1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements all of the non-inline methods for the LLVM instruction 10 // classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Instructions.h" 15 #include "LLVMContextImpl.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/IR/Attributes.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/Constant.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/InstrTypes.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/AtomicOrdering.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/TypeSize.h" 41 #include <algorithm> 42 #include <cassert> 43 #include <cstdint> 44 #include <vector> 45 46 using namespace llvm; 47 48 static cl::opt<bool> DisableI2pP2iOpt( 49 "disable-i2p-p2i-opt", cl::init(false), 50 cl::desc("Disables inttoptr/ptrtoint roundtrip optimization")); 51 52 //===----------------------------------------------------------------------===// 53 // AllocaInst Class 54 //===----------------------------------------------------------------------===// 55 56 Optional<TypeSize> 57 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const { 58 TypeSize Size = DL.getTypeAllocSizeInBits(getAllocatedType()); 59 if (isArrayAllocation()) { 60 auto *C = dyn_cast<ConstantInt>(getArraySize()); 61 if (!C) 62 return None; 63 assert(!Size.isScalable() && "Array elements cannot have a scalable size"); 64 Size *= C->getZExtValue(); 65 } 66 return Size; 67 } 68 69 //===----------------------------------------------------------------------===// 70 // SelectInst Class 71 //===----------------------------------------------------------------------===// 72 73 /// areInvalidOperands - Return a string if the specified operands are invalid 74 /// for a select operation, otherwise return null. 75 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) { 76 if (Op1->getType() != Op2->getType()) 77 return "both values to select must have same type"; 78 79 if (Op1->getType()->isTokenTy()) 80 return "select values cannot have token type"; 81 82 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) { 83 // Vector select. 84 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext())) 85 return "vector select condition element type must be i1"; 86 VectorType *ET = dyn_cast<VectorType>(Op1->getType()); 87 if (!ET) 88 return "selected values for vector select must be vectors"; 89 if (ET->getElementCount() != VT->getElementCount()) 90 return "vector select requires selected vectors to have " 91 "the same vector length as select condition"; 92 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) { 93 return "select condition must be i1 or <n x i1>"; 94 } 95 return nullptr; 96 } 97 98 //===----------------------------------------------------------------------===// 99 // PHINode Class 100 //===----------------------------------------------------------------------===// 101 102 PHINode::PHINode(const PHINode &PN) 103 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()), 104 ReservedSpace(PN.getNumOperands()) { 105 allocHungoffUses(PN.getNumOperands()); 106 std::copy(PN.op_begin(), PN.op_end(), op_begin()); 107 std::copy(PN.block_begin(), PN.block_end(), block_begin()); 108 SubclassOptionalData = PN.SubclassOptionalData; 109 } 110 111 // removeIncomingValue - Remove an incoming value. This is useful if a 112 // predecessor basic block is deleted. 113 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { 114 Value *Removed = getIncomingValue(Idx); 115 116 // Move everything after this operand down. 117 // 118 // FIXME: we could just swap with the end of the list, then erase. However, 119 // clients might not expect this to happen. The code as it is thrashes the 120 // use/def lists, which is kinda lame. 121 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx); 122 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx); 123 124 // Nuke the last value. 125 Op<-1>().set(nullptr); 126 setNumHungOffUseOperands(getNumOperands() - 1); 127 128 // If the PHI node is dead, because it has zero entries, nuke it now. 129 if (getNumOperands() == 0 && DeletePHIIfEmpty) { 130 // If anyone is using this PHI, make them use a dummy value instead... 131 replaceAllUsesWith(UndefValue::get(getType())); 132 eraseFromParent(); 133 } 134 return Removed; 135 } 136 137 /// growOperands - grow operands - This grows the operand list in response 138 /// to a push_back style of operation. This grows the number of ops by 1.5 139 /// times. 140 /// 141 void PHINode::growOperands() { 142 unsigned e = getNumOperands(); 143 unsigned NumOps = e + e / 2; 144 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common. 145 146 ReservedSpace = NumOps; 147 growHungoffUses(ReservedSpace, /* IsPhi */ true); 148 } 149 150 /// hasConstantValue - If the specified PHI node always merges together the same 151 /// value, return the value, otherwise return null. 152 Value *PHINode::hasConstantValue() const { 153 // Exploit the fact that phi nodes always have at least one entry. 154 Value *ConstantValue = getIncomingValue(0); 155 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i) 156 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) { 157 if (ConstantValue != this) 158 return nullptr; // Incoming values not all the same. 159 // The case where the first value is this PHI. 160 ConstantValue = getIncomingValue(i); 161 } 162 if (ConstantValue == this) 163 return UndefValue::get(getType()); 164 return ConstantValue; 165 } 166 167 /// hasConstantOrUndefValue - Whether the specified PHI node always merges 168 /// together the same value, assuming that undefs result in the same value as 169 /// non-undefs. 170 /// Unlike \ref hasConstantValue, this does not return a value because the 171 /// unique non-undef incoming value need not dominate the PHI node. 172 bool PHINode::hasConstantOrUndefValue() const { 173 Value *ConstantValue = nullptr; 174 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) { 175 Value *Incoming = getIncomingValue(i); 176 if (Incoming != this && !isa<UndefValue>(Incoming)) { 177 if (ConstantValue && ConstantValue != Incoming) 178 return false; 179 ConstantValue = Incoming; 180 } 181 } 182 return true; 183 } 184 185 //===----------------------------------------------------------------------===// 186 // LandingPadInst Implementation 187 //===----------------------------------------------------------------------===// 188 189 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, 190 const Twine &NameStr, Instruction *InsertBefore) 191 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) { 192 init(NumReservedValues, NameStr); 193 } 194 195 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, 196 const Twine &NameStr, BasicBlock *InsertAtEnd) 197 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) { 198 init(NumReservedValues, NameStr); 199 } 200 201 LandingPadInst::LandingPadInst(const LandingPadInst &LP) 202 : Instruction(LP.getType(), Instruction::LandingPad, nullptr, 203 LP.getNumOperands()), 204 ReservedSpace(LP.getNumOperands()) { 205 allocHungoffUses(LP.getNumOperands()); 206 Use *OL = getOperandList(); 207 const Use *InOL = LP.getOperandList(); 208 for (unsigned I = 0, E = ReservedSpace; I != E; ++I) 209 OL[I] = InOL[I]; 210 211 setCleanup(LP.isCleanup()); 212 } 213 214 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, 215 const Twine &NameStr, 216 Instruction *InsertBefore) { 217 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore); 218 } 219 220 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, 221 const Twine &NameStr, 222 BasicBlock *InsertAtEnd) { 223 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd); 224 } 225 226 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) { 227 ReservedSpace = NumReservedValues; 228 setNumHungOffUseOperands(0); 229 allocHungoffUses(ReservedSpace); 230 setName(NameStr); 231 setCleanup(false); 232 } 233 234 /// growOperands - grow operands - This grows the operand list in response to a 235 /// push_back style of operation. This grows the number of ops by 2 times. 236 void LandingPadInst::growOperands(unsigned Size) { 237 unsigned e = getNumOperands(); 238 if (ReservedSpace >= e + Size) return; 239 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2; 240 growHungoffUses(ReservedSpace); 241 } 242 243 void LandingPadInst::addClause(Constant *Val) { 244 unsigned OpNo = getNumOperands(); 245 growOperands(1); 246 assert(OpNo < ReservedSpace && "Growing didn't work!"); 247 setNumHungOffUseOperands(getNumOperands() + 1); 248 getOperandList()[OpNo] = Val; 249 } 250 251 //===----------------------------------------------------------------------===// 252 // CallBase Implementation 253 //===----------------------------------------------------------------------===// 254 255 CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles, 256 Instruction *InsertPt) { 257 switch (CB->getOpcode()) { 258 case Instruction::Call: 259 return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt); 260 case Instruction::Invoke: 261 return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt); 262 case Instruction::CallBr: 263 return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt); 264 default: 265 llvm_unreachable("Unknown CallBase sub-class!"); 266 } 267 } 268 269 CallBase *CallBase::Create(CallBase *CI, OperandBundleDef OpB, 270 Instruction *InsertPt) { 271 SmallVector<OperandBundleDef, 2> OpDefs; 272 for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) { 273 auto ChildOB = CI->getOperandBundleAt(i); 274 if (ChildOB.getTagName() != OpB.getTag()) 275 OpDefs.emplace_back(ChildOB); 276 } 277 OpDefs.emplace_back(OpB); 278 return CallBase::Create(CI, OpDefs, InsertPt); 279 } 280 281 282 Function *CallBase::getCaller() { return getParent()->getParent(); } 283 284 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const { 285 assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!"); 286 return cast<CallBrInst>(this)->getNumIndirectDests() + 1; 287 } 288 289 bool CallBase::isIndirectCall() const { 290 const Value *V = getCalledOperand(); 291 if (isa<Function>(V) || isa<Constant>(V)) 292 return false; 293 return !isInlineAsm(); 294 } 295 296 /// Tests if this call site must be tail call optimized. Only a CallInst can 297 /// be tail call optimized. 298 bool CallBase::isMustTailCall() const { 299 if (auto *CI = dyn_cast<CallInst>(this)) 300 return CI->isMustTailCall(); 301 return false; 302 } 303 304 /// Tests if this call site is marked as a tail call. 305 bool CallBase::isTailCall() const { 306 if (auto *CI = dyn_cast<CallInst>(this)) 307 return CI->isTailCall(); 308 return false; 309 } 310 311 Intrinsic::ID CallBase::getIntrinsicID() const { 312 if (auto *F = getCalledFunction()) 313 return F->getIntrinsicID(); 314 return Intrinsic::not_intrinsic; 315 } 316 317 bool CallBase::isReturnNonNull() const { 318 if (hasRetAttr(Attribute::NonNull)) 319 return true; 320 321 if (getRetDereferenceableBytes() > 0 && 322 !NullPointerIsDefined(getCaller(), getType()->getPointerAddressSpace())) 323 return true; 324 325 return false; 326 } 327 328 Value *CallBase::getReturnedArgOperand() const { 329 unsigned Index; 330 331 if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index)) 332 return getArgOperand(Index - AttributeList::FirstArgIndex); 333 if (const Function *F = getCalledFunction()) 334 if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index)) 335 return getArgOperand(Index - AttributeList::FirstArgIndex); 336 337 return nullptr; 338 } 339 340 /// Determine whether the argument or parameter has the given attribute. 341 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const { 342 assert(ArgNo < arg_size() && "Param index out of bounds!"); 343 344 if (Attrs.hasParamAttr(ArgNo, Kind)) 345 return true; 346 if (const Function *F = getCalledFunction()) 347 return F->getAttributes().hasParamAttr(ArgNo, Kind); 348 return false; 349 } 350 351 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const { 352 Value *V = getCalledOperand(); 353 if (auto *CE = dyn_cast<ConstantExpr>(V)) 354 if (CE->getOpcode() == BitCast) 355 V = CE->getOperand(0); 356 357 if (auto *F = dyn_cast<Function>(V)) 358 return F->getAttributes().hasFnAttr(Kind); 359 360 return false; 361 } 362 363 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const { 364 Value *V = getCalledOperand(); 365 if (auto *CE = dyn_cast<ConstantExpr>(V)) 366 if (CE->getOpcode() == BitCast) 367 V = CE->getOperand(0); 368 369 if (auto *F = dyn_cast<Function>(V)) 370 return F->getAttributes().hasFnAttr(Kind); 371 372 return false; 373 } 374 375 void CallBase::getOperandBundlesAsDefs( 376 SmallVectorImpl<OperandBundleDef> &Defs) const { 377 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) 378 Defs.emplace_back(getOperandBundleAt(i)); 379 } 380 381 CallBase::op_iterator 382 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles, 383 const unsigned BeginIndex) { 384 auto It = op_begin() + BeginIndex; 385 for (auto &B : Bundles) 386 It = std::copy(B.input_begin(), B.input_end(), It); 387 388 auto *ContextImpl = getContext().pImpl; 389 auto BI = Bundles.begin(); 390 unsigned CurrentIndex = BeginIndex; 391 392 for (auto &BOI : bundle_op_infos()) { 393 assert(BI != Bundles.end() && "Incorrect allocation?"); 394 395 BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag()); 396 BOI.Begin = CurrentIndex; 397 BOI.End = CurrentIndex + BI->input_size(); 398 CurrentIndex = BOI.End; 399 BI++; 400 } 401 402 assert(BI == Bundles.end() && "Incorrect allocation?"); 403 404 return It; 405 } 406 407 CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) { 408 /// When there isn't many bundles, we do a simple linear search. 409 /// Else fallback to a binary-search that use the fact that bundles usually 410 /// have similar number of argument to get faster convergence. 411 if (bundle_op_info_end() - bundle_op_info_begin() < 8) { 412 for (auto &BOI : bundle_op_infos()) 413 if (BOI.Begin <= OpIdx && OpIdx < BOI.End) 414 return BOI; 415 416 llvm_unreachable("Did not find operand bundle for operand!"); 417 } 418 419 assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles"); 420 assert(bundle_op_info_end() - bundle_op_info_begin() > 0 && 421 OpIdx < std::prev(bundle_op_info_end())->End && 422 "The Idx isn't in the operand bundle"); 423 424 /// We need a decimal number below and to prevent using floating point numbers 425 /// we use an intergal value multiplied by this constant. 426 constexpr unsigned NumberScaling = 1024; 427 428 bundle_op_iterator Begin = bundle_op_info_begin(); 429 bundle_op_iterator End = bundle_op_info_end(); 430 bundle_op_iterator Current = Begin; 431 432 while (Begin != End) { 433 unsigned ScaledOperandPerBundle = 434 NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin); 435 Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) / 436 ScaledOperandPerBundle); 437 if (Current >= End) 438 Current = std::prev(End); 439 assert(Current < End && Current >= Begin && 440 "the operand bundle doesn't cover every value in the range"); 441 if (OpIdx >= Current->Begin && OpIdx < Current->End) 442 break; 443 if (OpIdx >= Current->End) 444 Begin = Current + 1; 445 else 446 End = Current; 447 } 448 449 assert(OpIdx >= Current->Begin && OpIdx < Current->End && 450 "the operand bundle doesn't cover every value in the range"); 451 return *Current; 452 } 453 454 CallBase *CallBase::addOperandBundle(CallBase *CB, uint32_t ID, 455 OperandBundleDef OB, 456 Instruction *InsertPt) { 457 if (CB->getOperandBundle(ID)) 458 return CB; 459 460 SmallVector<OperandBundleDef, 1> Bundles; 461 CB->getOperandBundlesAsDefs(Bundles); 462 Bundles.push_back(OB); 463 return Create(CB, Bundles, InsertPt); 464 } 465 466 CallBase *CallBase::removeOperandBundle(CallBase *CB, uint32_t ID, 467 Instruction *InsertPt) { 468 SmallVector<OperandBundleDef, 1> Bundles; 469 bool CreateNew = false; 470 471 for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) { 472 auto Bundle = CB->getOperandBundleAt(I); 473 if (Bundle.getTagID() == ID) { 474 CreateNew = true; 475 continue; 476 } 477 Bundles.emplace_back(Bundle); 478 } 479 480 return CreateNew ? Create(CB, Bundles, InsertPt) : CB; 481 } 482 483 bool CallBase::hasReadingOperandBundles() const { 484 // Implementation note: this is a conservative implementation of operand 485 // bundle semantics, where *any* non-assume operand bundle forces a callsite 486 // to be at least readonly. 487 return hasOperandBundles() && getIntrinsicID() != Intrinsic::assume; 488 } 489 490 //===----------------------------------------------------------------------===// 491 // CallInst Implementation 492 //===----------------------------------------------------------------------===// 493 494 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, 495 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) { 496 this->FTy = FTy; 497 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 && 498 "NumOperands not set up?"); 499 500 #ifndef NDEBUG 501 assert((Args.size() == FTy->getNumParams() || 502 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 503 "Calling a function with bad signature!"); 504 505 for (unsigned i = 0; i != Args.size(); ++i) 506 assert((i >= FTy->getNumParams() || 507 FTy->getParamType(i) == Args[i]->getType()) && 508 "Calling a function with a bad signature!"); 509 #endif 510 511 // Set operands in order of their index to match use-list-order 512 // prediction. 513 llvm::copy(Args, op_begin()); 514 setCalledOperand(Func); 515 516 auto It = populateBundleOperandInfos(Bundles, Args.size()); 517 (void)It; 518 assert(It + 1 == op_end() && "Should add up!"); 519 520 setName(NameStr); 521 } 522 523 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) { 524 this->FTy = FTy; 525 assert(getNumOperands() == 1 && "NumOperands not set up?"); 526 setCalledOperand(Func); 527 528 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature"); 529 530 setName(NameStr); 531 } 532 533 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name, 534 Instruction *InsertBefore) 535 : CallBase(Ty->getReturnType(), Instruction::Call, 536 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) { 537 init(Ty, Func, Name); 538 } 539 540 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name, 541 BasicBlock *InsertAtEnd) 542 : CallBase(Ty->getReturnType(), Instruction::Call, 543 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) { 544 init(Ty, Func, Name); 545 } 546 547 CallInst::CallInst(const CallInst &CI) 548 : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call, 549 OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(), 550 CI.getNumOperands()) { 551 setTailCallKind(CI.getTailCallKind()); 552 setCallingConv(CI.getCallingConv()); 553 554 std::copy(CI.op_begin(), CI.op_end(), op_begin()); 555 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(), 556 bundle_op_info_begin()); 557 SubclassOptionalData = CI.SubclassOptionalData; 558 } 559 560 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB, 561 Instruction *InsertPt) { 562 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end()); 563 564 auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(), 565 Args, OpB, CI->getName(), InsertPt); 566 NewCI->setTailCallKind(CI->getTailCallKind()); 567 NewCI->setCallingConv(CI->getCallingConv()); 568 NewCI->SubclassOptionalData = CI->SubclassOptionalData; 569 NewCI->setAttributes(CI->getAttributes()); 570 NewCI->setDebugLoc(CI->getDebugLoc()); 571 return NewCI; 572 } 573 574 // Update profile weight for call instruction by scaling it using the ratio 575 // of S/T. The meaning of "branch_weights" meta data for call instruction is 576 // transfered to represent call count. 577 void CallInst::updateProfWeight(uint64_t S, uint64_t T) { 578 auto *ProfileData = getMetadata(LLVMContext::MD_prof); 579 if (ProfileData == nullptr) 580 return; 581 582 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); 583 if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") && 584 !ProfDataName->getString().equals("VP"))) 585 return; 586 587 if (T == 0) { 588 LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in " 589 "div by 0. Ignoring. Likely the function " 590 << getParent()->getParent()->getName() 591 << " has 0 entry count, and contains call instructions " 592 "with non-zero prof info."); 593 return; 594 } 595 596 MDBuilder MDB(getContext()); 597 SmallVector<Metadata *, 3> Vals; 598 Vals.push_back(ProfileData->getOperand(0)); 599 APInt APS(128, S), APT(128, T); 600 if (ProfDataName->getString().equals("branch_weights") && 601 ProfileData->getNumOperands() > 0) { 602 // Using APInt::div may be expensive, but most cases should fit 64 bits. 603 APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)) 604 ->getValue() 605 .getZExtValue()); 606 Val *= APS; 607 Vals.push_back(MDB.createConstant( 608 ConstantInt::get(Type::getInt32Ty(getContext()), 609 Val.udiv(APT).getLimitedValue(UINT32_MAX)))); 610 } else if (ProfDataName->getString().equals("VP")) 611 for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) { 612 // The first value is the key of the value profile, which will not change. 613 Vals.push_back(ProfileData->getOperand(i)); 614 uint64_t Count = 615 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1)) 616 ->getValue() 617 .getZExtValue(); 618 // Don't scale the magic number. 