1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements all of the non-inline methods for the LLVM instruction 10 // classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Instructions.h" 15 #include "LLVMContextImpl.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/IR/Attributes.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/Constant.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/InstrTypes.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/AtomicOrdering.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/TypeSize.h" 41 #include <algorithm> 42 #include <cassert> 43 #include <cstdint> 44 #include <vector> 45 46 using namespace llvm; 47 48 //===----------------------------------------------------------------------===// 49 // AllocaInst Class 50 //===----------------------------------------------------------------------===// 51 52 Optional<TypeSize> 53 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const { 54 TypeSize Size = DL.getTypeAllocSizeInBits(getAllocatedType()); 55 if (isArrayAllocation()) { 56 auto *C = dyn_cast<ConstantInt>(getArraySize()); 57 if (!C) 58 return None; 59 assert(!Size.isScalable() && "Array elements cannot have a scalable size"); 60 Size *= C->getZExtValue(); 61 } 62 return Size; 63 } 64 65 //===----------------------------------------------------------------------===// 66 // SelectInst Class 67 //===----------------------------------------------------------------------===// 68 69 /// areInvalidOperands - Return a string if the specified operands are invalid 70 /// for a select operation, otherwise return null. 71 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) { 72 if (Op1->getType() != Op2->getType()) 73 return "both values to select must have same type"; 74 75 if (Op1->getType()->isTokenTy()) 76 return "select values cannot have token type"; 77 78 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) { 79 // Vector select. 80 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext())) 81 return "vector select condition element type must be i1"; 82 VectorType *ET = dyn_cast<VectorType>(Op1->getType()); 83 if (!ET) 84 return "selected values for vector select must be vectors"; 85 if (ET->getElementCount() != VT->getElementCount()) 86 return "vector select requires selected vectors to have " 87 "the same vector length as select condition"; 88 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) { 89 return "select condition must be i1 or <n x i1>"; 90 } 91 return nullptr; 92 } 93 94 //===----------------------------------------------------------------------===// 95 // PHINode Class 96 //===----------------------------------------------------------------------===// 97 98 PHINode::PHINode(const PHINode &PN) 99 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()), 100 ReservedSpace(PN.getNumOperands()) { 101 allocHungoffUses(PN.getNumOperands()); 102 std::copy(PN.op_begin(), PN.op_end(), op_begin()); 103 std::copy(PN.block_begin(), PN.block_end(), block_begin()); 104 SubclassOptionalData = PN.SubclassOptionalData; 105 } 106 107 // removeIncomingValue - Remove an incoming value. This is useful if a 108 // predecessor basic block is deleted. 109 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { 110 Value *Removed = getIncomingValue(Idx); 111 112 // Move everything after this operand down. 113 // 114 // FIXME: we could just swap with the end of the list, then erase. However, 115 // clients might not expect this to happen. The code as it is thrashes the 116 // use/def lists, which is kinda lame. 117 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx); 118 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx); 119 120 // Nuke the last value. 121 Op<-1>().set(nullptr); 122 setNumHungOffUseOperands(getNumOperands() - 1); 123 124 // If the PHI node is dead, because it has zero entries, nuke it now. 125 if (getNumOperands() == 0 && DeletePHIIfEmpty) { 126 // If anyone is using this PHI, make them use a dummy value instead... 127 replaceAllUsesWith(UndefValue::get(getType())); 128 eraseFromParent(); 129 } 130 return Removed; 131 } 132 133 /// growOperands - grow operands - This grows the operand list in response 134 /// to a push_back style of operation. This grows the number of ops by 1.5 135 /// times. 136 /// 137 void PHINode::growOperands() { 138 unsigned e = getNumOperands(); 139 unsigned NumOps = e + e / 2; 140 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common. 141 142 ReservedSpace = NumOps; 143 growHungoffUses(ReservedSpace, /* IsPhi */ true); 144 } 145 146 /// hasConstantValue - If the specified PHI node always merges together the same 147 /// value, return the value, otherwise return null. 148 Value *PHINode::hasConstantValue() const { 149 // Exploit the fact that phi nodes always have at least one entry. 150 Value *ConstantValue = getIncomingValue(0); 151 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i) 152 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) { 153 if (ConstantValue != this) 154 return nullptr; // Incoming values not all the same. 155 // The case where the first value is this PHI. 156 ConstantValue = getIncomingValue(i); 157 } 158 if (ConstantValue == this) 159 return UndefValue::get(getType()); 160 return ConstantValue; 161 } 162 163 /// hasConstantOrUndefValue - Whether the specified PHI node always merges 164 /// together the same value, assuming that undefs result in the same value as 165 /// non-undefs. 166 /// Unlike \ref hasConstantValue, this does not return a value because the 167 /// unique non-undef incoming value need not dominate the PHI node. 168 bool PHINode::hasConstantOrUndefValue() const { 169 Value *ConstantValue = nullptr; 170 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) { 171 Value *Incoming = getIncomingValue(i); 172 if (Incoming != this && !isa<UndefValue>(Incoming)) { 173 if (ConstantValue && ConstantValue != Incoming) 174 return false; 175 ConstantValue = Incoming; 176 } 177 } 178 return true; 179 } 180 181 //===----------------------------------------------------------------------===// 182 // LandingPadInst Implementation 183 //===----------------------------------------------------------------------===// 184 185 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, 186 const Twine &NameStr, Instruction *InsertBefore) 187 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) { 188 init(NumReservedValues, NameStr); 189 } 190 191 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, 192 const Twine &NameStr, BasicBlock *InsertAtEnd) 193 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) { 194 init(NumReservedValues, NameStr); 195 } 196 197 LandingPadInst::LandingPadInst(const LandingPadInst &LP) 198 : Instruction(LP.getType(), Instruction::LandingPad, nullptr, 199 LP.getNumOperands()), 200 ReservedSpace(LP.getNumOperands()) { 201 allocHungoffUses(LP.getNumOperands()); 202 Use *OL = getOperandList(); 203 const Use *InOL = LP.getOperandList(); 204 for (unsigned I = 0, E = ReservedSpace; I != E; ++I) 205 OL[I] = InOL[I]; 206 207 setCleanup(LP.isCleanup()); 208 } 209 210 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, 211 const Twine &NameStr, 212 Instruction *InsertBefore) { 213 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore); 214 } 215 216 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, 217 const Twine &NameStr, 218 BasicBlock *InsertAtEnd) { 219 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd); 220 } 221 222 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) { 223 ReservedSpace = NumReservedValues; 224 setNumHungOffUseOperands(0); 225 allocHungoffUses(ReservedSpace); 226 setName(NameStr); 227 setCleanup(false); 228 } 229 230 /// growOperands - grow operands - This grows the operand list in response to a 231 /// push_back style of operation. This grows the number of ops by 2 times. 232 void LandingPadInst::growOperands(unsigned Size) { 233 unsigned e = getNumOperands(); 234 if (ReservedSpace >= e + Size) return; 235 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2; 236 growHungoffUses(ReservedSpace); 237 } 238 239 void LandingPadInst::addClause(Constant *Val) { 240 unsigned OpNo = getNumOperands(); 241 growOperands(1); 242 assert(OpNo < ReservedSpace && "Growing didn't work!"); 243 setNumHungOffUseOperands(getNumOperands() + 1); 244 getOperandList()[OpNo] = Val; 245 } 246 247 //===----------------------------------------------------------------------===// 248 // CallBase Implementation 249 //===----------------------------------------------------------------------===// 250 251 CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles, 252 Instruction *InsertPt) { 253 switch (CB->getOpcode()) { 254 case Instruction::Call: 255 return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt); 256 case Instruction::Invoke: 257 return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt); 258 case Instruction::CallBr: 259 return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt); 260 default: 261 llvm_unreachable("Unknown CallBase sub-class!"); 262 } 263 } 264 265 Function *CallBase::getCaller() { return getParent()->getParent(); } 266 267 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const { 268 assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!"); 269 return cast<CallBrInst>(this)->getNumIndirectDests() + 1; 270 } 271 272 bool CallBase::isIndirectCall() const { 273 const Value *V = getCalledOperand(); 274 if (isa<Function>(V) || isa<Constant>(V)) 275 return false; 276 return !isInlineAsm(); 277 } 278 279 /// Tests if this call site must be tail call optimized. Only a CallInst can 280 /// be tail call optimized. 281 bool CallBase::isMustTailCall() const { 282 if (auto *CI = dyn_cast<CallInst>(this)) 283 return CI->isMustTailCall(); 284 return false; 285 } 286 287 /// Tests if this call site is marked as a tail call. 288 bool CallBase::isTailCall() const { 289 if (auto *CI = dyn_cast<CallInst>(this)) 290 return CI->isTailCall(); 291 return false; 292 } 293 294 Intrinsic::ID CallBase::getIntrinsicID() const { 295 if (auto *F = getCalledFunction()) 296 return F->getIntrinsicID(); 297 return Intrinsic::not_intrinsic; 298 } 299 300 bool CallBase::isReturnNonNull() const { 301 if (hasRetAttr(Attribute::NonNull)) 302 return true; 303 304 if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 && 305 !NullPointerIsDefined(getCaller(), 306 getType()->getPointerAddressSpace())) 307 return true; 308 309 return false; 310 } 311 312 Value *CallBase::getReturnedArgOperand() const { 313 unsigned Index; 314 315 if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index) 316 return getArgOperand(Index - AttributeList::FirstArgIndex); 317 if (const Function *F = getCalledFunction()) 318 if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) && 319 Index) 320 return getArgOperand(Index - AttributeList::FirstArgIndex); 321 322 return nullptr; 323 } 324 325 /// Determine whether the argument or parameter has the given attribute. 326 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const { 327 assert(ArgNo < getNumArgOperands() && "Param index out of bounds!"); 328 329 if (Attrs.hasParamAttribute(ArgNo, Kind)) 330 return true; 331 if (const Function *F = getCalledFunction()) 332 return F->getAttributes().hasParamAttribute(ArgNo, Kind); 333 return false; 334 } 335 336 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const { 337 if (const Function *F = getCalledFunction()) 338 return F->getAttributes().hasFnAttribute(Kind); 339 return false; 340 } 341 342 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const { 343 if (const Function *F = getCalledFunction()) 344 return F->getAttributes().hasFnAttribute(Kind); 345 return false; 346 } 347 348 void CallBase::getOperandBundlesAsDefs( 349 SmallVectorImpl<OperandBundleDef> &Defs) const { 350 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) 351 Defs.emplace_back(getOperandBundleAt(i)); 352 } 353 354 CallBase::op_iterator 355 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles, 356 const unsigned BeginIndex) { 357 auto It = op_begin() + BeginIndex; 358 for (auto &B : Bundles) 359 It = std::copy(B.input_begin(), B.input_end(), It); 360 361 auto *ContextImpl = getContext().pImpl; 362 auto BI = Bundles.begin(); 363 unsigned CurrentIndex = BeginIndex; 364 365 for (auto &BOI : bundle_op_infos()) { 366 assert(BI != Bundles.end() && "Incorrect allocation?"); 367 368 BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag()); 369 BOI.Begin = CurrentIndex; 370 BOI.End = CurrentIndex + BI->input_size(); 371 CurrentIndex = BOI.End; 372 BI++; 373 } 374 375 assert(BI == Bundles.end() && "Incorrect allocation?"); 376 377 return It; 378 } 379 380 CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) { 381 /// When there isn't many bundles, we do a simple linear search. 382 /// Else fallback to a binary-search that use the fact that bundles usually 383 /// have similar number of argument to get faster convergence. 384 if (bundle_op_info_end() - bundle_op_info_begin() < 8) { 385 for (auto &BOI : bundle_op_infos()) 386 if (BOI.Begin <= OpIdx && OpIdx < BOI.End) 387 return BOI; 388 389 llvm_unreachable("Did not find operand bundle for operand!"); 390 } 391 392 assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles"); 393 assert(bundle_op_info_end() - bundle_op_info_begin() > 0 && 394 OpIdx < std::prev(bundle_op_info_end())->End && 395 "The Idx isn't in the operand bundle"); 396 397 /// We need a decimal number below and to prevent using floating point numbers 398 /// we use an intergal value multiplied by this constant. 399 constexpr unsigned NumberScaling = 1024; 400 401 bundle_op_iterator Begin = bundle_op_info_begin(); 402 bundle_op_iterator End = bundle_op_info_end(); 403 bundle_op_iterator Current = Begin; 404 405 while (Begin != End) { 406 unsigned ScaledOperandPerBundle = 407 NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin); 408 Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) / 409 ScaledOperandPerBundle); 410 if (Current >= End) 411 Current = std::prev(End); 412 assert(Current < End && Current >= Begin && 413 "the operand bundle doesn't cover every value in the range"); 414 if (OpIdx >= Current->Begin && OpIdx < Current->End) 415 break; 416 if (OpIdx >= Current->End) 417 Begin = Current + 1; 418 else 419 End = Current; 420 } 421 422 assert(OpIdx >= Current->Begin && OpIdx < Current->End && 423 "the operand bundle doesn't cover every value in the range"); 424 return *Current; 425 } 426 427 //===----------------------------------------------------------------------===// 428 // CallInst Implementation 429 //===----------------------------------------------------------------------===// 430 431 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, 432 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) { 433 this->FTy = FTy; 434 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 && 435 "NumOperands not set up?"); 436 setCalledOperand(Func); 437 438 #ifndef NDEBUG 439 assert((Args.size() == FTy->getNumParams() || 440 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 441 "Calling a function with bad signature!"); 442 443 for (unsigned i = 0; i != Args.size(); ++i) 444 assert((i >= FTy->getNumParams() || 445 FTy->getParamType(i) == Args[i]->getType()) && 446 "Calling a function with a bad signature!"); 447 #endif 448 449 llvm::copy(Args, op_begin()); 450 451 auto It = populateBundleOperandInfos(Bundles, Args.size()); 452 (void)It; 453 assert(It + 1 == op_end() && "Should add up!"); 454 455 setName(NameStr); 456 } 457 458 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) { 459 this->FTy = FTy; 460 assert(getNumOperands() == 1 && "NumOperands not set up?"); 461 setCalledOperand(Func); 462 463 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature"); 464 465 setName(NameStr); 466 } 467 468 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name, 469 Instruction *InsertBefore) 470 : CallBase(Ty->getReturnType(), Instruction::Call, 471 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) { 472 init(Ty, Func, Name); 473 } 474 475 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name, 476 BasicBlock *InsertAtEnd) 477 : CallBase(Ty->getReturnType(), Instruction::Call, 478 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) { 479 init(Ty, Func, Name); 480 } 481 482 CallInst::CallInst(const CallInst &CI) 483 : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call, 484 OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(), 485 CI.getNumOperands()) { 486 setTailCallKind(CI.getTailCallKind()); 487 setCallingConv(CI.getCallingConv()); 488 489 std::copy(CI.op_begin(), CI.op_end(), op_begin()); 490 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(), 491 bundle_op_info_begin()); 492 SubclassOptionalData = CI.SubclassOptionalData; 493 } 494 495 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB, 496 Instruction *InsertPt) { 497 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end()); 498 499 auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(), 500 Args, OpB, CI->getName(), InsertPt); 501 NewCI->setTailCallKind(CI->getTailCallKind()); 502 NewCI->setCallingConv(CI->getCallingConv()); 503 NewCI->SubclassOptionalData = CI->SubclassOptionalData; 504 NewCI->setAttributes(CI->getAttributes()); 505 NewCI->setDebugLoc(CI->getDebugLoc()); 506 return NewCI; 507 } 508 509 CallInst *CallInst::CreateWithReplacedBundle(CallInst *CI, OperandBundleDef OpB, 510 Instruction *InsertPt) { 511 SmallVector<OperandBundleDef, 2> OpDefs; 512 for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) { 513 auto ChildOB = CI->getOperandBundleAt(i); 514 if (ChildOB.getTagName() != OpB.getTag()) 515 OpDefs.emplace_back(ChildOB); 516 } 517 OpDefs.emplace_back(OpB); 518 return CallInst::Create(CI, OpDefs, InsertPt); 519 } 520 521 // Update profile weight for call instruction by scaling it using the ratio 522 // of S/T. The meaning of "branch_weights" meta data for call instruction is 523 // transfered to represent call count. 524 void CallInst::updateProfWeight(uint64_t S, uint64_t T) { 525 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 526 if (ProfileData == nullptr) 527 return; 528 529 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 530 if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") && 531 !ProfDataName->getString().equals("VP"))) 532 return; 533 534 if (T == 0) { 535 LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in " 536 "div by 0. Ignoring. Likely the function " 537 << getParent()->getParent()->getName() 538 << " has 0 entry count, and contains call instructions " 539 "with non-zero prof info."); 540 return; 541 } 542 543 MDBuilder MDB(getContext()); 544 SmallVector<Metadata *, 3> Vals; 545 Vals.push_back(ProfileData->getOperand(0)); 546 APInt APS(128, S), APT(128, T); 547 if (ProfDataName->getString().equals("branch_weights") && 548 ProfileData->getNumOperands() > 0) { 549 // Using APInt::div may be expensive, but most cases should fit 64 bits. 550 APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)) 551 ->getValue() 552 .getZExtValue()); 553 Val *= APS; 554 Vals.push_back(MDB.createConstant( 555 ConstantInt::get(Type::getInt32Ty(getContext()), 556 Val.udiv(APT).getLimitedValue(UINT32_MAX)))); 557 } else if (ProfDataName->getString().equals("VP")) 558 for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) { 559 // The first value is the key of the value profile, which will not change. 