xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Instructions.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/TypeSize.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <vector>
45 
46 using namespace llvm;
47 
48 static cl::opt<bool> DisableI2pP2iOpt(
49     "disable-i2p-p2i-opt", cl::init(false),
50     cl::desc("Disables inttoptr/ptrtoint roundtrip optimization"));
51 
52 //===----------------------------------------------------------------------===//
53 //                            AllocaInst Class
54 //===----------------------------------------------------------------------===//
55 
56 Optional<TypeSize>
57 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
58   TypeSize Size = DL.getTypeAllocSizeInBits(getAllocatedType());
59   if (isArrayAllocation()) {
60     auto *C = dyn_cast<ConstantInt>(getArraySize());
61     if (!C)
62       return None;
63     assert(!Size.isScalable() && "Array elements cannot have a scalable size");
64     Size *= C->getZExtValue();
65   }
66   return Size;
67 }
68 
69 //===----------------------------------------------------------------------===//
70 //                              SelectInst Class
71 //===----------------------------------------------------------------------===//
72 
73 /// areInvalidOperands - Return a string if the specified operands are invalid
74 /// for a select operation, otherwise return null.
75 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
76   if (Op1->getType() != Op2->getType())
77     return "both values to select must have same type";
78 
79   if (Op1->getType()->isTokenTy())
80     return "select values cannot have token type";
81 
82   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
83     // Vector select.
84     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
85       return "vector select condition element type must be i1";
86     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
87     if (!ET)
88       return "selected values for vector select must be vectors";
89     if (ET->getElementCount() != VT->getElementCount())
90       return "vector select requires selected vectors to have "
91                    "the same vector length as select condition";
92   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
93     return "select condition must be i1 or <n x i1>";
94   }
95   return nullptr;
96 }
97 
98 //===----------------------------------------------------------------------===//
99 //                               PHINode Class
100 //===----------------------------------------------------------------------===//
101 
102 PHINode::PHINode(const PHINode &PN)
103     : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
104       ReservedSpace(PN.getNumOperands()) {
105   allocHungoffUses(PN.getNumOperands());
106   std::copy(PN.op_begin(), PN.op_end(), op_begin());
107   std::copy(PN.block_begin(), PN.block_end(), block_begin());
108   SubclassOptionalData = PN.SubclassOptionalData;
109 }
110 
111 // removeIncomingValue - Remove an incoming value.  This is useful if a
112 // predecessor basic block is deleted.
113 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
114   Value *Removed = getIncomingValue(Idx);
115 
116   // Move everything after this operand down.
117   //
118   // FIXME: we could just swap with the end of the list, then erase.  However,
119   // clients might not expect this to happen.  The code as it is thrashes the
120   // use/def lists, which is kinda lame.
121   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
122   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
123 
124   // Nuke the last value.
125   Op<-1>().set(nullptr);
126   setNumHungOffUseOperands(getNumOperands() - 1);
127 
128   // If the PHI node is dead, because it has zero entries, nuke it now.
129   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
130     // If anyone is using this PHI, make them use a dummy value instead...
131     replaceAllUsesWith(UndefValue::get(getType()));
132     eraseFromParent();
133   }
134   return Removed;
135 }
136 
137 /// growOperands - grow operands - This grows the operand list in response
138 /// to a push_back style of operation.  This grows the number of ops by 1.5
139 /// times.
140 ///
141 void PHINode::growOperands() {
142   unsigned e = getNumOperands();
143   unsigned NumOps = e + e / 2;
144   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
145 
146   ReservedSpace = NumOps;
147   growHungoffUses(ReservedSpace, /* IsPhi */ true);
148 }
149 
150 /// hasConstantValue - If the specified PHI node always merges together the same
151 /// value, return the value, otherwise return null.
152 Value *PHINode::hasConstantValue() const {
153   // Exploit the fact that phi nodes always have at least one entry.
154   Value *ConstantValue = getIncomingValue(0);
155   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
156     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
157       if (ConstantValue != this)
158         return nullptr; // Incoming values not all the same.
159        // The case where the first value is this PHI.
160       ConstantValue = getIncomingValue(i);
161     }
162   if (ConstantValue == this)
163     return UndefValue::get(getType());
164   return ConstantValue;
165 }
166 
167 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
168 /// together the same value, assuming that undefs result in the same value as
169 /// non-undefs.
170 /// Unlike \ref hasConstantValue, this does not return a value because the
171 /// unique non-undef incoming value need not dominate the PHI node.
172 bool PHINode::hasConstantOrUndefValue() const {
173   Value *ConstantValue = nullptr;
174   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
175     Value *Incoming = getIncomingValue(i);
176     if (Incoming != this && !isa<UndefValue>(Incoming)) {
177       if (ConstantValue && ConstantValue != Incoming)
178         return false;
179       ConstantValue = Incoming;
180     }
181   }
182   return true;
183 }
184 
185 //===----------------------------------------------------------------------===//
186 //                       LandingPadInst Implementation
187 //===----------------------------------------------------------------------===//
188 
189 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
190                                const Twine &NameStr, Instruction *InsertBefore)
191     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
192   init(NumReservedValues, NameStr);
193 }
194 
195 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
196                                const Twine &NameStr, BasicBlock *InsertAtEnd)
197     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
198   init(NumReservedValues, NameStr);
199 }
200 
201 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
202     : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
203                   LP.getNumOperands()),
204       ReservedSpace(LP.getNumOperands()) {
205   allocHungoffUses(LP.getNumOperands());
206   Use *OL = getOperandList();
207   const Use *InOL = LP.getOperandList();
208   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
209     OL[I] = InOL[I];
210 
211   setCleanup(LP.isCleanup());
212 }
213 
214 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
215                                        const Twine &NameStr,
216                                        Instruction *InsertBefore) {
217   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
218 }
219 
220 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
221                                        const Twine &NameStr,
222                                        BasicBlock *InsertAtEnd) {
223   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
224 }
225 
226 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
227   ReservedSpace = NumReservedValues;
228   setNumHungOffUseOperands(0);
229   allocHungoffUses(ReservedSpace);
230   setName(NameStr);
231   setCleanup(false);
232 }
233 
234 /// growOperands - grow operands - This grows the operand list in response to a
235 /// push_back style of operation. This grows the number of ops by 2 times.
236 void LandingPadInst::growOperands(unsigned Size) {
237   unsigned e = getNumOperands();
238   if (ReservedSpace >= e + Size) return;
239   ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
240   growHungoffUses(ReservedSpace);
241 }
242 
243 void LandingPadInst::addClause(Constant *Val) {
244   unsigned OpNo = getNumOperands();
245   growOperands(1);
246   assert(OpNo < ReservedSpace && "Growing didn't work!");
247   setNumHungOffUseOperands(getNumOperands() + 1);
248   getOperandList()[OpNo] = Val;
249 }
250 
251 //===----------------------------------------------------------------------===//
252 //                        CallBase Implementation
253 //===----------------------------------------------------------------------===//
254 
255 CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles,
256                            Instruction *InsertPt) {
257   switch (CB->getOpcode()) {
258   case Instruction::Call:
259     return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt);
260   case Instruction::Invoke:
261     return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt);
262   case Instruction::CallBr:
263     return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt);
264   default:
265     llvm_unreachable("Unknown CallBase sub-class!");
266   }
267 }
268 
269 CallBase *CallBase::Create(CallBase *CI, OperandBundleDef OpB,
270                            Instruction *InsertPt) {
271   SmallVector<OperandBundleDef, 2> OpDefs;
272   for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) {
273     auto ChildOB = CI->getOperandBundleAt(i);
274     if (ChildOB.getTagName() != OpB.getTag())
275       OpDefs.emplace_back(ChildOB);
276   }
277   OpDefs.emplace_back(OpB);
278   return CallBase::Create(CI, OpDefs, InsertPt);
279 }
280 
281 
282 Function *CallBase::getCaller() { return getParent()->getParent(); }
283 
284 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
285   assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
286   return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
287 }
288 
289 bool CallBase::isIndirectCall() const {
290   const Value *V = getCalledOperand();
291   if (isa<Function>(V) || isa<Constant>(V))
292     return false;
293   return !isInlineAsm();
294 }
295 
296 /// Tests if this call site must be tail call optimized. Only a CallInst can
297 /// be tail call optimized.
298 bool CallBase::isMustTailCall() const {
299   if (auto *CI = dyn_cast<CallInst>(this))
300     return CI->isMustTailCall();
301   return false;
302 }
303 
304 /// Tests if this call site is marked as a tail call.
305 bool CallBase::isTailCall() const {
306   if (auto *CI = dyn_cast<CallInst>(this))
307     return CI->isTailCall();
308   return false;
309 }
310 
311 Intrinsic::ID CallBase::getIntrinsicID() const {
312   if (auto *F = getCalledFunction())
313     return F->getIntrinsicID();
314   return Intrinsic::not_intrinsic;
315 }
316 
317 bool CallBase::isReturnNonNull() const {
318   if (hasRetAttr(Attribute::NonNull))
319     return true;
320 
321   if (getRetDereferenceableBytes() > 0 &&
322       !NullPointerIsDefined(getCaller(), getType()->getPointerAddressSpace()))
323     return true;
324 
325   return false;
326 }
327 
328 Value *CallBase::getReturnedArgOperand() const {
329   unsigned Index;
330 
331   if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index))
332     return getArgOperand(Index - AttributeList::FirstArgIndex);
333   if (const Function *F = getCalledFunction())
334     if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index))
335       return getArgOperand(Index - AttributeList::FirstArgIndex);
336 
337   return nullptr;
338 }
339 
340 /// Determine whether the argument or parameter has the given attribute.
341 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
342   assert(ArgNo < arg_size() && "Param index out of bounds!");
343 
344   if (Attrs.hasParamAttr(ArgNo, Kind))
345     return true;
346   if (const Function *F = getCalledFunction())
347     return F->getAttributes().hasParamAttr(ArgNo, Kind);
348   return false;
349 }
350 
351 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
352   Value *V = getCalledOperand();
353   if (auto *CE = dyn_cast<ConstantExpr>(V))
354     if (CE->getOpcode() == BitCast)
355       V = CE->getOperand(0);
356 
357   if (auto *F = dyn_cast<Function>(V))
358     return F->getAttributes().hasFnAttr(Kind);
359 
360   return false;
361 }
362 
363 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
364   Value *V = getCalledOperand();
365   if (auto *CE = dyn_cast<ConstantExpr>(V))
366     if (CE->getOpcode() == BitCast)
367       V = CE->getOperand(0);
368 
369   if (auto *F = dyn_cast<Function>(V))
370     return F->getAttributes().hasFnAttr(Kind);
371 
372   return false;
373 }
374 
375 void CallBase::getOperandBundlesAsDefs(
376     SmallVectorImpl<OperandBundleDef> &Defs) const {
377   for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
378     Defs.emplace_back(getOperandBundleAt(i));
379 }
380 
381 CallBase::op_iterator
382 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
383                                      const unsigned BeginIndex) {
384   auto It = op_begin() + BeginIndex;
385   for (auto &B : Bundles)
386     It = std::copy(B.input_begin(), B.input_end(), It);
387 
388   auto *ContextImpl = getContext().pImpl;
389   auto BI = Bundles.begin();
390   unsigned CurrentIndex = BeginIndex;
391 
392   for (auto &BOI : bundle_op_infos()) {
393     assert(BI != Bundles.end() && "Incorrect allocation?");
394 
395     BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
396     BOI.Begin = CurrentIndex;
397     BOI.End = CurrentIndex + BI->input_size();
398     CurrentIndex = BOI.End;
399     BI++;
400   }
401 
402   assert(BI == Bundles.end() && "Incorrect allocation?");
403 
404   return It;
405 }
406 
407 CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) {
408   /// When there isn't many bundles, we do a simple linear search.
409   /// Else fallback to a binary-search that use the fact that bundles usually
410   /// have similar number of argument to get faster convergence.
411   if (bundle_op_info_end() - bundle_op_info_begin() < 8) {
412     for (auto &BOI : bundle_op_infos())
413       if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
414         return BOI;
415 
416     llvm_unreachable("Did not find operand bundle for operand!");
417   }
418 
419   assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles");
420   assert(bundle_op_info_end() - bundle_op_info_begin() > 0 &&
421          OpIdx < std::prev(bundle_op_info_end())->End &&
422          "The Idx isn't in the operand bundle");
423 
424   /// We need a decimal number below and to prevent using floating point numbers
425   /// we use an intergal value multiplied by this constant.
426   constexpr unsigned NumberScaling = 1024;
427 
428   bundle_op_iterator Begin = bundle_op_info_begin();
429   bundle_op_iterator End = bundle_op_info_end();
430   bundle_op_iterator Current = Begin;
431 
432   while (Begin != End) {
433     unsigned ScaledOperandPerBundle =
434         NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin);
435     Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) /
436                        ScaledOperandPerBundle);
437     if (Current >= End)
438       Current = std::prev(End);
439     assert(Current < End && Current >= Begin &&
440            "the operand bundle doesn't cover every value in the range");
441     if (OpIdx >= Current->Begin && OpIdx < Current->End)
442       break;
443     if (OpIdx >= Current->End)
444       Begin = Current + 1;
445     else
446       End = Current;
447   }
448 
449   assert(OpIdx >= Current->Begin && OpIdx < Current->End &&
450          "the operand bundle doesn't cover every value in the range");
451   return *Current;
452 }
453 
454 CallBase *CallBase::addOperandBundle(CallBase *CB, uint32_t ID,
455                                      OperandBundleDef OB,
456                                      Instruction *InsertPt) {
457   if (CB->getOperandBundle(ID))
458     return CB;
459 
460   SmallVector<OperandBundleDef, 1> Bundles;
461   CB->getOperandBundlesAsDefs(Bundles);
462   Bundles.push_back(OB);
463   return Create(CB, Bundles, InsertPt);
464 }
465 
466 CallBase *CallBase::removeOperandBundle(CallBase *CB, uint32_t ID,
467                                         Instruction *InsertPt) {
468   SmallVector<OperandBundleDef, 1> Bundles;
469   bool CreateNew = false;
470 
471   for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) {
472     auto Bundle = CB->getOperandBundleAt(I);
473     if (Bundle.getTagID() == ID) {
474       CreateNew = true;
475       continue;
476     }
477     Bundles.emplace_back(Bundle);
478   }
479 
480   return CreateNew ? Create(CB, Bundles, InsertPt) : CB;
481 }
482 
483 bool CallBase::hasReadingOperandBundles() const {
484   // Implementation note: this is a conservative implementation of operand
485   // bundle semantics, where *any* non-assume operand bundle forces a callsite
486   // to be at least readonly.
487   return hasOperandBundles() && getIntrinsicID() != Intrinsic::assume;
488 }
489 
490 //===----------------------------------------------------------------------===//
491 //                        CallInst Implementation
492 //===----------------------------------------------------------------------===//
493 
494 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
495                     ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
496   this->FTy = FTy;
497   assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
498          "NumOperands not set up?");
499 
500 #ifndef NDEBUG
501   assert((Args.size() == FTy->getNumParams() ||
502           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
503          "Calling a function with bad signature!");
504 
505   for (unsigned i = 0; i != Args.size(); ++i)
506     assert((i >= FTy->getNumParams() ||
507             FTy->getParamType(i) == Args[i]->getType()) &&
508            "Calling a function with a bad signature!");
509 #endif
510 
511   // Set operands in order of their index to match use-list-order
512   // prediction.
513   llvm::copy(Args, op_begin());
514   setCalledOperand(Func);
515 
516   auto It = populateBundleOperandInfos(Bundles, Args.size());
517   (void)It;
518   assert(It + 1 == op_end() && "Should add up!");
519 
520   setName(NameStr);
521 }
522 
523 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
524   this->FTy = FTy;
525   assert(getNumOperands() == 1 && "NumOperands not set up?");
526   setCalledOperand(Func);
527 
528   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
529 
530   setName(NameStr);
531 }
532 
533 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
534                    Instruction *InsertBefore)
535     : CallBase(Ty->getReturnType(), Instruction::Call,
536                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
537   init(Ty, Func, Name);
538 }
539 
540 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
541                    BasicBlock *InsertAtEnd)
542     : CallBase(Ty->getReturnType(), Instruction::Call,
543                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
544   init(Ty, Func, Name);
545 }
546 
547 CallInst::CallInst(const CallInst &CI)
548     : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
549                OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
550                CI.getNumOperands()) {
551   setTailCallKind(CI.getTailCallKind());
552   setCallingConv(CI.getCallingConv());
553 
554   std::copy(CI.op_begin(), CI.op_end(), op_begin());
555   std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
556             bundle_op_info_begin());
557   SubclassOptionalData = CI.SubclassOptionalData;
558 }
559 
560 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
561                            Instruction *InsertPt) {
562   std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
563 
564   auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(),
565                                  Args, OpB, CI->getName(), InsertPt);
566   NewCI->setTailCallKind(CI->getTailCallKind());
567   NewCI->setCallingConv(CI->getCallingConv());
568   NewCI->SubclassOptionalData = CI->SubclassOptionalData;
569   NewCI->setAttributes(CI->getAttributes());
570   NewCI->setDebugLoc(CI->getDebugLoc());
571   return NewCI;
572 }
573 
574 // Update profile weight for call instruction by scaling it using the ratio
575 // of S/T. The meaning of "branch_weights" meta data for call instruction is
576 // transfered to represent call count.
577 void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
578   auto *ProfileData = getMetadata(LLVMContext::MD_prof);
579   if (ProfileData == nullptr)
580     return;
581 
582   auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
583   if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
584                         !ProfDataName->getString().equals("VP")))
585     return;
586 
587   if (T == 0) {
588     LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
589                          "div by 0. Ignoring. Likely the function "
590                       << getParent()->getParent()->getName()
591                       << " has 0 entry count, and contains call instructions "
592                          "with non-zero prof info.");
593     return;
594   }
595 
596   MDBuilder MDB(getContext());
597   SmallVector<Metadata *, 3> Vals;
598   Vals.push_back(ProfileData->getOperand(0));
599   APInt APS(128, S), APT(128, T);
600   if (ProfDataName->getString().equals("branch_weights") &&
601       ProfileData->getNumOperands() > 0) {
602     // Using APInt::div may be expensive, but most cases should fit 64 bits.
603     APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
604                        ->getValue()
605                        .getZExtValue());
606     Val *= APS;
607     Vals.push_back(MDB.createConstant(
608         ConstantInt::get(Type::getInt32Ty(getContext()),
609                          Val.udiv(APT).getLimitedValue(UINT32_MAX))));
610   } else if (ProfDataName->getString().equals("VP"))
611     for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
612       // The first value is the key of the value profile, which will not change.
613       Vals.push_back(ProfileData->getOperand(i));
614       uint64_t Count =
615           mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
616               ->getValue()
617               .getZExtValue();
618       // Don't scale the magic number.
619       if (Count == NOMORE_ICP_MAGICNUM) {
620         Vals.push_back(ProfileData->getOperand(i + 1));
621         continue;
622       }
623       // Using APInt::div may be expensive, but most cases should fit 64 bits.