619 if (Count == NOMORE_ICP_MAGICNUM) { 620 Vals.push_back(ProfileData->getOperand(i + 1)); 621 continue; 622 } 623 // Using APInt::div may be expensive, but most cases should fit 64 bits. 624 APInt Val(128, Count); 625 Val *= APS; 626 Vals.push_back(MDB.createConstant( 627 ConstantInt::get(Type::getInt64Ty(getContext()), 628 Val.udiv(APT).getLimitedValue()))); 629 } 630 setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals)); 631 } 632 633 /// IsConstantOne - Return true only if val is constant int 1 634 static bool IsConstantOne(Value *val) { 635 assert(val && "IsConstantOne does not work with nullptr val"); 636 const ConstantInt *CVal = dyn_cast<ConstantInt>(val); 637 return CVal && CVal->isOne(); 638 } 639 640 static Instruction *createMalloc(Instruction *InsertBefore, 641 BasicBlock *InsertAtEnd, Type *IntPtrTy, 642 Type *AllocTy, Value *AllocSize, 643 Value *ArraySize, 644 ArrayRef<OperandBundleDef> OpB, 645 Function *MallocF, const Twine &Name) { 646 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 647 "createMalloc needs either InsertBefore or InsertAtEnd"); 648 649 // malloc(type) becomes: 650 // bitcast (i8* malloc(typeSize)) to type* 651 // malloc(type, arraySize) becomes: 652 // bitcast (i8* malloc(typeSize*arraySize)) to type* 653 if (!ArraySize) 654 ArraySize = ConstantInt::get(IntPtrTy, 1); 655 else if (ArraySize->getType() != IntPtrTy) { 656 if (InsertBefore) 657 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 658 "", InsertBefore); 659 else 660 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 661 "", InsertAtEnd); 662 } 663 664 if (!IsConstantOne(ArraySize)) { 665 if (IsConstantOne(AllocSize)) { 666 AllocSize = ArraySize; // Operand * 1 = Operand 667 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) { 668 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy, 669 false /*ZExt*/); 670 // Malloc arg is constant product of type size and array size 671 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize)); 672 } else { 673 // Multiply type size by the array size... 674 if (InsertBefore) 675 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 676 "mallocsize", InsertBefore); 677 else 678 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 679 "mallocsize", InsertAtEnd); 680 } 681 } 682 683 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size"); 684 // Create the call to Malloc. 685 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 686 Module *M = BB->getParent()->getParent(); 687 Type *BPTy = Type::getInt8PtrTy(BB->getContext()); 688 FunctionCallee MallocFunc = MallocF; 689 if (!MallocFunc) 690 // prototype malloc as "void *malloc(size_t)" 691 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy); 692 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy); 693 CallInst *MCall = nullptr; 694 Instruction *Result = nullptr; 695 if (InsertBefore) { 696 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall", 697 InsertBefore); 698 Result = MCall; 699 if (Result->getType() != AllocPtrType) 700 // Create a cast instruction to convert to the right type... 701 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore); 702 } else { 703 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall"); 704 Result = MCall; 705 if (Result->getType() != AllocPtrType) { 706 InsertAtEnd->getInstList().push_back(MCall); 707 // Create a cast instruction to convert to the right type... 708 Result = new BitCastInst(MCall, AllocPtrType, Name); 709 } 710 } 711 MCall->setTailCall(); 712 if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) { 713 MCall->setCallingConv(F->getCallingConv()); 714 if (!F->returnDoesNotAlias()) 715 F->setReturnDoesNotAlias(); 716 } 717 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type"); 718 719 return Result; 720 } 721 722 /// CreateMalloc - Generate the IR for a call to malloc: 723 /// 1. Compute the malloc call's argument as the specified type's size, 724 /// possibly multiplied by the array size if the array size is not 725 /// constant 1. 726 /// 2. Call malloc with that argument. 727 /// 3. Bitcast the result of the malloc call to the specified type. 728 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, 729 Type *IntPtrTy, Type *AllocTy, 730 Value *AllocSize, Value *ArraySize, 731 Function *MallocF, 732 const Twine &Name) { 733 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, 734 ArraySize, None, MallocF, Name); 735 } 736 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, 737 Type *IntPtrTy, Type *AllocTy, 738 Value *AllocSize, Value *ArraySize, 739 ArrayRef<OperandBundleDef> OpB, 740 Function *MallocF, 741 const Twine &Name) { 742 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, 743 ArraySize, OpB, MallocF, Name); 744 } 745 746 /// CreateMalloc - Generate the IR for a call to malloc: 747 /// 1. Compute the malloc call's argument as the specified type's size, 748 /// possibly multiplied by the array size if the array size is not 749 /// constant 1. 750 /// 2. Call malloc with that argument. 751 /// 3. Bitcast the result of the malloc call to the specified type. 752 /// Note: This function does not add the bitcast to the basic block, that is the 753 /// responsibility of the caller. 754 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, 755 Type *IntPtrTy, Type *AllocTy, 756 Value *AllocSize, Value *ArraySize, 757 Function *MallocF, const Twine &Name) { 758 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, 759 ArraySize, None, MallocF, Name); 760 } 761 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, 762 Type *IntPtrTy, Type *AllocTy, 763 Value *AllocSize, Value *ArraySize, 764 ArrayRef<OperandBundleDef> OpB, 765 Function *MallocF, const Twine &Name) { 766 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, 767 ArraySize, OpB, MallocF, Name); 768 } 769 770 static Instruction *createFree(Value *Source, 771 ArrayRef<OperandBundleDef> Bundles, 772 Instruction *InsertBefore, 773 BasicBlock *InsertAtEnd) { 774 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 775 "createFree needs either InsertBefore or InsertAtEnd"); 776 assert(Source->getType()->isPointerTy() && 777 "Can not free something of nonpointer type!"); 778 779 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 780 Module *M = BB->getParent()->getParent(); 781 782 Type *VoidTy = Type::getVoidTy(M->getContext()); 783 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext()); 784 // prototype free as "void free(void*)" 785 FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy); 786 CallInst *Result = nullptr; 787 Value *PtrCast = Source; 788 if (InsertBefore) { 789 if (Source->getType() != IntPtrTy) 790 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore); 791 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore); 792 } else { 793 if (Source->getType() != IntPtrTy) 794 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd); 795 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, ""); 796 } 797 Result->setTailCall(); 798 if (Function *F = dyn_cast<Function>(FreeFunc.getCallee())) 799 Result->setCallingConv(F->getCallingConv()); 800 801 return Result; 802 } 803 804 /// CreateFree - Generate the IR for a call to the builtin free function. 805 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) { 806 return createFree(Source, None, InsertBefore, nullptr); 807 } 808 Instruction *CallInst::CreateFree(Value *Source, 809 ArrayRef<OperandBundleDef> Bundles, 810 Instruction *InsertBefore) { 811 return createFree(Source, Bundles, InsertBefore, nullptr); 812 } 813 814 /// CreateFree - Generate the IR for a call to the builtin free function. 815 /// Note: This function does not add the call to the basic block, that is the 816 /// responsibility of the caller. 817 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) { 818 Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd); 819 assert(FreeCall && "CreateFree did not create a CallInst"); 820 return FreeCall; 821 } 822 Instruction *CallInst::CreateFree(Value *Source, 823 ArrayRef<OperandBundleDef> Bundles, 824 BasicBlock *InsertAtEnd) { 825 Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd); 826 assert(FreeCall && "CreateFree did not create a CallInst"); 827 return FreeCall; 828 } 829 830 //===----------------------------------------------------------------------===// 831 // InvokeInst Implementation 832 //===----------------------------------------------------------------------===// 833 834 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal, 835 BasicBlock *IfException, ArrayRef<Value *> Args, 836 ArrayRef<OperandBundleDef> Bundles, 837 const Twine &NameStr) { 838 this->FTy = FTy; 839 840 assert((int)getNumOperands() == 841 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) && 842 "NumOperands not set up?"); 843 844 #ifndef NDEBUG 845 assert(((Args.size() == FTy->getNumParams()) || 846 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 847 "Invoking a function with bad signature"); 848 849 for (unsigned i = 0, e = Args.size(); i != e; i++) 850 assert((i >= FTy->getNumParams() || 851 FTy->getParamType(i) == Args[i]->getType()) && 852 "Invoking a function with a bad signature!"); 853 #endif 854 855 // Set operands in order of their index to match use-list-order 856 // prediction. 857 llvm::copy(Args, op_begin()); 858 setNormalDest(IfNormal); 859 setUnwindDest(IfException); 860 setCalledOperand(Fn); 861 862 auto It = populateBundleOperandInfos(Bundles, Args.size()); 863 (void)It; 864 assert(It + 3 == op_end() && "Should add up!"); 865 866 setName(NameStr); 867 } 868 869 InvokeInst::InvokeInst(const InvokeInst &II) 870 : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke, 871 OperandTraits<CallBase>::op_end(this) - II.getNumOperands(), 872 II.getNumOperands()) { 873 setCallingConv(II.getCallingConv()); 874 std::copy(II.op_begin(), II.op_end(), op_begin()); 875 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(), 876 bundle_op_info_begin()); 877 SubclassOptionalData = II.SubclassOptionalData; 878 } 879 880 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB, 881 Instruction *InsertPt) { 882 std::vector<Value *> Args(II->arg_begin(), II->arg_end()); 883 884 auto *NewII = InvokeInst::Create( 885 II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(), 886 II->getUnwindDest(), Args, OpB, II->getName(), InsertPt); 887 NewII->setCallingConv(II->getCallingConv()); 888 NewII->SubclassOptionalData = II->SubclassOptionalData; 889 NewII->setAttributes(II->getAttributes()); 890 NewII->setDebugLoc(II->getDebugLoc()); 891 return NewII; 892 } 893 894 LandingPadInst *InvokeInst::getLandingPadInst() const { 895 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI()); 896 } 897 898 //===----------------------------------------------------------------------===// 899 // CallBrInst Implementation 900 //===----------------------------------------------------------------------===// 901 902 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough, 903 ArrayRef<BasicBlock *> IndirectDests, 904 ArrayRef<Value *> Args, 905 ArrayRef<OperandBundleDef> Bundles, 906 const Twine &NameStr) { 907 this->FTy = FTy; 908 909 assert((int)getNumOperands() == 910 ComputeNumOperands(Args.size(), IndirectDests.size(), 911 CountBundleInputs(Bundles)) && 912 "NumOperands not set up?"); 913 914 #ifndef NDEBUG 915 assert(((Args.size() == FTy->getNumParams()) || 916 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 917 "Calling a function with bad signature"); 918 919 for (unsigned i = 0, e = Args.size(); i != e; i++) 920 assert((i >= FTy->getNumParams() || 921 FTy->getParamType(i) == Args[i]->getType()) && 922 "Calling a function with a bad signature!"); 923 #endif 924 925 // Set operands in order of their index to match use-list-order 926 // prediction. 927 std::copy(Args.begin(), Args.end(), op_begin()); 928 NumIndirectDests = IndirectDests.size(); 929 setDefaultDest(Fallthrough); 930 for (unsigned i = 0; i != NumIndirectDests; ++i) 931 setIndirectDest(i, IndirectDests[i]); 932 setCalledOperand(Fn); 933 934 auto It = populateBundleOperandInfos(Bundles, Args.size()); 935 (void)It; 936 assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!"); 937 938 setName(NameStr); 939 } 940 941 void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) { 942 assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr"); 943 if (BasicBlock *OldBB = getIndirectDest(i)) { 944 BlockAddress *Old = BlockAddress::get(OldBB); 945 BlockAddress *New = BlockAddress::get(B); 946 for (unsigned ArgNo = 0, e = arg_size(); ArgNo != e; ++ArgNo) 947 if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old) 948 setArgOperand(ArgNo, New); 949 } 950 } 951 952 CallBrInst::CallBrInst(const CallBrInst &CBI) 953 : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr, 954 OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(), 955 CBI.getNumOperands()) { 956 setCallingConv(CBI.getCallingConv()); 957 std::copy(CBI.op_begin(), CBI.op_end(), op_begin()); 958 std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(), 959 bundle_op_info_begin()); 960 SubclassOptionalData = CBI.SubclassOptionalData; 961 NumIndirectDests = CBI.NumIndirectDests; 962 } 963 964 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB, 965 Instruction *InsertPt) { 966 std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end()); 967 968 auto *NewCBI = CallBrInst::Create( 969 CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(), 970 CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt); 971 NewCBI->setCallingConv(CBI->getCallingConv()); 972 NewCBI->SubclassOptionalData = CBI->SubclassOptionalData; 973 NewCBI->setAttributes(CBI->getAttributes()); 974 NewCBI->setDebugLoc(CBI->getDebugLoc()); 975 NewCBI->NumIndirectDests = CBI->NumIndirectDests; 976 return NewCBI; 977 } 978 979 //===----------------------------------------------------------------------===// 980 // ReturnInst Implementation 981 //===----------------------------------------------------------------------===// 982 983 ReturnInst::ReturnInst(const ReturnInst &RI) 984 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret, 985 OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(), 986 RI.getNumOperands()) { 987 if (RI.getNumOperands()) 988 Op<0>() = RI.Op<0>(); 989 SubclassOptionalData = RI.SubclassOptionalData; 990 } 991 992 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore) 993 : Instruction(Type::getVoidTy(C), Instruction::Ret, 994 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 995 InsertBefore) { 996 if (retVal) 997 Op<0>() = retVal; 998 } 999 1000 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) 1001 : Instruction(Type::getVoidTy(C), Instruction::Ret, 1002 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 1003 InsertAtEnd) { 1004 if (retVal) 1005 Op<0>() = retVal; 1006 } 1007 1008 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 1009 : Instruction(Type::getVoidTy(Context), Instruction::Ret, 1010 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {} 1011 1012 //===----------------------------------------------------------------------===// 1013 // ResumeInst Implementation 1014 //===----------------------------------------------------------------------===// 1015 1016 ResumeInst::ResumeInst(const ResumeInst &RI) 1017 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume, 1018 OperandTraits<ResumeInst>::op_begin(this), 1) { 1019 Op<0>() = RI.Op<0>(); 1020 } 1021 1022 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore) 1023 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 1024 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) { 1025 Op<0>() = Exn; 1026 } 1027 1028 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd) 1029 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 1030 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) { 1031 Op<0>() = Exn; 1032 } 1033 1034 //===----------------------------------------------------------------------===// 1035 // CleanupReturnInst Implementation 1036 //===----------------------------------------------------------------------===// 1037 1038 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI) 1039 : Instruction(CRI.getType(), Instruction::CleanupRet, 1040 OperandTraits<CleanupReturnInst>::op_end(this) - 1041 CRI.getNumOperands(), 1042 CRI.getNumOperands()) { 1043 setSubclassData<Instruction::OpaqueField>( 1044 CRI.getSubclassData<Instruction::OpaqueField>()); 1045 Op<0>() = CRI.Op<0>(); 1046 if (CRI.hasUnwindDest()) 1047 Op<1>() = CRI.Op<1>(); 1048 } 1049 1050 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) { 1051 if (UnwindBB) 1052 setSubclassData<UnwindDestField>(true); 1053 1054 Op<0>() = CleanupPad; 1055 if (UnwindBB) 1056 Op<1>() = UnwindBB; 1057 } 1058 1059 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, 1060 unsigned Values, Instruction *InsertBefore) 1061 : Instruction(Type::getVoidTy(CleanupPad->getContext()), 1062 Instruction::CleanupRet, 1063 OperandTraits<CleanupReturnInst>::op_end(this) - Values, 1064 Values, InsertBefore) { 1065 init(CleanupPad, UnwindBB); 1066 } 1067 1068 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, 1069 unsigned Values, BasicBlock *InsertAtEnd) 1070 : Instruction(Type::getVoidTy(CleanupPad->getContext()), 1071 Instruction::CleanupRet, 1072 OperandTraits<CleanupReturnInst>::op_end(this) - Values, 1073 Values, InsertAtEnd) { 1074 init(CleanupPad, UnwindBB); 1075 } 1076 1077 //===----------------------------------------------------------------------===// 1078 // CatchReturnInst Implementation 1079 //===----------------------------------------------------------------------===// 1080 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) { 1081 Op<0>() = CatchPad; 1082 Op<1>() = BB; 1083 } 1084 1085 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI) 1086 : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet, 1087 OperandTraits<CatchReturnInst>::op_begin(this), 2) { 1088 Op<0>() = CRI.Op<0>(); 1089 Op<1>() = CRI.Op<1>(); 1090 } 1091 1092 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, 1093 Instruction *InsertBefore) 1094 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, 1095 OperandTraits<CatchReturnInst>::op_begin(this), 2, 1096 InsertBefore) { 1097 init(CatchPad, BB); 1098 } 1099 1100 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, 1101 BasicBlock *InsertAtEnd) 1102 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, 1103 OperandTraits<CatchReturnInst>::op_begin(this), 2, 1104 InsertAtEnd) { 1105 init(CatchPad, BB); 1106 } 1107 1108 //===----------------------------------------------------------------------===// 1109 // CatchSwitchInst Implementation 1110 //===----------------------------------------------------------------------===// 1111 1112 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 1113 unsigned NumReservedValues, 1114 const Twine &NameStr, 1115 Instruction *InsertBefore) 1116 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, 1117 InsertBefore) { 1118 if (UnwindDest) 1119 ++NumReservedValues; 1120 init(ParentPad, UnwindDest, NumReservedValues + 1); 1121 setName(NameStr); 1122 } 1123 1124 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 1125 unsigned NumReservedValues, 1126 const Twine &NameStr, BasicBlock *InsertAtEnd) 1127 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, 1128 InsertAtEnd) { 1129 if (UnwindDest) 1130 ++NumReservedValues; 1131 init(ParentPad, UnwindDest, NumReservedValues + 1); 1132 setName(NameStr); 1133 } 1134 1135 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI) 1136 : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr, 1137 CSI.getNumOperands()) { 1138 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands()); 1139 setNumHungOffUseOperands(ReservedSpace); 1140 Use *OL = getOperandList(); 1141 const Use *InOL = CSI.getOperandList(); 1142 for (unsigned I = 1, E = ReservedSpace; I != E; ++I) 1143 OL[I] = InOL[I]; 1144 } 1145 1146 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest, 1147 unsigned NumReservedValues) { 1148 assert(ParentPad && NumReservedValues); 1149 1150 ReservedSpace = NumReservedValues; 1151 setNumHungOffUseOperands(UnwindDest ? 2 : 1); 1152 allocHungoffUses(ReservedSpace); 1153 1154 Op<0>() = ParentPad; 1155 if (UnwindDest) { 1156 setSubclassData<UnwindDestField>(true); 1157 setUnwindDest(UnwindDest); 1158 } 1159 } 1160 1161 /// growOperands - grow operands - This grows the operand list in response to a 1162 /// push_back style of operation. This grows the number of ops by 2 times. 