560 Vals.push_back(ProfileData->getOperand(i)); 561 // Using APInt::div may be expensive, but most cases should fit 64 bits. 562 APInt Val(128, 563 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1)) 564 ->getValue() 565 .getZExtValue()); 566 Val *= APS; 567 Vals.push_back(MDB.createConstant( 568 ConstantInt::get(Type::getInt64Ty(getContext()), 569 Val.udiv(APT).getLimitedValue()))); 570 } 571 setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals)); 572 } 573 574 /// IsConstantOne - Return true only if val is constant int 1 575 static bool IsConstantOne(Value *val) { 576 assert(val && "IsConstantOne does not work with nullptr val"); 577 const ConstantInt *CVal = dyn_cast<ConstantInt>(val); 578 return CVal && CVal->isOne(); 579 } 580 581 static Instruction *createMalloc(Instruction *InsertBefore, 582 BasicBlock *InsertAtEnd, Type *IntPtrTy, 583 Type *AllocTy, Value *AllocSize, 584 Value *ArraySize, 585 ArrayRef<OperandBundleDef> OpB, 586 Function *MallocF, const Twine &Name) { 587 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 588 "createMalloc needs either InsertBefore or InsertAtEnd"); 589 590 // malloc(type) becomes: 591 // bitcast (i8* malloc(typeSize)) to type* 592 // malloc(type, arraySize) becomes: 593 // bitcast (i8* malloc(typeSize*arraySize)) to type* 594 if (!ArraySize) 595 ArraySize = ConstantInt::get(IntPtrTy, 1); 596 else if (ArraySize->getType() != IntPtrTy) { 597 if (InsertBefore) 598 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 599 "", InsertBefore); 600 else 601 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 602 "", InsertAtEnd); 603 } 604 605 if (!IsConstantOne(ArraySize)) { 606 if (IsConstantOne(AllocSize)) { 607 AllocSize = ArraySize; // Operand * 1 = Operand 608 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) { 609 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy, 610 false /*ZExt*/); 611 // Malloc arg is constant product of type size and array size 612 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize)); 613 } else { 614 // Multiply type size by the array size... 615 if (InsertBefore) 616 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 617 "mallocsize", InsertBefore); 618 else 619 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 620 "mallocsize", InsertAtEnd); 621 } 622 } 623 624 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size"); 625 // Create the call to Malloc. 626 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 627 Module *M = BB->getParent()->getParent(); 628 Type *BPTy = Type::getInt8PtrTy(BB->getContext()); 629 FunctionCallee MallocFunc = MallocF; 630 if (!MallocFunc) 631 // prototype malloc as "void *malloc(size_t)" 632 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy); 633 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy); 634 CallInst *MCall = nullptr; 635 Instruction *Result = nullptr; 636 if (InsertBefore) { 637 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall", 638 InsertBefore); 639 Result = MCall; 640 if (Result->getType() != AllocPtrType) 641 // Create a cast instruction to convert to the right type... 642 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore); 643 } else { 644 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall"); 645 Result = MCall; 646 if (Result->getType() != AllocPtrType) { 647 InsertAtEnd->getInstList().push_back(MCall); 648 // Create a cast instruction to convert to the right type... 649 Result = new BitCastInst(MCall, AllocPtrType, Name); 650 } 651 } 652 MCall->setTailCall(); 653 if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) { 654 MCall->setCallingConv(F->getCallingConv()); 655 if (!F->returnDoesNotAlias()) 656 F->setReturnDoesNotAlias(); 657 } 658 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type"); 659 660 return Result; 661 } 662 663 /// CreateMalloc - Generate the IR for a call to malloc: 664 /// 1. Compute the malloc call's argument as the specified type's size, 665 /// possibly multiplied by the array size if the array size is not 666 /// constant 1. 667 /// 2. Call malloc with that argument. 668 /// 3. Bitcast the result of the malloc call to the specified type. 669 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, 670 Type *IntPtrTy, Type *AllocTy, 671 Value *AllocSize, Value *ArraySize, 672 Function *MallocF, 673 const Twine &Name) { 674 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, 675 ArraySize, None, MallocF, Name); 676 } 677 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, 678 Type *IntPtrTy, Type *AllocTy, 679 Value *AllocSize, Value *ArraySize, 680 ArrayRef<OperandBundleDef> OpB, 681 Function *MallocF, 682 const Twine &Name) { 683 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, 684 ArraySize, OpB, MallocF, Name); 685 } 686 687 /// CreateMalloc - Generate the IR for a call to malloc: 688 /// 1. Compute the malloc call's argument as the specified type's size, 689 /// possibly multiplied by the array size if the array size is not 690 /// constant 1. 691 /// 2. Call malloc with that argument. 692 /// 3. Bitcast the result of the malloc call to the specified type. 693 /// Note: This function does not add the bitcast to the basic block, that is the 694 /// responsibility of the caller. 695 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, 696 Type *IntPtrTy, Type *AllocTy, 697 Value *AllocSize, Value *ArraySize, 698 Function *MallocF, const Twine &Name) { 699 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, 700 ArraySize, None, MallocF, Name); 701 } 702 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, 703 Type *IntPtrTy, Type *AllocTy, 704 Value *AllocSize, Value *ArraySize, 705 ArrayRef<OperandBundleDef> OpB, 706 Function *MallocF, const Twine &Name) { 707 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, 708 ArraySize, OpB, MallocF, Name); 709 } 710 711 static Instruction *createFree(Value *Source, 712 ArrayRef<OperandBundleDef> Bundles, 713 Instruction *InsertBefore, 714 BasicBlock *InsertAtEnd) { 715 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 716 "createFree needs either InsertBefore or InsertAtEnd"); 717 assert(Source->getType()->isPointerTy() && 718 "Can not free something of nonpointer type!"); 719 720 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 721 Module *M = BB->getParent()->getParent(); 722 723 Type *VoidTy = Type::getVoidTy(M->getContext()); 724 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext()); 725 // prototype free as "void free(void*)" 726 FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy); 727 CallInst *Result = nullptr; 728 Value *PtrCast = Source; 729 if (InsertBefore) { 730 if (Source->getType() != IntPtrTy) 731 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore); 732 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore); 733 } else { 734 if (Source->getType() != IntPtrTy) 735 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd); 736 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, ""); 737 } 738 Result->setTailCall(); 739 if (Function *F = dyn_cast<Function>(FreeFunc.getCallee())) 740 Result->setCallingConv(F->getCallingConv()); 741 742 return Result; 743 } 744 745 /// CreateFree - Generate the IR for a call to the builtin free function. 746 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) { 747 return createFree(Source, None, InsertBefore, nullptr); 748 } 749 Instruction *CallInst::CreateFree(Value *Source, 750 ArrayRef<OperandBundleDef> Bundles, 751 Instruction *InsertBefore) { 752 return createFree(Source, Bundles, InsertBefore, nullptr); 753 } 754 755 /// CreateFree - Generate the IR for a call to the builtin free function. 756 /// Note: This function does not add the call to the basic block, that is the 757 /// responsibility of the caller. 758 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) { 759 Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd); 760 assert(FreeCall && "CreateFree did not create a CallInst"); 761 return FreeCall; 762 } 763 Instruction *CallInst::CreateFree(Value *Source, 764 ArrayRef<OperandBundleDef> Bundles, 765 BasicBlock *InsertAtEnd) { 766 Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd); 767 assert(FreeCall && "CreateFree did not create a CallInst"); 768 return FreeCall; 769 } 770 771 //===----------------------------------------------------------------------===// 772 // InvokeInst Implementation 773 //===----------------------------------------------------------------------===// 774 775 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal, 776 BasicBlock *IfException, ArrayRef<Value *> Args, 777 ArrayRef<OperandBundleDef> Bundles, 778 const Twine &NameStr) { 779 this->FTy = FTy; 780 781 assert((int)getNumOperands() == 782 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) && 783 "NumOperands not set up?"); 784 setNormalDest(IfNormal); 785 setUnwindDest(IfException); 786 setCalledOperand(Fn); 787 788 #ifndef NDEBUG 789 assert(((Args.size() == FTy->getNumParams()) || 790 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 791 "Invoking a function with bad signature"); 792 793 for (unsigned i = 0, e = Args.size(); i != e; i++) 794 assert((i >= FTy->getNumParams() || 795 FTy->getParamType(i) == Args[i]->getType()) && 796 "Invoking a function with a bad signature!"); 797 #endif 798 799 llvm::copy(Args, op_begin()); 800 801 auto It = populateBundleOperandInfos(Bundles, Args.size()); 802 (void)It; 803 assert(It + 3 == op_end() && "Should add up!"); 804 805 setName(NameStr); 806 } 807 808 InvokeInst::InvokeInst(const InvokeInst &II) 809 : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke, 810 OperandTraits<CallBase>::op_end(this) - II.getNumOperands(), 811 II.getNumOperands()) { 812 setCallingConv(II.getCallingConv()); 813 std::copy(II.op_begin(), II.op_end(), op_begin()); 814 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(), 815 bundle_op_info_begin()); 816 SubclassOptionalData = II.SubclassOptionalData; 817 } 818 819 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB, 820 Instruction *InsertPt) { 821 std::vector<Value *> Args(II->arg_begin(), II->arg_end()); 822 823 auto *NewII = InvokeInst::Create( 824 II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(), 825 II->getUnwindDest(), Args, OpB, II->getName(), InsertPt); 826 NewII->setCallingConv(II->getCallingConv()); 827 NewII->SubclassOptionalData = II->SubclassOptionalData; 828 NewII->setAttributes(II->getAttributes()); 829 NewII->setDebugLoc(II->getDebugLoc()); 830 return NewII; 831 } 832 833 InvokeInst *InvokeInst::CreateWithReplacedBundle(InvokeInst *II, 834 OperandBundleDef OpB, 835 Instruction *InsertPt) { 836 SmallVector<OperandBundleDef, 2> OpDefs; 837 for (unsigned i = 0, e = II->getNumOperandBundles(); i < e; ++i) { 838 auto ChildOB = II->getOperandBundleAt(i); 839 if (ChildOB.getTagName() != OpB.getTag()) 840 OpDefs.emplace_back(ChildOB); 841 } 842 OpDefs.emplace_back(OpB); 843 return InvokeInst::Create(II, OpDefs, InsertPt); 844 } 845 846 LandingPadInst *InvokeInst::getLandingPadInst() const { 847 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI()); 848 } 849 850 //===----------------------------------------------------------------------===// 851 // CallBrInst Implementation 852 //===----------------------------------------------------------------------===// 853 854 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough, 855 ArrayRef<BasicBlock *> IndirectDests, 856 ArrayRef<Value *> Args, 857 ArrayRef<OperandBundleDef> Bundles, 858 const Twine &NameStr) { 859 this->FTy = FTy; 860 861 assert((int)getNumOperands() == 862 ComputeNumOperands(Args.size(), IndirectDests.size(), 863 CountBundleInputs(Bundles)) && 864 "NumOperands not set up?"); 865 NumIndirectDests = IndirectDests.size(); 866 setDefaultDest(Fallthrough); 867 for (unsigned i = 0; i != NumIndirectDests; ++i) 868 setIndirectDest(i, IndirectDests[i]); 869 setCalledOperand(Fn); 870 871 #ifndef NDEBUG 872 assert(((Args.size() == FTy->getNumParams()) || 873 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 874 "Calling a function with bad signature"); 875 876 for (unsigned i = 0, e = Args.size(); i != e; i++) 877 assert((i >= FTy->getNumParams() || 878 FTy->getParamType(i) == Args[i]->getType()) && 879 "Calling a function with a bad signature!"); 880 #endif 881 882 std::copy(Args.begin(), Args.end(), op_begin()); 883 884 auto It = populateBundleOperandInfos(Bundles, Args.size()); 885 (void)It; 886 assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!"); 887 888 setName(NameStr); 889 } 890 891 void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) { 892 assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr"); 893 if (BasicBlock *OldBB = getIndirectDest(i)) { 894 BlockAddress *Old = BlockAddress::get(OldBB); 895 BlockAddress *New = BlockAddress::get(B); 896 for (unsigned ArgNo = 0, e = getNumArgOperands(); ArgNo != e; ++ArgNo) 897 if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old) 898 setArgOperand(ArgNo, New); 899 } 900 } 901 902 CallBrInst::CallBrInst(const CallBrInst &CBI) 903 : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr, 904 OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(), 905 CBI.getNumOperands()) { 906 setCallingConv(CBI.getCallingConv()); 907 std::copy(CBI.op_begin(), CBI.op_end(), op_begin()); 908 std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(), 909 bundle_op_info_begin()); 910 SubclassOptionalData = CBI.SubclassOptionalData; 911 NumIndirectDests = CBI.NumIndirectDests; 912 } 913 914 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB, 915 Instruction *InsertPt) { 916 std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end()); 917 918 auto *NewCBI = CallBrInst::Create( 919 CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(), 920 CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt); 921 NewCBI->setCallingConv(CBI->getCallingConv()); 922 NewCBI->SubclassOptionalData = CBI->SubclassOptionalData; 923 NewCBI->setAttributes(CBI->getAttributes()); 924 NewCBI->setDebugLoc(CBI->getDebugLoc()); 925 NewCBI->NumIndirectDests = CBI->NumIndirectDests; 926 return NewCBI; 927 } 928 929 //===----------------------------------------------------------------------===// 930 // ReturnInst Implementation 931 //===----------------------------------------------------------------------===// 932 933 ReturnInst::ReturnInst(const ReturnInst &RI) 934 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret, 935 OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(), 936 RI.getNumOperands()) { 937 if (RI.getNumOperands()) 938 Op<0>() = RI.Op<0>(); 939 SubclassOptionalData = RI.SubclassOptionalData; 940 } 941 942 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore) 943 : Instruction(Type::getVoidTy(C), Instruction::Ret, 944 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 945 InsertBefore) { 946 if (retVal) 947 Op<0>() = retVal; 948 } 949 950 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) 951 : Instruction(Type::getVoidTy(C), Instruction::Ret, 952 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 953 InsertAtEnd) { 954 if (retVal) 955 Op<0>() = retVal; 956 } 957 958 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 959 : Instruction(Type::getVoidTy(Context), Instruction::Ret, 960 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {} 961 962 //===----------------------------------------------------------------------===// 963 // ResumeInst Implementation 964 //===----------------------------------------------------------------------===// 965 966 ResumeInst::ResumeInst(const ResumeInst &RI) 967 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume, 968 OperandTraits<ResumeInst>::op_begin(this), 1) { 969 Op<0>() = RI.Op<0>(); 970 } 971 972 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore) 973 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 974 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) { 975 Op<0>() = Exn; 976 } 977 978 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd) 979 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 980 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) { 981 Op<0>() = Exn; 982 } 983 984 //===----------------------------------------------------------------------===// 985 // CleanupReturnInst Implementation 986 //===----------------------------------------------------------------------===// 987 988 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI) 989 : Instruction(CRI.getType(), Instruction::CleanupRet, 990 OperandTraits<CleanupReturnInst>::op_end(this) - 991 CRI.getNumOperands(), 992 CRI.getNumOperands()) { 993 setSubclassData<Instruction::OpaqueField>( 994 CRI.getSubclassData<Instruction::OpaqueField>()); 995 Op<0>() = CRI.Op<0>(); 996 if (CRI.hasUnwindDest()) 997 Op<1>() = CRI.Op<1>(); 998 } 999 1000 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) { 1001 if (UnwindBB) 1002 setSubclassData<UnwindDestField>(true); 1003 1004 Op<0>() = CleanupPad; 1005 if (UnwindBB) 1006 Op<1>() = UnwindBB; 1007 } 1008 1009 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, 1010 unsigned Values, Instruction *InsertBefore) 1011 : Instruction(Type::getVoidTy(CleanupPad->getContext()), 1012 Instruction::CleanupRet, 1013 OperandTraits<CleanupReturnInst>::op_end(this) - Values, 1014 Values, InsertBefore) { 1015 init(CleanupPad, UnwindBB); 1016 } 1017 1018 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, 1019 unsigned Values, BasicBlock *InsertAtEnd) 1020 : Instruction(Type::getVoidTy(CleanupPad->getContext()), 1021 Instruction::CleanupRet, 1022 OperandTraits<CleanupReturnInst>::op_end(this) - Values, 1023 Values, InsertAtEnd) { 1024 init(CleanupPad, UnwindBB); 1025 } 1026 1027 //===----------------------------------------------------------------------===// 1028 // CatchReturnInst Implementation 1029 //===----------------------------------------------------------------------===// 1030 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) { 1031 Op<0>() = CatchPad; 1032 Op<1>() = BB; 1033 } 1034 1035 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI) 1036 : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet, 1037 OperandTraits<CatchReturnInst>::op_begin(this), 2) { 1038 Op<0>() = CRI.Op<0>(); 1039 Op<1>() = CRI.Op<1>(); 1040 } 1041 1042 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, 1043 Instruction *InsertBefore) 1044 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, 1045 OperandTraits<CatchReturnInst>::op_begin(this), 2, 1046 InsertBefore) { 1047 init(CatchPad, BB); 1048 } 1049 1050 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, 1051 BasicBlock *InsertAtEnd) 1052 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, 1053 OperandTraits<CatchReturnInst>::op_begin(this), 2, 1054 InsertAtEnd) { 1055 init(CatchPad, BB); 1056 } 1057 1058 //===----------------------------------------------------------------------===// 1059 // CatchSwitchInst Implementation 1060 //===----------------------------------------------------------------------===// 1061 1062 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 1063 unsigned NumReservedValues, 1064 const Twine &NameStr, 1065 Instruction *InsertBefore) 1066 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, 1067 InsertBefore) { 1068 if (UnwindDest) 1069 ++NumReservedValues; 1070 init(ParentPad, UnwindDest, NumReservedValues + 1); 1071 setName(NameStr); 1072 } 1073 1074 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 1075 unsigned NumReservedValues, 1076 const Twine &NameStr, BasicBlock *InsertAtEnd) 1077 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, 1078 InsertAtEnd) { 1079 if (UnwindDest) 1080 ++NumReservedValues; 1081 init(ParentPad, UnwindDest, NumReservedValues + 1); 1082 setName(NameStr); 1083 } 1084 1085 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI) 1086 : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr, 1087 CSI.getNumOperands()) { 1088 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands()); 1089 setNumHungOffUseOperands(ReservedSpace); 1090 Use *OL = getOperandList(); 1091 const Use *InOL = CSI.getOperandList(); 1092 for (unsigned I = 1, E = ReservedSpace; I != E; ++I) 1093 OL[I] = InOL[I]; 1094 } 1095 1096 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest, 1097 unsigned NumReservedValues) { 1098 assert(ParentPad && NumReservedValues); 1099 1100 ReservedSpace = NumReservedValues; 1101 setNumHungOffUseOperands(UnwindDest ? 2 : 1); 1102 allocHungoffUses(ReservedSpace); 1103 1104 Op<0>() = ParentPad; 1105 if (UnwindDest) { 1106 setSubclassData<UnwindDestField>(true); 1107 setUnwindDest(UnwindDest); 1108 } 1109 } 1110 1111 /// growOperands - grow operands - This grows the operand list in response to a 1112 /// push_back style of operation. This grows the number of ops by 2 times. 