xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Instructions.cpp (revision a4a491e2238b12ccd64d3faf9e6401487f6f1f1b)
1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/TypeSize.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <vector>
45 
46 using namespace llvm;
47 
48 static cl::opt<bool> DisableI2pP2iOpt(
49     "disable-i2p-p2i-opt", cl::init(false),
50     cl::desc("Disables inttoptr/ptrtoint roundtrip optimization"));
51 
52 //===----------------------------------------------------------------------===//
53 //                            AllocaInst Class
54 //===----------------------------------------------------------------------===//
55 
56 Optional<TypeSize>
57 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
58   TypeSize Size = DL.getTypeAllocSizeInBits(getAllocatedType());
59   if (isArrayAllocation()) {
60     auto *C = dyn_cast<ConstantInt>(getArraySize());
61     if (!C)
62       return None;
63     assert(!Size.isScalable() && "Array elements cannot have a scalable size");
64     Size *= C->getZExtValue();
65   }
66   return Size;
67 }
68 
69 //===----------------------------------------------------------------------===//
70 //                              SelectInst Class
71 //===----------------------------------------------------------------------===//
72 
73 /// areInvalidOperands - Return a string if the specified operands are invalid
74 /// for a select operation, otherwise return null.
75 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
76   if (Op1->getType() != Op2->getType())
77     return "both values to select must have same type";
78 
79   if (Op1->getType()->isTokenTy())
80     return "select values cannot have token type";
81 
82   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
83     // Vector select.
84     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
85       return "vector select condition element type must be i1";
86     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
87     if (!ET)
88       return "selected values for vector select must be vectors";
89     if (ET->getElementCount() != VT->getElementCount())
90       return "vector select requires selected vectors to have "
91                    "the same vector length as select condition";
92   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
93     return "select condition must be i1 or <n x i1>";
94   }
95   return nullptr;
96 }
97 
98 //===----------------------------------------------------------------------===//
99 //                               PHINode Class
100 //===----------------------------------------------------------------------===//
101 
102 PHINode::PHINode(const PHINode &PN)
103     : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
104       ReservedSpace(PN.getNumOperands()) {
105   allocHungoffUses(PN.getNumOperands());
106   std::copy(PN.op_begin(), PN.op_end(), op_begin());
107   std::copy(PN.block_begin(), PN.block_end(), block_begin());
108   SubclassOptionalData = PN.SubclassOptionalData;
109 }
110 
111 // removeIncomingValue - Remove an incoming value.  This is useful if a
112 // predecessor basic block is deleted.
113 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
114   Value *Removed = getIncomingValue(Idx);
115 
116   // Move everything after this operand down.
117   //
118   // FIXME: we could just swap with the end of the list, then erase.  However,
119   // clients might not expect this to happen.  The code as it is thrashes the
120   // use/def lists, which is kinda lame.
121   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
122   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
123 
124   // Nuke the last value.
125   Op<-1>().set(nullptr);
126   setNumHungOffUseOperands(getNumOperands() - 1);
127 
128   // If the PHI node is dead, because it has zero entries, nuke it now.
129   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
130     // If anyone is using this PHI, make them use a dummy value instead...
131     replaceAllUsesWith(PoisonValue::get(getType()));
132     eraseFromParent();
133   }
134   return Removed;
135 }
136 
137 /// growOperands - grow operands - This grows the operand list in response
138 /// to a push_back style of operation.  This grows the number of ops by 1.5
139 /// times.
140 ///
141 void PHINode::growOperands() {
142   unsigned e = getNumOperands();
143   unsigned NumOps = e + e / 2;
144   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
145 
146   ReservedSpace = NumOps;
147   growHungoffUses(ReservedSpace, /* IsPhi */ true);
148 }
149 
150 /// hasConstantValue - If the specified PHI node always merges together the same
151 /// value, return the value, otherwise return null.
152 Value *PHINode::hasConstantValue() const {
153   // Exploit the fact that phi nodes always have at least one entry.
154   Value *ConstantValue = getIncomingValue(0);
155   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
156     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
157       if (ConstantValue != this)
158         return nullptr; // Incoming values not all the same.
159        // The case where the first value is this PHI.
160       ConstantValue = getIncomingValue(i);
161     }
162   if (ConstantValue == this)
163     return UndefValue::get(getType());
164   return ConstantValue;
165 }
166 
167 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
168 /// together the same value, assuming that undefs result in the same value as
169 /// non-undefs.
170 /// Unlike \ref hasConstantValue, this does not return a value because the
171 /// unique non-undef incoming value need not dominate the PHI node.
172 bool PHINode::hasConstantOrUndefValue() const {
173   Value *ConstantValue = nullptr;
174   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
175     Value *Incoming = getIncomingValue(i);
176     if (Incoming != this && !isa<UndefValue>(Incoming)) {
177       if (ConstantValue && ConstantValue != Incoming)
178         return false;
179       ConstantValue = Incoming;
180     }
181   }
182   return true;
183 }
184 
185 //===----------------------------------------------------------------------===//
186 //                       LandingPadInst Implementation
187 //===----------------------------------------------------------------------===//
188 
189 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
190                                const Twine &NameStr, Instruction *InsertBefore)
191     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
192   init(NumReservedValues, NameStr);
193 }
194 
195 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
196                                const Twine &NameStr, BasicBlock *InsertAtEnd)
197     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
198   init(NumReservedValues, NameStr);
199 }
200 
201 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
202     : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
203                   LP.getNumOperands()),
204       ReservedSpace(LP.getNumOperands()) {
205   allocHungoffUses(LP.getNumOperands());
206   Use *OL = getOperandList();
207   const Use *InOL = LP.getOperandList();
208   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
209     OL[I] = InOL[I];
210 
211   setCleanup(LP.isCleanup());
212 }
213 
214 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
215                                        const Twine &NameStr,
216                                        Instruction *InsertBefore) {
217   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
218 }
219 
220 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
221                                        const Twine &NameStr,
222                                        BasicBlock *InsertAtEnd) {
223   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
224 }
225 
226 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
227   ReservedSpace = NumReservedValues;
228   setNumHungOffUseOperands(0);
229   allocHungoffUses(ReservedSpace);
230   setName(NameStr);
231   setCleanup(false);
232 }
233 
234 /// growOperands - grow operands - This grows the operand list in response to a
235 /// push_back style of operation. This grows the number of ops by 2 times.
236 void LandingPadInst::growOperands(unsigned Size) {
237   unsigned e = getNumOperands();
238   if (ReservedSpace >= e + Size) return;
239   ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
240   growHungoffUses(ReservedSpace);
241 }
242 
243 void LandingPadInst::addClause(Constant *Val) {
244   unsigned OpNo = getNumOperands();
245   growOperands(1);
246   assert(OpNo < ReservedSpace && "Growing didn't work!");
247   setNumHungOffUseOperands(getNumOperands() + 1);
248   getOperandList()[OpNo] = Val;
249 }
250 
251 //===----------------------------------------------------------------------===//
252 //                        CallBase Implementation
253 //===----------------------------------------------------------------------===//
254 
255 CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles,
256                            Instruction *InsertPt) {
257   switch (CB->getOpcode()) {
258   case Instruction::Call:
259     return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt);
260   case Instruction::Invoke:
261     return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt);
262   case Instruction::CallBr:
263     return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt);
264   default:
265     llvm_unreachable("Unknown CallBase sub-class!");
266   }
267 }
268 
269 CallBase *CallBase::Create(CallBase *CI, OperandBundleDef OpB,
270                            Instruction *InsertPt) {
271   SmallVector<OperandBundleDef, 2> OpDefs;
272   for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) {
273     auto ChildOB = CI->getOperandBundleAt(i);
274     if (ChildOB.getTagName() != OpB.getTag())
275       OpDefs.emplace_back(ChildOB);
276   }
277   OpDefs.emplace_back(OpB);
278   return CallBase::Create(CI, OpDefs, InsertPt);
279 }
280 
281 
282 Function *CallBase::getCaller() { return getParent()->getParent(); }
283 
284 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
285   assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
286   return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
287 }
288 
289 bool CallBase::isIndirectCall() const {
290   const Value *V = getCalledOperand();
291   if (isa<Function>(V) || isa<Constant>(V))
292     return false;
293   return !isInlineAsm();
294 }
295 
296 /// Tests if this call site must be tail call optimized. Only a CallInst can
297 /// be tail call optimized.
298 bool CallBase::isMustTailCall() const {
299   if (auto *CI = dyn_cast<CallInst>(this))
300     return CI->isMustTailCall();
301   return false;
302 }
303 
304 /// Tests if this call site is marked as a tail call.
305 bool CallBase::isTailCall() const {
306   if (auto *CI = dyn_cast<CallInst>(this))
307     return CI->isTailCall();
308   return false;
309 }
310 
311 Intrinsic::ID CallBase::getIntrinsicID() const {
312   if (auto *F = getCalledFunction())
313     return F->getIntrinsicID();
314   return Intrinsic::not_intrinsic;
315 }
316 
317 bool CallBase::isReturnNonNull() const {
318   if (hasRetAttr(Attribute::NonNull))
319     return true;
320 
321   if (getRetDereferenceableBytes() > 0 &&
322       !NullPointerIsDefined(getCaller(), getType()->getPointerAddressSpace()))
323     return true;
324 
325   return false;
326 }
327 
328 Value *CallBase::getArgOperandWithAttribute(Attribute::AttrKind Kind) const {
329   unsigned Index;
330 
331   if (Attrs.hasAttrSomewhere(Kind, &Index))
332     return getArgOperand(Index - AttributeList::FirstArgIndex);
333   if (const Function *F = getCalledFunction())
334     if (F->getAttributes().hasAttrSomewhere(Kind, &Index))
335       return getArgOperand(Index - AttributeList::FirstArgIndex);
336 
337   return nullptr;
338 }
339 
340 /// Determine whether the argument or parameter has the given attribute.
341 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
342   assert(ArgNo < arg_size() && "Param index out of bounds!");
343 
344   if (Attrs.hasParamAttr(ArgNo, Kind))
345     return true;
346   if (const Function *F = getCalledFunction())
347     return F->getAttributes().hasParamAttr(ArgNo, Kind);
348   return false;
349 }
350 
351 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
352   Value *V = getCalledOperand();
353   if (auto *CE = dyn_cast<ConstantExpr>(V))
354     if (CE->getOpcode() == BitCast)
355       V = CE->getOperand(0);
356 
357   if (auto *F = dyn_cast<Function>(V))
358     return F->getAttributes().hasFnAttr(Kind);
359 
360   return false;
361 }
362 
363 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
364   Value *V = getCalledOperand();
365   if (auto *CE = dyn_cast<ConstantExpr>(V))
366     if (CE->getOpcode() == BitCast)
367       V = CE->getOperand(0);
368 
369   if (auto *F = dyn_cast<Function>(V))
370     return F->getAttributes().hasFnAttr(Kind);
371 
372   return false;
373 }
374 
375 template <typename AK>
376 Attribute CallBase::getFnAttrOnCalledFunction(AK Kind) const {
377   // Operand bundles override attributes on the called function, but don't
378   // override attributes directly present on the call instruction.
379   if (isFnAttrDisallowedByOpBundle(Kind))
380     return Attribute();
381   Value *V = getCalledOperand();
382   if (auto *CE = dyn_cast<ConstantExpr>(V))
383     if (CE->getOpcode() == BitCast)
384       V = CE->getOperand(0);
385 
386   if (auto *F = dyn_cast<Function>(V))
387     return F->getAttributes().getFnAttr(Kind);
388 
389   return Attribute();
390 }
391 
392 template Attribute
393 CallBase::getFnAttrOnCalledFunction(Attribute::AttrKind Kind) const;
394 template Attribute CallBase::getFnAttrOnCalledFunction(StringRef Kind) const;
395 
396 void CallBase::getOperandBundlesAsDefs(
397     SmallVectorImpl<OperandBundleDef> &Defs) const {
398   for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
399     Defs.emplace_back(getOperandBundleAt(i));
400 }
401 
402 CallBase::op_iterator
403 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
404                                      const unsigned BeginIndex) {
405   auto It = op_begin() + BeginIndex;
406   for (auto &B : Bundles)
407     It = std::copy(B.input_begin(), B.input_end(), It);
408 
409   auto *ContextImpl = getContext().pImpl;
410   auto BI = Bundles.begin();
411   unsigned CurrentIndex = BeginIndex;
412 
413   for (auto &BOI : bundle_op_infos()) {
414     assert(BI != Bundles.end() && "Incorrect allocation?");
415 
416     BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
417     BOI.Begin = CurrentIndex;
418     BOI.End = CurrentIndex + BI->input_size();
419     CurrentIndex = BOI.End;
420     BI++;
421   }
422 
423   assert(BI == Bundles.end() && "Incorrect allocation?");
424 
425   return It;
426 }
427 
428 CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) {
429   /// When there isn't many bundles, we do a simple linear search.
430   /// Else fallback to a binary-search that use the fact that bundles usually
431   /// have similar number of argument to get faster convergence.
432   if (bundle_op_info_end() - bundle_op_info_begin() < 8) {
433     for (auto &BOI : bundle_op_infos())
434       if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
435         return BOI;
436 
437     llvm_unreachable("Did not find operand bundle for operand!");
438   }
439 
440   assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles");
441   assert(bundle_op_info_end() - bundle_op_info_begin() > 0 &&
442          OpIdx < std::prev(bundle_op_info_end())->End &&
443          "The Idx isn't in the operand bundle");
444 
445   /// We need a decimal number below and to prevent using floating point numbers
446   /// we use an intergal value multiplied by this constant.
447   constexpr unsigned NumberScaling = 1024;
448 
449   bundle_op_iterator Begin = bundle_op_info_begin();
450   bundle_op_iterator End = bundle_op_info_end();
451   bundle_op_iterator Current = Begin;
452 
453   while (Begin != End) {
454     unsigned ScaledOperandPerBundle =
455         NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin);
456     Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) /
457                        ScaledOperandPerBundle);
458     if (Current >= End)
459       Current = std::prev(End);
460     assert(Current < End && Current >= Begin &&
461            "the operand bundle doesn't cover every value in the range");
462     if (OpIdx >= Current->Begin && OpIdx < Current->End)
463       break;
464     if (OpIdx >= Current->End)
465       Begin = Current + 1;
466     else
467       End = Current;
468   }
469 
470   assert(OpIdx >= Current->Begin && OpIdx < Current->End &&
471          "the operand bundle doesn't cover every value in the range");
472   return *Current;
473 }
474 
475 CallBase *CallBase::addOperandBundle(CallBase *CB, uint32_t ID,
476                                      OperandBundleDef OB,
477                                      Instruction *InsertPt) {
478   if (CB->getOperandBundle(ID))
479     return CB;
480 
481   SmallVector<OperandBundleDef, 1> Bundles;
482   CB->getOperandBundlesAsDefs(Bundles);
483   Bundles.push_back(OB);
484   return Create(CB, Bundles, InsertPt);
485 }
486 
487 CallBase *CallBase::removeOperandBundle(CallBase *CB, uint32_t ID,
488                                         Instruction *InsertPt) {
489   SmallVector<OperandBundleDef, 1> Bundles;
490   bool CreateNew = false;
491 
492   for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) {
493     auto Bundle = CB->getOperandBundleAt(I);
494     if (Bundle.getTagID() == ID) {
495       CreateNew = true;
496       continue;
497     }
498     Bundles.emplace_back(Bundle);
499   }
500 
501   return CreateNew ? Create(CB, Bundles, InsertPt) : CB;
502 }
503 
504 bool CallBase::hasReadingOperandBundles() const {
505   // Implementation note: this is a conservative implementation of operand
506   // bundle semantics, where *any* non-assume operand bundle (other than
507   // ptrauth) forces a callsite to be at least readonly.
508   return hasOperandBundlesOtherThan(LLVMContext::OB_ptrauth) &&
509          getIntrinsicID() != Intrinsic::assume;
510 }
511 
512 //===----------------------------------------------------------------------===//
513 //                        CallInst Implementation
514 //===----------------------------------------------------------------------===//
515 
516 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
517                     ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
518   this->FTy = FTy;
519   assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
520          "NumOperands not set up?");
521 
522 #ifndef NDEBUG
523   assert((Args.size() == FTy->getNumParams() ||
524           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
525          "Calling a function with bad signature!");
526 
527   for (unsigned i = 0; i != Args.size(); ++i)
528     assert((i >= FTy->getNumParams() ||
529             FTy->getParamType(i) == Args[i]->getType()) &&
530            "Calling a function with a bad signature!");
531 #endif
532 
533   // Set operands in order of their index to match use-list-order
534   // prediction.
535   llvm::copy(Args, op_begin());
536   setCalledOperand(Func);
537 
538   auto It = populateBundleOperandInfos(Bundles, Args.size());
539   (void)It;
540   assert(It + 1 == op_end() && "Should add up!");
541 
542   setName(NameStr);
543 }
544 
545 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
546   this->FTy = FTy;
547   assert(getNumOperands() == 1 && "NumOperands not set up?");
548   setCalledOperand(Func);
549 
550   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
551 
552   setName(NameStr);
553 }
554 
555 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
556                    Instruction *InsertBefore)
557     : CallBase(Ty->getReturnType(), Instruction::Call,
558                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
559   init(Ty, Func, Name);
560 }
561 
562 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
563                    BasicBlock *InsertAtEnd)
564     : CallBase(Ty->getReturnType(), Instruction::Call,
565                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
566   init(Ty, Func, Name);
567 }
568 
569 CallInst::CallInst(const CallInst &CI)
570     : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
571                OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
572                CI.getNumOperands()) {
573   setTailCallKind(CI.getTailCallKind());
574   setCallingConv(CI.getCallingConv());
575 
576   std::copy(CI.op_begin(), CI.op_end(), op_begin());
577   std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
578             bundle_op_info_begin());
579   SubclassOptionalData = CI.SubclassOptionalData;
580 }
581 
582 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
583                            Instruction *InsertPt) {
584   std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
585 
586   auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(),
587                                  Args, OpB, CI->getName(), InsertPt);
588   NewCI->setTailCallKind(CI->getTailCallKind());
589   NewCI->setCallingConv(CI->getCallingConv());
590   NewCI->SubclassOptionalData = CI->SubclassOptionalData;
591   NewCI->setAttributes(CI->getAttributes());
592   NewCI->setDebugLoc(CI->getDebugLoc());
593   return NewCI;
594 }
595 
596 // Update profile weight for call instruction by scaling it using the ratio
597 // of S/T. The meaning of "branch_weights" meta data for call instruction is
598 // transfered to represent call count.
599 void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
600   auto *ProfileData = getMetadata(LLVMContext::MD_prof);
601   if (ProfileData == nullptr)
602     return;
603 
604   auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
605   if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
606                         !ProfDataName->getString().equals("VP")))
607     return;
608 
609   if (T == 0) {
610     LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
611                          "div by 0. Ignoring. Likely the function "
612                       << getParent()->getParent()->getName()
613                       << " has 0 entry count, and contains call instructions "
614                          "with non-zero prof info.");
615     return;
616   }
617 
618   MDBuilder MDB(getContext());
619   SmallVector<Metadata *, 3> Vals;
620   Vals.push_back(ProfileData->getOperand(0));
621   APInt APS(128, S), APT(128, T);
622   if (ProfDataName->getString().equals("branch_weights") &&
623       ProfileData->getNumOperands() > 0) {
624     // Using APInt::div may be expensive, but most cases should fit 64 bits.
625     APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
626                        ->getValue()
627                        .getZExtValue());
628     Val *= APS;
629     Vals.push_back(MDB.createConstant(
630         ConstantInt::get(Type::getInt32Ty(getContext()),
631                          Val.udiv(APT).getLimitedValue(UINT32_MAX))));
632   } else if (ProfDataName->getString().equals("VP"))
633     for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
634       // The first value is the key of the value profile, which will not change.