1163 void CatchSwitchInst::growOperands(unsigned Size) { 1164 unsigned NumOperands = getNumOperands(); 1165 assert(NumOperands >= 1); 1166 if (ReservedSpace >= NumOperands + Size) 1167 return; 1168 ReservedSpace = (NumOperands + Size / 2) * 2; 1169 growHungoffUses(ReservedSpace); 1170 } 1171 1172 void CatchSwitchInst::addHandler(BasicBlock *Handler) { 1173 unsigned OpNo = getNumOperands(); 1174 growOperands(1); 1175 assert(OpNo < ReservedSpace && "Growing didn't work!"); 1176 setNumHungOffUseOperands(getNumOperands() + 1); 1177 getOperandList()[OpNo] = Handler; 1178 } 1179 1180 void CatchSwitchInst::removeHandler(handler_iterator HI) { 1181 // Move all subsequent handlers up one. 1182 Use *EndDst = op_end() - 1; 1183 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst) 1184 *CurDst = *(CurDst + 1); 1185 // Null out the last handler use. 1186 *EndDst = nullptr; 1187 1188 setNumHungOffUseOperands(getNumOperands() - 1); 1189 } 1190 1191 //===----------------------------------------------------------------------===// 1192 // FuncletPadInst Implementation 1193 //===----------------------------------------------------------------------===// 1194 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args, 1195 const Twine &NameStr) { 1196 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?"); 1197 llvm::copy(Args, op_begin()); 1198 setParentPad(ParentPad); 1199 setName(NameStr); 1200 } 1201 1202 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI) 1203 : Instruction(FPI.getType(), FPI.getOpcode(), 1204 OperandTraits<FuncletPadInst>::op_end(this) - 1205 FPI.getNumOperands(), 1206 FPI.getNumOperands()) { 1207 std::copy(FPI.op_begin(), FPI.op_end(), op_begin()); 1208 setParentPad(FPI.getParentPad()); 1209 } 1210 1211 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, 1212 ArrayRef<Value *> Args, unsigned Values, 1213 const Twine &NameStr, Instruction *InsertBefore) 1214 : Instruction(ParentPad->getType(), Op, 1215 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, 1216 InsertBefore) { 1217 init(ParentPad, Args, NameStr); 1218 } 1219 1220 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, 1221 ArrayRef<Value *> Args, unsigned Values, 1222 const Twine &NameStr, BasicBlock *InsertAtEnd) 1223 : Instruction(ParentPad->getType(), Op, 1224 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, 1225 InsertAtEnd) { 1226 init(ParentPad, Args, NameStr); 1227 } 1228 1229 //===----------------------------------------------------------------------===// 1230 // UnreachableInst Implementation 1231 //===----------------------------------------------------------------------===// 1232 1233 UnreachableInst::UnreachableInst(LLVMContext &Context, 1234 Instruction *InsertBefore) 1235 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr, 1236 0, InsertBefore) {} 1237 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 1238 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr, 1239 0, InsertAtEnd) {} 1240 1241 //===----------------------------------------------------------------------===// 1242 // BranchInst Implementation 1243 //===----------------------------------------------------------------------===// 1244 1245 void BranchInst::AssertOK() { 1246 if (isConditional()) 1247 assert(getCondition()->getType()->isIntegerTy(1) && 1248 "May only branch on boolean predicates!"); 1249 } 1250 1251 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore) 1252 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1253 OperandTraits<BranchInst>::op_end(this) - 1, 1, 1254 InsertBefore) { 1255 assert(IfTrue && "Branch destination may not be null!"); 1256 Op<-1>() = IfTrue; 1257 } 1258 1259 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 1260 Instruction *InsertBefore) 1261 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1262 OperandTraits<BranchInst>::op_end(this) - 3, 3, 1263 InsertBefore) { 1264 // Assign in order of operand index to make use-list order predictable. 1265 Op<-3>() = Cond; 1266 Op<-2>() = IfFalse; 1267 Op<-1>() = IfTrue; 1268 #ifndef NDEBUG 1269 AssertOK(); 1270 #endif 1271 } 1272 1273 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) 1274 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1275 OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) { 1276 assert(IfTrue && "Branch destination may not be null!"); 1277 Op<-1>() = IfTrue; 1278 } 1279 1280 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 1281 BasicBlock *InsertAtEnd) 1282 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1283 OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) { 1284 // Assign in order of operand index to make use-list order predictable. 1285 Op<-3>() = Cond; 1286 Op<-2>() = IfFalse; 1287 Op<-1>() = IfTrue; 1288 #ifndef NDEBUG 1289 AssertOK(); 1290 #endif 1291 } 1292 1293 BranchInst::BranchInst(const BranchInst &BI) 1294 : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br, 1295 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(), 1296 BI.getNumOperands()) { 1297 // Assign in order of operand index to make use-list order predictable. 1298 if (BI.getNumOperands() != 1) { 1299 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!"); 1300 Op<-3>() = BI.Op<-3>(); 1301 Op<-2>() = BI.Op<-2>(); 1302 } 1303 Op<-1>() = BI.Op<-1>(); 1304 SubclassOptionalData = BI.SubclassOptionalData; 1305 } 1306 1307 void BranchInst::swapSuccessors() { 1308 assert(isConditional() && 1309 "Cannot swap successors of an unconditional branch"); 1310 Op<-1>().swap(Op<-2>()); 1311 1312 // Update profile metadata if present and it matches our structural 1313 // expectations. 1314 swapProfMetadata(); 1315 } 1316 1317 //===----------------------------------------------------------------------===// 1318 // AllocaInst Implementation 1319 //===----------------------------------------------------------------------===// 1320 1321 static Value *getAISize(LLVMContext &Context, Value *Amt) { 1322 if (!Amt) 1323 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1); 1324 else { 1325 assert(!isa<BasicBlock>(Amt) && 1326 "Passed basic block into allocation size parameter! Use other ctor"); 1327 assert(Amt->getType()->isIntegerTy() && 1328 "Allocation array size is not an integer!"); 1329 } 1330 return Amt; 1331 } 1332 1333 static Align computeAllocaDefaultAlign(Type *Ty, BasicBlock *BB) { 1334 assert(BB && "Insertion BB cannot be null when alignment not provided!"); 1335 assert(BB->getParent() && 1336 "BB must be in a Function when alignment not provided!"); 1337 const DataLayout &DL = BB->getModule()->getDataLayout(); 1338 return DL.getPrefTypeAlign(Ty); 1339 } 1340 1341 static Align computeAllocaDefaultAlign(Type *Ty, Instruction *I) { 1342 assert(I && "Insertion position cannot be null when alignment not provided!"); 1343 return computeAllocaDefaultAlign(Ty, I->getParent()); 1344 } 1345 1346 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, 1347 Instruction *InsertBefore) 1348 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {} 1349 1350 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, 1351 BasicBlock *InsertAtEnd) 1352 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {} 1353 1354 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1355 const Twine &Name, Instruction *InsertBefore) 1356 : AllocaInst(Ty, AddrSpace, ArraySize, 1357 computeAllocaDefaultAlign(Ty, InsertBefore), Name, 1358 InsertBefore) {} 1359 1360 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1361 const Twine &Name, BasicBlock *InsertAtEnd) 1362 : AllocaInst(Ty, AddrSpace, ArraySize, 1363 computeAllocaDefaultAlign(Ty, InsertAtEnd), Name, 1364 InsertAtEnd) {} 1365 1366 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1367 Align Align, const Twine &Name, 1368 Instruction *InsertBefore) 1369 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca, 1370 getAISize(Ty->getContext(), ArraySize), InsertBefore), 1371 AllocatedType(Ty) { 1372 setAlignment(Align); 1373 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 1374 setName(Name); 1375 } 1376 1377 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1378 Align Align, const Twine &Name, BasicBlock *InsertAtEnd) 1379 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca, 1380 getAISize(Ty->getContext(), ArraySize), InsertAtEnd), 1381 AllocatedType(Ty) { 1382 setAlignment(Align); 1383 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 1384 setName(Name); 1385 } 1386 1387 1388 bool AllocaInst::isArrayAllocation() const { 1389 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0))) 1390 return !CI->isOne(); 1391 return true; 1392 } 1393 1394 /// isStaticAlloca - Return true if this alloca is in the entry block of the 1395 /// function and is a constant size. If so, the code generator will fold it 1396 /// into the prolog/epilog code, so it is basically free. 1397 bool AllocaInst::isStaticAlloca() const { 1398 // Must be constant size. 1399 if (!isa<ConstantInt>(getArraySize())) return false; 1400 1401 // Must be in the entry block. 1402 const BasicBlock *Parent = getParent(); 1403 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca(); 1404 } 1405 1406 //===----------------------------------------------------------------------===// 1407 // LoadInst Implementation 1408 //===----------------------------------------------------------------------===// 1409 1410 void LoadInst::AssertOK() { 1411 assert(getOperand(0)->getType()->isPointerTy() && 1412 "Ptr must have pointer type."); 1413 } 1414 1415 static Align computeLoadStoreDefaultAlign(Type *Ty, BasicBlock *BB) { 1416 assert(BB && "Insertion BB cannot be null when alignment not provided!"); 1417 assert(BB->getParent() && 1418 "BB must be in a Function when alignment not provided!"); 1419 const DataLayout &DL = BB->getModule()->getDataLayout(); 1420 return DL.getABITypeAlign(Ty); 1421 } 1422 1423 static Align computeLoadStoreDefaultAlign(Type *Ty, Instruction *I) { 1424 assert(I && "Insertion position cannot be null when alignment not provided!"); 1425 return computeLoadStoreDefaultAlign(Ty, I->getParent()); 1426 } 1427 1428 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, 1429 Instruction *InsertBef) 1430 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {} 1431 1432 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, 1433 BasicBlock *InsertAE) 1434 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {} 1435 1436 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1437 Instruction *InsertBef) 1438 : LoadInst(Ty, Ptr, Name, isVolatile, 1439 computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {} 1440 1441 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1442 BasicBlock *InsertAE) 1443 : LoadInst(Ty, Ptr, Name, isVolatile, 1444 computeLoadStoreDefaultAlign(Ty, InsertAE), InsertAE) {} 1445 1446 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1447 Align Align, Instruction *InsertBef) 1448 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, 1449 SyncScope::System, InsertBef) {} 1450 1451 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1452 Align Align, BasicBlock *InsertAE) 1453 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, 1454 SyncScope::System, InsertAE) {} 1455 1456 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1457 Align Align, AtomicOrdering Order, SyncScope::ID SSID, 1458 Instruction *InsertBef) 1459 : UnaryInstruction(Ty, Load, Ptr, InsertBef) { 1460 assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty)); 1461 setVolatile(isVolatile); 1462 setAlignment(Align); 1463 setAtomic(Order, SSID); 1464 AssertOK(); 1465 setName(Name); 1466 } 1467 1468 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1469 Align Align, AtomicOrdering Order, SyncScope::ID SSID, 1470 BasicBlock *InsertAE) 1471 : UnaryInstruction(Ty, Load, Ptr, InsertAE) { 1472 assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty)); 1473 setVolatile(isVolatile); 1474 setAlignment(Align); 1475 setAtomic(Order, SSID); 1476 AssertOK(); 1477 setName(Name); 1478 } 1479 1480 //===----------------------------------------------------------------------===// 1481 // StoreInst Implementation 1482 //===----------------------------------------------------------------------===// 1483 1484 void StoreInst::AssertOK() { 1485 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!"); 1486 assert(getOperand(1)->getType()->isPointerTy() && 1487 "Ptr must have pointer type!"); 1488 assert(cast<PointerType>(getOperand(1)->getType()) 1489 ->isOpaqueOrPointeeTypeMatches(getOperand(0)->getType()) && 1490 "Ptr must be a pointer to Val type!"); 1491 } 1492 1493 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore) 1494 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {} 1495 1496 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd) 1497 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {} 1498 1499 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1500 Instruction *InsertBefore) 1501 : StoreInst(val, addr, isVolatile, 1502 computeLoadStoreDefaultAlign(val->getType(), InsertBefore), 1503 InsertBefore) {} 1504 1505 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1506 BasicBlock *InsertAtEnd) 1507 : StoreInst(val, addr, isVolatile, 1508 computeLoadStoreDefaultAlign(val->getType(), InsertAtEnd), 1509 InsertAtEnd) {} 1510 1511 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align, 1512 Instruction *InsertBefore) 1513 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, 1514 SyncScope::System, InsertBefore) {} 1515 1516 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align, 1517 BasicBlock *InsertAtEnd) 1518 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, 1519 SyncScope::System, InsertAtEnd) {} 1520 1521 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align, 1522 AtomicOrdering Order, SyncScope::ID SSID, 1523 Instruction *InsertBefore) 1524 : Instruction(Type::getVoidTy(val->getContext()), Store, 1525 OperandTraits<StoreInst>::op_begin(this), 1526 OperandTraits<StoreInst>::operands(this), InsertBefore) { 1527 Op<0>() = val; 1528 Op<1>() = addr; 1529 setVolatile(isVolatile); 1530 setAlignment(Align); 1531 setAtomic(Order, SSID); 1532 AssertOK(); 1533 } 1534 1535 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align, 1536 AtomicOrdering Order, SyncScope::ID SSID, 1537 BasicBlock *InsertAtEnd) 1538 : Instruction(Type::getVoidTy(val->getContext()), Store, 1539 OperandTraits<StoreInst>::op_begin(this), 1540 OperandTraits<StoreInst>::operands(this), InsertAtEnd) { 1541 Op<0>() = val; 1542 Op<1>() = addr; 1543 setVolatile(isVolatile); 1544 setAlignment(Align); 1545 setAtomic(Order, SSID); 1546 AssertOK(); 1547 } 1548 1549 1550 //===----------------------------------------------------------------------===// 1551 // AtomicCmpXchgInst Implementation 1552 //===----------------------------------------------------------------------===// 1553 1554 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal, 1555 Align Alignment, AtomicOrdering SuccessOrdering, 1556 AtomicOrdering FailureOrdering, 1557 SyncScope::ID SSID) { 1558 Op<0>() = Ptr; 1559 Op<1>() = Cmp; 1560 Op<2>() = NewVal; 1561 setSuccessOrdering(SuccessOrdering); 1562 setFailureOrdering(FailureOrdering); 1563 setSyncScopeID(SSID); 1564 setAlignment(Alignment); 1565 1566 assert(getOperand(0) && getOperand(1) && getOperand(2) && 1567 "All operands must be non-null!"); 1568 assert(getOperand(0)->getType()->isPointerTy() && 1569 "Ptr must have pointer type!"); 1570 assert(cast<PointerType>(getOperand(0)->getType()) 1571 ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) && 1572 "Ptr must be a pointer to Cmp type!"); 1573 assert(cast<PointerType>(getOperand(0)->getType()) 1574 ->isOpaqueOrPointeeTypeMatches(getOperand(2)->getType()) && 1575 "Ptr must be a pointer to NewVal type!"); 1576 assert(getOperand(1)->getType() == getOperand(2)->getType() && 1577 "Cmp type and NewVal type must be same!"); 1578 } 1579 1580 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1581 Align Alignment, 1582 AtomicOrdering SuccessOrdering, 1583 AtomicOrdering FailureOrdering, 1584 SyncScope::ID SSID, 1585 Instruction *InsertBefore) 1586 : Instruction( 1587 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())), 1588 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1589 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) { 1590 Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID); 1591 } 1592 1593 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1594 Align Alignment, 1595 AtomicOrdering SuccessOrdering, 1596 AtomicOrdering FailureOrdering, 1597 SyncScope::ID SSID, 1598 BasicBlock *InsertAtEnd) 1599 : Instruction( 1600 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())), 1601 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1602 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) { 1603 Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID); 1604 } 1605 1606 //===----------------------------------------------------------------------===// 1607 // AtomicRMWInst Implementation 1608 //===----------------------------------------------------------------------===// 1609 1610 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val, 1611 Align Alignment, AtomicOrdering Ordering, 1612 SyncScope::ID SSID) { 1613 Op<0>() = Ptr; 1614 Op<1>() = Val; 1615 setOperation(Operation); 1616 setOrdering(Ordering); 1617 setSyncScopeID(SSID); 1618 setAlignment(Alignment); 1619 1620 assert(getOperand(0) && getOperand(1) && 1621 "All operands must be non-null!"); 1622 assert(getOperand(0)->getType()->isPointerTy() && 1623 "Ptr must have pointer type!"); 1624 assert(cast<PointerType>(getOperand(0)->getType()) 1625 ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) && 1626 "Ptr must be a pointer to Val type!"); 1627 assert(Ordering != AtomicOrdering::NotAtomic && 1628 "AtomicRMW instructions must be atomic!"); 1629 } 1630 1631 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1632 Align Alignment, AtomicOrdering Ordering, 1633 SyncScope::ID SSID, Instruction *InsertBefore) 1634 : Instruction(Val->getType(), AtomicRMW, 1635 OperandTraits<AtomicRMWInst>::op_begin(this), 1636 OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) { 1637 Init(Operation, Ptr, Val, Alignment, Ordering, SSID); 1638 } 1639 1640 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1641 Align Alignment, AtomicOrdering Ordering, 1642 SyncScope::ID SSID, BasicBlock *InsertAtEnd) 1643 : Instruction(Val->getType(), AtomicRMW, 1644 OperandTraits<AtomicRMWInst>::op_begin(this), 1645 OperandTraits<AtomicRMWInst>::operands(this), InsertAtEnd) { 1646 Init(Operation, Ptr, Val, Alignment, Ordering, SSID); 1647 } 1648 1649 StringRef AtomicRMWInst::getOperationName(BinOp Op) { 1650 switch (Op) { 1651 case AtomicRMWInst::Xchg: 1652 return "xchg"; 1653 case AtomicRMWInst::Add: 1654 return "add"; 1655 case AtomicRMWInst::Sub: 1656 return "sub"; 1657 case AtomicRMWInst::And: 1658 return "and"; 1659 case AtomicRMWInst::Nand: 1660 return "nand"; 1661 case AtomicRMWInst::Or: 1662 return "or"; 1663 case AtomicRMWInst::Xor: 1664 return "xor"; 1665 case AtomicRMWInst::Max: 1666 return "max"; 1667 case AtomicRMWInst::Min: 1668 return "min"; 1669 case AtomicRMWInst::UMax: 1670 return "umax"; 1671 case AtomicRMWInst::UMin: 1672 return "umin"; 1673 case AtomicRMWInst::FAdd: 1674 return "fadd"; 1675 case AtomicRMWInst::FSub: 1676 return "fsub"; 1677 case AtomicRMWInst::BAD_BINOP: 1678 return "<invalid operation>"; 1679 } 1680 1681 llvm_unreachable("invalid atomicrmw operation"); 1682 } 1683 1684 //===----------------------------------------------------------------------===// 1685 // FenceInst Implementation 1686 //===----------------------------------------------------------------------===// 1687 1688 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1689 SyncScope::ID SSID, 1690 Instruction *InsertBefore) 1691 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) { 1692 setOrdering(Ordering); 1693 setSyncScopeID(SSID); 1694 } 1695 1696 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1697 SyncScope::ID SSID, 1698 BasicBlock *InsertAtEnd) 1699 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) { 1700 setOrdering(Ordering); 1701 setSyncScopeID(SSID); 1702 } 1703 1704 //===----------------------------------------------------------------------===// 1705 // GetElementPtrInst Implementation 1706 //===----------------------------------------------------------------------===// 1707 1708 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList, 1709 const Twine &Name) { 1710 assert(getNumOperands() == 1 + IdxList.size() && 1711 "NumOperands not initialized?"); 1712 Op<0>() = Ptr; 1713 llvm::copy(IdxList, op_begin() + 1); 1714 setName(Name); 1715 } 1716 1717 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI) 1718 : Instruction(GEPI.getType(), GetElementPtr, 1719 OperandTraits<GetElementPtrInst>::op_end(this) - 1720 GEPI.getNumOperands(), 1721 GEPI.getNumOperands()), 1722 SourceElementType(GEPI.SourceElementType), 1723 ResultElementType(GEPI.ResultElementType) { 1724 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin()); 1725 SubclassOptionalData = GEPI.SubclassOptionalData; 1726 } 1727 1728 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) { 1729 if (auto *Struct = dyn_cast<StructType>(Ty)) { 1730 if (!Struct->indexValid(Idx)) 1731 return nullptr; 1732 return Struct->getTypeAtIndex(Idx); 1733 } 1734 if (!Idx->getType()->isIntOrIntVectorTy()) 1735 return nullptr; 1736 if (auto *Array = dyn_cast<ArrayType>(Ty)) 1737 return Array->getElementType(); 1738 if (auto *Vector = dyn_cast<VectorType>(Ty)) 1739 return Vector->getElementType(); 1740 return nullptr; 1741 } 1742 1743 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) { 1744 if (auto *Struct = dyn_cast<StructType>(Ty)) { 1745 if (Idx >= Struct->getNumElements()) 1746 return nullptr; 1747 return Struct->getElementType(Idx); 1748 } 1749 if (auto *Array = dyn_cast<ArrayType>(Ty)) 1750 return Array->getElementType(); 1751 if (auto *Vector = dyn_cast<VectorType>(Ty)) 1752 return Vector->getElementType(); 1753 return nullptr; 1754 } 1755 1756 template <typename IndexTy> 1757 static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) { 1758 if (IdxList.empty()) 1759 return Ty; 1760 for (IndexTy V : IdxList.slice(1)) { 1761 Ty = GetElementPtrInst::getTypeAtIndex(Ty, V); 1762 if (!Ty) 1763 return Ty; 1764 } 1765 return Ty; 1766 } 1767 1768 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) { 1769 return getIndexedTypeInternal(Ty, IdxList); 1770 } 1771 1772 Type *GetElementPtrInst::getIndexedType(Type *Ty, 1773 ArrayRef<Constant *> IdxList) { 1774 return getIndexedTypeInternal(Ty, IdxList); 1775 } 1776 1777 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) { 1778 return getIndexedTypeInternal(Ty, IdxList); 1779 } 1780 1781 /// hasAllZeroIndices - Return true if all of the indices of this GEP are 1782 /// zeros. If so, the result pointer and the first operand have the same 1783 /// value, just potentially different types. 