1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements all of the non-inline methods for the LLVM instruction 10 // classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Instructions.h" 15 #include "LLVMContextImpl.h" 16 #include "llvm/ADT/SmallBitVector.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/IR/Attributes.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/Constant.h" 22 #include "llvm/IR/ConstantRange.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/MDBuilder.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/ProfDataUtils.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/Support/AtomicOrdering.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/CheckedArithmetic.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/ModRef.h" 44 #include "llvm/Support/TypeSize.h" 45 #include <algorithm> 46 #include <cassert> 47 #include <cstdint> 48 #include <optional> 49 #include <vector> 50 51 using namespace llvm; 52 53 static cl::opt<bool> DisableI2pP2iOpt( 54 "disable-i2p-p2i-opt", cl::init(false), 55 cl::desc("Disables inttoptr/ptrtoint roundtrip optimization")); 56 57 //===----------------------------------------------------------------------===// 58 // AllocaInst Class 59 //===----------------------------------------------------------------------===// 60 61 std::optional<TypeSize> 62 AllocaInst::getAllocationSize(const DataLayout &DL) const { 63 TypeSize Size = DL.getTypeAllocSize(getAllocatedType()); 64 if (isArrayAllocation()) { 65 auto *C = dyn_cast<ConstantInt>(getArraySize()); 66 if (!C) 67 return std::nullopt; 68 assert(!Size.isScalable() && "Array elements cannot have a scalable size"); 69 auto CheckedProd = 70 checkedMulUnsigned(Size.getKnownMinValue(), C->getZExtValue()); 71 if (!CheckedProd) 72 return std::nullopt; 73 return TypeSize::getFixed(*CheckedProd); 74 } 75 return Size; 76 } 77 78 std::optional<TypeSize> 79 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const { 80 std::optional<TypeSize> Size = getAllocationSize(DL); 81 if (!Size) 82 return std::nullopt; 83 auto CheckedProd = checkedMulUnsigned(Size->getKnownMinValue(), 84 static_cast<TypeSize::ScalarTy>(8)); 85 if (!CheckedProd) 86 return std::nullopt; 87 return TypeSize::get(*CheckedProd, Size->isScalable()); 88 } 89 90 //===----------------------------------------------------------------------===// 91 // SelectInst Class 92 //===----------------------------------------------------------------------===// 93 94 /// areInvalidOperands - Return a string if the specified operands are invalid 95 /// for a select operation, otherwise return null. 96 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) { 97 if (Op1->getType() != Op2->getType()) 98 return "both values to select must have same type"; 99 100 if (Op1->getType()->isTokenTy()) 101 return "select values cannot have token type"; 102 103 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) { 104 // Vector select. 105 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext())) 106 return "vector select condition element type must be i1"; 107 VectorType *ET = dyn_cast<VectorType>(Op1->getType()); 108 if (!ET) 109 return "selected values for vector select must be vectors"; 110 if (ET->getElementCount() != VT->getElementCount()) 111 return "vector select requires selected vectors to have " 112 "the same vector length as select condition"; 113 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) { 114 return "select condition must be i1 or <n x i1>"; 115 } 116 return nullptr; 117 } 118 119 //===----------------------------------------------------------------------===// 120 // PHINode Class 121 //===----------------------------------------------------------------------===// 122 123 PHINode::PHINode(const PHINode &PN) 124 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()), 125 ReservedSpace(PN.getNumOperands()) { 126 allocHungoffUses(PN.getNumOperands()); 127 std::copy(PN.op_begin(), PN.op_end(), op_begin()); 128 copyIncomingBlocks(make_range(PN.block_begin(), PN.block_end())); 129 SubclassOptionalData = PN.SubclassOptionalData; 130 } 131 132 // removeIncomingValue - Remove an incoming value. This is useful if a 133 // predecessor basic block is deleted. 