635       Vals.push_back(ProfileData->getOperand(i));
636       uint64_t Count =
637           mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
638               ->getValue()
639               .getZExtValue();
640       // Don't scale the magic number.
641       if (Count == NOMORE_ICP_MAGICNUM) {
642         Vals.push_back(ProfileData->getOperand(i + 1));
643         continue;
644       }
645       // Using APInt::div may be expensive, but most cases should fit 64 bits.
646       APInt Val(128, Count);
647       Val *= APS;
648       Vals.push_back(MDB.createConstant(
649           ConstantInt::get(Type::getInt64Ty(getContext()),
650                            Val.udiv(APT).getLimitedValue())));
651     }
652   setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
653 }
654 
655 /// IsConstantOne - Return true only if val is constant int 1
656 static bool IsConstantOne(Value *val) {
657   assert(val && "IsConstantOne does not work with nullptr val");
658   const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
659   return CVal && CVal->isOne();
660 }
661 
662 static Instruction *createMalloc(Instruction *InsertBefore,
663                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
664                                  Type *AllocTy, Value *AllocSize,
665                                  Value *ArraySize,
666                                  ArrayRef<OperandBundleDef> OpB,
667                                  Function *MallocF, const Twine &Name) {
668   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
669          "createMalloc needs either InsertBefore or InsertAtEnd");
670 
671   // malloc(type) becomes:
672   //       bitcast (i8* malloc(typeSize)) to type*
673   // malloc(type, arraySize) becomes:
674   //       bitcast (i8* malloc(typeSize*arraySize)) to type*
675   if (!ArraySize)
676     ArraySize = ConstantInt::get(IntPtrTy, 1);
677   else if (ArraySize->getType() != IntPtrTy) {
678     if (InsertBefore)
679       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
680                                               "", InsertBefore);
681     else
682       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
683                                               "", InsertAtEnd);
684   }
685 
686   if (!IsConstantOne(ArraySize)) {
687     if (IsConstantOne(AllocSize)) {
688       AllocSize = ArraySize;         // Operand * 1 = Operand
689     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
690       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
691                                                      false /*ZExt*/);
692       // Malloc arg is constant product of type size and array size
693       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
694     } else {
695       // Multiply type size by the array size...
696       if (InsertBefore)
697         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
698                                               "mallocsize", InsertBefore);
699       else
700         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
701                                               "mallocsize", InsertAtEnd);
702     }
703   }
704 
705   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
706   // Create the call to Malloc.
707   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
708   Module *M = BB->getParent()->getParent();
709   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
710   FunctionCallee MallocFunc = MallocF;
711   if (!MallocFunc)
712     // prototype malloc as "void *malloc(size_t)"
713     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
714   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
715   CallInst *MCall = nullptr;
716   Instruction *Result = nullptr;
717   if (InsertBefore) {
718     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
719                              InsertBefore);
720     Result = MCall;
721     if (Result->getType() != AllocPtrType)
722       // Create a cast instruction to convert to the right type...
723       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
724   } else {
725     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
726     Result = MCall;
727     if (Result->getType() != AllocPtrType) {
728       InsertAtEnd->getInstList().push_back(MCall);
729       // Create a cast instruction to convert to the right type...
730       Result = new BitCastInst(MCall, AllocPtrType, Name);
731     }
732   }
733   MCall->setTailCall();
734   if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
735     MCall->setCallingConv(F->getCallingConv());
736     if (!F->returnDoesNotAlias())
737       F->setReturnDoesNotAlias();
738   }
739   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
740 
741   return Result;
742 }
743 
744 /// CreateMalloc - Generate the IR for a call to malloc:
745 /// 1. Compute the malloc call's argument as the specified type's size,
746 ///    possibly multiplied by the array size if the array size is not
747 ///    constant 1.
748 /// 2. Call malloc with that argument.
749 /// 3. Bitcast the result of the malloc call to the specified type.
750 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
751                                     Type *IntPtrTy, Type *AllocTy,
752                                     Value *AllocSize, Value *ArraySize,
753                                     Function *MallocF,
754                                     const Twine &Name) {
755   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
756                       ArraySize, None, MallocF, Name);
757 }
758 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
759                                     Type *IntPtrTy, Type *AllocTy,
760                                     Value *AllocSize, Value *ArraySize,
761                                     ArrayRef<OperandBundleDef> OpB,
762                                     Function *MallocF,
763                                     const Twine &Name) {
764   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
765                       ArraySize, OpB, MallocF, Name);
766 }
767 
768 /// CreateMalloc - Generate the IR for a call to malloc:
769 /// 1. Compute the malloc call's argument as the specified type's size,
770 ///    possibly multiplied by the array size if the array size is not
771 ///    constant 1.
772 /// 2. Call malloc with that argument.
773 /// 3. Bitcast the result of the malloc call to the specified type.
774 /// Note: This function does not add the bitcast to the basic block, that is the
775 /// responsibility of the caller.
776 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
777                                     Type *IntPtrTy, Type *AllocTy,
778                                     Value *AllocSize, Value *ArraySize,
779                                     Function *MallocF, const Twine &Name) {
780   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
781                       ArraySize, None, MallocF, Name);
782 }
783 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
784                                     Type *IntPtrTy, Type *AllocTy,
785                                     Value *AllocSize, Value *ArraySize,
786                                     ArrayRef<OperandBundleDef> OpB,
787                                     Function *MallocF, const Twine &Name) {
788   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
789                       ArraySize, OpB, MallocF, Name);
790 }
791 
792 static Instruction *createFree(Value *Source,
793                                ArrayRef<OperandBundleDef> Bundles,
794                                Instruction *InsertBefore,
795                                BasicBlock *InsertAtEnd) {
796   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
797          "createFree needs either InsertBefore or InsertAtEnd");
798   assert(Source->getType()->isPointerTy() &&
799          "Can not free something of nonpointer type!");
800 
801   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
802   Module *M = BB->getParent()->getParent();
803 
804   Type *VoidTy = Type::getVoidTy(M->getContext());
805   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
806   // prototype free as "void free(void*)"
807   FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
808   CallInst *Result = nullptr;
809   Value *PtrCast = Source;
810   if (InsertBefore) {
811     if (Source->getType() != IntPtrTy)
812       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
813     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
814   } else {
815     if (Source->getType() != IntPtrTy)
816       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
817     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
818   }
819   Result->setTailCall();
820   if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
821     Result->setCallingConv(F->getCallingConv());
822 
823   return Result;
824 }
825 
826 /// CreateFree - Generate the IR for a call to the builtin free function.
827 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
828   return createFree(Source, None, InsertBefore, nullptr);
829 }
830 Instruction *CallInst::CreateFree(Value *Source,
831                                   ArrayRef<OperandBundleDef> Bundles,
832                                   Instruction *InsertBefore) {
833   return createFree(Source, Bundles, InsertBefore, nullptr);
834 }
835 
836 /// CreateFree - Generate the IR for a call to the builtin free function.
837 /// Note: This function does not add the call to the basic block, that is the
838 /// responsibility of the caller.
839 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
840   Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
841   assert(FreeCall && "CreateFree did not create a CallInst");
842   return FreeCall;
843 }
844 Instruction *CallInst::CreateFree(Value *Source,
845                                   ArrayRef<OperandBundleDef> Bundles,
846                                   BasicBlock *InsertAtEnd) {
847   Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
848   assert(FreeCall && "CreateFree did not create a CallInst");
849   return FreeCall;
850 }
851 
852 //===----------------------------------------------------------------------===//
853 //                        InvokeInst Implementation
854 //===----------------------------------------------------------------------===//
855 
856 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
857                       BasicBlock *IfException, ArrayRef<Value *> Args,
858                       ArrayRef<OperandBundleDef> Bundles,
859                       const Twine &NameStr) {
860   this->FTy = FTy;
861 
862   assert((int)getNumOperands() ==
863              ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
864          "NumOperands not set up?");
865 
866 #ifndef NDEBUG
867   assert(((Args.size() == FTy->getNumParams()) ||
868           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
869          "Invoking a function with bad signature");
870 
871   for (unsigned i = 0, e = Args.size(); i != e; i++)
872     assert((i >= FTy->getNumParams() ||
873             FTy->getParamType(i) == Args[i]->getType()) &&
874            "Invoking a function with a bad signature!");
875 #endif
876 
877   // Set operands in order of their index to match use-list-order
878   // prediction.
879   llvm::copy(Args, op_begin());
880   setNormalDest(IfNormal);
881   setUnwindDest(IfException);
882   setCalledOperand(Fn);
883 
884   auto It = populateBundleOperandInfos(Bundles, Args.size());
885   (void)It;
886   assert(It + 3 == op_end() && "Should add up!");
887 
888   setName(NameStr);
889 }
890 
891 InvokeInst::InvokeInst(const InvokeInst &II)
892     : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
893                OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
894                II.getNumOperands()) {
895   setCallingConv(II.getCallingConv());
896   std::copy(II.op_begin(), II.op_end(), op_begin());
897   std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
898             bundle_op_info_begin());
899   SubclassOptionalData = II.SubclassOptionalData;
900 }
901 
902 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
903                                Instruction *InsertPt) {
904   std::vector<Value *> Args(II->arg_begin(), II->arg_end());
905 
906   auto *NewII = InvokeInst::Create(
907       II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(),
908       II->getUnwindDest(), Args, OpB, II->getName(), InsertPt);
909   NewII->setCallingConv(II->getCallingConv());
910   NewII->SubclassOptionalData = II->SubclassOptionalData;
911   NewII->setAttributes(II->getAttributes());
912   NewII->setDebugLoc(II->getDebugLoc());
913   return NewII;
914 }
915 
916 LandingPadInst *InvokeInst::getLandingPadInst() const {
917   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
918 }
919 
920 //===----------------------------------------------------------------------===//
921 //                        CallBrInst Implementation
922 //===----------------------------------------------------------------------===//
923 
924 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
925                       ArrayRef<BasicBlock *> IndirectDests,
926                       ArrayRef<Value *> Args,
927                       ArrayRef<OperandBundleDef> Bundles,
928                       const Twine &NameStr) {
929   this->FTy = FTy;
930 
931   assert((int)getNumOperands() ==
932              ComputeNumOperands(Args.size(), IndirectDests.size(),
933                                 CountBundleInputs(Bundles)) &&
934          "NumOperands not set up?");
935 
936 #ifndef NDEBUG
937   assert(((Args.size() == FTy->getNumParams()) ||
938           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
939          "Calling a function with bad signature");
940 
941   for (unsigned i = 0, e = Args.size(); i != e; i++)
942     assert((i >= FTy->getNumParams() ||
943             FTy->getParamType(i) == Args[i]->getType()) &&
944            "Calling a function with a bad signature!");
945 #endif
946 
947   // Set operands in order of their index to match use-list-order
948   // prediction.
949   std::copy(Args.begin(), Args.end(), op_begin());
950   NumIndirectDests = IndirectDests.size();
951   setDefaultDest(Fallthrough);
952   for (unsigned i = 0; i != NumIndirectDests; ++i)
953     setIndirectDest(i, IndirectDests[i]);
954   setCalledOperand(Fn);
955 
956   auto It = populateBundleOperandInfos(Bundles, Args.size());
957   (void)It;
958   assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
959 
960   setName(NameStr);
961 }
962 
963 BlockAddress *
964 CallBrInst::getBlockAddressForIndirectDest(unsigned DestNo) const {
965   return BlockAddress::get(const_cast<Function *>(getFunction()),
966                            getIndirectDest(DestNo));
967 }
968 
969 CallBrInst::CallBrInst(const CallBrInst &CBI)
970     : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
971                OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
972                CBI.getNumOperands()) {
973   setCallingConv(CBI.getCallingConv());
974   std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
975   std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
976             bundle_op_info_begin());
977   SubclassOptionalData = CBI.SubclassOptionalData;
978   NumIndirectDests = CBI.NumIndirectDests;
979 }
980 
981 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
982                                Instruction *InsertPt) {
983   std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
984 
985   auto *NewCBI = CallBrInst::Create(
986       CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(),
987       CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt);
988   NewCBI->setCallingConv(CBI->getCallingConv());
989   NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
990   NewCBI->setAttributes(CBI->getAttributes());
991   NewCBI->setDebugLoc(CBI->getDebugLoc());
992   NewCBI->NumIndirectDests = CBI->NumIndirectDests;
993   return NewCBI;
994 }
995 
996 //===----------------------------------------------------------------------===//
997 //                        ReturnInst Implementation
998 //===----------------------------------------------------------------------===//
999 
1000 ReturnInst::ReturnInst(const ReturnInst &RI)
1001     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
1002                   OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
1003                   RI.getNumOperands()) {
1004   if (RI.getNumOperands())
1005     Op<0>() = RI.Op<0>();
1006   SubclassOptionalData = RI.SubclassOptionalData;
1007 }
1008 
1009 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
1010     : Instruction(Type::getVoidTy(C), Instruction::Ret,
1011                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
1012                   InsertBefore) {
1013   if (retVal)
1014     Op<0>() = retVal;
1015 }
1016 
1017 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
1018     : Instruction(Type::getVoidTy(C), Instruction::Ret,
1019                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
1020                   InsertAtEnd) {
1021   if (retVal)
1022     Op<0>() = retVal;
1023 }
1024 
1025 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1026     : Instruction(Type::getVoidTy(Context), Instruction::Ret,
1027                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
1028 
1029 //===----------------------------------------------------------------------===//
1030 //                        ResumeInst Implementation
1031 //===----------------------------------------------------------------------===//
1032 
1033 ResumeInst::ResumeInst(const ResumeInst &RI)
1034     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
1035                   OperandTraits<ResumeInst>::op_begin(this), 1) {
1036   Op<0>() = RI.Op<0>();
1037 }
1038 
1039 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
1040     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1041                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
1042   Op<0>() = Exn;
1043 }
1044 
1045 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
1046     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1047                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
1048   Op<0>() = Exn;
1049 }
1050 
1051 //===----------------------------------------------------------------------===//
1052 //                        CleanupReturnInst Implementation
1053 //===----------------------------------------------------------------------===//
1054 
1055 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
1056     : Instruction(CRI.getType(), Instruction::CleanupRet,
1057                   OperandTraits<CleanupReturnInst>::op_end(this) -
1058                       CRI.getNumOperands(),
1059                   CRI.getNumOperands()) {
1060   setSubclassData<Instruction::OpaqueField>(
1061       CRI.getSubclassData<Instruction::OpaqueField>());
1062   Op<0>() = CRI.Op<0>();
1063   if (CRI.hasUnwindDest())
1064     Op<1>() = CRI.Op<1>();
1065 }
1066 
1067 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
1068   if (UnwindBB)
1069     setSubclassData<UnwindDestField>(true);
1070 
1071   Op<0>() = CleanupPad;
1072   if (UnwindBB)
1073     Op<1>() = UnwindBB;
1074 }
1075 
1076 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1077                                      unsigned Values, Instruction *InsertBefore)
1078     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1079                   Instruction::CleanupRet,
1080                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1081                   Values, InsertBefore) {
1082   init(CleanupPad, UnwindBB);
1083 }
1084 
1085 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1086                                      unsigned Values, BasicBlock *InsertAtEnd)
1087     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1088                   Instruction::CleanupRet,
1089                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1090                   Values, InsertAtEnd) {
1091   init(CleanupPad, UnwindBB);
1092 }
1093 
1094 //===----------------------------------------------------------------------===//
1095 //                        CatchReturnInst Implementation
1096 //===----------------------------------------------------------------------===//
1097 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
1098   Op<0>() = CatchPad;
1099   Op<1>() = BB;
1100 }
1101 
1102 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
1103     : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
1104                   OperandTraits<CatchReturnInst>::op_begin(this), 2) {
1105   Op<0>() = CRI.Op<0>();
1106   Op<1>() = CRI.Op<1>();
1107 }
1108 
1109 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1110                                  Instruction *InsertBefore)
1111     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1112                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
1113                   InsertBefore) {
1114   init(CatchPad, BB);
1115 }
1116 
1117 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1118                                  BasicBlock *InsertAtEnd)
1119     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1120                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
1121                   InsertAtEnd) {
1122   init(CatchPad, BB);
1123 }
1124 
1125 //===----------------------------------------------------------------------===//
1126 //                       CatchSwitchInst Implementation
1127 //===----------------------------------------------------------------------===//
1128 
1129 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1130                                  unsigned NumReservedValues,
1131                                  const Twine &NameStr,
1132                                  Instruction *InsertBefore)
1133     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1134                   InsertBefore) {
1135   if (UnwindDest)
1136     ++NumReservedValues;
1137   init(ParentPad, UnwindDest, NumReservedValues + 1);
1138   setName(NameStr);
1139 }
1140 
1141 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1142                                  unsigned NumReservedValues,
1143                                  const Twine &NameStr, BasicBlock *InsertAtEnd)
1144     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1145                   InsertAtEnd) {
1146   if (UnwindDest)
1147     ++NumReservedValues;
1148   init(ParentPad, UnwindDest, NumReservedValues + 1);
1149   setName(NameStr);
1150 }
1151 
1152 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1153     : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1154                   CSI.getNumOperands()) {
1155   init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1156   setNumHungOffUseOperands(ReservedSpace);
1157   Use *OL = getOperandList();
1158   const Use *InOL = CSI.getOperandList();
1159   for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1160     OL[I] = InOL[I];
1161 }
1162 
1163 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1164                            unsigned NumReservedValues) {
1165   assert(ParentPad && NumReservedValues);
1166 
1167   ReservedSpace = NumReservedValues;
1168   setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1169   allocHungoffUses(ReservedSpace);
1170 
1171   Op<0>() = ParentPad;
1172   if (UnwindDest) {
1173     setSubclassData<UnwindDestField>(true);
1174     setUnwindDest(UnwindDest);
1175   }
1176 }
1177 
1178 /// growOperands - grow operands - This grows the operand list in response to a
1179 /// push_back style of operation. This grows the number of ops by 2 times.
1180 void CatchSwitchInst::growOperands(unsigned Size) {
1181   unsigned NumOperands = getNumOperands();
1182   assert(NumOperands >= 1);
1183   if (ReservedSpace >= NumOperands + Size)
1184     return;
1185   ReservedSpace = (NumOperands + Size / 2) * 2;
1186   growHungoffUses(ReservedSpace);
1187 }
1188 
1189 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1190   unsigned OpNo = getNumOperands();
1191   growOperands(1);
1192   assert(OpNo < ReservedSpace && "Growing didn't work!");
1193   setNumHungOffUseOperands(getNumOperands() + 1);
1194   getOperandList()[OpNo] = Handler;
1195 }
1196 
1197 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1198   // Move all subsequent handlers up one.
1199   Use *EndDst = op_end() - 1;
1200   for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1201     *CurDst = *(CurDst + 1);
1202   // Null out the last handler use.