1784 bool GetElementPtrInst::hasAllZeroIndices() const { 1785 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1786 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) { 1787 if (!CI->isZero()) return false; 1788 } else { 1789 return false; 1790 } 1791 } 1792 return true; 1793 } 1794 1795 /// hasAllConstantIndices - Return true if all of the indices of this GEP are 1796 /// constant integers. If so, the result pointer and the first operand have 1797 /// a constant offset between them. 1798 bool GetElementPtrInst::hasAllConstantIndices() const { 1799 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1800 if (!isa<ConstantInt>(getOperand(i))) 1801 return false; 1802 } 1803 return true; 1804 } 1805 1806 void GetElementPtrInst::setIsInBounds(bool B) { 1807 cast<GEPOperator>(this)->setIsInBounds(B); 1808 } 1809 1810 bool GetElementPtrInst::isInBounds() const { 1811 return cast<GEPOperator>(this)->isInBounds(); 1812 } 1813 1814 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL, 1815 APInt &Offset) const { 1816 // Delegate to the generic GEPOperator implementation. 1817 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset); 1818 } 1819 1820 bool GetElementPtrInst::collectOffset( 1821 const DataLayout &DL, unsigned BitWidth, 1822 MapVector<Value *, APInt> &VariableOffsets, 1823 APInt &ConstantOffset) const { 1824 // Delegate to the generic GEPOperator implementation. 1825 return cast<GEPOperator>(this)->collectOffset(DL, BitWidth, VariableOffsets, 1826 ConstantOffset); 1827 } 1828 1829 //===----------------------------------------------------------------------===// 1830 // ExtractElementInst Implementation 1831 //===----------------------------------------------------------------------===// 1832 1833 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1834 const Twine &Name, 1835 Instruction *InsertBef) 1836 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1837 ExtractElement, 1838 OperandTraits<ExtractElementInst>::op_begin(this), 1839 2, InsertBef) { 1840 assert(isValidOperands(Val, Index) && 1841 "Invalid extractelement instruction operands!"); 1842 Op<0>() = Val; 1843 Op<1>() = Index; 1844 setName(Name); 1845 } 1846 1847 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1848 const Twine &Name, 1849 BasicBlock *InsertAE) 1850 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1851 ExtractElement, 1852 OperandTraits<ExtractElementInst>::op_begin(this), 1853 2, InsertAE) { 1854 assert(isValidOperands(Val, Index) && 1855 "Invalid extractelement instruction operands!"); 1856 1857 Op<0>() = Val; 1858 Op<1>() = Index; 1859 setName(Name); 1860 } 1861 1862 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) { 1863 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy()) 1864 return false; 1865 return true; 1866 } 1867 1868 //===----------------------------------------------------------------------===// 1869 // InsertElementInst Implementation 1870 //===----------------------------------------------------------------------===// 1871 1872 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1873 const Twine &Name, 1874 Instruction *InsertBef) 1875 : Instruction(Vec->getType(), InsertElement, 1876 OperandTraits<InsertElementInst>::op_begin(this), 1877 3, InsertBef) { 1878 assert(isValidOperands(Vec, Elt, Index) && 1879 "Invalid insertelement instruction operands!"); 1880 Op<0>() = Vec; 1881 Op<1>() = Elt; 1882 Op<2>() = Index; 1883 setName(Name); 1884 } 1885 1886 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1887 const Twine &Name, 1888 BasicBlock *InsertAE) 1889 : Instruction(Vec->getType(), InsertElement, 1890 OperandTraits<InsertElementInst>::op_begin(this), 1891 3, InsertAE) { 1892 assert(isValidOperands(Vec, Elt, Index) && 1893 "Invalid insertelement instruction operands!"); 1894 1895 Op<0>() = Vec; 1896 Op<1>() = Elt; 1897 Op<2>() = Index; 1898 setName(Name); 1899 } 1900 1901 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, 1902 const Value *Index) { 1903 if (!Vec->getType()->isVectorTy()) 1904 return false; // First operand of insertelement must be vector type. 1905 1906 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType()) 1907 return false;// Second operand of insertelement must be vector element type. 1908 1909 if (!Index->getType()->isIntegerTy()) 1910 return false; // Third operand of insertelement must be i32. 1911 return true; 1912 } 1913 1914 //===----------------------------------------------------------------------===// 1915 // ShuffleVectorInst Implementation 1916 //===----------------------------------------------------------------------===// 1917 1918 static Value *createPlaceholderForShuffleVector(Value *V) { 1919 assert(V && "Cannot create placeholder of nullptr V"); 1920 return PoisonValue::get(V->getType()); 1921 } 1922 1923 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *Mask, const Twine &Name, 1924 Instruction *InsertBefore) 1925 : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name, 1926 InsertBefore) {} 1927 1928 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *Mask, const Twine &Name, 1929 BasicBlock *InsertAtEnd) 1930 : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name, 1931 InsertAtEnd) {} 1932 1933 ShuffleVectorInst::ShuffleVectorInst(Value *V1, ArrayRef<int> Mask, 1934 const Twine &Name, 1935 Instruction *InsertBefore) 1936 : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name, 1937 InsertBefore) {} 1938 1939 ShuffleVectorInst::ShuffleVectorInst(Value *V1, ArrayRef<int> Mask, 1940 const Twine &Name, BasicBlock *InsertAtEnd) 1941 : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name, 1942 InsertAtEnd) {} 1943 1944 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1945 const Twine &Name, 1946 Instruction *InsertBefore) 1947 : Instruction( 1948 VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1949 cast<VectorType>(Mask->getType())->getElementCount()), 1950 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this), 1951 OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) { 1952 assert(isValidOperands(V1, V2, Mask) && 1953 "Invalid shuffle vector instruction operands!"); 1954 1955 Op<0>() = V1; 1956 Op<1>() = V2; 1957 SmallVector<int, 16> MaskArr; 1958 getShuffleMask(cast<Constant>(Mask), MaskArr); 1959 setShuffleMask(MaskArr); 1960 setName(Name); 1961 } 1962 1963 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1964 const Twine &Name, BasicBlock *InsertAtEnd) 1965 : Instruction( 1966 VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1967 cast<VectorType>(Mask->getType())->getElementCount()), 1968 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this), 1969 OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) { 1970 assert(isValidOperands(V1, V2, Mask) && 1971 "Invalid shuffle vector instruction operands!"); 1972 1973 Op<0>() = V1; 1974 Op<1>() = V2; 1975 SmallVector<int, 16> MaskArr; 1976 getShuffleMask(cast<Constant>(Mask), MaskArr); 1977 setShuffleMask(MaskArr); 1978 setName(Name); 1979 } 1980 1981 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, 1982 const Twine &Name, 1983 Instruction *InsertBefore) 1984 : Instruction( 1985 VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1986 Mask.size(), isa<ScalableVectorType>(V1->getType())), 1987 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this), 1988 OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) { 1989 assert(isValidOperands(V1, V2, Mask) && 1990 "Invalid shuffle vector instruction operands!"); 1991 Op<0>() = V1; 1992 Op<1>() = V2; 1993 setShuffleMask(Mask); 1994 setName(Name); 1995 } 1996 1997 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, 1998 const Twine &Name, BasicBlock *InsertAtEnd) 1999 : Instruction( 2000 VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 2001 Mask.size(), isa<ScalableVectorType>(V1->getType())), 2002 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this), 2003 OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) { 2004 assert(isValidOperands(V1, V2, Mask) && 2005 "Invalid shuffle vector instruction operands!"); 2006 2007 Op<0>() = V1; 2008 Op<1>() = V2; 2009 setShuffleMask(Mask); 2010 setName(Name); 2011 } 2012 2013 void ShuffleVectorInst::commute() { 2014 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); 2015 int NumMaskElts = ShuffleMask.size(); 2016 SmallVector<int, 16> NewMask(NumMaskElts); 2017 for (int i = 0; i != NumMaskElts; ++i) { 2018 int MaskElt = getMaskValue(i); 2019 if (MaskElt == UndefMaskElem) { 2020 NewMask[i] = UndefMaskElem; 2021 continue; 2022 } 2023 assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask"); 2024 MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts; 2025 NewMask[i] = MaskElt; 2026 } 2027 setShuffleMask(NewMask); 2028 Op<0>().swap(Op<1>()); 2029 } 2030 2031 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, 2032 ArrayRef<int> Mask) { 2033 // V1 and V2 must be vectors of the same type. 2034 if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType()) 2035 return false; 2036 2037 // Make sure the mask elements make sense. 2038 int V1Size = 2039 cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue(); 2040 for (int Elem : Mask) 2041 if (Elem != UndefMaskElem && Elem >= V1Size * 2) 2042 return false; 2043 2044 if (isa<ScalableVectorType>(V1->getType())) 2045 if ((Mask[0] != 0 && Mask[0] != UndefMaskElem) || !is_splat(Mask)) 2046 return false; 2047 2048 return true; 2049 } 2050 2051 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, 2052 const Value *Mask) { 2053 // V1 and V2 must be vectors of the same type. 2054 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType()) 2055 return false; 2056 2057 // Mask must be vector of i32, and must be the same kind of vector as the 2058 // input vectors 2059 auto *MaskTy = dyn_cast<VectorType>(Mask->getType()); 2060 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) || 2061 isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType())) 2062 return false; 2063 2064 // Check to see if Mask is valid. 2065 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask)) 2066 return true; 2067 2068 if (const auto *MV = dyn_cast<ConstantVector>(Mask)) { 2069 unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements(); 2070 for (Value *Op : MV->operands()) { 2071 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 2072 if (CI->uge(V1Size*2)) 2073 return false; 2074 } else if (!isa<UndefValue>(Op)) { 2075 return false; 2076 } 2077 } 2078 return true; 2079 } 2080 2081 if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) { 2082 unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements(); 2083 for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements(); 2084 i != e; ++i) 2085 if (CDS->getElementAsInteger(i) >= V1Size*2) 2086 return false; 2087 return true; 2088 } 2089 2090 return false; 2091 } 2092 2093 void ShuffleVectorInst::getShuffleMask(const Constant *Mask, 2094 SmallVectorImpl<int> &Result) { 2095 ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount(); 2096 2097 if (isa<ConstantAggregateZero>(Mask)) { 2098 Result.resize(EC.getKnownMinValue(), 0); 2099 return; 2100 } 2101 2102 Result.reserve(EC.getKnownMinValue()); 2103 2104 if (EC.isScalable()) { 2105 assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) && 2106 "Scalable vector shuffle mask must be undef or zeroinitializer"); 2107 int MaskVal = isa<UndefValue>(Mask) ? -1 : 0; 2108 for (unsigned I = 0; I < EC.getKnownMinValue(); ++I) 2109 Result.emplace_back(MaskVal); 2110 return; 2111 } 2112 2113 unsigned NumElts = EC.getKnownMinValue(); 2114 2115 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) { 2116 for (unsigned i = 0; i != NumElts; ++i) 2117 Result.push_back(CDS->getElementAsInteger(i)); 2118 return; 2119 } 2120 for (unsigned i = 0; i != NumElts; ++i) { 2121 Constant *C = Mask->getAggregateElement(i); 2122 Result.push_back(isa<UndefValue>(C) ? -1 : 2123 cast<ConstantInt>(C)->getZExtValue()); 2124 } 2125 } 2126 2127 void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) { 2128 ShuffleMask.assign(Mask.begin(), Mask.end()); 2129 ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType()); 2130 } 2131 2132 Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask, 2133 Type *ResultTy) { 2134 Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext()); 2135 if (isa<ScalableVectorType>(ResultTy)) { 2136 assert(is_splat(Mask) && "Unexpected shuffle"); 2137 Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true); 2138 if (Mask[0] == 0) 2139 return Constant::getNullValue(VecTy); 2140 return UndefValue::get(VecTy); 2141 } 2142 SmallVector<Constant *, 16> MaskConst; 2143 for (int Elem : Mask) { 2144 if (Elem == UndefMaskElem) 2145 MaskConst.push_back(UndefValue::get(Int32Ty)); 2146 else 2147 MaskConst.push_back(ConstantInt::get(Int32Ty, Elem)); 2148 } 2149 return ConstantVector::get(MaskConst); 2150 } 2151 2152 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) { 2153 assert(!Mask.empty() && "Shuffle mask must contain elements"); 2154 bool UsesLHS = false; 2155 bool UsesRHS = false; 2156 for (int I : Mask) { 2157 if (I == -1) 2158 continue; 2159 assert(I >= 0 && I < (NumOpElts * 2) && 2160 "Out-of-bounds shuffle mask element"); 2161 UsesLHS |= (I < NumOpElts); 2162 UsesRHS |= (I >= NumOpElts); 2163 if (UsesLHS && UsesRHS) 2164 return false; 2165 } 2166 // Allow for degenerate case: completely undef mask means neither source is used. 2167 return UsesLHS || UsesRHS; 2168 } 2169 2170 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) { 2171 // We don't have vector operand size information, so assume operands are the 2172 // same size as the mask. 2173 return isSingleSourceMaskImpl(Mask, Mask.size()); 2174 } 2175 2176 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) { 2177 if (!isSingleSourceMaskImpl(Mask, NumOpElts)) 2178 return false; 2179 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) { 2180 if (Mask[i] == -1) 2181 continue; 2182 if (Mask[i] != i && Mask[i] != (NumOpElts + i)) 2183 return false; 2184 } 2185 return true; 2186 } 2187 2188 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) { 2189 // We don't have vector operand size information, so assume operands are the 2190 // same size as the mask. 2191 return isIdentityMaskImpl(Mask, Mask.size()); 2192 } 2193 2194 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) { 2195 if (!isSingleSourceMask(Mask)) 2196 return false; 2197 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { 2198 if (Mask[i] == -1) 2199 continue; 2200 if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i)) 2201 return false; 2202 } 2203 return true; 2204 } 2205 2206 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) { 2207 if (!isSingleSourceMask(Mask)) 2208 return false; 2209 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { 2210 if (Mask[i] == -1) 2211 continue; 2212 if (Mask[i] != 0 && Mask[i] != NumElts) 2213 return false; 2214 } 2215 return true; 2216 } 2217 2218 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) { 2219 // Select is differentiated from identity. It requires using both sources. 2220 if (isSingleSourceMask(Mask)) 2221 return false; 2222 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { 2223 if (Mask[i] == -1) 2224 continue; 2225 if (Mask[i] != i && Mask[i] != (NumElts + i)) 2226 return false; 2227 } 2228 return true; 2229 } 2230 2231 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) { 2232 // Example masks that will return true: 2233 // v1 = <a, b, c, d> 2234 // v2 = <e, f, g, h> 2235 // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g> 2236 // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h> 2237 2238 // 1. The number of elements in the mask must be a power-of-2 and at least 2. 2239 int NumElts = Mask.size(); 2240 if (NumElts < 2 || !isPowerOf2_32(NumElts)) 2241 return false; 2242 2243 // 2. The first element of the mask must be either a 0 or a 1. 2244 if (Mask[0] != 0 && Mask[0] != 1) 2245 return false; 2246 2247 // 3. The difference between the first 2 elements must be equal to the 2248 // number of elements in the mask. 2249 if ((Mask[1] - Mask[0]) != NumElts) 2250 return false; 2251 2252 // 4. The difference between consecutive even-numbered and odd-numbered 2253 // elements must be equal to 2. 2254 for (int i = 2; i < NumElts; ++i) { 2255 int MaskEltVal = Mask[i]; 2256 if (MaskEltVal == -1) 2257 return false; 2258 int MaskEltPrevVal = Mask[i - 2]; 2259 if (MaskEltVal - MaskEltPrevVal != 2) 2260 return false; 2261 } 2262 return true; 2263 } 2264 2265 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask, 2266 int NumSrcElts, int &Index) { 2267 // Must extract from a single source. 2268 if (!isSingleSourceMaskImpl(Mask, NumSrcElts)) 2269 return false; 2270 2271 // Must be smaller (else this is an Identity shuffle). 2272 if (NumSrcElts <= (int)Mask.size()) 2273 return false; 2274 2275 // Find start of extraction, accounting that we may start with an UNDEF. 2276 int SubIndex = -1; 2277 for (int i = 0, e = Mask.size(); i != e; ++i) { 2278 int M = Mask[i]; 2279 if (M < 0) 2280 continue; 2281 int Offset = (M % NumSrcElts) - i; 2282 if (0 <= SubIndex && SubIndex != Offset) 2283 return false; 2284 SubIndex = Offset; 2285 } 2286 2287 if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) { 2288 Index = SubIndex; 2289 return true; 2290 } 2291 return false; 2292 } 2293 2294 bool ShuffleVectorInst::isInsertSubvectorMask(ArrayRef<int> Mask, 2295 int NumSrcElts, int &NumSubElts, 2296 int &Index) { 2297 int NumMaskElts = Mask.size(); 2298 2299 // Don't try to match if we're shuffling to a smaller size. 2300 if (NumMaskElts < NumSrcElts) 2301 return false; 2302 2303 // TODO: We don't recognize self-insertion/widening. 2304 if (isSingleSourceMaskImpl(Mask, NumSrcElts)) 2305 return false; 2306 2307 // Determine which mask elements are attributed to which source. 2308 APInt UndefElts = APInt::getZero(NumMaskElts); 2309 APInt Src0Elts = APInt::getZero(NumMaskElts); 2310 APInt Src1Elts = APInt::getZero(NumMaskElts); 2311 bool Src0Identity = true; 2312 bool Src1Identity = true; 2313 2314 for (int i = 0; i != NumMaskElts; ++i) { 2315 int M = Mask[i]; 2316 if (M < 0) { 2317 UndefElts.setBit(i); 2318 continue; 2319 } 2320 if (M < NumSrcElts) { 2321 Src0Elts.setBit(i); 2322 Src0Identity &= (M == i); 2323 continue; 2324 } 2325 Src1Elts.setBit(i); 2326 Src1Identity &= (M == (i + NumSrcElts)); 2327 } 2328 assert((Src0Elts | Src1Elts | UndefElts).isAllOnes() && 2329 "unknown shuffle elements"); 2330 assert(!Src0Elts.isZero() && !Src1Elts.isZero() && 2331 "2-source shuffle not found"); 2332 2333 // Determine lo/hi span ranges. 2334 // TODO: How should we handle undefs at the start of subvector insertions? 2335 int Src0Lo = Src0Elts.countTrailingZeros(); 2336 int Src1Lo = Src1Elts.countTrailingZeros(); 2337 int Src0Hi = NumMaskElts - Src0Elts.countLeadingZeros(); 2338 int Src1Hi = NumMaskElts - Src1Elts.countLeadingZeros(); 2339 2340 // If src0 is in place, see if the src1 elements is inplace within its own 2341 // span. 2342 if (Src0Identity) { 2343 int NumSub1Elts = Src1Hi - Src1Lo; 2344 ArrayRef<int> Sub1Mask = Mask.slice(Src1Lo, NumSub1Elts); 2345 if (isIdentityMaskImpl(Sub1Mask, NumSrcElts)) { 2346 NumSubElts = NumSub1Elts; 2347 Index = Src1Lo; 2348 return true; 2349 } 2350 } 2351 2352 // If src1 is in place, see if the src0 elements is inplace within its own 2353 // span. 2354 if (Src1Identity) { 2355 int NumSub0Elts = Src0Hi - Src0Lo; 2356 ArrayRef<int> Sub0Mask = Mask.slice(Src0Lo, NumSub0Elts); 2357 if (isIdentityMaskImpl(Sub0Mask, NumSrcElts)) { 2358 NumSubElts = NumSub0Elts; 2359 Index = Src0Lo; 2360 return true; 2361 } 2362 } 2363 2364 return false; 2365 } 2366 2367 bool ShuffleVectorInst::isIdentityWithPadding() const { 2368 if (isa<UndefValue>(Op<2>())) 2369 return false; 2370 2371 // FIXME: Not currently possible to express a shuffle mask for a scalable 2372 // vector for this case. 2373 if (isa<ScalableVectorType>(getType())) 2374 return false; 2375 2376 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); 2377 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements(); 2378 if (NumMaskElts <= NumOpElts) 2379 return false; 2380 2381 // The first part of the mask must choose elements from exactly 1 source op. 2382 ArrayRef<int> Mask = getShuffleMask(); 2383 if (!isIdentityMaskImpl(Mask, NumOpElts)) 2384 return false; 2385 2386 // All extending must be with undef elements. 2387 for (int i = NumOpElts; i < NumMaskElts; ++i) 2388 if (Mask[i] != -1) 2389 return false; 2390 2391 return true; 2392 } 2393 2394 bool ShuffleVectorInst::isIdentityWithExtract() const { 2395 if (isa<UndefValue>(Op<2>())) 2396 return false; 2397 2398 // FIXME: Not currently possible to express a shuffle mask for a scalable 2399 // vector for this case. 2400 if (isa<ScalableVectorType>(getType())) 2401 return false; 2402 2403 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); 2404 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements(); 2405 if (NumMaskElts >= NumOpElts) 2406 return false; 2407 2408 return isIdentityMaskImpl(getShuffleMask(), NumOpElts); 2409 } 2410 2411 bool ShuffleVectorInst::isConcat() const { 2412 // Vector concatenation is differentiated from identity with padding. 2413 if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()) || 2414 isa<UndefValue>(Op<2>())) 2415 return false; 2416 2417 // FIXME: Not currently possible to express a shuffle mask for a scalable 2418 // vector for this case. 2419 if (isa<ScalableVectorType>(getType())) 2420 return false; 2421 2422 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); 2423 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements(); 2424 if (NumMaskElts != NumOpElts * 2) 2425 return false; 2426 2427 // Use the mask length rather than the operands' vector lengths here. We 2428 // already know that the shuffle returns a vector twice as long as the inputs, 2429 // and neither of the inputs are undef vectors. If the mask picks consecutive 2430 // elements from both inputs, then this is a concatenation of the inputs. 