134 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { 135 Value *Removed = getIncomingValue(Idx); 136 137 // Move everything after this operand down. 138 // 139 // FIXME: we could just swap with the end of the list, then erase. However, 140 // clients might not expect this to happen. The code as it is thrashes the 141 // use/def lists, which is kinda lame. 142 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx); 143 copyIncomingBlocks(drop_begin(blocks(), Idx + 1), Idx); 144 145 // Nuke the last value. 146 Op<-1>().set(nullptr); 147 setNumHungOffUseOperands(getNumOperands() - 1); 148 149 // If the PHI node is dead, because it has zero entries, nuke it now. 150 if (getNumOperands() == 0 && DeletePHIIfEmpty) { 151 // If anyone is using this PHI, make them use a dummy value instead... 152 replaceAllUsesWith(PoisonValue::get(getType())); 153 eraseFromParent(); 154 } 155 return Removed; 156 } 157 158 void PHINode::removeIncomingValueIf(function_ref<bool(unsigned)> Predicate, 159 bool DeletePHIIfEmpty) { 160 SmallDenseSet<unsigned> RemoveIndices; 161 for (unsigned Idx = 0; Idx < getNumIncomingValues(); ++Idx) 162 if (Predicate(Idx)) 163 RemoveIndices.insert(Idx); 164 165 if (RemoveIndices.empty()) 166 return; 167 168 // Remove operands. 169 auto NewOpEnd = remove_if(operands(), [&](Use &U) { 170 return RemoveIndices.contains(U.getOperandNo()); 171 }); 172 for (Use &U : make_range(NewOpEnd, op_end())) 173 U.set(nullptr); 174 175 // Remove incoming blocks. 176 (void)std::remove_if(const_cast<block_iterator>(block_begin()), 177 const_cast<block_iterator>(block_end()), [&](BasicBlock *&BB) { 178 return RemoveIndices.contains(&BB - block_begin()); 179 }); 180 181 setNumHungOffUseOperands(getNumOperands() - RemoveIndices.size()); 182 183 // If the PHI node is dead, because it has zero entries, nuke it now. 184 if (getNumOperands() == 0 && DeletePHIIfEmpty) { 185 // If anyone is using this PHI, make them use a dummy value instead... 186 replaceAllUsesWith(PoisonValue::get(getType())); 187 eraseFromParent(); 188 } 189 } 190 191 /// growOperands - grow operands - This grows the operand list in response 192 /// to a push_back style of operation. This grows the number of ops by 1.5 193 /// times. 194 /// 195 void PHINode::growOperands() { 196 unsigned e = getNumOperands(); 197 unsigned NumOps = e + e / 2; 198 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common. 199 200 ReservedSpace = NumOps; 201 growHungoffUses(ReservedSpace, /* IsPhi */ true); 202 } 203 204 /// hasConstantValue - If the specified PHI node always merges together the same 205 /// value, return the value, otherwise return null. 206 Value *PHINode::hasConstantValue() const { 207 // Exploit the fact that phi nodes always have at least one entry. 208 Value *ConstantValue = getIncomingValue(0); 209 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i) 210 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) { 211 if (ConstantValue != this) 212 return nullptr; // Incoming values not all the same. 213 // The case where the first value is this PHI. 214 ConstantValue = getIncomingValue(i); 215 } 216 if (ConstantValue == this) 217 return PoisonValue::get(getType()); 218 return ConstantValue; 219 } 220 221 /// hasConstantOrUndefValue - Whether the specified PHI node always merges 222 /// together the same value, assuming that undefs result in the same value as 223 /// non-undefs. 