1203   *EndDst = nullptr;
1204 
1205   setNumHungOffUseOperands(getNumOperands() - 1);
1206 }
1207 
1208 //===----------------------------------------------------------------------===//
1209 //                        FuncletPadInst Implementation
1210 //===----------------------------------------------------------------------===//
1211 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1212                           const Twine &NameStr) {
1213   assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1214   llvm::copy(Args, op_begin());
1215   setParentPad(ParentPad);
1216   setName(NameStr);
1217 }
1218 
1219 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1220     : Instruction(FPI.getType(), FPI.getOpcode(),
1221                   OperandTraits<FuncletPadInst>::op_end(this) -
1222                       FPI.getNumOperands(),
1223                   FPI.getNumOperands()) {
1224   std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1225   setParentPad(FPI.getParentPad());
1226 }
1227 
1228 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1229                                ArrayRef<Value *> Args, unsigned Values,
1230                                const Twine &NameStr, Instruction *InsertBefore)
1231     : Instruction(ParentPad->getType(), Op,
1232                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1233                   InsertBefore) {
1234   init(ParentPad, Args, NameStr);
1235 }
1236 
1237 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1238                                ArrayRef<Value *> Args, unsigned Values,
1239                                const Twine &NameStr, BasicBlock *InsertAtEnd)
1240     : Instruction(ParentPad->getType(), Op,
1241                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1242                   InsertAtEnd) {
1243   init(ParentPad, Args, NameStr);
1244 }
1245 
1246 //===----------------------------------------------------------------------===//
1247 //                      UnreachableInst Implementation
1248 //===----------------------------------------------------------------------===//
1249 
1250 UnreachableInst::UnreachableInst(LLVMContext &Context,
1251                                  Instruction *InsertBefore)
1252     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1253                   0, InsertBefore) {}
1254 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1255     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1256                   0, InsertAtEnd) {}
1257 
1258 //===----------------------------------------------------------------------===//
1259 //                        BranchInst Implementation
1260 //===----------------------------------------------------------------------===//
1261 
1262 void BranchInst::AssertOK() {
1263   if (isConditional())
1264     assert(getCondition()->getType()->isIntegerTy(1) &&
1265            "May only branch on boolean predicates!");
1266 }
1267 
1268 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1269     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1270                   OperandTraits<BranchInst>::op_end(this) - 1, 1,
1271                   InsertBefore) {
1272   assert(IfTrue && "Branch destination may not be null!");
1273   Op<-1>() = IfTrue;
1274 }
1275 
1276 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1277                        Instruction *InsertBefore)
1278     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1279                   OperandTraits<BranchInst>::op_end(this) - 3, 3,
1280                   InsertBefore) {
1281   // Assign in order of operand index to make use-list order predictable.
1282   Op<-3>() = Cond;
1283   Op<-2>() = IfFalse;
1284   Op<-1>() = IfTrue;
1285 #ifndef NDEBUG
1286   AssertOK();
1287 #endif
1288 }
1289 
1290 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1291     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1292                   OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1293   assert(IfTrue && "Branch destination may not be null!");
1294   Op<-1>() = IfTrue;
1295 }
1296 
1297 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1298                        BasicBlock *InsertAtEnd)
1299     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1300                   OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1301   // Assign in order of operand index to make use-list order predictable.
1302   Op<-3>() = Cond;
1303   Op<-2>() = IfFalse;
1304   Op<-1>() = IfTrue;
1305 #ifndef NDEBUG
1306   AssertOK();
1307 #endif
1308 }
1309 
1310 BranchInst::BranchInst(const BranchInst &BI)
1311     : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1312                   OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1313                   BI.getNumOperands()) {
1314   // Assign in order of operand index to make use-list order predictable.
1315   if (BI.getNumOperands() != 1) {
1316     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1317     Op<-3>() = BI.Op<-3>();
1318     Op<-2>() = BI.Op<-2>();
1319   }
1320   Op<-1>() = BI.Op<-1>();
1321   SubclassOptionalData = BI.SubclassOptionalData;
1322 }
1323 
1324 void BranchInst::swapSuccessors() {
1325   assert(isConditional() &&
1326          "Cannot swap successors of an unconditional branch");
1327   Op<-1>().swap(Op<-2>());
1328 
1329   // Update profile metadata if present and it matches our structural
1330   // expectations.
1331   swapProfMetadata();
1332 }
1333 
1334 //===----------------------------------------------------------------------===//
1335 //                        AllocaInst Implementation
1336 //===----------------------------------------------------------------------===//
1337 
1338 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1339   if (!Amt)
1340     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1341   else {
1342     assert(!isa<BasicBlock>(Amt) &&
1343            "Passed basic block into allocation size parameter! Use other ctor");
1344     assert(Amt->getType()->isIntegerTy() &&
1345            "Allocation array size is not an integer!");
1346   }
1347   return Amt;
1348 }
1349 
1350 static Align computeAllocaDefaultAlign(Type *Ty, BasicBlock *BB) {
1351   assert(BB && "Insertion BB cannot be null when alignment not provided!");
1352   assert(BB->getParent() &&
1353          "BB must be in a Function when alignment not provided!");
1354   const DataLayout &DL = BB->getModule()->getDataLayout();
1355   return DL.getPrefTypeAlign(Ty);
1356 }
1357 
1358 static Align computeAllocaDefaultAlign(Type *Ty, Instruction *I) {
1359   assert(I && "Insertion position cannot be null when alignment not provided!");
1360   return computeAllocaDefaultAlign(Ty, I->getParent());
1361 }
1362 
1363 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1364                        Instruction *InsertBefore)
1365   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1366 
1367 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1368                        BasicBlock *InsertAtEnd)
1369   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1370 
1371 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1372                        const Twine &Name, Instruction *InsertBefore)
1373     : AllocaInst(Ty, AddrSpace, ArraySize,
1374                  computeAllocaDefaultAlign(Ty, InsertBefore), Name,
1375                  InsertBefore) {}
1376 
1377 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1378                        const Twine &Name, BasicBlock *InsertAtEnd)
1379     : AllocaInst(Ty, AddrSpace, ArraySize,
1380                  computeAllocaDefaultAlign(Ty, InsertAtEnd), Name,
1381                  InsertAtEnd) {}
1382 
1383 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1384                        Align Align, const Twine &Name,
1385                        Instruction *InsertBefore)
1386     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1387                        getAISize(Ty->getContext(), ArraySize), InsertBefore),
1388       AllocatedType(Ty) {
1389   setAlignment(Align);
1390   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1391   setName(Name);
1392 }
1393 
1394 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1395                        Align Align, const Twine &Name, BasicBlock *InsertAtEnd)
1396     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1397                        getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1398       AllocatedType(Ty) {
1399   setAlignment(Align);
1400   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1401   setName(Name);
1402 }
1403 
1404 
1405 bool AllocaInst::isArrayAllocation() const {
1406   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1407     return !CI->isOne();
1408   return true;
1409 }
1410 
1411 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1412 /// function and is a constant size.  If so, the code generator will fold it
1413 /// into the prolog/epilog code, so it is basically free.
1414 bool AllocaInst::isStaticAlloca() const {
1415   // Must be constant size.
1416   if (!isa<ConstantInt>(getArraySize())) return false;
1417 
1418   // Must be in the entry block.
1419   const BasicBlock *Parent = getParent();
1420   return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1421 }
1422 
1423 //===----------------------------------------------------------------------===//
1424 //                           LoadInst Implementation
1425 //===----------------------------------------------------------------------===//
1426 
1427 void LoadInst::AssertOK() {
1428   assert(getOperand(0)->getType()->isPointerTy() &&
1429          "Ptr must have pointer type.");
1430 }
1431 
1432 static Align computeLoadStoreDefaultAlign(Type *Ty, BasicBlock *BB) {
1433   assert(BB && "Insertion BB cannot be null when alignment not provided!");
1434   assert(BB->getParent() &&
1435          "BB must be in a Function when alignment not provided!");
1436   const DataLayout &DL = BB->getModule()->getDataLayout();
1437   return DL.getABITypeAlign(Ty);
1438 }
1439 
1440 static Align computeLoadStoreDefaultAlign(Type *Ty, Instruction *I) {
1441   assert(I && "Insertion position cannot be null when alignment not provided!");
1442   return computeLoadStoreDefaultAlign(Ty, I->getParent());
1443 }
1444 
1445 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1446                    Instruction *InsertBef)
1447     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1448 
1449 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1450                    BasicBlock *InsertAE)
1451     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1452 
1453 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1454                    Instruction *InsertBef)
1455     : LoadInst(Ty, Ptr, Name, isVolatile,
1456                computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {}
1457 
1458 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1459                    BasicBlock *InsertAE)
1460     : LoadInst(Ty, Ptr, Name, isVolatile,
1461                computeLoadStoreDefaultAlign(Ty, InsertAE), InsertAE) {}
1462 
1463 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1464                    Align Align, Instruction *InsertBef)
1465     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1466                SyncScope::System, InsertBef) {}
1467 
1468 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1469                    Align Align, BasicBlock *InsertAE)
1470     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1471                SyncScope::System, InsertAE) {}
1472 
1473 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1474                    Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1475                    Instruction *InsertBef)
1476     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1477   assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty));
1478   setVolatile(isVolatile);
1479   setAlignment(Align);
1480   setAtomic(Order, SSID);
1481   AssertOK();
1482   setName(Name);
1483 }
1484 
1485 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1486                    Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1487                    BasicBlock *InsertAE)
1488     : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1489   assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty));
1490   setVolatile(isVolatile);
1491   setAlignment(Align);
1492   setAtomic(Order, SSID);
1493   AssertOK();
1494   setName(Name);
1495 }
1496 
1497 //===----------------------------------------------------------------------===//
1498 //                           StoreInst Implementation
1499 //===----------------------------------------------------------------------===//
1500 
1501 void StoreInst::AssertOK() {
1502   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1503   assert(getOperand(1)->getType()->isPointerTy() &&
1504          "Ptr must have pointer type!");
1505   assert(cast<PointerType>(getOperand(1)->getType())
1506              ->isOpaqueOrPointeeTypeMatches(getOperand(0)->getType()) &&
1507          "Ptr must be a pointer to Val type!");
1508 }
1509 
1510 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1511     : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1512 
1513 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1514     : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1515 
1516 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1517                      Instruction *InsertBefore)
1518     : StoreInst(val, addr, isVolatile,
1519                 computeLoadStoreDefaultAlign(val->getType(), InsertBefore),
1520                 InsertBefore) {}
1521 
1522 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1523                      BasicBlock *InsertAtEnd)
1524     : StoreInst(val, addr, isVolatile,
1525                 computeLoadStoreDefaultAlign(val->getType(), InsertAtEnd),
1526                 InsertAtEnd) {}
1527 
1528 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1529                      Instruction *InsertBefore)
1530     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1531                 SyncScope::System, InsertBefore) {}
1532 
1533 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1534                      BasicBlock *InsertAtEnd)
1535     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1536                 SyncScope::System, InsertAtEnd) {}
1537 
1538 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1539                      AtomicOrdering Order, SyncScope::ID SSID,
1540                      Instruction *InsertBefore)
1541     : Instruction(Type::getVoidTy(val->getContext()), Store,
1542                   OperandTraits<StoreInst>::op_begin(this),
1543                   OperandTraits<StoreInst>::operands(this), InsertBefore) {
1544   Op<0>() = val;
1545   Op<1>() = addr;
1546   setVolatile(isVolatile);
1547   setAlignment(Align);
1548   setAtomic(Order, SSID);
1549   AssertOK();
1550 }
1551 
1552 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1553                      AtomicOrdering Order, SyncScope::ID SSID,
1554                      BasicBlock *InsertAtEnd)
1555     : Instruction(Type::getVoidTy(val->getContext()), Store,
1556                   OperandTraits<StoreInst>::op_begin(this),
1557                   OperandTraits<StoreInst>::operands(this), InsertAtEnd) {
1558   Op<0>() = val;
1559   Op<1>() = addr;
1560   setVolatile(isVolatile);
1561   setAlignment(Align);
1562   setAtomic(Order, SSID);
1563   AssertOK();
1564 }
1565 
1566 
1567 //===----------------------------------------------------------------------===//
1568 //                       AtomicCmpXchgInst Implementation
1569 //===----------------------------------------------------------------------===//
1570 
1571 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1572                              Align Alignment, AtomicOrdering SuccessOrdering,
1573                              AtomicOrdering FailureOrdering,
1574                              SyncScope::ID SSID) {
1575   Op<0>() = Ptr;
1576   Op<1>() = Cmp;
1577   Op<2>() = NewVal;
1578   setSuccessOrdering(SuccessOrdering);
1579   setFailureOrdering(FailureOrdering);
1580   setSyncScopeID(SSID);
1581   setAlignment(Alignment);
1582 
1583   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1584          "All operands must be non-null!");
1585   assert(getOperand(0)->getType()->isPointerTy() &&
1586          "Ptr must have pointer type!");
1587   assert(cast<PointerType>(getOperand(0)->getType())
1588              ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
1589          "Ptr must be a pointer to Cmp type!");
1590   assert(cast<PointerType>(getOperand(0)->getType())
1591              ->isOpaqueOrPointeeTypeMatches(getOperand(2)->getType()) &&
1592          "Ptr must be a pointer to NewVal type!");
1593   assert(getOperand(1)->getType() == getOperand(2)->getType() &&
1594          "Cmp type and NewVal type must be same!");
1595 }
1596 
1597 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1598                                      Align Alignment,
1599                                      AtomicOrdering SuccessOrdering,
1600                                      AtomicOrdering FailureOrdering,
1601                                      SyncScope::ID SSID,
1602                                      Instruction *InsertBefore)
1603     : Instruction(
1604           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1605           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1606           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1607   Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1608 }
1609 
1610 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1611                                      Align Alignment,
1612                                      AtomicOrdering SuccessOrdering,
1613                                      AtomicOrdering FailureOrdering,
1614                                      SyncScope::ID SSID,
1615                                      BasicBlock *InsertAtEnd)
1616     : Instruction(
1617           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1618           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1619           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1620   Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1621 }
1622 
1623 //===----------------------------------------------------------------------===//
1624 //                       AtomicRMWInst Implementation
1625 //===----------------------------------------------------------------------===//
1626 
1627 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1628                          Align Alignment, AtomicOrdering Ordering,
1629                          SyncScope::ID SSID) {
1630   assert(Ordering != AtomicOrdering::NotAtomic &&
1631          "atomicrmw instructions can only be atomic.");
1632   assert(Ordering != AtomicOrdering::Unordered &&
1633          "atomicrmw instructions cannot be unordered.");
1634   Op<0>() = Ptr;
1635   Op<1>() = Val;
1636   setOperation(Operation);
1637   setOrdering(Ordering);
1638   setSyncScopeID(SSID);
1639   setAlignment(Alignment);
1640 
1641   assert(getOperand(0) && getOperand(1) &&
1642          "All operands must be non-null!");
1643   assert(getOperand(0)->getType()->isPointerTy() &&
1644          "Ptr must have pointer type!");
1645   assert(cast<PointerType>(getOperand(0)->getType())
1646              ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
1647          "Ptr must be a pointer to Val type!");
1648   assert(Ordering != AtomicOrdering::NotAtomic &&
1649          "AtomicRMW instructions must be atomic!");
1650 }
1651 
1652 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1653                              Align Alignment, AtomicOrdering Ordering,
1654                              SyncScope::ID SSID, Instruction *InsertBefore)
1655     : Instruction(Val->getType(), AtomicRMW,
1656                   OperandTraits<AtomicRMWInst>::op_begin(this),
1657                   OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) {
1658   Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1659 }
1660 
1661 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1662                              Align Alignment, AtomicOrdering Ordering,
1663                              SyncScope::ID SSID, BasicBlock *InsertAtEnd)
1664     : Instruction(Val->getType(), AtomicRMW,
1665                   OperandTraits<AtomicRMWInst>::op_begin(this),
1666                   OperandTraits<AtomicRMWInst>::operands(this), InsertAtEnd) {
1667   Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1668 }
1669 
1670 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1671   switch (Op) {
1672   case AtomicRMWInst::Xchg:
1673     return "xchg";
1674   case AtomicRMWInst::Add:
1675     return "add";
1676   case AtomicRMWInst::Sub:
1677     return "sub";
1678   case AtomicRMWInst::And:
1679     return "and";
1680   case AtomicRMWInst::Nand:
1681     return "nand";
1682   case AtomicRMWInst::Or:
1683     return "or";
1684   case AtomicRMWInst::Xor:
1685     return "xor";
1686   case AtomicRMWInst::Max:
1687     return "max";
1688   case AtomicRMWInst::Min:
1689     return "min";
1690   case AtomicRMWInst::UMax:
1691     return "umax";
1692   case AtomicRMWInst::UMin:
1693     return "umin";
1694   case AtomicRMWInst::FAdd:
1695     return "fadd";
1696   case AtomicRMWInst::FSub:
1697     return "fsub";
1698   case AtomicRMWInst::FMax:
1699     return "fmax";
1700   case AtomicRMWInst::FMin:
1701     return "fmin";
1702   case AtomicRMWInst::BAD_BINOP:
1703     return "<invalid operation>";
1704   }
1705 
1706   llvm_unreachable("invalid atomicrmw operation");
1707 }
1708 
1709 //===----------------------------------------------------------------------===//
1710 //                       FenceInst Implementation
1711 //===----------------------------------------------------------------------===//
1712 
1713 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1714                      SyncScope::ID SSID,
1715                      Instruction *InsertBefore)
1716   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1717   setOrdering(Ordering);
1718   setSyncScopeID(SSID);
1719 }
1720 
1721 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1722                      SyncScope::ID SSID,
1723                      BasicBlock *InsertAtEnd)
1724   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1725   setOrdering(Ordering);
1726   setSyncScopeID(SSID);
1727 }
1728 
1729 //===----------------------------------------------------------------------===//
1730 //                       GetElementPtrInst Implementation
1731 //===----------------------------------------------------------------------===//
1732 
1733 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1734                              const Twine &Name) {
1735   assert(getNumOperands() == 1 + IdxList.size() &&
1736          "NumOperands not initialized?");
1737   Op<0>() = Ptr;
1738   llvm::copy(IdxList, op_begin() + 1);
1739   setName(Name);
1740 }
1741 
1742 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1743     : Instruction(GEPI.getType(), GetElementPtr,
1744                   OperandTraits<GetElementPtrInst>::op_end(this) -
1745                       GEPI.getNumOperands(),
1746                   GEPI.getNumOperands()),
1747       SourceElementType(GEPI.SourceElementType),
1748       ResultElementType(GEPI.ResultElementType) {
1749   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1750   SubclassOptionalData = GEPI.SubclassOptionalData;
1751 }
1752 
1753 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) {
1754   if (auto *Struct = dyn_cast<StructType>(Ty)) {
1755     if (!Struct->indexValid(Idx))
1756       return nullptr;
1757     return Struct->getTypeAtIndex(Idx);
1758   }
1759   if (!Idx->getType()->isIntOrIntVectorTy())
1760     return nullptr;
1761   if (auto *Array = dyn_cast<ArrayType>(Ty))
1762     return Array->getElementType();
1763   if (auto *Vector = dyn_cast<VectorType>(Ty))
1764     return Vector->getElementType();
1765   return nullptr;
1766 }
1767 
1768 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) {
1769   if (auto *Struct = dyn_cast<StructType>(Ty)) {
1770     if (Idx >= Struct->getNumElements())
1771       return nullptr;
1772     return Struct->getElementType(Idx);
1773   }
1774   if (auto *Array = dyn_cast<ArrayType>(Ty))
1775     return Array->getElementType();
1776   if (auto *Vector = dyn_cast<VectorType>(Ty))
1777     return Vector->getElementType();
1778   return nullptr;
1779 }
1780 
1781 template <typename IndexTy>
1782 static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) {
1783   if (IdxList.empty())
1784     return Ty;
1785   for (IndexTy V : IdxList.slice(1)) {
1786     Ty = GetElementPtrInst::getTypeAtIndex(Ty, V);
1787     if (!Ty)
1788       return Ty;
1789   }
1790   return Ty;
1791 }
1792 
1793 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1794   return getIndexedTypeInternal(Ty, IdxList);
1795 }
1796 
1797 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1798                                         ArrayRef<Constant *> IdxList) {
1799   return getIndexedTypeInternal(Ty, IdxList);
1800 }
1801 
1802 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1803   return getIndexedTypeInternal(Ty, IdxList);
1804 }
1805 
1806 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1807 /// zeros.  If so, the result pointer and the first operand have the same
1808 /// value, just potentially different types.