624       APInt Val(128, Count);
625       Val *= APS;
626       Vals.push_back(MDB.createConstant(
627           ConstantInt::get(Type::getInt64Ty(getContext()),
628                            Val.udiv(APT).getLimitedValue())));
629     }
630   setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
631 }
632 
633 /// IsConstantOne - Return true only if val is constant int 1
634 static bool IsConstantOne(Value *val) {
635   assert(val && "IsConstantOne does not work with nullptr val");
636   const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
637   return CVal && CVal->isOne();
638 }
639 
640 static Instruction *createMalloc(Instruction *InsertBefore,
641                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
642                                  Type *AllocTy, Value *AllocSize,
643                                  Value *ArraySize,
644                                  ArrayRef<OperandBundleDef> OpB,
645                                  Function *MallocF, const Twine &Name) {
646   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
647          "createMalloc needs either InsertBefore or InsertAtEnd");
648 
649   // malloc(type) becomes:
650   //       bitcast (i8* malloc(typeSize)) to type*
651   // malloc(type, arraySize) becomes:
652   //       bitcast (i8* malloc(typeSize*arraySize)) to type*
653   if (!ArraySize)
654     ArraySize = ConstantInt::get(IntPtrTy, 1);
655   else if (ArraySize->getType() != IntPtrTy) {
656     if (InsertBefore)
657       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
658                                               "", InsertBefore);
659     else
660       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
661                                               "", InsertAtEnd);
662   }
663 
664   if (!IsConstantOne(ArraySize)) {
665     if (IsConstantOne(AllocSize)) {
666       AllocSize = ArraySize;         // Operand * 1 = Operand
667     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
668       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
669                                                      false /*ZExt*/);
670       // Malloc arg is constant product of type size and array size
671       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
672     } else {
673       // Multiply type size by the array size...
674       if (InsertBefore)
675         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
676                                               "mallocsize", InsertBefore);
677       else
678         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
679                                               "mallocsize", InsertAtEnd);
680     }
681   }
682 
683   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
684   // Create the call to Malloc.
685   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
686   Module *M = BB->getParent()->getParent();
687   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
688   FunctionCallee MallocFunc = MallocF;
689   if (!MallocFunc)
690     // prototype malloc as "void *malloc(size_t)"
691     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
692   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
693   CallInst *MCall = nullptr;
694   Instruction *Result = nullptr;
695   if (InsertBefore) {
696     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
697                              InsertBefore);
698     Result = MCall;
699     if (Result->getType() != AllocPtrType)
700       // Create a cast instruction to convert to the right type...
701       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
702   } else {
703     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
704     Result = MCall;
705     if (Result->getType() != AllocPtrType) {
706       InsertAtEnd->getInstList().push_back(MCall);
707       // Create a cast instruction to convert to the right type...
708       Result = new BitCastInst(MCall, AllocPtrType, Name);
709     }
710   }
711   MCall->setTailCall();
712   if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
713     MCall->setCallingConv(F->getCallingConv());
714     if (!F->returnDoesNotAlias())
715       F->setReturnDoesNotAlias();
716   }
717   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
718 
719   return Result;
720 }
721 
722 /// CreateMalloc - Generate the IR for a call to malloc:
723 /// 1. Compute the malloc call's argument as the specified type's size,
724 ///    possibly multiplied by the array size if the array size is not
725 ///    constant 1.
726 /// 2. Call malloc with that argument.
727 /// 3. Bitcast the result of the malloc call to the specified type.
728 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
729                                     Type *IntPtrTy, Type *AllocTy,
730                                     Value *AllocSize, Value *ArraySize,
731                                     Function *MallocF,
732                                     const Twine &Name) {
733   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
734                       ArraySize, None, MallocF, Name);
735 }
736 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
737                                     Type *IntPtrTy, Type *AllocTy,
738                                     Value *AllocSize, Value *ArraySize,
739                                     ArrayRef<OperandBundleDef> OpB,
740                                     Function *MallocF,
741                                     const Twine &Name) {
742   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
743                       ArraySize, OpB, MallocF, Name);
744 }
745 
746 /// CreateMalloc - Generate the IR for a call to malloc:
747 /// 1. Compute the malloc call's argument as the specified type's size,
748 ///    possibly multiplied by the array size if the array size is not
749 ///    constant 1.
750 /// 2. Call malloc with that argument.
751 /// 3. Bitcast the result of the malloc call to the specified type.
752 /// Note: This function does not add the bitcast to the basic block, that is the
753 /// responsibility of the caller.
754 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
755                                     Type *IntPtrTy, Type *AllocTy,
756                                     Value *AllocSize, Value *ArraySize,
757                                     Function *MallocF, const Twine &Name) {
758   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
759                       ArraySize, None, MallocF, Name);
760 }
761 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
762                                     Type *IntPtrTy, Type *AllocTy,
763                                     Value *AllocSize, Value *ArraySize,
764                                     ArrayRef<OperandBundleDef> OpB,
765                                     Function *MallocF, const Twine &Name) {
766   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
767                       ArraySize, OpB, MallocF, Name);
768 }
769 
770 static Instruction *createFree(Value *Source,
771                                ArrayRef<OperandBundleDef> Bundles,
772                                Instruction *InsertBefore,
773                                BasicBlock *InsertAtEnd) {
774   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
775          "createFree needs either InsertBefore or InsertAtEnd");
776   assert(Source->getType()->isPointerTy() &&
777          "Can not free something of nonpointer type!");
778 
779   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
780   Module *M = BB->getParent()->getParent();
781 
782   Type *VoidTy = Type::getVoidTy(M->getContext());
783   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
784   // prototype free as "void free(void*)"
785   FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
786   CallInst *Result = nullptr;
787   Value *PtrCast = Source;
788   if (InsertBefore) {
789     if (Source->getType() != IntPtrTy)
790       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
791     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
792   } else {
793     if (Source->getType() != IntPtrTy)
794       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
795     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
796   }
797   Result->setTailCall();
798   if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
799     Result->setCallingConv(F->getCallingConv());
800 
801   return Result;
802 }
803 
804 /// CreateFree - Generate the IR for a call to the builtin free function.
805 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
806   return createFree(Source, None, InsertBefore, nullptr);
807 }
808 Instruction *CallInst::CreateFree(Value *Source,
809                                   ArrayRef<OperandBundleDef> Bundles,
810                                   Instruction *InsertBefore) {
811   return createFree(Source, Bundles, InsertBefore, nullptr);
812 }
813 
814 /// CreateFree - Generate the IR for a call to the builtin free function.
815 /// Note: This function does not add the call to the basic block, that is the
816 /// responsibility of the caller.
817 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
818   Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
819   assert(FreeCall && "CreateFree did not create a CallInst");
820   return FreeCall;
821 }
822 Instruction *CallInst::CreateFree(Value *Source,
823                                   ArrayRef<OperandBundleDef> Bundles,
824                                   BasicBlock *InsertAtEnd) {
825   Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
826   assert(FreeCall && "CreateFree did not create a CallInst");
827   return FreeCall;
828 }
829 
830 //===----------------------------------------------------------------------===//
831 //                        InvokeInst Implementation
832 //===----------------------------------------------------------------------===//
833 
834 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
835                       BasicBlock *IfException, ArrayRef<Value *> Args,
836                       ArrayRef<OperandBundleDef> Bundles,
837                       const Twine &NameStr) {
838   this->FTy = FTy;
839 
840   assert((int)getNumOperands() ==
841              ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
842          "NumOperands not set up?");
843 
844 #ifndef NDEBUG
845   assert(((Args.size() == FTy->getNumParams()) ||
846           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
847          "Invoking a function with bad signature");
848 
849   for (unsigned i = 0, e = Args.size(); i != e; i++)
850     assert((i >= FTy->getNumParams() ||
851             FTy->getParamType(i) == Args[i]->getType()) &&
852            "Invoking a function with a bad signature!");
853 #endif
854 
855   // Set operands in order of their index to match use-list-order
856   // prediction.
857   llvm::copy(Args, op_begin());
858   setNormalDest(IfNormal);
859   setUnwindDest(IfException);
860   setCalledOperand(Fn);
861 
862   auto It = populateBundleOperandInfos(Bundles, Args.size());
863   (void)It;
864   assert(It + 3 == op_end() && "Should add up!");
865 
866   setName(NameStr);
867 }
868 
869 InvokeInst::InvokeInst(const InvokeInst &II)
870     : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
871                OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
872                II.getNumOperands()) {
873   setCallingConv(II.getCallingConv());
874   std::copy(II.op_begin(), II.op_end(), op_begin());
875   std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
876             bundle_op_info_begin());
877   SubclassOptionalData = II.SubclassOptionalData;
878 }
879 
880 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
881                                Instruction *InsertPt) {
882   std::vector<Value *> Args(II->arg_begin(), II->arg_end());
883 
884   auto *NewII = InvokeInst::Create(
885       II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(),
886       II->getUnwindDest(), Args, OpB, II->getName(), InsertPt);
887   NewII->setCallingConv(II->getCallingConv());
888   NewII->SubclassOptionalData = II->SubclassOptionalData;
889   NewII->setAttributes(II->getAttributes());
890   NewII->setDebugLoc(II->getDebugLoc());
891   return NewII;
892 }
893 
894 LandingPadInst *InvokeInst::getLandingPadInst() const {
895   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
896 }
897 
898 //===----------------------------------------------------------------------===//
899 //                        CallBrInst Implementation
900 //===----------------------------------------------------------------------===//
901 
902 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
903                       ArrayRef<BasicBlock *> IndirectDests,
904                       ArrayRef<Value *> Args,
905                       ArrayRef<OperandBundleDef> Bundles,
906                       const Twine &NameStr) {
907   this->FTy = FTy;
908 
909   assert((int)getNumOperands() ==
910              ComputeNumOperands(Args.size(), IndirectDests.size(),
911                                 CountBundleInputs(Bundles)) &&
912          "NumOperands not set up?");
913 
914 #ifndef NDEBUG
915   assert(((Args.size() == FTy->getNumParams()) ||
916           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
917          "Calling a function with bad signature");
918 
919   for (unsigned i = 0, e = Args.size(); i != e; i++)
920     assert((i >= FTy->getNumParams() ||
921             FTy->getParamType(i) == Args[i]->getType()) &&
922            "Calling a function with a bad signature!");
923 #endif
924 
925   // Set operands in order of their index to match use-list-order
926   // prediction.
927   std::copy(Args.begin(), Args.end(), op_begin());
928   NumIndirectDests = IndirectDests.size();
929   setDefaultDest(Fallthrough);
930   for (unsigned i = 0; i != NumIndirectDests; ++i)
931     setIndirectDest(i, IndirectDests[i]);
932   setCalledOperand(Fn);
933 
934   auto It = populateBundleOperandInfos(Bundles, Args.size());
935   (void)It;
936   assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
937 
938   setName(NameStr);
939 }
940 
941 void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) {
942   assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr");
943   if (BasicBlock *OldBB = getIndirectDest(i)) {
944     BlockAddress *Old = BlockAddress::get(OldBB);
945     BlockAddress *New = BlockAddress::get(B);
946     for (unsigned ArgNo = 0, e = arg_size(); ArgNo != e; ++ArgNo)
947       if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old)
948         setArgOperand(ArgNo, New);
949   }
950 }
951 
952 CallBrInst::CallBrInst(const CallBrInst &CBI)
953     : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
954                OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
955                CBI.getNumOperands()) {
956   setCallingConv(CBI.getCallingConv());
957   std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
958   std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
959             bundle_op_info_begin());
960   SubclassOptionalData = CBI.SubclassOptionalData;
961   NumIndirectDests = CBI.NumIndirectDests;
962 }
963 
964 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
965                                Instruction *InsertPt) {
966   std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
967 
968   auto *NewCBI = CallBrInst::Create(
969       CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(),
970       CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt);
971   NewCBI->setCallingConv(CBI->getCallingConv());
972   NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
973   NewCBI->setAttributes(CBI->getAttributes());
974   NewCBI->setDebugLoc(CBI->getDebugLoc());
975   NewCBI->NumIndirectDests = CBI->NumIndirectDests;
976   return NewCBI;
977 }
978 
979 //===----------------------------------------------------------------------===//
980 //                        ReturnInst Implementation
981 //===----------------------------------------------------------------------===//
982 
983 ReturnInst::ReturnInst(const ReturnInst &RI)
984     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
985                   OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
986                   RI.getNumOperands()) {
987   if (RI.getNumOperands())
988     Op<0>() = RI.Op<0>();
989   SubclassOptionalData = RI.SubclassOptionalData;
990 }
991 
992 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
993     : Instruction(Type::getVoidTy(C), Instruction::Ret,
994                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
995                   InsertBefore) {
996   if (retVal)
997     Op<0>() = retVal;
998 }
999 
1000 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
1001     : Instruction(Type::getVoidTy(C), Instruction::Ret,
1002                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
1003                   InsertAtEnd) {
1004   if (retVal)
1005     Op<0>() = retVal;
1006 }
1007 
1008 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1009     : Instruction(Type::getVoidTy(Context), Instruction::Ret,
1010                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
1011 
1012 //===----------------------------------------------------------------------===//
1013 //                        ResumeInst Implementation
1014 //===----------------------------------------------------------------------===//
1015 
1016 ResumeInst::ResumeInst(const ResumeInst &RI)
1017     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
1018                   OperandTraits<ResumeInst>::op_begin(this), 1) {
1019   Op<0>() = RI.Op<0>();
1020 }
1021 
1022 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
1023     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1024                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
1025   Op<0>() = Exn;
1026 }
1027 
1028 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
1029     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1030                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
1031   Op<0>() = Exn;
1032 }
1033 
1034 //===----------------------------------------------------------------------===//
1035 //                        CleanupReturnInst Implementation
1036 //===----------------------------------------------------------------------===//
1037 
1038 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
1039     : Instruction(CRI.getType(), Instruction::CleanupRet,
1040                   OperandTraits<CleanupReturnInst>::op_end(this) -
1041                       CRI.getNumOperands(),
1042                   CRI.getNumOperands()) {
1043   setSubclassData<Instruction::OpaqueField>(
1044       CRI.getSubclassData<Instruction::OpaqueField>());
1045   Op<0>() = CRI.Op<0>();
1046   if (CRI.hasUnwindDest())
1047     Op<1>() = CRI.Op<1>();
1048 }
1049 
1050 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
1051   if (UnwindBB)
1052     setSubclassData<UnwindDestField>(true);
1053 
1054   Op<0>() = CleanupPad;
1055   if (UnwindBB)
1056     Op<1>() = UnwindBB;
1057 }
1058 
1059 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1060                                      unsigned Values, Instruction *InsertBefore)
1061     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1062                   Instruction::CleanupRet,
1063                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1064                   Values, InsertBefore) {
1065   init(CleanupPad, UnwindBB);
1066 }
1067 
1068 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1069                                      unsigned Values, BasicBlock *InsertAtEnd)
1070     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1071                   Instruction::CleanupRet,
1072                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1073                   Values, InsertAtEnd) {
1074   init(CleanupPad, UnwindBB);
1075 }
1076 
1077 //===----------------------------------------------------------------------===//
1078 //                        CatchReturnInst Implementation
1079 //===----------------------------------------------------------------------===//
1080 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
1081   Op<0>() = CatchPad;
1082   Op<1>() = BB;
1083 }
1084 
1085 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
1086     : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
1087                   OperandTraits<CatchReturnInst>::op_begin(this), 2) {
1088   Op<0>() = CRI.Op<0>();
1089   Op<1>() = CRI.Op<1>();
1090 }
1091 
1092 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1093                                  Instruction *InsertBefore)
1094     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1095                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
1096                   InsertBefore) {
1097   init(CatchPad, BB);
1098 }
1099 
1100 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1101                                  BasicBlock *InsertAtEnd)
1102     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1103                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
1104                   InsertAtEnd) {
1105   init(CatchPad, BB);
1106 }
1107 
1108 //===----------------------------------------------------------------------===//
1109 //                       CatchSwitchInst Implementation
1110 //===----------------------------------------------------------------------===//
1111 
1112 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1113                                  unsigned NumReservedValues,
1114                                  const Twine &NameStr,
1115                                  Instruction *InsertBefore)
1116     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1117                   InsertBefore) {
1118   if (UnwindDest)
1119     ++NumReservedValues;
1120   init(ParentPad, UnwindDest, NumReservedValues + 1);
1121   setName(NameStr);
1122 }
1123 
1124 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1125                                  unsigned NumReservedValues,
1126                                  const Twine &NameStr, BasicBlock *InsertAtEnd)
1127     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1128                   InsertAtEnd) {
1129   if (UnwindDest)
1130     ++NumReservedValues;
1131   init(ParentPad, UnwindDest, NumReservedValues + 1);
1132   setName(NameStr);
1133 }
1134 
1135 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1136     : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1137                   CSI.getNumOperands()) {
1138   init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1139   setNumHungOffUseOperands(ReservedSpace);
1140   Use *OL = getOperandList();
1141   const Use *InOL = CSI.getOperandList();
1142   for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1143     OL[I] = InOL[I];
1144 }
1145 
1146 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1147                            unsigned NumReservedValues) {
1148   assert(ParentPad && NumReservedValues);
1149 
1150   ReservedSpace = NumReservedValues;
1151   setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1152   allocHungoffUses(ReservedSpace);
1153 
1154   Op<0>() = ParentPad;
1155   if (UnwindDest) {
1156     setSubclassData<UnwindDestField>(true);
1157     setUnwindDest(UnwindDest);
1158   }
1159 }
1160 
1161 /// growOperands - grow operands - This grows the operand list in response to a
1162 /// push_back style of operation. This grows the number of ops by 2 times.
1163 void CatchSwitchInst::growOperands(unsigned Size) {
1164   unsigned NumOperands = getNumOperands();
1165   assert(NumOperands >= 1);
1166   if (ReservedSpace >= NumOperands + Size)
1167     return;
1168   ReservedSpace = (NumOperands + Size / 2) * 2;
1169   growHungoffUses(ReservedSpace);
1170 }
1171 
1172 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1173   unsigned OpNo = getNumOperands();
1174   growOperands(1);
1175   assert(OpNo < ReservedSpace && "Growing didn't work!");
1176   setNumHungOffUseOperands(getNumOperands() + 1);
1177   getOperandList()[OpNo] = Handler;
1178 }
1179 
1180 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1181   // Move all subsequent handlers up one.
1182   Use *EndDst = op_end() - 1;
1183   for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1184     *CurDst = *(CurDst + 1);
1185   // Null out the last handler use.
