 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2250                                Type *Ty, const Twine &Name,
2251                                BasicBlock *InsertAtEnd)
2252   : Instruction(Ty, iType,
2253                 OperandTraits<BinaryOperator>::op_begin(this),
2254                 OperandTraits<BinaryOperator>::operands(this),
2255                 InsertAtEnd) {
2256   Op<0>() = S1;
2257   Op<1>() = S2;
2258   setName(Name);
2259   AssertOK();
2260 }
2261 
2262 void BinaryOperator::AssertOK() {
2263   Value *LHS = getOperand(0), *RHS = getOperand(1);
2264   (void)LHS; (void)RHS; // Silence warnings.
2265   assert(LHS->getType() == RHS->getType() &&
2266          "Binary operator operand types must match!");
2267 #ifndef NDEBUG
2268   switch (getOpcode()) {
2269   case Add: case Sub:
2270   case Mul:
2271     assert(getType() == LHS->getType() &&
2272            "Arithmetic operation should return same type as operands!");
2273     assert(getType()->isIntOrIntVectorTy() &&
2274            "Tried to create an integer operation on a non-integer type!");
2275     break;
2276   case FAdd: case FSub:
2277   case FMul:
2278     assert(getType() == LHS->getType() &&
2279            "Arithmetic operation should return same type as operands!");
2280     assert(getType()->isFPOrFPVectorTy() &&
2281            "Tried to create a floating-point operation on a "
2282            "non-floating-point type!");
2283     break;
2284   case UDiv:
2285   case SDiv:
2286     assert(getType() == LHS->getType() &&
2287            "Arithmetic operation should return same type as operands!");
2288     assert(getType()->isIntOrIntVectorTy() &&
2289            "Incorrect operand type (not integer) for S/UDIV");
2290     break;
2291   case FDiv:
2292     assert(getType() == LHS->getType() &&
2293            "Arithmetic operation should return same type as operands!");
2294     assert(getType()->isFPOrFPVectorTy() &&
2295            "Incorrect operand type (not floating point) for FDIV");
2296     break;
2297   case URem:
2298   case SRem:
2299     assert(getType() == LHS->getType() &&
2300            "Arithmetic operation should return same type as operands!");
2301     assert(getType()->isIntOrIntVectorTy() &&
2302            "Incorrect operand type (not integer) for S/UREM");
2303     break;
2304   case FRem:
2305     assert(getType() == LHS->getType() &&
2306            "Arithmetic operation should return same type as operands!");
2307     assert(getType()->isFPOrFPVectorTy() &&
2308            "Incorrect operand type (not floating point) for FREM");
2309     break;
2310   case Shl:
2311   case LShr:
2312   case AShr:
2313     assert(getType() == LHS->getType() &&
2314            "Shift operation should return same type as operands!");
2315     assert(getType()->isIntOrIntVectorTy() &&
2316            "Tried to create a shift operation on a non-integral type!");
2317     break;
2318   case And: case Or:
2319   case Xor:
2320     assert(getType() == LHS->getType() &&
2321            "Logical operation should return same type as operands!");
2322     assert(getType()->isIntOrIntVectorTy() &&
2323            "Tried to create a logical operation on a non-integral type!");
2324     break;
2325   default: llvm_unreachable("Invalid opcode provided");
2326   }
2327 #endif
2328 }
2329 
2330 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2331                                        const Twine &Name,
2332                                        Instruction *InsertBefore) {
2333   assert(S1->getType() == S2->getType() &&
2334          "Cannot create binary operator with two operands of differing type!");
2335   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2336 }
2337 
2338 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2339                                        const Twine &Name,
2340                                        BasicBlock *InsertAtEnd) {
2341   BinaryOperator *Res = Create(Op, S1, S2, Name);
2342   InsertAtEnd->getInstList().push_back(Res);
2343   return Res;
2344 }
2345 
2346 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2347                                           Instruction *InsertBefore) {
2348   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2349   return new BinaryOperator(Instruction::Sub,
2350                             zero, Op,
2351                             Op->getType(), Name, InsertBefore);
2352 }
2353 
2354 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2355                                           BasicBlock *InsertAtEnd) {
2356   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2357   return new BinaryOperator(Instruction::Sub,
2358                             zero, Op,
2359                             Op->getType(), Name, InsertAtEnd);
2360 }
2361 
2362 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2363                                              Instruction *InsertBefore) {
2364   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2365   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2366 }
2367 
2368 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2369                                              BasicBlock *InsertAtEnd) {
2370   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2371   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2372 }
2373 
2374 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2375                                              Instruction *InsertBefore) {
2376   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2377   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2378 }
2379 
2380 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2381                                              BasicBlock *InsertAtEnd) {
2382   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2383   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2384 }
2385 
2386 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2387                                            Instruction *InsertBefore) {
2388   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2389   return new BinaryOperator(Instruction::FSub, zero, Op,
2390                             Op->getType(), Name, InsertBefore);
2391 }
2392 
2393 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2394                                            BasicBlock *InsertAtEnd) {
2395   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2396   return new BinaryOperator(Instruction::FSub, zero, Op,
2397                             Op->getType(), Name, InsertAtEnd);
2398 }
2399 
2400 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2401                                           Instruction *InsertBefore) {
2402   Constant *C = Constant::getAllOnesValue(Op->getType());
2403   return new BinaryOperator(Instruction::Xor, Op, C,
2404                             Op->getType(), Name, InsertBefore);
2405 }
2406 
2407 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2408                                           BasicBlock *InsertAtEnd) {
2409   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2410   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2411                             Op->getType(), Name, InsertAtEnd);
2412 }
2413 
2414 // Exchange the two operands to this instruction. This instruction is safe to
2415 // use on any binary instruction and does not modify the semantics of the
2416 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2417 // is changed.
2418 bool BinaryOperator::swapOperands() {
2419   if (!isCommutative())
2420     return true; // Can't commute operands
2421   Op<0>().swap(Op<1>());
2422   return false;
2423 }
2424 
2425 //===----------------------------------------------------------------------===//
2426 //                             FPMathOperator Class
2427 //===----------------------------------------------------------------------===//
2428 
2429 float FPMathOperator::getFPAccuracy() const {
2430   const MDNode *MD =
2431       cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2432   if (!MD)
2433     return 0.0;
2434   ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2435   return Accuracy->getValueAPF().convertToFloat();
2436 }
2437 
2438 //===----------------------------------------------------------------------===//
2439 //                                CastInst Class
2440 //===----------------------------------------------------------------------===//
2441 
2442 // Just determine if this cast only deals with integral->integral conversion.
2443 bool CastInst::isIntegerCast() const {
2444   switch (getOpcode()) {
2445     default: return false;
2446     case Instruction::ZExt:
2447     case Instruction::SExt:
2448     case Instruction::Trunc:
2449       return true;
2450     case Instruction::BitCast:
2451       return getOperand(0)->getType()->isIntegerTy() &&
2452         getType()->isIntegerTy();
2453   }
2454 }
2455 
2456 bool CastInst::isLosslessCast() const {
2457   // Only BitCast can be lossless, exit fast if we're not BitCast
2458   if (getOpcode() != Instruction::BitCast)
2459     return false;
2460 
2461   // Identity cast is always lossless
2462   Type *SrcTy = getOperand(0)->getType();
2463   Type *DstTy = getType();
2464   if (SrcTy == DstTy)
2465     return true;
2466 
2467   // Pointer to pointer is always lossless.
2468   if (SrcTy->isPointerTy())
2469     return DstTy->isPointerTy();
2470   return false;  // Other types have no identity values
2471 }
2472 
2473 /// This function determines if the CastInst does not require any bits to be
2474 /// changed in order to effect the cast. Essentially, it identifies cases where
2475 /// no code gen is necessary for the cast, hence the name no-op cast.  For
2476 /// example, the following are all no-op casts:
2477 /// # bitcast i32* %x to i8*
2478 /// # bitcast <2 x i32> %x to <4 x i16>
2479 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2480 /// Determine if the described cast is a no-op.