1809 bool GetElementPtrInst::hasAllZeroIndices() const {
1810   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1811     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1812       if (!CI->isZero()) return false;
1813     } else {
1814       return false;
1815     }
1816   }
1817   return true;
1818 }
1819 
1820 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1821 /// constant integers.  If so, the result pointer and the first operand have
1822 /// a constant offset between them.
1823 bool GetElementPtrInst::hasAllConstantIndices() const {
1824   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1825     if (!isa<ConstantInt>(getOperand(i)))
1826       return false;
1827   }
1828   return true;
1829 }
1830 
1831 void GetElementPtrInst::setIsInBounds(bool B) {
1832   cast<GEPOperator>(this)->setIsInBounds(B);
1833 }
1834 
1835 bool GetElementPtrInst::isInBounds() const {
1836   return cast<GEPOperator>(this)->isInBounds();
1837 }
1838 
1839 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1840                                                  APInt &Offset) const {
1841   // Delegate to the generic GEPOperator implementation.
1842   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1843 }
1844 
1845 bool GetElementPtrInst::collectOffset(
1846     const DataLayout &DL, unsigned BitWidth,
1847     MapVector<Value *, APInt> &VariableOffsets,
1848     APInt &ConstantOffset) const {
1849   // Delegate to the generic GEPOperator implementation.
1850   return cast<GEPOperator>(this)->collectOffset(DL, BitWidth, VariableOffsets,
1851                                                 ConstantOffset);
1852 }
1853 
1854 //===----------------------------------------------------------------------===//
1855 //                           ExtractElementInst Implementation
1856 //===----------------------------------------------------------------------===//
1857 
1858 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1859                                        const Twine &Name,
1860                                        Instruction *InsertBef)
1861   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1862                 ExtractElement,
1863                 OperandTraits<ExtractElementInst>::op_begin(this),
1864                 2, InsertBef) {
1865   assert(isValidOperands(Val, Index) &&
1866          "Invalid extractelement instruction operands!");
1867   Op<0>() = Val;
1868   Op<1>() = Index;
1869   setName(Name);
1870 }
1871 
1872 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1873                                        const Twine &Name,
1874                                        BasicBlock *InsertAE)
1875   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1876                 ExtractElement,
1877                 OperandTraits<ExtractElementInst>::op_begin(this),
1878                 2, InsertAE) {
1879   assert(isValidOperands(Val, Index) &&
1880          "Invalid extractelement instruction operands!");
1881 
1882   Op<0>() = Val;
1883   Op<1>() = Index;
1884   setName(Name);
1885 }
1886 
1887 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1888   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1889     return false;
1890   return true;
1891 }
1892 
1893 //===----------------------------------------------------------------------===//
1894 //                           InsertElementInst Implementation
1895 //===----------------------------------------------------------------------===//
1896 
1897 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1898                                      const Twine &Name,
1899                                      Instruction *InsertBef)
1900   : Instruction(Vec->getType(), InsertElement,
1901                 OperandTraits<InsertElementInst>::op_begin(this),
1902                 3, InsertBef) {
1903   assert(isValidOperands(Vec, Elt, Index) &&
1904          "Invalid insertelement instruction operands!");
1905   Op<0>() = Vec;
1906   Op<1>() = Elt;
1907   Op<2>() = Index;
1908   setName(Name);
1909 }
1910 
1911 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1912                                      const Twine &Name,
1913                                      BasicBlock *InsertAE)
1914   : Instruction(Vec->getType(), InsertElement,
1915                 OperandTraits<InsertElementInst>::op_begin(this),
1916                 3, InsertAE) {
1917   assert(isValidOperands(Vec, Elt, Index) &&
1918          "Invalid insertelement instruction operands!");
1919 
1920   Op<0>() = Vec;
1921   Op<1>() = Elt;
1922   Op<2>() = Index;
1923   setName(Name);
1924 }
1925 
1926 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1927                                         const Value *Index) {
1928   if (!Vec->getType()->isVectorTy())
1929     return false;   // First operand of insertelement must be vector type.
1930 
1931   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1932     return false;// Second operand of insertelement must be vector element type.
1933 
1934   if (!Index->getType()->isIntegerTy())
1935     return false;  // Third operand of insertelement must be i32.
1936   return true;
1937 }
1938 
1939 //===----------------------------------------------------------------------===//
1940 //                      ShuffleVectorInst Implementation
1941 //===----------------------------------------------------------------------===//
1942 
1943 static Value *createPlaceholderForShuffleVector(Value *V) {
1944   assert(V && "Cannot create placeholder of nullptr V");
1945   return PoisonValue::get(V->getType());
1946 }
1947 
1948 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *Mask, const Twine &Name,
1949                                      Instruction *InsertBefore)
1950     : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
1951                         InsertBefore) {}
1952 
1953 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *Mask, const Twine &Name,
1954                                      BasicBlock *InsertAtEnd)
1955     : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
1956                         InsertAtEnd) {}
1957 
1958 ShuffleVectorInst::ShuffleVectorInst(Value *V1, ArrayRef<int> Mask,
1959                                      const Twine &Name,
1960                                      Instruction *InsertBefore)
1961     : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
1962                         InsertBefore) {}
1963 
1964 ShuffleVectorInst::ShuffleVectorInst(Value *V1, ArrayRef<int> Mask,
1965                                      const Twine &Name, BasicBlock *InsertAtEnd)
1966     : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
1967                         InsertAtEnd) {}
1968 
1969 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1970                                      const Twine &Name,
1971                                      Instruction *InsertBefore)
1972     : Instruction(
1973           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1974                           cast<VectorType>(Mask->getType())->getElementCount()),
1975           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1976           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1977   assert(isValidOperands(V1, V2, Mask) &&
1978          "Invalid shuffle vector instruction operands!");
1979 
1980   Op<0>() = V1;
1981   Op<1>() = V2;
1982   SmallVector<int, 16> MaskArr;
1983   getShuffleMask(cast<Constant>(Mask), MaskArr);
1984   setShuffleMask(MaskArr);
1985   setName(Name);
1986 }
1987 
1988 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1989                                      const Twine &Name, BasicBlock *InsertAtEnd)
1990     : Instruction(
1991           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1992                           cast<VectorType>(Mask->getType())->getElementCount()),
1993           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1994           OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1995   assert(isValidOperands(V1, V2, Mask) &&
1996          "Invalid shuffle vector instruction operands!");
1997 
1998   Op<0>() = V1;
1999   Op<1>() = V2;
2000   SmallVector<int, 16> MaskArr;
2001   getShuffleMask(cast<Constant>(Mask), MaskArr);
2002   setShuffleMask(MaskArr);
2003   setName(Name);
2004 }
2005 
2006 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2007                                      const Twine &Name,
2008                                      Instruction *InsertBefore)
2009     : Instruction(
2010           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
2011                           Mask.size(), isa<ScalableVectorType>(V1->getType())),
2012           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
2013           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
2014   assert(isValidOperands(V1, V2, Mask) &&
2015          "Invalid shuffle vector instruction operands!");
2016   Op<0>() = V1;
2017   Op<1>() = V2;
2018   setShuffleMask(Mask);
2019   setName(Name);
2020 }
2021 
2022 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2023                                      const Twine &Name, BasicBlock *InsertAtEnd)
2024     : Instruction(
2025           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
2026                           Mask.size(), isa<ScalableVectorType>(V1->getType())),
2027           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
2028           OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
2029   assert(isValidOperands(V1, V2, Mask) &&
2030          "Invalid shuffle vector instruction operands!");
2031 
2032   Op<0>() = V1;
2033   Op<1>() = V2;
2034   setShuffleMask(Mask);
2035   setName(Name);
2036 }
2037 
2038 void ShuffleVectorInst::commute() {
2039   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2040   int NumMaskElts = ShuffleMask.size();
2041   SmallVector<int, 16> NewMask(NumMaskElts);
2042   for (int i = 0; i != NumMaskElts; ++i) {
2043     int MaskElt = getMaskValue(i);
2044     if (MaskElt == UndefMaskElem) {
2045       NewMask[i] = UndefMaskElem;
2046       continue;
2047     }
2048     assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
2049     MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
2050     NewMask[i] = MaskElt;
2051   }
2052   setShuffleMask(NewMask);
2053   Op<0>().swap(Op<1>());
2054 }
2055 
2056 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
2057                                         ArrayRef<int> Mask) {
2058   // V1 and V2 must be vectors of the same type.
2059   if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
2060     return false;
2061 
2062   // Make sure the mask elements make sense.
2063   int V1Size =
2064       cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
2065   for (int Elem : Mask)
2066     if (Elem != UndefMaskElem && Elem >= V1Size * 2)
2067       return false;
2068 
2069   if (isa<ScalableVectorType>(V1->getType()))
2070     if ((Mask[0] != 0 && Mask[0] != UndefMaskElem) || !is_splat(Mask))
2071       return false;
2072 
2073   return true;
2074 }
2075 
2076 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
2077                                         const Value *Mask) {
2078   // V1 and V2 must be vectors of the same type.
2079   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
2080     return false;
2081 
2082   // Mask must be vector of i32, and must be the same kind of vector as the
2083   // input vectors
2084   auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
2085   if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
2086       isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType()))
2087     return false;
2088 
2089   // Check to see if Mask is valid.
2090   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
2091     return true;
2092 
2093   if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
2094     unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2095     for (Value *Op : MV->operands()) {
2096       if (auto *CI = dyn_cast<ConstantInt>(Op)) {
2097         if (CI->uge(V1Size*2))
2098           return false;
2099       } else if (!isa<UndefValue>(Op)) {
2100         return false;
2101       }
2102     }
2103     return true;
2104   }
2105 
2106   if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2107     unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2108     for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements();
2109          i != e; ++i)
2110       if (CDS->getElementAsInteger(i) >= V1Size*2)
2111         return false;
2112     return true;
2113   }
2114 
2115   return false;
2116 }
2117 
2118 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
2119                                        SmallVectorImpl<int> &Result) {
2120   ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount();
2121 
2122   if (isa<ConstantAggregateZero>(Mask)) {
2123     Result.resize(EC.getKnownMinValue(), 0);
2124     return;
2125   }
2126 
2127   Result.reserve(EC.getKnownMinValue());
2128 
2129   if (EC.isScalable()) {
2130     assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) &&
2131            "Scalable vector shuffle mask must be undef or zeroinitializer");
2132     int MaskVal = isa<UndefValue>(Mask) ? -1 : 0;
2133     for (unsigned I = 0; I < EC.getKnownMinValue(); ++I)
2134       Result.emplace_back(MaskVal);
2135     return;
2136   }
2137 
2138   unsigned NumElts = EC.getKnownMinValue();
2139 
2140   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2141     for (unsigned i = 0; i != NumElts; ++i)
2142       Result.push_back(CDS->getElementAsInteger(i));
2143     return;
2144   }
2145   for (unsigned i = 0; i != NumElts; ++i) {
2146     Constant *C = Mask->getAggregateElement(i);
2147     Result.push_back(isa<UndefValue>(C) ? -1 :
2148                      cast<ConstantInt>(C)->getZExtValue());
2149   }
2150 }
2151 
2152 void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) {
2153   ShuffleMask.assign(Mask.begin(), Mask.end());
2154   ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType());
2155 }
2156 
2157 Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2158                                                           Type *ResultTy) {
2159   Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext());
2160   if (isa<ScalableVectorType>(ResultTy)) {
2161     assert(is_splat(Mask) && "Unexpected shuffle");
2162     Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true);
2163     if (Mask[0] == 0)
2164       return Constant::getNullValue(VecTy);
2165     return UndefValue::get(VecTy);
2166   }
2167   SmallVector<Constant *, 16> MaskConst;
2168   for (int Elem : Mask) {
2169     if (Elem == UndefMaskElem)
2170       MaskConst.push_back(UndefValue::get(Int32Ty));
2171     else
2172       MaskConst.push_back(ConstantInt::get(Int32Ty, Elem));
2173   }
2174   return ConstantVector::get(MaskConst);
2175 }
2176 
2177 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2178   assert(!Mask.empty() && "Shuffle mask must contain elements");
2179   bool UsesLHS = false;
2180   bool UsesRHS = false;
2181   for (int I : Mask) {
2182     if (I == -1)
2183       continue;
2184     assert(I >= 0 && I < (NumOpElts * 2) &&
2185            "Out-of-bounds shuffle mask element");
2186     UsesLHS |= (I < NumOpElts);
2187     UsesRHS |= (I >= NumOpElts);
2188     if (UsesLHS && UsesRHS)
2189       return false;
2190   }
2191   // Allow for degenerate case: completely undef mask means neither source is used.
2192   return UsesLHS || UsesRHS;
2193 }
2194 
2195 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
2196   // We don't have vector operand size information, so assume operands are the
2197   // same size as the mask.
2198   return isSingleSourceMaskImpl(Mask, Mask.size());
2199 }
2200 
2201 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2202   if (!isSingleSourceMaskImpl(Mask, NumOpElts))
2203     return false;
2204   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
2205     if (Mask[i] == -1)
2206       continue;
2207     if (Mask[i] != i && Mask[i] != (NumOpElts + i))
2208       return false;
2209   }
2210   return true;
2211 }
2212 
2213 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
2214   // We don't have vector operand size information, so assume operands are the
2215   // same size as the mask.
2216   return isIdentityMaskImpl(Mask, Mask.size());
2217 }
2218 
2219 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
2220   if (!isSingleSourceMask(Mask))
2221     return false;
2222 
2223   // The number of elements in the mask must be at least 2.
2224   int NumElts = Mask.size();
2225   if (NumElts < 2)
2226     return false;
2227 
2228   for (int i = 0; i < NumElts; ++i) {
2229     if (Mask[i] == -1)
2230       continue;
2231     if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
2232       return false;
2233   }
2234   return true;
2235 }
2236 
2237 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
2238   if (!isSingleSourceMask(Mask))
2239     return false;
2240   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2241     if (Mask[i] == -1)
2242       continue;
2243     if (Mask[i] != 0 && Mask[i] != NumElts)
2244       return false;
2245   }
2246   return true;
2247 }
2248 
2249 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
2250   // Select is differentiated from identity. It requires using both sources.
2251   if (isSingleSourceMask(Mask))
2252     return false;
2253   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2254     if (Mask[i] == -1)
2255       continue;
2256     if (Mask[i] != i && Mask[i] != (NumElts + i))
2257       return false;
2258   }
2259   return true;
2260 }
2261 
2262 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
2263   // Example masks that will return true:
2264   // v1 = <a, b, c, d>
2265   // v2 = <e, f, g, h>
2266   // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
2267   // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
2268 
2269   // 1. The number of elements in the mask must be a power-of-2 and at least 2.
2270   int NumElts = Mask.size();
2271   if (NumElts < 2 || !isPowerOf2_32(NumElts))
2272     return false;
2273 
2274   // 2. The first element of the mask must be either a 0 or a 1.
2275   if (Mask[0] != 0 && Mask[0] != 1)
2276     return false;
2277 
2278   // 3. The difference between the first 2 elements must be equal to the
2279   // number of elements in the mask.
2280   if ((Mask[1] - Mask[0]) != NumElts)
2281     return false;
2282 
2283   // 4. The difference between consecutive even-numbered and odd-numbered
2284   // elements must be equal to 2.
2285   for (int i = 2; i < NumElts; ++i) {
2286     int MaskEltVal = Mask[i];
2287     if (MaskEltVal == -1)
2288       return false;
2289     int MaskEltPrevVal = Mask[i - 2];
2290     if (MaskEltVal - MaskEltPrevVal != 2)
2291       return false;
2292   }
2293   return true;
2294 }
2295 
2296 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2297                                                int NumSrcElts, int &Index) {
2298   // Must extract from a single source.
2299   if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2300     return false;
2301 
2302   // Must be smaller (else this is an Identity shuffle).
2303   if (NumSrcElts <= (int)Mask.size())
2304     return false;
2305 
2306   // Find start of extraction, accounting that we may start with an UNDEF.
2307   int SubIndex = -1;
2308   for (int i = 0, e = Mask.size(); i != e; ++i) {
2309     int M = Mask[i];
2310     if (M < 0)
2311       continue;
2312     int Offset = (M % NumSrcElts) - i;
2313     if (0 <= SubIndex && SubIndex != Offset)
2314       return false;
2315     SubIndex = Offset;
2316   }
2317 
2318   if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
2319     Index = SubIndex;
2320     return true;
2321   }
2322   return false;
2323 }
2324 
2325 bool ShuffleVectorInst::isInsertSubvectorMask(ArrayRef<int> Mask,
2326                                               int NumSrcElts, int &NumSubElts,
2327                                               int &Index) {
2328   int NumMaskElts = Mask.size();
2329 
2330   // Don't try to match if we're shuffling to a smaller size.
2331   if (NumMaskElts < NumSrcElts)
2332     return false;
2333 
2334   // TODO: We don't recognize self-insertion/widening.
2335   if (isSingleSourceMaskImpl(Mask, NumSrcElts))
2336     return false;
2337 
2338   // Determine which mask elements are attributed to which source.
2339   APInt UndefElts = APInt::getZero(NumMaskElts);
2340   APInt Src0Elts = APInt::getZero(NumMaskElts);
2341   APInt Src1Elts = APInt::getZero(NumMaskElts);
2342   bool Src0Identity = true;
2343   bool Src1Identity = true;
2344 
2345   for (int i = 0; i != NumMaskElts; ++i) {
2346     int M = Mask[i];
2347     if (M < 0) {
2348       UndefElts.setBit(i);
2349       continue;
2350     }
2351     if (M < NumSrcElts) {
2352       Src0Elts.setBit(i);
2353       Src0Identity &= (M == i);
2354       continue;
2355     }
2356     Src1Elts.setBit(i);
2357     Src1Identity &= (M == (i + NumSrcElts));
2358   }
2359   assert((Src0Elts | Src1Elts | UndefElts).isAllOnes() &&
2360          "unknown shuffle elements");
2361   assert(!Src0Elts.isZero() && !Src1Elts.isZero() &&
2362          "2-source shuffle not found");
2363 
2364   // Determine lo/hi span ranges.
2365   // TODO: How should we handle undefs at the start of subvector insertions?
2366   int Src0Lo = Src0Elts.countTrailingZeros();
2367   int Src1Lo = Src1Elts.countTrailingZeros();
2368   int Src0Hi = NumMaskElts - Src0Elts.countLeadingZeros();
2369   int Src1Hi = NumMaskElts - Src1Elts.countLeadingZeros();
2370 
2371   // If src0 is in place, see if the src1 elements is inplace within its own
2372   // span.
2373   if (Src0Identity) {
2374     int NumSub1Elts = Src1Hi - Src1Lo;
2375     ArrayRef<int> Sub1Mask = Mask.slice(Src1Lo, NumSub1Elts);
2376     if (isIdentityMaskImpl(Sub1Mask, NumSrcElts)) {
2377       NumSubElts = NumSub1Elts;
2378       Index = Src1Lo;
2379       return true;
2380     }
2381   }
2382 
2383   // If src1 is in place, see if the src0 elements is inplace within its own
2384   // span.
2385   if (Src1Identity) {
2386     int NumSub0Elts = Src0Hi - Src0Lo;
2387     ArrayRef<int> Sub0Mask = Mask.slice(Src0Lo, NumSub0Elts);
2388     if (isIdentityMaskImpl(Sub0Mask, NumSrcElts)) {
2389       NumSubElts = NumSub0Elts;
2390       Index = Src0Lo;
2391       return true;
2392     }
2393   }
2394 
2395   return false;
2396 }
2397 
2398 bool ShuffleVectorInst::isIdentityWithPadding() const {
2399   if (isa<UndefValue>(Op<2>()))
2400     return false;
2401 
2402   // FIXME: Not currently possible to express a shuffle mask for a scalable
2403   // vector for this case.