1186   *EndDst = nullptr;
1187 
1188   setNumHungOffUseOperands(getNumOperands() - 1);
1189 }
1190 
1191 //===----------------------------------------------------------------------===//
1192 //                        FuncletPadInst Implementation
1193 //===----------------------------------------------------------------------===//
1194 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1195                           const Twine &NameStr) {
1196   assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1197   llvm::copy(Args, op_begin());
1198   setParentPad(ParentPad);
1199   setName(NameStr);
1200 }
1201 
1202 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1203     : Instruction(FPI.getType(), FPI.getOpcode(),
1204                   OperandTraits<FuncletPadInst>::op_end(this) -
1205                       FPI.getNumOperands(),
1206                   FPI.getNumOperands()) {
1207   std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1208   setParentPad(FPI.getParentPad());
1209 }
1210 
1211 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1212                                ArrayRef<Value *> Args, unsigned Values,
1213                                const Twine &NameStr, Instruction *InsertBefore)
1214     : Instruction(ParentPad->getType(), Op,
1215                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1216                   InsertBefore) {
1217   init(ParentPad, Args, NameStr);
1218 }
1219 
1220 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1221                                ArrayRef<Value *> Args, unsigned Values,
1222                                const Twine &NameStr, BasicBlock *InsertAtEnd)
1223     : Instruction(ParentPad->getType(), Op,
1224                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1225                   InsertAtEnd) {
1226   init(ParentPad, Args, NameStr);
1227 }
1228 
1229 //===----------------------------------------------------------------------===//
1230 //                      UnreachableInst Implementation
1231 //===----------------------------------------------------------------------===//
1232 
1233 UnreachableInst::UnreachableInst(LLVMContext &Context,
1234                                  Instruction *InsertBefore)
1235     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1236                   0, InsertBefore) {}
1237 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1238     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1239                   0, InsertAtEnd) {}
1240 
1241 //===----------------------------------------------------------------------===//
1242 //                        BranchInst Implementation
1243 //===----------------------------------------------------------------------===//
1244 
1245 void BranchInst::AssertOK() {
1246   if (isConditional())
1247     assert(getCondition()->getType()->isIntegerTy(1) &&
1248            "May only branch on boolean predicates!");
1249 }
1250 
1251 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1252     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1253                   OperandTraits<BranchInst>::op_end(this) - 1, 1,
1254                   InsertBefore) {
1255   assert(IfTrue && "Branch destination may not be null!");
1256   Op<-1>() = IfTrue;
1257 }
1258 
1259 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1260                        Instruction *InsertBefore)
1261     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1262                   OperandTraits<BranchInst>::op_end(this) - 3, 3,
1263                   InsertBefore) {
1264   // Assign in order of operand index to make use-list order predictable.
1265   Op<-3>() = Cond;
1266   Op<-2>() = IfFalse;
1267   Op<-1>() = IfTrue;
1268 #ifndef NDEBUG
1269   AssertOK();
1270 #endif
1271 }
1272 
1273 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1274     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1275                   OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1276   assert(IfTrue && "Branch destination may not be null!");
1277   Op<-1>() = IfTrue;
1278 }
1279 
1280 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1281                        BasicBlock *InsertAtEnd)
1282     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1283                   OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1284   // Assign in order of operand index to make use-list order predictable.
1285   Op<-3>() = Cond;
1286   Op<-2>() = IfFalse;
1287   Op<-1>() = IfTrue;
1288 #ifndef NDEBUG
1289   AssertOK();
1290 #endif
1291 }
1292 
1293 BranchInst::BranchInst(const BranchInst &BI)
1294     : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1295                   OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1296                   BI.getNumOperands()) {
1297   // Assign in order of operand index to make use-list order predictable.
1298   if (BI.getNumOperands() != 1) {
1299     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1300     Op<-3>() = BI.Op<-3>();
1301     Op<-2>() = BI.Op<-2>();
1302   }
1303   Op<-1>() = BI.Op<-1>();
1304   SubclassOptionalData = BI.SubclassOptionalData;
1305 }
1306 
1307 void BranchInst::swapSuccessors() {
1308   assert(isConditional() &&
1309          "Cannot swap successors of an unconditional branch");
1310   Op<-1>().swap(Op<-2>());
1311 
1312   // Update profile metadata if present and it matches our structural
1313   // expectations.
1314   swapProfMetadata();
1315 }
1316 
1317 //===----------------------------------------------------------------------===//
1318 //                        AllocaInst Implementation
1319 //===----------------------------------------------------------------------===//
1320 
1321 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1322   if (!Amt)
1323     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1324   else {
1325     assert(!isa<BasicBlock>(Amt) &&
1326            "Passed basic block into allocation size parameter! Use other ctor");
1327     assert(Amt->getType()->isIntegerTy() &&
1328            "Allocation array size is not an integer!");
1329   }
1330   return Amt;
1331 }
1332 
1333 static Align computeAllocaDefaultAlign(Type *Ty, BasicBlock *BB) {
1334   assert(BB && "Insertion BB cannot be null when alignment not provided!");
1335   assert(BB->getParent() &&
1336          "BB must be in a Function when alignment not provided!");
1337   const DataLayout &DL = BB->getModule()->getDataLayout();
1338   return DL.getPrefTypeAlign(Ty);
1339 }
1340 
1341 static Align computeAllocaDefaultAlign(Type *Ty, Instruction *I) {
1342   assert(I && "Insertion position cannot be null when alignment not provided!");
1343   return computeAllocaDefaultAlign(Ty, I->getParent());
1344 }
1345 
1346 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1347                        Instruction *InsertBefore)
1348   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1349 
1350 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1351                        BasicBlock *InsertAtEnd)
1352   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1353 
1354 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1355                        const Twine &Name, Instruction *InsertBefore)
1356     : AllocaInst(Ty, AddrSpace, ArraySize,
1357                  computeAllocaDefaultAlign(Ty, InsertBefore), Name,
1358                  InsertBefore) {}
1359 
1360 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1361                        const Twine &Name, BasicBlock *InsertAtEnd)
1362     : AllocaInst(Ty, AddrSpace, ArraySize,
1363                  computeAllocaDefaultAlign(Ty, InsertAtEnd), Name,
1364                  InsertAtEnd) {}
1365 
1366 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1367                        Align Align, const Twine &Name,
1368                        Instruction *InsertBefore)
1369     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1370                        getAISize(Ty->getContext(), ArraySize), InsertBefore),
1371       AllocatedType(Ty) {
1372   setAlignment(Align);
1373   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1374   setName(Name);
1375 }
1376 
1377 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1378                        Align Align, const Twine &Name, BasicBlock *InsertAtEnd)
1379     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1380                        getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1381       AllocatedType(Ty) {
1382   setAlignment(Align);
1383   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1384   setName(Name);
1385 }
1386 
1387 
1388 bool AllocaInst::isArrayAllocation() const {
1389   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1390     return !CI->isOne();
1391   return true;
1392 }
1393 
1394 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1395 /// function and is a constant size.  If so, the code generator will fold it
1396 /// into the prolog/epilog code, so it is basically free.
1397 bool AllocaInst::isStaticAlloca() const {
1398   // Must be constant size.
1399   if (!isa<ConstantInt>(getArraySize())) return false;
1400 
1401   // Must be in the entry block.
1402   const BasicBlock *Parent = getParent();
1403   return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1404 }
1405 
1406 //===----------------------------------------------------------------------===//
1407 //                           LoadInst Implementation
1408 //===----------------------------------------------------------------------===//
1409 
1410 void LoadInst::AssertOK() {
1411   assert(getOperand(0)->getType()->isPointerTy() &&
1412          "Ptr must have pointer type.");
1413   assert(!(isAtomic() && getAlignment() == 0) &&
1414          "Alignment required for atomic load");
1415 }
1416 
1417 static Align computeLoadStoreDefaultAlign(Type *Ty, BasicBlock *BB) {
1418   assert(BB && "Insertion BB cannot be null when alignment not provided!");
1419   assert(BB->getParent() &&
1420          "BB must be in a Function when alignment not provided!");
1421   const DataLayout &DL = BB->getModule()->getDataLayout();
1422   return DL.getABITypeAlign(Ty);
1423 }
1424 
1425 static Align computeLoadStoreDefaultAlign(Type *Ty, Instruction *I) {
1426   assert(I && "Insertion position cannot be null when alignment not provided!");
1427   return computeLoadStoreDefaultAlign(Ty, I->getParent());
1428 }
1429 
1430 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1431                    Instruction *InsertBef)
1432     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1433 
1434 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1435                    BasicBlock *InsertAE)
1436     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1437 
1438 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1439                    Instruction *InsertBef)
1440     : LoadInst(Ty, Ptr, Name, isVolatile,
1441                computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {}
1442 
1443 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1444                    BasicBlock *InsertAE)
1445     : LoadInst(Ty, Ptr, Name, isVolatile,
1446                computeLoadStoreDefaultAlign(Ty, InsertAE), InsertAE) {}
1447 
1448 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1449                    Align Align, Instruction *InsertBef)
1450     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1451                SyncScope::System, InsertBef) {}
1452 
1453 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1454                    Align Align, BasicBlock *InsertAE)
1455     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1456                SyncScope::System, InsertAE) {}
1457 
1458 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1459                    Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1460                    Instruction *InsertBef)
1461     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1462   assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty));
1463   setVolatile(isVolatile);
1464   setAlignment(Align);
1465   setAtomic(Order, SSID);
1466   AssertOK();
1467   setName(Name);
1468 }
1469 
1470 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1471                    Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1472                    BasicBlock *InsertAE)
1473     : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1474   assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty));
1475   setVolatile(isVolatile);
1476   setAlignment(Align);
1477   setAtomic(Order, SSID);
1478   AssertOK();
1479   setName(Name);
1480 }
1481 
1482 //===----------------------------------------------------------------------===//
1483 //                           StoreInst Implementation
1484 //===----------------------------------------------------------------------===//
1485 
1486 void StoreInst::AssertOK() {
1487   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1488   assert(getOperand(1)->getType()->isPointerTy() &&
1489          "Ptr must have pointer type!");
1490   assert(cast<PointerType>(getOperand(1)->getType())
1491              ->isOpaqueOrPointeeTypeMatches(getOperand(0)->getType()) &&
1492          "Ptr must be a pointer to Val type!");
1493   assert(!(isAtomic() && getAlignment() == 0) &&
1494          "Alignment required for atomic store");
1495 }
1496 
1497 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1498     : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1499 
1500 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1501     : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1502 
1503 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1504                      Instruction *InsertBefore)
1505     : StoreInst(val, addr, isVolatile,
1506                 computeLoadStoreDefaultAlign(val->getType(), InsertBefore),
1507                 InsertBefore) {}
1508 
1509 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1510                      BasicBlock *InsertAtEnd)
1511     : StoreInst(val, addr, isVolatile,
1512                 computeLoadStoreDefaultAlign(val->getType(), InsertAtEnd),
1513                 InsertAtEnd) {}
1514 
1515 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1516                      Instruction *InsertBefore)
1517     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1518                 SyncScope::System, InsertBefore) {}
1519 
1520 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1521                      BasicBlock *InsertAtEnd)
1522     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1523                 SyncScope::System, InsertAtEnd) {}
1524 
1525 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1526                      AtomicOrdering Order, SyncScope::ID SSID,
1527                      Instruction *InsertBefore)
1528     : Instruction(Type::getVoidTy(val->getContext()), Store,
1529                   OperandTraits<StoreInst>::op_begin(this),
1530                   OperandTraits<StoreInst>::operands(this), InsertBefore) {
1531   Op<0>() = val;
1532   Op<1>() = addr;
1533   setVolatile(isVolatile);
1534   setAlignment(Align);
1535   setAtomic(Order, SSID);
1536   AssertOK();
1537 }
1538 
1539 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1540                      AtomicOrdering Order, SyncScope::ID SSID,
1541                      BasicBlock *InsertAtEnd)
1542     : Instruction(Type::getVoidTy(val->getContext()), Store,
1543                   OperandTraits<StoreInst>::op_begin(this),
1544                   OperandTraits<StoreInst>::operands(this), InsertAtEnd) {
1545   Op<0>() = val;
1546   Op<1>() = addr;
1547   setVolatile(isVolatile);
1548   setAlignment(Align);
1549   setAtomic(Order, SSID);
1550   AssertOK();
1551 }
1552 
1553 
1554 //===----------------------------------------------------------------------===//
1555 //                       AtomicCmpXchgInst Implementation
1556 //===----------------------------------------------------------------------===//
1557 
1558 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1559                              Align Alignment, AtomicOrdering SuccessOrdering,
1560                              AtomicOrdering FailureOrdering,
1561                              SyncScope::ID SSID) {
1562   Op<0>() = Ptr;
1563   Op<1>() = Cmp;
1564   Op<2>() = NewVal;
1565   setSuccessOrdering(SuccessOrdering);
1566   setFailureOrdering(FailureOrdering);
1567   setSyncScopeID(SSID);
1568   setAlignment(Alignment);
1569 
1570   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1571          "All operands must be non-null!");
1572   assert(getOperand(0)->getType()->isPointerTy() &&
1573          "Ptr must have pointer type!");
1574   assert(cast<PointerType>(getOperand(0)->getType())
1575              ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
1576          "Ptr must be a pointer to Cmp type!");
1577   assert(cast<PointerType>(getOperand(0)->getType())
1578              ->isOpaqueOrPointeeTypeMatches(getOperand(2)->getType()) &&
1579          "Ptr must be a pointer to NewVal type!");
1580   assert(getOperand(1)->getType() == getOperand(2)->getType() &&
1581          "Cmp type and NewVal type must be same!");
1582 }
1583 
1584 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1585                                      Align Alignment,
1586                                      AtomicOrdering SuccessOrdering,
1587                                      AtomicOrdering FailureOrdering,
1588                                      SyncScope::ID SSID,
1589                                      Instruction *InsertBefore)
1590     : Instruction(
1591           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1592           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1593           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1594   Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1595 }
1596 
1597 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1598                                      Align Alignment,
1599                                      AtomicOrdering SuccessOrdering,
1600                                      AtomicOrdering FailureOrdering,
1601                                      SyncScope::ID SSID,
1602                                      BasicBlock *InsertAtEnd)
1603     : Instruction(
1604           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1605           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1606           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1607   Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1608 }
1609 
1610 //===----------------------------------------------------------------------===//
1611 //                       AtomicRMWInst Implementation
1612 //===----------------------------------------------------------------------===//
1613 
1614 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1615                          Align Alignment, AtomicOrdering Ordering,
1616                          SyncScope::ID SSID) {
1617   Op<0>() = Ptr;
1618   Op<1>() = Val;
1619   setOperation(Operation);
1620   setOrdering(Ordering);
1621   setSyncScopeID(SSID);
1622   setAlignment(Alignment);
1623 
1624   assert(getOperand(0) && getOperand(1) &&
1625          "All operands must be non-null!");
1626   assert(getOperand(0)->getType()->isPointerTy() &&
1627          "Ptr must have pointer type!");
1628   assert(cast<PointerType>(getOperand(0)->getType())
1629              ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
1630          "Ptr must be a pointer to Val type!");
1631   assert(Ordering != AtomicOrdering::NotAtomic &&
1632          "AtomicRMW instructions must be atomic!");
1633 }
1634 
1635 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1636                              Align Alignment, AtomicOrdering Ordering,
1637                              SyncScope::ID SSID, Instruction *InsertBefore)
1638     : Instruction(Val->getType(), AtomicRMW,
1639                   OperandTraits<AtomicRMWInst>::op_begin(this),
1640                   OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) {
1641   Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1642 }
1643 
1644 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1645                              Align Alignment, AtomicOrdering Ordering,
1646                              SyncScope::ID SSID, BasicBlock *InsertAtEnd)
1647     : Instruction(Val->getType(), AtomicRMW,
1648                   OperandTraits<AtomicRMWInst>::op_begin(this),
1649                   OperandTraits<AtomicRMWInst>::operands(this), InsertAtEnd) {
1650   Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1651 }
1652 
1653 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1654   switch (Op) {
1655   case AtomicRMWInst::Xchg:
1656     return "xchg";
1657   case AtomicRMWInst::Add:
1658     return "add";
1659   case AtomicRMWInst::Sub:
1660     return "sub";
1661   case AtomicRMWInst::And:
1662     return "and";
1663   case AtomicRMWInst::Nand:
1664     return "nand";
1665   case AtomicRMWInst::Or:
1666     return "or";
1667   case AtomicRMWInst::Xor:
1668     return "xor";
1669   case AtomicRMWInst::Max:
1670     return "max";
1671   case AtomicRMWInst::Min:
1672     return "min";
1673   case AtomicRMWInst::UMax:
1674     return "umax";
1675   case AtomicRMWInst::UMin:
1676     return "umin";
1677   case AtomicRMWInst::FAdd:
1678     return "fadd";
1679   case AtomicRMWInst::FSub:
1680     return "fsub";
1681   case AtomicRMWInst::BAD_BINOP:
1682     return "<invalid operation>";
1683   }
1684 
1685   llvm_unreachable("invalid atomicrmw operation");
1686 }
1687 
1688 //===----------------------------------------------------------------------===//
1689 //                       FenceInst Implementation
1690 //===----------------------------------------------------------------------===//
1691 
1692 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1693                      SyncScope::ID SSID,
1694                      Instruction *InsertBefore)
1695   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1696   setOrdering(Ordering);
1697   setSyncScopeID(SSID);
1698 }
1699 
1700 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1701                      SyncScope::ID SSID,
1702                      BasicBlock *InsertAtEnd)
1703   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1704   setOrdering(Ordering);
1705   setSyncScopeID(SSID);
1706 }
1707 
1708 //===----------------------------------------------------------------------===//
1709 //                       GetElementPtrInst Implementation
1710 //===----------------------------------------------------------------------===//
1711 
1712 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1713                              const Twine &Name) {
1714   assert(getNumOperands() == 1 + IdxList.size() &&
1715          "NumOperands not initialized?");
1716   Op<0>() = Ptr;
1717   llvm::copy(IdxList, op_begin() + 1);
1718   setName(Name);
1719 }
1720 
1721 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1722     : Instruction(GEPI.getType(), GetElementPtr,
1723                   OperandTraits<GetElementPtrInst>::op_end(this) -
1724                       GEPI.getNumOperands(),
1725                   GEPI.getNumOperands()),
1726       SourceElementType(GEPI.SourceElementType),
1727       ResultElementType(GEPI.ResultElementType) {
1728   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1729   SubclassOptionalData = GEPI.SubclassOptionalData;
1730 }
1731 
1732 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) {
1733   if (auto *Struct = dyn_cast<StructType>(Ty)) {
1734     if (!Struct->indexValid(Idx))
1735       return nullptr;
1736     return Struct->getTypeAtIndex(Idx);
1737   }
1738   if (!Idx->getType()->isIntOrIntVectorTy())
1739     return nullptr;
1740   if (auto *Array = dyn_cast<ArrayType>(Ty))
1741     return Array->getElementType();
1742   if (auto *Vector = dyn_cast<VectorType>(Ty))
1743     return Vector->getElementType();
1744   return nullptr;
1745 }
1746 
1747 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) {
1748   if (auto *Struct = dyn_cast<StructType>(Ty)) {
1749     if (Idx >= Struct->getNumElements())
1750       return nullptr;
1751     return Struct->getElementType(Idx);
1752   }
1753   if (auto *Array = dyn_cast<ArrayType>(Ty))
1754     return Array->getElementType();
1755   if (auto *Vector = dyn_cast<VectorType>(Ty))
1756     return Vector->getElementType();
1757   return nullptr;
1758 }
1759 
1760 template <typename IndexTy>
1761 static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) {
1762   if (IdxList.empty())
1763     return Ty;
1764   for (IndexTy V : IdxList.slice(1)) {
1765     Ty = GetElementPtrInst::getTypeAtIndex(Ty, V);
1766     if (!Ty)
1767       return Ty;
1768   }
1769   return Ty;
1770 }
1771 
1772 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1773   return getIndexedTypeInternal(Ty, IdxList);
1774 }
1775 
1776 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1777                                         ArrayRef<Constant *> IdxList) {
1778   return getIndexedTypeInternal(Ty, IdxList);
1779 }
1780 
1781 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1782   return getIndexedTypeInternal(Ty, IdxList);
1783 }
1784 
1785 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1786 /// zeros.  If so, the result pointer and the first operand have the same
1787 /// value, just potentially different types.