2431 return isIdentityMaskImpl(getShuffleMask(), NumMaskElts); 2432 } 2433 2434 static bool isReplicationMaskWithParams(ArrayRef<int> Mask, 2435 int ReplicationFactor, int VF) { 2436 assert(Mask.size() == (unsigned)ReplicationFactor * VF && 2437 "Unexpected mask size."); 2438 2439 for (int CurrElt : seq(0, VF)) { 2440 ArrayRef<int> CurrSubMask = Mask.take_front(ReplicationFactor); 2441 assert(CurrSubMask.size() == (unsigned)ReplicationFactor && 2442 "Run out of mask?"); 2443 Mask = Mask.drop_front(ReplicationFactor); 2444 if (!all_of(CurrSubMask, [CurrElt](int MaskElt) { 2445 return MaskElt == UndefMaskElem || MaskElt == CurrElt; 2446 })) 2447 return false; 2448 } 2449 assert(Mask.empty() && "Did not consume the whole mask?"); 2450 2451 return true; 2452 } 2453 2454 bool ShuffleVectorInst::isReplicationMask(ArrayRef<int> Mask, 2455 int &ReplicationFactor, int &VF) { 2456 // undef-less case is trivial. 2457 if (none_of(Mask, [](int MaskElt) { return MaskElt == UndefMaskElem; })) { 2458 ReplicationFactor = 2459 Mask.take_while([](int MaskElt) { return MaskElt == 0; }).size(); 2460 if (ReplicationFactor == 0 || Mask.size() % ReplicationFactor != 0) 2461 return false; 2462 VF = Mask.size() / ReplicationFactor; 2463 return isReplicationMaskWithParams(Mask, ReplicationFactor, VF); 2464 } 2465 2466 // However, if the mask contains undef's, we have to enumerate possible tuples 2467 // and pick one. There are bounds on replication factor: [1, mask size] 2468 // (where RF=1 is an identity shuffle, RF=mask size is a broadcast shuffle) 2469 // Additionally, mask size is a replication factor multiplied by vector size, 2470 // which further significantly reduces the search space. 2471 2472 // Before doing that, let's perform basic correctness checking first. 2473 int Largest = -1; 2474 for (int MaskElt : Mask) { 2475 if (MaskElt == UndefMaskElem) 2476 continue; 2477 // Elements must be in non-decreasing order. 2478 if (MaskElt < Largest) 2479 return false; 2480 Largest = std::max(Largest, MaskElt); 2481 } 2482 2483 // Prefer larger replication factor if all else equal. 2484 for (int PossibleReplicationFactor : 2485 reverse(seq_inclusive<unsigned>(1, Mask.size()))) { 2486 if (Mask.size() % PossibleReplicationFactor != 0) 2487 continue; 2488 int PossibleVF = Mask.size() / PossibleReplicationFactor; 2489 if (!isReplicationMaskWithParams(Mask, PossibleReplicationFactor, 2490 PossibleVF)) 2491 continue; 2492 ReplicationFactor = PossibleReplicationFactor; 2493 VF = PossibleVF; 2494 return true; 2495 } 2496 2497 return false; 2498 } 2499 2500 bool ShuffleVectorInst::isReplicationMask(int &ReplicationFactor, 2501 int &VF) const { 2502 // Not possible to express a shuffle mask for a scalable vector for this 2503 // case. 2504 if (isa<ScalableVectorType>(getType())) 2505 return false; 2506 2507 VF = cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); 2508 if (ShuffleMask.size() % VF != 0) 2509 return false; 2510 ReplicationFactor = ShuffleMask.size() / VF; 2511 2512 return isReplicationMaskWithParams(ShuffleMask, ReplicationFactor, VF); 2513 } 2514 2515 //===----------------------------------------------------------------------===// 2516 // InsertValueInst Class 2517 //===----------------------------------------------------------------------===// 2518 2519 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 2520 const Twine &Name) { 2521 assert(getNumOperands() == 2 && "NumOperands not initialized?"); 2522 2523 // There's no fundamental reason why we require at least one index 2524 // (other than weirdness with &*IdxBegin being invalid; see 2525 // getelementptr's init routine for example). But there's no 2526 // present need to support it. 2527 assert(!Idxs.empty() && "InsertValueInst must have at least one index"); 2528 2529 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) == 2530 Val->getType() && "Inserted value must match indexed type!"); 2531 Op<0>() = Agg; 2532 Op<1>() = Val; 2533 2534 Indices.append(Idxs.begin(), Idxs.end()); 2535 setName(Name); 2536 } 2537 2538 InsertValueInst::InsertValueInst(const InsertValueInst &IVI) 2539 : Instruction(IVI.getType(), InsertValue, 2540 OperandTraits<InsertValueInst>::op_begin(this), 2), 2541 Indices(IVI.Indices) { 2542 Op<0>() = IVI.getOperand(0); 2543 Op<1>() = IVI.getOperand(1); 2544 SubclassOptionalData = IVI.SubclassOptionalData; 2545 } 2546 2547 //===----------------------------------------------------------------------===// 2548 // ExtractValueInst Class 2549 //===----------------------------------------------------------------------===// 2550 2551 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) { 2552 assert(getNumOperands() == 1 && "NumOperands not initialized?"); 2553 2554 // There's no fundamental reason why we require at least one index. 2555 // But there's no present need to support it. 2556 assert(!Idxs.empty() && "ExtractValueInst must have at least one index"); 2557 2558 Indices.append(Idxs.begin(), Idxs.end()); 2559 setName(Name); 2560 } 2561 2562 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI) 2563 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)), 2564 Indices(EVI.Indices) { 2565 SubclassOptionalData = EVI.SubclassOptionalData; 2566 } 2567 2568 // getIndexedType - Returns the type of the element that would be extracted 2569 // with an extractvalue instruction with the specified parameters. 2570 // 2571 // A null type is returned if the indices are invalid for the specified 2572 // pointer type. 2573 // 2574 Type *ExtractValueInst::getIndexedType(Type *Agg, 2575 ArrayRef<unsigned> Idxs) { 2576 for (unsigned Index : Idxs) { 2577 // We can't use CompositeType::indexValid(Index) here. 2578 // indexValid() always returns true for arrays because getelementptr allows 2579 // out-of-bounds indices. Since we don't allow those for extractvalue and 2580 // insertvalue we need to check array indexing manually. 2581 // Since the only other types we can index into are struct types it's just 2582 // as easy to check those manually as well. 2583 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) { 2584 if (Index >= AT->getNumElements()) 2585 return nullptr; 2586 Agg = AT->getElementType(); 2587 } else if (StructType *ST = dyn_cast<StructType>(Agg)) { 2588 if (Index >= ST->getNumElements()) 2589 return nullptr; 2590 Agg = ST->getElementType(Index); 2591 } else { 2592 // Not a valid type to index into. 2593 return nullptr; 2594 } 2595 } 2596 return const_cast<Type*>(Agg); 2597 } 2598 2599 //===----------------------------------------------------------------------===// 2600 // UnaryOperator Class 2601 //===----------------------------------------------------------------------===// 2602 2603 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S, 2604 Type *Ty, const Twine &Name, 2605 Instruction *InsertBefore) 2606 : UnaryInstruction(Ty, iType, S, InsertBefore) { 2607 Op<0>() = S; 2608 setName(Name); 2609 AssertOK(); 2610 } 2611 2612 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S, 2613 Type *Ty, const Twine &Name, 2614 BasicBlock *InsertAtEnd) 2615 : UnaryInstruction(Ty, iType, S, InsertAtEnd) { 2616 Op<0>() = S; 2617 setName(Name); 2618 AssertOK(); 2619 } 2620 2621 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S, 2622 const Twine &Name, 2623 Instruction *InsertBefore) { 2624 return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore); 2625 } 2626 2627 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S, 2628 const Twine &Name, 2629 BasicBlock *InsertAtEnd) { 2630 UnaryOperator *Res = Create(Op, S, Name); 2631 InsertAtEnd->getInstList().push_back(Res); 2632 return Res; 2633 } 2634 2635 void UnaryOperator::AssertOK() { 2636 Value *LHS = getOperand(0); 2637 (void)LHS; // Silence warnings. 2638 #ifndef NDEBUG 2639 switch (getOpcode()) { 2640 case FNeg: 2641 assert(getType() == LHS->getType() && 2642 "Unary operation should return same type as operand!"); 2643 assert(getType()->isFPOrFPVectorTy() && 2644 "Tried to create a floating-point operation on a " 2645 "non-floating-point type!"); 2646 break; 2647 default: llvm_unreachable("Invalid opcode provided"); 2648 } 2649 #endif 2650 } 2651 2652 //===----------------------------------------------------------------------===// 2653 // BinaryOperator Class 2654 //===----------------------------------------------------------------------===// 2655 2656 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 2657 Type *Ty, const Twine &Name, 2658 Instruction *InsertBefore) 2659 : Instruction(Ty, iType, 2660 OperandTraits<BinaryOperator>::op_begin(this), 2661 OperandTraits<BinaryOperator>::operands(this), 2662 InsertBefore) { 2663 Op<0>() = S1; 2664 Op<1>() = S2; 2665 setName(Name); 2666 AssertOK(); 2667 } 2668 2669 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 2670 Type *Ty, const Twine &Name, 2671 BasicBlock *InsertAtEnd) 2672 : Instruction(Ty, iType, 2673 OperandTraits<BinaryOperator>::op_begin(this), 2674 OperandTraits<BinaryOperator>::operands(this), 2675 InsertAtEnd) { 2676 Op<0>() = S1; 2677 Op<1>() = S2; 2678 setName(Name); 2679 AssertOK(); 2680 } 2681 2682 void BinaryOperator::AssertOK() { 2683 Value *LHS = getOperand(0), *RHS = getOperand(1); 2684 (void)LHS; (void)RHS; // Silence warnings. 2685 assert(LHS->getType() == RHS->getType() && 2686 "Binary operator operand types must match!"); 2687 #ifndef NDEBUG 2688 switch (getOpcode()) { 2689 case Add: case Sub: 2690 case Mul: 2691 assert(getType() == LHS->getType() && 2692 "Arithmetic operation should return same type as operands!"); 2693 assert(getType()->isIntOrIntVectorTy() && 2694 "Tried to create an integer operation on a non-integer type!"); 2695 break; 2696 case FAdd: case FSub: 2697 case FMul: 2698 assert(getType() == LHS->getType() && 2699 "Arithmetic operation should return same type as operands!"); 2700 assert(getType()->isFPOrFPVectorTy() && 2701 "Tried to create a floating-point operation on a " 2702 "non-floating-point type!"); 2703 break; 2704 case UDiv: 2705 case SDiv: 2706 assert(getType() == LHS->getType() && 2707 "Arithmetic operation should return same type as operands!"); 2708 assert(getType()->isIntOrIntVectorTy() && 2709 "Incorrect operand type (not integer) for S/UDIV"); 2710 break; 2711 case FDiv: 2712 assert(getType() == LHS->getType() && 2713 "Arithmetic operation should return same type as operands!"); 2714 assert(getType()->isFPOrFPVectorTy() && 2715 "Incorrect operand type (not floating point) for FDIV"); 2716 break; 2717 case URem: 2718 case SRem: 2719 assert(getType() == LHS->getType() && 2720 "Arithmetic operation should return same type as operands!"); 2721 assert(getType()->isIntOrIntVectorTy() && 2722 "Incorrect operand type (not integer) for S/UREM"); 2723 break; 2724 case FRem: 2725 assert(getType() == LHS->getType() && 2726 "Arithmetic operation should return same type as operands!"); 2727 assert(getType()->isFPOrFPVectorTy() && 2728 "Incorrect operand type (not floating point) for FREM"); 2729 break; 2730 case Shl: 2731 case LShr: 2732 case AShr: 2733 assert(getType() == LHS->getType() && 2734 "Shift operation should return same type as operands!"); 2735 assert(getType()->isIntOrIntVectorTy() && 2736 "Tried to create a shift operation on a non-integral type!"); 2737 break; 2738 case And: case Or: 2739 case Xor: 2740 assert(getType() == LHS->getType() && 2741 "Logical operation should return same type as operands!"); 2742 assert(getType()->isIntOrIntVectorTy() && 2743 "Tried to create a logical operation on a non-integral type!"); 2744 break; 2745 default: llvm_unreachable("Invalid opcode provided"); 2746 } 2747 #endif 2748 } 2749 2750 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 2751 const Twine &Name, 2752 Instruction *InsertBefore) { 2753 assert(S1->getType() == S2->getType() && 2754 "Cannot create binary operator with two operands of differing type!"); 2755 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); 2756 } 2757 2758 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 2759 const Twine &Name, 2760 BasicBlock *InsertAtEnd) { 2761 BinaryOperator *Res = Create(Op, S1, S2, Name); 2762 InsertAtEnd->getInstList().push_back(Res); 2763 return Res; 2764 } 2765 2766 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 2767 Instruction *InsertBefore) { 2768 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2769 return new BinaryOperator(Instruction::Sub, 2770 zero, Op, 2771 Op->getType(), Name, InsertBefore); 2772 } 2773 2774 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 2775 BasicBlock *InsertAtEnd) { 2776 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2777 return new BinaryOperator(Instruction::Sub, 2778 zero, Op, 2779 Op->getType(), Name, InsertAtEnd); 2780 } 2781 2782 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 2783 Instruction *InsertBefore) { 2784 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2785 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore); 2786 } 2787 2788 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 2789 BasicBlock *InsertAtEnd) { 2790 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2791 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd); 2792 } 2793 2794 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 2795 Instruction *InsertBefore) { 2796 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2797 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore); 2798 } 2799 2800 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 2801 BasicBlock *InsertAtEnd) { 2802 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 2803 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd); 2804 } 2805 2806 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 2807 Instruction *InsertBefore) { 2808 Constant *C = Constant::getAllOnesValue(Op->getType()); 2809 return new BinaryOperator(Instruction::Xor, Op, C, 2810 Op->getType(), Name, InsertBefore); 2811 } 2812 2813 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 2814 BasicBlock *InsertAtEnd) { 2815 Constant *AllOnes = Constant::getAllOnesValue(Op->getType()); 2816 return new BinaryOperator(Instruction::Xor, Op, AllOnes, 2817 Op->getType(), Name, InsertAtEnd); 2818 } 2819 2820 // Exchange the two operands to this instruction. This instruction is safe to 2821 // use on any binary instruction and does not modify the semantics of the 2822 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode 2823 // is changed. 2824 bool BinaryOperator::swapOperands() { 2825 if (!isCommutative()) 2826 return true; // Can't commute operands 2827 Op<0>().swap(Op<1>()); 2828 return false; 2829 } 2830 2831 //===----------------------------------------------------------------------===// 2832 // FPMathOperator Class 2833 //===----------------------------------------------------------------------===// 2834 2835 float FPMathOperator::getFPAccuracy() const { 2836 const MDNode *MD = 2837 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath); 2838 if (!MD) 2839 return 0.0; 2840 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0)); 2841 return Accuracy->getValueAPF().convertToFloat(); 2842 } 2843 2844 //===----------------------------------------------------------------------===// 2845 // CastInst Class 2846 //===----------------------------------------------------------------------===// 2847 2848 // Just determine if this cast only deals with integral->integral conversion. 2849 bool CastInst::isIntegerCast() const { 2850 switch (getOpcode()) { 2851 default: return false; 2852 case Instruction::ZExt: 2853 case Instruction::SExt: 2854 case Instruction::Trunc: 2855 return true; 2856 case Instruction::BitCast: 2857 return getOperand(0)->getType()->isIntegerTy() && 2858 getType()->isIntegerTy(); 2859 } 2860 } 2861 2862 bool CastInst::isLosslessCast() const { 2863 // Only BitCast can be lossless, exit fast if we're not BitCast 2864 if (getOpcode() != Instruction::BitCast) 2865 return false; 2866 2867 // Identity cast is always lossless 2868 Type *SrcTy = getOperand(0)->getType(); 2869 Type *DstTy = getType(); 2870 if (SrcTy == DstTy) 2871 return true; 2872 2873 // Pointer to pointer is always lossless. 2874 if (SrcTy->isPointerTy()) 2875 return DstTy->isPointerTy(); 2876 return false; // Other types have no identity values 2877 } 2878 2879 /// This function determines if the CastInst does not require any bits to be 2880 /// changed in order to effect the cast. Essentially, it identifies cases where 2881 /// no code gen is necessary for the cast, hence the name no-op cast. For 2882 /// example, the following are all no-op casts: 2883 /// # bitcast i32* %x to i8* 2884 /// # bitcast <2 x i32> %x to <4 x i16> 2885 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only 2886 /// Determine if the described cast is a no-op. 2887 bool CastInst::isNoopCast(Instruction::CastOps Opcode, 2888 Type *SrcTy, 2889 Type *DestTy, 2890 const DataLayout &DL) { 2891 assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition"); 2892 switch (Opcode) { 2893 default: llvm_unreachable("Invalid CastOp"); 2894 case Instruction::Trunc: 2895 case Instruction::ZExt: 2896 case Instruction::SExt: 2897 case Instruction::FPTrunc: 2898 case Instruction::FPExt: 2899 case Instruction::UIToFP: 2900 case Instruction::SIToFP: 2901 case Instruction::FPToUI: 2902 case Instruction::FPToSI: 2903 case Instruction::AddrSpaceCast: 2904 // TODO: Target informations may give a more accurate answer here. 2905 return false; 2906 case Instruction::BitCast: 2907 return true; // BitCast never modifies bits. 2908 case Instruction::PtrToInt: 2909 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() == 2910 DestTy->getScalarSizeInBits(); 2911 case Instruction::IntToPtr: 2912 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() == 2913 SrcTy->getScalarSizeInBits(); 2914 } 2915 } 2916 2917 bool CastInst::isNoopCast(const DataLayout &DL) const { 2918 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL); 2919 } 2920 2921 /// This function determines if a pair of casts can be eliminated and what 2922 /// opcode should be used in the elimination. This assumes that there are two 2923 /// instructions like this: 2924 /// * %F = firstOpcode SrcTy %x to MidTy 2925 /// * %S = secondOpcode MidTy %F to DstTy 2926 /// The function returns a resultOpcode so these two casts can be replaced with: 2927 /// * %Replacement = resultOpcode %SrcTy %x to DstTy 2928 /// If no such cast is permitted, the function returns 0. 2929 unsigned CastInst::isEliminableCastPair( 2930 Instruction::CastOps firstOp, Instruction::CastOps secondOp, 2931 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, 2932 Type *DstIntPtrTy) { 2933 // Define the 144 possibilities for these two cast instructions. The values 2934 // in this matrix determine what to do in a given situation and select the 2935 // case in the switch below. The rows correspond to firstOp, the columns 2936 // correspond to secondOp. In looking at the table below, keep in mind 2937 // the following cast properties: 2938 // 2939 // Size Compare Source Destination 2940 // Operator Src ? Size Type Sign Type Sign 2941 // -------- ------------ ------------------- --------------------- 2942 // TRUNC > Integer Any Integral Any 2943 // ZEXT < Integral Unsigned Integer Any 2944 // SEXT < Integral Signed Integer Any 2945 // FPTOUI n/a FloatPt n/a Integral Unsigned 2946 // FPTOSI n/a FloatPt n/a Integral Signed 2947 // UITOFP n/a Integral Unsigned FloatPt n/a 2948 // SITOFP n/a Integral Signed FloatPt n/a 2949 // FPTRUNC > FloatPt n/a FloatPt n/a 2950 // FPEXT < FloatPt n/a FloatPt n/a 2951 // PTRTOINT n/a Pointer n/a Integral Unsigned 2952 // INTTOPTR n/a Integral Unsigned Pointer n/a 2953 // BITCAST = FirstClass n/a FirstClass n/a 2954 // ADDRSPCST n/a Pointer n/a Pointer n/a 2955 // 2956 // NOTE: some transforms are safe, but we consider them to be non-profitable. 2957 // For example, we could merge "fptoui double to i32" + "zext i32 to i64", 2958 // into "fptoui double to i64", but this loses information about the range 2959 // of the produced value (we no longer know the top-part is all zeros). 2960 // Further this conversion is often much more expensive for typical hardware, 2961 // and causes issues when building libgcc. We disallow fptosi+sext for the 2962 // same reason. 2963 const unsigned numCastOps = 2964 Instruction::CastOpsEnd - Instruction::CastOpsBegin; 2965 static const uint8_t CastResults[numCastOps][numCastOps] = { 2966 // T F F U S F F P I B A -+ 2967 // R Z S P P I I T P 2 N T S | 2968 // U E E 2 2 2 2 R E I T C C +- secondOp 2969 // N X X U S F F N X N 2 V V | 2970 // C T T I I P P C T T P T T -+ 2971 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+ 2972 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt | 2973 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt | 2974 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI | 2975 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI | 2976 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp 2977 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP | 2978 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc | 2979 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt | 2980 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt | 2981 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr | 2982 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast | 2983 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+ 2984 }; 2985 2986 // TODO: This logic could be encoded into the table above and handled in the 2987 // switch below. 