224 /// Unlike \ref hasConstantValue, this does not return a value because the 225 /// unique non-undef incoming value need not dominate the PHI node. 226 bool PHINode::hasConstantOrUndefValue() const { 227 Value *ConstantValue = nullptr; 228 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) { 229 Value *Incoming = getIncomingValue(i); 230 if (Incoming != this && !isa<UndefValue>(Incoming)) { 231 if (ConstantValue && ConstantValue != Incoming) 232 return false; 233 ConstantValue = Incoming; 234 } 235 } 236 return true; 237 } 238 239 //===----------------------------------------------------------------------===// 240 // LandingPadInst Implementation 241 //===----------------------------------------------------------------------===// 242 243 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, 244 const Twine &NameStr, 245 InsertPosition InsertBefore) 246 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) { 247 init(NumReservedValues, NameStr); 248 } 249 250 LandingPadInst::LandingPadInst(const LandingPadInst &LP) 251 : Instruction(LP.getType(), Instruction::LandingPad, nullptr, 252 LP.getNumOperands()), 253 ReservedSpace(LP.getNumOperands()) { 254 allocHungoffUses(LP.getNumOperands()); 255 Use *OL = getOperandList(); 256 const Use *InOL = LP.getOperandList(); 257 for (unsigned I = 0, E = ReservedSpace; I != E; ++I) 258 OL[I] = InOL[I]; 259 260 setCleanup(LP.isCleanup()); 261 } 262 263 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, 264 const Twine &NameStr, 265 InsertPosition InsertBefore) { 266 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore); 267 } 268 269 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) { 270 ReservedSpace = NumReservedValues; 271 setNumHungOffUseOperands(0); 272 allocHungoffUses(ReservedSpace); 273 setName(NameStr); 274 setCleanup(false); 275 } 276 277 /// growOperands - grow operands - This grows the operand list in response to a 278 /// push_back style of operation. This grows the number of ops by 2 times. 279 void LandingPadInst::growOperands(unsigned Size) { 280 unsigned e = getNumOperands(); 281 if (ReservedSpace >= e + Size) return; 282 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2; 283 growHungoffUses(ReservedSpace); 284 } 285 286 void LandingPadInst::addClause(Constant *Val) { 287 unsigned OpNo = getNumOperands(); 288 growOperands(1); 289 assert(OpNo < ReservedSpace && "Growing didn't work!"); 290 setNumHungOffUseOperands(getNumOperands() + 1); 291 getOperandList()[OpNo] = Val; 292 } 293 294 //===----------------------------------------------------------------------===// 295 // CallBase Implementation 296 //===----------------------------------------------------------------------===// 297 298 CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles, 299 InsertPosition InsertPt) { 300 switch (CB->getOpcode()) { 301 case Instruction::Call: 302 return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt); 303 case Instruction::Invoke: 304 return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt); 305 case Instruction::CallBr: 306 return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt); 307 default: 308 llvm_unreachable("Unknown CallBase sub-class!"); 309 } 310 } 311 312 CallBase *CallBase::Create(CallBase *CI, OperandBundleDef OpB, 313 InsertPosition InsertPt) { 314 SmallVector<OperandBundleDef, 2> OpDefs; 315 for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) { 316 auto ChildOB = CI->getOperandBundleAt(i); 317 if (ChildOB.getTagName() != OpB.getTag()) 318 OpDefs.emplace_back(ChildOB); 319 } 320 OpDefs.emplace_back(OpB); 321 return CallBase::Create(CI, OpDefs, InsertPt); 322 } 323 324 Function *CallBase::getCaller() { return getParent()->getParent(); } 325 326 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const { 327 assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!"); 328 return cast<CallBrInst>(this)->getNumIndirectDests() + 1; 329 } 330 331 bool CallBase::isIndirectCall() const { 332 const Value *V = getCalledOperand(); 333 if (isa<Function>(V) || isa<Constant>(V)) 334 return false; 335 return !isInlineAsm(); 336 } 337 338 /// Tests if this call site must be tail call optimized. Only a CallInst can 339 /// be tail call optimized. 