1113 void CatchSwitchInst::growOperands(unsigned Size) { 1114 unsigned NumOperands = getNumOperands(); 1115 assert(NumOperands >= 1); 1116 if (ReservedSpace >= NumOperands + Size) 1117 return; 1118 ReservedSpace = (NumOperands + Size / 2) * 2; 1119 growHungoffUses(ReservedSpace); 1120 } 1121 1122 void CatchSwitchInst::addHandler(BasicBlock *Handler) { 1123 unsigned OpNo = getNumOperands(); 1124 growOperands(1); 1125 assert(OpNo < ReservedSpace && "Growing didn't work!"); 1126 setNumHungOffUseOperands(getNumOperands() + 1); 1127 getOperandList()[OpNo] = Handler; 1128 } 1129 1130 void CatchSwitchInst::removeHandler(handler_iterator HI) { 1131 // Move all subsequent handlers up one. 1132 Use *EndDst = op_end() - 1; 1133 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst) 1134 *CurDst = *(CurDst + 1); 1135 // Null out the last handler use. 1136 *EndDst = nullptr; 1137 1138 setNumHungOffUseOperands(getNumOperands() - 1); 1139 } 1140 1141 //===----------------------------------------------------------------------===// 1142 // FuncletPadInst Implementation 1143 //===----------------------------------------------------------------------===// 1144 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args, 1145 const Twine &NameStr) { 1146 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?"); 1147 llvm::copy(Args, op_begin()); 1148 setParentPad(ParentPad); 1149 setName(NameStr); 1150 } 1151 1152 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI) 1153 : Instruction(FPI.getType(), FPI.getOpcode(), 1154 OperandTraits<FuncletPadInst>::op_end(this) - 1155 FPI.getNumOperands(), 1156 FPI.getNumOperands()) { 1157 std::copy(FPI.op_begin(), FPI.op_end(), op_begin()); 1158 setParentPad(FPI.getParentPad()); 1159 } 1160 1161 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, 1162 ArrayRef<Value *> Args, unsigned Values, 1163 const Twine &NameStr, Instruction *InsertBefore) 1164 : Instruction(ParentPad->getType(), Op, 1165 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, 1166 InsertBefore) { 1167 init(ParentPad, Args, NameStr); 1168 } 1169 1170 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, 1171 ArrayRef<Value *> Args, unsigned Values, 1172 const Twine &NameStr, BasicBlock *InsertAtEnd) 1173 : Instruction(ParentPad->getType(), Op, 1174 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, 1175 InsertAtEnd) { 1176 init(ParentPad, Args, NameStr); 1177 } 1178 1179 //===----------------------------------------------------------------------===// 1180 // UnreachableInst Implementation 1181 //===----------------------------------------------------------------------===// 1182 1183 UnreachableInst::UnreachableInst(LLVMContext &Context, 1184 Instruction *InsertBefore) 1185 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr, 1186 0, InsertBefore) {} 1187 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 1188 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr, 1189 0, InsertAtEnd) {} 1190 1191 //===----------------------------------------------------------------------===// 1192 // BranchInst Implementation 1193 //===----------------------------------------------------------------------===// 1194 1195 void BranchInst::AssertOK() { 1196 if (isConditional()) 1197 assert(getCondition()->getType()->isIntegerTy(1) && 1198 "May only branch on boolean predicates!"); 1199 } 1200 1201 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore) 1202 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1203 OperandTraits<BranchInst>::op_end(this) - 1, 1, 1204 InsertBefore) { 1205 assert(IfTrue && "Branch destination may not be null!"); 1206 Op<-1>() = IfTrue; 1207 } 1208 1209 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 1210 Instruction *InsertBefore) 1211 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1212 OperandTraits<BranchInst>::op_end(this) - 3, 3, 1213 InsertBefore) { 1214 Op<-1>() = IfTrue; 1215 Op<-2>() = IfFalse; 1216 Op<-3>() = Cond; 1217 #ifndef NDEBUG 1218 AssertOK(); 1219 #endif 1220 } 1221 1222 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) 1223 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1224 OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) { 1225 assert(IfTrue && "Branch destination may not be null!"); 1226 Op<-1>() = IfTrue; 1227 } 1228 1229 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 1230 BasicBlock *InsertAtEnd) 1231 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1232 OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) { 1233 Op<-1>() = IfTrue; 1234 Op<-2>() = IfFalse; 1235 Op<-3>() = Cond; 1236 #ifndef NDEBUG 1237 AssertOK(); 1238 #endif 1239 } 1240 1241 BranchInst::BranchInst(const BranchInst &BI) 1242 : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br, 1243 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(), 1244 BI.getNumOperands()) { 1245 Op<-1>() = BI.Op<-1>(); 1246 if (BI.getNumOperands() != 1) { 1247 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!"); 1248 Op<-3>() = BI.Op<-3>(); 1249 Op<-2>() = BI.Op<-2>(); 1250 } 1251 SubclassOptionalData = BI.SubclassOptionalData; 1252 } 1253 1254 void BranchInst::swapSuccessors() { 1255 assert(isConditional() && 1256 "Cannot swap successors of an unconditional branch"); 1257 Op<-1>().swap(Op<-2>()); 1258 1259 // Update profile metadata if present and it matches our structural 1260 // expectations. 1261 swapProfMetadata(); 1262 } 1263 1264 //===----------------------------------------------------------------------===// 1265 // AllocaInst Implementation 1266 //===----------------------------------------------------------------------===// 1267 1268 static Value *getAISize(LLVMContext &Context, Value *Amt) { 1269 if (!Amt) 1270 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1); 1271 else { 1272 assert(!isa<BasicBlock>(Amt) && 1273 "Passed basic block into allocation size parameter! Use other ctor"); 1274 assert(Amt->getType()->isIntegerTy() && 1275 "Allocation array size is not an integer!"); 1276 } 1277 return Amt; 1278 } 1279 1280 static Align computeAllocaDefaultAlign(Type *Ty, BasicBlock *BB) { 1281 assert(BB && "Insertion BB cannot be null when alignment not provided!"); 1282 assert(BB->getParent() && 1283 "BB must be in a Function when alignment not provided!"); 1284 const DataLayout &DL = BB->getModule()->getDataLayout(); 1285 return DL.getPrefTypeAlign(Ty); 1286 } 1287 1288 static Align computeAllocaDefaultAlign(Type *Ty, Instruction *I) { 1289 assert(I && "Insertion position cannot be null when alignment not provided!"); 1290 return computeAllocaDefaultAlign(Ty, I->getParent()); 1291 } 1292 1293 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, 1294 Instruction *InsertBefore) 1295 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {} 1296 1297 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, 1298 BasicBlock *InsertAtEnd) 1299 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {} 1300 1301 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1302 const Twine &Name, Instruction *InsertBefore) 1303 : AllocaInst(Ty, AddrSpace, ArraySize, 1304 computeAllocaDefaultAlign(Ty, InsertBefore), Name, 1305 InsertBefore) {} 1306 1307 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1308 const Twine &Name, BasicBlock *InsertAtEnd) 1309 : AllocaInst(Ty, AddrSpace, ArraySize, 1310 computeAllocaDefaultAlign(Ty, InsertAtEnd), Name, 1311 InsertAtEnd) {} 1312 1313 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1314 Align Align, const Twine &Name, 1315 Instruction *InsertBefore) 1316 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca, 1317 getAISize(Ty->getContext(), ArraySize), InsertBefore), 1318 AllocatedType(Ty) { 1319 setAlignment(Align); 1320 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 1321 setName(Name); 1322 } 1323 1324 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1325 Align Align, const Twine &Name, BasicBlock *InsertAtEnd) 1326 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca, 1327 getAISize(Ty->getContext(), ArraySize), InsertAtEnd), 1328 AllocatedType(Ty) { 1329 setAlignment(Align); 1330 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 1331 setName(Name); 1332 } 1333 1334 1335 bool AllocaInst::isArrayAllocation() const { 1336 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0))) 1337 return !CI->isOne(); 1338 return true; 1339 } 1340 1341 /// isStaticAlloca - Return true if this alloca is in the entry block of the 1342 /// function and is a constant size. If so, the code generator will fold it 1343 /// into the prolog/epilog code, so it is basically free. 1344 bool AllocaInst::isStaticAlloca() const { 1345 // Must be constant size. 1346 if (!isa<ConstantInt>(getArraySize())) return false; 1347 1348 // Must be in the entry block. 1349 const BasicBlock *Parent = getParent(); 1350 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca(); 1351 } 1352 1353 //===----------------------------------------------------------------------===// 1354 // LoadInst Implementation 1355 //===----------------------------------------------------------------------===// 1356 1357 void LoadInst::AssertOK() { 1358 assert(getOperand(0)->getType()->isPointerTy() && 1359 "Ptr must have pointer type."); 1360 assert(!(isAtomic() && getAlignment() == 0) && 1361 "Alignment required for atomic load"); 1362 } 1363 1364 static Align computeLoadStoreDefaultAlign(Type *Ty, BasicBlock *BB) { 1365 assert(BB && "Insertion BB cannot be null when alignment not provided!"); 1366 assert(BB->getParent() && 1367 "BB must be in a Function when alignment not provided!"); 1368 const DataLayout &DL = BB->getModule()->getDataLayout(); 1369 return DL.getABITypeAlign(Ty); 1370 } 1371 1372 static Align computeLoadStoreDefaultAlign(Type *Ty, Instruction *I) { 1373 assert(I && "Insertion position cannot be null when alignment not provided!"); 1374 return computeLoadStoreDefaultAlign(Ty, I->getParent()); 1375 } 1376 1377 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, 1378 Instruction *InsertBef) 1379 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {} 1380 1381 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, 1382 BasicBlock *InsertAE) 1383 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {} 1384 1385 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1386 Instruction *InsertBef) 1387 : LoadInst(Ty, Ptr, Name, isVolatile, 1388 computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {} 1389 1390 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1391 BasicBlock *InsertAE) 1392 : LoadInst(Ty, Ptr, Name, isVolatile, 1393 computeLoadStoreDefaultAlign(Ty, InsertAE), InsertAE) {} 1394 1395 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1396 Align Align, Instruction *InsertBef) 1397 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, 1398 SyncScope::System, InsertBef) {} 1399 1400 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1401 Align Align, BasicBlock *InsertAE) 1402 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, 1403 SyncScope::System, InsertAE) {} 1404 1405 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1406 Align Align, AtomicOrdering Order, SyncScope::ID SSID, 1407 Instruction *InsertBef) 1408 : UnaryInstruction(Ty, Load, Ptr, InsertBef) { 1409 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType()); 1410 setVolatile(isVolatile); 1411 setAlignment(Align); 1412 setAtomic(Order, SSID); 1413 AssertOK(); 1414 setName(Name); 1415 } 1416 1417 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1418 Align Align, AtomicOrdering Order, SyncScope::ID SSID, 1419 BasicBlock *InsertAE) 1420 : UnaryInstruction(Ty, Load, Ptr, InsertAE) { 1421 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType()); 1422 setVolatile(isVolatile); 1423 setAlignment(Align); 1424 setAtomic(Order, SSID); 1425 AssertOK(); 1426 setName(Name); 1427 } 1428 1429 //===----------------------------------------------------------------------===// 1430 // StoreInst Implementation 1431 //===----------------------------------------------------------------------===// 1432 1433 void StoreInst::AssertOK() { 1434 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!"); 1435 assert(getOperand(1)->getType()->isPointerTy() && 1436 "Ptr must have pointer type!"); 1437 assert(getOperand(0)->getType() == 1438 cast<PointerType>(getOperand(1)->getType())->getElementType() 1439 && "Ptr must be a pointer to Val type!"); 1440 assert(!(isAtomic() && getAlignment() == 0) && 1441 "Alignment required for atomic store"); 1442 } 1443 1444 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore) 1445 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {} 1446 1447 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd) 1448 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {} 1449 1450 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1451 Instruction *InsertBefore) 1452 : StoreInst(val, addr, isVolatile, 1453 computeLoadStoreDefaultAlign(val->getType(), InsertBefore), 1454 InsertBefore) {} 1455 1456 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1457 BasicBlock *InsertAtEnd) 1458 : StoreInst(val, addr, isVolatile, 1459 computeLoadStoreDefaultAlign(val->getType(), InsertAtEnd), 1460 InsertAtEnd) {} 1461 1462 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align, 1463 Instruction *InsertBefore) 1464 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, 1465 SyncScope::System, InsertBefore) {} 1466 1467 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align, 1468 BasicBlock *InsertAtEnd) 1469 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, 1470 SyncScope::System, InsertAtEnd) {} 1471 1472 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align, 1473 AtomicOrdering Order, SyncScope::ID SSID, 1474 Instruction *InsertBefore) 1475 : Instruction(Type::getVoidTy(val->getContext()), Store, 1476 OperandTraits<StoreInst>::op_begin(this), 1477 OperandTraits<StoreInst>::operands(this), InsertBefore) { 1478 Op<0>() = val; 1479 Op<1>() = addr; 1480 setVolatile(isVolatile); 1481 setAlignment(Align); 1482 setAtomic(Order, SSID); 1483 AssertOK(); 1484 } 1485 1486 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align, 1487 AtomicOrdering Order, SyncScope::ID SSID, 1488 BasicBlock *InsertAtEnd) 1489 : Instruction(Type::getVoidTy(val->getContext()), Store, 1490 OperandTraits<StoreInst>::op_begin(this), 1491 OperandTraits<StoreInst>::operands(this), InsertAtEnd) { 1492 Op<0>() = val; 1493 Op<1>() = addr; 1494 setVolatile(isVolatile); 1495 setAlignment(Align); 1496 setAtomic(Order, SSID); 1497 AssertOK(); 1498 } 1499 1500 1501 //===----------------------------------------------------------------------===// 1502 // AtomicCmpXchgInst Implementation 1503 //===----------------------------------------------------------------------===// 1504 1505 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal, 1506 Align Alignment, AtomicOrdering SuccessOrdering, 1507 AtomicOrdering FailureOrdering, 1508 SyncScope::ID SSID) { 1509 Op<0>() = Ptr; 1510 Op<1>() = Cmp; 1511 Op<2>() = NewVal; 1512 setSuccessOrdering(SuccessOrdering); 1513 setFailureOrdering(FailureOrdering); 1514 setSyncScopeID(SSID); 1515 setAlignment(Alignment); 1516 1517 assert(getOperand(0) && getOperand(1) && getOperand(2) && 1518 "All operands must be non-null!"); 1519 assert(getOperand(0)->getType()->isPointerTy() && 1520 "Ptr must have pointer type!"); 1521 assert(getOperand(1)->getType() == 1522 cast<PointerType>(getOperand(0)->getType())->getElementType() 1523 && "Ptr must be a pointer to Cmp type!"); 1524 assert(getOperand(2)->getType() == 1525 cast<PointerType>(getOperand(0)->getType())->getElementType() 1526 && "Ptr must be a pointer to NewVal type!"); 1527 assert(SuccessOrdering != AtomicOrdering::NotAtomic && 1528 "AtomicCmpXchg instructions must be atomic!"); 1529 assert(FailureOrdering != AtomicOrdering::NotAtomic && 1530 "AtomicCmpXchg instructions must be atomic!"); 1531 assert(!isStrongerThan(FailureOrdering, SuccessOrdering) && 1532 "AtomicCmpXchg failure argument shall be no stronger than the success " 1533 "argument"); 1534 assert(FailureOrdering != AtomicOrdering::Release && 1535 FailureOrdering != AtomicOrdering::AcquireRelease && 1536 "AtomicCmpXchg failure ordering cannot include release semantics"); 1537 } 1538 1539 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1540 Align Alignment, 1541 AtomicOrdering SuccessOrdering, 1542 AtomicOrdering FailureOrdering, 1543 SyncScope::ID SSID, 1544 Instruction *InsertBefore) 1545 : Instruction( 1546 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())), 1547 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1548 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) { 1549 Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID); 1550 } 1551 1552 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1553 Align Alignment, 1554 AtomicOrdering SuccessOrdering, 1555 AtomicOrdering FailureOrdering, 1556 SyncScope::ID SSID, 1557 BasicBlock *InsertAtEnd) 1558 : Instruction( 1559 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())), 1560 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1561 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) { 1562 Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID); 1563 } 1564 1565 //===----------------------------------------------------------------------===// 1566 // AtomicRMWInst Implementation 1567 //===----------------------------------------------------------------------===// 1568 1569 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val, 1570 Align Alignment, AtomicOrdering Ordering, 1571 SyncScope::ID SSID) { 1572 Op<0>() = Ptr; 1573 Op<1>() = Val; 1574 setOperation(Operation); 1575 setOrdering(Ordering); 1576 setSyncScopeID(SSID); 1577 setAlignment(Alignment); 1578 1579 assert(getOperand(0) && getOperand(1) && 1580 "All operands must be non-null!"); 1581 assert(getOperand(0)->getType()->isPointerTy() && 1582 "Ptr must have pointer type!"); 1583 assert(getOperand(1)->getType() == 1584 cast<PointerType>(getOperand(0)->getType())->getElementType() 1585 && "Ptr must be a pointer to Val type!"); 1586 assert(Ordering != AtomicOrdering::NotAtomic && 1587 "AtomicRMW instructions must be atomic!"); 1588 } 1589 1590 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1591 Align Alignment, AtomicOrdering Ordering, 1592 SyncScope::ID SSID, Instruction *InsertBefore) 1593 : Instruction(Val->getType(), AtomicRMW, 1594 OperandTraits<AtomicRMWInst>::op_begin(this), 1595 OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) { 1596 Init(Operation, Ptr, Val, Alignment, Ordering, SSID); 1597 } 1598 1599 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1600 Align Alignment, AtomicOrdering Ordering, 1601 SyncScope::ID SSID, BasicBlock *InsertAtEnd) 1602 : Instruction(Val->getType(), AtomicRMW, 1603 OperandTraits<AtomicRMWInst>::op_begin(this), 1604 OperandTraits<AtomicRMWInst>::operands(this), InsertAtEnd) { 1605 Init(Operation, Ptr, Val, Alignment, Ordering, SSID); 1606 } 1607 1608 StringRef AtomicRMWInst::getOperationName(BinOp Op) { 1609 switch (Op) { 1610 case AtomicRMWInst::Xchg: 1611 return "xchg"; 1612 case AtomicRMWInst::Add: 1613 return "add"; 1614 case AtomicRMWInst::Sub: 1615 return "sub"; 1616 case AtomicRMWInst::And: 1617 return "and"; 1618 case AtomicRMWInst::Nand: 1619 return "nand"; 1620 case AtomicRMWInst::Or: 1621 return "or"; 1622 case AtomicRMWInst::Xor: 1623 return "xor"; 1624 case AtomicRMWInst::Max: 1625 return "max"; 1626 case AtomicRMWInst::Min: 1627 return "min"; 1628 case AtomicRMWInst::UMax: 1629 return "umax"; 1630 case AtomicRMWInst::UMin: 1631 return "umin"; 1632 case AtomicRMWInst::FAdd: 1633 return "fadd"; 1634 case AtomicRMWInst::FSub: 1635 return "fsub"; 1636 case AtomicRMWInst::BAD_BINOP: 1637 return "<invalid operation>"; 1638 } 1639 1640 llvm_unreachable("invalid atomicrmw operation"); 1641 } 1642 1643 //===----------------------------------------------------------------------===// 1644 // FenceInst Implementation 1645 //===----------------------------------------------------------------------===// 1646 1647 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1648 SyncScope::ID SSID, 1649 Instruction *InsertBefore) 1650 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) { 1651 setOrdering(Ordering); 1652 setSyncScopeID(SSID); 1653 } 1654 1655 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1656 SyncScope::ID SSID, 1657 BasicBlock *InsertAtEnd) 1658 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) { 1659 setOrdering(Ordering); 1660 setSyncScopeID(SSID); 1661 } 1662 1663 //===----------------------------------------------------------------------===// 1664 // GetElementPtrInst Implementation 1665 //===----------------------------------------------------------------------===// 1666 1667 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList, 1668 const Twine &Name) { 1669 assert(getNumOperands() == 1 + IdxList.size() && 1670 "NumOperands not initialized?"); 1671 Op<0>() = Ptr; 1672 llvm::copy(IdxList, op_begin() + 1); 1673 setName(Name); 1674 } 1675 1676 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI) 1677 : Instruction(GEPI.getType(), GetElementPtr, 1678 OperandTraits<GetElementPtrInst>::op_end(this) - 1679 GEPI.getNumOperands(), 1680 GEPI.getNumOperands()), 1681 SourceElementType(GEPI.SourceElementType), 1682 ResultElementType(GEPI.ResultElementType) { 1683 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin()); 1684 SubclassOptionalData = GEPI.SubclassOptionalData; 1685 } 1686 1687 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) { 1688 if (auto *Struct = dyn_cast<StructType>(Ty)) { 1689 if (!Struct->indexValid(Idx)) 1690 return nullptr; 1691 return Struct->getTypeAtIndex(Idx); 1692 } 1693 if (!Idx->getType()->isIntOrIntVectorTy()) 1694 return nullptr; 1695 if (auto *Array = dyn_cast<ArrayType>(Ty)) 1696 return Array->getElementType(); 1697 if (auto *Vector = dyn_cast<VectorType>(Ty)) 1698 return Vector->getElementType(); 1699 return nullptr; 1700 } 1701 1702 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) { 1703 if (auto *Struct = dyn_cast<StructType>(Ty)) { 1704 if (Idx >= Struct->getNumElements()) 1705 return nullptr; 1706 return Struct->getElementType(Idx); 1707 } 1708 if (auto *Array = dyn_cast<ArrayType>(Ty)) 1709 return Array->getElementType(); 1710 if (auto *Vector = dyn_cast<VectorType>(Ty)) 1711 return Vector->getElementType(); 1712 return nullptr; 1713 } 1714 1715 template <typename IndexTy> 1716 static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) { 1717 if (IdxList.empty()) 1718 return Ty; 1719 for (IndexTy V : IdxList.slice(1)) { 1720 Ty = GetElementPtrInst::getTypeAtIndex(Ty, V); 1721 if (!Ty) 1722 return Ty; 1723 } 1724 return Ty; 1725 } 1726 1727 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) { 1728 return getIndexedTypeInternal(Ty, IdxList); 1729 } 1730 1731 Type *GetElementPtrInst::getIndexedType(Type *Ty, 1732 ArrayRef<Constant *> IdxList) { 1733 return getIndexedTypeInternal(Ty, IdxList); 1734 } 1735 1736 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) { 1737 return getIndexedTypeInternal(Ty, IdxList); 1738 } 1739 1740 /// hasAllZeroIndices - Return true if all of the indices of this GEP are 1741 /// zeros. If so, the result pointer and the first operand have the same 1742 /// value, just potentially different types. 