1788 bool GetElementPtrInst::hasAllZeroIndices() const {
1789   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1790     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1791       if (!CI->isZero()) return false;
1792     } else {
1793       return false;
1794     }
1795   }
1796   return true;
1797 }
1798 
1799 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1800 /// constant integers.  If so, the result pointer and the first operand have
1801 /// a constant offset between them.
1802 bool GetElementPtrInst::hasAllConstantIndices() const {
1803   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1804     if (!isa<ConstantInt>(getOperand(i)))
1805       return false;
1806   }
1807   return true;
1808 }
1809 
1810 void GetElementPtrInst::setIsInBounds(bool B) {
1811   cast<GEPOperator>(this)->setIsInBounds(B);
1812 }
1813 
1814 bool GetElementPtrInst::isInBounds() const {
1815   return cast<GEPOperator>(this)->isInBounds();
1816 }
1817 
1818 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1819                                                  APInt &Offset) const {
1820   // Delegate to the generic GEPOperator implementation.
1821   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1822 }
1823 
1824 bool GetElementPtrInst::collectOffset(
1825     const DataLayout &DL, unsigned BitWidth,
1826     MapVector<Value *, APInt> &VariableOffsets,
1827     APInt &ConstantOffset) const {
1828   // Delegate to the generic GEPOperator implementation.
1829   return cast<GEPOperator>(this)->collectOffset(DL, BitWidth, VariableOffsets,
1830                                                 ConstantOffset);
1831 }
1832 
1833 //===----------------------------------------------------------------------===//
1834 //                           ExtractElementInst Implementation
1835 //===----------------------------------------------------------------------===//
1836 
1837 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1838                                        const Twine &Name,
1839                                        Instruction *InsertBef)
1840   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1841                 ExtractElement,
1842                 OperandTraits<ExtractElementInst>::op_begin(this),
1843                 2, InsertBef) {
1844   assert(isValidOperands(Val, Index) &&
1845          "Invalid extractelement instruction operands!");
1846   Op<0>() = Val;
1847   Op<1>() = Index;
1848   setName(Name);
1849 }
1850 
1851 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1852                                        const Twine &Name,
1853                                        BasicBlock *InsertAE)
1854   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1855                 ExtractElement,
1856                 OperandTraits<ExtractElementInst>::op_begin(this),
1857                 2, InsertAE) {
1858   assert(isValidOperands(Val, Index) &&
1859          "Invalid extractelement instruction operands!");
1860 
1861   Op<0>() = Val;
1862   Op<1>() = Index;
1863   setName(Name);
1864 }
1865 
1866 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1867   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1868     return false;
1869   return true;
1870 }
1871 
1872 //===----------------------------------------------------------------------===//
1873 //                           InsertElementInst Implementation
1874 //===----------------------------------------------------------------------===//
1875 
1876 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1877                                      const Twine &Name,
1878                                      Instruction *InsertBef)
1879   : Instruction(Vec->getType(), InsertElement,
1880                 OperandTraits<InsertElementInst>::op_begin(this),
1881                 3, InsertBef) {
1882   assert(isValidOperands(Vec, Elt, Index) &&
1883          "Invalid insertelement instruction operands!");
1884   Op<0>() = Vec;
1885   Op<1>() = Elt;
1886   Op<2>() = Index;
1887   setName(Name);
1888 }
1889 
1890 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1891                                      const Twine &Name,
1892                                      BasicBlock *InsertAE)
1893   : Instruction(Vec->getType(), InsertElement,
1894                 OperandTraits<InsertElementInst>::op_begin(this),
1895                 3, InsertAE) {
1896   assert(isValidOperands(Vec, Elt, Index) &&
1897          "Invalid insertelement instruction operands!");
1898 
1899   Op<0>() = Vec;
1900   Op<1>() = Elt;
1901   Op<2>() = Index;
1902   setName(Name);
1903 }
1904 
1905 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1906                                         const Value *Index) {
1907   if (!Vec->getType()->isVectorTy())
1908     return false;   // First operand of insertelement must be vector type.
1909 
1910   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1911     return false;// Second operand of insertelement must be vector element type.
1912 
1913   if (!Index->getType()->isIntegerTy())
1914     return false;  // Third operand of insertelement must be i32.
1915   return true;
1916 }
1917 
1918 //===----------------------------------------------------------------------===//
1919 //                      ShuffleVectorInst Implementation
1920 //===----------------------------------------------------------------------===//
1921 
1922 static Value *createPlaceholderForShuffleVector(Value *V) {
1923   assert(V && "Cannot create placeholder of nullptr V");
1924   return PoisonValue::get(V->getType());
1925 }
1926 
1927 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *Mask, const Twine &Name,
1928                                      Instruction *InsertBefore)
1929     : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
1930                         InsertBefore) {}
1931 
1932 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *Mask, const Twine &Name,
1933                                      BasicBlock *InsertAtEnd)
1934     : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
1935                         InsertAtEnd) {}
1936 
1937 ShuffleVectorInst::ShuffleVectorInst(Value *V1, ArrayRef<int> Mask,
1938                                      const Twine &Name,
1939                                      Instruction *InsertBefore)
1940     : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
1941                         InsertBefore) {}
1942 
1943 ShuffleVectorInst::ShuffleVectorInst(Value *V1, ArrayRef<int> Mask,
1944                                      const Twine &Name, BasicBlock *InsertAtEnd)
1945     : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
1946                         InsertAtEnd) {}
1947 
1948 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1949                                      const Twine &Name,
1950                                      Instruction *InsertBefore)
1951     : Instruction(
1952           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1953                           cast<VectorType>(Mask->getType())->getElementCount()),
1954           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1955           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1956   assert(isValidOperands(V1, V2, Mask) &&
1957          "Invalid shuffle vector instruction operands!");
1958 
1959   Op<0>() = V1;
1960   Op<1>() = V2;
1961   SmallVector<int, 16> MaskArr;
1962   getShuffleMask(cast<Constant>(Mask), MaskArr);
1963   setShuffleMask(MaskArr);
1964   setName(Name);
1965 }
1966 
1967 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1968                                      const Twine &Name, BasicBlock *InsertAtEnd)
1969     : Instruction(
1970           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1971                           cast<VectorType>(Mask->getType())->getElementCount()),
1972           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1973           OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1974   assert(isValidOperands(V1, V2, Mask) &&
1975          "Invalid shuffle vector instruction operands!");
1976 
1977   Op<0>() = V1;
1978   Op<1>() = V2;
1979   SmallVector<int, 16> MaskArr;
1980   getShuffleMask(cast<Constant>(Mask), MaskArr);
1981   setShuffleMask(MaskArr);
1982   setName(Name);
1983 }
1984 
1985 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1986                                      const Twine &Name,
1987                                      Instruction *InsertBefore)
1988     : Instruction(
1989           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1990                           Mask.size(), isa<ScalableVectorType>(V1->getType())),
1991           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1992           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1993   assert(isValidOperands(V1, V2, Mask) &&
1994          "Invalid shuffle vector instruction operands!");
1995   Op<0>() = V1;
1996   Op<1>() = V2;
1997   setShuffleMask(Mask);
1998   setName(Name);
1999 }
2000 
2001 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2002                                      const Twine &Name, BasicBlock *InsertAtEnd)
2003     : Instruction(
2004           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
2005                           Mask.size(), isa<ScalableVectorType>(V1->getType())),
2006           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
2007           OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
2008   assert(isValidOperands(V1, V2, Mask) &&
2009          "Invalid shuffle vector instruction operands!");
2010 
2011   Op<0>() = V1;
2012   Op<1>() = V2;
2013   setShuffleMask(Mask);
2014   setName(Name);
2015 }
2016 
2017 void ShuffleVectorInst::commute() {
2018   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2019   int NumMaskElts = ShuffleMask.size();
2020   SmallVector<int, 16> NewMask(NumMaskElts);
2021   for (int i = 0; i != NumMaskElts; ++i) {
2022     int MaskElt = getMaskValue(i);
2023     if (MaskElt == UndefMaskElem) {
2024       NewMask[i] = UndefMaskElem;
2025       continue;
2026     }
2027     assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
2028     MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
2029     NewMask[i] = MaskElt;
2030   }
2031   setShuffleMask(NewMask);
2032   Op<0>().swap(Op<1>());
2033 }
2034 
2035 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
2036                                         ArrayRef<int> Mask) {
2037   // V1 and V2 must be vectors of the same type.
2038   if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
2039     return false;
2040 
2041   // Make sure the mask elements make sense.
2042   int V1Size =
2043       cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
2044   for (int Elem : Mask)
2045     if (Elem != UndefMaskElem && Elem >= V1Size * 2)
2046       return false;
2047 
2048   if (isa<ScalableVectorType>(V1->getType()))
2049     if ((Mask[0] != 0 && Mask[0] != UndefMaskElem) || !is_splat(Mask))
2050       return false;
2051 
2052   return true;
2053 }
2054 
2055 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
2056                                         const Value *Mask) {
2057   // V1 and V2 must be vectors of the same type.
2058   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
2059     return false;
2060 
2061   // Mask must be vector of i32, and must be the same kind of vector as the
2062   // input vectors
2063   auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
2064   if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
2065       isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType()))
2066     return false;
2067 
2068   // Check to see if Mask is valid.
2069   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
2070     return true;
2071 
2072   if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
2073     unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2074     for (Value *Op : MV->operands()) {
2075       if (auto *CI = dyn_cast<ConstantInt>(Op)) {
2076         if (CI->uge(V1Size*2))
2077           return false;
2078       } else if (!isa<UndefValue>(Op)) {
2079         return false;
2080       }
2081     }
2082     return true;
2083   }
2084 
2085   if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2086     unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2087     for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements();
2088          i != e; ++i)
2089       if (CDS->getElementAsInteger(i) >= V1Size*2)
2090         return false;
2091     return true;
2092   }
2093 
2094   return false;
2095 }
2096 
2097 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
2098                                        SmallVectorImpl<int> &Result) {
2099   ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount();
2100 
2101   if (isa<ConstantAggregateZero>(Mask)) {
2102     Result.resize(EC.getKnownMinValue(), 0);
2103     return;
2104   }
2105 
2106   Result.reserve(EC.getKnownMinValue());
2107 
2108   if (EC.isScalable()) {
2109     assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) &&
2110            "Scalable vector shuffle mask must be undef or zeroinitializer");
2111     int MaskVal = isa<UndefValue>(Mask) ? -1 : 0;
2112     for (unsigned I = 0; I < EC.getKnownMinValue(); ++I)
2113       Result.emplace_back(MaskVal);
2114     return;
2115   }
2116 
2117   unsigned NumElts = EC.getKnownMinValue();
2118 
2119   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2120     for (unsigned i = 0; i != NumElts; ++i)
2121       Result.push_back(CDS->getElementAsInteger(i));
2122     return;
2123   }
2124   for (unsigned i = 0; i != NumElts; ++i) {
2125     Constant *C = Mask->getAggregateElement(i);
2126     Result.push_back(isa<UndefValue>(C) ? -1 :
2127                      cast<ConstantInt>(C)->getZExtValue());
2128   }
2129 }
2130 
2131 void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) {
2132   ShuffleMask.assign(Mask.begin(), Mask.end());
2133   ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType());
2134 }
2135 
2136 Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2137                                                           Type *ResultTy) {
2138   Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext());
2139   if (isa<ScalableVectorType>(ResultTy)) {
2140     assert(is_splat(Mask) && "Unexpected shuffle");
2141     Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true);
2142     if (Mask[0] == 0)
2143       return Constant::getNullValue(VecTy);
2144     return UndefValue::get(VecTy);
2145   }
2146   SmallVector<Constant *, 16> MaskConst;
2147   for (int Elem : Mask) {
2148     if (Elem == UndefMaskElem)
2149       MaskConst.push_back(UndefValue::get(Int32Ty));
2150     else
2151       MaskConst.push_back(ConstantInt::get(Int32Ty, Elem));
2152   }
2153   return ConstantVector::get(MaskConst);
2154 }
2155 
2156 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2157   assert(!Mask.empty() && "Shuffle mask must contain elements");
2158   bool UsesLHS = false;
2159   bool UsesRHS = false;
2160   for (int I : Mask) {
2161     if (I == -1)
2162       continue;
2163     assert(I >= 0 && I < (NumOpElts * 2) &&
2164            "Out-of-bounds shuffle mask element");
2165     UsesLHS |= (I < NumOpElts);
2166     UsesRHS |= (I >= NumOpElts);
2167     if (UsesLHS && UsesRHS)
2168       return false;
2169   }
2170   // Allow for degenerate case: completely undef mask means neither source is used.
2171   return UsesLHS || UsesRHS;
2172 }
2173 
2174 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
2175   // We don't have vector operand size information, so assume operands are the
2176   // same size as the mask.
2177   return isSingleSourceMaskImpl(Mask, Mask.size());
2178 }
2179 
2180 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2181   if (!isSingleSourceMaskImpl(Mask, NumOpElts))
2182     return false;
2183   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
2184     if (Mask[i] == -1)
2185       continue;
2186     if (Mask[i] != i && Mask[i] != (NumOpElts + i))
2187       return false;
2188   }
2189   return true;
2190 }
2191 
2192 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
2193   // We don't have vector operand size information, so assume operands are the
2194   // same size as the mask.
2195   return isIdentityMaskImpl(Mask, Mask.size());
2196 }
2197 
2198 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
2199   if (!isSingleSourceMask(Mask))
2200     return false;
2201   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2202     if (Mask[i] == -1)
2203       continue;
2204     if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
2205       return false;
2206   }
2207   return true;
2208 }
2209 
2210 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
2211   if (!isSingleSourceMask(Mask))
2212     return false;
2213   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2214     if (Mask[i] == -1)
2215       continue;
2216     if (Mask[i] != 0 && Mask[i] != NumElts)
2217       return false;
2218   }
2219   return true;
2220 }
2221 
2222 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
2223   // Select is differentiated from identity. It requires using both sources.
2224   if (isSingleSourceMask(Mask))
2225     return false;
2226   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2227     if (Mask[i] == -1)
2228       continue;
2229     if (Mask[i] != i && Mask[i] != (NumElts + i))
2230       return false;
2231   }
2232   return true;
2233 }
2234 
2235 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
2236   // Example masks that will return true:
2237   // v1 = <a, b, c, d>
2238   // v2 = <e, f, g, h>
2239   // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
2240   // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
2241 
2242   // 1. The number of elements in the mask must be a power-of-2 and at least 2.
2243   int NumElts = Mask.size();
2244   if (NumElts < 2 || !isPowerOf2_32(NumElts))
2245     return false;
2246 
2247   // 2. The first element of the mask must be either a 0 or a 1.
2248   if (Mask[0] != 0 && Mask[0] != 1)
2249     return false;
2250 
2251   // 3. The difference between the first 2 elements must be equal to the
2252   // number of elements in the mask.
2253   if ((Mask[1] - Mask[0]) != NumElts)
2254     return false;
2255 
2256   // 4. The difference between consecutive even-numbered and odd-numbered
2257   // elements must be equal to 2.
2258   for (int i = 2; i < NumElts; ++i) {
2259     int MaskEltVal = Mask[i];
2260     if (MaskEltVal == -1)
2261       return false;
2262     int MaskEltPrevVal = Mask[i - 2];
2263     if (MaskEltVal - MaskEltPrevVal != 2)
2264       return false;
2265   }
2266   return true;
2267 }
2268 
2269 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2270                                                int NumSrcElts, int &Index) {
2271   // Must extract from a single source.
2272   if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2273     return false;
2274 
2275   // Must be smaller (else this is an Identity shuffle).
2276   if (NumSrcElts <= (int)Mask.size())
2277     return false;
2278 
2279   // Find start of extraction, accounting that we may start with an UNDEF.
2280   int SubIndex = -1;
2281   for (int i = 0, e = Mask.size(); i != e; ++i) {
2282     int M = Mask[i];
2283     if (M < 0)
2284       continue;
2285     int Offset = (M % NumSrcElts) - i;
2286     if (0 <= SubIndex && SubIndex != Offset)
2287       return false;
2288     SubIndex = Offset;
2289   }
2290 
2291   if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
2292     Index = SubIndex;
2293     return true;
2294   }
2295   return false;
2296 }
2297 
2298 bool ShuffleVectorInst::isInsertSubvectorMask(ArrayRef<int> Mask,
2299                                               int NumSrcElts, int &NumSubElts,
2300                                               int &Index) {
2301   int NumMaskElts = Mask.size();
2302 
2303   // Don't try to match if we're shuffling to a smaller size.
2304   if (NumMaskElts < NumSrcElts)
2305     return false;
2306 
2307   // TODO: We don't recognize self-insertion/widening.
2308   if (isSingleSourceMaskImpl(Mask, NumSrcElts))
2309     return false;
2310 
2311   // Determine which mask elements are attributed to which source.
2312   APInt UndefElts = APInt::getZero(NumMaskElts);
2313   APInt Src0Elts = APInt::getZero(NumMaskElts);
2314   APInt Src1Elts = APInt::getZero(NumMaskElts);
2315   bool Src0Identity = true;
2316   bool Src1Identity = true;
2317 
2318   for (int i = 0; i != NumMaskElts; ++i) {
2319     int M = Mask[i];
2320     if (M < 0) {
2321       UndefElts.setBit(i);
2322       continue;
2323     }
2324     if (M < NumSrcElts) {
2325       Src0Elts.setBit(i);
2326       Src0Identity &= (M == i);
2327       continue;
2328     }
2329     Src1Elts.setBit(i);
2330     Src1Identity &= (M == (i + NumSrcElts));
2331     continue;
2332   }
2333   assert((Src0Elts | Src1Elts | UndefElts).isAllOnes() &&
2334          "unknown shuffle elements");
2335   assert(!Src0Elts.isZero() && !Src1Elts.isZero() &&
2336          "2-source shuffle not found");
2337 
2338   // Determine lo/hi span ranges.
2339   // TODO: How should we handle undefs at the start of subvector insertions?
2340   int Src0Lo = Src0Elts.countTrailingZeros();
2341   int Src1Lo = Src1Elts.countTrailingZeros();
2342   int Src0Hi = NumMaskElts - Src0Elts.countLeadingZeros();
2343   int Src1Hi = NumMaskElts - Src1Elts.countLeadingZeros();
2344 
2345   // If src0 is in place, see if the src1 elements is inplace within its own
2346   // span.
2347   if (Src0Identity) {
2348     int NumSub1Elts = Src1Hi - Src1Lo;
2349     ArrayRef<int> Sub1Mask = Mask.slice(Src1Lo, NumSub1Elts);
2350     if (isIdentityMaskImpl(Sub1Mask, NumSrcElts)) {
2351       NumSubElts = NumSub1Elts;
2352       Index = Src1Lo;
2353       return true;
2354     }
2355   }
2356 
2357   // If src1 is in place, see if the src0 elements is inplace within its own
2358   // span.