2481 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2482                           Type *SrcTy,
2483                           Type *DestTy,
2484                           const DataLayout &DL) {
2485   switch (Opcode) {
2486     default: llvm_unreachable("Invalid CastOp");
2487     case Instruction::Trunc:
2488     case Instruction::ZExt:
2489     case Instruction::SExt:
2490     case Instruction::FPTrunc:
2491     case Instruction::FPExt:
2492     case Instruction::UIToFP:
2493     case Instruction::SIToFP:
2494     case Instruction::FPToUI:
2495     case Instruction::FPToSI:
2496     case Instruction::AddrSpaceCast:
2497       // TODO: Target informations may give a more accurate answer here.
2498       return false;
2499     case Instruction::BitCast:
2500       return true;  // BitCast never modifies bits.
2501     case Instruction::PtrToInt:
2502       return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2503              DestTy->getScalarSizeInBits();
2504     case Instruction::IntToPtr:
2505       return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2506              SrcTy->getScalarSizeInBits();
2507   }
2508 }
2509 
2510 bool CastInst::isNoopCast(const DataLayout &DL) const {
2511   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2512 }
2513 
2514 /// This function determines if a pair of casts can be eliminated and what
2515 /// opcode should be used in the elimination. This assumes that there are two
2516 /// instructions like this:
2517 /// *  %F = firstOpcode SrcTy %x to MidTy
2518 /// *  %S = secondOpcode MidTy %F to DstTy
2519 /// The function returns a resultOpcode so these two casts can be replaced with:
2520 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2521 /// If no such cast is permitted, the function returns 0.
2522 unsigned CastInst::isEliminableCastPair(
2523   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2524   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2525   Type *DstIntPtrTy) {
2526   // Define the 144 possibilities for these two cast instructions. The values
2527   // in this matrix determine what to do in a given situation and select the
2528   // case in the switch below.  The rows correspond to firstOp, the columns
2529   // correspond to secondOp.  In looking at the table below, keep in mind
2530   // the following cast properties:
2531   //
2532   //          Size Compare       Source               Destination
2533   // Operator  Src ? Size   Type       Sign         Type       Sign
2534   // -------- ------------ -------------------   ---------------------
2535   // TRUNC         >       Integer      Any        Integral     Any
2536   // ZEXT          <       Integral   Unsigned     Integer      Any
2537   // SEXT          <       Integral    Signed      Integer      Any
2538   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2539   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2540   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2541   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2542   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2543   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2544   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2545   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2546   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2547   // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2548   //
2549   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2550   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2551   // into "fptoui double to i64", but this loses information about the range
2552   // of the produced value (we no longer know the top-part is all zeros).
2553   // Further this conversion is often much more expensive for typical hardware,
2554   // and causes issues when building libgcc.  We disallow fptosi+sext for the
2555   // same reason.
2556   const unsigned numCastOps =
2557     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2558   static const uint8_t CastResults[numCastOps][numCastOps] = {
2559     // T        F  F  U  S  F  F  P  I  B  A  -+
2560     // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2561     // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2562     // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2563     // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2564     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2565     {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
2566     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2567     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2568     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2569     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2570     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2571     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
2572     { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt          |
2573     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2574     { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2575     {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
2576     {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2577   };
2578 
2579   // TODO: This logic could be encoded into the table above and handled in the
2580   // switch below.
2581   // If either of the casts are a bitcast from scalar to vector, disallow the
2582   // merging. However, any pair of bitcasts are allowed.
2583   bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
2584   bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2585   bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2586 
2587   // Check if any of the casts convert scalars <-> vectors.
2588   if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2589       (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2590     if (!AreBothBitcasts)
2591       return 0;
2592 
2593   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2594                             [secondOp-Instruction::CastOpsBegin];
2595   switch (ElimCase) {
2596     case 0:
2597       // Categorically disallowed.
2598       return 0;
2599     case 1:
2600       // Allowed, use first cast's opcode.
2601       return firstOp;
2602     case 2:
2603       // Allowed, use second cast's opcode.
2604       return secondOp;
2605     case 3:
2606       // No-op cast in second op implies firstOp as long as the DestTy
2607       // is integer and we are not converting between a vector and a
2608       // non-vector type.
2609       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2610         return firstOp;
2611       return 0;
2612     case 4:
2613       // No-op cast in second op implies firstOp as long as the DestTy
2614       // is floating point.
2615       if (DstTy->isFloatingPointTy())
2616         return firstOp;
2617       return 0;
2618     case 5:
2619       // No-op cast in first op implies secondOp as long as the SrcTy
2620       // is an integer.
2621       if (SrcTy->isIntegerTy())
2622         return secondOp;
2623       return 0;
2624     case 6:
2625       // No-op cast in first op implies secondOp as long as the SrcTy
2626       // is a floating point.
2627       if (SrcTy->isFloatingPointTy())
2628         return secondOp;
2629       return 0;
2630     case 7: {
2631       // Cannot simplify if address spaces are different!
2632       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2633         return 0;
2634 
2635       unsigned MidSize = MidTy->getScalarSizeInBits();
2636       // We can still fold this without knowing the actual sizes as long we
2637       // know that the intermediate pointer is the largest possible
2638       // pointer size.
2639       // FIXME: Is this always true?
2640       if (MidSize == 64)
2641         return Instruction::BitCast;
2642 
2643       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2644       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2645         return 0;
2646       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2647       if (MidSize >= PtrSize)
2648         return Instruction::BitCast;
2649       return 0;
2650     }
2651     case 8: {
2652       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2653       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2654       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2655       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2656       unsigned DstSize = DstTy->getScalarSizeInBits();
2657       if (SrcSize == DstSize)
2658         return Instruction::BitCast;
2659       else if (SrcSize < DstSize)
2660         return firstOp;
2661       return secondOp;
2662     }
2663     case 9:
2664       // zext, sext -> zext, because sext can't sign extend after zext
2665       return Instruction::ZExt;
2666     case 11: {
2667       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2668       if (!MidIntPtrTy)
2669         return 0;
2670       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2671       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2672       unsigned DstSize = DstTy->getScalarSizeInBits();
2673       if (SrcSize <= PtrSize && SrcSize == DstSize)
2674         return Instruction::BitCast;
2675       return 0;
2676     }
2677     case 12:
2678       // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
2679       // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2680       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2681         return Instruction::AddrSpaceCast;
2682       return Instruction::BitCast;
2683     case 13:
2684       // FIXME: this state can be merged with (1), but the following assert
2685       // is useful to check the correcteness of the sequence due to semantic
2686       // change of bitcast.
2687       assert(
2688         SrcTy->isPtrOrPtrVectorTy() &&
2689         MidTy->isPtrOrPtrVectorTy() &&
2690         DstTy->isPtrOrPtrVectorTy() &&
2691         SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2692         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2693         "Illegal addrspacecast, bitcast sequence!");
2694       // Allowed, use first cast's opcode
2695       return firstOp;
2696     case 14:
2697       // bitcast, addrspacecast -> addrspacecast if the element type of
2698       // bitcast's source is the same as that of addrspacecast's destination.
2699       if (SrcTy->getScalarType()->getPointerElementType() ==
2700           DstTy->getScalarType()->getPointerElementType())
2701         return Instruction::AddrSpaceCast;
2702       return 0;
2703     case 15:
2704       // FIXME: this state can be merged with (1), but the following assert
2705       // is useful to check the correcteness of the sequence due to semantic
2706       // change of bitcast.
2707       assert(
2708         SrcTy->isIntOrIntVectorTy() &&
2709         MidTy->isPtrOrPtrVectorTy() &&
2710         DstTy->isPtrOrPtrVectorTy() &&
2711         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2712         "Illegal inttoptr, bitcast sequence!");
2713       // Allowed, use first cast's opcode
2714       return firstOp;
2715     case 16:
2716       // FIXME: this state can be merged with (2), but the following assert
2717       // is useful to check the correcteness of the sequence due to semantic
2718       // change of bitcast.