1743 bool GetElementPtrInst::hasAllZeroIndices() const { 1744 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1745 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) { 1746 if (!CI->isZero()) return false; 1747 } else { 1748 return false; 1749 } 1750 } 1751 return true; 1752 } 1753 1754 /// hasAllConstantIndices - Return true if all of the indices of this GEP are 1755 /// constant integers. If so, the result pointer and the first operand have 1756 /// a constant offset between them. 1757 bool GetElementPtrInst::hasAllConstantIndices() const { 1758 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1759 if (!isa<ConstantInt>(getOperand(i))) 1760 return false; 1761 } 1762 return true; 1763 } 1764 1765 void GetElementPtrInst::setIsInBounds(bool B) { 1766 cast<GEPOperator>(this)->setIsInBounds(B); 1767 } 1768 1769 bool GetElementPtrInst::isInBounds() const { 1770 return cast<GEPOperator>(this)->isInBounds(); 1771 } 1772 1773 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL, 1774 APInt &Offset) const { 1775 // Delegate to the generic GEPOperator implementation. 1776 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset); 1777 } 1778 1779 //===----------------------------------------------------------------------===// 1780 // ExtractElementInst Implementation 1781 //===----------------------------------------------------------------------===// 1782 1783 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1784 const Twine &Name, 1785 Instruction *InsertBef) 1786 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1787 ExtractElement, 1788 OperandTraits<ExtractElementInst>::op_begin(this), 1789 2, InsertBef) { 1790 assert(isValidOperands(Val, Index) && 1791 "Invalid extractelement instruction operands!"); 1792 Op<0>() = Val; 1793 Op<1>() = Index; 1794 setName(Name); 1795 } 1796 1797 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1798 const Twine &Name, 1799 BasicBlock *InsertAE) 1800 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1801 ExtractElement, 1802 OperandTraits<ExtractElementInst>::op_begin(this), 1803 2, InsertAE) { 1804 assert(isValidOperands(Val, Index) && 1805 "Invalid extractelement instruction operands!"); 1806 1807 Op<0>() = Val; 1808 Op<1>() = Index; 1809 setName(Name); 1810 } 1811 1812 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) { 1813 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy()) 1814 return false; 1815 return true; 1816 } 1817 1818 //===----------------------------------------------------------------------===// 1819 // InsertElementInst Implementation 1820 //===----------------------------------------------------------------------===// 1821 1822 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1823 const Twine &Name, 1824 Instruction *InsertBef) 1825 : Instruction(Vec->getType(), InsertElement, 1826 OperandTraits<InsertElementInst>::op_begin(this), 1827 3, InsertBef) { 1828 assert(isValidOperands(Vec, Elt, Index) && 1829 "Invalid insertelement instruction operands!"); 1830 Op<0>() = Vec; 1831 Op<1>() = Elt; 1832 Op<2>() = Index; 1833 setName(Name); 1834 } 1835 1836 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1837 const Twine &Name, 1838 BasicBlock *InsertAE) 1839 : Instruction(Vec->getType(), InsertElement, 1840 OperandTraits<InsertElementInst>::op_begin(this), 1841 3, InsertAE) { 1842 assert(isValidOperands(Vec, Elt, Index) && 1843 "Invalid insertelement instruction operands!"); 1844 1845 Op<0>() = Vec; 1846 Op<1>() = Elt; 1847 Op<2>() = Index; 1848 setName(Name); 1849 } 1850 1851 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, 1852 const Value *Index) { 1853 if (!Vec->getType()->isVectorTy()) 1854 return false; // First operand of insertelement must be vector type. 1855 1856 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType()) 1857 return false;// Second operand of insertelement must be vector element type. 1858 1859 if (!Index->getType()->isIntegerTy()) 1860 return false; // Third operand of insertelement must be i32. 1861 return true; 1862 } 1863 1864 //===----------------------------------------------------------------------===// 1865 // ShuffleVectorInst Implementation 1866 //===----------------------------------------------------------------------===// 1867 1868 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1869 const Twine &Name, 1870 Instruction *InsertBefore) 1871 : Instruction( 1872 VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1873 cast<VectorType>(Mask->getType())->getElementCount()), 1874 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this), 1875 OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) { 1876 assert(isValidOperands(V1, V2, Mask) && 1877 "Invalid shuffle vector instruction operands!"); 1878 1879 Op<0>() = V1; 1880 Op<1>() = V2; 1881 SmallVector<int, 16> MaskArr; 1882 getShuffleMask(cast<Constant>(Mask), MaskArr); 1883 setShuffleMask(MaskArr); 1884 setName(Name); 1885 } 1886 1887 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1888 const Twine &Name, BasicBlock *InsertAtEnd) 1889 : Instruction( 1890 VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1891 cast<VectorType>(Mask->getType())->getElementCount()), 1892 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this), 1893 OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) { 1894 assert(isValidOperands(V1, V2, Mask) && 1895 "Invalid shuffle vector instruction operands!"); 1896 1897 Op<0>() = V1; 1898 Op<1>() = V2; 1899 SmallVector<int, 16> MaskArr; 1900 getShuffleMask(cast<Constant>(Mask), MaskArr); 1901 setShuffleMask(MaskArr); 1902 setName(Name); 1903 } 1904 1905 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, 1906 const Twine &Name, 1907 Instruction *InsertBefore) 1908 : Instruction( 1909 VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1910 Mask.size(), isa<ScalableVectorType>(V1->getType())), 1911 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this), 1912 OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) { 1913 assert(isValidOperands(V1, V2, Mask) && 1914 "Invalid shuffle vector instruction operands!"); 1915 Op<0>() = V1; 1916 Op<1>() = V2; 1917 setShuffleMask(Mask); 1918 setName(Name); 1919 } 1920 1921 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, 1922 const Twine &Name, BasicBlock *InsertAtEnd) 1923 : Instruction( 1924 VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1925 Mask.size(), isa<ScalableVectorType>(V1->getType())), 1926 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this), 1927 OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) { 1928 assert(isValidOperands(V1, V2, Mask) && 1929 "Invalid shuffle vector instruction operands!"); 1930 1931 Op<0>() = V1; 1932 Op<1>() = V2; 1933 setShuffleMask(Mask); 1934 setName(Name); 1935 } 1936 1937 void ShuffleVectorInst::commute() { 1938 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); 1939 int NumMaskElts = ShuffleMask.size(); 1940 SmallVector<int, 16> NewMask(NumMaskElts); 1941 for (int i = 0; i != NumMaskElts; ++i) { 1942 int MaskElt = getMaskValue(i); 1943 if (MaskElt == UndefMaskElem) { 1944 NewMask[i] = UndefMaskElem; 1945 continue; 1946 } 1947 assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask"); 1948 MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts; 1949 NewMask[i] = MaskElt; 1950 } 1951 setShuffleMask(NewMask); 1952 Op<0>().swap(Op<1>()); 1953 } 1954 1955 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, 1956 ArrayRef<int> Mask) { 1957 // V1 and V2 must be vectors of the same type. 1958 if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType()) 1959 return false; 1960 1961 // Make sure the mask elements make sense. 1962 int V1Size = 1963 cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue(); 1964 for (int Elem : Mask) 1965 if (Elem != UndefMaskElem && Elem >= V1Size * 2) 1966 return false; 1967 1968 if (isa<ScalableVectorType>(V1->getType())) 1969 if ((Mask[0] != 0 && Mask[0] != UndefMaskElem) || !is_splat(Mask)) 1970 return false; 1971 1972 return true; 1973 } 1974 1975 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, 1976 const Value *Mask) { 1977 // V1 and V2 must be vectors of the same type. 1978 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType()) 1979 return false; 1980 1981 // Mask must be vector of i32, and must be the same kind of vector as the 1982 // input vectors 1983 auto *MaskTy = dyn_cast<VectorType>(Mask->getType()); 1984 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) || 1985 isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType())) 1986 return false; 1987 1988 // Check to see if Mask is valid. 1989 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask)) 1990 return true; 1991 1992 if (const auto *MV = dyn_cast<ConstantVector>(Mask)) { 1993 unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements(); 1994 for (Value *Op : MV->operands()) { 1995 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 1996 if (CI->uge(V1Size*2)) 1997 return false; 1998 } else if (!isa<UndefValue>(Op)) { 1999 return false; 2000 } 2001 } 2002 return true; 2003 } 2004 2005 if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) { 2006 unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements(); 2007 for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements(); 2008 i != e; ++i) 2009 if (CDS->getElementAsInteger(i) >= V1Size*2) 2010 return false; 2011 return true; 2012 } 2013 2014 return false; 2015 } 2016 2017 void ShuffleVectorInst::getShuffleMask(const Constant *Mask, 2018 SmallVectorImpl<int> &Result) { 2019 ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount(); 2020 2021 if (isa<ConstantAggregateZero>(Mask)) { 2022 Result.resize(EC.getKnownMinValue(), 0); 2023 return; 2024 } 2025 2026 Result.reserve(EC.getKnownMinValue()); 2027 2028 if (EC.isScalable()) { 2029 assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) && 2030 "Scalable vector shuffle mask must be undef or zeroinitializer"); 2031 int MaskVal = isa<UndefValue>(Mask) ? -1 : 0; 2032 for (unsigned I = 0; I < EC.getKnownMinValue(); ++I) 2033 Result.emplace_back(MaskVal); 2034 return; 2035 } 2036 2037 unsigned NumElts = EC.getKnownMinValue(); 2038 2039 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) { 2040 for (unsigned i = 0; i != NumElts; ++i) 2041 Result.push_back(CDS->getElementAsInteger(i)); 2042 return; 2043 } 2044 for (unsigned i = 0; i != NumElts; ++i) { 2045 Constant *C = Mask->getAggregateElement(i); 2046 Result.push_back(isa<UndefValue>(C) ? -1 : 2047 cast<ConstantInt>(C)->getZExtValue()); 2048 } 2049 } 2050 2051 void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) { 2052 ShuffleMask.assign(Mask.begin(), Mask.end()); 2053 ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType()); 2054 } 2055 Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask, 2056 Type *ResultTy) { 2057 Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext()); 2058 if (isa<ScalableVectorType>(ResultTy)) { 2059 assert(is_splat(Mask) && "Unexpected shuffle"); 2060 Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true); 2061 if (Mask[0] == 0) 2062 return Constant::getNullValue(VecTy); 2063 return UndefValue::get(VecTy); 2064 } 2065 SmallVector<Constant *, 16> MaskConst; 2066 for (int Elem : Mask) { 2067 if (Elem == UndefMaskElem) 2068 MaskConst.push_back(UndefValue::get(Int32Ty)); 2069 else 2070 MaskConst.push_back(ConstantInt::get(Int32Ty, Elem)); 2071 } 2072 return ConstantVector::get(MaskConst); 2073 } 2074 2075 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) { 2076 assert(!Mask.empty() && "Shuffle mask must contain elements"); 2077 bool UsesLHS = false; 2078 bool UsesRHS = false; 2079 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) { 2080 if (Mask[i] == -1) 2081 continue; 2082 assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) && 2083 "Out-of-bounds shuffle mask element"); 2084 UsesLHS |= (Mask[i] < NumOpElts); 2085 UsesRHS |= (Mask[i] >= NumOpElts); 2086 if (UsesLHS && UsesRHS) 2087 return false; 2088 } 2089 // Allow for degenerate case: completely undef mask means neither source is used. 2090 return UsesLHS || UsesRHS; 2091 } 2092 2093 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) { 2094 // We don't have vector operand size information, so assume operands are the 2095 // same size as the mask. 2096 return isSingleSourceMaskImpl(Mask, Mask.size()); 2097 } 2098 2099 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) { 2100 if (!isSingleSourceMaskImpl(Mask, NumOpElts)) 2101 return false; 2102 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) { 2103 if (Mask[i] == -1) 2104 continue; 2105 if (Mask[i] != i && Mask[i] != (NumOpElts + i)) 2106 return false; 2107 } 2108 return true; 2109 } 2110 2111 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) { 2112 // We don't have vector operand size information, so assume operands are the 2113 // same size as the mask. 2114 return isIdentityMaskImpl(Mask, Mask.size()); 2115 } 2116 2117 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) { 2118 if (!isSingleSourceMask(Mask)) 2119 return false; 2120 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { 2121 if (Mask[i] == -1) 2122 continue; 2123 if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i)) 2124 return false; 2125 } 2126 return true; 2127 } 2128 2129 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) { 2130 if (!isSingleSourceMask(Mask)) 2131 return false; 2132 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { 2133 if (Mask[i] == -1) 2134 continue; 2135 if (Mask[i] != 0 && Mask[i] != NumElts) 2136 return false; 2137 } 2138 return true; 2139 } 2140 2141 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) { 2142 // Select is differentiated from identity. It requires using both sources. 2143 if (isSingleSourceMask(Mask)) 2144 return false; 2145 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { 2146 if (Mask[i] == -1) 2147 continue; 2148 if (Mask[i] != i && Mask[i] != (NumElts + i)) 2149 return false; 2150 } 2151 return true; 2152 } 2153 2154 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) { 2155 // Example masks that will return true: 2156 // v1 = <a, b, c, d> 2157 // v2 = <e, f, g, h> 2158 // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g> 2159 // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h> 2160 2161 // 1. The number of elements in the mask must be a power-of-2 and at least 2. 2162 int NumElts = Mask.size(); 2163 if (NumElts < 2 || !isPowerOf2_32(NumElts)) 2164 return false; 2165 2166 // 2. The first element of the mask must be either a 0 or a 1. 2167 if (Mask[0] != 0 && Mask[0] != 1) 2168 return false; 2169 2170 // 3. The difference between the first 2 elements must be equal to the 2171 // number of elements in the mask. 2172 if ((Mask[1] - Mask[0]) != NumElts) 2173 return false; 2174 2175 // 4. The difference between consecutive even-numbered and odd-numbered 2176 // elements must be equal to 2. 2177 for (int i = 2; i < NumElts; ++i) { 2178 int MaskEltVal = Mask[i]; 2179 if (MaskEltVal == -1) 2180 return false; 2181 int MaskEltPrevVal = Mask[i - 2]; 2182 if (MaskEltVal - MaskEltPrevVal != 2) 2183 return false; 2184 } 2185 return true; 2186 } 2187 2188 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask, 2189 int NumSrcElts, int &Index) { 2190 // Must extract from a single source. 2191 if (!isSingleSourceMaskImpl(Mask, NumSrcElts)) 2192 return false; 2193 2194 // Must be smaller (else this is an Identity shuffle). 2195 if (NumSrcElts <= (int)Mask.size()) 2196 return false; 2197 2198 // Find start of extraction, accounting that we may start with an UNDEF. 2199 int SubIndex = -1; 2200 for (int i = 0, e = Mask.size(); i != e; ++i) { 2201 int M = Mask[i]; 2202 if (M < 0) 2203 continue; 2204 int Offset = (M % NumSrcElts) - i; 2205 if (0 <= SubIndex && SubIndex != Offset) 2206 return false; 2207 SubIndex = Offset; 2208 } 2209 2210 if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) { 2211 Index = SubIndex; 2212 return true; 2213 } 2214 return false; 2215 } 2216 2217 bool ShuffleVectorInst::isIdentityWithPadding() const { 2218 if (isa<UndefValue>(Op<2>())) 2219 return false; 2220 2221 // FIXME: Not currently possible to express a shuffle mask for a scalable 2222 // vector for this case. 2223 if (isa<ScalableVectorType>(getType())) 2224 return false; 2225 2226 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); 2227 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements(); 2228 if (NumMaskElts <= NumOpElts) 2229 return false; 2230 2231 // The first part of the mask must choose elements from exactly 1 source op. 2232 ArrayRef<int> Mask = getShuffleMask(); 2233 if (!isIdentityMaskImpl(Mask, NumOpElts)) 2234 return false; 2235 2236 // All extending must be with undef elements. 2237 for (int i = NumOpElts; i < NumMaskElts; ++i) 2238 if (Mask[i] != -1) 2239 return false; 2240 2241 return true; 2242 } 2243 2244 bool ShuffleVectorInst::isIdentityWithExtract() const { 2245 if (isa<UndefValue>(Op<2>())) 2246 return false; 2247 2248 // FIXME: Not currently possible to express a shuffle mask for a scalable 2249 // vector for this case. 2250 if (isa<ScalableVectorType>(getType())) 2251 return false; 2252 2253 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); 2254 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements(); 2255 if (NumMaskElts >= NumOpElts) 2256 return false; 2257 2258 return isIdentityMaskImpl(getShuffleMask(), NumOpElts); 2259 } 2260 2261 bool ShuffleVectorInst::isConcat() const { 2262 // Vector concatenation is differentiated from identity with padding. 