2359   if (Src1Identity) {
2360     int NumSub0Elts = Src0Hi - Src0Lo;
2361     ArrayRef<int> Sub0Mask = Mask.slice(Src0Lo, NumSub0Elts);
2362     if (isIdentityMaskImpl(Sub0Mask, NumSrcElts)) {
2363       NumSubElts = NumSub0Elts;
2364       Index = Src0Lo;
2365       return true;
2366     }
2367   }
2368 
2369   return false;
2370 }
2371 
2372 bool ShuffleVectorInst::isIdentityWithPadding() const {
2373   if (isa<UndefValue>(Op<2>()))
2374     return false;
2375 
2376   // FIXME: Not currently possible to express a shuffle mask for a scalable
2377   // vector for this case.
2378   if (isa<ScalableVectorType>(getType()))
2379     return false;
2380 
2381   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2382   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2383   if (NumMaskElts <= NumOpElts)
2384     return false;
2385 
2386   // The first part of the mask must choose elements from exactly 1 source op.
2387   ArrayRef<int> Mask = getShuffleMask();
2388   if (!isIdentityMaskImpl(Mask, NumOpElts))
2389     return false;
2390 
2391   // All extending must be with undef elements.
2392   for (int i = NumOpElts; i < NumMaskElts; ++i)
2393     if (Mask[i] != -1)
2394       return false;
2395 
2396   return true;
2397 }
2398 
2399 bool ShuffleVectorInst::isIdentityWithExtract() const {
2400   if (isa<UndefValue>(Op<2>()))
2401     return false;
2402 
2403   // FIXME: Not currently possible to express a shuffle mask for a scalable
2404   // vector for this case.
2405   if (isa<ScalableVectorType>(getType()))
2406     return false;
2407 
2408   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2409   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2410   if (NumMaskElts >= NumOpElts)
2411     return false;
2412 
2413   return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2414 }
2415 
2416 bool ShuffleVectorInst::isConcat() const {
2417   // Vector concatenation is differentiated from identity with padding.
2418   if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()) ||
2419       isa<UndefValue>(Op<2>()))
2420     return false;
2421 
2422   // FIXME: Not currently possible to express a shuffle mask for a scalable
2423   // vector for this case.
2424   if (isa<ScalableVectorType>(getType()))
2425     return false;
2426 
2427   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2428   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2429   if (NumMaskElts != NumOpElts * 2)
2430     return false;
2431 
2432   // Use the mask length rather than the operands' vector lengths here. We
2433   // already know that the shuffle returns a vector twice as long as the inputs,
2434   // and neither of the inputs are undef vectors. If the mask picks consecutive
2435   // elements from both inputs, then this is a concatenation of the inputs.
2436   return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2437 }
2438 
2439 static bool isReplicationMaskWithParams(ArrayRef<int> Mask,
2440                                         int ReplicationFactor, int VF) {
2441   assert(Mask.size() == (unsigned)ReplicationFactor * VF &&
2442          "Unexpected mask size.");
2443 
2444   for (int CurrElt : seq(0, VF)) {
2445     ArrayRef<int> CurrSubMask = Mask.take_front(ReplicationFactor);
2446     assert(CurrSubMask.size() == (unsigned)ReplicationFactor &&
2447            "Run out of mask?");
2448     Mask = Mask.drop_front(ReplicationFactor);
2449     if (!all_of(CurrSubMask, [CurrElt](int MaskElt) {
2450           return MaskElt == UndefMaskElem || MaskElt == CurrElt;
2451         }))
2452       return false;
2453   }
2454   assert(Mask.empty() && "Did not consume the whole mask?");
2455 
2456   return true;
2457 }
2458 
2459 bool ShuffleVectorInst::isReplicationMask(ArrayRef<int> Mask,
2460                                           int &ReplicationFactor, int &VF) {
2461   // undef-less case is trivial.
2462   if (none_of(Mask, [](int MaskElt) { return MaskElt == UndefMaskElem; })) {
2463     ReplicationFactor =
2464         Mask.take_while([](int MaskElt) { return MaskElt == 0; }).size();
2465     if (ReplicationFactor == 0 || Mask.size() % ReplicationFactor != 0)
2466       return false;
2467     VF = Mask.size() / ReplicationFactor;
2468     return isReplicationMaskWithParams(Mask, ReplicationFactor, VF);
2469   }
2470 
2471   // However, if the mask contains undef's, we have to enumerate possible tuples
2472   // and pick one. There are bounds on replication factor: [1, mask size]
2473   // (where RF=1 is an identity shuffle, RF=mask size is a broadcast shuffle)
2474   // Additionally, mask size is a replication factor multiplied by vector size,
2475   // which further significantly reduces the search space.
2476 
2477   // Before doing that, let's perform basic sanity check first.
2478   int Largest = -1;
2479   for (int MaskElt : Mask) {
2480     if (MaskElt == UndefMaskElem)
2481       continue;
2482     // Elements must be in non-decreasing order.
2483     if (MaskElt < Largest)
2484       return false;
2485     Largest = std::max(Largest, MaskElt);
2486   }
2487 
2488   // Prefer larger replication factor if all else equal.
2489   for (int PossibleReplicationFactor :
2490        reverse(seq_inclusive<unsigned>(1, Mask.size()))) {
2491     if (Mask.size() % PossibleReplicationFactor != 0)
2492       continue;
2493     int PossibleVF = Mask.size() / PossibleReplicationFactor;
2494     if (!isReplicationMaskWithParams(Mask, PossibleReplicationFactor,
2495                                      PossibleVF))
2496       continue;
2497     ReplicationFactor = PossibleReplicationFactor;
2498     VF = PossibleVF;
2499     return true;
2500   }
2501 
2502   return false;
2503 }
2504 
2505 bool ShuffleVectorInst::isReplicationMask(int &ReplicationFactor,
2506                                           int &VF) const {
2507   // Not possible to express a shuffle mask for a scalable vector for this
2508   // case.
2509   if (isa<ScalableVectorType>(getType()))
2510     return false;
2511 
2512   VF = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2513   if (ShuffleMask.size() % VF != 0)
2514     return false;
2515   ReplicationFactor = ShuffleMask.size() / VF;
2516 
2517   return isReplicationMaskWithParams(ShuffleMask, ReplicationFactor, VF);
2518 }
2519 
2520 //===----------------------------------------------------------------------===//
2521 //                             InsertValueInst Class
2522 //===----------------------------------------------------------------------===//
2523 
2524 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2525                            const Twine &Name) {
2526   assert(getNumOperands() == 2 && "NumOperands not initialized?");
2527 
2528   // There's no fundamental reason why we require at least one index
2529   // (other than weirdness with &*IdxBegin being invalid; see
2530   // getelementptr's init routine for example). But there's no
2531   // present need to support it.
2532   assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2533 
2534   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2535          Val->getType() && "Inserted value must match indexed type!");
2536   Op<0>() = Agg;
2537   Op<1>() = Val;
2538 
2539   Indices.append(Idxs.begin(), Idxs.end());
2540   setName(Name);
2541 }
2542 
2543 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2544   : Instruction(IVI.getType(), InsertValue,
2545                 OperandTraits<InsertValueInst>::op_begin(this), 2),
2546     Indices(IVI.Indices) {
2547   Op<0>() = IVI.getOperand(0);
2548   Op<1>() = IVI.getOperand(1);
2549   SubclassOptionalData = IVI.SubclassOptionalData;
2550 }
2551 
2552 //===----------------------------------------------------------------------===//
2553 //                             ExtractValueInst Class
2554 //===----------------------------------------------------------------------===//
2555 
2556 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2557   assert(getNumOperands() == 1 && "NumOperands not initialized?");
2558 
2559   // There's no fundamental reason why we require at least one index.
2560   // But there's no present need to support it.
2561   assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2562 
2563   Indices.append(Idxs.begin(), Idxs.end());
2564   setName(Name);
2565 }
2566 
2567 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2568   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2569     Indices(EVI.Indices) {
2570   SubclassOptionalData = EVI.SubclassOptionalData;
2571 }
2572 
2573 // getIndexedType - Returns the type of the element that would be extracted
2574 // with an extractvalue instruction with the specified parameters.
2575 //
2576 // A null type is returned if the indices are invalid for the specified
2577 // pointer type.
2578 //
2579 Type *ExtractValueInst::getIndexedType(Type *Agg,
2580                                        ArrayRef<unsigned> Idxs) {
2581   for (unsigned Index : Idxs) {
2582     // We can't use CompositeType::indexValid(Index) here.
2583     // indexValid() always returns true for arrays because getelementptr allows
2584     // out-of-bounds indices. Since we don't allow those for extractvalue and
2585     // insertvalue we need to check array indexing manually.
2586     // Since the only other types we can index into are struct types it's just
2587     // as easy to check those manually as well.
2588     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2589       if (Index >= AT->getNumElements())
2590         return nullptr;
2591       Agg = AT->getElementType();
2592     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2593       if (Index >= ST->getNumElements())
2594         return nullptr;
2595       Agg = ST->getElementType(Index);
2596     } else {
2597       // Not a valid type to index into.
2598       return nullptr;
2599     }
2600   }
2601   return const_cast<Type*>(Agg);
2602 }
2603 
2604 //===----------------------------------------------------------------------===//
2605 //                             UnaryOperator Class
2606 //===----------------------------------------------------------------------===//
2607 
2608 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2609                              Type *Ty, const Twine &Name,
2610                              Instruction *InsertBefore)
2611   : UnaryInstruction(Ty, iType, S, InsertBefore) {
2612   Op<0>() = S;
2613   setName(Name);
2614   AssertOK();
2615 }
2616 
2617 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2618                              Type *Ty, const Twine &Name,
2619                              BasicBlock *InsertAtEnd)
2620   : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2621   Op<0>() = S;
2622   setName(Name);
2623   AssertOK();
2624 }
2625 
2626 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2627                                      const Twine &Name,
2628                                      Instruction *InsertBefore) {
2629   return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2630 }
2631 
2632 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2633                                      const Twine &Name,
2634                                      BasicBlock *InsertAtEnd) {
2635   UnaryOperator *Res = Create(Op, S, Name);
2636   InsertAtEnd->getInstList().push_back(Res);
2637   return Res;
2638 }
2639 
2640 void UnaryOperator::AssertOK() {
2641   Value *LHS = getOperand(0);
2642   (void)LHS; // Silence warnings.
2643 #ifndef NDEBUG
2644   switch (getOpcode()) {
2645   case FNeg:
2646     assert(getType() == LHS->getType() &&
2647            "Unary operation should return same type as operand!");
2648     assert(getType()->isFPOrFPVectorTy() &&
2649            "Tried to create a floating-point operation on a "
2650            "non-floating-point type!");
2651     break;
2652   default: llvm_unreachable("Invalid opcode provided");
2653   }
2654 #endif
2655 }
2656 
2657 //===----------------------------------------------------------------------===//
2658 //                             BinaryOperator Class
2659 //===----------------------------------------------------------------------===//
2660 
2661 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2662                                Type *Ty, const Twine &Name,
2663                                Instruction *InsertBefore)
2664   : Instruction(Ty, iType,
2665                 OperandTraits<BinaryOperator>::op_begin(this),
2666                 OperandTraits<BinaryOperator>::operands(this),
2667                 InsertBefore) {
2668   Op<0>() = S1;
2669   Op<1>() = S2;
2670   setName(Name);
2671   AssertOK();
2672 }
2673 
2674 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2675                                Type *Ty, const Twine &Name,
2676                                BasicBlock *InsertAtEnd)
2677   : Instruction(Ty, iType,
2678                 OperandTraits<BinaryOperator>::op_begin(this),
2679                 OperandTraits<BinaryOperator>::operands(this),
2680                 InsertAtEnd) {
2681   Op<0>() = S1;
2682   Op<1>() = S2;
2683   setName(Name);
2684   AssertOK();
2685 }
2686 
2687 void BinaryOperator::AssertOK() {
2688   Value *LHS = getOperand(0), *RHS = getOperand(1);
2689   (void)LHS; (void)RHS; // Silence warnings.
2690   assert(LHS->getType() == RHS->getType() &&
2691          "Binary operator operand types must match!");
2692 #ifndef NDEBUG
2693   switch (getOpcode()) {
2694   case Add: case Sub:
2695   case Mul:
2696     assert(getType() == LHS->getType() &&
2697            "Arithmetic operation should return same type as operands!");
2698     assert(getType()->isIntOrIntVectorTy() &&
2699            "Tried to create an integer operation on a non-integer type!");
2700     break;
2701   case FAdd: case FSub:
2702   case FMul:
2703     assert(getType() == LHS->getType() &&
2704            "Arithmetic operation should return same type as operands!");
2705     assert(getType()->isFPOrFPVectorTy() &&
2706            "Tried to create a floating-point operation on a "
2707            "non-floating-point type!");
2708     break;
2709   case UDiv:
2710   case SDiv:
2711     assert(getType() == LHS->getType() &&
2712            "Arithmetic operation should return same type as operands!");
2713     assert(getType()->isIntOrIntVectorTy() &&
2714            "Incorrect operand type (not integer) for S/UDIV");
2715     break;
2716   case FDiv:
2717     assert(getType() == LHS->getType() &&
2718            "Arithmetic operation should return same type as operands!");
2719     assert(getType()->isFPOrFPVectorTy() &&
2720            "Incorrect operand type (not floating point) for FDIV");
2721     break;
2722   case URem:
2723   case SRem:
2724     assert(getType() == LHS->getType() &&
2725            "Arithmetic operation should return same type as operands!");
2726     assert(getType()->isIntOrIntVectorTy() &&
2727            "Incorrect operand type (not integer) for S/UREM");
2728     break;
2729   case FRem:
2730     assert(getType() == LHS->getType() &&
2731            "Arithmetic operation should return same type as operands!");
2732     assert(getType()->isFPOrFPVectorTy() &&
2733            "Incorrect operand type (not floating point) for FREM");
2734     break;
2735   case Shl:
2736   case LShr:
2737   case AShr:
2738     assert(getType() == LHS->getType() &&
2739            "Shift operation should return same type as operands!");
2740     assert(getType()->isIntOrIntVectorTy() &&
2741            "Tried to create a shift operation on a non-integral type!");
2742     break;
2743   case And: case Or:
2744   case Xor:
2745     assert(getType() == LHS->getType() &&
2746            "Logical operation should return same type as operands!");
2747     assert(getType()->isIntOrIntVectorTy() &&
2748            "Tried to create a logical operation on a non-integral type!");
2749     break;
2750   default: llvm_unreachable("Invalid opcode provided");
2751   }
2752 #endif
2753 }
2754 
2755 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2756                                        const Twine &Name,
2757                                        Instruction *InsertBefore) {
2758   assert(S1->getType() == S2->getType() &&
2759          "Cannot create binary operator with two operands of differing type!");
2760   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2761 }
2762 
2763 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2764                                        const Twine &Name,
2765                                        BasicBlock *InsertAtEnd) {
2766   BinaryOperator *Res = Create(Op, S1, S2, Name);
2767   InsertAtEnd->getInstList().push_back(Res);
2768   return Res;
2769 }
2770 
2771 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2772                                           Instruction *InsertBefore) {
2773   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2774   return new BinaryOperator(Instruction::Sub,
2775                             zero, Op,
2776                             Op->getType(), Name, InsertBefore);
2777 }
2778 
2779 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2780                                           BasicBlock *InsertAtEnd) {
2781   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2782   return new BinaryOperator(Instruction::Sub,
2783                             zero, Op,
2784                             Op->getType(), Name, InsertAtEnd);
2785 }
2786 
2787 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2788                                              Instruction *InsertBefore) {
2789   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2790   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2791 }
2792 
2793 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2794                                              BasicBlock *InsertAtEnd) {
2795   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2796   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2797 }
2798 
2799 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2800                                              Instruction *InsertBefore) {
2801   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2802   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2803 }
2804 
2805 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2806                                              BasicBlock *InsertAtEnd) {
2807   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2808   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2809 }
2810 
2811 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2812                                           Instruction *InsertBefore) {
2813   Constant *C = Constant::getAllOnesValue(Op->getType());
2814   return new BinaryOperator(Instruction::Xor, Op, C,
2815                             Op->getType(), Name, InsertBefore);
2816 }
2817 
2818 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2819                                           BasicBlock *InsertAtEnd) {
2820   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2821   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2822                             Op->getType(), Name, InsertAtEnd);
2823 }
2824 
2825 // Exchange the two operands to this instruction. This instruction is safe to
2826 // use on any binary instruction and does not modify the semantics of the
2827 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2828 // is changed.
2829 bool BinaryOperator::swapOperands() {
2830   if (!isCommutative())
2831     return true; // Can't commute operands
2832   Op<0>().swap(Op<1>());
2833   return false;
2834 }
2835 
2836 //===----------------------------------------------------------------------===//
2837 //                             FPMathOperator Class
2838 //===----------------------------------------------------------------------===//
2839 
2840 float FPMathOperator::getFPAccuracy() const {
2841   const MDNode *MD =
2842       cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2843   if (!MD)
2844     return 0.0;
2845   ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2846   return Accuracy->getValueAPF().convertToFloat();
2847 }
2848 
2849 //===----------------------------------------------------------------------===//
2850 //                                CastInst Class
2851 //===----------------------------------------------------------------------===//
2852 
2853 // Just determine if this cast only deals with integral->integral conversion.
2854 bool CastInst::isIntegerCast() const {
2855   switch (getOpcode()) {
2856     default: return false;
2857     case Instruction::ZExt:
2858     case Instruction::SExt:
2859     case Instruction::Trunc:
2860       return true;
2861     case Instruction::BitCast:
2862       return getOperand(0)->getType()->isIntegerTy() &&
2863         getType()->isIntegerTy();
2864   }
2865 }
2866 
2867 bool CastInst::isLosslessCast() const {
2868   // Only BitCast can be lossless, exit fast if we're not BitCast
2869   if (getOpcode() != Instruction::BitCast)
2870     return false;
2871 
2872   // Identity cast is always lossless
2873   Type *SrcTy = getOperand(0)->getType();
2874   Type *DstTy = getType();
2875   if (SrcTy == DstTy)
2876     return true;
2877 
2878   // Pointer to pointer is always lossless.
2879   if (SrcTy->isPointerTy())
2880     return DstTy->isPointerTy();
2881   return false;  // Other types have no identity values
2882 }
2883 
2884 /// This function determines if the CastInst does not require any bits to be
2885 /// changed in order to effect the cast. Essentially, it identifies cases where
2886 /// no code gen is necessary for the cast, hence the name no-op cast.  For
2887 /// example, the following are all no-op casts:
2888 /// # bitcast i32* %x to i8*
2889 /// # bitcast <2 x i32> %x to <4 x i16>
2890 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2891 /// Determine if the described cast is a no-op.
2892 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2893                           Type *SrcTy,
2894                           Type *DestTy,
2895                           const DataLayout &DL) {
2896   assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition");
2897   switch (Opcode) {
2898     default: llvm_unreachable("Invalid CastOp");
2899     case Instruction::Trunc:
2900     case Instruction::ZExt:
2901     case Instruction::SExt:
2902     case Instruction::FPTrunc:
2903     case Instruction::FPExt:
2904     case Instruction::UIToFP:
2905     case Instruction::SIToFP:
2906     case Instruction::FPToUI:
2907     case Instruction::FPToSI:
2908     case Instruction::AddrSpaceCast:
2909       // TODO: Target informations may give a more accurate answer here.