2719       assert(
2720         SrcTy->isPtrOrPtrVectorTy() &&
2721         MidTy->isPtrOrPtrVectorTy() &&
2722         DstTy->isIntOrIntVectorTy() &&
2723         SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2724         "Illegal bitcast, ptrtoint sequence!");
2725       // Allowed, use second cast's opcode
2726       return secondOp;
2727     case 17:
2728       // (sitofp (zext x)) -> (uitofp x)
2729       return Instruction::UIToFP;
2730     case 99:
2731       // Cast combination can't happen (error in input). This is for all cases
2732       // where the MidTy is not the same for the two cast instructions.
2733       llvm_unreachable("Invalid Cast Combination");
2734     default:
2735       llvm_unreachable("Error in CastResults table!!!");
2736   }
2737 }
2738 
2739 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2740   const Twine &Name, Instruction *InsertBefore) {
2741   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2742   // Construct and return the appropriate CastInst subclass
2743   switch (op) {
2744   case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
2745   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
2746   case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
2747   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
2748   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
2749   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
2750   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
2751   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
2752   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
2753   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
2754   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
2755   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
2756   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2757   default: llvm_unreachable("Invalid opcode provided");
2758   }
2759 }
2760 
2761 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2762   const Twine &Name, BasicBlock *InsertAtEnd) {
2763   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2764   // Construct and return the appropriate CastInst subclass
2765   switch (op) {
2766   case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
2767   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
2768   case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
2769   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
2770   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
2771   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
2772   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
2773   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
2774   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
2775   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
2776   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
2777   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
2778   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2779   default: llvm_unreachable("Invalid opcode provided");
2780   }
2781 }
2782 
2783 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2784                                         const Twine &Name,
2785                                         Instruction *InsertBefore) {
2786   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2787     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2788   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2789 }
2790 
2791 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2792                                         const Twine &Name,
2793                                         BasicBlock *InsertAtEnd) {
2794   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2795     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2796   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2797 }
2798 
2799 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2800                                         const Twine &Name,
2801                                         Instruction *InsertBefore) {
2802   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2803     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2804   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2805 }
2806 
2807 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2808                                         const Twine &Name,
2809                                         BasicBlock *InsertAtEnd) {
2810   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2811     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2812   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2813 }
2814 
2815 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2816                                          const Twine &Name,
2817                                          Instruction *InsertBefore) {
2818   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2819     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2820   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2821 }
2822 
2823 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2824                                          const Twine &Name,
2825                                          BasicBlock *InsertAtEnd) {
2826   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2827     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2828   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2829 }
2830 
2831 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2832                                       const Twine &Name,
2833                                       BasicBlock *InsertAtEnd) {
2834   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2835   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2836          "Invalid cast");
2837   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2838   assert((!Ty->isVectorTy() ||
2839           Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2840          "Invalid cast");
2841 
2842   if (Ty->isIntOrIntVectorTy())
2843     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2844 
2845   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2846 }
2847 
2848 /// Create a BitCast or a PtrToInt cast instruction
2849 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2850                                       const Twine &Name,
2851                                       Instruction *InsertBefore) {
2852   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2853   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2854          "Invalid cast");
2855   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2856   assert((!Ty->isVectorTy() ||
2857           Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2858          "Invalid cast");
2859 
2860   if (Ty->isIntOrIntVectorTy())
2861     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2862 
2863   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2864 }
2865 
2866 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2867   Value *S, Type *Ty,
2868   const Twine &Name,
2869   BasicBlock *InsertAtEnd) {
2870   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2871   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2872 
2873   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2874     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2875 
2876   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2877 }
2878 
2879 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2880   Value *S, Type *Ty,
2881   const Twine &Name,
2882   Instruction *InsertBefore) {
2883   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2884   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2885 
2886   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2887     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2888 
2889   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2890 }
2891 
2892 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
2893                                            const Twine &Name,
2894                                            Instruction *InsertBefore) {
2895   if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2896     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2897   if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2898     return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2899 
2900   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2901 }
2902 
2903 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2904                                       bool isSigned, const Twine &Name,
2905                                       Instruction *InsertBefore) {
2906   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2907          "Invalid integer cast");
2908   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2909   unsigned DstBits = Ty->getScalarSizeInBits();
2910   Instruction::CastOps opcode =
2911     (SrcBits == DstBits ? Instruction::BitCast :
2912      (SrcBits > DstBits ? Instruction::Trunc :
2913       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2914   return Create(opcode, C, Ty, Name, InsertBefore);
2915 }
2916 
2917 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2918                                       bool isSigned, const Twine &Name,
2919                                       BasicBlock *InsertAtEnd) {
2920   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2921          "Invalid cast");
2922   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2923   unsigned DstBits = Ty->getScalarSizeInBits();
2924   Instruction::CastOps opcode =
2925     (SrcBits == DstBits ? Instruction::BitCast :
2926      (SrcBits > DstBits ? Instruction::Trunc :
2927       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2928   return Create(opcode, C, Ty, Name, InsertAtEnd);
2929 }
2930 
2931 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2932                                  const Twine &Name,
2933                                  Instruction *InsertBefore) {
2934   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2935          "Invalid cast");
2936   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2937   unsigned DstBits = Ty->getScalarSizeInBits();
2938   Instruction::CastOps opcode =
2939     (SrcBits == DstBits ? Instruction::BitCast :
2940      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2941   return Create(opcode, C, Ty, Name, InsertBefore);
2942 }
2943 
2944 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2945                                  const Twine &Name,
2946                                  BasicBlock *InsertAtEnd) {
2947   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2948          "Invalid cast");
2949   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2950   unsigned DstBits = Ty->getScalarSizeInBits();
2951   Instruction::CastOps opcode =
2952     (SrcBits == DstBits ? Instruction::BitCast :
2953      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2954   return Create(opcode, C, Ty, Name, InsertAtEnd);
2955 }
2956 
2957 // Check whether it is valid to call getCastOpcode for these types.
2958 // This routine must be kept in sync with getCastOpcode.
2959 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2960   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2961     return false;
2962 
2963   if (SrcTy == DestTy)
2964     return true;
2965 
2966   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2967     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2968       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2969         // An element by element cast.  Valid if casting the elements is valid.
2970         SrcTy = SrcVecTy->getElementType();
2971         DestTy = DestVecTy->getElementType();
2972       }
2973 
2974   // Get the bit sizes, we'll need these
2975   TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2976   TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2977 
2978   // Run through the possibilities ...
2979   if (DestTy->isIntegerTy()) {               // Casting to integral
2980     if (SrcTy->isIntegerTy())                // Casting from integral
2981         return true;
2982     if (SrcTy->isFloatingPointTy())   // Casting from floating pt
2983       return true;
2984     if (SrcTy->isVectorTy())          // Casting from vector
2985       return DestBits == SrcBits;
2986                                       // Casting from something else
2987     return SrcTy->isPointerTy();
2988   }
2989   if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
2990     if (SrcTy->isIntegerTy())                // Casting from integral
2991       return true;
2992     if (SrcTy->isFloatingPointTy())   // Casting from floating pt
2993       return true;
2994     if (SrcTy->isVectorTy())          // Casting from vector
2995       return DestBits == SrcBits;
2996                                     // Casting from something else
2997     return false;
2998   }
2999   if (DestTy->isVectorTy())         // Casting to vector
3000     return DestBits == SrcBits;
3001   if (DestTy->isPointerTy()) {        // Casting to pointer
3002     if (SrcTy->isPointerTy())                // Casting from pointer
3003       return true;
3004     return SrcTy->isIntegerTy();             // Casting from integral
3005   }
3006   if (DestTy->isX86_MMXTy()) {
3007     if (SrcTy->isVectorTy())
3008       return DestBits == SrcBits;       // 64-bit vector to MMX
3009     return false;
3010   }                                    // Casting to something else
3011   return false;
3012 }
3013 
3014 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3015   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3016     return false;
3017 
3018   if (SrcTy == DestTy)
3019     return true;
3020 
3021   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3022     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3023       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3024         // An element by element cast. Valid if casting the elements is valid.