2404   if (isa<ScalableVectorType>(getType()))
2405     return false;
2406 
2407   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2408   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2409   if (NumMaskElts <= NumOpElts)
2410     return false;
2411 
2412   // The first part of the mask must choose elements from exactly 1 source op.
2413   ArrayRef<int> Mask = getShuffleMask();
2414   if (!isIdentityMaskImpl(Mask, NumOpElts))
2415     return false;
2416 
2417   // All extending must be with undef elements.
2418   for (int i = NumOpElts; i < NumMaskElts; ++i)
2419     if (Mask[i] != -1)
2420       return false;
2421 
2422   return true;
2423 }
2424 
2425 bool ShuffleVectorInst::isIdentityWithExtract() const {
2426   if (isa<UndefValue>(Op<2>()))
2427     return false;
2428 
2429   // FIXME: Not currently possible to express a shuffle mask for a scalable
2430   // vector for this case.
2431   if (isa<ScalableVectorType>(getType()))
2432     return false;
2433 
2434   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2435   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2436   if (NumMaskElts >= NumOpElts)
2437     return false;
2438 
2439   return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2440 }
2441 
2442 bool ShuffleVectorInst::isConcat() const {
2443   // Vector concatenation is differentiated from identity with padding.
2444   if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()) ||
2445       isa<UndefValue>(Op<2>()))
2446     return false;
2447 
2448   // FIXME: Not currently possible to express a shuffle mask for a scalable
2449   // vector for this case.
2450   if (isa<ScalableVectorType>(getType()))
2451     return false;
2452 
2453   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2454   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2455   if (NumMaskElts != NumOpElts * 2)
2456     return false;
2457 
2458   // Use the mask length rather than the operands' vector lengths here. We
2459   // already know that the shuffle returns a vector twice as long as the inputs,
2460   // and neither of the inputs are undef vectors. If the mask picks consecutive
2461   // elements from both inputs, then this is a concatenation of the inputs.
2462   return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2463 }
2464 
2465 static bool isReplicationMaskWithParams(ArrayRef<int> Mask,
2466                                         int ReplicationFactor, int VF) {
2467   assert(Mask.size() == (unsigned)ReplicationFactor * VF &&
2468          "Unexpected mask size.");
2469 
2470   for (int CurrElt : seq(0, VF)) {
2471     ArrayRef<int> CurrSubMask = Mask.take_front(ReplicationFactor);
2472     assert(CurrSubMask.size() == (unsigned)ReplicationFactor &&
2473            "Run out of mask?");
2474     Mask = Mask.drop_front(ReplicationFactor);
2475     if (!all_of(CurrSubMask, [CurrElt](int MaskElt) {
2476           return MaskElt == UndefMaskElem || MaskElt == CurrElt;
2477         }))
2478       return false;
2479   }
2480   assert(Mask.empty() && "Did not consume the whole mask?");
2481 
2482   return true;
2483 }
2484 
2485 bool ShuffleVectorInst::isReplicationMask(ArrayRef<int> Mask,
2486                                           int &ReplicationFactor, int &VF) {
2487   // undef-less case is trivial.
2488   if (none_of(Mask, [](int MaskElt) { return MaskElt == UndefMaskElem; })) {
2489     ReplicationFactor =
2490         Mask.take_while([](int MaskElt) { return MaskElt == 0; }).size();
2491     if (ReplicationFactor == 0 || Mask.size() % ReplicationFactor != 0)
2492       return false;
2493     VF = Mask.size() / ReplicationFactor;
2494     return isReplicationMaskWithParams(Mask, ReplicationFactor, VF);
2495   }
2496 
2497   // However, if the mask contains undef's, we have to enumerate possible tuples
2498   // and pick one. There are bounds on replication factor: [1, mask size]
2499   // (where RF=1 is an identity shuffle, RF=mask size is a broadcast shuffle)
2500   // Additionally, mask size is a replication factor multiplied by vector size,
2501   // which further significantly reduces the search space.
2502 
2503   // Before doing that, let's perform basic correctness checking first.
2504   int Largest = -1;
2505   for (int MaskElt : Mask) {
2506     if (MaskElt == UndefMaskElem)
2507       continue;
2508     // Elements must be in non-decreasing order.
2509     if (MaskElt < Largest)
2510       return false;
2511     Largest = std::max(Largest, MaskElt);
2512   }
2513 
2514   // Prefer larger replication factor if all else equal.
2515   for (int PossibleReplicationFactor :
2516        reverse(seq_inclusive<unsigned>(1, Mask.size()))) {
2517     if (Mask.size() % PossibleReplicationFactor != 0)
2518       continue;
2519     int PossibleVF = Mask.size() / PossibleReplicationFactor;
2520     if (!isReplicationMaskWithParams(Mask, PossibleReplicationFactor,
2521                                      PossibleVF))
2522       continue;
2523     ReplicationFactor = PossibleReplicationFactor;
2524     VF = PossibleVF;
2525     return true;
2526   }
2527 
2528   return false;
2529 }
2530 
2531 bool ShuffleVectorInst::isReplicationMask(int &ReplicationFactor,
2532                                           int &VF) const {
2533   // Not possible to express a shuffle mask for a scalable vector for this
2534   // case.
2535   if (isa<ScalableVectorType>(getType()))
2536     return false;
2537 
2538   VF = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2539   if (ShuffleMask.size() % VF != 0)
2540     return false;
2541   ReplicationFactor = ShuffleMask.size() / VF;
2542 
2543   return isReplicationMaskWithParams(ShuffleMask, ReplicationFactor, VF);
2544 }
2545 
2546 //===----------------------------------------------------------------------===//
2547 //                             InsertValueInst Class
2548 //===----------------------------------------------------------------------===//
2549 
2550 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2551                            const Twine &Name) {
2552   assert(getNumOperands() == 2 && "NumOperands not initialized?");
2553 
2554   // There's no fundamental reason why we require at least one index
2555   // (other than weirdness with &*IdxBegin being invalid; see
2556   // getelementptr's init routine for example). But there's no
2557   // present need to support it.
2558   assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2559 
2560   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2561          Val->getType() && "Inserted value must match indexed type!");
2562   Op<0>() = Agg;
2563   Op<1>() = Val;
2564 
2565   Indices.append(Idxs.begin(), Idxs.end());
2566   setName(Name);
2567 }
2568 
2569 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2570   : Instruction(IVI.getType(), InsertValue,
2571                 OperandTraits<InsertValueInst>::op_begin(this), 2),
2572     Indices(IVI.Indices) {
2573   Op<0>() = IVI.getOperand(0);
2574   Op<1>() = IVI.getOperand(1);
2575   SubclassOptionalData = IVI.SubclassOptionalData;
2576 }
2577 
2578 //===----------------------------------------------------------------------===//
2579 //                             ExtractValueInst Class
2580 //===----------------------------------------------------------------------===//
2581 
2582 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2583   assert(getNumOperands() == 1 && "NumOperands not initialized?");
2584 
2585   // There's no fundamental reason why we require at least one index.
2586   // But there's no present need to support it.
2587   assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2588 
2589   Indices.append(Idxs.begin(), Idxs.end());
2590   setName(Name);
2591 }
2592 
2593 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2594   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2595     Indices(EVI.Indices) {
2596   SubclassOptionalData = EVI.SubclassOptionalData;
2597 }
2598 
2599 // getIndexedType - Returns the type of the element that would be extracted
2600 // with an extractvalue instruction with the specified parameters.
2601 //
2602 // A null type is returned if the indices are invalid for the specified
2603 // pointer type.
2604 //
2605 Type *ExtractValueInst::getIndexedType(Type *Agg,
2606                                        ArrayRef<unsigned> Idxs) {
2607   for (unsigned Index : Idxs) {
2608     // We can't use CompositeType::indexValid(Index) here.
2609     // indexValid() always returns true for arrays because getelementptr allows
2610     // out-of-bounds indices. Since we don't allow those for extractvalue and
2611     // insertvalue we need to check array indexing manually.
2612     // Since the only other types we can index into are struct types it's just
2613     // as easy to check those manually as well.
2614     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2615       if (Index >= AT->getNumElements())
2616         return nullptr;
2617       Agg = AT->getElementType();
2618     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2619       if (Index >= ST->getNumElements())
2620         return nullptr;
2621       Agg = ST->getElementType(Index);
2622     } else {
2623       // Not a valid type to index into.
2624       return nullptr;
2625     }
2626   }
2627   return const_cast<Type*>(Agg);
2628 }
2629 
2630 //===----------------------------------------------------------------------===//
2631 //                             UnaryOperator Class
2632 //===----------------------------------------------------------------------===//
2633 
2634 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2635                              Type *Ty, const Twine &Name,
2636                              Instruction *InsertBefore)
2637   : UnaryInstruction(Ty, iType, S, InsertBefore) {
2638   Op<0>() = S;
2639   setName(Name);
2640   AssertOK();
2641 }
2642 
2643 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2644                              Type *Ty, const Twine &Name,
2645                              BasicBlock *InsertAtEnd)
2646   : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2647   Op<0>() = S;
2648   setName(Name);
2649   AssertOK();
2650 }
2651 
2652 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2653                                      const Twine &Name,
2654                                      Instruction *InsertBefore) {
2655   return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2656 }
2657 
2658 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2659                                      const Twine &Name,
2660                                      BasicBlock *InsertAtEnd) {
2661   UnaryOperator *Res = Create(Op, S, Name);
2662   InsertAtEnd->getInstList().push_back(Res);
2663   return Res;
2664 }
2665 
2666 void UnaryOperator::AssertOK() {
2667   Value *LHS = getOperand(0);
2668   (void)LHS; // Silence warnings.
2669 #ifndef NDEBUG
2670   switch (getOpcode()) {
2671   case FNeg:
2672     assert(getType() == LHS->getType() &&
2673            "Unary operation should return same type as operand!");
2674     assert(getType()->isFPOrFPVectorTy() &&
2675            "Tried to create a floating-point operation on a "
2676            "non-floating-point type!");
2677     break;
2678   default: llvm_unreachable("Invalid opcode provided");
2679   }
2680 #endif
2681 }
2682 
2683 //===----------------------------------------------------------------------===//
2684 //                             BinaryOperator Class
2685 //===----------------------------------------------------------------------===//
2686 
2687 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2688                                Type *Ty, const Twine &Name,
2689                                Instruction *InsertBefore)
2690   : Instruction(Ty, iType,
2691                 OperandTraits<BinaryOperator>::op_begin(this),
2692                 OperandTraits<BinaryOperator>::operands(this),
2693                 InsertBefore) {
2694   Op<0>() = S1;
2695   Op<1>() = S2;
2696   setName(Name);
2697   AssertOK();
2698 }
2699 
2700 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2701                                Type *Ty, const Twine &Name,
2702                                BasicBlock *InsertAtEnd)
2703   : Instruction(Ty, iType,
2704                 OperandTraits<BinaryOperator>::op_begin(this),
2705                 OperandTraits<BinaryOperator>::operands(this),
2706                 InsertAtEnd) {
2707   Op<0>() = S1;
2708   Op<1>() = S2;
2709   setName(Name);
2710   AssertOK();
2711 }
2712 
2713 void BinaryOperator::AssertOK() {
2714   Value *LHS = getOperand(0), *RHS = getOperand(1);
2715   (void)LHS; (void)RHS; // Silence warnings.
2716   assert(LHS->getType() == RHS->getType() &&
2717          "Binary operator operand types must match!");
2718 #ifndef NDEBUG
2719   switch (getOpcode()) {
2720   case Add: case Sub:
2721   case Mul:
2722     assert(getType() == LHS->getType() &&
2723            "Arithmetic operation should return same type as operands!");
2724     assert(getType()->isIntOrIntVectorTy() &&
2725            "Tried to create an integer operation on a non-integer type!");
2726     break;
2727   case FAdd: case FSub:
2728   case FMul:
2729     assert(getType() == LHS->getType() &&
2730            "Arithmetic operation should return same type as operands!");
2731     assert(getType()->isFPOrFPVectorTy() &&
2732            "Tried to create a floating-point operation on a "
2733            "non-floating-point type!");
2734     break;
2735   case UDiv:
2736   case SDiv:
2737     assert(getType() == LHS->getType() &&
2738            "Arithmetic operation should return same type as operands!");
2739     assert(getType()->isIntOrIntVectorTy() &&
2740            "Incorrect operand type (not integer) for S/UDIV");
2741     break;
2742   case FDiv:
2743     assert(getType() == LHS->getType() &&
2744            "Arithmetic operation should return same type as operands!");
2745     assert(getType()->isFPOrFPVectorTy() &&
2746            "Incorrect operand type (not floating point) for FDIV");
2747     break;
2748   case URem:
2749   case SRem:
2750     assert(getType() == LHS->getType() &&
2751            "Arithmetic operation should return same type as operands!");
2752     assert(getType()->isIntOrIntVectorTy() &&
2753            "Incorrect operand type (not integer) for S/UREM");
2754     break;
2755   case FRem:
2756     assert(getType() == LHS->getType() &&
2757            "Arithmetic operation should return same type as operands!");
2758     assert(getType()->isFPOrFPVectorTy() &&
2759            "Incorrect operand type (not floating point) for FREM");
2760     break;
2761   case Shl:
2762   case LShr:
2763   case AShr:
2764     assert(getType() == LHS->getType() &&
2765            "Shift operation should return same type as operands!");
2766     assert(getType()->isIntOrIntVectorTy() &&
2767            "Tried to create a shift operation on a non-integral type!");
2768     break;
2769   case And: case Or:
2770   case Xor:
2771     assert(getType() == LHS->getType() &&
2772            "Logical operation should return same type as operands!");
2773     assert(getType()->isIntOrIntVectorTy() &&
2774            "Tried to create a logical operation on a non-integral type!");
2775     break;
2776   default: llvm_unreachable("Invalid opcode provided");
2777   }
2778 #endif
2779 }
2780 
2781 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2782                                        const Twine &Name,
2783                                        Instruction *InsertBefore) {
2784   assert(S1->getType() == S2->getType() &&
2785          "Cannot create binary operator with two operands of differing type!");
2786   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2787 }
2788 
2789 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2790                                        const Twine &Name,
2791                                        BasicBlock *InsertAtEnd) {
2792   BinaryOperator *Res = Create(Op, S1, S2, Name);
2793   InsertAtEnd->getInstList().push_back(Res);
2794   return Res;
2795 }
2796 
2797 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2798                                           Instruction *InsertBefore) {
2799   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2800   return new BinaryOperator(Instruction::Sub,
2801                             zero, Op,
2802                             Op->getType(), Name, InsertBefore);
2803 }
2804 
2805 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2806                                           BasicBlock *InsertAtEnd) {
2807   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2808   return new BinaryOperator(Instruction::Sub,
2809                             zero, Op,
2810                             Op->getType(), Name, InsertAtEnd);
2811 }
2812 
2813 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2814                                              Instruction *InsertBefore) {
2815   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2816   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2817 }
2818 
2819 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2820                                              BasicBlock *InsertAtEnd) {
2821   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2822   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2823 }
2824 
2825 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2826                                              Instruction *InsertBefore) {
2827   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2828   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2829 }
2830 
2831 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2832                                              BasicBlock *InsertAtEnd) {
2833   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2834   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2835 }
2836 
2837 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2838                                           Instruction *InsertBefore) {
2839   Constant *C = Constant::getAllOnesValue(Op->getType());
2840   return new BinaryOperator(Instruction::Xor, Op, C,
2841                             Op->getType(), Name, InsertBefore);
2842 }
2843 
2844 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2845                                           BasicBlock *InsertAtEnd) {
2846   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2847   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2848                             Op->getType(), Name, InsertAtEnd);
2849 }
2850 
2851 // Exchange the two operands to this instruction. This instruction is safe to
2852 // use on any binary instruction and does not modify the semantics of the
2853 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2854 // is changed.
2855 bool BinaryOperator::swapOperands() {
2856   if (!isCommutative())
2857     return true; // Can't commute operands
2858   Op<0>().swap(Op<1>());
2859   return false;
2860 }
2861 
2862 //===----------------------------------------------------------------------===//
2863 //                             FPMathOperator Class
2864 //===----------------------------------------------------------------------===//
2865 
2866 float FPMathOperator::getFPAccuracy() const {
2867   const MDNode *MD =
2868       cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2869   if (!MD)
2870     return 0.0;
2871   ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2872   return Accuracy->getValueAPF().convertToFloat();
2873 }
2874 
2875 //===----------------------------------------------------------------------===//
2876 //                                CastInst Class
2877 //===----------------------------------------------------------------------===//
2878 
2879 // Just determine if this cast only deals with integral->integral conversion.
2880 bool CastInst::isIntegerCast() const {
2881   switch (getOpcode()) {
2882     default: return false;
2883     case Instruction::ZExt:
2884     case Instruction::SExt:
2885     case Instruction::Trunc:
2886       return true;
2887     case Instruction::BitCast:
2888       return getOperand(0)->getType()->isIntegerTy() &&
2889         getType()->isIntegerTy();
2890   }
2891 }
2892 
2893 bool CastInst::isLosslessCast() const {
2894   // Only BitCast can be lossless, exit fast if we're not BitCast
2895   if (getOpcode() != Instruction::BitCast)
2896     return false;
2897 
2898   // Identity cast is always lossless
2899   Type *SrcTy = getOperand(0)->getType();
2900   Type *DstTy = getType();
2901   if (SrcTy == DstTy)
2902     return true;
2903 
2904   // Pointer to pointer is always lossless.
2905   if (SrcTy->isPointerTy())
2906     return DstTy->isPointerTy();
2907   return false;  // Other types have no identity values
2908 }
2909 
2910 /// This function determines if the CastInst does not require any bits to be
2911 /// changed in order to effect the cast. Essentially, it identifies cases where
2912 /// no code gen is necessary for the cast, hence the name no-op cast.  For
2913 /// example, the following are all no-op casts:
2914 /// # bitcast i32* %x to i8*
2915 /// # bitcast <2 x i32> %x to <4 x i16>
2916 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2917 /// Determine if the described cast is a no-op.
2918 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2919                           Type *SrcTy,
2920                           Type *DestTy,
2921                           const DataLayout &DL) {
2922   assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition");
2923   switch (Opcode) {
2924     default: llvm_unreachable("Invalid CastOp");
2925     case Instruction::Trunc:
2926     case Instruction::ZExt:
2927     case Instruction::SExt:
2928     case Instruction::FPTrunc:
2929     case Instruction::FPExt:
2930     case Instruction::UIToFP:
2931     case Instruction::SIToFP:
2932     case Instruction::FPToUI:
2933     case Instruction::FPToSI:
2934     case Instruction::AddrSpaceCast:
2935       // TODO: Target informations may give a more accurate answer here.
2936       return false;
2937     case Instruction::BitCast:
2938       return true;  // BitCast never modifies bits.
2939     case Instruction::PtrToInt:
2940       return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2941              DestTy->getScalarSizeInBits();
2942     case Instruction::IntToPtr:
2943       return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2944              SrcTy->getScalarSizeInBits();
2945   }
2946 }
2947 
2948 bool CastInst::isNoopCast(const DataLayout &DL) const {
2949   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2950 }
2951 
2952 /// This function determines if a pair of casts can be eliminated and what
2953 /// opcode should be used in the elimination. This assumes that there are two
2954 /// instructions like this:
2955 /// *  %F = firstOpcode SrcTy %x to MidTy
2956 /// *  %S = secondOpcode MidTy %F to DstTy
2957 /// The function returns a resultOpcode so these two casts can be replaced with:
2958 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2959 /// If no such cast is permitted, the function returns 0.