2910       return false;
2911     case Instruction::BitCast:
2912       return true;  // BitCast never modifies bits.
2913     case Instruction::PtrToInt:
2914       return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2915              DestTy->getScalarSizeInBits();
2916     case Instruction::IntToPtr:
2917       return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2918              SrcTy->getScalarSizeInBits();
2919   }
2920 }
2921 
2922 bool CastInst::isNoopCast(const DataLayout &DL) const {
2923   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2924 }
2925 
2926 /// This function determines if a pair of casts can be eliminated and what
2927 /// opcode should be used in the elimination. This assumes that there are two
2928 /// instructions like this:
2929 /// *  %F = firstOpcode SrcTy %x to MidTy
2930 /// *  %S = secondOpcode MidTy %F to DstTy
2931 /// The function returns a resultOpcode so these two casts can be replaced with:
2932 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2933 /// If no such cast is permitted, the function returns 0.
2934 unsigned CastInst::isEliminableCastPair(
2935   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2936   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2937   Type *DstIntPtrTy) {
2938   // Define the 144 possibilities for these two cast instructions. The values
2939   // in this matrix determine what to do in a given situation and select the
2940   // case in the switch below.  The rows correspond to firstOp, the columns
2941   // correspond to secondOp.  In looking at the table below, keep in mind
2942   // the following cast properties:
2943   //
2944   //          Size Compare       Source               Destination
2945   // Operator  Src ? Size   Type       Sign         Type       Sign
2946   // -------- ------------ -------------------   ---------------------
2947   // TRUNC         >       Integer      Any        Integral     Any
2948   // ZEXT          <       Integral   Unsigned     Integer      Any
2949   // SEXT          <       Integral    Signed      Integer      Any
2950   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2951   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2952   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2953   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2954   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2955   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2956   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2957   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2958   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2959   // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2960   //
2961   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2962   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2963   // into "fptoui double to i64", but this loses information about the range
2964   // of the produced value (we no longer know the top-part is all zeros).
2965   // Further this conversion is often much more expensive for typical hardware,
2966   // and causes issues when building libgcc.  We disallow fptosi+sext for the
2967   // same reason.
2968   const unsigned numCastOps =
2969     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2970   static const uint8_t CastResults[numCastOps][numCastOps] = {
2971     // T        F  F  U  S  F  F  P  I  B  A  -+
2972     // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2973     // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2974     // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2975     // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2976     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2977     {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
2978     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2979     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2980     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2981     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2982     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2983     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
2984     { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt          |
2985     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2986     { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2987     {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
2988     {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2989   };
2990 
2991   // TODO: This logic could be encoded into the table above and handled in the
2992   // switch below.
2993   // If either of the casts are a bitcast from scalar to vector, disallow the
2994   // merging. However, any pair of bitcasts are allowed.
2995   bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
2996   bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2997   bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2998 
2999   // Check if any of the casts convert scalars <-> vectors.
3000   if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
3001       (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
3002     if (!AreBothBitcasts)
3003       return 0;
3004 
3005   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
3006                             [secondOp-Instruction::CastOpsBegin];
3007   switch (ElimCase) {
3008     case 0:
3009       // Categorically disallowed.
3010       return 0;
3011     case 1:
3012       // Allowed, use first cast's opcode.
3013       return firstOp;
3014     case 2:
3015       // Allowed, use second cast's opcode.
3016       return secondOp;
3017     case 3:
3018       // No-op cast in second op implies firstOp as long as the DestTy
3019       // is integer and we are not converting between a vector and a
3020       // non-vector type.
3021       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
3022         return firstOp;
3023       return 0;
3024     case 4:
3025       // No-op cast in second op implies firstOp as long as the DestTy
3026       // is floating point.
3027       if (DstTy->isFloatingPointTy())
3028         return firstOp;
3029       return 0;
3030     case 5:
3031       // No-op cast in first op implies secondOp as long as the SrcTy
3032       // is an integer.
3033       if (SrcTy->isIntegerTy())
3034         return secondOp;
3035       return 0;
3036     case 6:
3037       // No-op cast in first op implies secondOp as long as the SrcTy
3038       // is a floating point.
3039       if (SrcTy->isFloatingPointTy())
3040         return secondOp;
3041       return 0;
3042     case 7: {
3043       // Disable inttoptr/ptrtoint optimization if enabled.
3044       if (DisableI2pP2iOpt)
3045         return 0;
3046 
3047       // Cannot simplify if address spaces are different!
3048       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
3049         return 0;
3050 
3051       unsigned MidSize = MidTy->getScalarSizeInBits();
3052       // We can still fold this without knowing the actual sizes as long we
3053       // know that the intermediate pointer is the largest possible
3054       // pointer size.
3055       // FIXME: Is this always true?
3056       if (MidSize == 64)
3057         return Instruction::BitCast;
3058 
3059       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
3060       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
3061         return 0;
3062       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
3063       if (MidSize >= PtrSize)
3064         return Instruction::BitCast;
3065       return 0;
3066     }
3067     case 8: {
3068       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
3069       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
3070       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
3071       unsigned SrcSize = SrcTy->getScalarSizeInBits();
3072       unsigned DstSize = DstTy->getScalarSizeInBits();
3073       if (SrcSize == DstSize)
3074         return Instruction::BitCast;
3075       else if (SrcSize < DstSize)
3076         return firstOp;
3077       return secondOp;
3078     }
3079     case 9:
3080       // zext, sext -> zext, because sext can't sign extend after zext
3081       return Instruction::ZExt;
3082     case 11: {
3083       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
3084       if (!MidIntPtrTy)
3085         return 0;
3086       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
3087       unsigned SrcSize = SrcTy->getScalarSizeInBits();
3088       unsigned DstSize = DstTy->getScalarSizeInBits();
3089       if (SrcSize <= PtrSize && SrcSize == DstSize)
3090         return Instruction::BitCast;
3091       return 0;
3092     }
3093     case 12:
3094       // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
3095       // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
3096       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
3097         return Instruction::AddrSpaceCast;
3098       return Instruction::BitCast;
3099     case 13:
3100       // FIXME: this state can be merged with (1), but the following assert
3101       // is useful to check the correcteness of the sequence due to semantic
3102       // change of bitcast.
3103       assert(
3104         SrcTy->isPtrOrPtrVectorTy() &&
3105         MidTy->isPtrOrPtrVectorTy() &&
3106         DstTy->isPtrOrPtrVectorTy() &&
3107         SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
3108         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
3109         "Illegal addrspacecast, bitcast sequence!");
3110       // Allowed, use first cast's opcode
3111       return firstOp;
3112     case 14: {
3113       // bitcast, addrspacecast -> addrspacecast if the element type of
3114       // bitcast's source is the same as that of addrspacecast's destination.
3115       PointerType *SrcPtrTy = cast<PointerType>(SrcTy->getScalarType());
3116       PointerType *DstPtrTy = cast<PointerType>(DstTy->getScalarType());
3117       if (SrcPtrTy->hasSameElementTypeAs(DstPtrTy))
3118         return Instruction::AddrSpaceCast;
3119       return 0;
3120     }
3121     case 15:
3122       // FIXME: this state can be merged with (1), but the following assert
3123       // is useful to check the correcteness of the sequence due to semantic
3124       // change of bitcast.
3125       assert(
3126         SrcTy->isIntOrIntVectorTy() &&
3127         MidTy->isPtrOrPtrVectorTy() &&
3128         DstTy->isPtrOrPtrVectorTy() &&
3129         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
3130         "Illegal inttoptr, bitcast sequence!");
3131       // Allowed, use first cast's opcode
3132       return firstOp;
3133     case 16:
3134       // FIXME: this state can be merged with (2), but the following assert
3135       // is useful to check the correcteness of the sequence due to semantic
3136       // change of bitcast.
3137       assert(
3138         SrcTy->isPtrOrPtrVectorTy() &&
3139         MidTy->isPtrOrPtrVectorTy() &&
3140         DstTy->isIntOrIntVectorTy() &&
3141         SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
3142         "Illegal bitcast, ptrtoint sequence!");
3143       // Allowed, use second cast's opcode
3144       return secondOp;
3145     case 17:
3146       // (sitofp (zext x)) -> (uitofp x)
3147       return Instruction::UIToFP;
3148     case 99:
3149       // Cast combination can't happen (error in input). This is for all cases
3150       // where the MidTy is not the same for the two cast instructions.
3151       llvm_unreachable("Invalid Cast Combination");
3152     default:
3153       llvm_unreachable("Error in CastResults table!!!");
3154   }
3155 }
3156 
3157 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
3158   const Twine &Name, Instruction *InsertBefore) {
3159   assert(castIsValid(op, S, Ty) && "Invalid cast!");
3160   // Construct and return the appropriate CastInst subclass
3161   switch (op) {
3162   case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
3163   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
3164   case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
3165   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
3166   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
3167   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
3168   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
3169   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
3170   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
3171   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
3172   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
3173   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
3174   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
3175   default: llvm_unreachable("Invalid opcode provided");
3176   }
3177 }
3178 
3179 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
3180   const Twine &Name, BasicBlock *InsertAtEnd) {
3181   assert(castIsValid(op, S, Ty) && "Invalid cast!");
3182   // Construct and return the appropriate CastInst subclass
3183   switch (op) {
3184   case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
3185   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
3186   case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
3187   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
3188   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
3189   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
3190   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
3191   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
3192   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
3193   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
3194   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
3195   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
3196   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
3197   default: llvm_unreachable("Invalid opcode provided");
3198   }
3199 }
3200 
3201 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
3202                                         const Twine &Name,
3203                                         Instruction *InsertBefore) {
3204   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3205     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3206   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
3207 }
3208 
3209 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
3210                                         const Twine &Name,
3211                                         BasicBlock *InsertAtEnd) {
3212   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3213     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3214   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
3215 }
3216 
3217 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3218                                         const Twine &Name,
3219                                         Instruction *InsertBefore) {
3220   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3221     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3222   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
3223 }
3224 
3225 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3226                                         const Twine &Name,
3227                                         BasicBlock *InsertAtEnd) {
3228   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3229     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3230   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
3231 }
3232 
3233 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3234                                          const Twine &Name,
3235                                          Instruction *InsertBefore) {
3236   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3237     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3238   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
3239 }
3240 
3241 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3242                                          const Twine &Name,
3243                                          BasicBlock *InsertAtEnd) {
3244   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3245     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3246   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
3247 }
3248 
3249 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3250                                       const Twine &Name,
3251                                       BasicBlock *InsertAtEnd) {
3252   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3253   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3254          "Invalid cast");
3255   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3256   assert((!Ty->isVectorTy() ||
3257           cast<VectorType>(Ty)->getElementCount() ==
3258               cast<VectorType>(S->getType())->getElementCount()) &&
3259          "Invalid cast");
3260 
3261   if (Ty->isIntOrIntVectorTy())
3262     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
3263 
3264   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
3265 }
3266 
3267 /// Create a BitCast or a PtrToInt cast instruction
3268 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3269                                       const Twine &Name,
3270                                       Instruction *InsertBefore) {
3271   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3272   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3273          "Invalid cast");
3274   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3275   assert((!Ty->isVectorTy() ||
3276           cast<VectorType>(Ty)->getElementCount() ==
3277               cast<VectorType>(S->getType())->getElementCount()) &&
3278          "Invalid cast");
3279 
3280   if (Ty->isIntOrIntVectorTy())
3281     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3282 
3283   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
3284 }
3285 
3286 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3287   Value *S, Type *Ty,
3288   const Twine &Name,
3289   BasicBlock *InsertAtEnd) {
3290   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3291   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3292 
3293   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3294     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
3295 
3296   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3297 }
3298 
3299 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3300   Value *S, Type *Ty,
3301   const Twine &Name,
3302   Instruction *InsertBefore) {
3303   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3304   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3305 
3306   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3307     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
3308 
3309   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3310 }
3311 
3312 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
3313                                            const Twine &Name,
3314                                            Instruction *InsertBefore) {
3315   if (S->getType()->isPointerTy() && Ty->isIntegerTy())
3316     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3317   if (S->getType()->isIntegerTy() && Ty->isPointerTy())
3318     return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
3319 
3320   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3321 }
3322 
3323 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3324                                       bool isSigned, const Twine &Name,
3325                                       Instruction *InsertBefore) {
3326   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3327          "Invalid integer cast");
3328   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3329   unsigned DstBits = Ty->getScalarSizeInBits();
3330   Instruction::CastOps opcode =
3331     (SrcBits == DstBits ? Instruction::BitCast :
3332      (SrcBits > DstBits ? Instruction::Trunc :
3333       (isSigned ? Instruction::SExt : Instruction::ZExt)));
3334   return Create(opcode, C, Ty, Name, InsertBefore);
3335 }
3336 
3337 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3338                                       bool isSigned, const Twine &Name,
3339                                       BasicBlock *InsertAtEnd) {
3340   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3341          "Invalid cast");
3342   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3343   unsigned DstBits = Ty->getScalarSizeInBits();
3344   Instruction::CastOps opcode =
3345     (SrcBits == DstBits ? Instruction::BitCast :
3346      (SrcBits > DstBits ? Instruction::Trunc :
3347       (isSigned ? Instruction::SExt : Instruction::ZExt)));
3348   return Create(opcode, C, Ty, Name, InsertAtEnd);
3349 }
3350 
3351 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3352                                  const Twine &Name,
3353                                  Instruction *InsertBefore) {
3354   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3355          "Invalid cast");
3356   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3357   unsigned DstBits = Ty->getScalarSizeInBits();
3358   Instruction::CastOps opcode =
3359     (SrcBits == DstBits ? Instruction::BitCast :
3360      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3361   return Create(opcode, C, Ty, Name, InsertBefore);
3362 }
3363 
3364 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3365                                  const Twine &Name,
3366                                  BasicBlock *InsertAtEnd) {
3367   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3368          "Invalid cast");
3369   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3370   unsigned DstBits = Ty->getScalarSizeInBits();
3371   Instruction::CastOps opcode =
3372     (SrcBits == DstBits ? Instruction::BitCast :
3373      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3374   return Create(opcode, C, Ty, Name, InsertAtEnd);
3375 }
3376 
3377 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3378   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3379     return false;
3380 
3381   if (SrcTy == DestTy)
3382     return true;
3383 
3384   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3385     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3386       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3387         // An element by element cast. Valid if casting the elements is valid.
3388         SrcTy = SrcVecTy->getElementType();
3389         DestTy = DestVecTy->getElementType();
3390       }
3391     }
3392   }
3393 
3394   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3395     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3396       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3397     }
3398   }
3399 
3400   TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3401   TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3402 
3403   // Could still have vectors of pointers if the number of elements doesn't
3404   // match
3405   if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0)
3406     return false;
3407 
3408   if (SrcBits != DestBits)
3409     return false;
3410 
3411   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3412     return false;
3413 
3414   return true;
3415 }
3416 
3417 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3418                                           const DataLayout &DL) {
3419   // ptrtoint and inttoptr are not allowed on non-integral pointers
3420   if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3421     if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3422       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3423               !DL.isNonIntegralPointerType(PtrTy));
3424   if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3425     if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3426       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3427               !DL.isNonIntegralPointerType(PtrTy));
3428 
3429   return isBitCastable(SrcTy, DestTy);
3430 }
3431 
3432 // Provide a way to get a "cast" where the cast opcode is inferred from the
3433 // types and size of the operand. This, basically, is a parallel of the
3434 // logic in the castIsValid function below.  This axiom should hold:
3435 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3436 // should not assert in castIsValid. In other words, this produces a "correct"
3437 // casting opcode for the arguments passed to it.
3438 Instruction::CastOps
3439 CastInst::getCastOpcode(
3440   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3441   Type *SrcTy = Src->getType();
3442 
3443   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3444          "Only first class types are castable!");
3445 
3446   if (SrcTy == DestTy)
3447     return BitCast;
3448 
3449   // FIXME: Check address space sizes here
3450   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3451     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3452       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3453         // An element by element cast.  Find the appropriate opcode based on the
3454         // element types.
3455         SrcTy = SrcVecTy->getElementType();
3456         DestTy = DestVecTy->getElementType();
3457       }
3458 
3459   // Get the bit sizes, we'll need these
3460   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3461   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3462 
3463   // Run through the possibilities ...
3464   if (DestTy->isIntegerTy()) {                      // Casting to integral
3465     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3466       if (DestBits < SrcBits)
3467         return Trunc;                               // int -> smaller int
3468       else if (DestBits > SrcBits) {                // its an extension
3469         if (SrcIsSigned)
3470           return SExt;                              // signed -> SEXT
3471         else
3472           return ZExt;                              // unsigned -> ZEXT
3473       } else {
3474         return BitCast;                             // Same size, No-op cast
3475       }
3476     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3477       if (DestIsSigned)
3478         return FPToSI;                              // FP -> sint
3479       else
3480         return FPToUI;                              // FP -> uint
3481     } else if (SrcTy->isVectorTy()) {
3482       assert(DestBits == SrcBits &&
3483              "Casting vector to integer of different width");
3484       return BitCast;                             // Same size, no-op cast
3485     } else {
3486       assert(SrcTy->isPointerTy() &&
3487              "Casting from a value that is not first-class type");
3488       return PtrToInt;                              // ptr -> int
3489     }
3490   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
3491     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3492       if (SrcIsSigned)
3493         return SIToFP;                              // sint -> FP
3494       else
3495         return UIToFP;                              // uint -> FP
3496     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3497       if (DestBits < SrcBits) {
3498         return FPTrunc;                             // FP -> smaller FP
3499       } else if (DestBits > SrcBits) {
3500         return FPExt;                               // FP -> larger FP
3501       } else  {
3502         return BitCast;                             // same size, no-op cast
3503       }
3504     } else if (SrcTy->isVectorTy()) {
3505       assert(DestBits == SrcBits &&
3506              "Casting vector to floating point of different width");
3507       return BitCast;                             // same size, no-op cast
3508     }
3509     llvm_unreachable("Casting pointer or non-first class to float");
3510   } else if (DestTy->isVectorTy()) {
3511     assert(DestBits == SrcBits &&
3512            "Illegal cast to vector (wrong type or size)");
3513     return BitCast;
3514   } else if (DestTy->isPointerTy()) {
3515     if (SrcTy->isPointerTy()) {
3516       if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3517         return AddrSpaceCast;
3518       return BitCast;                               // ptr -> ptr
3519     } else if (SrcTy->isIntegerTy()) {
3520       return IntToPtr;                              // int -> ptr
3521     }
3522     llvm_unreachable("Casting pointer to other than pointer or int");
3523   } else if (DestTy->isX86_MMXTy()) {
3524     if (SrcTy->isVectorTy()) {
3525       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3526       return BitCast;                               // 64-bit vector to MMX
3527     }
3528     llvm_unreachable("Illegal cast to X86_MMX");
3529   }
3530   llvm_unreachable("Casting to type that is not first-class");
3531 }
3532 
3533 //===----------------------------------------------------------------------===//
3534 //                    CastInst SubClass Constructors
3535 //===----------------------------------------------------------------------===//
3536 
3537 /// Check that the construction parameters for a CastInst are correct. This
3538 /// could be broken out into the separate constructors but it is useful to have
3539 /// it in one place and to eliminate the redundant code for getting the sizes
3540 /// of the types involved.