2263 if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()) || 2264 isa<UndefValue>(Op<2>())) 2265 return false; 2266 2267 // FIXME: Not currently possible to express a shuffle mask for a scalable 2268 // vector for this case. 2269 if (isa<ScalableVectorType>(getType())) 2270 return false; 2271 2272 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); 2273 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements(); 2274 if (NumMaskElts != NumOpElts * 2) 2275 return false; 2276 2277 // Use the mask length rather than the operands' vector lengths here. We 2278 // already know that the shuffle returns a vector twice as long as the inputs, 2279 // and neither of the inputs are undef vectors. If the mask picks consecutive 2280 // elements from both inputs, then this is a concatenation of the inputs. 2281 return isIdentityMaskImpl(getShuffleMask(), NumMaskElts); 2282 } 2283 2284 //===----------------------------------------------------------------------===// 2285 // InsertValueInst Class 2286 //===----------------------------------------------------------------------===// 2287 2288 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 2289 const Twine &Name) { 2290 assert(getNumOperands() == 2 && "NumOperands not initialized?"); 2291 2292 // There's no fundamental reason why we require at least one index 2293 // (other than weirdness with &*IdxBegin being invalid; see 2294 // getelementptr's init routine for example). But there's no 2295 // present need to support it. 2296 assert(!Idxs.empty() && "InsertValueInst must have at least one index"); 2297 2298 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) == 2299 Val->getType() && "Inserted value must match indexed type!"); 2300 Op<0>() = Agg; 2301 Op<1>() = Val; 2302 2303 Indices.append(Idxs.begin(), Idxs.end()); 2304 setName(Name); 2305 } 2306 2307 InsertValueInst::InsertValueInst(const InsertValueInst &IVI) 2308 : Instruction(IVI.getType(), InsertValue, 2309 OperandTraits<InsertValueInst>::op_begin(this), 2), 2310 Indices(IVI.Indices) { 2311 Op<0>() = IVI.getOperand(0); 2312 Op<1>() = IVI.getOperand(1); 2313 SubclassOptionalData = IVI.SubclassOptionalData; 2314 } 2315 2316 //===----------------------------------------------------------------------===// 2317 // ExtractValueInst Class 2318 //===----------------------------------------------------------------------===// 2319 2320 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) { 2321 assert(getNumOperands() == 1 && "NumOperands not initialized?"); 2322 2323 // There's no fundamental reason why we require at least one index. 2324 // But there's no present need to support it. 2325 assert(!Idxs.empty() && "ExtractValueInst must have at least one index"); 2326 2327 Indices.append(Idxs.begin(), Idxs.end()); 2328 setName(Name); 2329 } 2330 2331 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI) 2332 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)), 2333 Indices(EVI.Indices) { 2334 SubclassOptionalData = EVI.SubclassOptionalData; 2335 } 2336 2337 // getIndexedType - Returns the type of the element that would be extracted 2338 // with an extractvalue instruction with the specified parameters. 2339 // 2340 // A null type is returned if the indices are invalid for the specified 2341 // pointer type. 2342 // 2343 Type *ExtractValueInst::getIndexedType(Type *Agg, 2344 ArrayRef<unsigned> Idxs) { 2345 for (unsigned Index : Idxs) { 2346 // We can't use CompositeType::indexValid(Index) here. 2347 // indexValid() always returns true for arrays because getelementptr allows 2348 // out-of-bounds indices. Since we don't allow those for extractvalue and 2349 // insertvalue we need to check array indexing manually. 2350 // Since the only other types we can index into are struct types it's just 2351 // as easy to check those manually as well. 2352 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) { 2353 if (Index >= AT->getNumElements()) 2354 return nullptr; 2355 Agg = AT->getElementType(); 2356 } else if (StructType *ST = dyn_cast<StructType>(Agg)) { 2357 if (Index >= ST->getNumElements()) 2358 return nullptr; 2359 Agg = ST->getElementType(Index); 2360 } else { 2361 // Not a valid type to index into. 2362 return nullptr; 2363 } 2364 } 2365 return const_cast<Type*>(Agg); 2366 } 2367 2368 //===----------------------------------------------------------------------===// 2369 // UnaryOperator Class 2370 //===----------------------------------------------------------------------===// 2371 2372 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S, 2373 Type *Ty, const Twine &Name, 2374 Instruction *InsertBefore) 2375 : UnaryInstruction(Ty, iType, S, InsertBefore) { 2376 Op<0>() = S; 2377 setName(Name); 2378 AssertOK(); 2379 } 2380 2381 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S, 2382 Type *Ty, const Twine &Name, 2383 BasicBlock *InsertAtEnd) 2384 : UnaryInstruction(Ty, iType, S, InsertAtEnd) { 2385 Op<0>() = S; 2386 setName(Name); 2387 AssertOK(); 2388 } 2389 2390 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S, 2391 const Twine &Name, 2392 Instruction *InsertBefore) { 2393 return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore); 2394 } 2395 2396 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S, 2397 const Twine &Name, 2398 BasicBlock *InsertAtEnd) { 2399 UnaryOperator *Res = Create(Op, S, Name); 2400 InsertAtEnd->getInstList().push_back(Res); 2401 return Res; 2402 } 2403 2404 void UnaryOperator::AssertOK() { 2405 Value *LHS = getOperand(0); 2406 (void)LHS; // Silence warnings. 2407 #ifndef NDEBUG 2408 switch (getOpcode()) { 2409 case FNeg: 2410 assert(getType() == LHS->getType() && 2411 "Unary operation should return same type as operand!"); 2412 assert(getType()->isFPOrFPVectorTy() && 2413 "Tried to create a floating-point operation on a " 2414 "non-floating-point type!"); 2415 break; 2416 default: llvm_unreachable("Invalid opcode provided"); 2417 } 2418 #endif 2419 } 2420 2421 //===----------------------------------------------------------------------===// 2422 // BinaryOperator Class 2423 //===----------------------------------------------------------------------===// 2424 2425 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 2426 Type *Ty, const Twine &Name, 2427 Instruction *InsertBefore) 2428 : Instruction(Ty, iType, 2429 OperandTraits<BinaryOperator>::op_begin(this), 2430 OperandTraits<BinaryOperator>::operands(this), 2431 InsertBefore) { 2432 Op<0>() = S1; 2433 Op<1>() = S2; 2434 setName(Name); 2435 AssertOK(); 2436 } 2437 2438 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 2439 Type *Ty, const Twine &Name, 2440 BasicBlock *InsertAtEnd) 2441 : Instruction(Ty, iType, 2442 OperandTraits<BinaryOperator>::op_begin(this), 2443 OperandTraits<BinaryOperator>::operands(this), 2444 InsertAtEnd) { 2445 Op<0>() = S1; 2446 Op<1>() = S2; 2447 setName(Name); 2448 AssertOK(); 2449 } 2450 2451 void BinaryOperator::AssertOK() { 2452 Value *LHS = getOperand(0), *RHS = getOperand(1); 2453 (void)LHS; (void)RHS; // Silence warnings. 2454 assert(LHS->getType() == RHS->getType() && 2455 "Binary operator operand types must match!"); 2456 #ifndef NDEBUG 2457 switch (getOpcode()) { 2458 case Add: case Sub: 2459 case Mul: 2460 assert(getType() == LHS->getType() && 2461 "Arithmetic operation should return same type as operands!"); 2462 assert(getType()->isIntOrIntVectorTy() && 2463 "Tried to create an integer operation on a non-integer type!"); 2464 break; 2465 case FAdd: case FSub: 2466 case FMul: 2467 assert(getType() == LHS->getType() && 2468 "Arithmetic operation should return same type as operands!"); 2469 assert(getType()->isFPOrFPVectorTy() && 2470 "Tried to create a floating-point operation on a " 2471 "non-floating-point type!"); 2472 break; 2473 case UDiv: 2474 case SDiv: 2475 assert(getType() == LHS->getType() && 2476 "Arithmetic operation should return same type as operands!"); 2477 assert(getType()->isIntOrIntVectorTy() && 2478 "Incorrect operand type (not integer) for S/UDIV"); 2479 break; 2480 case FDiv: 2481 assert(getType() == LHS->getType() && 2482 "Arithmetic operation should return same type as operands!"); 2483 assert(getType()->isFPOrFPVectorTy() && 2484 "Incorrect operand type (not floating point) for FDIV"); 2485 break; 2486 case URem: 2487 case SRem: 2488 assert(getType() == LHS->getType() && 2489 "Arithmetic operation should return same type as operands!"); 2490 assert(getType()->isIntOrIntVectorTy() && 2491 "Incorrect operand type (not integer) for S/UREM"); 2492 break; 2493 case FRem: 2494 assert(getType() == LHS->getType() && 2495 "Arithmetic operation should return same type as operands!"); 2496 assert(getType()->isFPOrFPVectorTy() && 2497 "Incorrect operand type (not floating point) for FREM"); 2498 break; 2499 case Shl: 2500 case LShr: 2501 case AShr: 2502 assert(getType() == LHS->getType() && 2503 "Shift operation should return same type as operands!"); 2504 assert(getType()->isIntOrIntVectorTy() && 2505 "Tried to create a shift operation on a non-integral type!"); 2506 break; 2507 case And: case Or: 2508 case Xor: 2509 assert(getType() == LHS->getType() && 2510 "Logical operation should return same type as operands!"); 2511 assert(getType()->isIntOrIntVectorTy() && 2512 "Tried to create a logical operation on a non-integral type!"); 2513 break; 2514 default: llvm_unreachable("Invalid opcode provided"); 2515 } 2516 #endif 2517 } 2518 2519 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 2520 const Twine &Name, 2521 Instruction *InsertBefore) { 2522 assert(S1->getType() == S2->getType() && 2523 "Cannot create binary operator with two operands of differing type!"); 2524 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); 2525 } 2526 2527 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 2528 const Twine &Name, 2529 BasicBlock *InsertAtEnd) { 2530 BinaryOperator *Res = Create(Op, S1, S2, Name); 2531 InsertAtEnd->getInstList().push_back(Res); 2532 return Res; 2533 } 2534 2535 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 2536 Instruction *InsertBefore) { 2537 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2538 return new BinaryOperator(Instruction::Sub, 2539 zero, Op, 2540 Op->getType(), Name, InsertBefore); 2541 } 2542 2543 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 2544 BasicBlock *InsertAtEnd) { 2545 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2546 return new BinaryOperator(Instruction::Sub, 2547 zero, Op, 2548 Op->getType(), Name, InsertAtEnd); 2549 } 2550 2551 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 2552 Instruction *InsertBefore) { 2553 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2554 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore); 2555 } 2556 2557 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 2558 BasicBlock *InsertAtEnd) { 2559 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2560 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd); 2561 } 2562 2563 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 2564 Instruction *InsertBefore) { 2565 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2566 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore); 2567 } 2568 2569 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 2570 BasicBlock *InsertAtEnd) { 2571 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2572 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd); 2573 } 2574 2575 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 2576 Instruction *InsertBefore) { 2577 Constant *C = Constant::getAllOnesValue(Op->getType()); 2578 return new BinaryOperator(Instruction::Xor, Op, C, 2579 Op->getType(), Name, InsertBefore); 2580 } 2581 2582 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 2583 BasicBlock *InsertAtEnd) { 2584 Constant *AllOnes = Constant::getAllOnesValue(Op->getType()); 2585 return new BinaryOperator(Instruction::Xor, Op, AllOnes, 2586 Op->getType(), Name, InsertAtEnd); 2587 } 2588 2589 // Exchange the two operands to this instruction. This instruction is safe to 2590 // use on any binary instruction and does not modify the semantics of the 2591 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode 2592 // is changed. 2593 bool BinaryOperator::swapOperands() { 2594 if (!isCommutative()) 2595 return true; // Can't commute operands 2596 Op<0>().swap(Op<1>()); 2597 return false; 2598 } 2599 2600 //===----------------------------------------------------------------------===// 2601 // FPMathOperator Class 2602 //===----------------------------------------------------------------------===// 2603 2604 float FPMathOperator::getFPAccuracy() const { 2605 const MDNode *MD = 2606 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath); 2607 if (!MD) 2608 return 0.0; 2609 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0)); 2610 return Accuracy->getValueAPF().convertToFloat(); 2611 } 2612 2613 //===----------------------------------------------------------------------===// 2614 // CastInst Class 2615 //===----------------------------------------------------------------------===// 2616 2617 // Just determine if this cast only deals with integral->integral conversion. 2618 bool CastInst::isIntegerCast() const { 2619 switch (getOpcode()) { 2620 default: return false; 2621 case Instruction::ZExt: 2622 case Instruction::SExt: 2623 case Instruction::Trunc: 2624 return true; 2625 case Instruction::BitCast: 2626 return getOperand(0)->getType()->isIntegerTy() && 2627 getType()->isIntegerTy(); 2628 } 2629 } 2630 2631 bool CastInst::isLosslessCast() const { 2632 // Only BitCast can be lossless, exit fast if we're not BitCast 2633 if (getOpcode() != Instruction::BitCast) 2634 return false; 2635 2636 // Identity cast is always lossless 2637 Type *SrcTy = getOperand(0)->getType(); 2638 Type *DstTy = getType(); 2639 if (SrcTy == DstTy) 2640 return true; 2641 2642 // Pointer to pointer is always lossless. 2643 if (SrcTy->isPointerTy()) 2644 return DstTy->isPointerTy(); 2645 return false; // Other types have no identity values 2646 } 2647 2648 /// This function determines if the CastInst does not require any bits to be 2649 /// changed in order to effect the cast. Essentially, it identifies cases where 2650 /// no code gen is necessary for the cast, hence the name no-op cast. For 2651 /// example, the following are all no-op casts: 2652 /// # bitcast i32* %x to i8* 2653 /// # bitcast <2 x i32> %x to <4 x i16> 2654 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only 2655 /// Determine if the described cast is a no-op. 2656 bool CastInst::isNoopCast(Instruction::CastOps Opcode, 2657 Type *SrcTy, 2658 Type *DestTy, 2659 const DataLayout &DL) { 2660 assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition"); 2661 switch (Opcode) { 2662 default: llvm_unreachable("Invalid CastOp"); 2663 case Instruction::Trunc: 2664 case Instruction::ZExt: 2665 case Instruction::SExt: 2666 case Instruction::FPTrunc: 2667 case Instruction::FPExt: 2668 case Instruction::UIToFP: 2669 case Instruction::SIToFP: 2670 case Instruction::FPToUI: 2671 case Instruction::FPToSI: 2672 case Instruction::AddrSpaceCast: 2673 // TODO: Target informations may give a more accurate answer here. 2674 return false; 2675 case Instruction::BitCast: 2676 return true; // BitCast never modifies bits. 2677 case Instruction::PtrToInt: 2678 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() == 2679 DestTy->getScalarSizeInBits(); 2680 case Instruction::IntToPtr: 2681 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() == 2682 SrcTy->getScalarSizeInBits(); 2683 } 2684 } 2685 2686 bool CastInst::isNoopCast(const DataLayout &DL) const { 2687 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL); 2688 } 2689 2690 /// This function determines if a pair of casts can be eliminated and what 2691 /// opcode should be used in the elimination. This assumes that there are two 2692 /// instructions like this: 2693 /// * %F = firstOpcode SrcTy %x to MidTy 2694 /// * %S = secondOpcode MidTy %F to DstTy 2695 /// The function returns a resultOpcode so these two casts can be replaced with: 2696 /// * %Replacement = resultOpcode %SrcTy %x to DstTy 2697 /// If no such cast is permitted, the function returns 0. 2698 unsigned CastInst::isEliminableCastPair( 2699 Instruction::CastOps firstOp, Instruction::CastOps secondOp, 2700 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, 2701 Type *DstIntPtrTy) { 2702 // Define the 144 possibilities for these two cast instructions. The values 2703 // in this matrix determine what to do in a given situation and select the 2704 // case in the switch below. The rows correspond to firstOp, the columns 2705 // correspond to secondOp. In looking at the table below, keep in mind 2706 // the following cast properties: 2707 // 2708 // Size Compare Source Destination 2709 // Operator Src ? Size Type Sign Type Sign 2710 // -------- ------------ ------------------- --------------------- 2711 // TRUNC > Integer Any Integral Any 2712 // ZEXT < Integral Unsigned Integer Any 2713 // SEXT < Integral Signed Integer Any 2714 // FPTOUI n/a FloatPt n/a Integral Unsigned 2715 // FPTOSI n/a FloatPt n/a Integral Signed 2716 // UITOFP n/a Integral Unsigned FloatPt n/a 2717 // SITOFP n/a Integral Signed FloatPt n/a 2718 // FPTRUNC > FloatPt n/a FloatPt n/a 2719 // FPEXT < FloatPt n/a FloatPt n/a 2720 // PTRTOINT n/a Pointer n/a Integral Unsigned 2721 // INTTOPTR n/a Integral Unsigned Pointer n/a 2722 // BITCAST = FirstClass n/a FirstClass n/a 2723 // ADDRSPCST n/a Pointer n/a Pointer n/a 2724 // 2725 // NOTE: some transforms are safe, but we consider them to be non-profitable. 2726 // For example, we could merge "fptoui double to i32" + "zext i32 to i64", 2727 // into "fptoui double to i64", but this loses information about the range 2728 // of the produced value (we no longer know the top-part is all zeros). 2729 // Further this conversion is often much more expensive for typical hardware, 2730 // and causes issues when building libgcc. We disallow fptosi+sext for the 2731 // same reason. 2732 const unsigned numCastOps = 2733 Instruction::CastOpsEnd - Instruction::CastOpsBegin; 2734 static const uint8_t CastResults[numCastOps][numCastOps] = { 2735 // T F F U S F F P I B A -+ 2736 // R Z S P P I I T P 2 N T S | 2737 // U E E 2 2 2 2 R E I T C C +- secondOp 2738 // N X X U S F F N X N 2 V V | 2739 // C T T I I P P C T T P T T -+ 2740 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+ 2741 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt | 2742 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt | 2743 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI | 2744 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI | 2745 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp 2746 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP | 2747 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc | 2748 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt | 2749 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt | 2750 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr | 2751 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast | 2752 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+ 2753 }; 2754 2755 // TODO: This logic could be encoded into the table above and handled in the 2756 // switch below. 2757 // If either of the casts are a bitcast from scalar to vector, disallow the 2758 // merging. However, any pair of bitcasts are allowed. 2759 bool IsFirstBitcast = (firstOp == Instruction::BitCast); 2760 bool IsSecondBitcast = (secondOp == Instruction::BitCast); 2761 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast; 2762 2763 // Check if any of the casts convert scalars <-> vectors. 2764 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) || 2765 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy))) 2766 if (!AreBothBitcasts) 2767 return 0; 2768 2769 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin] 2770 [secondOp-Instruction::CastOpsBegin]; 2771 switch (ElimCase) { 2772 case 0: 2773 // Categorically disallowed. 2774 return 0; 2775 case 1: 2776 // Allowed, use first cast's opcode. 2777 return firstOp; 2778 case 2: 2779 // Allowed, use second cast's opcode. 