3025         SrcTy = SrcVecTy->getElementType();
3026         DestTy = DestVecTy->getElementType();
3027       }
3028     }
3029   }
3030 
3031   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3032     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3033       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3034     }
3035   }
3036 
3037   TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3038   TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3039 
3040   // Could still have vectors of pointers if the number of elements doesn't
3041   // match
3042   if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0)
3043     return false;
3044 
3045   if (SrcBits != DestBits)
3046     return false;
3047 
3048   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3049     return false;
3050 
3051   return true;
3052 }
3053 
3054 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3055                                           const DataLayout &DL) {
3056   // ptrtoint and inttoptr are not allowed on non-integral pointers
3057   if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3058     if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3059       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3060               !DL.isNonIntegralPointerType(PtrTy));
3061   if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3062     if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3063       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3064               !DL.isNonIntegralPointerType(PtrTy));
3065 
3066   return isBitCastable(SrcTy, DestTy);
3067 }
3068 
3069 // Provide a way to get a "cast" where the cast opcode is inferred from the
3070 // types and size of the operand. This, basically, is a parallel of the
3071 // logic in the castIsValid function below.  This axiom should hold:
3072 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3073 // should not assert in castIsValid. In other words, this produces a "correct"
3074 // casting opcode for the arguments passed to it.
3075 // This routine must be kept in sync with isCastable.
3076 Instruction::CastOps
3077 CastInst::getCastOpcode(
3078   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3079   Type *SrcTy = Src->getType();
3080 
3081   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3082          "Only first class types are castable!");
3083 
3084   if (SrcTy == DestTy)
3085     return BitCast;
3086 
3087   // FIXME: Check address space sizes here
3088   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3089     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3090       if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
3091         // An element by element cast.  Find the appropriate opcode based on the
3092         // element types.
3093         SrcTy = SrcVecTy->getElementType();
3094         DestTy = DestVecTy->getElementType();
3095       }
3096 
3097   // Get the bit sizes, we'll need these
3098   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3099   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3100 
3101   // Run through the possibilities ...
3102   if (DestTy->isIntegerTy()) {                      // Casting to integral
3103     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3104       if (DestBits < SrcBits)
3105         return Trunc;                               // int -> smaller int
3106       else if (DestBits > SrcBits) {                // its an extension
3107         if (SrcIsSigned)
3108           return SExt;                              // signed -> SEXT
3109         else
3110           return ZExt;                              // unsigned -> ZEXT
3111       } else {
3112         return BitCast;                             // Same size, No-op cast
3113       }
3114     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3115       if (DestIsSigned)
3116         return FPToSI;                              // FP -> sint
3117       else
3118         return FPToUI;                              // FP -> uint
3119     } else if (SrcTy->isVectorTy()) {
3120       assert(DestBits == SrcBits &&
3121              "Casting vector to integer of different width");
3122       return BitCast;                             // Same size, no-op cast
3123     } else {
3124       assert(SrcTy->isPointerTy() &&
3125              "Casting from a value that is not first-class type");
3126       return PtrToInt;                              // ptr -> int
3127     }
3128   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
3129     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3130       if (SrcIsSigned)
3131         return SIToFP;                              // sint -> FP
3132       else
3133         return UIToFP;                              // uint -> FP
3134     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3135       if (DestBits < SrcBits) {
3136         return FPTrunc;                             // FP -> smaller FP
3137       } else if (DestBits > SrcBits) {
3138         return FPExt;                               // FP -> larger FP
3139       } else  {
3140         return BitCast;                             // same size, no-op cast
3141       }
3142     } else if (SrcTy->isVectorTy()) {
3143       assert(DestBits == SrcBits &&
3144              "Casting vector to floating point of different width");
3145       return BitCast;                             // same size, no-op cast
3146     }
3147     llvm_unreachable("Casting pointer or non-first class to float");
3148   } else if (DestTy->isVectorTy()) {
3149     assert(DestBits == SrcBits &&
3150            "Illegal cast to vector (wrong type or size)");
3151     return BitCast;
3152   } else if (DestTy->isPointerTy()) {
3153     if (SrcTy->isPointerTy()) {
3154       if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3155         return AddrSpaceCast;
3156       return BitCast;                               // ptr -> ptr
3157     } else if (SrcTy->isIntegerTy()) {
3158       return IntToPtr;                              // int -> ptr
3159     }
3160     llvm_unreachable("Casting pointer to other than pointer or int");
3161   } else if (DestTy->isX86_MMXTy()) {
3162     if (SrcTy->isVectorTy()) {
3163       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3164       return BitCast;                               // 64-bit vector to MMX
3165     }
3166     llvm_unreachable("Illegal cast to X86_MMX");
3167   }
3168   llvm_unreachable("Casting to type that is not first-class");
3169 }
3170 
3171 //===----------------------------------------------------------------------===//
3172 //                    CastInst SubClass Constructors
3173 //===----------------------------------------------------------------------===//
3174 
3175 /// Check that the construction parameters for a CastInst are correct. This
3176 /// could be broken out into the separate constructors but it is useful to have
3177 /// it in one place and to eliminate the redundant code for getting the sizes
3178 /// of the types involved.
3179 bool
3180 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
3181   // Check for type sanity on the arguments
3182   Type *SrcTy = S->getType();
3183 
3184   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3185       SrcTy->isAggregateType() || DstTy->isAggregateType())
3186     return false;
3187 
3188   // Get the size of the types in bits, we'll need this later
3189   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3190   unsigned DstBitSize = DstTy->getScalarSizeInBits();
3191 
3192   // If these are vector types, get the lengths of the vectors (using zero for
3193   // scalar types means that checking that vector lengths match also checks that
3194   // scalars are not being converted to vectors or vectors to scalars).
3195   unsigned SrcLength = SrcTy->isVectorTy() ?
3196     cast<VectorType>(SrcTy)->getNumElements() : 0;
3197   unsigned DstLength = DstTy->isVectorTy() ?
3198     cast<VectorType>(DstTy)->getNumElements() : 0;
3199 
3200   // Switch on the opcode provided
3201   switch (op) {
3202   default: return false; // This is an input error
3203   case Instruction::Trunc:
3204     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3205       SrcLength == DstLength && SrcBitSize > DstBitSize;
3206   case Instruction::ZExt:
3207     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3208       SrcLength == DstLength && SrcBitSize < DstBitSize;
3209   case Instruction::SExt:
3210     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3211       SrcLength == DstLength && SrcBitSize < DstBitSize;
3212   case Instruction::FPTrunc:
3213     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3214       SrcLength == DstLength && SrcBitSize > DstBitSize;
3215   case Instruction::FPExt:
3216     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3217       SrcLength == DstLength && SrcBitSize < DstBitSize;
3218   case Instruction::UIToFP:
3219   case Instruction::SIToFP:
3220     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3221       SrcLength == DstLength;
3222   case Instruction::FPToUI:
3223   case Instruction::FPToSI:
3224     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3225       SrcLength == DstLength;
3226   case Instruction::PtrToInt:
3227     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3228       return false;
3229     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3230       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3231         return false;
3232     return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3233   case Instruction::IntToPtr:
3234     if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3235       return false;
3236     if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3237       if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3238         return false;
3239     return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3240   case Instruction::BitCast: {
3241     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3242     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3243 
3244     // BitCast implies a no-op cast of type only. No bits change.
3245     // However, you can't cast pointers to anything but pointers.
3246     if (!SrcPtrTy != !DstPtrTy)
3247       return false;
3248 
3249     // For non-pointer cases, the cast is okay if the source and destination bit
3250     // widths are identical.
3251     if (!SrcPtrTy)
3252       return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3253 
3254     // If both are pointers then the address spaces must match.
3255     if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3256       return false;
3257 
3258     // A vector of pointers must have the same number of elements.