3541 bool
3542 CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) {
3543   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3544       SrcTy->isAggregateType() || DstTy->isAggregateType())
3545     return false;
3546 
3547   // Get the size of the types in bits, and whether we are dealing
3548   // with vector types, we'll need this later.
3549   bool SrcIsVec = isa<VectorType>(SrcTy);
3550   bool DstIsVec = isa<VectorType>(DstTy);
3551   unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
3552   unsigned DstScalarBitSize = DstTy->getScalarSizeInBits();
3553 
3554   // If these are vector types, get the lengths of the vectors (using zero for
3555   // scalar types means that checking that vector lengths match also checks that
3556   // scalars are not being converted to vectors or vectors to scalars).
3557   ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
3558                                 : ElementCount::getFixed(0);
3559   ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
3560                                 : ElementCount::getFixed(0);
3561 
3562   // Switch on the opcode provided
3563   switch (op) {
3564   default: return false; // This is an input error
3565   case Instruction::Trunc:
3566     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3567            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3568   case Instruction::ZExt:
3569     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3570            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3571   case Instruction::SExt:
3572     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3573            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3574   case Instruction::FPTrunc:
3575     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3576            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3577   case Instruction::FPExt:
3578     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3579            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3580   case Instruction::UIToFP:
3581   case Instruction::SIToFP:
3582     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3583            SrcEC == DstEC;
3584   case Instruction::FPToUI:
3585   case Instruction::FPToSI:
3586     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3587            SrcEC == DstEC;
3588   case Instruction::PtrToInt:
3589     if (SrcEC != DstEC)
3590       return false;
3591     return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3592   case Instruction::IntToPtr:
3593     if (SrcEC != DstEC)
3594       return false;
3595     return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3596   case Instruction::BitCast: {
3597     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3598     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3599 
3600     // BitCast implies a no-op cast of type only. No bits change.
3601     // However, you can't cast pointers to anything but pointers.
3602     if (!SrcPtrTy != !DstPtrTy)
3603       return false;
3604 
3605     // For non-pointer cases, the cast is okay if the source and destination bit
3606     // widths are identical.
3607     if (!SrcPtrTy)
3608       return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3609 
3610     // If both are pointers then the address spaces must match.
3611     if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3612       return false;
3613 
3614     // A vector of pointers must have the same number of elements.
3615     if (SrcIsVec && DstIsVec)
3616       return SrcEC == DstEC;
3617     if (SrcIsVec)
3618       return SrcEC == ElementCount::getFixed(1);
3619     if (DstIsVec)
3620       return DstEC == ElementCount::getFixed(1);
3621 
3622     return true;
3623   }
3624   case Instruction::AddrSpaceCast: {
3625     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3626     if (!SrcPtrTy)
3627       return false;
3628 
3629     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3630     if (!DstPtrTy)
3631       return false;
3632 
3633     if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3634       return false;
3635 
3636     return SrcEC == DstEC;
3637   }
3638   }
3639 }
3640 
3641 TruncInst::TruncInst(
3642   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3643 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3644   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3645 }
3646 
3647 TruncInst::TruncInst(
3648   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3649 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3650   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3651 }
3652 
3653 ZExtInst::ZExtInst(
3654   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3655 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3656   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3657 }
3658 
3659 ZExtInst::ZExtInst(
3660   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3661 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3662   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3663 }
3664 SExtInst::SExtInst(
3665   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3666 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3667   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3668 }
3669 
3670 SExtInst::SExtInst(
3671   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3672 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3673   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3674 }
3675 
3676 FPTruncInst::FPTruncInst(
3677   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3678 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3679   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3680 }
3681 
3682 FPTruncInst::FPTruncInst(
3683   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3684 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3685   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3686 }
3687 
3688 FPExtInst::FPExtInst(
3689   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3690 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3691   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3692 }
3693 
3694 FPExtInst::FPExtInst(
3695   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3696 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3697   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3698 }
3699 
3700 UIToFPInst::UIToFPInst(
3701   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3702 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3703   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3704 }
3705 
3706 UIToFPInst::UIToFPInst(
3707   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3708 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3709   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3710 }
3711 
3712 SIToFPInst::SIToFPInst(
3713   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3714 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3715   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3716 }
3717 
3718 SIToFPInst::SIToFPInst(
3719   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3720 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3721   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3722 }
3723 
3724 FPToUIInst::FPToUIInst(
3725   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3726 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3727   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3728 }
3729 
3730 FPToUIInst::FPToUIInst(
3731   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3732 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3733   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3734 }
3735 
3736 FPToSIInst::FPToSIInst(
3737   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3738 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3739   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3740 }
3741 
3742 FPToSIInst::FPToSIInst(
3743   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3744 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3745   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3746 }
3747 
3748 PtrToIntInst::PtrToIntInst(
3749   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3750 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3751   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3752 }
3753 
3754 PtrToIntInst::PtrToIntInst(
3755   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3756 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3757   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3758 }
3759 
3760 IntToPtrInst::IntToPtrInst(
3761   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3762 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3763   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3764 }
3765 
3766 IntToPtrInst::IntToPtrInst(
3767   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3768 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3769   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3770 }
3771 
3772 BitCastInst::BitCastInst(
3773   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3774 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3775   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3776 }
3777 
3778 BitCastInst::BitCastInst(
3779   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3780 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3781   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3782 }
3783 
3784 AddrSpaceCastInst::AddrSpaceCastInst(
3785   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3786 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3787   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3788 }
3789 
3790 AddrSpaceCastInst::AddrSpaceCastInst(
3791   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3792 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3793   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3794 }
3795 
3796 //===----------------------------------------------------------------------===//
3797 //                               CmpInst Classes
3798 //===----------------------------------------------------------------------===//
3799 
3800 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3801                  Value *RHS, const Twine &Name, Instruction *InsertBefore,
3802                  Instruction *FlagsSource)
3803   : Instruction(ty, op,
3804                 OperandTraits<CmpInst>::op_begin(this),
3805                 OperandTraits<CmpInst>::operands(this),
3806                 InsertBefore) {
3807   Op<0>() = LHS;
3808   Op<1>() = RHS;
3809   setPredicate((Predicate)predicate);
3810   setName(Name);
3811   if (FlagsSource)
3812     copyIRFlags(FlagsSource);
3813 }
3814 
3815 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3816                  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3817   : Instruction(ty, op,
3818                 OperandTraits<CmpInst>::op_begin(this),
3819                 OperandTraits<CmpInst>::operands(this),
3820                 InsertAtEnd) {
3821   Op<0>() = LHS;
3822   Op<1>() = RHS;
3823   setPredicate((Predicate)predicate);
3824   setName(Name);
3825 }
3826 
3827 CmpInst *
3828 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3829                 const Twine &Name, Instruction *InsertBefore) {
3830   if (Op == Instruction::ICmp) {
3831     if (InsertBefore)
3832       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3833                           S1, S2, Name);
3834     else
3835       return new ICmpInst(CmpInst::Predicate(predicate),
3836                           S1, S2, Name);
3837   }
3838 
3839   if (InsertBefore)
3840     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3841                         S1, S2, Name);
3842   else
3843     return new FCmpInst(CmpInst::Predicate(predicate),
3844                         S1, S2, Name);
3845 }
3846 
3847 CmpInst *
3848 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3849                 const Twine &Name, BasicBlock *InsertAtEnd) {
3850   if (Op == Instruction::ICmp) {
3851     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3852                         S1, S2, Name);
3853   }
3854   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3855                       S1, S2, Name);
3856 }
3857 
3858 void CmpInst::swapOperands() {
3859   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3860     IC->swapOperands();
3861   else
3862     cast<FCmpInst>(this)->swapOperands();
3863 }
3864 
3865 bool CmpInst::isCommutative() const {
3866   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3867     return IC->isCommutative();
3868   return cast<FCmpInst>(this)->isCommutative();
3869 }
3870 
3871 bool CmpInst::isEquality(Predicate P) {
3872   if (ICmpInst::isIntPredicate(P))
3873     return ICmpInst::isEquality(P);
3874   if (FCmpInst::isFPPredicate(P))
3875     return FCmpInst::isEquality(P);
3876   llvm_unreachable("Unsupported predicate kind");
3877 }
3878 
3879 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3880   switch (pred) {
3881     default: llvm_unreachable("Unknown cmp predicate!");
3882     case ICMP_EQ: return ICMP_NE;
3883     case ICMP_NE: return ICMP_EQ;
3884     case ICMP_UGT: return ICMP_ULE;
3885     case ICMP_ULT: return ICMP_UGE;
3886     case ICMP_UGE: return ICMP_ULT;
3887     case ICMP_ULE: return ICMP_UGT;
3888     case ICMP_SGT: return ICMP_SLE;
3889     case ICMP_SLT: return ICMP_SGE;
3890     case ICMP_SGE: return ICMP_SLT;
3891     case ICMP_SLE: return ICMP_SGT;
3892 
3893     case FCMP_OEQ: return FCMP_UNE;
3894     case FCMP_ONE: return FCMP_UEQ;
3895     case FCMP_OGT: return FCMP_ULE;
3896     case FCMP_OLT: return FCMP_UGE;
3897     case FCMP_OGE: return FCMP_ULT;
3898     case FCMP_OLE: return FCMP_UGT;
3899     case FCMP_UEQ: return FCMP_ONE;
3900     case FCMP_UNE: return FCMP_OEQ;
3901     case FCMP_UGT: return FCMP_OLE;
3902     case FCMP_ULT: return FCMP_OGE;
3903     case FCMP_UGE: return FCMP_OLT;
3904     case FCMP_ULE: return FCMP_OGT;
3905     case FCMP_ORD: return FCMP_UNO;
3906     case FCMP_UNO: return FCMP_ORD;
3907     case FCMP_TRUE: return FCMP_FALSE;
3908     case FCMP_FALSE: return FCMP_TRUE;
3909   }
3910 }
3911 
3912 StringRef CmpInst::getPredicateName(Predicate Pred) {
3913   switch (Pred) {
3914   default:                   return "unknown";
3915   case FCmpInst::FCMP_FALSE: return "false";
3916   case FCmpInst::FCMP_OEQ:   return "oeq";
3917   case FCmpInst::FCMP_OGT:   return "ogt";
3918   case FCmpInst::FCMP_OGE:   return "oge";
3919   case FCmpInst::FCMP_OLT:   return "olt";
3920   case FCmpInst::FCMP_OLE:   return "ole";
3921   case FCmpInst::FCMP_ONE:   return "one";
3922   case FCmpInst::FCMP_ORD:   return "ord";
3923   case FCmpInst::FCMP_UNO:   return "uno";
3924   case FCmpInst::FCMP_UEQ:   return "ueq";
3925   case FCmpInst::FCMP_UGT:   return "ugt";
3926   case FCmpInst::FCMP_UGE:   return "uge";
3927   case FCmpInst::FCMP_ULT:   return "ult";
3928   case FCmpInst::FCMP_ULE:   return "ule";
3929   case FCmpInst::FCMP_UNE:   return "une";
3930   case FCmpInst::FCMP_TRUE:  return "true";
3931   case ICmpInst::ICMP_EQ:    return "eq";
3932   case ICmpInst::ICMP_NE:    return "ne";
3933   case ICmpInst::ICMP_SGT:   return "sgt";
3934   case ICmpInst::ICMP_SGE:   return "sge";
3935   case ICmpInst::ICMP_SLT:   return "slt";
3936   case ICmpInst::ICMP_SLE:   return "sle";
3937   case ICmpInst::ICMP_UGT:   return "ugt";
3938   case ICmpInst::ICMP_UGE:   return "uge";
3939   case ICmpInst::ICMP_ULT:   return "ult";
3940   case ICmpInst::ICMP_ULE:   return "ule";
3941   }
3942 }
3943 
3944 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3945   switch (pred) {
3946     default: llvm_unreachable("Unknown icmp predicate!");
3947     case ICMP_EQ: case ICMP_NE:
3948     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3949        return pred;
3950     case ICMP_UGT: return ICMP_SGT;
3951     case ICMP_ULT: return ICMP_SLT;
3952     case ICMP_UGE: return ICMP_SGE;
3953     case ICMP_ULE: return ICMP_SLE;
3954   }
3955 }
3956 
3957 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3958   switch (pred) {
3959     default: llvm_unreachable("Unknown icmp predicate!");
3960     case ICMP_EQ: case ICMP_NE:
3961     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3962        return pred;
3963     case ICMP_SGT: return ICMP_UGT;
3964     case ICMP_SLT: return ICMP_ULT;
3965     case ICMP_SGE: return ICMP_UGE;
3966     case ICMP_SLE: return ICMP_ULE;
3967   }
3968 }
3969 
3970 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3971   switch (pred) {
3972     default: llvm_unreachable("Unknown cmp predicate!");
3973     case ICMP_EQ: case ICMP_NE:
3974       return pred;
3975     case ICMP_SGT: return ICMP_SLT;
3976     case ICMP_SLT: return ICMP_SGT;
3977     case ICMP_SGE: return ICMP_SLE;
3978     case ICMP_SLE: return ICMP_SGE;
3979     case ICMP_UGT: return ICMP_ULT;
3980     case ICMP_ULT: return ICMP_UGT;
3981     case ICMP_UGE: return ICMP_ULE;
3982     case ICMP_ULE: return ICMP_UGE;
3983 
3984     case FCMP_FALSE: case FCMP_TRUE:
3985     case FCMP_OEQ: case FCMP_ONE:
3986     case FCMP_UEQ: case FCMP_UNE:
3987     case FCMP_ORD: case FCMP_UNO:
3988       return pred;
3989     case FCMP_OGT: return FCMP_OLT;
3990     case FCMP_OLT: return FCMP_OGT;
3991     case FCMP_OGE: return FCMP_OLE;
3992     case FCMP_OLE: return FCMP_OGE;
3993     case FCMP_UGT: return FCMP_ULT;
3994     case FCMP_ULT: return FCMP_UGT;
3995     case FCMP_UGE: return FCMP_ULE;
3996     case FCMP_ULE: return FCMP_UGE;
3997   }
3998 }
3999 
4000 bool CmpInst::isNonStrictPredicate(Predicate pred) {
4001   switch (pred) {
4002   case ICMP_SGE:
4003   case ICMP_SLE:
4004   case ICMP_UGE:
4005   case ICMP_ULE:
4006   case FCMP_OGE:
4007   case FCMP_OLE:
4008   case FCMP_UGE:
4009   case FCMP_ULE:
4010     return true;
4011   default:
4012     return false;
4013   }
4014 }
4015 
4016 bool CmpInst::isStrictPredicate(Predicate pred) {
4017   switch (pred) {
4018   case ICMP_SGT:
4019   case ICMP_SLT:
4020   case ICMP_UGT:
4021   case ICMP_ULT:
4022   case FCMP_OGT:
4023   case FCMP_OLT:
4024   case FCMP_UGT:
4025   case FCMP_ULT:
4026     return true;
4027   default:
4028     return false;
4029   }
4030 }
4031 
4032 CmpInst::Predicate CmpInst::getStrictPredicate(Predicate pred) {
4033   switch (pred) {
4034   case ICMP_SGE:
4035     return ICMP_SGT;
4036   case ICMP_SLE:
4037     return ICMP_SLT;
4038   case ICMP_UGE:
4039     return ICMP_UGT;
4040   case ICMP_ULE:
4041     return ICMP_ULT;
4042   case FCMP_OGE:
4043     return FCMP_OGT;
4044   case FCMP_OLE:
4045     return FCMP_OLT;
4046   case FCMP_UGE:
4047     return FCMP_UGT;
4048   case FCMP_ULE:
4049     return FCMP_ULT;
4050   default:
4051     return pred;
4052   }
4053 }
4054 
4055 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
4056   switch (pred) {
4057   case ICMP_SGT:
4058     return ICMP_SGE;
4059   case ICMP_SLT:
4060     return ICMP_SLE;
4061   case ICMP_UGT:
4062     return ICMP_UGE;
4063   case ICMP_ULT:
4064     return ICMP_ULE;
4065   case FCMP_OGT:
4066     return FCMP_OGE;
4067   case FCMP_OLT:
4068     return FCMP_OLE;
4069   case FCMP_UGT:
4070     return FCMP_UGE;
4071   case FCMP_ULT:
4072     return FCMP_ULE;
4073   default:
4074     return pred;
4075   }
4076 }
4077 
4078 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
4079   assert(CmpInst::isRelational(pred) && "Call only with relational predicate!");
4080 
4081   if (isStrictPredicate(pred))
4082     return getNonStrictPredicate(pred);
4083   if (isNonStrictPredicate(pred))
4084     return getStrictPredicate(pred);
4085 
4086   llvm_unreachable("Unknown predicate!");
4087 }
4088 
4089 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
4090   assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!");
4091 
4092   switch (pred) {
4093   default:
4094     llvm_unreachable("Unknown predicate!");
4095   case CmpInst::ICMP_ULT:
4096     return CmpInst::ICMP_SLT;
4097   case CmpInst::ICMP_ULE:
4098     return CmpInst::ICMP_SLE;
4099   case CmpInst::ICMP_UGT:
4100     return CmpInst::ICMP_SGT;
4101   case CmpInst::ICMP_UGE:
4102     return CmpInst::ICMP_SGE;
4103   }
4104 }
4105 
4106 CmpInst::Predicate CmpInst::getUnsignedPredicate(Predicate pred) {
4107   assert(CmpInst::isSigned(pred) && "Call only with signed predicates!");
4108 
4109   switch (pred) {
4110   default:
4111     llvm_unreachable("Unknown predicate!");
4112   case CmpInst::ICMP_SLT:
4113     return CmpInst::ICMP_ULT;
4114   case CmpInst::ICMP_SLE:
4115     return CmpInst::ICMP_ULE;
4116   case CmpInst::ICMP_SGT:
4117     return CmpInst::ICMP_UGT;
4118   case CmpInst::ICMP_SGE:
4119     return CmpInst::ICMP_UGE;
4120   }
4121 }
4122 
4123 bool CmpInst::isUnsigned(Predicate predicate) {
4124   switch (predicate) {
4125     default: return false;
4126     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
4127     case ICmpInst::ICMP_UGE: return true;
4128   }
4129 }
4130 
4131 bool CmpInst::isSigned(Predicate predicate) {
4132   switch (predicate) {
4133     default: return false;
4134     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
4135     case ICmpInst::ICMP_SGE: return true;
4136   }
4137 }
4138 
4139 bool ICmpInst::compare(const APInt &LHS, const APInt &RHS,
4140                        ICmpInst::Predicate Pred) {
4141   assert(ICmpInst::isIntPredicate(Pred) && "Only for integer predicates!");
4142   switch (Pred) {
4143   case ICmpInst::Predicate::ICMP_EQ:
4144     return LHS.eq(RHS);
4145   case ICmpInst::Predicate::ICMP_NE:
4146     return LHS.ne(RHS);
4147   case ICmpInst::Predicate::ICMP_UGT:
4148     return LHS.ugt(RHS);
4149   case ICmpInst::Predicate::ICMP_UGE:
4150     return LHS.uge(RHS);
4151   case ICmpInst::Predicate::ICMP_ULT:
4152     return LHS.ult(RHS);
4153   case ICmpInst::Predicate::ICMP_ULE:
4154     return LHS.ule(RHS);
4155   case ICmpInst::Predicate::ICMP_SGT:
4156     return LHS.sgt(RHS);
4157   case ICmpInst::Predicate::ICMP_SGE:
4158     return LHS.sge(RHS);
4159   case ICmpInst::Predicate::ICMP_SLT:
4160     return LHS.slt(RHS);
4161   case ICmpInst::Predicate::ICMP_SLE:
4162     return LHS.sle(RHS);
4163   default:
4164     llvm_unreachable("Unexpected non-integer predicate.");
4165   };
4166 }
4167 
4168 CmpInst::Predicate CmpInst::getFlippedSignednessPredicate(Predicate pred) {
4169   assert(CmpInst::isRelational(pred) &&
4170          "Call only with non-equality predicates!");
4171 
4172   if (isSigned(pred))
4173     return getUnsignedPredicate(pred);
4174   if (isUnsigned(pred))
4175     return getSignedPredicate(pred);
4176 
4177   llvm_unreachable("Unknown predicate!");
4178 }
4179 
4180 bool CmpInst::isOrdered(Predicate predicate) {
4181   switch (predicate) {
4182     default: return false;
4183     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
4184     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
4185     case FCmpInst::FCMP_ORD: return true;
4186   }
4187 }
4188 
4189 bool CmpInst::isUnordered(Predicate predicate) {
4190   switch (predicate) {
4191     default: return false;
4192     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
4193     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
4194     case FCmpInst::FCMP_UNO: return true;
4195   }
4196 }
4197 
4198 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
4199   switch(predicate) {
4200     default: return false;
4201     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
4202     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
4203   }
4204 }
4205 
4206 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
4207   switch(predicate) {
4208   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
4209   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
4210   default: return false;
4211   }
4212 }
4213 
4214 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
4215   // If the predicates match, then we know the first condition implies the
4216   // second is true.