340 bool CallBase::isMustTailCall() const { 341 if (auto *CI = dyn_cast<CallInst>(this)) 342 return CI->isMustTailCall(); 343 return false; 344 } 345 346 /// Tests if this call site is marked as a tail call. 347 bool CallBase::isTailCall() const { 348 if (auto *CI = dyn_cast<CallInst>(this)) 349 return CI->isTailCall(); 350 return false; 351 } 352 353 Intrinsic::ID CallBase::getIntrinsicID() const { 354 if (auto *F = getCalledFunction()) 355 return F->getIntrinsicID(); 356 return Intrinsic::not_intrinsic; 357 } 358 359 FPClassTest CallBase::getRetNoFPClass() const { 360 FPClassTest Mask = Attrs.getRetNoFPClass(); 361 362 if (const Function *F = getCalledFunction()) 363 Mask |= F->getAttributes().getRetNoFPClass(); 364 return Mask; 365 } 366 367 FPClassTest CallBase::getParamNoFPClass(unsigned i) const { 368 FPClassTest Mask = Attrs.getParamNoFPClass(i); 369 370 if (const Function *F = getCalledFunction()) 371 Mask |= F->getAttributes().getParamNoFPClass(i); 372 return Mask; 373 } 374 375 std::optional<ConstantRange> CallBase::getRange() const { 376 const Attribute RangeAttr = getRetAttr(llvm::Attribute::Range); 377 if (RangeAttr.isValid()) 378 return RangeAttr.getRange(); 379 return std::nullopt; 380 } 381 382 bool CallBase::isReturnNonNull() const { 383 if (hasRetAttr(Attribute::NonNull)) 384 return true; 385 386 if (getRetDereferenceableBytes() > 0 && 387 !NullPointerIsDefined(getCaller(), getType()->getPointerAddressSpace())) 388 return true; 389 390 return false; 391 } 392 393 Value *CallBase::getArgOperandWithAttribute(Attribute::AttrKind Kind) const { 394 unsigned Index; 395 396 if (Attrs.hasAttrSomewhere(Kind, &Index)) 397 return getArgOperand(Index - AttributeList::FirstArgIndex); 398 if (const Function *F = getCalledFunction()) 399 if (F->getAttributes().hasAttrSomewhere(Kind, &Index)) 400 return getArgOperand(Index - AttributeList::FirstArgIndex); 401 402 return nullptr; 403 } 404 405 /// Determine whether the argument or parameter has the given attribute. 406 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const { 407 assert(ArgNo < arg_size() && "Param index out of bounds!"); 408 409 if (Attrs.hasParamAttr(ArgNo, Kind)) 410 return true; 411 412 const Function *F = getCalledFunction(); 413 if (!F) 414 return false; 415 416 if (!F->getAttributes().hasParamAttr(ArgNo, Kind)) 417 return false; 418 419 // Take into account mod/ref by operand bundles. 420 switch (Kind) { 421 case Attribute::ReadNone: 422 return !hasReadingOperandBundles() && !hasClobberingOperandBundles(); 423 case Attribute::ReadOnly: 424 return !hasClobberingOperandBundles(); 425 case Attribute::WriteOnly: 426 return !hasReadingOperandBundles(); 427 default: 428 return true; 429 } 430 } 431 432 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const { 433 if (auto *F = dyn_cast<Function>(getCalledOperand())) 434 return F->getAttributes().hasFnAttr(Kind); 435 436 return false; 437 } 438 439 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const { 440 if (auto *F = dyn_cast<Function>(getCalledOperand())) 441 return F->getAttributes().hasFnAttr(Kind); 442 443 return false; 444 } 445 446 template <typename AK> 447 Attribute CallBase::getFnAttrOnCalledFunction(AK Kind) const { 448 if constexpr (std::is_same_v<AK, Attribute::AttrKind>) { 449 // getMemoryEffects() correctly combines memory effects from the call-site, 450 // operand bundles and function. 451 assert(Kind != Attribute::Memory && "Use getMemoryEffects() instead"); 452 } 453 454 if (auto *F = dyn_cast<Function>(getCalledOperand())) 455 return F->getAttributes().getFnAttr(Kind); 456 457 return Attribute(); 458 } 459 460 template Attribute 461 CallBase::getFnAttrOnCalledFunction(Attribute::AttrKind Kind) const; 462 template Attribute CallBase::getFnAttrOnCalledFunction(StringRef Kind) const; 463 464 template <typename AK> 465 Attribute CallBase::getParamAttrOnCalledFunction(unsigned ArgNo, 466 AK Kind) const { 467 Value *V = getCalledOperand(); 468 469 if (auto *F = dyn_cast<Function>(V)) 470 return F->getAttributes().getParamAttr(ArgNo, Kind); 471 472 return Attribute(); 473 } 474 template Attribute 475 CallBase::getParamAttrOnCalledFunction(unsigned ArgNo, 476 Attribute::AttrKind Kind) const; 477 template Attribute CallBase::getParamAttrOnCalledFunction(unsigned ArgNo, 478 StringRef Kind) const; 479 480 void CallBase::getOperandBundlesAsDefs( 481 