3259     VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy);
3260     VectorType *DstVecTy = dyn_cast<VectorType>(DstTy);
3261     if (SrcVecTy && DstVecTy)
3262       return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3263     if (SrcVecTy)
3264       return SrcVecTy->getNumElements() == 1;
3265     if (DstVecTy)
3266       return DstVecTy->getNumElements() == 1;
3267 
3268     return true;
3269   }
3270   case Instruction::AddrSpaceCast: {
3271     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3272     if (!SrcPtrTy)
3273       return false;
3274 
3275     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3276     if (!DstPtrTy)
3277       return false;
3278 
3279     if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3280       return false;
3281 
3282     if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3283       if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3284         return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3285 
3286       return false;
3287     }
3288 
3289     return true;
3290   }
3291   }
3292 }
3293 
3294 TruncInst::TruncInst(
3295   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3296 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3297   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3298 }
3299 
3300 TruncInst::TruncInst(
3301   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3302 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3303   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3304 }
3305 
3306 ZExtInst::ZExtInst(
3307   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3308 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3309   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3310 }
3311 
3312 ZExtInst::ZExtInst(
3313   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3314 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3315   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3316 }
3317 SExtInst::SExtInst(
3318   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3319 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3320   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3321 }
3322 
3323 SExtInst::SExtInst(
3324   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3325 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3326   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3327 }
3328 
3329 FPTruncInst::FPTruncInst(
3330   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3331 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3332   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3333 }
3334 
3335 FPTruncInst::FPTruncInst(
3336   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3337 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3338   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3339 }
3340 
3341 FPExtInst::FPExtInst(
3342   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3343 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3344   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3345 }
3346 
3347 FPExtInst::FPExtInst(
3348   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3349 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3350   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3351 }
3352 
3353 UIToFPInst::UIToFPInst(
3354   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3355 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3356   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3357 }
3358 
3359 UIToFPInst::UIToFPInst(
3360   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3361 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3362   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3363 }
3364 
3365 SIToFPInst::SIToFPInst(
3366   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3367 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3368   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3369 }
3370 
3371 SIToFPInst::SIToFPInst(
3372   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3373 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3374   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3375 }
3376 
3377 FPToUIInst::FPToUIInst(
3378   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3379 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3380   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3381 }
3382 
3383 FPToUIInst::FPToUIInst(
3384   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3385 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3386   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3387 }
3388 
3389 FPToSIInst::FPToSIInst(
3390   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3391 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3392   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3393 }
3394 
3395 FPToSIInst::FPToSIInst(
3396   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3397 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3398   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3399 }
3400 
3401 PtrToIntInst::PtrToIntInst(
3402   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3403 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3404   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3405 }
3406 
3407 PtrToIntInst::PtrToIntInst(
3408   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3409 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3410   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3411 }
3412 
3413 IntToPtrInst::IntToPtrInst(
3414   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3415 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3416   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3417 }
3418 
3419 IntToPtrInst::IntToPtrInst(
3420   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3421 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3422   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3423 }
3424 
3425 BitCastInst::BitCastInst(
3426   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3427 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3428   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3429 }
3430 
3431 BitCastInst::BitCastInst(
3432   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3433 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3434   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3435 }
3436 
3437 AddrSpaceCastInst::AddrSpaceCastInst(
3438   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3439 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3440   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3441 }
3442 
3443 AddrSpaceCastInst::AddrSpaceCastInst(
3444   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3445 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3446   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3447 }
3448 
3449 //===----------------------------------------------------------------------===//
3450 //                               CmpInst Classes
3451 //===----------------------------------------------------------------------===//
3452 
3453 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3454                  Value *RHS, const Twine &Name, Instruction *InsertBefore,
3455                  Instruction *FlagsSource)
3456   : Instruction(ty, op,
3457                 OperandTraits<CmpInst>::op_begin(this),
3458                 OperandTraits<CmpInst>::operands(this),
3459                 InsertBefore) {
3460   Op<0>() = LHS;
3461   Op<1>() = RHS;
3462   setPredicate((Predicate)predicate);
3463   setName(Name);
3464   if (FlagsSource)
3465     copyIRFlags(FlagsSource);
3466 }
3467 
3468 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3469                  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3470   : Instruction(ty, op,
3471                 OperandTraits<CmpInst>::op_begin(this),
3472                 OperandTraits<CmpInst>::operands(this),
3473                 InsertAtEnd) {
3474   Op<0>() = LHS;
3475   Op<1>() = RHS;
3476   setPredicate((Predicate)predicate);
3477   setName(Name);
3478 }
3479 
3480 CmpInst *
3481 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3482                 const Twine &Name, Instruction *InsertBefore) {
3483   if (Op == Instruction::ICmp) {
3484     if (InsertBefore)
3485       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3486                           S1, S2, Name);
3487     else
3488       return new ICmpInst(CmpInst::Predicate(predicate),
3489                           S1, S2, Name);
3490   }
3491 
3492   if (InsertBefore)
3493     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3494                         S1, S2, Name);
3495   else
3496     return new FCmpInst(CmpInst::Predicate(predicate),
3497                         S1, S2, Name);
3498 }
3499 
3500 CmpInst *
3501 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3502                 const Twine &Name, BasicBlock *InsertAtEnd) {
3503   if (Op == Instruction::ICmp) {
3504     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3505                         S1, S2, Name);
3506   }
3507   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3508                       S1, S2, Name);
3509 }
3510 
3511 void CmpInst::swapOperands() {
3512   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3513     IC->swapOperands();
3514   else
3515     cast<FCmpInst>(this)->swapOperands();
3516 }
3517 
3518 bool CmpInst::isCommutative() const {
3519   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3520     return IC->isCommutative();
3521   return cast<FCmpInst>(this)->isCommutative();
3522 }
3523 
3524 bool CmpInst::isEquality() const {
3525   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3526     return IC->isEquality();
3527   return cast<FCmpInst>(this)->isEquality();
3528 }
3529 
3530 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3531   switch (pred) {
3532     default: llvm_unreachable("Unknown cmp predicate!");
3533     case ICMP_EQ: return ICMP_NE;
3534     case ICMP_NE: return ICMP_EQ;
3535     case ICMP_UGT: return ICMP_ULE;
3536     case ICMP_ULT: return ICMP_UGE;
3537     case ICMP_UGE: return ICMP_ULT;
3538     case ICMP_ULE: return ICMP_UGT;