2780 return secondOp; 2781 case 3: 2782 // No-op cast in second op implies firstOp as long as the DestTy 2783 // is integer and we are not converting between a vector and a 2784 // non-vector type. 2785 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy()) 2786 return firstOp; 2787 return 0; 2788 case 4: 2789 // No-op cast in second op implies firstOp as long as the DestTy 2790 // is floating point. 2791 if (DstTy->isFloatingPointTy()) 2792 return firstOp; 2793 return 0; 2794 case 5: 2795 // No-op cast in first op implies secondOp as long as the SrcTy 2796 // is an integer. 2797 if (SrcTy->isIntegerTy()) 2798 return secondOp; 2799 return 0; 2800 case 6: 2801 // No-op cast in first op implies secondOp as long as the SrcTy 2802 // is a floating point. 2803 if (SrcTy->isFloatingPointTy()) 2804 return secondOp; 2805 return 0; 2806 case 7: { 2807 // Cannot simplify if address spaces are different! 2808 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) 2809 return 0; 2810 2811 unsigned MidSize = MidTy->getScalarSizeInBits(); 2812 // We can still fold this without knowing the actual sizes as long we 2813 // know that the intermediate pointer is the largest possible 2814 // pointer size. 2815 // FIXME: Is this always true? 2816 if (MidSize == 64) 2817 return Instruction::BitCast; 2818 2819 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size. 2820 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy) 2821 return 0; 2822 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits(); 2823 if (MidSize >= PtrSize) 2824 return Instruction::BitCast; 2825 return 0; 2826 } 2827 case 8: { 2828 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size 2829 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy) 2830 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy) 2831 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2832 unsigned DstSize = DstTy->getScalarSizeInBits(); 2833 if (SrcSize == DstSize) 2834 return Instruction::BitCast; 2835 else if (SrcSize < DstSize) 2836 return firstOp; 2837 return secondOp; 2838 } 2839 case 9: 2840 // zext, sext -> zext, because sext can't sign extend after zext 2841 return Instruction::ZExt; 2842 case 11: { 2843 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize 2844 if (!MidIntPtrTy) 2845 return 0; 2846 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits(); 2847 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2848 unsigned DstSize = DstTy->getScalarSizeInBits(); 2849 if (SrcSize <= PtrSize && SrcSize == DstSize) 2850 return Instruction::BitCast; 2851 return 0; 2852 } 2853 case 12: 2854 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS 2855 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS 2856 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) 2857 return Instruction::AddrSpaceCast; 2858 return Instruction::BitCast; 2859 case 13: 2860 // FIXME: this state can be merged with (1), but the following assert 2861 // is useful to check the correcteness of the sequence due to semantic 2862 // change of bitcast. 2863 assert( 2864 SrcTy->isPtrOrPtrVectorTy() && 2865 MidTy->isPtrOrPtrVectorTy() && 2866 DstTy->isPtrOrPtrVectorTy() && 2867 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() && 2868 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && 2869 "Illegal addrspacecast, bitcast sequence!"); 2870 // Allowed, use first cast's opcode 2871 return firstOp; 2872 case 14: 2873 // bitcast, addrspacecast -> addrspacecast if the element type of 2874 // bitcast's source is the same as that of addrspacecast's destination. 2875 if (SrcTy->getScalarType()->getPointerElementType() == 2876 DstTy->getScalarType()->getPointerElementType()) 2877 return Instruction::AddrSpaceCast; 2878 return 0; 2879 case 15: 2880 // FIXME: this state can be merged with (1), but the following assert 2881 // is useful to check the correcteness of the sequence due to semantic 2882 // change of bitcast. 2883 assert( 2884 SrcTy->isIntOrIntVectorTy() && 2885 MidTy->isPtrOrPtrVectorTy() && 2886 DstTy->isPtrOrPtrVectorTy() && 2887 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && 2888 "Illegal inttoptr, bitcast sequence!"); 2889 // Allowed, use first cast's opcode 2890 return firstOp; 2891 case 16: 2892 // FIXME: this state can be merged with (2), but the following assert 2893 // is useful to check the correcteness of the sequence due to semantic 2894 // change of bitcast. 2895 assert( 2896 SrcTy->isPtrOrPtrVectorTy() && 2897 MidTy->isPtrOrPtrVectorTy() && 2898 DstTy->isIntOrIntVectorTy() && 2899 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() && 2900 "Illegal bitcast, ptrtoint sequence!"); 2901 // Allowed, use second cast's opcode 2902 return secondOp; 2903 case 17: 2904 // (sitofp (zext x)) -> (uitofp x) 2905 return Instruction::UIToFP; 2906 case 99: 2907 // Cast combination can't happen (error in input). This is for all cases 2908 // where the MidTy is not the same for the two cast instructions. 2909 llvm_unreachable("Invalid Cast Combination"); 2910 default: 2911 llvm_unreachable("Error in CastResults table!!!"); 2912 } 2913 } 2914 2915 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2916 const Twine &Name, Instruction *InsertBefore) { 2917 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2918 // Construct and return the appropriate CastInst subclass 2919 switch (op) { 2920 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore); 2921 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore); 2922 case SExt: return new SExtInst (S, Ty, Name, InsertBefore); 2923 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore); 2924 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore); 2925 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore); 2926 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore); 2927 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore); 2928 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore); 2929 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore); 2930 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore); 2931 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore); 2932 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore); 2933 default: llvm_unreachable("Invalid opcode provided"); 2934 } 2935 } 2936 2937 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2938 const Twine &Name, BasicBlock *InsertAtEnd) { 2939 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2940 // Construct and return the appropriate CastInst subclass 2941 switch (op) { 2942 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd); 2943 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd); 2944 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd); 2945 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd); 2946 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd); 2947 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd); 2948 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd); 2949 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd); 2950 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd); 2951 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd); 2952 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd); 2953 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd); 2954 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd); 2955 default: llvm_unreachable("Invalid opcode provided"); 2956 } 2957 } 2958 2959 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 2960 const Twine &Name, 2961 Instruction *InsertBefore) { 2962 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2963 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2964 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore); 2965 } 2966 2967 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 2968 const Twine &Name, 2969 BasicBlock *InsertAtEnd) { 2970 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2971 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2972 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd); 2973 } 2974 2975 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 2976 const Twine &Name, 2977 Instruction *InsertBefore) { 2978 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2979 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2980 return Create(Instruction::SExt, S, Ty, Name, InsertBefore); 2981 } 2982 2983 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 2984 const Twine &Name, 2985 BasicBlock *InsertAtEnd) { 2986 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2987 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2988 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd); 2989 } 2990 2991 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 2992 const Twine &Name, 2993 Instruction *InsertBefore) { 2994 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2995 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2996 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore); 2997 } 2998 2999 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 3000 const Twine &Name, 3001 BasicBlock *InsertAtEnd) { 3002 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 3003 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 3004 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd); 3005 } 3006 3007 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 3008 const Twine &Name, 3009 BasicBlock *InsertAtEnd) { 3010 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 3011 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 3012 "Invalid cast"); 3013 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 3014 assert((!Ty->isVectorTy() || 3015 cast<VectorType>(Ty)->getElementCount() == 3016 cast<VectorType>(S->getType())->getElementCount()) && 3017 "Invalid cast"); 3018 3019 if (Ty->isIntOrIntVectorTy()) 3020 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd); 3021 3022 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd); 3023 } 3024 3025 /// Create a BitCast or a PtrToInt cast instruction 3026 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 3027 const Twine &Name, 3028 Instruction *InsertBefore) { 3029 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 3030 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 3031 "Invalid cast"); 3032 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 3033 assert((!Ty->isVectorTy() || 3034 cast<VectorType>(Ty)->getElementCount() == 3035 cast<VectorType>(S->getType())->getElementCount()) && 3036 "Invalid cast"); 3037 3038 if (Ty->isIntOrIntVectorTy()) 3039 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 3040 3041 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore); 3042 } 3043 3044 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( 3045 Value *S, Type *Ty, 3046 const Twine &Name, 3047 BasicBlock *InsertAtEnd) { 3048 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 3049 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 3050 3051 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 3052 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd); 3053 3054 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 3055 } 3056 3057 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( 3058 Value *S, Type *Ty, 3059 const Twine &Name, 3060 Instruction *InsertBefore) { 3061 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 3062 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 3063 3064 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 3065 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore); 3066 3067 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 3068 } 3069 3070 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty, 3071 const Twine &Name, 3072 Instruction *InsertBefore) { 3073 if (S->getType()->isPointerTy() && Ty->isIntegerTy()) 3074 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 3075 if (S->getType()->isIntegerTy() && Ty->isPointerTy()) 3076 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore); 3077 3078 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 3079 } 3080 3081 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 3082 bool isSigned, const Twine &Name, 3083 Instruction *InsertBefore) { 3084 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 3085 "Invalid integer cast"); 3086 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 3087 unsigned DstBits = Ty->getScalarSizeInBits(); 3088 Instruction::CastOps opcode = 3089 (SrcBits == DstBits ? Instruction::BitCast : 3090 (SrcBits > DstBits ? Instruction::Trunc : 3091 (isSigned ? Instruction::SExt : Instruction::ZExt))); 3092 return Create(opcode, C, Ty, Name, InsertBefore); 3093 } 3094 3095 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 3096 bool isSigned, const Twine &Name, 3097 BasicBlock *InsertAtEnd) { 3098 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 3099 "Invalid cast"); 3100 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 3101 unsigned DstBits = Ty->getScalarSizeInBits(); 3102 Instruction::CastOps opcode = 3103 (SrcBits == DstBits ? Instruction::BitCast : 3104 (SrcBits > DstBits ? Instruction::Trunc : 3105 (isSigned ? Instruction::SExt : Instruction::ZExt))); 3106 return Create(opcode, C, Ty, Name, InsertAtEnd); 3107 } 3108 3109 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 3110 const Twine &Name, 3111 Instruction *InsertBefore) { 3112 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 3113 "Invalid cast"); 3114 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 3115 unsigned DstBits = Ty->getScalarSizeInBits(); 3116 Instruction::CastOps opcode = 3117 (SrcBits == DstBits ? Instruction::BitCast : 3118 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 3119 return Create(opcode, C, Ty, Name, InsertBefore); 3120 } 3121 3122 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 3123 const Twine &Name, 3124 BasicBlock *InsertAtEnd) { 3125 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 3126 "Invalid cast"); 3127 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 3128 unsigned DstBits = Ty->getScalarSizeInBits(); 3129 Instruction::CastOps opcode = 3130 (SrcBits == DstBits ? Instruction::BitCast : 3131 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 3132 return Create(opcode, C, Ty, Name, InsertAtEnd); 3133 } 3134 3135 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) { 3136 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) 3137 return false; 3138 3139 if (SrcTy == DestTy) 3140 return true; 3141 3142 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { 3143 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) { 3144 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) { 3145 // An element by element cast. Valid if casting the elements is valid. 3146 SrcTy = SrcVecTy->getElementType(); 3147 DestTy = DestVecTy->getElementType(); 3148 } 3149 } 3150 } 3151 3152 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) { 3153 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) { 3154 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace(); 3155 } 3156 } 3157 3158 TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 3159 TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 3160 3161 // Could still have vectors of pointers if the number of elements doesn't 3162 // match 3163 if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0) 3164 return false; 3165 3166 if (SrcBits != DestBits) 3167 return false; 3168 3169 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy()) 3170 return false; 3171 3172 return true; 3173 } 3174 3175 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, 3176 const DataLayout &DL) { 3177 // ptrtoint and inttoptr are not allowed on non-integral pointers 3178 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy)) 3179 if (auto *IntTy = dyn_cast<IntegerType>(DestTy)) 3180 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) && 3181 !DL.isNonIntegralPointerType(PtrTy)); 3182 if (auto *PtrTy = dyn_cast<PointerType>(DestTy)) 3183 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy)) 3184 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) && 3185 !DL.isNonIntegralPointerType(PtrTy)); 3186 3187 return isBitCastable(SrcTy, DestTy); 3188 } 3189 3190 // Provide a way to get a "cast" where the cast opcode is inferred from the 3191 // types and size of the operand. This, basically, is a parallel of the 3192 // logic in the castIsValid function below. This axiom should hold: 3193 // castIsValid( getCastOpcode(Val, Ty), Val, Ty) 3194 // should not assert in castIsValid. In other words, this produces a "correct" 3195 // casting opcode for the arguments passed to it. 3196 Instruction::CastOps 3197 CastInst::getCastOpcode( 3198 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) { 3199 Type *SrcTy = Src->getType(); 3200 3201 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() && 3202 "Only first class types are castable!"); 3203 3204 if (SrcTy == DestTy) 3205 return BitCast; 3206 3207 // FIXME: Check address space sizes here 3208 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 3209 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 3210 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) { 3211 // An element by element cast. Find the appropriate opcode based on the 3212 // element types. 3213 SrcTy = SrcVecTy->getElementType(); 3214 DestTy = DestVecTy->getElementType(); 3215 } 3216 3217 // Get the bit sizes, we'll need these 3218 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 3219 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 3220 3221 // Run through the possibilities ... 3222 if (DestTy->isIntegerTy()) { // Casting to integral 3223 if (SrcTy->isIntegerTy()) { // Casting from integral 3224 if (DestBits < SrcBits) 3225 return Trunc; // int -> smaller int 3226 else if (DestBits > SrcBits) { // its an extension 3227 if (SrcIsSigned) 3228 return SExt; // signed -> SEXT 3229 else 3230 return ZExt; // unsigned -> ZEXT 3231 } else { 3232 return BitCast; // Same size, No-op cast 3233 } 3234 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 3235 if (DestIsSigned) 3236 return FPToSI; // FP -> sint 3237 else 3238 return FPToUI; // FP -> uint 3239 } else if (SrcTy->isVectorTy()) { 3240 assert(DestBits == SrcBits && 3241 "Casting vector to integer of different width"); 3242 return BitCast; // Same size, no-op cast 3243 } else { 3244 assert(SrcTy->isPointerTy() && 3245 "Casting from a value that is not first-class type"); 3246 return PtrToInt; // ptr -> int 3247 } 3248 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt 3249 if (SrcTy->isIntegerTy()) { // Casting from integral 3250 if (SrcIsSigned) 3251 return SIToFP; // sint -> FP 3252 else 3253 return UIToFP; // uint -> FP 3254 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 3255 if (DestBits < SrcBits) { 3256 return FPTrunc; // FP -> smaller FP 3257 } else if (DestBits > SrcBits) { 3258 return FPExt; // FP -> larger FP 3259 } else { 3260 return BitCast; // same size, no-op cast 3261 } 3262 } else if (SrcTy->isVectorTy()) { 3263 assert(DestBits == SrcBits && 3264 "Casting vector to floating point of different width"); 3265 return BitCast; // same size, no-op cast 3266 } 3267 llvm_unreachable("Casting pointer or non-first class to float"); 3268 } else if (DestTy->isVectorTy()) { 3269 assert(DestBits == SrcBits && 3270 "Illegal cast to vector (wrong type or size)"); 3271 return BitCast; 3272 } else if (DestTy->isPointerTy()) { 3273 if (SrcTy->isPointerTy()) { 3274 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace()) 3275 return AddrSpaceCast; 3276 return BitCast; // ptr -> ptr 3277 } else if (SrcTy->isIntegerTy()) { 3278 return IntToPtr; // int -> ptr 3279 } 3280 llvm_unreachable("Casting pointer to other than pointer or int"); 3281 } else if (DestTy->isX86_MMXTy()) { 3282 if (SrcTy->isVectorTy()) { 3283 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX"); 3284 return BitCast; // 64-bit vector to MMX 3285 } 3286 llvm_unreachable("Illegal cast to X86_MMX"); 3287 } 3288 llvm_unreachable("Casting to type that is not first-class"); 3289 } 3290 3291 //===----------------------------------------------------------------------===// 3292 // CastInst SubClass Constructors 3293 //===----------------------------------------------------------------------===// 3294 3295 /// Check that the construction parameters for a CastInst are correct. This 3296 /// could be broken out into the separate constructors but it is useful to have 3297 /// it in one place and to eliminate the redundant code for getting the sizes 3298 /// of the types involved. 