SmallVectorImpl<OperandBundleDef> &Defs) const { 482 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) 483 Defs.emplace_back(getOperandBundleAt(i)); 484 } 485 486 CallBase::op_iterator 487 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles, 488 const unsigned BeginIndex) { 489 auto It = op_begin() + BeginIndex; 490 for (auto &B : Bundles) 491 It = std::copy(B.input_begin(), B.input_end(), It); 492 493 auto *ContextImpl = getContext().pImpl; 494 auto BI = Bundles.begin(); 495 unsigned CurrentIndex = BeginIndex; 496 497 for (auto &BOI : bundle_op_infos()) { 498 assert(BI != Bundles.end() && "Incorrect allocation?"); 499 500 BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag()); 501 BOI.Begin = CurrentIndex; 502 BOI.End = CurrentIndex + BI->input_size(); 503 CurrentIndex = BOI.End; 504 BI++; 505 } 506 507 assert(BI == Bundles.end() && "Incorrect allocation?"); 508 509 return It; 510 } 511 512 CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) { 513 /// When there isn't many bundles, we do a simple linear search. 514 /// Else fallback to a binary-search that use the fact that bundles usually 515 /// have similar number of argument to get faster convergence. 516 if (bundle_op_info_end() - bundle_op_info_begin() < 8) { 517 for (auto &BOI : bundle_op_infos()) 518 if (BOI.Begin <= OpIdx && OpIdx < BOI.End) 519 return BOI; 520 521 llvm_unreachable("Did not find operand bundle for operand!"); 522 } 523 524 assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles"); 525 assert(bundle_op_info_end() - bundle_op_info_begin() > 0 && 526 OpIdx < std::prev(bundle_op_info_end())->End && 527 "The Idx isn't in the operand bundle"); 528 529 /// We need a decimal number below and to prevent using floating point numbers 530 /// we use an intergal value multiplied by this constant. 531 constexpr unsigned NumberScaling = 1024; 532 533 bundle_op_iterator Begin = bundle_op_info_begin(); 534 bundle_op_iterator End = bundle_op_info_end(); 535 bundle_op_iterator Current = Begin; 536 537 while (Begin != End) { 538 unsigned ScaledOperandPerBundle = 539 NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin); 540 Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) / 541 ScaledOperandPerBundle); 542 if (Current >= End) 543 Current = std::prev(End); 544 assert(Current < End && Current >= Begin && 545 "the operand bundle doesn't cover every value in the range"); 546 if (OpIdx >= Current->Begin && OpIdx < Current->End) 547 break; 548 if (OpIdx >= Current->End) 549 Begin = Current + 1; 550 else 551 End = Current; 552 } 553 554 assert(OpIdx >= Current->Begin && OpIdx < Current->End && 555 "the operand bundle doesn't cover every value in the range"); 556 return *Current; 557 } 558 559 CallBase *CallBase::addOperandBundle(CallBase *CB, uint32_t ID, 560 OperandBundleDef OB, 561 InsertPosition InsertPt) { 562 if (CB->getOperandBundle(ID)) 563 return CB; 564 565 SmallVector<OperandBundleDef, 1> Bundles; 566 CB->getOperandBundlesAsDefs(Bundles); 567 Bundles.push_back(OB); 568 return Create(CB, Bundles, InsertPt); 569 } 570 571 CallBase *CallBase::removeOperandBundle(CallBase *CB, uint32_t ID, 572 InsertPosition InsertPt) { 573 SmallVector<OperandBundleDef, 1> Bundles; 574 bool CreateNew = false; 575 576 for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) { 577 auto Bundle = CB->getOperandBundleAt(I); 578 if (Bundle.getTagID() == ID) { 579 CreateNew = true; 580 continue; 581 } 582 Bundles.emplace_back(Bundle); 583 } 584 585 return CreateNew ? Create(CB, Bundles, InsertPt) : CB; 586 } 587 588 bool CallBase::hasReadingOperandBundles() const { 589 // Implementation note: this is a conservative implementation of operand 590 // bundle semantics, where *any* non-assume operand bundle (other than 591 // ptrauth) forces a callsite to be at least readonly. 