3539     case ICMP_SGT: return ICMP_SLE;
3540     case ICMP_SLT: return ICMP_SGE;
3541     case ICMP_SGE: return ICMP_SLT;
3542     case ICMP_SLE: return ICMP_SGT;
3543 
3544     case FCMP_OEQ: return FCMP_UNE;
3545     case FCMP_ONE: return FCMP_UEQ;
3546     case FCMP_OGT: return FCMP_ULE;
3547     case FCMP_OLT: return FCMP_UGE;
3548     case FCMP_OGE: return FCMP_ULT;
3549     case FCMP_OLE: return FCMP_UGT;
3550     case FCMP_UEQ: return FCMP_ONE;
3551     case FCMP_UNE: return FCMP_OEQ;
3552     case FCMP_UGT: return FCMP_OLE;
3553     case FCMP_ULT: return FCMP_OGE;
3554     case FCMP_UGE: return FCMP_OLT;
3555     case FCMP_ULE: return FCMP_OGT;
3556     case FCMP_ORD: return FCMP_UNO;
3557     case FCMP_UNO: return FCMP_ORD;
3558     case FCMP_TRUE: return FCMP_FALSE;
3559     case FCMP_FALSE: return FCMP_TRUE;
3560   }
3561 }
3562 
3563 StringRef CmpInst::getPredicateName(Predicate Pred) {
3564   switch (Pred) {
3565   default:                   return "unknown";
3566   case FCmpInst::FCMP_FALSE: return "false";
3567   case FCmpInst::FCMP_OEQ:   return "oeq";
3568   case FCmpInst::FCMP_OGT:   return "ogt";
3569   case FCmpInst::FCMP_OGE:   return "oge";
3570   case FCmpInst::FCMP_OLT:   return "olt";
3571   case FCmpInst::FCMP_OLE:   return "ole";
3572   case FCmpInst::FCMP_ONE:   return "one";
3573   case FCmpInst::FCMP_ORD:   return "ord";
3574   case FCmpInst::FCMP_UNO:   return "uno";
3575   case FCmpInst::FCMP_UEQ:   return "ueq";
3576   case FCmpInst::FCMP_UGT:   return "ugt";
3577   case FCmpInst::FCMP_UGE:   return "uge";
3578   case FCmpInst::FCMP_ULT:   return "ult";
3579   case FCmpInst::FCMP_ULE:   return "ule";
3580   case FCmpInst::FCMP_UNE:   return "une";
3581   case FCmpInst::FCMP_TRUE:  return "true";
3582   case ICmpInst::ICMP_EQ:    return "eq";
3583   case ICmpInst::ICMP_NE:    return "ne";
3584   case ICmpInst::ICMP_SGT:   return "sgt";
3585   case ICmpInst::ICMP_SGE:   return "sge";
3586   case ICmpInst::ICMP_SLT:   return "slt";
3587   case ICmpInst::ICMP_SLE:   return "sle";
3588   case ICmpInst::ICMP_UGT:   return "ugt";
3589   case ICmpInst::ICMP_UGE:   return "uge";
3590   case ICmpInst::ICMP_ULT:   return "ult";
3591   case ICmpInst::ICMP_ULE:   return "ule";
3592   }
3593 }
3594 
3595 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3596   switch (pred) {
3597     default: llvm_unreachable("Unknown icmp predicate!");
3598     case ICMP_EQ: case ICMP_NE:
3599     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3600        return pred;
3601     case ICMP_UGT: return ICMP_SGT;
3602     case ICMP_ULT: return ICMP_SLT;
3603     case ICMP_UGE: return ICMP_SGE;
3604     case ICMP_ULE: return ICMP_SLE;
3605   }
3606 }
3607 
3608 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3609   switch (pred) {
3610     default: llvm_unreachable("Unknown icmp predicate!");
3611     case ICMP_EQ: case ICMP_NE:
3612     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3613        return pred;
3614     case ICMP_SGT: return ICMP_UGT;
3615     case ICMP_SLT: return ICMP_ULT;
3616     case ICMP_SGE: return ICMP_UGE;
3617     case ICMP_SLE: return ICMP_ULE;
3618   }
3619 }
3620 
3621 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3622   switch (pred) {
3623     default: llvm_unreachable("Unknown or unsupported cmp predicate!");
3624     case ICMP_SGT: return ICMP_SGE;
3625     case ICMP_SLT: return ICMP_SLE;
3626     case ICMP_SGE: return ICMP_SGT;
3627     case ICMP_SLE: return ICMP_SLT;
3628     case ICMP_UGT: return ICMP_UGE;
3629     case ICMP_ULT: return ICMP_ULE;
3630     case ICMP_UGE: return ICMP_UGT;
3631     case ICMP_ULE: return ICMP_ULT;
3632 
3633     case FCMP_OGT: return FCMP_OGE;
3634     case FCMP_OLT: return FCMP_OLE;
3635     case FCMP_OGE: return FCMP_OGT;
3636     case FCMP_OLE: return FCMP_OLT;
3637     case FCMP_UGT: return FCMP_UGE;
3638     case FCMP_ULT: return FCMP_ULE;
3639     case FCMP_UGE: return FCMP_UGT;
3640     case FCMP_ULE: return FCMP_ULT;
3641   }
3642 }
3643 
3644 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3645   switch (pred) {
3646     default: llvm_unreachable("Unknown cmp predicate!");
3647     case ICMP_EQ: case ICMP_NE:
3648       return pred;
3649     case ICMP_SGT: return ICMP_SLT;
3650     case ICMP_SLT: return ICMP_SGT;
3651     case ICMP_SGE: return ICMP_SLE;
3652     case ICMP_SLE: return ICMP_SGE;
3653     case ICMP_UGT: return ICMP_ULT;
3654     case ICMP_ULT: return ICMP_UGT;
3655     case ICMP_UGE: return ICMP_ULE;
3656     case ICMP_ULE: return ICMP_UGE;
3657 
3658     case FCMP_FALSE: case FCMP_TRUE:
3659     case FCMP_OEQ: case FCMP_ONE:
3660     case FCMP_UEQ: case FCMP_UNE:
3661     case FCMP_ORD: case FCMP_UNO:
3662       return pred;
3663     case FCMP_OGT: return FCMP_OLT;
3664     case FCMP_OLT: return FCMP_OGT;
3665     case FCMP_OGE: return FCMP_OLE;
3666     case FCMP_OLE: return FCMP_OGE;
3667     case FCMP_UGT: return FCMP_ULT;
3668     case FCMP_ULT: return FCMP_UGT;
3669     case FCMP_UGE: return FCMP_ULE;
3670     case FCMP_ULE: return FCMP_UGE;
3671   }
3672 }
3673 
3674 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3675   switch (pred) {
3676   case ICMP_SGT: return ICMP_SGE;
3677   case ICMP_SLT: return ICMP_SLE;
3678   case ICMP_UGT: return ICMP_UGE;
3679   case ICMP_ULT: return ICMP_ULE;
3680   case FCMP_OGT: return FCMP_OGE;
3681   case FCMP_OLT: return FCMP_OLE;
3682   case FCMP_UGT: return FCMP_UGE;
3683   case FCMP_ULT: return FCMP_ULE;
3684   default: return pred;
3685   }
3686 }
3687 
3688 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3689   assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!");
3690 
3691   switch (pred) {
3692   default:
3693     llvm_unreachable("Unknown predicate!");
3694   case CmpInst::ICMP_ULT:
3695     return CmpInst::ICMP_SLT;
3696   case CmpInst::ICMP_ULE:
3697     return CmpInst::ICMP_SLE;
3698   case CmpInst::ICMP_UGT:
3699     return CmpInst::ICMP_SGT;
3700   case CmpInst::ICMP_UGE:
3701     return CmpInst::ICMP_SGE;
3702   }
3703 }
3704 
3705 bool CmpInst::isUnsigned(Predicate predicate) {
3706   switch (predicate) {
3707     default: return false;
3708     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3709     case ICmpInst::ICMP_UGE: return true;
3710   }
3711 }
3712 
3713 bool CmpInst::isSigned(Predicate predicate) {
3714   switch (predicate) {
3715     default: return false;
3716     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3717     case ICmpInst::ICMP_SGE: return true;
3718   }
3719 }
3720 
3721 bool CmpInst::isOrdered(Predicate predicate) {
3722   switch (predicate) {
3723     default: return false;
3724     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3725     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3726     case FCmpInst::FCMP_ORD: return true;
3727   }
3728 }
3729 
3730 bool CmpInst::isUnordered(Predicate predicate) {
3731   switch (predicate) {
3732     default: return false;
3733     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3734     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3735     case FCmpInst::FCMP_UNO: return true;
3736   }
3737 }
3738 
3739 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3740   switch(predicate) {
3741     default: return false;
3742     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3743     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3744   }
3745 }
3746 
3747 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3748   switch(predicate) {
3749   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3750   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3751   default: return false;
3752   }
3753 }
3754 
3755 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3756   // If the predicates match, then we know the first condition implies the
3757   // second is true.
3758   if (Pred1 == Pred2)
3759     return true;
3760 
3761   switch (Pred1) {
3762   default:
3763     break;
3764   case ICMP_EQ:
3765     // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3766     return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3767            Pred2 == ICMP_SLE;
3768   case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3769     return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3770   case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3771     return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3772   case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3773     return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3774   case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3775     return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3776   }
3777   return false;
3778 }
3779 
3780 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3781   return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3782 }
3783 
3784 //===----------------------------------------------------------------------===//
3785 //                        SwitchInst Implementation
3786 //===----------------------------------------------------------------------===//
3787 
3788 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3789   assert(Value && Default && NumReserved);
3790   ReservedSpace = NumReserved;
3791   setNumHungOffUseOperands(2);
3792   allocHungoffUses(ReservedSpace);
3793 
3794   Op<0>() = Value;
3795   Op<1>() = Default;
3796 }
3797 
3798 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3799 /// switch on and a default destination.  The number of additional cases can
3800 /// be specified here to make memory allocation more efficient.  This
3801 /// constructor can also autoinsert before another instruction.
3802 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3803                        Instruction *InsertBefore)
3804     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3805                   nullptr, 0, InsertBefore) {
3806   init(Value, Default, 2+NumCases*2);
3807 }
3808 
3809 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3810 /// switch on and a default destination.  The number of additional cases can
3811 /// be specified here to make memory allocation more efficient.  This
3812 /// constructor also autoinserts at the end of the specified BasicBlock.