2960 unsigned CastInst::isEliminableCastPair(
2961   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2962   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2963   Type *DstIntPtrTy) {
2964   // Define the 144 possibilities for these two cast instructions. The values
2965   // in this matrix determine what to do in a given situation and select the
2966   // case in the switch below.  The rows correspond to firstOp, the columns
2967   // correspond to secondOp.  In looking at the table below, keep in mind
2968   // the following cast properties:
2969   //
2970   //          Size Compare       Source               Destination
2971   // Operator  Src ? Size   Type       Sign         Type       Sign
2972   // -------- ------------ -------------------   ---------------------
2973   // TRUNC         >       Integer      Any        Integral     Any
2974   // ZEXT          <       Integral   Unsigned     Integer      Any
2975   // SEXT          <       Integral    Signed      Integer      Any
2976   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2977   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2978   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2979   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2980   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2981   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2982   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2983   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2984   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2985   // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2986   //
2987   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2988   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2989   // into "fptoui double to i64", but this loses information about the range
2990   // of the produced value (we no longer know the top-part is all zeros).
2991   // Further this conversion is often much more expensive for typical hardware,
2992   // and causes issues when building libgcc.  We disallow fptosi+sext for the
2993   // same reason.
2994   const unsigned numCastOps =
2995     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2996   static const uint8_t CastResults[numCastOps][numCastOps] = {
2997     // T        F  F  U  S  F  F  P  I  B  A  -+
2998     // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2999     // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
3000     // N  X  X  U  S  F  F  N  X  N  2  V  V   |
3001     // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
3002     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
3003     {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
3004     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
3005     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
3006     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
3007     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
3008     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
3009     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
3010     { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt          |
3011     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
3012     { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
3013     {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
3014     {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
3015   };
3016 
3017   // TODO: This logic could be encoded into the table above and handled in the
3018   // switch below.
3019   // If either of the casts are a bitcast from scalar to vector, disallow the
3020   // merging. However, any pair of bitcasts are allowed.
3021   bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
3022   bool IsSecondBitcast = (secondOp == Instruction::BitCast);
3023   bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
3024 
3025   // Check if any of the casts convert scalars <-> vectors.
3026   if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
3027       (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
3028     if (!AreBothBitcasts)
3029       return 0;
3030 
3031   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
3032                             [secondOp-Instruction::CastOpsBegin];
3033   switch (ElimCase) {
3034     case 0:
3035       // Categorically disallowed.
3036       return 0;
3037     case 1:
3038       // Allowed, use first cast's opcode.
3039       return firstOp;
3040     case 2:
3041       // Allowed, use second cast's opcode.
3042       return secondOp;
3043     case 3:
3044       // No-op cast in second op implies firstOp as long as the DestTy
3045       // is integer and we are not converting between a vector and a
3046       // non-vector type.
3047       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
3048         return firstOp;
3049       return 0;
3050     case 4:
3051       // No-op cast in second op implies firstOp as long as the DestTy
3052       // is floating point.
3053       if (DstTy->isFloatingPointTy())
3054         return firstOp;
3055       return 0;
3056     case 5:
3057       // No-op cast in first op implies secondOp as long as the SrcTy
3058       // is an integer.
3059       if (SrcTy->isIntegerTy())
3060         return secondOp;
3061       return 0;
3062     case 6:
3063       // No-op cast in first op implies secondOp as long as the SrcTy
3064       // is a floating point.
3065       if (SrcTy->isFloatingPointTy())
3066         return secondOp;
3067       return 0;
3068     case 7: {
3069       // Disable inttoptr/ptrtoint optimization if enabled.
3070       if (DisableI2pP2iOpt)
3071         return 0;
3072 
3073       // Cannot simplify if address spaces are different!
3074       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
3075         return 0;
3076 
3077       unsigned MidSize = MidTy->getScalarSizeInBits();
3078       // We can still fold this without knowing the actual sizes as long we
3079       // know that the intermediate pointer is the largest possible
3080       // pointer size.
3081       // FIXME: Is this always true?
3082       if (MidSize == 64)
3083         return Instruction::BitCast;
3084 
3085       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
3086       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
3087         return 0;
3088       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
3089       if (MidSize >= PtrSize)
3090         return Instruction::BitCast;
3091       return 0;
3092     }
3093     case 8: {
3094       // ext, trunc -> bitcast,    if the SrcTy and DstTy are the same
3095       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
3096       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
3097       unsigned SrcSize = SrcTy->getScalarSizeInBits();
3098       unsigned DstSize = DstTy->getScalarSizeInBits();
3099       if (SrcTy == DstTy)
3100         return Instruction::BitCast;
3101       if (SrcSize < DstSize)
3102         return firstOp;
3103       if (SrcSize > DstSize)
3104         return secondOp;
3105       return 0;
3106     }
3107     case 9:
3108       // zext, sext -> zext, because sext can't sign extend after zext
3109       return Instruction::ZExt;
3110     case 11: {
3111       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
3112       if (!MidIntPtrTy)
3113         return 0;
3114       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
3115       unsigned SrcSize = SrcTy->getScalarSizeInBits();
3116       unsigned DstSize = DstTy->getScalarSizeInBits();
3117       if (SrcSize <= PtrSize && SrcSize == DstSize)
3118         return Instruction::BitCast;
3119       return 0;
3120     }
3121     case 12:
3122       // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
3123       // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
3124       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
3125         return Instruction::AddrSpaceCast;
3126       return Instruction::BitCast;
3127     case 13:
3128       // FIXME: this state can be merged with (1), but the following assert
3129       // is useful to check the correcteness of the sequence due to semantic
3130       // change of bitcast.
3131       assert(
3132         SrcTy->isPtrOrPtrVectorTy() &&
3133         MidTy->isPtrOrPtrVectorTy() &&
3134         DstTy->isPtrOrPtrVectorTy() &&
3135         SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
3136         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
3137         "Illegal addrspacecast, bitcast sequence!");
3138       // Allowed, use first cast's opcode
3139       return firstOp;
3140     case 14: {
3141       // bitcast, addrspacecast -> addrspacecast if the element type of
3142       // bitcast's source is the same as that of addrspacecast's destination.
3143       PointerType *SrcPtrTy = cast<PointerType>(SrcTy->getScalarType());
3144       PointerType *DstPtrTy = cast<PointerType>(DstTy->getScalarType());
3145       if (SrcPtrTy->hasSameElementTypeAs(DstPtrTy))
3146         return Instruction::AddrSpaceCast;
3147       return 0;
3148     }
3149     case 15:
3150       // FIXME: this state can be merged with (1), but the following assert
3151       // is useful to check the correcteness of the sequence due to semantic
3152       // change of bitcast.
3153       assert(
3154         SrcTy->isIntOrIntVectorTy() &&
3155         MidTy->isPtrOrPtrVectorTy() &&
3156         DstTy->isPtrOrPtrVectorTy() &&
3157         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
3158         "Illegal inttoptr, bitcast sequence!");
3159       // Allowed, use first cast's opcode
3160       return firstOp;
3161     case 16:
3162       // FIXME: this state can be merged with (2), but the following assert
3163       // is useful to check the correcteness of the sequence due to semantic
3164       // change of bitcast.
3165       assert(
3166         SrcTy->isPtrOrPtrVectorTy() &&
3167         MidTy->isPtrOrPtrVectorTy() &&
3168         DstTy->isIntOrIntVectorTy() &&
3169         SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
3170         "Illegal bitcast, ptrtoint sequence!");
3171       // Allowed, use second cast's opcode
3172       return secondOp;
3173     case 17:
3174       // (sitofp (zext x)) -> (uitofp x)
3175       return Instruction::UIToFP;
3176     case 99:
3177       // Cast combination can't happen (error in input). This is for all cases
3178       // where the MidTy is not the same for the two cast instructions.
3179       llvm_unreachable("Invalid Cast Combination");
3180     default:
3181       llvm_unreachable("Error in CastResults table!!!");
3182   }
3183 }
3184 
3185 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
3186   const Twine &Name, Instruction *InsertBefore) {
3187   assert(castIsValid(op, S, Ty) && "Invalid cast!");
3188   // Construct and return the appropriate CastInst subclass
3189   switch (op) {
3190   case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
3191   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
3192   case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
3193   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
3194   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
3195   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
3196   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
3197   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
3198   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
3199   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
3200   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
3201   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
3202   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
3203   default: llvm_unreachable("Invalid opcode provided");
3204   }
3205 }
3206 
3207 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
3208   const Twine &Name, BasicBlock *InsertAtEnd) {
3209   assert(castIsValid(op, S, Ty) && "Invalid cast!");
3210   // Construct and return the appropriate CastInst subclass
3211   switch (op) {
3212   case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
3213   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
3214   case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
3215   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
3216   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
3217   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
3218   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
3219   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
3220   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
3221   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
3222   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
3223   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
3224   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
3225   default: llvm_unreachable("Invalid opcode provided");
3226   }
3227 }
3228 
3229 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
3230                                         const Twine &Name,
3231                                         Instruction *InsertBefore) {
3232   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3233     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3234   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
3235 }
3236 
3237 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
3238                                         const Twine &Name,
3239                                         BasicBlock *InsertAtEnd) {
3240   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3241     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3242   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
3243 }
3244 
3245 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3246                                         const Twine &Name,
3247                                         Instruction *InsertBefore) {
3248   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3249     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3250   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
3251 }
3252 
3253 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3254                                         const Twine &Name,
3255                                         BasicBlock *InsertAtEnd) {
3256   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3257     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3258   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
3259 }
3260 
3261 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3262                                          const Twine &Name,
3263                                          Instruction *InsertBefore) {
3264   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3265     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3266   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
3267 }
3268 
3269 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3270                                          const Twine &Name,
3271                                          BasicBlock *InsertAtEnd) {
3272   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3273     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3274   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
3275 }
3276 
3277 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3278                                       const Twine &Name,
3279                                       BasicBlock *InsertAtEnd) {
3280   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3281   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3282          "Invalid cast");
3283   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3284   assert((!Ty->isVectorTy() ||
3285           cast<VectorType>(Ty)->getElementCount() ==
3286               cast<VectorType>(S->getType())->getElementCount()) &&
3287          "Invalid cast");
3288 
3289   if (Ty->isIntOrIntVectorTy())
3290     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
3291 
3292   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
3293 }
3294 
3295 /// Create a BitCast or a PtrToInt cast instruction
3296 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3297                                       const Twine &Name,
3298                                       Instruction *InsertBefore) {
3299   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3300   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3301          "Invalid cast");
3302   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3303   assert((!Ty->isVectorTy() ||
3304           cast<VectorType>(Ty)->getElementCount() ==
3305               cast<VectorType>(S->getType())->getElementCount()) &&
3306          "Invalid cast");
3307 
3308   if (Ty->isIntOrIntVectorTy())
3309     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3310 
3311   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
3312 }
3313 
3314 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3315   Value *S, Type *Ty,
3316   const Twine &Name,
3317   BasicBlock *InsertAtEnd) {
3318   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3319   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3320 
3321   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3322     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
3323 
3324   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3325 }
3326 
3327 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3328   Value *S, Type *Ty,
3329   const Twine &Name,
3330   Instruction *InsertBefore) {
3331   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3332   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3333 
3334   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3335     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
3336 
3337   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3338 }
3339 
3340 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
3341                                            const Twine &Name,
3342                                            Instruction *InsertBefore) {
3343   if (S->getType()->isPointerTy() && Ty->isIntegerTy())
3344     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3345   if (S->getType()->isIntegerTy() && Ty->isPointerTy())
3346     return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
3347 
3348   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3349 }
3350 
3351 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3352                                       bool isSigned, const Twine &Name,
3353                                       Instruction *InsertBefore) {
3354   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3355          "Invalid integer cast");
3356   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3357   unsigned DstBits = Ty->getScalarSizeInBits();
3358   Instruction::CastOps opcode =
3359     (SrcBits == DstBits ? Instruction::BitCast :
3360      (SrcBits > DstBits ? Instruction::Trunc :
3361       (isSigned ? Instruction::SExt : Instruction::ZExt)));
3362   return Create(opcode, C, Ty, Name, InsertBefore);
3363 }
3364 
3365 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3366                                       bool isSigned, const Twine &Name,
3367                                       BasicBlock *InsertAtEnd) {
3368   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3369          "Invalid cast");
3370   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3371   unsigned DstBits = Ty->getScalarSizeInBits();
3372   Instruction::CastOps opcode =
3373     (SrcBits == DstBits ? Instruction::BitCast :
3374      (SrcBits > DstBits ? Instruction::Trunc :
3375       (isSigned ? Instruction::SExt : Instruction::ZExt)));
3376   return Create(opcode, C, Ty, Name, InsertAtEnd);
3377 }
3378 
3379 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3380                                  const Twine &Name,
3381                                  Instruction *InsertBefore) {
3382   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3383          "Invalid cast");
3384   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3385   unsigned DstBits = Ty->getScalarSizeInBits();
3386   Instruction::CastOps opcode =
3387     (SrcBits == DstBits ? Instruction::BitCast :
3388      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3389   return Create(opcode, C, Ty, Name, InsertBefore);
3390 }
3391 
3392 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3393                                  const Twine &Name,
3394                                  BasicBlock *InsertAtEnd) {
3395   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3396          "Invalid cast");
3397   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3398   unsigned DstBits = Ty->getScalarSizeInBits();
3399   Instruction::CastOps opcode =
3400     (SrcBits == DstBits ? Instruction::BitCast :
3401      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3402   return Create(opcode, C, Ty, Name, InsertAtEnd);
3403 }
3404 
3405 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3406   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3407     return false;
3408 
3409   if (SrcTy == DestTy)
3410     return true;
3411 
3412   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3413     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3414       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3415         // An element by element cast. Valid if casting the elements is valid.
3416         SrcTy = SrcVecTy->getElementType();
3417         DestTy = DestVecTy->getElementType();
3418       }
3419     }
3420   }
3421 
3422   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3423     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3424       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3425     }
3426   }
3427 
3428   TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3429   TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3430 
3431   // Could still have vectors of pointers if the number of elements doesn't
3432   // match
3433   if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0)
3434     return false;
3435 
3436   if (SrcBits != DestBits)
3437     return false;
3438 
3439   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3440     return false;
3441 
3442   return true;
3443 }
3444 
3445 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3446                                           const DataLayout &DL) {
3447   // ptrtoint and inttoptr are not allowed on non-integral pointers
3448   if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3449     if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3450       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3451               !DL.isNonIntegralPointerType(PtrTy));
3452   if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3453     if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3454       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3455               !DL.isNonIntegralPointerType(PtrTy));
3456 
3457   return isBitCastable(SrcTy, DestTy);
3458 }
3459 
3460 // Provide a way to get a "cast" where the cast opcode is inferred from the
3461 // types and size of the operand. This, basically, is a parallel of the
3462 // logic in the castIsValid function below.  This axiom should hold:
3463 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3464 // should not assert in castIsValid. In other words, this produces a "correct"
3465 // casting opcode for the arguments passed to it.
3466 Instruction::CastOps
3467 CastInst::getCastOpcode(
3468   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3469   Type *SrcTy = Src->getType();
3470 
3471   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3472          "Only first class types are castable!");
3473 
3474   if (SrcTy == DestTy)
3475     return BitCast;
3476 
3477   // FIXME: Check address space sizes here
3478   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3479     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3480       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3481         // An element by element cast.  Find the appropriate opcode based on the
3482         // element types.
3483         SrcTy = SrcVecTy->getElementType();
3484         DestTy = DestVecTy->getElementType();
3485       }
3486 
3487   // Get the bit sizes, we'll need these
3488   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3489   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3490 
3491   // Run through the possibilities ...
3492   if (DestTy->isIntegerTy()) {                      // Casting to integral
3493     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3494       if (DestBits < SrcBits)
3495         return Trunc;                               // int -> smaller int
3496       else if (DestBits > SrcBits) {                // its an extension
3497         if (SrcIsSigned)
3498           return SExt;                              // signed -> SEXT
3499         else
3500           return ZExt;                              // unsigned -> ZEXT
3501       } else {
3502         return BitCast;                             // Same size, No-op cast
3503       }
3504     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3505       if (DestIsSigned)
3506         return FPToSI;                              // FP -> sint
3507       else
3508         return FPToUI;                              // FP -> uint
3509     } else if (SrcTy->isVectorTy()) {
3510       assert(DestBits == SrcBits &&
3511              "Casting vector to integer of different width");
3512       return BitCast;                             // Same size, no-op cast
3513     } else {
3514       assert(SrcTy->isPointerTy() &&
3515              "Casting from a value that is not first-class type");
3516       return PtrToInt;                              // ptr -> int
3517     }
3518   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
3519     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3520       if (SrcIsSigned)
3521         return SIToFP;                              // sint -> FP
3522       else
3523         return UIToFP;                              // uint -> FP
3524     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3525       if (DestBits < SrcBits) {
3526         return FPTrunc;                             // FP -> smaller FP
3527       } else if (DestBits > SrcBits) {
3528         return FPExt;                               // FP -> larger FP
3529       } else  {
3530         return BitCast;                             // same size, no-op cast
3531       }
3532     } else if (SrcTy->isVectorTy()) {
3533       assert(DestBits == SrcBits &&
3534              "Casting vector to floating point of different width");
3535       return BitCast;                             // same size, no-op cast
3536     }
3537     llvm_unreachable("Casting pointer or non-first class to float");
3538   } else if (DestTy->isVectorTy()) {
3539     assert(DestBits == SrcBits &&
3540            "Illegal cast to vector (wrong type or size)");
3541     return BitCast;
3542   } else if (DestTy->isPointerTy()) {
3543     if (SrcTy->isPointerTy()) {
3544       if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3545         return AddrSpaceCast;
3546       return BitCast;                               // ptr -> ptr
3547     } else if (SrcTy->isIntegerTy()) {
3548       return IntToPtr;                              // int -> ptr
3549     }
3550     llvm_unreachable("Casting pointer to other than pointer or int");
3551   } else if (DestTy->isX86_MMXTy()) {
3552     if (SrcTy->isVectorTy()) {
3553       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3554       return BitCast;                               // 64-bit vector to MMX
3555     }
3556     llvm_unreachable("Illegal cast to X86_MMX");
3557   }
3558   llvm_unreachable("Casting to type that is not first-class");
3559 }
3560 
3561 //===----------------------------------------------------------------------===//
3562 //                    CastInst SubClass Constructors
3563 //===----------------------------------------------------------------------===//
3564 
3565 /// Check that the construction parameters for a CastInst are correct. This
3566 /// could be broken out into the separate constructors but it is useful to have
3567 /// it in one place and to eliminate the redundant code for getting the sizes
3568 /// of the types involved.
3569 bool
3570 CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) {
3571   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3572       SrcTy->isAggregateType() || DstTy->isAggregateType())
3573     return false;
3574 
3575   // Get the size of the types in bits, and whether we are dealing
3576   // with vector types, we'll need this later.
3577   bool SrcIsVec = isa<VectorType>(SrcTy);
3578   bool DstIsVec = isa<VectorType>(DstTy);
3579   unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
3580   unsigned DstScalarBitSize = DstTy->getScalarSizeInBits();
3581 
3582   // If these are vector types, get the lengths of the vectors (using zero for
3583   // scalar types means that checking that vector lengths match also checks that
3584   // scalars are not being converted to vectors or vectors to scalars).