4217   if (Pred1 == Pred2)
4218     return true;
4219 
4220   switch (Pred1) {
4221   default:
4222     break;
4223   case ICMP_EQ:
4224     // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
4225     return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
4226            Pred2 == ICMP_SLE;
4227   case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
4228     return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
4229   case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
4230     return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
4231   case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
4232     return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
4233   case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
4234     return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
4235   }
4236   return false;
4237 }
4238 
4239 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
4240   return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
4241 }
4242 
4243 //===----------------------------------------------------------------------===//
4244 //                        SwitchInst Implementation
4245 //===----------------------------------------------------------------------===//
4246 
4247 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
4248   assert(Value && Default && NumReserved);
4249   ReservedSpace = NumReserved;
4250   setNumHungOffUseOperands(2);
4251   allocHungoffUses(ReservedSpace);
4252 
4253   Op<0>() = Value;
4254   Op<1>() = Default;
4255 }
4256 
4257 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4258 /// switch on and a default destination.  The number of additional cases can
4259 /// be specified here to make memory allocation more efficient.  This
4260 /// constructor can also autoinsert before another instruction.
4261 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4262                        Instruction *InsertBefore)
4263     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4264                   nullptr, 0, InsertBefore) {
4265   init(Value, Default, 2+NumCases*2);
4266 }
4267 
4268 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4269 /// switch on and a default destination.  The number of additional cases can
4270 /// be specified here to make memory allocation more efficient.  This
4271 /// constructor also autoinserts at the end of the specified BasicBlock.
4272 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4273                        BasicBlock *InsertAtEnd)
4274     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4275                   nullptr, 0, InsertAtEnd) {
4276   init(Value, Default, 2+NumCases*2);
4277 }
4278 
4279 SwitchInst::SwitchInst(const SwitchInst &SI)
4280     : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
4281   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
4282   setNumHungOffUseOperands(SI.getNumOperands());
4283   Use *OL = getOperandList();
4284   const Use *InOL = SI.getOperandList();
4285   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
4286     OL[i] = InOL[i];
4287     OL[i+1] = InOL[i+1];
4288   }
4289   SubclassOptionalData = SI.SubclassOptionalData;
4290 }
4291 
4292 /// addCase - Add an entry to the switch instruction...
4293 ///
4294 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
4295   unsigned NewCaseIdx = getNumCases();
4296   unsigned OpNo = getNumOperands();
4297   if (OpNo+2 > ReservedSpace)
4298     growOperands();  // Get more space!
4299   // Initialize some new operands.
4300   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
4301   setNumHungOffUseOperands(OpNo+2);
4302   CaseHandle Case(this, NewCaseIdx);
4303   Case.setValue(OnVal);
4304   Case.setSuccessor(Dest);
4305 }
4306 
4307 /// removeCase - This method removes the specified case and its successor
4308 /// from the switch instruction.
4309 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
4310   unsigned idx = I->getCaseIndex();
4311 
4312   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
4313 
4314   unsigned NumOps = getNumOperands();
4315   Use *OL = getOperandList();
4316 
4317   // Overwrite this case with the end of the list.
4318   if (2 + (idx + 1) * 2 != NumOps) {
4319     OL[2 + idx * 2] = OL[NumOps - 2];
4320     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
4321   }
4322 
4323   // Nuke the last value.
4324   OL[NumOps-2].set(nullptr);
4325   OL[NumOps-2+1].set(nullptr);
4326   setNumHungOffUseOperands(NumOps-2);
4327 
4328   return CaseIt(this, idx);
4329 }
4330 
4331 /// growOperands - grow operands - This grows the operand list in response
4332 /// to a push_back style of operation.  This grows the number of ops by 3 times.
4333 ///
4334 void SwitchInst::growOperands() {
4335   unsigned e = getNumOperands();
4336   unsigned NumOps = e*3;
4337 
4338   ReservedSpace = NumOps;
4339   growHungoffUses(ReservedSpace);
4340 }
4341 
4342 MDNode *
4343 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) {
4344   if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
4345     if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
4346       if (MDName->getString() == "branch_weights")
4347         return ProfileData;
4348   return nullptr;
4349 }
4350 
4351 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
4352   assert(Changed && "called only if metadata has changed");
4353 
4354   if (!Weights)
4355     return nullptr;
4356 
4357   assert(SI.getNumSuccessors() == Weights->size() &&
4358          "num of prof branch_weights must accord with num of successors");
4359 
4360   bool AllZeroes =
4361       all_of(Weights.getValue(), [](uint32_t W) { return W == 0; });
4362 
4363   if (AllZeroes || Weights.getValue().size() < 2)
4364     return nullptr;
4365 
4366   return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
4367 }
4368 
4369 void SwitchInstProfUpdateWrapper::init() {
4370   MDNode *ProfileData = getProfBranchWeightsMD(SI);
4371   if (!ProfileData)
4372     return;
4373 
4374   if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
4375     llvm_unreachable("number of prof branch_weights metadata operands does "
4376                      "not correspond to number of succesors");
4377   }
4378 
4379   SmallVector<uint32_t, 8> Weights;
4380   for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
4381     ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
4382     uint32_t CW = C->getValue().getZExtValue();
4383     Weights.push_back(CW);
4384   }
4385   this->Weights = std::move(Weights);
4386 }
4387 
4388 SwitchInst::CaseIt
4389 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
4390   if (Weights) {
4391     assert(SI.getNumSuccessors() == Weights->size() &&
4392            "num of prof branch_weights must accord with num of successors");
4393     Changed = true;
4394     // Copy the last case to the place of the removed one and shrink.
4395     // This is tightly coupled with the way SwitchInst::removeCase() removes
4396     // the cases in SwitchInst::removeCase(CaseIt).
4397     Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back();
4398     Weights.getValue().pop_back();
4399   }
4400   return SI.removeCase(I);
4401 }
4402 
4403 void SwitchInstProfUpdateWrapper::addCase(
4404     ConstantInt *OnVal, BasicBlock *Dest,
4405     SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4406   SI.addCase(OnVal, Dest);
4407 
4408   if (!Weights && W && *W) {
4409     Changed = true;
4410     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4411     Weights.getValue()[SI.getNumSuccessors() - 1] = *W;
4412   } else if (Weights) {
4413     Changed = true;
4414     Weights.getValue().push_back(W ? *W : 0);
4415   }
4416   if (Weights)
4417     assert(SI.getNumSuccessors() == Weights->size() &&
4418            "num of prof branch_weights must accord with num of successors");
4419 }
4420 
4421 SymbolTableList<Instruction>::iterator
4422 SwitchInstProfUpdateWrapper::eraseFromParent() {
4423   // Instruction is erased. Mark as unchanged to not touch it in the destructor.
4424   Changed = false;
4425   if (Weights)
4426     Weights->resize(0);
4427   return SI.eraseFromParent();
4428 }
4429 
4430 SwitchInstProfUpdateWrapper::CaseWeightOpt
4431 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
4432   if (!Weights)
4433     return None;
4434   return Weights.getValue()[idx];
4435 }
4436 
4437 void SwitchInstProfUpdateWrapper::setSuccessorWeight(
4438     unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4439   if (!W)
4440     return;
4441 
4442   if (!Weights && *W)
4443     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4444 
4445   if (Weights) {
4446     auto &OldW = Weights.getValue()[idx];
4447     if (*W != OldW) {
4448       Changed = true;
4449       OldW = *W;
4450     }
4451   }
4452 }
4453 
4454 SwitchInstProfUpdateWrapper::CaseWeightOpt
4455 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
4456                                                 unsigned idx) {
4457   if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
4458     if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4459       return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4460           ->getValue()
4461           .getZExtValue();
4462 
4463   return None;
4464 }
4465 
4466 //===----------------------------------------------------------------------===//
4467 //                        IndirectBrInst Implementation
4468 //===----------------------------------------------------------------------===//
4469 
4470 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4471   assert(Address && Address->getType()->isPointerTy() &&
4472          "Address of indirectbr must be a pointer");
4473   ReservedSpace = 1+NumDests;
4474   setNumHungOffUseOperands(1);
4475   allocHungoffUses(ReservedSpace);
4476 
4477   Op<0>() = Address;
4478 }
4479 
4480 
4481 /// growOperands - grow operands - This grows the operand list in response
4482 /// to a push_back style of operation.  This grows the number of ops by 2 times.
4483 ///
4484 void IndirectBrInst::growOperands() {
4485   unsigned e = getNumOperands();
4486   unsigned NumOps = e*2;
4487 
4488   ReservedSpace = NumOps;
4489   growHungoffUses(ReservedSpace);
4490 }
4491 
4492 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4493                                Instruction *InsertBefore)
4494     : Instruction(Type::getVoidTy(Address->getContext()),
4495                   Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4496   init(Address, NumCases);
4497 }
4498 
4499 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4500                                BasicBlock *InsertAtEnd)
4501     : Instruction(Type::getVoidTy(Address->getContext()),
4502                   Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
4503   init(Address, NumCases);
4504 }
4505 
4506 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4507     : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4508                   nullptr, IBI.getNumOperands()) {
4509   allocHungoffUses(IBI.getNumOperands());
4510   Use *OL = getOperandList();
4511   const Use *InOL = IBI.getOperandList();
4512   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4513     OL[i] = InOL[i];
4514   SubclassOptionalData = IBI.SubclassOptionalData;
4515 }
4516 
4517 /// addDestination - Add a destination.
4518 ///
4519 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4520   unsigned OpNo = getNumOperands();
4521   if (OpNo+1 > ReservedSpace)
4522     growOperands();  // Get more space!
4523   // Initialize some new operands.
4524   assert(OpNo < ReservedSpace && "Growing didn't work!");
4525   setNumHungOffUseOperands(OpNo+1);
4526   getOperandList()[OpNo] = DestBB;
4527 }
4528 
4529 /// removeDestination - This method removes the specified successor from the
4530 /// indirectbr instruction.
4531 void IndirectBrInst::removeDestination(unsigned idx) {
4532   assert(idx < getNumOperands()-1 && "Successor index out of range!");
4533 
4534   unsigned NumOps = getNumOperands();
4535   Use *OL = getOperandList();
4536 
4537   // Replace this value with the last one.
4538   OL[idx+1] = OL[NumOps-1];
4539 
4540   // Nuke the last value.
4541   OL[NumOps-1].set(nullptr);
4542   setNumHungOffUseOperands(NumOps-1);
4543 }
4544 
4545 //===----------------------------------------------------------------------===//
4546 //                            FreezeInst Implementation
4547 //===----------------------------------------------------------------------===//
4548 
4549 FreezeInst::FreezeInst(Value *S,
4550                        const Twine &Name, Instruction *InsertBefore)
4551     : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
4552   setName(Name);
4553 }
4554 
4555 FreezeInst::FreezeInst(Value *S,
4556                        const Twine &Name, BasicBlock *InsertAtEnd)
4557     : UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) {
4558   setName(Name);
4559 }
4560 
4561 //===----------------------------------------------------------------------===//
4562 //                           cloneImpl() implementations
4563 //===----------------------------------------------------------------------===//
4564 
4565 // Define these methods here so vtables don't get emitted into every translation
4566 // unit that uses these classes.
4567 
4568 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4569   return new (getNumOperands()) GetElementPtrInst(*this);
4570 }
4571 
4572 UnaryOperator *UnaryOperator::cloneImpl() const {
4573   return Create(getOpcode(), Op<0>());
4574 }
4575 
4576 BinaryOperator *BinaryOperator::cloneImpl() const {
4577   return Create(getOpcode(), Op<0>(), Op<1>());
4578 }
4579 
4580 FCmpInst *FCmpInst::cloneImpl() const {
4581   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4582 }
4583 
4584 ICmpInst *ICmpInst::cloneImpl() const {
4585   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4586 }
4587 
4588 ExtractValueInst *ExtractValueInst::cloneImpl() const {
4589   return new ExtractValueInst(*this);
4590 }
4591 
4592 InsertValueInst *InsertValueInst::cloneImpl() const {
4593   return new InsertValueInst(*this);
4594 }
4595 
4596 AllocaInst *AllocaInst::cloneImpl() const {
4597   AllocaInst *Result =
4598       new AllocaInst(getAllocatedType(), getType()->getAddressSpace(),
4599                      getOperand(0), getAlign());
4600   Result->setUsedWithInAlloca(isUsedWithInAlloca());
4601   Result->setSwiftError(isSwiftError());
4602   return Result;
4603 }
4604 
4605 LoadInst *LoadInst::cloneImpl() const {
4606   return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4607                       getAlign(), getOrdering(), getSyncScopeID());
4608 }
4609 
4610 StoreInst *StoreInst::cloneImpl() const {
4611   return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(),
4612                        getOrdering(), getSyncScopeID());
4613 }
4614 
4615 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4616   AtomicCmpXchgInst *Result = new AtomicCmpXchgInst(
4617       getOperand(0), getOperand(1), getOperand(2), getAlign(),
4618       getSuccessOrdering(), getFailureOrdering(), getSyncScopeID());
4619   Result->setVolatile(isVolatile());
4620   Result->setWeak(isWeak());
4621   return Result;
4622 }
4623 
4624 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4625   AtomicRMWInst *Result =
4626       new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4627                         getAlign(), getOrdering(), getSyncScopeID());
4628   Result->setVolatile(isVolatile());
4629   return Result;
4630 }
4631 
4632 FenceInst *FenceInst::cloneImpl() const {
4633   return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4634 }
4635 
4636 TruncInst *TruncInst::cloneImpl() const {
4637   return new TruncInst(getOperand(0), getType());
4638 }
4639 
4640 ZExtInst *ZExtInst::cloneImpl() const {
4641   return new ZExtInst(getOperand(0), getType());
4642 }
4643 
4644 SExtInst *SExtInst::cloneImpl() const {
4645   return new SExtInst(getOperand(0), getType());
4646 }
4647 
4648 FPTruncInst *FPTruncInst::cloneImpl() const {
4649   return new FPTruncInst(getOperand(0), getType());
4650 }
4651 
4652 FPExtInst *FPExtInst::cloneImpl() const {
4653   return new FPExtInst(getOperand(0), getType());
4654 }
4655 
4656 UIToFPInst *UIToFPInst::cloneImpl() const {
4657   return new UIToFPInst(getOperand(0), getType());
4658 }
4659 
4660 SIToFPInst *SIToFPInst::cloneImpl() const {
4661   return new SIToFPInst(getOperand(0), getType());
4662 }
4663 
4664 FPToUIInst *FPToUIInst::cloneImpl() const {
4665   return new FPToUIInst(getOperand(0), getType());
4666 }
4667 
4668 FPToSIInst *FPToSIInst::cloneImpl() const {
4669   return new FPToSIInst(getOperand(0), getType());
4670 }
4671 
4672 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4673   return new PtrToIntInst(getOperand(0), getType());
4674 }
4675 
4676 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4677   return new IntToPtrInst(getOperand(0), getType());
4678 }
4679 
4680 BitCastInst *BitCastInst::cloneImpl() const {
4681   return new BitCastInst(getOperand(0), getType());
4682 }
4683 
4684 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4685   return new AddrSpaceCastInst(getOperand(0), getType());
4686 }
4687 
4688 CallInst *CallInst::cloneImpl() const {
4689   if (hasOperandBundles()) {
4690     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4691     return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4692   }
4693   return  new(getNumOperands()) CallInst(*this);
4694 }
4695 
4696 SelectInst *SelectInst::cloneImpl() const {
4697   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4698 }
4699 
4700 VAArgInst *VAArgInst::cloneImpl() const {
4701   return new VAArgInst(getOperand(0), getType());
4702 }
4703 
4704 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4705   return ExtractElementInst::Create(getOperand(0), getOperand(1));
4706 }
4707 
4708 InsertElementInst *InsertElementInst::cloneImpl() const {
4709   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4710 }
4711 
4712 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4713   return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask());
4714 }
4715 
4716 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4717 
4718 LandingPadInst *LandingPadInst::cloneImpl() const {
4719   return new LandingPadInst(*this);
4720 }
4721 
4722 ReturnInst *ReturnInst::cloneImpl() const {
4723   return new(getNumOperands()) ReturnInst(*this);
4724 }
4725 
4726 BranchInst *BranchInst::cloneImpl() const {
4727   return new(getNumOperands()) BranchInst(*this);
4728 }
4729 
4730 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4731 
4732 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4733   return new IndirectBrInst(*this);
4734 }
4735 
4736 InvokeInst *InvokeInst::cloneImpl() const {
4737   if (hasOperandBundles()) {
4738     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4739     return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4740   }
4741   return new(getNumOperands()) InvokeInst(*this);
4742 }
4743 
4744 CallBrInst *CallBrInst::cloneImpl() const {
4745   if (hasOperandBundles()) {
4746     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4747     return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4748   }
4749   return new (getNumOperands()) CallBrInst(*this);
4750 }
4751 
4752 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4753 
4754 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4755   return new (getNumOperands()) CleanupReturnInst(*this);
4756 }
4757 
4758 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4759   return new (getNumOperands()) CatchReturnInst(*this);
4760 }
4761 
4762 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4763   return new CatchSwitchInst(*this);
4764 }
4765 
4766 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4767   return new (getNumOperands()) FuncletPadInst(*this);
4768 }
4769 
4770 UnreachableInst *UnreachableInst::cloneImpl() const {
4771   LLVMContext &Context = getContext();
4772   return new UnreachableInst(Context);
4773 }
4774 
4775 FreezeInst *FreezeInst::cloneImpl() const {
4776   return new FreezeInst(getOperand(0));
4777 }
4778