3813 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3814                        BasicBlock *InsertAtEnd)
3815     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3816                   nullptr, 0, InsertAtEnd) {
3817   init(Value, Default, 2+NumCases*2);
3818 }
3819 
3820 SwitchInst::SwitchInst(const SwitchInst &SI)
3821     : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
3822   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3823   setNumHungOffUseOperands(SI.getNumOperands());
3824   Use *OL = getOperandList();
3825   const Use *InOL = SI.getOperandList();
3826   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3827     OL[i] = InOL[i];
3828     OL[i+1] = InOL[i+1];
3829   }
3830   SubclassOptionalData = SI.SubclassOptionalData;
3831 }
3832 
3833 /// addCase - Add an entry to the switch instruction...
3834 ///
3835 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3836   unsigned NewCaseIdx = getNumCases();
3837   unsigned OpNo = getNumOperands();
3838   if (OpNo+2 > ReservedSpace)
3839     growOperands();  // Get more space!
3840   // Initialize some new operands.
3841   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3842   setNumHungOffUseOperands(OpNo+2);
3843   CaseHandle Case(this, NewCaseIdx);
3844   Case.setValue(OnVal);
3845   Case.setSuccessor(Dest);
3846 }
3847 
3848 /// removeCase - This method removes the specified case and its successor
3849 /// from the switch instruction.
3850 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
3851   unsigned idx = I->getCaseIndex();
3852 
3853   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3854 
3855   unsigned NumOps = getNumOperands();
3856   Use *OL = getOperandList();
3857 
3858   // Overwrite this case with the end of the list.
3859   if (2 + (idx + 1) * 2 != NumOps) {
3860     OL[2 + idx * 2] = OL[NumOps - 2];
3861     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3862   }
3863 
3864   // Nuke the last value.
3865   OL[NumOps-2].set(nullptr);
3866   OL[NumOps-2+1].set(nullptr);
3867   setNumHungOffUseOperands(NumOps-2);
3868 
3869   return CaseIt(this, idx);
3870 }
3871 
3872 /// growOperands - grow operands - This grows the operand list in response
3873 /// to a push_back style of operation.  This grows the number of ops by 3 times.
3874 ///
3875 void SwitchInst::growOperands() {
3876   unsigned e = getNumOperands();
3877   unsigned NumOps = e*3;
3878 
3879   ReservedSpace = NumOps;
3880   growHungoffUses(ReservedSpace);
3881 }
3882 
3883 MDNode *
3884 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) {
3885   if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
3886     if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
3887       if (MDName->getString() == "branch_weights")
3888         return ProfileData;
3889   return nullptr;
3890 }
3891 
3892 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
3893   assert(Changed && "called only if metadata has changed");
3894 
3895   if (!Weights)
3896     return nullptr;
3897 
3898   assert(SI.getNumSuccessors() == Weights->size() &&
3899          "num of prof branch_weights must accord with num of successors");
3900 
3901   bool AllZeroes =
3902       all_of(Weights.getValue(), [](uint32_t W) { return W == 0; });
3903 
3904   if (AllZeroes || Weights.getValue().size() < 2)
3905     return nullptr;
3906 
3907   return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
3908 }
3909 
3910 void SwitchInstProfUpdateWrapper::init() {
3911   MDNode *ProfileData = getProfBranchWeightsMD(SI);
3912   if (!ProfileData)
3913     return;
3914 
3915   if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
3916     llvm_unreachable("number of prof branch_weights metadata operands does "
3917                      "not correspond to number of succesors");
3918   }
3919 
3920   SmallVector<uint32_t, 8> Weights;
3921   for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
3922     ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
3923     uint32_t CW = C->getValue().getZExtValue();
3924     Weights.push_back(CW);
3925   }
3926   this->Weights = std::move(Weights);
3927 }
3928 
3929 SwitchInst::CaseIt
3930 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
3931   if (Weights) {
3932     assert(SI.getNumSuccessors() == Weights->size() &&
3933            "num of prof branch_weights must accord with num of successors");
3934     Changed = true;
3935     // Copy the last case to the place of the removed one and shrink.
3936     // This is tightly coupled with the way SwitchInst::removeCase() removes
3937     // the cases in SwitchInst::removeCase(CaseIt).
3938     Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back();
3939     Weights.getValue().pop_back();
3940   }
3941   return SI.removeCase(I);
3942 }
3943 
3944 void SwitchInstProfUpdateWrapper::addCase(
3945     ConstantInt *OnVal, BasicBlock *Dest,
3946     SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
3947   SI.addCase(OnVal, Dest);
3948 
3949   if (!Weights && W && *W) {
3950     Changed = true;
3951     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
3952     Weights.getValue()[SI.getNumSuccessors() - 1] = *W;
3953   } else if (Weights) {
3954     Changed = true;
3955     Weights.getValue().push_back(W ? *W : 0);
3956   }
3957   if (Weights)
3958     assert(SI.getNumSuccessors() == Weights->size() &&
3959            "num of prof branch_weights must accord with num of successors");
3960 }
3961 
3962 SymbolTableList<Instruction>::iterator
3963 SwitchInstProfUpdateWrapper::eraseFromParent() {
3964   // Instruction is erased. Mark as unchanged to not touch it in the destructor.
3965   Changed = false;
3966   if (Weights)
3967     Weights->resize(0);
3968   return SI.eraseFromParent();
3969 }
3970 
3971 SwitchInstProfUpdateWrapper::CaseWeightOpt
3972 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
3973   if (!Weights)
3974     return None;
3975   return Weights.getValue()[idx];
3976 }
3977 
3978 void SwitchInstProfUpdateWrapper::setSuccessorWeight(
3979     unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
3980   if (!W)
3981     return;
3982 
3983   if (!Weights && *W)
3984     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
3985 
3986   if (Weights) {
3987     auto &OldW = Weights.getValue()[idx];
3988     if (*W != OldW) {
3989       Changed = true;
3990       OldW = *W;
3991     }
3992   }
3993 }
3994 
3995 SwitchInstProfUpdateWrapper::CaseWeightOpt
3996 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
3997                                                 unsigned idx) {
3998   if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
3999     if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4000       return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4001           ->getValue()
4002           .getZExtValue();
4003 
4004   return None;
4005 }
4006 
4007 //===----------------------------------------------------------------------===//
4008 //                        IndirectBrInst Implementation
4009 //===----------------------------------------------------------------------===//
4010 
4011 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4012   assert(Address && Address->getType()->isPointerTy() &&
4013          "Address of indirectbr must be a pointer");
4014   ReservedSpace = 1+NumDests;
4015   setNumHungOffUseOperands(1);
4016   allocHungoffUses(ReservedSpace);
4017 
4018   Op<0>() = Address;
4019 }
4020 
4021 
4022 /// growOperands - grow operands - This grows the operand list in response
4023 /// to a push_back style of operation.  This grows the number of ops by 2 times.
4024 ///
4025 void IndirectBrInst::growOperands() {
4026   unsigned e = getNumOperands();
4027   unsigned NumOps = e*2;
4028 
4029   ReservedSpace = NumOps;
4030   growHungoffUses(ReservedSpace);
4031 }
4032 
4033 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4034                                Instruction *InsertBefore)
4035     : Instruction(Type::getVoidTy(Address->getContext()),
4036                   Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4037   init(Address, NumCases);
4038 }
4039 
4040 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4041                                BasicBlock *InsertAtEnd)
4042     : Instruction(Type::getVoidTy(Address->getContext()),
4043                   Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
4044   init(Address, NumCases);
4045 }
4046 
4047 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4048     : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4049                   nullptr, IBI.getNumOperands()) {
4050   allocHungoffUses(IBI.getNumOperands());
4051   Use *OL = getOperandList();
4052   const Use *InOL = IBI.getOperandList();
4053   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4054     OL[i] = InOL[i];
4055   SubclassOptionalData = IBI.SubclassOptionalData;
4056 }
4057 
4058 /// addDestination - Add a destination.
4059 ///
4060 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4061   unsigned OpNo = getNumOperands();
4062   if (OpNo+1 > ReservedSpace)
4063     growOperands();  // Get more space!
4064   // Initialize some new operands.