3585   ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
3586                                 : ElementCount::getFixed(0);
3587   ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
3588                                 : ElementCount::getFixed(0);
3589 
3590   // Switch on the opcode provided
3591   switch (op) {
3592   default: return false; // This is an input error
3593   case Instruction::Trunc:
3594     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3595            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3596   case Instruction::ZExt:
3597     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3598            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3599   case Instruction::SExt:
3600     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3601            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3602   case Instruction::FPTrunc:
3603     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3604            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3605   case Instruction::FPExt:
3606     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3607            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3608   case Instruction::UIToFP:
3609   case Instruction::SIToFP:
3610     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3611            SrcEC == DstEC;
3612   case Instruction::FPToUI:
3613   case Instruction::FPToSI:
3614     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3615            SrcEC == DstEC;
3616   case Instruction::PtrToInt:
3617     if (SrcEC != DstEC)
3618       return false;
3619     return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3620   case Instruction::IntToPtr:
3621     if (SrcEC != DstEC)
3622       return false;
3623     return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3624   case Instruction::BitCast: {
3625     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3626     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3627 
3628     // BitCast implies a no-op cast of type only. No bits change.
3629     // However, you can't cast pointers to anything but pointers.
3630     if (!SrcPtrTy != !DstPtrTy)
3631       return false;
3632 
3633     // For non-pointer cases, the cast is okay if the source and destination bit
3634     // widths are identical.
3635     if (!SrcPtrTy)
3636       return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3637 
3638     // If both are pointers then the address spaces must match.
3639     if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3640       return false;
3641 
3642     // A vector of pointers must have the same number of elements.
3643     if (SrcIsVec && DstIsVec)
3644       return SrcEC == DstEC;
3645     if (SrcIsVec)
3646       return SrcEC == ElementCount::getFixed(1);
3647     if (DstIsVec)
3648       return DstEC == ElementCount::getFixed(1);
3649 
3650     return true;
3651   }
3652   case Instruction::AddrSpaceCast: {
3653     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3654     if (!SrcPtrTy)
3655       return false;
3656 
3657     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3658     if (!DstPtrTy)
3659       return false;
3660 
3661     if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3662       return false;
3663 
3664     return SrcEC == DstEC;
3665   }
3666   }
3667 }
3668 
3669 TruncInst::TruncInst(
3670   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3671 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3672   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3673 }
3674 
3675 TruncInst::TruncInst(
3676   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3677 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3678   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3679 }
3680 
3681 ZExtInst::ZExtInst(
3682   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3683 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3684   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3685 }
3686 
3687 ZExtInst::ZExtInst(
3688   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3689 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3690   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3691 }
3692 SExtInst::SExtInst(
3693   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3694 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3695   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3696 }
3697 
3698 SExtInst::SExtInst(
3699   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3700 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3701   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3702 }
3703 
3704 FPTruncInst::FPTruncInst(
3705   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3706 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3707   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3708 }
3709 
3710 FPTruncInst::FPTruncInst(
3711   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3712 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3713   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3714 }
3715 
3716 FPExtInst::FPExtInst(
3717   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3718 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3719   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3720 }
3721 
3722 FPExtInst::FPExtInst(
3723   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3724 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3725   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3726 }
3727 
3728 UIToFPInst::UIToFPInst(
3729   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3730 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3731   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3732 }
3733 
3734 UIToFPInst::UIToFPInst(
3735   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3736 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3737   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3738 }
3739 
3740 SIToFPInst::SIToFPInst(
3741   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3742 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3743   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3744 }
3745 
3746 SIToFPInst::SIToFPInst(
3747   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3748 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3749   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3750 }
3751 
3752 FPToUIInst::FPToUIInst(
3753   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3754 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3755   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3756 }
3757 
3758 FPToUIInst::FPToUIInst(
3759   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3760 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3761   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3762 }
3763 
3764 FPToSIInst::FPToSIInst(
3765   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3766 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3767   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3768 }
3769 
3770 FPToSIInst::FPToSIInst(
3771   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3772 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3773   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3774 }
3775 
3776 PtrToIntInst::PtrToIntInst(
3777   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3778 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3779   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3780 }
3781 
3782 PtrToIntInst::PtrToIntInst(
3783   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3784 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3785   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3786 }
3787 
3788 IntToPtrInst::IntToPtrInst(
3789   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3790 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3791   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3792 }
3793 
3794 IntToPtrInst::IntToPtrInst(
3795   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3796 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3797   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3798 }
3799 
3800 BitCastInst::BitCastInst(
3801   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3802 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3803   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3804 }
3805 
3806 BitCastInst::BitCastInst(
3807   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3808 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3809   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3810 }
3811 
3812 AddrSpaceCastInst::AddrSpaceCastInst(
3813   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3814 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3815   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3816 }
3817 
3818 AddrSpaceCastInst::AddrSpaceCastInst(
3819   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3820 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3821   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3822 }
3823 
3824 //===----------------------------------------------------------------------===//
3825 //                               CmpInst Classes
3826 //===----------------------------------------------------------------------===//
3827 
3828 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3829                  Value *RHS, const Twine &Name, Instruction *InsertBefore,
3830                  Instruction *FlagsSource)
3831   : Instruction(ty, op,
3832                 OperandTraits<CmpInst>::op_begin(this),
3833                 OperandTraits<CmpInst>::operands(this),
3834                 InsertBefore) {
3835   Op<0>() = LHS;
3836   Op<1>() = RHS;
3837   setPredicate((Predicate)predicate);
3838   setName(Name);
3839   if (FlagsSource)
3840     copyIRFlags(FlagsSource);
3841 }
3842 
3843 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3844                  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3845   : Instruction(ty, op,
3846                 OperandTraits<CmpInst>::op_begin(this),
3847                 OperandTraits<CmpInst>::operands(this),
3848                 InsertAtEnd) {
3849   Op<0>() = LHS;
3850   Op<1>() = RHS;
3851   setPredicate((Predicate)predicate);
3852   setName(Name);
3853 }
3854 
3855 CmpInst *
3856 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3857                 const Twine &Name, Instruction *InsertBefore) {
3858   if (Op == Instruction::ICmp) {
3859     if (InsertBefore)
3860       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3861                           S1, S2, Name);
3862     else
3863       return new ICmpInst(CmpInst::Predicate(predicate),
3864                           S1, S2, Name);
3865   }
3866 
3867   if (InsertBefore)
3868     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3869                         S1, S2, Name);
3870   else
3871     return new FCmpInst(CmpInst::Predicate(predicate),
3872                         S1, S2, Name);
3873 }
3874 
3875 CmpInst *
3876 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3877                 const Twine &Name, BasicBlock *InsertAtEnd) {
3878   if (Op == Instruction::ICmp) {
3879     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3880                         S1, S2, Name);
3881   }
3882   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3883                       S1, S2, Name);
3884 }
3885 
3886 void CmpInst::swapOperands() {
3887   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3888     IC->swapOperands();
3889   else
3890     cast<FCmpInst>(this)->swapOperands();
3891 }
3892 
3893 bool CmpInst::isCommutative() const {
3894   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3895     return IC->isCommutative();
3896   return cast<FCmpInst>(this)->isCommutative();
3897 }
3898 
3899 bool CmpInst::isEquality(Predicate P) {
3900   if (ICmpInst::isIntPredicate(P))
3901     return ICmpInst::isEquality(P);
3902   if (FCmpInst::isFPPredicate(P))
3903     return FCmpInst::isEquality(P);
3904   llvm_unreachable("Unsupported predicate kind");
3905 }
3906 
3907 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3908   switch (pred) {
3909     default: llvm_unreachable("Unknown cmp predicate!");
3910     case ICMP_EQ: return ICMP_NE;
3911     case ICMP_NE: return ICMP_EQ;
3912     case ICMP_UGT: return ICMP_ULE;
3913     case ICMP_ULT: return ICMP_UGE;
3914     case ICMP_UGE: return ICMP_ULT;
3915     case ICMP_ULE: return ICMP_UGT;
3916     case ICMP_SGT: return ICMP_SLE;
3917     case ICMP_SLT: return ICMP_SGE;
3918     case ICMP_SGE: return ICMP_SLT;
3919     case ICMP_SLE: return ICMP_SGT;
3920 
3921     case FCMP_OEQ: return FCMP_UNE;
3922     case FCMP_ONE: return FCMP_UEQ;
3923     case FCMP_OGT: return FCMP_ULE;
3924     case FCMP_OLT: return FCMP_UGE;
3925     case FCMP_OGE: return FCMP_ULT;
3926     case FCMP_OLE: return FCMP_UGT;
3927     case FCMP_UEQ: return FCMP_ONE;
3928     case FCMP_UNE: return FCMP_OEQ;
3929     case FCMP_UGT: return FCMP_OLE;
3930     case FCMP_ULT: return FCMP_OGE;
3931     case FCMP_UGE: return FCMP_OLT;
3932     case FCMP_ULE: return FCMP_OGT;
3933     case FCMP_ORD: return FCMP_UNO;
3934     case FCMP_UNO: return FCMP_ORD;
3935     case FCMP_TRUE: return FCMP_FALSE;
3936     case FCMP_FALSE: return FCMP_TRUE;
3937   }
3938 }
3939 
3940 StringRef CmpInst::getPredicateName(Predicate Pred) {
3941   switch (Pred) {
3942   default:                   return "unknown";
3943   case FCmpInst::FCMP_FALSE: return "false";
3944   case FCmpInst::FCMP_OEQ:   return "oeq";
3945   case FCmpInst::FCMP_OGT:   return "ogt";
3946   case FCmpInst::FCMP_OGE:   return "oge";
3947   case FCmpInst::FCMP_OLT:   return "olt";
3948   case FCmpInst::FCMP_OLE:   return "ole";
3949   case FCmpInst::FCMP_ONE:   return "one";
3950   case FCmpInst::FCMP_ORD:   return "ord";
3951   case FCmpInst::FCMP_UNO:   return "uno";
3952   case FCmpInst::FCMP_UEQ:   return "ueq";
3953   case FCmpInst::FCMP_UGT:   return "ugt";
3954   case FCmpInst::FCMP_UGE:   return "uge";
3955   case FCmpInst::FCMP_ULT:   return "ult";
3956   case FCmpInst::FCMP_ULE:   return "ule";
3957   case FCmpInst::FCMP_UNE:   return "une";
3958   case FCmpInst::FCMP_TRUE:  return "true";
3959   case ICmpInst::ICMP_EQ:    return "eq";
3960   case ICmpInst::ICMP_NE:    return "ne";
3961   case ICmpInst::ICMP_SGT:   return "sgt";
3962   case ICmpInst::ICMP_SGE:   return "sge";
3963   case ICmpInst::ICMP_SLT:   return "slt";
3964   case ICmpInst::ICMP_SLE:   return "sle";
3965   case ICmpInst::ICMP_UGT:   return "ugt";
3966   case ICmpInst::ICMP_UGE:   return "uge";
3967   case ICmpInst::ICMP_ULT:   return "ult";
3968   case ICmpInst::ICMP_ULE:   return "ule";
3969   }
3970 }
3971 
3972 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3973   switch (pred) {
3974     default: llvm_unreachable("Unknown icmp predicate!");
3975     case ICMP_EQ: case ICMP_NE:
3976     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3977        return pred;
3978     case ICMP_UGT: return ICMP_SGT;
3979     case ICMP_ULT: return ICMP_SLT;
3980     case ICMP_UGE: return ICMP_SGE;
3981     case ICMP_ULE: return ICMP_SLE;
3982   }
3983 }
3984 
3985 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3986   switch (pred) {
3987     default: llvm_unreachable("Unknown icmp predicate!");
3988     case ICMP_EQ: case ICMP_NE:
3989     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3990        return pred;
3991     case ICMP_SGT: return ICMP_UGT;
3992     case ICMP_SLT: return ICMP_ULT;
3993     case ICMP_SGE: return ICMP_UGE;
3994     case ICMP_SLE: return ICMP_ULE;
3995   }
3996 }
3997 
3998 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3999   switch (pred) {
4000     default: llvm_unreachable("Unknown cmp predicate!");
4001     case ICMP_EQ: case ICMP_NE:
4002       return pred;
4003     case ICMP_SGT: return ICMP_SLT;
4004     case ICMP_SLT: return ICMP_SGT;
4005     case ICMP_SGE: return ICMP_SLE;
4006     case ICMP_SLE: return ICMP_SGE;
4007     case ICMP_UGT: return ICMP_ULT;
4008     case ICMP_ULT: return ICMP_UGT;
4009     case ICMP_UGE: return ICMP_ULE;
4010     case ICMP_ULE: return ICMP_UGE;
4011 
4012     case FCMP_FALSE: case FCMP_TRUE:
4013     case FCMP_OEQ: case FCMP_ONE:
4014     case FCMP_UEQ: case FCMP_UNE:
4015     case FCMP_ORD: case FCMP_UNO:
4016       return pred;
4017     case FCMP_OGT: return FCMP_OLT;
4018     case FCMP_OLT: return FCMP_OGT;
4019     case FCMP_OGE: return FCMP_OLE;
4020     case FCMP_OLE: return FCMP_OGE;
4021     case FCMP_UGT: return FCMP_ULT;
4022     case FCMP_ULT: return FCMP_UGT;
4023     case FCMP_UGE: return FCMP_ULE;
4024     case FCMP_ULE: return FCMP_UGE;
4025   }
4026 }
4027 
4028 bool CmpInst::isNonStrictPredicate(Predicate pred) {
4029   switch (pred) {
4030   case ICMP_SGE:
4031   case ICMP_SLE:
4032   case ICMP_UGE:
4033   case ICMP_ULE:
4034   case FCMP_OGE:
4035   case FCMP_OLE:
4036   case FCMP_UGE:
4037   case FCMP_ULE:
4038     return true;
4039   default:
4040     return false;
4041   }
4042 }
4043 
4044 bool CmpInst::isStrictPredicate(Predicate pred) {
4045   switch (pred) {
4046   case ICMP_SGT:
4047   case ICMP_SLT:
4048   case ICMP_UGT:
4049   case ICMP_ULT:
4050   case FCMP_OGT:
4051   case FCMP_OLT:
4052   case FCMP_UGT:
4053   case FCMP_ULT:
4054     return true;
4055   default:
4056     return false;
4057   }
4058 }
4059 
4060 CmpInst::Predicate CmpInst::getStrictPredicate(Predicate pred) {
4061   switch (pred) {
4062   case ICMP_SGE:
4063     return ICMP_SGT;
4064   case ICMP_SLE:
4065     return ICMP_SLT;
4066   case ICMP_UGE:
4067     return ICMP_UGT;
4068   case ICMP_ULE:
4069     return ICMP_ULT;
4070   case FCMP_OGE:
4071     return FCMP_OGT;
4072   case FCMP_OLE:
4073     return FCMP_OLT;
4074   case FCMP_UGE:
4075     return FCMP_UGT;
4076   case FCMP_ULE:
4077     return FCMP_ULT;
4078   default:
4079     return pred;
4080   }
4081 }
4082 
4083 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
4084   switch (pred) {
4085   case ICMP_SGT:
4086     return ICMP_SGE;
4087   case ICMP_SLT:
4088     return ICMP_SLE;
4089   case ICMP_UGT:
4090     return ICMP_UGE;
4091   case ICMP_ULT:
4092     return ICMP_ULE;
4093   case FCMP_OGT:
4094     return FCMP_OGE;
4095   case FCMP_OLT:
4096     return FCMP_OLE;
4097   case FCMP_UGT:
4098     return FCMP_UGE;
4099   case FCMP_ULT:
4100     return FCMP_ULE;
4101   default:
4102     return pred;
4103   }
4104 }
4105 
4106 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
4107   assert(CmpInst::isRelational(pred) && "Call only with relational predicate!");
4108 
4109   if (isStrictPredicate(pred))
4110     return getNonStrictPredicate(pred);
4111   if (isNonStrictPredicate(pred))
4112     return getStrictPredicate(pred);
4113 
4114   llvm_unreachable("Unknown predicate!");
4115 }
4116 
4117 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
4118   assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!");
4119 
4120   switch (pred) {
4121   default:
4122     llvm_unreachable("Unknown predicate!");
4123   case CmpInst::ICMP_ULT:
4124     return CmpInst::ICMP_SLT;
4125   case CmpInst::ICMP_ULE:
4126     return CmpInst::ICMP_SLE;
4127   case CmpInst::ICMP_UGT:
4128     return CmpInst::ICMP_SGT;
4129   case CmpInst::ICMP_UGE:
4130     return CmpInst::ICMP_SGE;
4131   }
4132 }
4133 
4134 CmpInst::Predicate CmpInst::getUnsignedPredicate(Predicate pred) {
4135   assert(CmpInst::isSigned(pred) && "Call only with signed predicates!");
4136 
4137   switch (pred) {
4138   default:
4139     llvm_unreachable("Unknown predicate!");
4140   case CmpInst::ICMP_SLT:
4141     return CmpInst::ICMP_ULT;
4142   case CmpInst::ICMP_SLE:
4143     return CmpInst::ICMP_ULE;
4144   case CmpInst::ICMP_SGT:
4145     return CmpInst::ICMP_UGT;
4146   case CmpInst::ICMP_SGE:
4147     return CmpInst::ICMP_UGE;
4148   }
4149 }
4150 
4151 bool CmpInst::isUnsigned(Predicate predicate) {
4152   switch (predicate) {
4153     default: return false;
4154     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
4155     case ICmpInst::ICMP_UGE: return true;
4156   }
4157 }
4158 
4159 bool CmpInst::isSigned(Predicate predicate) {
4160   switch (predicate) {
4161     default: return false;
4162     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
4163     case ICmpInst::ICMP_SGE: return true;
4164   }
4165 }
4166 
4167 bool ICmpInst::compare(const APInt &LHS, const APInt &RHS,
4168                        ICmpInst::Predicate Pred) {
4169   assert(ICmpInst::isIntPredicate(Pred) && "Only for integer predicates!");
4170   switch (Pred) {
4171   case ICmpInst::Predicate::ICMP_EQ:
4172     return LHS.eq(RHS);
4173   case ICmpInst::Predicate::ICMP_NE:
4174     return LHS.ne(RHS);
4175   case ICmpInst::Predicate::ICMP_UGT:
4176     return LHS.ugt(RHS);
4177   case ICmpInst::Predicate::ICMP_UGE:
4178     return LHS.uge(RHS);
4179   case ICmpInst::Predicate::ICMP_ULT:
4180     return LHS.ult(RHS);
4181   case ICmpInst::Predicate::ICMP_ULE:
4182     return LHS.ule(RHS);
4183   case ICmpInst::Predicate::ICMP_SGT:
4184     return LHS.sgt(RHS);
4185   case ICmpInst::Predicate::ICMP_SGE:
4186     return LHS.sge(RHS);
4187   case ICmpInst::Predicate::ICMP_SLT:
4188     return LHS.slt(RHS);
4189   case ICmpInst::Predicate::ICMP_SLE:
4190     return LHS.sle(RHS);
4191   default:
4192     llvm_unreachable("Unexpected non-integer predicate.");
4193   };
4194 }
4195 
4196 bool FCmpInst::compare(const APFloat &LHS, const APFloat &RHS,
4197                        FCmpInst::Predicate Pred) {
4198   APFloat::cmpResult R = LHS.compare(RHS);
4199   switch (Pred) {
4200   default:
4201     llvm_unreachable("Invalid FCmp Predicate");
4202   case FCmpInst::FCMP_FALSE:
4203     return false;
4204   case FCmpInst::FCMP_TRUE:
4205     return true;
4206   case FCmpInst::FCMP_UNO:
4207     return R == APFloat::cmpUnordered;
4208   case FCmpInst::FCMP_ORD:
4209     return R != APFloat::cmpUnordered;
4210   case FCmpInst::FCMP_UEQ:
4211     return R == APFloat::cmpUnordered || R == APFloat::cmpEqual;
4212   case FCmpInst::FCMP_OEQ:
4213     return R == APFloat::cmpEqual;
4214   case FCmpInst::FCMP_UNE:
4215     return R != APFloat::cmpEqual;
4216   case FCmpInst::FCMP_ONE:
4217     return R == APFloat::cmpLessThan || R == APFloat::cmpGreaterThan;
4218   case FCmpInst::FCMP_ULT:
4219     return R == APFloat::cmpUnordered || R == APFloat::cmpLessThan;
4220   case FCmpInst::FCMP_OLT:
4221     return R == APFloat::cmpLessThan;
4222   case FCmpInst::FCMP_UGT:
4223     return R == APFloat::cmpUnordered || R == APFloat::cmpGreaterThan;
4224   case FCmpInst::FCMP_OGT:
4225     return R == APFloat::cmpGreaterThan;
4226   case FCmpInst::FCMP_ULE:
4227     return R != APFloat::cmpGreaterThan;
4228   case FCmpInst::FCMP_OLE:
4229     return R == APFloat::cmpLessThan || R == APFloat::cmpEqual;
4230   case FCmpInst::FCMP_UGE:
4231     return R != APFloat::cmpLessThan;
4232   case FCmpInst::FCMP_OGE:
4233     return R == APFloat::cmpGreaterThan || R == APFloat::cmpEqual;
4234   }
4235 }
4236 
4237 CmpInst::Predicate CmpInst::getFlippedSignednessPredicate(Predicate pred) {
4238   assert(CmpInst::isRelational(pred) &&
4239          "Call only with non-equality predicates!");
4240 
4241   if (isSigned(pred))
4242     return getUnsignedPredicate(pred);
4243   if (isUnsigned(pred))
4244     return getSignedPredicate(pred);
4245 
4246   llvm_unreachable("Unknown predicate!");
4247 }
4248 
4249 bool CmpInst::isOrdered(Predicate predicate) {
4250   switch (predicate) {
4251     default: return false;
4252     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
4253     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
4254     case FCmpInst::FCMP_ORD: return true;
4255   }
4256 }
4257 
4258 bool CmpInst::isUnordered(Predicate predicate) {
4259   switch (predicate) {
4260     default: return false;
4261     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
4262     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
4263     case FCmpInst::FCMP_UNO: return true;
4264   }
4265 }
4266 
4267 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
4268   switch(predicate) {
4269     default: return false;
4270     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
4271     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
4272   }
4273 }
4274 
4275 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
4276   switch(predicate) {
4277   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
4278   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
4279   default: return false;
4280   }
4281 }
4282 
4283 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
4284   // If the predicates match, then we know the first condition implies the
4285   // second is true.