2988 // If either of the casts are a bitcast from scalar to vector, disallow the 2989 // merging. However, any pair of bitcasts are allowed. 2990 bool IsFirstBitcast = (firstOp == Instruction::BitCast); 2991 bool IsSecondBitcast = (secondOp == Instruction::BitCast); 2992 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast; 2993 2994 // Check if any of the casts convert scalars <-> vectors. 2995 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) || 2996 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy))) 2997 if (!AreBothBitcasts) 2998 return 0; 2999 3000 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin] 3001 [secondOp-Instruction::CastOpsBegin]; 3002 switch (ElimCase) { 3003 case 0: 3004 // Categorically disallowed. 3005 return 0; 3006 case 1: 3007 // Allowed, use first cast's opcode. 3008 return firstOp; 3009 case 2: 3010 // Allowed, use second cast's opcode. 3011 return secondOp; 3012 case 3: 3013 // No-op cast in second op implies firstOp as long as the DestTy 3014 // is integer and we are not converting between a vector and a 3015 // non-vector type. 3016 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy()) 3017 return firstOp; 3018 return 0; 3019 case 4: 3020 // No-op cast in second op implies firstOp as long as the DestTy 3021 // is floating point. 3022 if (DstTy->isFloatingPointTy()) 3023 return firstOp; 3024 return 0; 3025 case 5: 3026 // No-op cast in first op implies secondOp as long as the SrcTy 3027 // is an integer. 3028 if (SrcTy->isIntegerTy()) 3029 return secondOp; 3030 return 0; 3031 case 6: 3032 // No-op cast in first op implies secondOp as long as the SrcTy 3033 // is a floating point. 3034 if (SrcTy->isFloatingPointTy()) 3035 return secondOp; 3036 return 0; 3037 case 7: { 3038 // Disable inttoptr/ptrtoint optimization if enabled. 3039 if (DisableI2pP2iOpt) 3040 return 0; 3041 3042 // Cannot simplify if address spaces are different! 3043 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) 3044 return 0; 3045 3046 unsigned MidSize = MidTy->getScalarSizeInBits(); 3047 // We can still fold this without knowing the actual sizes as long we 3048 // know that the intermediate pointer is the largest possible 3049 // pointer size. 3050 // FIXME: Is this always true? 3051 if (MidSize == 64) 3052 return Instruction::BitCast; 3053 3054 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size. 3055 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy) 3056 return 0; 3057 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits(); 3058 if (MidSize >= PtrSize) 3059 return Instruction::BitCast; 3060 return 0; 3061 } 3062 case 8: { 3063 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size 3064 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy) 3065 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy) 3066 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 3067 unsigned DstSize = DstTy->getScalarSizeInBits(); 3068 if (SrcSize == DstSize) 3069 return Instruction::BitCast; 3070 else if (SrcSize < DstSize) 3071 return firstOp; 3072 return secondOp; 3073 } 3074 case 9: 3075 // zext, sext -> zext, because sext can't sign extend after zext 3076 return Instruction::ZExt; 3077 case 11: { 3078 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize 3079 if (!MidIntPtrTy) 3080 return 0; 3081 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits(); 3082 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 3083 unsigned DstSize = DstTy->getScalarSizeInBits(); 3084 if (SrcSize <= PtrSize && SrcSize == DstSize) 3085 return Instruction::BitCast; 3086 return 0; 3087 } 3088 case 12: 3089 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS 3090 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS 3091 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) 3092 return Instruction::AddrSpaceCast; 3093 return Instruction::BitCast; 3094 case 13: 3095 // FIXME: this state can be merged with (1), but the following assert 3096 // is useful to check the correcteness of the sequence due to semantic 3097 // change of bitcast. 3098 assert( 3099 SrcTy->isPtrOrPtrVectorTy() && 3100 MidTy->isPtrOrPtrVectorTy() && 3101 DstTy->isPtrOrPtrVectorTy() && 3102 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() && 3103 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && 3104 "Illegal addrspacecast, bitcast sequence!"); 3105 // Allowed, use first cast's opcode 3106 return firstOp; 3107 case 14: { 3108 // bitcast, addrspacecast -> addrspacecast if the element type of 3109 // bitcast's source is the same as that of addrspacecast's destination. 3110 PointerType *SrcPtrTy = cast<PointerType>(SrcTy->getScalarType()); 3111 PointerType *DstPtrTy = cast<PointerType>(DstTy->getScalarType()); 3112 if (SrcPtrTy->hasSameElementTypeAs(DstPtrTy)) 3113 return Instruction::AddrSpaceCast; 3114 return 0; 3115 } 3116 case 15: 3117 // FIXME: this state can be merged with (1), but the following assert 3118 // is useful to check the correcteness of the sequence due to semantic 3119 // change of bitcast. 3120 assert( 3121 SrcTy->isIntOrIntVectorTy() && 3122 MidTy->isPtrOrPtrVectorTy() && 3123 DstTy->isPtrOrPtrVectorTy() && 3124 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && 3125 "Illegal inttoptr, bitcast sequence!"); 3126 // Allowed, use first cast's opcode 3127 return firstOp; 3128 case 16: 3129 // FIXME: this state can be merged with (2), but the following assert 3130 // is useful to check the correcteness of the sequence due to semantic 3131 // change of bitcast. 3132 assert( 3133 SrcTy->isPtrOrPtrVectorTy() && 3134 MidTy->isPtrOrPtrVectorTy() && 3135 DstTy->isIntOrIntVectorTy() && 3136 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() && 3137 "Illegal bitcast, ptrtoint sequence!"); 3138 // Allowed, use second cast's opcode 3139 return secondOp; 3140 case 17: 3141 // (sitofp (zext x)) -> (uitofp x) 3142 return Instruction::UIToFP; 3143 case 99: 3144 // Cast combination can't happen (error in input). This is for all cases 3145 // where the MidTy is not the same for the two cast instructions. 3146 llvm_unreachable("Invalid Cast Combination"); 3147 default: 3148 llvm_unreachable("Error in CastResults table!!!"); 3149 } 3150 } 3151 3152 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 3153 const Twine &Name, Instruction *InsertBefore) { 3154 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 3155 // Construct and return the appropriate CastInst subclass 3156 switch (op) { 3157 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore); 3158 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore); 3159 case SExt: return new SExtInst (S, Ty, Name, InsertBefore); 3160 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore); 3161 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore); 3162 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore); 3163 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore); 3164 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore); 3165 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore); 3166 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore); 3167 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore); 3168 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore); 3169 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore); 3170 default: llvm_unreachable("Invalid opcode provided"); 3171 } 3172 } 3173 3174 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 3175 const Twine &Name, BasicBlock *InsertAtEnd) { 3176 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 3177 // Construct and return the appropriate CastInst subclass 3178 switch (op) { 3179 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd); 3180 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd); 3181 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd); 3182 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd); 3183 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd); 3184 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd); 3185 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd); 3186 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd); 3187 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd); 3188 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd); 3189 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd); 3190 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd); 3191 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd); 3192 default: llvm_unreachable("Invalid opcode provided"); 3193 } 3194 } 3195 3196 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 3197 const Twine &Name, 3198 Instruction *InsertBefore) { 3199 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 3200 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 3201 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore); 3202 } 3203 3204 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 3205 const Twine &Name, 3206 BasicBlock *InsertAtEnd) { 3207 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 3208 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 3209 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd); 3210 } 3211 3212 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 3213 const Twine &Name, 3214 Instruction *InsertBefore) { 3215 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 3216 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 3217 return Create(Instruction::SExt, S, Ty, Name, InsertBefore); 3218 } 3219 3220 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 3221 const Twine &Name, 3222 BasicBlock *InsertAtEnd) { 3223 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 3224 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 3225 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd); 3226 } 3227 3228 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 3229 const Twine &Name, 3230 Instruction *InsertBefore) { 3231 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 3232 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 3233 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore); 3234 } 3235 3236 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 3237 const Twine &Name, 3238 BasicBlock *InsertAtEnd) { 3239 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 3240 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 3241 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd); 3242 } 3243 3244 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 3245 const Twine &Name, 3246 BasicBlock *InsertAtEnd) { 3247 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 3248 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 3249 "Invalid cast"); 3250 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 3251 assert((!Ty->isVectorTy() || 3252 cast<VectorType>(Ty)->getElementCount() == 3253 cast<VectorType>(S->getType())->getElementCount()) && 3254 "Invalid cast"); 3255 3256 if (Ty->isIntOrIntVectorTy()) 3257 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd); 3258 3259 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd); 3260 } 3261 3262 /// Create a BitCast or a PtrToInt cast instruction 3263 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 3264 const Twine &Name, 3265 Instruction *InsertBefore) { 3266 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 3267 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 3268 "Invalid cast"); 3269 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 3270 assert((!Ty->isVectorTy() || 3271 cast<VectorType>(Ty)->getElementCount() == 3272 cast<VectorType>(S->getType())->getElementCount()) && 3273 "Invalid cast"); 3274 3275 if (Ty->isIntOrIntVectorTy()) 3276 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 3277 3278 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore); 3279 } 3280 3281 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( 3282 Value *S, Type *Ty, 3283 const Twine &Name, 3284 BasicBlock *InsertAtEnd) { 3285 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 3286 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 3287 3288 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 3289 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd); 3290 3291 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 3292 } 3293 3294 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( 3295 Value *S, Type *Ty, 3296 const Twine &Name, 3297 Instruction *InsertBefore) { 3298 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 3299 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 3300 3301 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 3302 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore); 3303 3304 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 3305 } 3306 3307 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty, 3308 const Twine &Name, 3309 Instruction *InsertBefore) { 3310 if (S->getType()->isPointerTy() && Ty->isIntegerTy()) 3311 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 3312 if (S->getType()->isIntegerTy() && Ty->isPointerTy()) 3313 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore); 3314 3315 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 3316 } 3317 3318 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 3319 bool isSigned, const Twine &Name, 3320 Instruction *InsertBefore) { 3321 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 3322 "Invalid integer cast"); 3323 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 3324 unsigned DstBits = Ty->getScalarSizeInBits(); 3325 Instruction::CastOps opcode = 3326 (SrcBits == DstBits ? Instruction::BitCast : 3327 (SrcBits > DstBits ? Instruction::Trunc : 3328 (isSigned ? Instruction::SExt : Instruction::ZExt))); 3329 return Create(opcode, C, Ty, Name, InsertBefore); 3330 } 3331 3332 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 3333 bool isSigned, const Twine &Name, 3334 BasicBlock *InsertAtEnd) { 3335 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 3336 "Invalid cast"); 3337 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 3338 unsigned DstBits = Ty->getScalarSizeInBits(); 3339 Instruction::CastOps opcode = 3340 (SrcBits == DstBits ? Instruction::BitCast : 3341 (SrcBits > DstBits ? Instruction::Trunc : 3342 (isSigned ? Instruction::SExt : Instruction::ZExt))); 3343 return Create(opcode, C, Ty, Name, InsertAtEnd); 3344 } 3345 3346 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 3347 const Twine &Name, 3348 Instruction *InsertBefore) { 3349 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 3350 "Invalid cast"); 3351 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 3352 unsigned DstBits = Ty->getScalarSizeInBits(); 3353 Instruction::CastOps opcode = 3354 (SrcBits == DstBits ? Instruction::BitCast : 3355 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 3356 return Create(opcode, C, Ty, Name, InsertBefore); 3357 } 3358 3359 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 3360 const Twine &Name, 3361 BasicBlock *InsertAtEnd) { 3362 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 3363 "Invalid cast"); 3364 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 3365 unsigned DstBits = Ty->getScalarSizeInBits(); 3366 Instruction::CastOps opcode = 3367 (SrcBits == DstBits ? Instruction::BitCast : 3368 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 3369 return Create(opcode, C, Ty, Name, InsertAtEnd); 3370 } 3371 3372 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) { 3373 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) 3374 return false; 3375 3376 if (SrcTy == DestTy) 3377 return true; 3378 3379 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { 3380 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) { 3381 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) { 3382 // An element by element cast. Valid if casting the elements is valid. 3383 SrcTy = SrcVecTy->getElementType(); 3384 DestTy = DestVecTy->getElementType(); 3385 } 3386 } 3387 } 3388 3389 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) { 3390 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) { 3391 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace(); 3392 } 3393 } 3394 3395 TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 3396 TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 3397 3398 // Could still have vectors of pointers if the number of elements doesn't 3399 // match 3400 if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0) 3401 return false; 3402 3403 if (SrcBits != DestBits) 3404 return false; 3405 3406 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy()) 3407 return false; 3408 3409 return true; 3410 } 3411 3412 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, 3413 const DataLayout &DL) { 3414 // ptrtoint and inttoptr are not allowed on non-integral pointers 3415 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy)) 3416 if (auto *IntTy = dyn_cast<IntegerType>(DestTy)) 3417 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) && 3418 !DL.isNonIntegralPointerType(PtrTy)); 3419 if (auto *PtrTy = dyn_cast<PointerType>(DestTy)) 3420 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy)) 3421 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) && 3422 !DL.isNonIntegralPointerType(PtrTy)); 3423 3424 return isBitCastable(SrcTy, DestTy); 3425 } 3426 3427 // Provide a way to get a "cast" where the cast opcode is inferred from the 3428 // types and size of the operand. This, basically, is a parallel of the 3429 // logic in the castIsValid function below. This axiom should hold: 3430 // castIsValid( getCastOpcode(Val, Ty), Val, Ty) 3431 // should not assert in castIsValid. In other words, this produces a "correct" 3432 // casting opcode for the arguments passed to it. 3433 Instruction::CastOps 3434 CastInst::getCastOpcode( 3435 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) { 3436 Type *SrcTy = Src->getType(); 3437 3438 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() && 3439 "Only first class types are castable!"); 3440 3441 if (SrcTy == DestTy) 3442 return BitCast; 3443 3444 // FIXME: Check address space sizes here 3445 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 3446 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 3447 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) { 3448 // An element by element cast. Find the appropriate opcode based on the 3449 // element types. 3450 SrcTy = SrcVecTy->getElementType(); 3451 DestTy = DestVecTy->getElementType(); 3452 } 3453 3454 // Get the bit sizes, we'll need these 3455 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 3456 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 3457 3458 // Run through the possibilities ... 3459 if (DestTy->isIntegerTy()) { // Casting to integral 3460 if (SrcTy->isIntegerTy()) { // Casting from integral 3461 if (DestBits < SrcBits) 3462 return Trunc; // int -> smaller int 3463 else if (DestBits > SrcBits) { // its an extension 3464 if (SrcIsSigned) 3465 return SExt; // signed -> SEXT 3466 else 3467 return ZExt; // unsigned -> ZEXT 3468 } else { 3469 return BitCast; // Same size, No-op cast 3470 } 3471 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 3472 if (DestIsSigned) 3473 return FPToSI; // FP -> sint 3474 else 3475 return FPToUI; // FP -> uint 3476 } else if (SrcTy->isVectorTy()) { 3477 assert(DestBits == SrcBits && 3478 "Casting vector to integer of different width"); 3479 return BitCast; // Same size, no-op cast 3480 } else { 3481 assert(SrcTy->isPointerTy() && 3482 "Casting from a value that is not first-class type"); 3483 return PtrToInt; // ptr -> int 3484 } 3485 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt 3486 if (SrcTy->isIntegerTy()) { // Casting from integral 3487 if (SrcIsSigned) 3488 return SIToFP; // sint -> FP 3489 else 3490 return UIToFP; // uint -> FP 3491 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 3492 if (DestBits < SrcBits) { 3493 return FPTrunc; // FP -> smaller FP 3494 } else if (DestBits > SrcBits) { 3495 return FPExt; // FP -> larger FP 3496 } else { 3497 return BitCast; // same size, no-op cast 3498 } 3499 } else if (SrcTy->isVectorTy()) { 3500 assert(DestBits == SrcBits && 3501 "Casting vector to floating point of different width"); 3502 return BitCast; // same size, no-op cast 3503 } 3504 llvm_unreachable("Casting pointer or non-first class to float"); 3505 } else if (DestTy->isVectorTy()) { 3506 assert(DestBits == SrcBits && 3507 "Illegal cast to vector (wrong type or size)"); 3508 return BitCast; 3509 } else if (DestTy->isPointerTy()) { 3510 if (SrcTy->isPointerTy()) { 3511 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace()) 3512 return AddrSpaceCast; 3513 return BitCast; // ptr -> ptr 3514 } else if (SrcTy->isIntegerTy()) { 3515 return IntToPtr; // int -> ptr 3516 } 3517 llvm_unreachable("Casting pointer to other than pointer or int"); 3518 } else if (DestTy->isX86_MMXTy()) { 3519 if (SrcTy->isVectorTy()) { 3520 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX"); 3521 return BitCast; // 64-bit vector to MMX 3522 } 3523 llvm_unreachable("Illegal cast to X86_MMX"); 3524 } 3525 llvm_unreachable("Casting to type that is not first-class"); 3526 } 3527 3528 //===----------------------------------------------------------------------===// 3529 // CastInst SubClass Constructors 3530 //===----------------------------------------------------------------------===// 3531 3532 /// Check that the construction parameters for a CastInst are correct. This 3533 /// could be broken out into the separate constructors but it is useful to have 3534 /// it in one place and to eliminate the redundant code for getting the sizes 3535 /// of the types involved. 