4065   assert(OpNo < ReservedSpace && "Growing didn't work!");
4066   setNumHungOffUseOperands(OpNo+1);
4067   getOperandList()[OpNo] = DestBB;
4068 }
4069 
4070 /// removeDestination - This method removes the specified successor from the
4071 /// indirectbr instruction.
4072 void IndirectBrInst::removeDestination(unsigned idx) {
4073   assert(idx < getNumOperands()-1 && "Successor index out of range!");
4074 
4075   unsigned NumOps = getNumOperands();
4076   Use *OL = getOperandList();
4077 
4078   // Replace this value with the last one.
4079   OL[idx+1] = OL[NumOps-1];
4080 
4081   // Nuke the last value.
4082   OL[NumOps-1].set(nullptr);
4083   setNumHungOffUseOperands(NumOps-1);
4084 }
4085 
4086 //===----------------------------------------------------------------------===//
4087 //                            FreezeInst Implementation
4088 //===----------------------------------------------------------------------===//
4089 
4090 FreezeInst::FreezeInst(Value *S,
4091                        const Twine &Name, Instruction *InsertBefore)
4092     : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
4093   setName(Name);
4094 }
4095 
4096 FreezeInst::FreezeInst(Value *S,
4097                        const Twine &Name, BasicBlock *InsertAtEnd)
4098     : UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) {
4099   setName(Name);
4100 }
4101 
4102 //===----------------------------------------------------------------------===//
4103 //                           cloneImpl() implementations
4104 //===----------------------------------------------------------------------===//
4105 
4106 // Define these methods here so vtables don't get emitted into every translation
4107 // unit that uses these classes.
4108 
4109 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4110   return new (getNumOperands()) GetElementPtrInst(*this);
4111 }
4112 
4113 UnaryOperator *UnaryOperator::cloneImpl() const {
4114   return Create(getOpcode(), Op<0>());
4115 }
4116 
4117 BinaryOperator *BinaryOperator::cloneImpl() const {
4118   return Create(getOpcode(), Op<0>(), Op<1>());
4119 }
4120 
4121 FCmpInst *FCmpInst::cloneImpl() const {
4122   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4123 }
4124 
4125 ICmpInst *ICmpInst::cloneImpl() const {
4126   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4127 }
4128 
4129 ExtractValueInst *ExtractValueInst::cloneImpl() const {
4130   return new ExtractValueInst(*this);
4131 }
4132 
4133 InsertValueInst *InsertValueInst::cloneImpl() const {
4134   return new InsertValueInst(*this);
4135 }
4136 
4137 AllocaInst *AllocaInst::cloneImpl() const {
4138   AllocaInst *Result =
4139       new AllocaInst(getAllocatedType(), getType()->getAddressSpace(),
4140                      (Value *)getOperand(0), MaybeAlign(getAlignment()));
4141   Result->setUsedWithInAlloca(isUsedWithInAlloca());
4142   Result->setSwiftError(isSwiftError());
4143   return Result;
4144 }
4145 
4146 LoadInst *LoadInst::cloneImpl() const {
4147   return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4148                       MaybeAlign(getAlignment()), getOrdering(),
4149                       getSyncScopeID());
4150 }
4151 
4152 StoreInst *StoreInst::cloneImpl() const {
4153   return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
4154                        MaybeAlign(getAlignment()), getOrdering(),
4155                        getSyncScopeID());
4156 }
4157 
4158 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4159   AtomicCmpXchgInst *Result =
4160     new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
4161                           getSuccessOrdering(), getFailureOrdering(),
4162                           getSyncScopeID());
4163   Result->setVolatile(isVolatile());
4164   Result->setWeak(isWeak());
4165   return Result;
4166 }
4167 
4168 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4169   AtomicRMWInst *Result =
4170     new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4171                       getOrdering(), getSyncScopeID());
4172   Result->setVolatile(isVolatile());
4173   return Result;
4174 }
4175 
4176 FenceInst *FenceInst::cloneImpl() const {
4177   return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4178 }
4179 
4180 TruncInst *TruncInst::cloneImpl() const {
4181   return new TruncInst(getOperand(0), getType());
4182 }
4183 
4184 ZExtInst *ZExtInst::cloneImpl() const {
4185   return new ZExtInst(getOperand(0), getType());
4186 }
4187 
4188 SExtInst *SExtInst::cloneImpl() const {
4189   return new SExtInst(getOperand(0), getType());
4190 }
4191 
4192 FPTruncInst *FPTruncInst::cloneImpl() const {
4193   return new FPTruncInst(getOperand(0), getType());
4194 }
4195 
4196 FPExtInst *FPExtInst::cloneImpl() const {
4197   return new FPExtInst(getOperand(0), getType());
4198 }
4199 
4200 UIToFPInst *UIToFPInst::cloneImpl() const {
4201   return new UIToFPInst(getOperand(0), getType());
4202 }
4203 
4204 SIToFPInst *SIToFPInst::cloneImpl() const {
4205   return new SIToFPInst(getOperand(0), getType());
4206 }
4207 
4208 FPToUIInst *FPToUIInst::cloneImpl() const {
4209   return new FPToUIInst(getOperand(0), getType());
4210 }
4211 
4212 FPToSIInst *FPToSIInst::cloneImpl() const {
4213   return new FPToSIInst(getOperand(0), getType());
4214 }
4215 
4216 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4217   return new PtrToIntInst(getOperand(0), getType());
4218 }
4219 
4220 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4221   return new IntToPtrInst(getOperand(0), getType());
4222 }
4223 
4224 BitCastInst *BitCastInst::cloneImpl() const {
4225   return new BitCastInst(getOperand(0), getType());
4226 }
4227 
4228 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4229   return new AddrSpaceCastInst(getOperand(0), getType());
4230 }
4231 
4232 CallInst *CallInst::cloneImpl() const {
4233   if (hasOperandBundles()) {
4234     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4235     return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4236   }
4237   return  new(getNumOperands()) CallInst(*this);
4238 }
4239 
4240 SelectInst *SelectInst::cloneImpl() const {
4241   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4242 }
4243 
4244 VAArgInst *VAArgInst::cloneImpl() const {
4245   return new VAArgInst(getOperand(0), getType());
4246 }
4247 
4248 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4249   return ExtractElementInst::Create(getOperand(0), getOperand(1));
4250 }
4251 
4252 InsertElementInst *InsertElementInst::cloneImpl() const {
4253   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4254 }
4255 
4256 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4257   return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
4258 }
4259 
4260 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4261 
4262 LandingPadInst *LandingPadInst::cloneImpl() const {
4263   return new LandingPadInst(*this);
4264 }
4265 
4266 ReturnInst *ReturnInst::cloneImpl() const {
4267   return new(getNumOperands()) ReturnInst(*this);
4268 }
4269 
4270 BranchInst *BranchInst::cloneImpl() const {
4271   return new(getNumOperands()) BranchInst(*this);
4272 }
4273 
4274 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4275 
4276 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4277   return new IndirectBrInst(*this);
4278 }
4279 
4280 InvokeInst *InvokeInst::cloneImpl() const {
4281   if (hasOperandBundles()) {
4282     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4283     return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4284   }
4285   return new(getNumOperands()) InvokeInst(*this);
4286 }
4287 
4288 CallBrInst *CallBrInst::cloneImpl() const {
4289   if (hasOperandBundles()) {
4290     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4291     return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4292   }
4293   return new (getNumOperands()) CallBrInst(*this);
4294 }
4295 
4296 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4297 
4298 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4299   return new (getNumOperands()) CleanupReturnInst(*this);
4300 }
4301 
4302 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4303   return new (getNumOperands()) CatchReturnInst(*this);
4304 }
4305 
4306 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4307   return new CatchSwitchInst(*this);
4308 }
4309 
4310 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4311   return new (getNumOperands()) FuncletPadInst(*this);
4312 }
4313 
4314 UnreachableInst *UnreachableInst::cloneImpl() const {
4315   LLVMContext &Context = getContext();
4316   return new UnreachableInst(Context);
4317 }
4318 
4319 FreezeInst *FreezeInst::cloneImpl() const {
4320   return new FreezeInst(getOperand(0));
4321 }
4322