3299 bool 3300 CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) { 3301 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() || 3302 SrcTy->isAggregateType() || DstTy->isAggregateType()) 3303 return false; 3304 3305 // Get the size of the types in bits, and whether we are dealing 3306 // with vector types, we'll need this later. 3307 bool SrcIsVec = isa<VectorType>(SrcTy); 3308 bool DstIsVec = isa<VectorType>(DstTy); 3309 unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits(); 3310 unsigned DstScalarBitSize = DstTy->getScalarSizeInBits(); 3311 3312 // If these are vector types, get the lengths of the vectors (using zero for 3313 // scalar types means that checking that vector lengths match also checks that 3314 // scalars are not being converted to vectors or vectors to scalars). 3315 ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount() 3316 : ElementCount::getFixed(0); 3317 ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount() 3318 : ElementCount::getFixed(0); 3319 3320 // Switch on the opcode provided 3321 switch (op) { 3322 default: return false; // This is an input error 3323 case Instruction::Trunc: 3324 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3325 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize; 3326 case Instruction::ZExt: 3327 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3328 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize; 3329 case Instruction::SExt: 3330 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3331 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize; 3332 case Instruction::FPTrunc: 3333 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 3334 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize; 3335 case Instruction::FPExt: 3336 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 3337 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize; 3338 case Instruction::UIToFP: 3339 case Instruction::SIToFP: 3340 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() && 3341 SrcEC == DstEC; 3342 case Instruction::FPToUI: 3343 case Instruction::FPToSI: 3344 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() && 3345 SrcEC == DstEC; 3346 case Instruction::PtrToInt: 3347 if (SrcEC != DstEC) 3348 return false; 3349 return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy(); 3350 case Instruction::IntToPtr: 3351 if (SrcEC != DstEC) 3352 return false; 3353 return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy(); 3354 case Instruction::BitCast: { 3355 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); 3356 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); 3357 3358 // BitCast implies a no-op cast of type only. No bits change. 3359 // However, you can't cast pointers to anything but pointers. 3360 if (!SrcPtrTy != !DstPtrTy) 3361 return false; 3362 3363 // For non-pointer cases, the cast is okay if the source and destination bit 3364 // widths are identical. 3365 if (!SrcPtrTy) 3366 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits(); 3367 3368 // If both are pointers then the address spaces must match. 3369 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) 3370 return false; 3371 3372 // A vector of pointers must have the same number of elements. 3373 if (SrcIsVec && DstIsVec) 3374 return SrcEC == DstEC; 3375 if (SrcIsVec) 3376 return SrcEC == ElementCount::getFixed(1); 3377 if (DstIsVec) 3378 return DstEC == ElementCount::getFixed(1); 3379 3380 return true; 3381 } 3382 case Instruction::AddrSpaceCast: { 3383 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); 3384 if (!SrcPtrTy) 3385 return false; 3386 3387 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); 3388 if (!DstPtrTy) 3389 return false; 3390 3391 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) 3392 return false; 3393 3394 return SrcEC == DstEC; 3395 } 3396 } 3397 } 3398 3399 TruncInst::TruncInst( 3400 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3401 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) { 3402 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 3403 } 3404 3405 TruncInst::TruncInst( 3406 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3407 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { 3408 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 3409 } 3410 3411 ZExtInst::ZExtInst( 3412 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3413 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) { 3414 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 3415 } 3416 3417 ZExtInst::ZExtInst( 3418 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3419 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { 3420 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 3421 } 3422 SExtInst::SExtInst( 3423 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3424 ) : CastInst(Ty, SExt, S, Name, InsertBefore) { 3425 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 3426 } 3427 3428 SExtInst::SExtInst( 3429 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3430 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) { 3431 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 3432 } 3433 3434 FPTruncInst::FPTruncInst( 3435 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3436 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 3437 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 3438 } 3439 3440 FPTruncInst::FPTruncInst( 3441 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3442 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { 3443 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 3444 } 3445 3446 FPExtInst::FPExtInst( 3447 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3448 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { 3449 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 3450 } 3451 3452 FPExtInst::FPExtInst( 3453 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3454 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { 3455 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 3456 } 3457 3458 UIToFPInst::UIToFPInst( 3459 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3460 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 3461 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 3462 } 3463 3464 UIToFPInst::UIToFPInst( 3465 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3466 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { 3467 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 3468 } 3469 3470 SIToFPInst::SIToFPInst( 3471 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3472 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 3473 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 3474 } 3475 3476 SIToFPInst::SIToFPInst( 3477 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3478 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { 3479 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 3480 } 3481 3482 FPToUIInst::FPToUIInst( 3483 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3484 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 3485 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 3486 } 3487 3488 FPToUIInst::FPToUIInst( 3489 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3490 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { 3491 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 3492 } 3493 3494 FPToSIInst::FPToSIInst( 3495 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3496 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 3497 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 3498 } 3499 3500 FPToSIInst::FPToSIInst( 3501 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3502 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { 3503 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 3504 } 3505 3506 PtrToIntInst::PtrToIntInst( 3507 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3508 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 3509 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 3510 } 3511 3512 PtrToIntInst::PtrToIntInst( 3513 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3514 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { 3515 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 3516 } 3517 3518 IntToPtrInst::IntToPtrInst( 3519 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3520 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 3521 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 3522 } 3523 3524 IntToPtrInst::IntToPtrInst( 3525 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3526 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { 3527 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 3528 } 3529 3530 BitCastInst::BitCastInst( 3531 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3532 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { 3533 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 3534 } 3535 3536 BitCastInst::BitCastInst( 3537 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3538 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { 3539 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 3540 } 3541 3542 AddrSpaceCastInst::AddrSpaceCastInst( 3543 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3544 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) { 3545 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); 3546 } 3547 3548 AddrSpaceCastInst::AddrSpaceCastInst( 3549 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3550 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) { 3551 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); 3552 } 3553 3554 //===----------------------------------------------------------------------===// 3555 // CmpInst Classes 3556 //===----------------------------------------------------------------------===// 3557 3558 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, 3559 Value *RHS, const Twine &Name, Instruction *InsertBefore, 3560 Instruction *FlagsSource) 3561 : Instruction(ty, op, 3562 OperandTraits<CmpInst>::op_begin(this), 3563 OperandTraits<CmpInst>::operands(this), 3564 InsertBefore) { 3565 Op<0>() = LHS; 3566 Op<1>() = RHS; 3567 setPredicate((Predicate)predicate); 3568 setName(Name); 3569 if (FlagsSource) 3570 copyIRFlags(FlagsSource); 3571 } 3572 3573 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, 3574 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd) 3575 : Instruction(ty, op, 3576 OperandTraits<CmpInst>::op_begin(this), 3577 OperandTraits<CmpInst>::operands(this), 3578 InsertAtEnd) { 3579 Op<0>() = LHS; 3580 Op<1>() = RHS; 3581 setPredicate((Predicate)predicate); 3582 setName(Name); 3583 } 3584 3585 CmpInst * 3586 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, 3587 const Twine &Name, Instruction *InsertBefore) { 3588 if (Op == Instruction::ICmp) { 3589 if (InsertBefore) 3590 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate), 3591 S1, S2, Name); 3592 else 3593 return new ICmpInst(CmpInst::Predicate(predicate), 3594 S1, S2, Name); 3595 } 3596 3597 if (InsertBefore) 3598 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate), 3599 S1, S2, Name); 3600 else 3601 return new FCmpInst(CmpInst::Predicate(predicate), 3602 S1, S2, Name); 3603 } 3604 3605 CmpInst * 3606 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, 3607 const Twine &Name, BasicBlock *InsertAtEnd) { 3608 if (Op == Instruction::ICmp) { 3609 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 3610 S1, S2, Name); 3611 } 3612 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 3613 S1, S2, Name); 3614 } 3615 3616 void CmpInst::swapOperands() { 3617 if (ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3618 IC->swapOperands(); 3619 else 3620 cast<FCmpInst>(this)->swapOperands(); 3621 } 3622 3623 bool CmpInst::isCommutative() const { 3624 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3625 return IC->isCommutative(); 3626 return cast<FCmpInst>(this)->isCommutative(); 3627 } 3628 3629 bool CmpInst::isEquality(Predicate P) { 3630 if (ICmpInst::isIntPredicate(P)) 3631 return ICmpInst::isEquality(P); 3632 if (FCmpInst::isFPPredicate(P)) 3633 return FCmpInst::isEquality(P); 3634 llvm_unreachable("Unsupported predicate kind"); 3635 } 3636 3637 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) { 3638 switch (pred) { 3639 default: llvm_unreachable("Unknown cmp predicate!"); 3640 case ICMP_EQ: return ICMP_NE; 3641 case ICMP_NE: return ICMP_EQ; 3642 case ICMP_UGT: return ICMP_ULE; 3643 case ICMP_ULT: return ICMP_UGE; 3644 case ICMP_UGE: return ICMP_ULT; 3645 case ICMP_ULE: return ICMP_UGT; 3646 case ICMP_SGT: return ICMP_SLE; 3647 case ICMP_SLT: return ICMP_SGE; 3648 case ICMP_SGE: return ICMP_SLT; 3649 case ICMP_SLE: return ICMP_SGT; 3650 3651 case FCMP_OEQ: return FCMP_UNE; 3652 case FCMP_ONE: return FCMP_UEQ; 3653 case FCMP_OGT: return FCMP_ULE; 3654 case FCMP_OLT: return FCMP_UGE; 3655 case FCMP_OGE: return FCMP_ULT; 3656 case FCMP_OLE: return FCMP_UGT; 3657 case FCMP_UEQ: return FCMP_ONE; 3658 case FCMP_UNE: return FCMP_OEQ; 3659 case FCMP_UGT: return FCMP_OLE; 3660 case FCMP_ULT: return FCMP_OGE; 3661 case FCMP_UGE: return FCMP_OLT; 3662 case FCMP_ULE: return FCMP_OGT; 3663 case FCMP_ORD: return FCMP_UNO; 3664 case FCMP_UNO: return FCMP_ORD; 3665 case FCMP_TRUE: return FCMP_FALSE; 3666 case FCMP_FALSE: return FCMP_TRUE; 3667 } 3668 } 3669 3670 StringRef CmpInst::getPredicateName(Predicate Pred) { 3671 switch (Pred) { 3672 default: return "unknown"; 3673 case FCmpInst::FCMP_FALSE: return "false"; 3674 case FCmpInst::FCMP_OEQ: return "oeq"; 3675 case FCmpInst::FCMP_OGT: return "ogt"; 3676 case FCmpInst::FCMP_OGE: return "oge"; 3677 case FCmpInst::FCMP_OLT: return "olt"; 3678 case FCmpInst::FCMP_OLE: return "ole"; 3679 case FCmpInst::FCMP_ONE: return "one"; 3680 case FCmpInst::FCMP_ORD: return "ord"; 3681 case FCmpInst::FCMP_UNO: return "uno"; 3682 case FCmpInst::FCMP_UEQ: return "ueq"; 3683 case FCmpInst::FCMP_UGT: return "ugt"; 3684 case FCmpInst::FCMP_UGE: return "uge"; 3685 case FCmpInst::FCMP_ULT: return "ult"; 3686 case FCmpInst::FCMP_ULE: return "ule"; 3687 case FCmpInst::FCMP_UNE: return "une"; 3688 case FCmpInst::FCMP_TRUE: return "true"; 3689 case ICmpInst::ICMP_EQ: return "eq"; 3690 case ICmpInst::ICMP_NE: return "ne"; 3691 case ICmpInst::ICMP_SGT: return "sgt"; 3692 case ICmpInst::ICMP_SGE: return "sge"; 3693 case ICmpInst::ICMP_SLT: return "slt"; 3694 case ICmpInst::ICMP_SLE: return "sle"; 3695 case ICmpInst::ICMP_UGT: return "ugt"; 3696 case ICmpInst::ICMP_UGE: return "uge"; 3697 case ICmpInst::ICMP_ULT: return "ult"; 3698 case ICmpInst::ICMP_ULE: return "ule"; 3699 } 3700 } 3701 3702 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) { 3703 switch (pred) { 3704 default: llvm_unreachable("Unknown icmp predicate!"); 3705 case ICMP_EQ: case ICMP_NE: 3706 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 3707 return pred; 3708 case ICMP_UGT: return ICMP_SGT; 3709 case ICMP_ULT: return ICMP_SLT; 3710 case ICMP_UGE: return ICMP_SGE; 3711 case ICMP_ULE: return ICMP_SLE; 3712 } 3713 } 3714 3715 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) { 3716 switch (pred) { 3717 default: llvm_unreachable("Unknown icmp predicate!"); 3718 case ICMP_EQ: case ICMP_NE: 3719 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: 3720 return pred; 3721 case ICMP_SGT: return ICMP_UGT; 3722 case ICMP_SLT: return ICMP_ULT; 3723 case ICMP_SGE: return ICMP_UGE; 3724 case ICMP_SLE: return ICMP_ULE; 3725 } 3726 } 3727 3728 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) { 3729 switch (pred) { 3730 default: llvm_unreachable("Unknown cmp predicate!"); 3731 case ICMP_EQ: case ICMP_NE: 3732 return pred; 3733 case ICMP_SGT: return ICMP_SLT; 3734 case ICMP_SLT: return ICMP_SGT; 3735 case ICMP_SGE: return ICMP_SLE; 3736 case ICMP_SLE: return ICMP_SGE; 3737 case ICMP_UGT: return ICMP_ULT; 3738 case ICMP_ULT: return ICMP_UGT; 3739 case ICMP_UGE: return ICMP_ULE; 3740 case ICMP_ULE: return ICMP_UGE; 3741 3742 case FCMP_FALSE: case FCMP_TRUE: 3743 case FCMP_OEQ: case FCMP_ONE: 3744 case FCMP_UEQ: case FCMP_UNE: 3745 case FCMP_ORD: case FCMP_UNO: 3746 return pred; 3747 case FCMP_OGT: return FCMP_OLT; 3748 case FCMP_OLT: return FCMP_OGT; 3749 case FCMP_OGE: return FCMP_OLE; 3750 case FCMP_OLE: return FCMP_OGE; 3751 case FCMP_UGT: return FCMP_ULT; 3752 case FCMP_ULT: return FCMP_UGT; 3753 case FCMP_UGE: return FCMP_ULE; 3754 case FCMP_ULE: return FCMP_UGE; 3755 } 3756 } 3757 3758 bool CmpInst::isNonStrictPredicate(Predicate pred) { 3759 switch (pred) { 3760 case ICMP_SGE: 3761 case ICMP_SLE: 3762 case ICMP_UGE: 3763 case ICMP_ULE: 3764 case FCMP_OGE: 3765 case FCMP_OLE: 3766 case FCMP_UGE: 3767 case FCMP_ULE: 3768 return true; 3769 default: 3770 return false; 3771 } 3772 } 3773 3774 bool CmpInst::isStrictPredicate(Predicate pred) { 3775 switch (pred) { 3776 case ICMP_SGT: 3777 case ICMP_SLT: 3778 case ICMP_UGT: 3779 case ICMP_ULT: 3780 case FCMP_OGT: 3781 case FCMP_OLT: 3782 case FCMP_UGT: 3783 case FCMP_ULT: 3784 return true; 3785 default: 3786 return false; 3787 } 3788 } 3789 3790 CmpInst::Predicate CmpInst::getStrictPredicate(Predicate pred) { 3791 switch (pred) { 3792 case ICMP_SGE: 3793 return ICMP_SGT; 3794 case ICMP_SLE: 3795 return ICMP_SLT; 3796 case ICMP_UGE: 3797 return ICMP_UGT; 3798 case ICMP_ULE: 3799 return ICMP_ULT; 3800 case FCMP_OGE: 3801 return FCMP_OGT; 3802 case FCMP_OLE: 3803 return FCMP_OLT; 3804 case FCMP_UGE: 3805 return FCMP_UGT; 3806 case FCMP_ULE: 3807 return FCMP_ULT; 3808 default: 3809 return pred; 3810 } 3811 } 3812 3813 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) { 3814 switch (pred) { 3815 case ICMP_SGT: 3816 return ICMP_SGE; 3817 case ICMP_SLT: 3818 return ICMP_SLE; 3819 case ICMP_UGT: 3820 return ICMP_UGE; 3821 case ICMP_ULT: 3822 return ICMP_ULE; 3823 case FCMP_OGT: 3824 return FCMP_OGE; 3825 case FCMP_OLT: 3826 return FCMP_OLE; 3827 case FCMP_UGT: 3828 return FCMP_UGE; 3829 case FCMP_ULT: 3830 return FCMP_ULE; 3831 default: 3832 return pred; 3833 } 3834 } 3835 3836 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) { 3837 assert(CmpInst::isRelational(pred) && "Call only with relational predicate!"); 3838 3839 if (isStrictPredicate(pred)) 3840 return getNonStrictPredicate(pred); 3841 if (isNonStrictPredicate(pred)) 3842 return getStrictPredicate(pred); 3843 3844 llvm_unreachable("Unknown predicate!"); 3845 } 3846 3847 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) { 3848 assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!"); 3849 3850 switch (pred) { 3851 default: 3852 llvm_unreachable("Unknown predicate!"); 3853 case CmpInst::ICMP_ULT: 3854 return CmpInst::ICMP_SLT; 3855 case CmpInst::ICMP_ULE: 3856 return CmpInst::ICMP_SLE; 3857 case CmpInst::ICMP_UGT: 3858 return CmpInst::ICMP_SGT; 3859 case CmpInst::ICMP_UGE: 3860 return CmpInst::ICMP_SGE; 3861 } 3862 } 3863 3864 CmpInst::Predicate CmpInst::getUnsignedPredicate(Predicate pred) { 3865 assert(CmpInst::isSigned(pred) && "Call only with signed predicates!"); 3866 3867 switch (pred) { 3868 default: 3869 llvm_unreachable("Unknown predicate!"); 3870 case CmpInst::ICMP_SLT: 3871 return CmpInst::ICMP_ULT; 3872 case CmpInst::ICMP_SLE: 3873 return CmpInst::ICMP_ULE; 3874 case CmpInst::ICMP_SGT: 3875 return CmpInst::ICMP_UGT; 3876 case CmpInst::ICMP_SGE: 3877 return CmpInst::ICMP_UGE; 3878 } 3879 } 3880 3881 bool CmpInst::isUnsigned(Predicate predicate) { 3882 switch (predicate) { 3883 default: return false; 3884 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: 3885 case ICmpInst::ICMP_UGE: return true; 3886 } 3887 } 3888 3889 bool CmpInst::isSigned(Predicate predicate) { 3890 switch (predicate) { 3891 default: return false; 3892 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: 3893 case ICmpInst::ICMP_SGE: return true; 3894 } 3895 } 3896 3897 CmpInst::Predicate CmpInst::getFlippedSignednessPredicate(Predicate pred) { 3898 assert(CmpInst::isRelational(pred) && 3899 "Call only with non-equality predicates!"); 3900 3901 if (isSigned(pred)) 3902 return getUnsignedPredicate(pred); 3903 if (isUnsigned(pred)) 3904 return getSignedPredicate(pred); 3905 3906 llvm_unreachable("Unknown predicate!"); 3907 } 3908 3909 bool CmpInst::isOrdered(Predicate predicate) { 3910 switch (predicate) { 3911 default: return false; 3912 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: 3913 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: 3914 case FCmpInst::FCMP_ORD: return true; 3915 } 3916 } 3917 3918 bool CmpInst::isUnordered(Predicate predicate) { 3919 switch (predicate) { 3920 default: return false; 3921 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: 3922 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: 3923 case FCmpInst::FCMP_UNO: return true; 3924 } 3925 } 3926 3927 bool CmpInst::isTrueWhenEqual(Predicate predicate) { 3928 switch(predicate) { 3929 default: return false; 3930 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE: 3931 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true; 3932 } 3933 } 3934 3935 bool CmpInst::isFalseWhenEqual(Predicate predicate) { 3936 switch(predicate) { 3937 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT: 3938 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true; 3939 default: return false; 3940 } 3941 } 3942 3943 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) { 3944 // If the predicates match, then we know the first condition implies the 3945 // second is true. 3946 if (Pred1 == Pred2) 3947 return true; 3948 3949 switch (Pred1) { 3950 default: 3951 break; 3952 case ICMP_EQ: 3953 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true. 3954 return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE || 3955 Pred2 == ICMP_SLE; 3956 case ICMP_UGT: // A >u B implies A != B and A >=u B are true. 3957 return Pred2 == ICMP_NE || Pred2 == ICMP_UGE; 3958 case ICMP_ULT: // A <u B implies A != B and A <=u B are true. 3959 return Pred2 == ICMP_NE || Pred2 == ICMP_ULE; 3960 case ICMP_SGT: // A >s B implies A != B and A >=s B are true. 3961 return Pred2 == ICMP_NE || Pred2 == ICMP_SGE; 3962 case ICMP_SLT: // A <s B implies A != B and A <=s B are true. 3963 return Pred2 == ICMP_NE || Pred2 == ICMP_SLE; 3964 } 3965 return false; 3966 } 3967 3968 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) { 3969 return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2)); 3970 } 3971 3972 //===----------------------------------------------------------------------===// 3973 // SwitchInst Implementation 3974 //===----------------------------------------------------------------------===// 3975 3976 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) { 3977 assert(Value && Default && NumReserved); 3978 ReservedSpace = NumReserved; 3979 setNumHungOffUseOperands(2); 3980 allocHungoffUses(ReservedSpace); 3981 3982 Op<0>() = Value; 3983 Op<1>() = Default; 3984 } 3985 3986 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3987 /// switch on and a default destination. The number of additional cases can 3988 /// be specified here to make memory allocation more efficient. This 3989 /// constructor can also autoinsert before another instruction. 