4286   if (Pred1 == Pred2)
4287     return true;
4288 
4289   switch (Pred1) {
4290   default:
4291     break;
4292   case ICMP_EQ:
4293     // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
4294     return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
4295            Pred2 == ICMP_SLE;
4296   case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
4297     return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
4298   case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
4299     return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
4300   case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
4301     return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
4302   case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
4303     return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
4304   }
4305   return false;
4306 }
4307 
4308 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
4309   return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
4310 }
4311 
4312 //===----------------------------------------------------------------------===//
4313 //                        SwitchInst Implementation
4314 //===----------------------------------------------------------------------===//
4315 
4316 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
4317   assert(Value && Default && NumReserved);
4318   ReservedSpace = NumReserved;
4319   setNumHungOffUseOperands(2);
4320   allocHungoffUses(ReservedSpace);
4321 
4322   Op<0>() = Value;
4323   Op<1>() = Default;
4324 }
4325 
4326 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4327 /// switch on and a default destination.  The number of additional cases can
4328 /// be specified here to make memory allocation more efficient.  This
4329 /// constructor can also autoinsert before another instruction.
4330 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4331                        Instruction *InsertBefore)
4332     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4333                   nullptr, 0, InsertBefore) {
4334   init(Value, Default, 2+NumCases*2);
4335 }
4336 
4337 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4338 /// switch on and a default destination.  The number of additional cases can
4339 /// be specified here to make memory allocation more efficient.  This
4340 /// constructor also autoinserts at the end of the specified BasicBlock.
4341 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4342                        BasicBlock *InsertAtEnd)
4343     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4344                   nullptr, 0, InsertAtEnd) {
4345   init(Value, Default, 2+NumCases*2);
4346 }
4347 
4348 SwitchInst::SwitchInst(const SwitchInst &SI)
4349     : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
4350   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
4351   setNumHungOffUseOperands(SI.getNumOperands());
4352   Use *OL = getOperandList();
4353   const Use *InOL = SI.getOperandList();
4354   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
4355     OL[i] = InOL[i];
4356     OL[i+1] = InOL[i+1];
4357   }
4358   SubclassOptionalData = SI.SubclassOptionalData;
4359 }
4360 
4361 /// addCase - Add an entry to the switch instruction...
4362 ///
4363 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
4364   unsigned NewCaseIdx = getNumCases();
4365   unsigned OpNo = getNumOperands();
4366   if (OpNo+2 > ReservedSpace)
4367     growOperands();  // Get more space!
4368   // Initialize some new operands.
4369   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
4370   setNumHungOffUseOperands(OpNo+2);
4371   CaseHandle Case(this, NewCaseIdx);
4372   Case.setValue(OnVal);
4373   Case.setSuccessor(Dest);
4374 }
4375 
4376 /// removeCase - This method removes the specified case and its successor
4377 /// from the switch instruction.
4378 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
4379   unsigned idx = I->getCaseIndex();
4380 
4381   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
4382 
4383   unsigned NumOps = getNumOperands();
4384   Use *OL = getOperandList();
4385 
4386   // Overwrite this case with the end of the list.
4387   if (2 + (idx + 1) * 2 != NumOps) {
4388     OL[2 + idx * 2] = OL[NumOps - 2];
4389     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
4390   }
4391 
4392   // Nuke the last value.
4393   OL[NumOps-2].set(nullptr);
4394   OL[NumOps-2+1].set(nullptr);
4395   setNumHungOffUseOperands(NumOps-2);
4396 
4397   return CaseIt(this, idx);
4398 }
4399 
4400 /// growOperands - grow operands - This grows the operand list in response
4401 /// to a push_back style of operation.  This grows the number of ops by 3 times.
4402 ///
4403 void SwitchInst::growOperands() {
4404   unsigned e = getNumOperands();
4405   unsigned NumOps = e*3;
4406 
4407   ReservedSpace = NumOps;
4408   growHungoffUses(ReservedSpace);
4409 }
4410 
4411 MDNode *
4412 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) {
4413   if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
4414     if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
4415       if (MDName->getString() == "branch_weights")
4416         return ProfileData;
4417   return nullptr;
4418 }
4419 
4420 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
4421   assert(Changed && "called only if metadata has changed");
4422 
4423   if (!Weights)
4424     return nullptr;
4425 
4426   assert(SI.getNumSuccessors() == Weights->size() &&
4427          "num of prof branch_weights must accord with num of successors");
4428 
4429   bool AllZeroes = all_of(Weights.value(), [](uint32_t W) { return W == 0; });
4430 
4431   if (AllZeroes || Weights.value().size() < 2)
4432     return nullptr;
4433 
4434   return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
4435 }
4436 
4437 void SwitchInstProfUpdateWrapper::init() {
4438   MDNode *ProfileData = getProfBranchWeightsMD(SI);
4439   if (!ProfileData)
4440     return;
4441 
4442   if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
4443     llvm_unreachable("number of prof branch_weights metadata operands does "
4444                      "not correspond to number of succesors");
4445   }
4446 
4447   SmallVector<uint32_t, 8> Weights;
4448   for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
4449     ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
4450     uint32_t CW = C->getValue().getZExtValue();
4451     Weights.push_back(CW);
4452   }
4453   this->Weights = std::move(Weights);
4454 }
4455 
4456 SwitchInst::CaseIt
4457 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
4458   if (Weights) {
4459     assert(SI.getNumSuccessors() == Weights->size() &&
4460            "num of prof branch_weights must accord with num of successors");
4461     Changed = true;
4462     // Copy the last case to the place of the removed one and shrink.
4463     // This is tightly coupled with the way SwitchInst::removeCase() removes
4464     // the cases in SwitchInst::removeCase(CaseIt).
4465     Weights.value()[I->getCaseIndex() + 1] = Weights.value().back();
4466     Weights.value().pop_back();
4467   }
4468   return SI.removeCase(I);
4469 }
4470 
4471 void SwitchInstProfUpdateWrapper::addCase(
4472     ConstantInt *OnVal, BasicBlock *Dest,
4473     SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4474   SI.addCase(OnVal, Dest);
4475 
4476   if (!Weights && W && *W) {
4477     Changed = true;
4478     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4479     Weights.value()[SI.getNumSuccessors() - 1] = *W;
4480   } else if (Weights) {
4481     Changed = true;
4482     Weights.value().push_back(W.value_or(0));
4483   }
4484   if (Weights)
4485     assert(SI.getNumSuccessors() == Weights->size() &&
4486            "num of prof branch_weights must accord with num of successors");
4487 }
4488 
4489 SymbolTableList<Instruction>::iterator
4490 SwitchInstProfUpdateWrapper::eraseFromParent() {
4491   // Instruction is erased. Mark as unchanged to not touch it in the destructor.
4492   Changed = false;
4493   if (Weights)
4494     Weights->resize(0);
4495   return SI.eraseFromParent();
4496 }
4497 
4498 SwitchInstProfUpdateWrapper::CaseWeightOpt
4499 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
4500   if (!Weights)
4501     return None;
4502   return (*Weights)[idx];
4503 }
4504 
4505 void SwitchInstProfUpdateWrapper::setSuccessorWeight(
4506     unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4507   if (!W)
4508     return;
4509 
4510   if (!Weights && *W)
4511     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4512 
4513   if (Weights) {
4514     auto &OldW = (*Weights)[idx];
4515     if (*W != OldW) {
4516       Changed = true;
4517       OldW = *W;
4518     }
4519   }
4520 }
4521 
4522 SwitchInstProfUpdateWrapper::CaseWeightOpt
4523 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
4524                                                 unsigned idx) {
4525   if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
4526     if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4527       return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4528           ->getValue()
4529           .getZExtValue();
4530 
4531   return None;
4532 }
4533 
4534 //===----------------------------------------------------------------------===//
4535 //                        IndirectBrInst Implementation
4536 //===----------------------------------------------------------------------===//
4537 
4538 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4539   assert(Address && Address->getType()->isPointerTy() &&
4540          "Address of indirectbr must be a pointer");
4541   ReservedSpace = 1+NumDests;
4542   setNumHungOffUseOperands(1);
4543   allocHungoffUses(ReservedSpace);
4544 
4545   Op<0>() = Address;
4546 }
4547 
4548 
4549 /// growOperands - grow operands - This grows the operand list in response
4550 /// to a push_back style of operation.  This grows the number of ops by 2 times.
4551 ///
4552 void IndirectBrInst::growOperands() {
4553   unsigned e = getNumOperands();
4554   unsigned NumOps = e*2;
4555 
4556   ReservedSpace = NumOps;
4557   growHungoffUses(ReservedSpace);
4558 }
4559 
4560 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4561                                Instruction *InsertBefore)
4562     : Instruction(Type::getVoidTy(Address->getContext()),
4563                   Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4564   init(Address, NumCases);
4565 }
4566 
4567 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4568                                BasicBlock *InsertAtEnd)
4569     : Instruction(Type::getVoidTy(Address->getContext()),
4570                   Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
4571   init(Address, NumCases);
4572 }
4573 
4574 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4575     : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4576                   nullptr, IBI.getNumOperands()) {
4577   allocHungoffUses(IBI.getNumOperands());
4578   Use *OL = getOperandList();
4579   const Use *InOL = IBI.getOperandList();
4580   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4581     OL[i] = InOL[i];
4582   SubclassOptionalData = IBI.SubclassOptionalData;
4583 }
4584 
4585 /// addDestination - Add a destination.
4586 ///
4587 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4588   unsigned OpNo = getNumOperands();
4589   if (OpNo+1 > ReservedSpace)
4590     growOperands();  // Get more space!
4591   // Initialize some new operands.
4592   assert(OpNo < ReservedSpace && "Growing didn't work!");
4593   setNumHungOffUseOperands(OpNo+1);
4594   getOperandList()[OpNo] = DestBB;
4595 }
4596 
4597 /// removeDestination - This method removes the specified successor from the
4598 /// indirectbr instruction.
4599 void IndirectBrInst::removeDestination(unsigned idx) {
4600   assert(idx < getNumOperands()-1 && "Successor index out of range!");
4601 
4602   unsigned NumOps = getNumOperands();
4603   Use *OL = getOperandList();
4604 
4605   // Replace this value with the last one.
4606   OL[idx+1] = OL[NumOps-1];
4607 
4608   // Nuke the last value.
4609   OL[NumOps-1].set(nullptr);
4610   setNumHungOffUseOperands(NumOps-1);
4611 }
4612 
4613 //===----------------------------------------------------------------------===//
4614 //                            FreezeInst Implementation
4615 //===----------------------------------------------------------------------===//
4616 
4617 FreezeInst::FreezeInst(Value *S,
4618                        const Twine &Name, Instruction *InsertBefore)
4619     : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
4620   setName(Name);
4621 }
4622 
4623 FreezeInst::FreezeInst(Value *S,
4624                        const Twine &Name, BasicBlock *InsertAtEnd)
4625     : UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) {
4626   setName(Name);
4627 }
4628 
4629 //===----------------------------------------------------------------------===//
4630 //                           cloneImpl() implementations
4631 //===----------------------------------------------------------------------===//
4632 
4633 // Define these methods here so vtables don't get emitted into every translation
4634 // unit that uses these classes.
4635 
4636 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4637   return new (getNumOperands()) GetElementPtrInst(*this);
4638 }
4639 
4640 UnaryOperator *UnaryOperator::cloneImpl() const {
4641   return Create(getOpcode(), Op<0>());
4642 }
4643 
4644 BinaryOperator *BinaryOperator::cloneImpl() const {
4645   return Create(getOpcode(), Op<0>(), Op<1>());
4646 }
4647 
4648 FCmpInst *FCmpInst::cloneImpl() const {
4649   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4650 }
4651 
4652 ICmpInst *ICmpInst::cloneImpl() const {
4653   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4654 }
4655 
4656 ExtractValueInst *ExtractValueInst::cloneImpl() const {
4657   return new ExtractValueInst(*this);
4658 }
4659 
4660 InsertValueInst *InsertValueInst::cloneImpl() const {
4661   return new InsertValueInst(*this);
4662 }
4663 
4664 AllocaInst *AllocaInst::cloneImpl() const {
4665   AllocaInst *Result =
4666       new AllocaInst(getAllocatedType(), getType()->getAddressSpace(),
4667                      getOperand(0), getAlign());
4668   Result->setUsedWithInAlloca(isUsedWithInAlloca());
4669   Result->setSwiftError(isSwiftError());
4670   return Result;
4671 }
4672 
4673 LoadInst *LoadInst::cloneImpl() const {
4674   return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4675                       getAlign(), getOrdering(), getSyncScopeID());
4676 }
4677 
4678 StoreInst *StoreInst::cloneImpl() const {
4679   return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(),
4680                        getOrdering(), getSyncScopeID());
4681 }
4682 
4683 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4684   AtomicCmpXchgInst *Result = new AtomicCmpXchgInst(
4685       getOperand(0), getOperand(1), getOperand(2), getAlign(),
4686       getSuccessOrdering(), getFailureOrdering(), getSyncScopeID());
4687   Result->setVolatile(isVolatile());
4688   Result->setWeak(isWeak());
4689   return Result;
4690 }
4691 
4692 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4693   AtomicRMWInst *Result =
4694       new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4695                         getAlign(), getOrdering(), getSyncScopeID());
4696   Result->setVolatile(isVolatile());
4697   return Result;
4698 }
4699 
4700 FenceInst *FenceInst::cloneImpl() const {
4701   return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4702 }
4703 
4704 TruncInst *TruncInst::cloneImpl() const {
4705   return new TruncInst(getOperand(0), getType());
4706 }
4707 
4708 ZExtInst *ZExtInst::cloneImpl() const {
4709   return new ZExtInst(getOperand(0), getType());
4710 }
4711 
4712 SExtInst *SExtInst::cloneImpl() const {
4713   return new SExtInst(getOperand(0), getType());
4714 }
4715 
4716 FPTruncInst *FPTruncInst::cloneImpl() const {
4717   return new FPTruncInst(getOperand(0), getType());
4718 }
4719 
4720 FPExtInst *FPExtInst::cloneImpl() const {
4721   return new FPExtInst(getOperand(0), getType());
4722 }
4723 
4724 UIToFPInst *UIToFPInst::cloneImpl() const {
4725   return new UIToFPInst(getOperand(0), getType());
4726 }
4727 
4728 SIToFPInst *SIToFPInst::cloneImpl() const {
4729   return new SIToFPInst(getOperand(0), getType());
4730 }
4731 
4732 FPToUIInst *FPToUIInst::cloneImpl() const {
4733   return new FPToUIInst(getOperand(0), getType());
4734 }
4735 
4736 FPToSIInst *FPToSIInst::cloneImpl() const {
4737   return new FPToSIInst(getOperand(0), getType());
4738 }
4739 
4740 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4741   return new PtrToIntInst(getOperand(0), getType());
4742 }
4743 
4744 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4745   return new IntToPtrInst(getOperand(0), getType());
4746 }
4747 
4748 BitCastInst *BitCastInst::cloneImpl() const {
4749   return new BitCastInst(getOperand(0), getType());
4750 }
4751 
4752 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4753   return new AddrSpaceCastInst(getOperand(0), getType());
4754 }
4755 
4756 CallInst *CallInst::cloneImpl() const {
4757   if (hasOperandBundles()) {
4758     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4759     return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4760   }
4761   return  new(getNumOperands()) CallInst(*this);
4762 }
4763 
4764 SelectInst *SelectInst::cloneImpl() const {
4765   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4766 }
4767 
4768 VAArgInst *VAArgInst::cloneImpl() const {
4769   return new VAArgInst(getOperand(0), getType());
4770 }
4771 
4772 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4773   return ExtractElementInst::Create(getOperand(0), getOperand(1));
4774 }
4775 
4776 InsertElementInst *InsertElementInst::cloneImpl() const {
4777   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4778 }
4779 
4780 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4781   return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask());
4782 }
4783 
4784 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4785 
4786 LandingPadInst *LandingPadInst::cloneImpl() const {
4787   return new LandingPadInst(*this);
4788 }
4789 
4790 ReturnInst *ReturnInst::cloneImpl() const {
4791   return new(getNumOperands()) ReturnInst(*this);
4792 }
4793 
4794 BranchInst *BranchInst::cloneImpl() const {
4795   return new(getNumOperands()) BranchInst(*this);
4796 }
4797 
4798 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4799 
4800 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4801   return new IndirectBrInst(*this);
4802 }
4803 
4804 InvokeInst *InvokeInst::cloneImpl() const {
4805   if (hasOperandBundles()) {
4806     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4807     return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4808   }
4809   return new(getNumOperands()) InvokeInst(*this);
4810 }
4811 
4812 CallBrInst *CallBrInst::cloneImpl() const {
4813   if (hasOperandBundles()) {
4814     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4815     return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4816   }
4817   return new (getNumOperands()) CallBrInst(*this);
4818 }
4819 
4820 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4821 
4822 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4823   return new (getNumOperands()) CleanupReturnInst(*this);
4824 }
4825 
4826 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4827   return new (getNumOperands()) CatchReturnInst(*this);
4828 }
4829 
4830 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4831   return new CatchSwitchInst(*this);
4832 }
4833 
4834 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4835   return new (getNumOperands()) FuncletPadInst(*this);
4836 }
4837 
4838 UnreachableInst *UnreachableInst::cloneImpl() const {
4839   LLVMContext &Context = getContext();
4840   return new UnreachableInst(Context);
4841 }
4842 
4843 FreezeInst *FreezeInst::cloneImpl() const {
4844   return new FreezeInst(getOperand(0));
4845 }
4846