3536 bool 3537 CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) { 3538 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() || 3539 SrcTy->isAggregateType() || DstTy->isAggregateType()) 3540 return false; 3541 3542 // Get the size of the types in bits, and whether we are dealing 3543 // with vector types, we'll need this later. 3544 bool SrcIsVec = isa<VectorType>(SrcTy); 3545 bool DstIsVec = isa<VectorType>(DstTy); 3546 unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits(); 3547 unsigned DstScalarBitSize = DstTy->getScalarSizeInBits(); 3548 3549 // If these are vector types, get the lengths of the vectors (using zero for 3550 // scalar types means that checking that vector lengths match also checks that 3551 // scalars are not being converted to vectors or vectors to scalars). 3552 ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount() 3553 : ElementCount::getFixed(0); 3554 ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount() 3555 : ElementCount::getFixed(0); 3556 3557 // Switch on the opcode provided 3558 switch (op) { 3559 default: return false; // This is an input error 3560 case Instruction::Trunc: 3561 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3562 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize; 3563 case Instruction::ZExt: 3564 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3565 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize; 3566 case Instruction::SExt: 3567 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3568 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize; 3569 case Instruction::FPTrunc: 3570 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 3571 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize; 3572 case Instruction::FPExt: 3573 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 3574 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize; 3575 case Instruction::UIToFP: 3576 case Instruction::SIToFP: 3577 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() && 3578 SrcEC == DstEC; 3579 case Instruction::FPToUI: 3580 case Instruction::FPToSI: 3581 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() && 3582 SrcEC == DstEC; 3583 case Instruction::PtrToInt: 3584 if (SrcEC != DstEC) 3585 return false; 3586 return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy(); 3587 case Instruction::IntToPtr: 3588 if (SrcEC != DstEC) 3589 return false; 3590 return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy(); 3591 case Instruction::BitCast: { 3592 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); 3593 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); 3594 3595 // BitCast implies a no-op cast of type only. No bits change. 3596 // However, you can't cast pointers to anything but pointers. 3597 if (!SrcPtrTy != !DstPtrTy) 3598 return false; 3599 3600 // For non-pointer cases, the cast is okay if the source and destination bit 3601 // widths are identical. 3602 if (!SrcPtrTy) 3603 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits(); 3604 3605 // If both are pointers then the address spaces must match. 3606 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) 3607 return false; 3608 3609 // A vector of pointers must have the same number of elements. 3610 if (SrcIsVec && DstIsVec) 3611 return SrcEC == DstEC; 3612 if (SrcIsVec) 3613 return SrcEC == ElementCount::getFixed(1); 3614 if (DstIsVec) 3615 return DstEC == ElementCount::getFixed(1); 3616 3617 return true; 3618 } 3619 case Instruction::AddrSpaceCast: { 3620 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); 3621 if (!SrcPtrTy) 3622 return false; 3623 3624 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); 3625 if (!DstPtrTy) 3626 return false; 3627 3628 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) 3629 return false; 3630 3631 return SrcEC == DstEC; 3632 } 3633 } 3634 } 3635 3636 TruncInst::TruncInst( 3637 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3638 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) { 3639 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 3640 } 3641 3642 TruncInst::TruncInst( 3643 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3644 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { 3645 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 3646 } 3647 3648 ZExtInst::ZExtInst( 3649 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3650 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) { 3651 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 3652 } 3653 3654 ZExtInst::ZExtInst( 3655 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3656 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { 3657 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 3658 } 3659 SExtInst::SExtInst( 3660 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3661 ) : CastInst(Ty, SExt, S, Name, InsertBefore) { 3662 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 3663 } 3664 3665 SExtInst::SExtInst( 3666 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3667 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) { 3668 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 3669 } 3670 3671 FPTruncInst::FPTruncInst( 3672 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3673 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 3674 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 3675 } 3676 3677 FPTruncInst::FPTruncInst( 3678 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3679 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { 3680 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 3681 } 3682 3683 FPExtInst::FPExtInst( 3684 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3685 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { 3686 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 3687 } 3688 3689 FPExtInst::FPExtInst( 3690 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3691 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { 3692 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 3693 } 3694 3695 UIToFPInst::UIToFPInst( 3696 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3697 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 3698 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 3699 } 3700 3701 UIToFPInst::UIToFPInst( 3702 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3703 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { 3704 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 3705 } 3706 3707 SIToFPInst::SIToFPInst( 3708 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3709 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 3710 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 3711 } 3712 3713 SIToFPInst::SIToFPInst( 3714 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3715 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { 3716 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 3717 } 3718 3719 FPToUIInst::FPToUIInst( 3720 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3721 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 3722 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 3723 } 3724 3725 FPToUIInst::FPToUIInst( 3726 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3727 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { 3728 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 3729 } 3730 3731 FPToSIInst::FPToSIInst( 3732 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3733 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 3734 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 3735 } 3736 3737 FPToSIInst::FPToSIInst( 3738 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3739 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { 3740 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 3741 } 3742 3743 PtrToIntInst::PtrToIntInst( 3744 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3745 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 3746 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 3747 } 3748 3749 PtrToIntInst::PtrToIntInst( 3750 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3751 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { 3752 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 3753 } 3754 3755 IntToPtrInst::IntToPtrInst( 3756 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3757 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 3758 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 3759 } 3760 3761 IntToPtrInst::IntToPtrInst( 3762 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3763 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { 3764 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 3765 } 3766 3767 BitCastInst::BitCastInst( 3768 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3769 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { 3770 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 3771 } 3772 3773 BitCastInst::BitCastInst( 3774 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3775 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { 3776 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 3777 } 3778 3779 AddrSpaceCastInst::AddrSpaceCastInst( 3780 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3781 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) { 3782 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); 3783 } 3784 3785 AddrSpaceCastInst::AddrSpaceCastInst( 3786 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3787 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) { 3788 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); 3789 } 3790 3791 //===----------------------------------------------------------------------===// 3792 // CmpInst Classes 3793 //===----------------------------------------------------------------------===// 3794 3795 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, 3796 Value *RHS, const Twine &Name, Instruction *InsertBefore, 3797 Instruction *FlagsSource) 3798 : Instruction(ty, op, 3799 OperandTraits<CmpInst>::op_begin(this), 3800 OperandTraits<CmpInst>::operands(this), 3801 InsertBefore) { 3802 Op<0>() = LHS; 3803 Op<1>() = RHS; 3804 setPredicate((Predicate)predicate); 3805 setName(Name); 3806 if (FlagsSource) 3807 copyIRFlags(FlagsSource); 3808 } 3809 3810 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, 3811 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd) 3812 : Instruction(ty, op, 3813 OperandTraits<CmpInst>::op_begin(this), 3814 OperandTraits<CmpInst>::operands(this), 3815 InsertAtEnd) { 3816 Op<0>() = LHS; 3817 Op<1>() = RHS; 3818 setPredicate((Predicate)predicate); 3819 setName(Name); 3820 } 3821 3822 CmpInst * 3823 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, 3824 const Twine &Name, Instruction *InsertBefore) { 3825 if (Op == Instruction::ICmp) { 3826 if (InsertBefore) 3827 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate), 3828 S1, S2, Name); 3829 else 3830 return new ICmpInst(CmpInst::Predicate(predicate), 3831 S1, S2, Name); 3832 } 3833 3834 if (InsertBefore) 3835 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate), 3836 S1, S2, Name); 3837 else 3838 return new FCmpInst(CmpInst::Predicate(predicate), 3839 S1, S2, Name); 3840 } 3841 3842 CmpInst * 3843 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, 3844 const Twine &Name, BasicBlock *InsertAtEnd) { 3845 if (Op == Instruction::ICmp) { 3846 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 3847 S1, S2, Name); 3848 } 3849 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 3850 S1, S2, Name); 3851 } 3852 3853 void CmpInst::swapOperands() { 3854 if (ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3855 IC->swapOperands(); 3856 else 3857 cast<FCmpInst>(this)->swapOperands(); 3858 } 3859 3860 bool CmpInst::isCommutative() const { 3861 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3862 return IC->isCommutative(); 3863 return cast<FCmpInst>(this)->isCommutative(); 3864 } 3865 3866 bool CmpInst::isEquality(Predicate P) { 3867 if (ICmpInst::isIntPredicate(P)) 3868 return ICmpInst::isEquality(P); 3869 if (FCmpInst::isFPPredicate(P)) 3870 return FCmpInst::isEquality(P); 3871 llvm_unreachable("Unsupported predicate kind"); 3872 } 3873 3874 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) { 3875 switch (pred) { 3876 default: llvm_unreachable("Unknown cmp predicate!"); 3877 case ICMP_EQ: return ICMP_NE; 3878 case ICMP_NE: return ICMP_EQ; 3879 case ICMP_UGT: return ICMP_ULE; 3880 case ICMP_ULT: return ICMP_UGE; 3881 case ICMP_UGE: return ICMP_ULT; 3882 case ICMP_ULE: return ICMP_UGT; 3883 case ICMP_SGT: return ICMP_SLE; 3884 case ICMP_SLT: return ICMP_SGE; 3885 case ICMP_SGE: return ICMP_SLT; 3886 case ICMP_SLE: return ICMP_SGT; 3887 3888 case FCMP_OEQ: return FCMP_UNE; 3889 case FCMP_ONE: return FCMP_UEQ; 3890 case FCMP_OGT: return FCMP_ULE; 3891 case FCMP_OLT: return FCMP_UGE; 3892 case FCMP_OGE: return FCMP_ULT; 3893 case FCMP_OLE: return FCMP_UGT; 3894 case FCMP_UEQ: return FCMP_ONE; 3895 case FCMP_UNE: return FCMP_OEQ; 3896 case FCMP_UGT: return FCMP_OLE; 3897 case FCMP_ULT: return FCMP_OGE; 3898 case FCMP_UGE: return FCMP_OLT; 3899 case FCMP_ULE: return FCMP_OGT; 3900 case FCMP_ORD: return FCMP_UNO; 3901 case FCMP_UNO: return FCMP_ORD; 3902 case FCMP_TRUE: return FCMP_FALSE; 3903 case FCMP_FALSE: return FCMP_TRUE; 3904 } 3905 } 3906 3907 StringRef CmpInst::getPredicateName(Predicate Pred) { 3908 switch (Pred) { 3909 default: return "unknown"; 3910 case FCmpInst::FCMP_FALSE: return "false"; 3911 case FCmpInst::FCMP_OEQ: return "oeq"; 3912 case FCmpInst::FCMP_OGT: return "ogt"; 3913 case FCmpInst::FCMP_OGE: return "oge"; 3914 case FCmpInst::FCMP_OLT: return "olt"; 3915 case FCmpInst::FCMP_OLE: return "ole"; 3916 case FCmpInst::FCMP_ONE: return "one"; 3917 case FCmpInst::FCMP_ORD: return "ord"; 3918 case FCmpInst::FCMP_UNO: return "uno"; 3919 case FCmpInst::FCMP_UEQ: return "ueq"; 3920 case FCmpInst::FCMP_UGT: return "ugt"; 3921 case FCmpInst::FCMP_UGE: return "uge"; 3922 case FCmpInst::FCMP_ULT: return "ult"; 3923 case FCmpInst::FCMP_ULE: return "ule"; 3924 case FCmpInst::FCMP_UNE: return "une"; 3925 case FCmpInst::FCMP_TRUE: return "true"; 3926 case ICmpInst::ICMP_EQ: return "eq"; 3927 case ICmpInst::ICMP_NE: return "ne"; 3928 case ICmpInst::ICMP_SGT: return "sgt"; 3929 case ICmpInst::ICMP_SGE: return "sge"; 3930 case ICmpInst::ICMP_SLT: return "slt"; 3931 case ICmpInst::ICMP_SLE: return "sle"; 3932 case ICmpInst::ICMP_UGT: return "ugt"; 3933 case ICmpInst::ICMP_UGE: return "uge"; 3934 case ICmpInst::ICMP_ULT: return "ult"; 3935 case ICmpInst::ICMP_ULE: return "ule"; 3936 } 3937 } 3938 3939 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) { 3940 switch (pred) { 3941 default: llvm_unreachable("Unknown icmp predicate!"); 3942 case ICMP_EQ: case ICMP_NE: 3943 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 3944 return pred; 3945 case ICMP_UGT: return ICMP_SGT; 3946 case ICMP_ULT: return ICMP_SLT; 3947 case ICMP_UGE: return ICMP_SGE; 3948 case ICMP_ULE: return ICMP_SLE; 3949 } 3950 } 3951 3952 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) { 3953 switch (pred) { 3954 default: llvm_unreachable("Unknown icmp predicate!"); 3955 case ICMP_EQ: case ICMP_NE: 3956 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: 3957 return pred; 3958 case ICMP_SGT: return ICMP_UGT; 3959 case ICMP_SLT: return ICMP_ULT; 3960 case ICMP_SGE: return ICMP_UGE; 3961 case ICMP_SLE: return ICMP_ULE; 3962 } 3963 } 3964 3965 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) { 3966 switch (pred) { 3967 default: llvm_unreachable("Unknown cmp predicate!"); 3968 case ICMP_EQ: case ICMP_NE: 3969 return pred; 3970 case ICMP_SGT: return ICMP_SLT; 3971 case ICMP_SLT: return ICMP_SGT; 3972 case ICMP_SGE: return ICMP_SLE; 3973 case ICMP_SLE: return ICMP_SGE; 3974 case ICMP_UGT: return ICMP_ULT; 3975 case ICMP_ULT: return ICMP_UGT; 3976 case ICMP_UGE: return ICMP_ULE; 3977 case ICMP_ULE: return ICMP_UGE; 3978 3979 case FCMP_FALSE: case FCMP_TRUE: 3980 case FCMP_OEQ: case FCMP_ONE: 3981 case FCMP_UEQ: case FCMP_UNE: 3982 case FCMP_ORD: case FCMP_UNO: 3983 return pred; 3984 case FCMP_OGT: return FCMP_OLT; 3985 case FCMP_OLT: return FCMP_OGT; 3986 case FCMP_OGE: return FCMP_OLE; 3987 case FCMP_OLE: return FCMP_OGE; 3988 case FCMP_UGT: return FCMP_ULT; 3989 case FCMP_ULT: return FCMP_UGT; 3990 case FCMP_UGE: return FCMP_ULE; 3991 case FCMP_ULE: return FCMP_UGE; 3992 } 3993 } 3994 3995 bool CmpInst::isNonStrictPredicate(Predicate pred) { 3996 switch (pred) { 3997 case ICMP_SGE: 3998 case ICMP_SLE: 3999 case ICMP_UGE: 4000 case ICMP_ULE: 4001 case FCMP_OGE: 4002 case FCMP_OLE: 4003 case FCMP_UGE: 4004 case FCMP_ULE: 4005 return true; 4006 default: 4007 return false; 4008 } 4009 } 4010 4011 bool CmpInst::isStrictPredicate(Predicate pred) { 4012 switch (pred) { 4013 case ICMP_SGT: 4014 case ICMP_SLT: 4015 case ICMP_UGT: 4016 case ICMP_ULT: 4017 case FCMP_OGT: 4018 case FCMP_OLT: 4019 case FCMP_UGT: 4020 case FCMP_ULT: 4021 return true; 4022 default: 4023 return false; 4024 } 4025 } 4026 4027 CmpInst::Predicate CmpInst::getStrictPredicate(Predicate pred) { 4028 switch (pred) { 4029 case ICMP_SGE: 4030 return ICMP_SGT; 4031 case ICMP_SLE: 4032 return ICMP_SLT; 4033 case ICMP_UGE: 4034 return ICMP_UGT; 4035 case ICMP_ULE: 4036 return ICMP_ULT; 4037 case FCMP_OGE: 4038 return FCMP_OGT; 4039 case FCMP_OLE: 4040 return FCMP_OLT; 4041 case FCMP_UGE: 4042 return FCMP_UGT; 4043 case FCMP_ULE: 4044 return FCMP_ULT; 4045 default: 4046 return pred; 4047 } 4048 } 4049 4050 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) { 4051 switch (pred) { 4052 case ICMP_SGT: 4053 return ICMP_SGE; 4054 case ICMP_SLT: 4055 return ICMP_SLE; 4056 case ICMP_UGT: 4057 return ICMP_UGE; 4058 case ICMP_ULT: 4059 return ICMP_ULE; 4060 case FCMP_OGT: 4061 return FCMP_OGE; 4062 case FCMP_OLT: 4063 return FCMP_OLE; 4064 case FCMP_UGT: 4065 return FCMP_UGE; 4066 case FCMP_ULT: 4067 return FCMP_ULE; 4068 default: 4069 return pred; 4070 } 4071 } 4072 4073 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) { 4074 assert(CmpInst::isRelational(pred) && "Call only with relational predicate!"); 4075 4076 if (isStrictPredicate(pred)) 4077 return getNonStrictPredicate(pred); 4078 if (isNonStrictPredicate(pred)) 4079 return getStrictPredicate(pred); 4080 4081 llvm_unreachable("Unknown predicate!"); 4082 } 4083 4084 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) { 4085 assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!"); 4086 4087 switch (pred) { 4088 default: 4089 llvm_unreachable("Unknown predicate!"); 4090 case CmpInst::ICMP_ULT: 4091 return CmpInst::ICMP_SLT; 4092 case CmpInst::ICMP_ULE: 4093 return CmpInst::ICMP_SLE; 4094 case CmpInst::ICMP_UGT: 4095 return CmpInst::ICMP_SGT; 4096 case CmpInst::ICMP_UGE: 4097 return CmpInst::ICMP_SGE; 4098 } 4099 } 4100 4101 CmpInst::Predicate CmpInst::getUnsignedPredicate(Predicate pred) { 4102 assert(CmpInst::isSigned(pred) && "Call only with signed predicates!"); 4103 4104 switch (pred) { 4105 default: 4106 llvm_unreachable("Unknown predicate!"); 4107 case CmpInst::ICMP_SLT: 4108 return CmpInst::ICMP_ULT; 4109 case CmpInst::ICMP_SLE: 4110 return CmpInst::ICMP_ULE; 4111 case CmpInst::ICMP_SGT: 4112 return CmpInst::ICMP_UGT; 4113 case CmpInst::ICMP_SGE: 4114 return CmpInst::ICMP_UGE; 4115 } 4116 } 4117 4118 bool CmpInst::isUnsigned(Predicate predicate) { 4119 switch (predicate) { 4120 default: return false; 4121 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: 4122 case ICmpInst::ICMP_UGE: return true; 4123 } 4124 } 4125 4126 bool CmpInst::isSigned(Predicate predicate) { 4127 switch (predicate) { 4128 default: return false; 4129 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: 4130 case ICmpInst::ICMP_SGE: return true; 4131 } 4132 } 4133 4134 bool ICmpInst::compare(const APInt &LHS, const APInt &RHS, 4135 ICmpInst::Predicate Pred) { 4136 assert(ICmpInst::isIntPredicate(Pred) && "Only for integer predicates!"); 4137 switch (Pred) { 4138 case ICmpInst::Predicate::ICMP_EQ: 4139 return LHS.eq(RHS); 4140 case ICmpInst::Predicate::ICMP_NE: 4141 return LHS.ne(RHS); 4142 case ICmpInst::Predicate::ICMP_UGT: 4143 return LHS.ugt(RHS); 4144 case ICmpInst::Predicate::ICMP_UGE: 4145 return LHS.uge(RHS); 4146 case ICmpInst::Predicate::ICMP_ULT: 4147 return LHS.ult(RHS); 4148 case ICmpInst::Predicate::ICMP_ULE: 4149 return LHS.ule(RHS); 4150 case ICmpInst::Predicate::ICMP_SGT: 4151 return LHS.sgt(RHS); 4152 case ICmpInst::Predicate::ICMP_SGE: 4153 return LHS.sge(RHS); 4154 case ICmpInst::Predicate::ICMP_SLT: 4155 return LHS.slt(RHS); 4156 case ICmpInst::Predicate::ICMP_SLE: 4157 return LHS.sle(RHS); 4158 default: 4159 llvm_unreachable("Unexpected non-integer predicate."); 4160 }; 4161 } 4162 4163 bool FCmpInst::compare(const APFloat &LHS, const APFloat &RHS, 4164 FCmpInst::Predicate Pred) { 4165 APFloat::cmpResult R = LHS.compare(RHS); 4166 switch (Pred) { 4167 default: 4168 llvm_unreachable("Invalid FCmp Predicate"); 4169 case FCmpInst::FCMP_FALSE: 4170 return false; 4171 case FCmpInst::FCMP_TRUE: 4172 return true; 4173 case FCmpInst::FCMP_UNO: 4174 return R == APFloat::cmpUnordered; 4175 case FCmpInst::FCMP_ORD: 4176 return R != APFloat::cmpUnordered; 4177 case FCmpInst::FCMP_UEQ: 4178 return R == APFloat::cmpUnordered || R == APFloat::cmpEqual; 4179 case FCmpInst::FCMP_OEQ: 4180 return R == APFloat::cmpEqual; 4181 case FCmpInst::FCMP_UNE: 4182 return R != APFloat::cmpEqual; 4183 case FCmpInst::FCMP_ONE: 4184 return R == APFloat::cmpLessThan || R == APFloat::cmpGreaterThan; 4185 case FCmpInst::FCMP_ULT: 4186 return R == APFloat::cmpUnordered || R == APFloat::cmpLessThan; 4187 case FCmpInst::FCMP_OLT: 4188 return R == APFloat::cmpLessThan; 4189 case FCmpInst::FCMP_UGT: 4190 return R == APFloat::cmpUnordered || R == APFloat::cmpGreaterThan; 4191 case FCmpInst::FCMP_OGT: 4192 return R == APFloat::cmpGreaterThan; 4193 case FCmpInst::FCMP_ULE: 4194 return R != APFloat::cmpGreaterThan; 4195 case FCmpInst::FCMP_OLE: 4196 return R == APFloat::cmpLessThan || R == APFloat::cmpEqual; 4197 case FCmpInst::FCMP_UGE: 4198 return R != APFloat::cmpLessThan; 4199 case FCmpInst::FCMP_OGE: 4200 return R == APFloat::cmpGreaterThan || R == APFloat::cmpEqual; 4201 } 4202 } 4203 4204 CmpInst::Predicate CmpInst::getFlippedSignednessPredicate(Predicate pred) { 4205 assert(CmpInst::isRelational(pred) && 4206 "Call only with non-equality predicates!"); 4207 4208 if (isSigned(pred)) 4209 return getUnsignedPredicate(pred); 4210 if (isUnsigned(pred)) 4211 return getSignedPredicate(pred); 4212 4213 llvm_unreachable("Unknown predicate!"); 4214 } 4215 4216 bool CmpInst::isOrdered(Predicate predicate) { 4217 switch (predicate) { 4218 default: return false; 4219 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: 4220 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: 4221 case FCmpInst::FCMP_ORD: return true; 4222 } 4223 } 4224 4225 bool CmpInst::isUnordered(Predicate predicate) { 4226 switch (predicate) { 4227 default: return false; 4228 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: 4229 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: 4230 case FCmpInst::FCMP_UNO: return true; 4231 } 4232 } 4233 4234 bool CmpInst::isTrueWhenEqual(Predicate predicate) { 4235 switch(predicate) { 4236 default: return false; 4237 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE: 4238 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true; 4239 } 4240 } 4241 4242 bool CmpInst::isFalseWhenEqual(Predicate predicate) { 4243 switch(predicate) { 4244 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT: 4245 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true; 4246 default: return false; 4247 } 4248 } 4249 4250 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) { 4251 // If the predicates match, then we know the first condition implies the 4252 // second is true. 4253 if (Pred1 == Pred2) 4254 return true; 4255 4256 switch (Pred1) { 4257 default: 4258 break; 4259 case ICMP_EQ: 4260 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true. 4261 return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE || 4262 Pred2 == ICMP_SLE; 4263 case ICMP_UGT: // A >u B implies A != B and A >=u B are true. 4264 return Pred2 == ICMP_NE || Pred2 == ICMP_UGE; 4265 case ICMP_ULT: // A <u B implies A != B and A <=u B are true. 4266 return Pred2 == ICMP_NE || Pred2 == ICMP_ULE; 4267 case ICMP_SGT: // A >s B implies A != B and A >=s B are true. 4268 return Pred2 == ICMP_NE || Pred2 == ICMP_SGE; 4269 case ICMP_SLT: // A <s B implies A != B and A <=s B are true. 4270 return Pred2 == ICMP_NE || Pred2 == ICMP_SLE; 4271 } 4272 return false; 4273 } 4274 4275 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) { 4276 return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2)); 4277 } 4278 4279 //===----------------------------------------------------------------------===// 4280 // SwitchInst Implementation 4281 //===----------------------------------------------------------------------===// 4282 4283 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) { 4284 assert(Value && Default && NumReserved); 4285 ReservedSpace = NumReserved; 4286 setNumHungOffUseOperands(2); 4287 allocHungoffUses(ReservedSpace); 4288 4289 Op<0>() = Value; 4290 Op<1>() = Default; 4291 } 4292 4293 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 4294 /// switch on and a default destination. The number of additional cases can 4295 /// be specified here to make memory allocation more efficient. This 4296 /// constructor can also autoinsert before another instruction. 4297 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 4298 Instruction *InsertBefore) 4299 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch, 4300 nullptr, 0, InsertBefore) { 4301 init(Value, Default, 2+NumCases*2); 4302 } 4303 4304 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 4305 /// switch on and a default destination. The number of additional cases can 4306 /// be specified here to make memory allocation more efficient. This 4307 /// constructor also autoinserts at the end of the specified BasicBlock. 4308 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 4309 BasicBlock *InsertAtEnd) 4310 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch, 4311 nullptr, 0, InsertAtEnd) { 4312 init(Value, Default, 2+NumCases*2); 4313 } 4314 4315 SwitchInst::SwitchInst(const SwitchInst &SI) 4316 : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) { 4317 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands()); 4318 setNumHungOffUseOperands(SI.getNumOperands()); 4319 Use *OL = getOperandList(); 4320 const Use *InOL = SI.getOperandList(); 4321 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) { 4322 OL[i] = InOL[i]; 4323 OL[i+1] = InOL[i+1]; 4324 } 4325 SubclassOptionalData = SI.SubclassOptionalData; 4326 } 4327 4328 /// addCase - Add an entry to the switch instruction... 4329 /// 4330 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) { 4331 unsigned NewCaseIdx = getNumCases(); 4332 unsigned OpNo = getNumOperands(); 4333 if (OpNo+2 > ReservedSpace) 4334 growOperands(); // Get more space! 4335 // Initialize some new operands. 4336 assert(OpNo+1 < ReservedSpace && "Growing didn't work!"); 4337 setNumHungOffUseOperands(OpNo+2); 4338 CaseHandle Case(this, NewCaseIdx); 4339 Case.setValue(OnVal); 4340 Case.setSuccessor(Dest); 4341 } 4342 4343 /// removeCase - This method removes the specified case and its successor 4344 /// from the switch instruction. 4345 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) { 4346 unsigned idx = I->getCaseIndex(); 4347 4348 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!"); 4349 4350 unsigned NumOps = getNumOperands(); 4351 Use *OL = getOperandList(); 4352 4353 // Overwrite this case with the end of the list. 4354 if (2 + (idx + 1) * 2 != NumOps) { 4355 OL[2 + idx * 2] = OL[NumOps - 2]; 4356 OL[2 + idx * 2 + 1] = OL[NumOps - 1]; 4357 } 4358 4359 // Nuke the last value. 4360 OL[NumOps-2].set(nullptr); 4361 OL[NumOps-2+1].set(nullptr); 4362 setNumHungOffUseOperands(NumOps-2); 4363 4364 return CaseIt(this, idx); 4365 } 4366 4367 /// growOperands - grow operands - This grows the operand list in response 4368 /// to a push_back style of operation. This grows the number of ops by 3 times. 4369 /// 4370 void SwitchInst::growOperands() { 4371 unsigned e = getNumOperands(); 4372 unsigned NumOps = e*3; 4373 4374 ReservedSpace = NumOps; 4375 growHungoffUses(ReservedSpace); 4376 } 4377 4378 MDNode * 4379 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) { 4380 if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof)) 4381 if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0))) 4382 if (MDName->getString() == "branch_weights") 4383 return ProfileData; 4384 return nullptr; 4385 } 4386 4387 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() { 4388 assert(Changed && "called only if metadata has changed"); 4389 4390 if (!Weights) 4391 return nullptr; 4392 4393 assert(SI.getNumSuccessors() == Weights->size() && 4394 "num of prof branch_weights must accord with num of successors"); 4395 4396 bool AllZeroes = 4397 all_of(Weights.getValue(), [](uint32_t W) { return W == 0; }); 4398 4399 if (AllZeroes || Weights.getValue().size() < 2) 4400 return nullptr; 4401 4402 return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights); 4403 } 4404 4405 void SwitchInstProfUpdateWrapper::init() { 4406 MDNode *ProfileData = getProfBranchWeightsMD(SI); 4407 if (!ProfileData) 4408 return; 4409 4410 if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) { 4411 llvm_unreachable("number of prof branch_weights metadata operands does " 4412 "not correspond to number of succesors"); 4413 } 4414 4415 SmallVector<uint32_t, 8> Weights; 4416 for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) { 4417 ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI)); 4418 uint32_t CW = C->getValue().getZExtValue(); 4419 Weights.push_back(CW); 4420 } 4421 this->Weights = std::move(Weights); 4422 } 4423 4424 SwitchInst::CaseIt 4425 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) { 4426 if (Weights) { 4427 assert(SI.getNumSuccessors() == Weights->size() && 4428 "num of prof branch_weights must accord with num of successors"); 4429 Changed = true; 4430 // Copy the last case to the place of the removed one and shrink. 4431 // This is tightly coupled with the way SwitchInst::removeCase() removes 4432 // the cases in SwitchInst::removeCase(CaseIt). 4433 Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back(); 4434 Weights.getValue().pop_back(); 4435 } 4436 return SI.removeCase(I); 4437 } 4438 4439 void SwitchInstProfUpdateWrapper::addCase( 4440 ConstantInt *OnVal, BasicBlock *Dest, 4441 SwitchInstProfUpdateWrapper::CaseWeightOpt W) { 4442 SI.addCase(OnVal, Dest); 4443 4444 if (!Weights && W && *W) { 4445 Changed = true; 4446 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0); 4447 Weights.getValue()[SI.getNumSuccessors() - 1] = *W; 4448 } else if (Weights) { 4449 Changed = true; 4450 Weights.getValue().push_back(W.getValueOr(0)); 4451 } 4452 if (Weights) 4453 assert(SI.getNumSuccessors() == Weights->size() && 4454 "num of prof branch_weights must accord with num of successors"); 4455 } 4456 4457 SymbolTableList<Instruction>::iterator 4458 SwitchInstProfUpdateWrapper::eraseFromParent() { 4459 // Instruction is erased. Mark as unchanged to not touch it in the destructor. 4460 Changed = false; 4461 if (Weights) 4462 Weights->resize(0); 4463 return SI.eraseFromParent(); 4464 } 4465 4466 SwitchInstProfUpdateWrapper::CaseWeightOpt 4467 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) { 4468 if (!Weights) 4469 return None; 4470 return Weights.getValue()[idx]; 4471 } 4472 4473 void SwitchInstProfUpdateWrapper::setSuccessorWeight( 4474 unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) { 4475 if (!W) 4476 return; 4477 4478 if (!Weights && *W) 4479 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0); 4480 4481 if (Weights) { 4482 auto &OldW = Weights.getValue()[idx]; 4483 if (*W != OldW) { 4484 Changed = true; 4485 OldW = *W; 4486 } 4487 } 4488 } 4489 4490 SwitchInstProfUpdateWrapper::CaseWeightOpt 4491 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI, 4492 unsigned idx) { 4493 if (MDNode *ProfileData = getProfBranchWeightsMD(SI)) 4494 if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1) 4495 return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1)) 4496 ->getValue() 4497 .getZExtValue(); 4498 4499 return None; 4500 } 4501 4502 //===----------------------------------------------------------------------===// 4503 // IndirectBrInst Implementation 4504 //===----------------------------------------------------------------------===// 4505 4506 void IndirectBrInst::init(Value *Address, unsigned NumDests) { 4507 assert(Address && Address->getType()->isPointerTy() && 4508 "Address of indirectbr must be a pointer"); 4509 ReservedSpace = 1+NumDests; 4510 setNumHungOffUseOperands(1); 4511 allocHungoffUses(ReservedSpace); 4512 4513 Op<0>() = Address; 4514 } 4515 4516 4517 /// growOperands - grow operands - This grows the operand list in response 4518 /// to a push_back style of operation. This grows the number of ops by 2 times. 4519 /// 4520 void IndirectBrInst::growOperands() { 4521 unsigned e = getNumOperands(); 4522 unsigned NumOps = e*2; 4523 4524 ReservedSpace = NumOps; 4525 growHungoffUses(ReservedSpace); 4526 } 4527 4528 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 4529 Instruction *InsertBefore) 4530 : Instruction(Type::getVoidTy(Address->getContext()), 4531 Instruction::IndirectBr, nullptr, 0, InsertBefore) { 4532 init(Address, NumCases); 4533 } 4534 4535 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 4536 BasicBlock *InsertAtEnd) 4537 : Instruction(Type::getVoidTy(Address->getContext()), 4538 Instruction::IndirectBr, nullptr, 0, InsertAtEnd) { 4539 init(Address, NumCases); 4540 } 4541 4542 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI) 4543 : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr, 4544 nullptr, IBI.getNumOperands()) { 4545 allocHungoffUses(IBI.getNumOperands()); 4546 Use *OL = getOperandList(); 4547 const Use *InOL = IBI.getOperandList(); 4548 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i) 4549 OL[i] = InOL[i]; 4550 SubclassOptionalData = IBI.SubclassOptionalData; 4551 } 4552 4553 /// addDestination - Add a destination. 4554 /// 4555 void IndirectBrInst::addDestination(BasicBlock *DestBB) { 4556 unsigned OpNo = getNumOperands(); 4557 if (OpNo+1 > ReservedSpace) 4558 growOperands(); // Get more space! 4559 // Initialize some new operands. 4560 assert(OpNo < ReservedSpace && "Growing didn't work!"); 4561 setNumHungOffUseOperands(OpNo+1); 4562 getOperandList()[OpNo] = DestBB; 4563 } 4564 4565 /// removeDestination - This method removes the specified successor from the 4566 /// indirectbr instruction. 4567 void IndirectBrInst::removeDestination(unsigned idx) { 4568 assert(idx < getNumOperands()-1 && "Successor index out of range!"); 4569 4570 unsigned NumOps = getNumOperands(); 4571 Use *OL = getOperandList(); 4572 4573 // Replace this value with the last one. 4574 OL[idx+1] = OL[NumOps-1]; 4575 4576 // Nuke the last value. 4577 OL[NumOps-1].set(nullptr); 4578 setNumHungOffUseOperands(NumOps-1); 4579 } 4580 4581 //===----------------------------------------------------------------------===// 4582 // FreezeInst Implementation 4583 //===----------------------------------------------------------------------===// 4584 4585 FreezeInst::FreezeInst(Value *S, 4586 const Twine &Name, Instruction *InsertBefore) 4587 : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) { 4588 setName(Name); 4589 } 4590 4591 FreezeInst::FreezeInst(Value *S, 4592 const Twine &Name, BasicBlock *InsertAtEnd) 4593 : UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) { 4594 setName(Name); 4595 } 4596 4597 //===----------------------------------------------------------------------===// 4598 // cloneImpl() implementations 4599 //===----------------------------------------------------------------------===// 4600 4601 // Define these methods here so vtables don't get emitted into every translation 4602 // unit that uses these classes. 4603 4604 GetElementPtrInst *GetElementPtrInst::cloneImpl() const { 4605 return new (getNumOperands()) GetElementPtrInst(*this); 4606 } 4607 4608 UnaryOperator *UnaryOperator::cloneImpl() const { 4609 return Create(getOpcode(), Op<0>()); 4610 } 4611 4612 BinaryOperator *BinaryOperator::cloneImpl() const { 4613 return Create(getOpcode(), Op<0>(), Op<1>()); 4614 } 4615 4616 FCmpInst *FCmpInst::cloneImpl() const { 4617 return new FCmpInst(getPredicate(), Op<0>(), Op<1>()); 4618 } 4619 4620 ICmpInst *ICmpInst::cloneImpl() const { 4621 return new ICmpInst(getPredicate(), Op<0>(), Op<1>()); 4622 } 4623 4624 ExtractValueInst *ExtractValueInst::cloneImpl() const { 4625 return new ExtractValueInst(*this); 4626 } 4627 4628 InsertValueInst *InsertValueInst::cloneImpl() const { 4629 return new InsertValueInst(*this); 4630 } 4631 4632 AllocaInst *AllocaInst::cloneImpl() const { 4633 AllocaInst *Result = 4634 new AllocaInst(getAllocatedType(), getType()->getAddressSpace(), 4635 getOperand(0), getAlign()); 4636 Result->setUsedWithInAlloca(isUsedWithInAlloca()); 4637 Result->setSwiftError(isSwiftError()); 4638 return Result; 4639 } 4640 4641 LoadInst *LoadInst::cloneImpl() const { 4642 return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(), 4643 getAlign(), getOrdering(), getSyncScopeID()); 4644 } 4645 4646 StoreInst *StoreInst::cloneImpl() const { 4647 return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(), 4648 getOrdering(), getSyncScopeID()); 4649 } 4650 4651 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const { 4652 AtomicCmpXchgInst *Result = new AtomicCmpXchgInst( 4653 getOperand(0), getOperand(1), getOperand(2), getAlign(), 4654 getSuccessOrdering(), getFailureOrdering(), getSyncScopeID()); 4655 Result->setVolatile(isVolatile()); 4656 Result->setWeak(isWeak()); 4657 return Result; 4658 } 4659 4660 AtomicRMWInst *AtomicRMWInst::cloneImpl() const { 4661 AtomicRMWInst *Result = 4662 new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1), 4663 getAlign(), getOrdering(), getSyncScopeID()); 4664 Result->setVolatile(isVolatile()); 4665 return Result; 4666 } 4667 4668 FenceInst *FenceInst::cloneImpl() const { 4669 return new FenceInst(getContext(), getOrdering(), getSyncScopeID()); 4670 } 4671 4672 TruncInst *TruncInst::cloneImpl() const { 4673 return new TruncInst(getOperand(0), getType()); 4674 } 4675 4676 ZExtInst *ZExtInst::cloneImpl() const { 4677 return new ZExtInst(getOperand(0), getType()); 4678 } 4679 4680 SExtInst *SExtInst::cloneImpl() const { 4681 return new SExtInst(getOperand(0), getType()); 4682 } 4683 4684 FPTruncInst *FPTruncInst::cloneImpl() const { 4685 return new FPTruncInst(getOperand(0), getType()); 4686 } 4687 4688 FPExtInst *FPExtInst::cloneImpl() const { 4689 return new FPExtInst(getOperand(0), getType()); 4690 } 4691 4692 UIToFPInst *UIToFPInst::cloneImpl() const { 4693 return new UIToFPInst(getOperand(0), getType()); 4694 } 4695 4696 SIToFPInst *SIToFPInst::cloneImpl() const { 4697 return new SIToFPInst(getOperand(0), getType()); 4698 } 4699 4700 FPToUIInst *FPToUIInst::cloneImpl() const { 4701 return new FPToUIInst(getOperand(0), getType()); 4702 } 4703 4704 FPToSIInst *FPToSIInst::cloneImpl() const { 4705 return new FPToSIInst(getOperand(0), getType()); 4706 } 4707 4708 PtrToIntInst *PtrToIntInst::cloneImpl() const { 4709 return new PtrToIntInst(getOperand(0), getType()); 4710 } 4711 4712 IntToPtrInst *IntToPtrInst::cloneImpl() const { 4713 return new IntToPtrInst(getOperand(0), getType()); 4714 } 4715 4716 BitCastInst *BitCastInst::cloneImpl() const { 4717 return new BitCastInst(getOperand(0), getType()); 4718 } 4719 4720 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const { 4721 return new AddrSpaceCastInst(getOperand(0), getType()); 4722 } 4723 4724 CallInst *CallInst::cloneImpl() const { 4725 if (hasOperandBundles()) { 4726 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 4727 return new(getNumOperands(), DescriptorBytes) CallInst(*this); 4728 } 4729 return new(getNumOperands()) CallInst(*this); 4730 } 4731 4732 SelectInst *SelectInst::cloneImpl() const { 4733 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2)); 4734 } 4735 4736 VAArgInst *VAArgInst::cloneImpl() const { 4737 return new VAArgInst(getOperand(0), getType()); 4738 } 4739 4740 ExtractElementInst *ExtractElementInst::cloneImpl() const { 4741 return ExtractElementInst::Create(getOperand(0), getOperand(1)); 4742 } 4743 4744 InsertElementInst *InsertElementInst::cloneImpl() const { 4745 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2)); 4746 } 4747 4748 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const { 4749 return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask()); 4750 } 4751 4752 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); } 4753 4754 LandingPadInst *LandingPadInst::cloneImpl() const { 4755 return new LandingPadInst(*this); 4756 } 4757 4758 ReturnInst *ReturnInst::cloneImpl() const { 4759 return new(getNumOperands()) ReturnInst(*this); 4760 } 4761 4762 BranchInst *BranchInst::cloneImpl() const { 4763 return new(getNumOperands()) BranchInst(*this); 4764 } 4765 4766 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); } 4767 4768 IndirectBrInst *IndirectBrInst::cloneImpl() const { 4769 return new IndirectBrInst(*this); 4770 } 4771 4772 InvokeInst *InvokeInst::cloneImpl() const { 4773 if (hasOperandBundles()) { 4774 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 4775 return new(getNumOperands(), DescriptorBytes) InvokeInst(*this); 4776 } 4777 return new(getNumOperands()) InvokeInst(*this); 4778 } 4779 4780 CallBrInst *CallBrInst::cloneImpl() const { 4781 if (hasOperandBundles()) { 4782 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 4783 return new (getNumOperands(), DescriptorBytes) CallBrInst(*this); 4784 } 4785 return new (getNumOperands()) CallBrInst(*this); 4786 } 4787 4788 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); } 4789 4790 CleanupReturnInst *CleanupReturnInst::cloneImpl() const { 4791 return new (getNumOperands()) CleanupReturnInst(*this); 4792 } 4793 4794 CatchReturnInst *CatchReturnInst::cloneImpl() const { 4795 return new (getNumOperands()) CatchReturnInst(*this); 4796 } 4797 4798 CatchSwitchInst *CatchSwitchInst::cloneImpl() const { 4799 return new CatchSwitchInst(*this); 4800 } 4801 4802 FuncletPadInst *FuncletPadInst::cloneImpl() const { 4803 return new (getNumOperands()) FuncletPadInst(*this); 4804 } 4805 4806 UnreachableInst *UnreachableInst::cloneImpl() const { 4807 LLVMContext &Context = getContext(); 4808 return new UnreachableInst(Context); 4809 } 4810 4811 FreezeInst *FreezeInst::cloneImpl() const { 4812 return new FreezeInst(getOperand(0)); 4813 } 4814