3990 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3991 Instruction *InsertBefore) 3992 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch, 3993 nullptr, 0, InsertBefore) { 3994 init(Value, Default, 2+NumCases*2); 3995 } 3996 3997 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3998 /// switch on and a default destination. The number of additional cases can 3999 /// be specified here to make memory allocation more efficient. This 4000 /// constructor also autoinserts at the end of the specified BasicBlock. 4001 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 4002 BasicBlock *InsertAtEnd) 4003 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch, 4004 nullptr, 0, InsertAtEnd) { 4005 init(Value, Default, 2+NumCases*2); 4006 } 4007 4008 SwitchInst::SwitchInst(const SwitchInst &SI) 4009 : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) { 4010 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands()); 4011 setNumHungOffUseOperands(SI.getNumOperands()); 4012 Use *OL = getOperandList(); 4013 const Use *InOL = SI.getOperandList(); 4014 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) { 4015 OL[i] = InOL[i]; 4016 OL[i+1] = InOL[i+1]; 4017 } 4018 SubclassOptionalData = SI.SubclassOptionalData; 4019 } 4020 4021 /// addCase - Add an entry to the switch instruction... 4022 /// 4023 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) { 4024 unsigned NewCaseIdx = getNumCases(); 4025 unsigned OpNo = getNumOperands(); 4026 if (OpNo+2 > ReservedSpace) 4027 growOperands(); // Get more space! 4028 // Initialize some new operands. 4029 assert(OpNo+1 < ReservedSpace && "Growing didn't work!"); 4030 setNumHungOffUseOperands(OpNo+2); 4031 CaseHandle Case(this, NewCaseIdx); 4032 Case.setValue(OnVal); 4033 Case.setSuccessor(Dest); 4034 } 4035 4036 /// removeCase - This method removes the specified case and its successor 4037 /// from the switch instruction. 4038 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) { 4039 unsigned idx = I->getCaseIndex(); 4040 4041 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!"); 4042 4043 unsigned NumOps = getNumOperands(); 4044 Use *OL = getOperandList(); 4045 4046 // Overwrite this case with the end of the list. 4047 if (2 + (idx + 1) * 2 != NumOps) { 4048 OL[2 + idx * 2] = OL[NumOps - 2]; 4049 OL[2 + idx * 2 + 1] = OL[NumOps - 1]; 4050 } 4051 4052 // Nuke the last value. 4053 OL[NumOps-2].set(nullptr); 4054 OL[NumOps-2+1].set(nullptr); 4055 setNumHungOffUseOperands(NumOps-2); 4056 4057 return CaseIt(this, idx); 4058 } 4059 4060 /// growOperands - grow operands - This grows the operand list in response 4061 /// to a push_back style of operation. This grows the number of ops by 3 times. 4062 /// 4063 void SwitchInst::growOperands() { 4064 unsigned e = getNumOperands(); 4065 unsigned NumOps = e*3; 4066 4067 ReservedSpace = NumOps; 4068 growHungoffUses(ReservedSpace); 4069 } 4070 4071 MDNode * 4072 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) { 4073 if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof)) 4074 if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0))) 4075 if (MDName->getString() == "branch_weights") 4076 return ProfileData; 4077 return nullptr; 4078 } 4079 4080 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() { 4081 assert(Changed && "called only if metadata has changed"); 4082 4083 if (!Weights) 4084 return nullptr; 4085 4086 assert(SI.getNumSuccessors() == Weights->size() && 4087 "num of prof branch_weights must accord with num of successors"); 4088 4089 bool AllZeroes = 4090 all_of(Weights.getValue(), [](uint32_t W) { return W == 0; }); 4091 4092 if (AllZeroes || Weights.getValue().size() < 2) 4093 return nullptr; 4094 4095 return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights); 4096 } 4097 4098 void SwitchInstProfUpdateWrapper::init() { 4099 MDNode *ProfileData = getProfBranchWeightsMD(SI); 4100 if (!ProfileData) 4101 return; 4102 4103 if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) { 4104 llvm_unreachable("number of prof branch_weights metadata operands does " 4105 "not correspond to number of succesors"); 4106 } 4107 4108 SmallVector<uint32_t, 8> Weights; 4109 for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) { 4110 ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI)); 4111 uint32_t CW = C->getValue().getZExtValue(); 4112 Weights.push_back(CW); 4113 } 4114 this->Weights = std::move(Weights); 4115 } 4116 4117 SwitchInst::CaseIt 4118 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) { 4119 if (Weights) { 4120 assert(SI.getNumSuccessors() == Weights->size() && 4121 "num of prof branch_weights must accord with num of successors"); 4122 Changed = true; 4123 // Copy the last case to the place of the removed one and shrink. 4124 // This is tightly coupled with the way SwitchInst::removeCase() removes 4125 // the cases in SwitchInst::removeCase(CaseIt). 4126 Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back(); 4127 Weights.getValue().pop_back(); 4128 } 4129 return SI.removeCase(I); 4130 } 4131 4132 void SwitchInstProfUpdateWrapper::addCase( 4133 ConstantInt *OnVal, BasicBlock *Dest, 4134 SwitchInstProfUpdateWrapper::CaseWeightOpt W) { 4135 SI.addCase(OnVal, Dest); 4136 4137 if (!Weights && W && *W) { 4138 Changed = true; 4139 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0); 4140 Weights.getValue()[SI.getNumSuccessors() - 1] = *W; 4141 } else if (Weights) { 4142 Changed = true; 4143 Weights.getValue().push_back(W ? *W : 0); 4144 } 4145 if (Weights) 4146 assert(SI.getNumSuccessors() == Weights->size() && 4147 "num of prof branch_weights must accord with num of successors"); 4148 } 4149 4150 SymbolTableList<Instruction>::iterator 4151 SwitchInstProfUpdateWrapper::eraseFromParent() { 4152 // Instruction is erased. Mark as unchanged to not touch it in the destructor. 4153 Changed = false; 4154 if (Weights) 4155 Weights->resize(0); 4156 return SI.eraseFromParent(); 4157 } 4158 4159 SwitchInstProfUpdateWrapper::CaseWeightOpt 4160 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) { 4161 if (!Weights) 4162 return None; 4163 return Weights.getValue()[idx]; 4164 } 4165 4166 void SwitchInstProfUpdateWrapper::setSuccessorWeight( 4167 unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) { 4168 if (!W) 4169 return; 4170 4171 if (!Weights && *W) 4172 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0); 4173 4174 if (Weights) { 4175 auto &OldW = Weights.getValue()[idx]; 4176 if (*W != OldW) { 4177 Changed = true; 4178 OldW = *W; 4179 } 4180 } 4181 } 4182 4183 SwitchInstProfUpdateWrapper::CaseWeightOpt 4184 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI, 4185 unsigned idx) { 4186 if (MDNode *ProfileData = getProfBranchWeightsMD(SI)) 4187 if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1) 4188 return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1)) 4189 ->getValue() 4190 .getZExtValue(); 4191 4192 return None; 4193 } 4194 4195 //===----------------------------------------------------------------------===// 4196 // IndirectBrInst Implementation 4197 //===----------------------------------------------------------------------===// 4198 4199 void IndirectBrInst::init(Value *Address, unsigned NumDests) { 4200 assert(Address && Address->getType()->isPointerTy() && 4201 "Address of indirectbr must be a pointer"); 4202 ReservedSpace = 1+NumDests; 4203 setNumHungOffUseOperands(1); 4204 allocHungoffUses(ReservedSpace); 4205 4206 Op<0>() = Address; 4207 } 4208 4209 4210 /// growOperands - grow operands - This grows the operand list in response 4211 /// to a push_back style of operation. This grows the number of ops by 2 times. 4212 /// 4213 void IndirectBrInst::growOperands() { 4214 unsigned e = getNumOperands(); 4215 unsigned NumOps = e*2; 4216 4217 ReservedSpace = NumOps; 4218 growHungoffUses(ReservedSpace); 4219 } 4220 4221 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 4222 Instruction *InsertBefore) 4223 : Instruction(Type::getVoidTy(Address->getContext()), 4224 Instruction::IndirectBr, nullptr, 0, InsertBefore) { 4225 init(Address, NumCases); 4226 } 4227 4228 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 4229 BasicBlock *InsertAtEnd) 4230 : Instruction(Type::getVoidTy(Address->getContext()), 4231 Instruction::IndirectBr, nullptr, 0, InsertAtEnd) { 4232 init(Address, NumCases); 4233 } 4234 4235 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI) 4236 : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr, 4237 nullptr, IBI.getNumOperands()) { 4238 allocHungoffUses(IBI.getNumOperands()); 4239 Use *OL = getOperandList(); 4240 const Use *InOL = IBI.getOperandList(); 4241 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i) 4242 OL[i] = InOL[i]; 4243 SubclassOptionalData = IBI.SubclassOptionalData; 4244 } 4245 4246 /// addDestination - Add a destination. 4247 /// 4248 void IndirectBrInst::addDestination(BasicBlock *DestBB) { 4249 unsigned OpNo = getNumOperands(); 4250 if (OpNo+1 > ReservedSpace) 4251 growOperands(); // Get more space! 4252 // Initialize some new operands. 4253 assert(OpNo < ReservedSpace && "Growing didn't work!"); 4254 setNumHungOffUseOperands(OpNo+1); 4255 getOperandList()[OpNo] = DestBB; 4256 } 4257 4258 /// removeDestination - This method removes the specified successor from the 4259 /// indirectbr instruction. 4260 void IndirectBrInst::removeDestination(unsigned idx) { 4261 assert(idx < getNumOperands()-1 && "Successor index out of range!"); 4262 4263 unsigned NumOps = getNumOperands(); 4264 Use *OL = getOperandList(); 4265 4266 // Replace this value with the last one. 4267 OL[idx+1] = OL[NumOps-1]; 4268 4269 // Nuke the last value. 4270 OL[NumOps-1].set(nullptr); 4271 setNumHungOffUseOperands(NumOps-1); 4272 } 4273 4274 //===----------------------------------------------------------------------===// 4275 // FreezeInst Implementation 4276 //===----------------------------------------------------------------------===// 4277 4278 FreezeInst::FreezeInst(Value *S, 4279 const Twine &Name, Instruction *InsertBefore) 4280 : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) { 4281 setName(Name); 4282 } 4283 4284 FreezeInst::FreezeInst(Value *S, 4285 const Twine &Name, BasicBlock *InsertAtEnd) 4286 : UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) { 4287 setName(Name); 4288 } 4289 4290 //===----------------------------------------------------------------------===// 4291 // cloneImpl() implementations 4292 //===----------------------------------------------------------------------===// 4293 4294 // Define these methods here so vtables don't get emitted into every translation 4295 // unit that uses these classes. 4296 4297 GetElementPtrInst *GetElementPtrInst::cloneImpl() const { 4298 return new (getNumOperands()) GetElementPtrInst(*this); 4299 } 4300 4301 UnaryOperator *UnaryOperator::cloneImpl() const { 4302 return Create(getOpcode(), Op<0>()); 4303 } 4304 4305 BinaryOperator *BinaryOperator::cloneImpl() const { 4306 return Create(getOpcode(), Op<0>(), Op<1>()); 4307 } 4308 4309 FCmpInst *FCmpInst::cloneImpl() const { 4310 return new FCmpInst(getPredicate(), Op<0>(), Op<1>()); 4311 } 4312 4313 ICmpInst *ICmpInst::cloneImpl() const { 4314 return new ICmpInst(getPredicate(), Op<0>(), Op<1>()); 4315 } 4316 4317 ExtractValueInst *ExtractValueInst::cloneImpl() const { 4318 return new ExtractValueInst(*this); 4319 } 4320 4321 InsertValueInst *InsertValueInst::cloneImpl() const { 4322 return new InsertValueInst(*this); 4323 } 4324 4325 AllocaInst *AllocaInst::cloneImpl() const { 4326 AllocaInst *Result = 4327 new AllocaInst(getAllocatedType(), getType()->getAddressSpace(), 4328 getOperand(0), getAlign()); 4329 Result->setUsedWithInAlloca(isUsedWithInAlloca()); 4330 Result->setSwiftError(isSwiftError()); 4331 return Result; 4332 } 4333 4334 LoadInst *LoadInst::cloneImpl() const { 4335 return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(), 4336 getAlign(), getOrdering(), getSyncScopeID()); 4337 } 4338 4339 StoreInst *StoreInst::cloneImpl() const { 4340 return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(), 4341 getOrdering(), getSyncScopeID()); 4342 } 4343 4344 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const { 4345 AtomicCmpXchgInst *Result = new AtomicCmpXchgInst( 4346 getOperand(0), getOperand(1), getOperand(2), getAlign(), 4347 getSuccessOrdering(), getFailureOrdering(), getSyncScopeID()); 4348 Result->setVolatile(isVolatile()); 4349 Result->setWeak(isWeak()); 4350 return Result; 4351 } 4352 4353 AtomicRMWInst *AtomicRMWInst::cloneImpl() const { 4354 AtomicRMWInst *Result = 4355 new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1), 4356 getAlign(), getOrdering(), getSyncScopeID()); 4357 Result->setVolatile(isVolatile()); 4358 return Result; 4359 } 4360 4361 FenceInst *FenceInst::cloneImpl() const { 4362 return new FenceInst(getContext(), getOrdering(), getSyncScopeID()); 4363 } 4364 4365 TruncInst *TruncInst::cloneImpl() const { 4366 return new TruncInst(getOperand(0), getType()); 4367 } 4368 4369 ZExtInst *ZExtInst::cloneImpl() const { 4370 return new ZExtInst(getOperand(0), getType()); 4371 } 4372 4373 SExtInst *SExtInst::cloneImpl() const { 4374 return new SExtInst(getOperand(0), getType()); 4375 } 4376 4377 FPTruncInst *FPTruncInst::cloneImpl() const { 4378 return new FPTruncInst(getOperand(0), getType()); 4379 } 4380 4381 FPExtInst *FPExtInst::cloneImpl() const { 4382 return new FPExtInst(getOperand(0), getType()); 4383 } 4384 4385 UIToFPInst *UIToFPInst::cloneImpl() const { 4386 return new UIToFPInst(getOperand(0), getType()); 4387 } 4388 4389 SIToFPInst *SIToFPInst::cloneImpl() const { 4390 return new SIToFPInst(getOperand(0), getType()); 4391 } 4392 4393 FPToUIInst *FPToUIInst::cloneImpl() const { 4394 return new FPToUIInst(getOperand(0), getType()); 4395 } 4396 4397 FPToSIInst *FPToSIInst::cloneImpl() const { 4398 return new FPToSIInst(getOperand(0), getType()); 4399 } 4400 4401 PtrToIntInst *PtrToIntInst::cloneImpl() const { 4402 return new PtrToIntInst(getOperand(0), getType()); 4403 } 4404 4405 IntToPtrInst *IntToPtrInst::cloneImpl() const { 4406 return new IntToPtrInst(getOperand(0), getType()); 4407 } 4408 4409 BitCastInst *BitCastInst::cloneImpl() const { 4410 return new BitCastInst(getOperand(0), getType()); 4411 } 4412 4413 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const { 4414 return new AddrSpaceCastInst(getOperand(0), getType()); 4415 } 4416 4417 CallInst *CallInst::cloneImpl() const { 4418 if (hasOperandBundles()) { 4419 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 4420 return new(getNumOperands(), DescriptorBytes) CallInst(*this); 4421 } 4422 return new(getNumOperands()) CallInst(*this); 4423 } 4424 4425 SelectInst *SelectInst::cloneImpl() const { 4426 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2)); 4427 } 4428 4429 VAArgInst *VAArgInst::cloneImpl() const { 4430 return new VAArgInst(getOperand(0), getType()); 4431 } 4432 4433 ExtractElementInst *ExtractElementInst::cloneImpl() const { 4434 return ExtractElementInst::Create(getOperand(0), getOperand(1)); 4435 } 4436 4437 InsertElementInst *InsertElementInst::cloneImpl() const { 4438 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2)); 4439 } 4440 4441 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const { 4442 return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask()); 4443 } 4444 4445 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); } 4446 4447 LandingPadInst *LandingPadInst::cloneImpl() const { 4448 return new LandingPadInst(*this); 4449 } 4450 4451 ReturnInst *ReturnInst::cloneImpl() const { 4452 return new(getNumOperands()) ReturnInst(*this); 4453 } 4454 4455 BranchInst *BranchInst::cloneImpl() const { 4456 return new(getNumOperands()) BranchInst(*this); 4457 } 4458 4459 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); } 4460 4461 IndirectBrInst *IndirectBrInst::cloneImpl() const { 4462 return new IndirectBrInst(*this); 4463 } 4464 4465 InvokeInst *InvokeInst::cloneImpl() const { 4466 if (hasOperandBundles()) { 4467 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 4468 return new(getNumOperands(), DescriptorBytes) InvokeInst(*this); 4469 } 4470 return new(getNumOperands()) InvokeInst(*this); 4471 } 4472 4473 CallBrInst *CallBrInst::cloneImpl() const { 4474 if (hasOperandBundles()) { 4475 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 4476 return new (getNumOperands(), DescriptorBytes) CallBrInst(*this); 4477 } 4478 return new (getNumOperands()) CallBrInst(*this); 4479 } 4480 4481 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); } 4482 4483 CleanupReturnInst *CleanupReturnInst::cloneImpl() const { 4484 return new (getNumOperands()) CleanupReturnInst(*this); 4485 } 4486 4487 CatchReturnInst *CatchReturnInst::cloneImpl() const { 4488 return new (getNumOperands()) CatchReturnInst(*this); 4489 } 4490 4491 CatchSwitchInst *CatchSwitchInst::cloneImpl() const { 4492 return new CatchSwitchInst(*this); 4493 } 4494 4495 FuncletPadInst *FuncletPadInst::cloneImpl() const { 4496 return new (getNumOperands()) FuncletPadInst(*this); 4497 } 4498 4499 UnreachableInst *UnreachableInst::cloneImpl() const { 4500 LLVMContext &Context = getContext(); 4501 return new UnreachableInst(Context); 4502 } 4503 4504 FreezeInst *FreezeInst::cloneImpl() const { 4505 return new FreezeInst(getOperand(0)); 4506 } 4507