592 return hasOperandBundlesOtherThan( 593 {LLVMContext::OB_ptrauth, LLVMContext::OB_kcfi}) && 594 getIntrinsicID() != Intrinsic::assume; 595 } 596 597 bool CallBase::hasClobberingOperandBundles() const { 598 return hasOperandBundlesOtherThan( 599 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 600 LLVMContext::OB_ptrauth, LLVMContext::OB_kcfi}) && 601 getIntrinsicID() != Intrinsic::assume; 602 } 603 604 MemoryEffects CallBase::getMemoryEffects() const { 605 MemoryEffects ME = getAttributes().getMemoryEffects(); 606 if (auto *Fn = dyn_cast<Function>(getCalledOperand())) { 607 MemoryEffects FnME = Fn->getMemoryEffects(); 608 if (hasOperandBundles()) { 609 // TODO: Add a method to get memory effects for operand bundles instead. 610 if (hasReadingOperandBundles()) 611 FnME |= MemoryEffects::readOnly(); 612 if (hasClobberingOperandBundles()) 613 FnME |= MemoryEffects::writeOnly(); 614 } 615 ME &= FnME; 616 } 617 return ME; 618 } 619 void CallBase::setMemoryEffects(MemoryEffects ME) { 620 addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME)); 621 } 622 623 /// Determine if the function does not access memory. 624 bool CallBase::doesNotAccessMemory() const { 625 return getMemoryEffects().doesNotAccessMemory(); 626 } 627 void CallBase::setDoesNotAccessMemory() { 628 setMemoryEffects(MemoryEffects::none()); 629 } 630 631 /// Determine if the function does not access or only reads memory. 632 bool CallBase::onlyReadsMemory() const { 633 return getMemoryEffects().onlyReadsMemory(); 634 } 635 void CallBase::setOnlyReadsMemory() { 636 setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly()); 637 } 638 639 /// Determine if the function does not access or only writes memory. 640 bool CallBase::onlyWritesMemory() const { 641 return getMemoryEffects().onlyWritesMemory(); 642 } 643 void CallBase::setOnlyWritesMemory() { 644 setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly()); 645 } 646 647 /// Determine if the call can access memmory only using pointers based 648 /// on its arguments. 649 bool CallBase::onlyAccessesArgMemory() const { 650 return getMemoryEffects().onlyAccessesArgPointees(); 651 } 652 void CallBase::setOnlyAccessesArgMemory() { 653 setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly()); 654 } 655 656 /// Determine if the function may only access memory that is 657 /// inaccessible from the IR. 658 bool CallBase::onlyAccessesInaccessibleMemory() const { 659 return getMemoryEffects().onlyAccessesInaccessibleMem(); 660 } 661 void CallBase::setOnlyAccessesInaccessibleMemory() { 662 setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly()); 663 } 664 665 /// Determine if the function may only access memory that is 666 /// either inaccessible from the IR or pointed to by its arguments. 667 bool CallBase::onlyAccessesInaccessibleMemOrArgMem() const { 668 return getMemoryEffects().onlyAccessesInaccessibleOrArgMem(); 669 } 670 void CallBase::setOnlyAccessesInaccessibleMemOrArgMem() { 671 setMemoryEffects(getMemoryEffects() & 672 MemoryEffects::inaccessibleOrArgMemOnly()); 673 } 674 675 //===----------------------------------------------------------------------===// 676 // CallInst Implementation 677 //===----------------------------------------------------------------------===// 678 679 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, 680 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) { 681 this->FTy = FTy; 682 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 && 683 "NumOperands not set up?"); 684 685 #ifndef NDEBUG 686 assert((Args.size() == FTy->getNumParams() || 687 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 688 "Calling a function with bad signature!"); 689 690 for (unsigned i = 0; i != Args.size(); ++i) 691 assert((i >= FTy->getNumParams() || 692 FTy->getParamType(i) == Args[i]->getType()) && 693 "Calling a function with a bad signature!"); 694 #endif 695 696 // Set operands in order of their index to match use-list-order 697 // prediction. 698 llvm::copy(Args, op_begin()); 699 setCalledOperand(Func); 700 701 auto It = populateBundleOperandInfos(Bundles, Args.size()); 702 (void)It; 703 assert(It + 1 == op_end() && "Should add up!"); 704 705 setName(NameStr); 706 } 707 708 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) { 709 this->FTy = FTy; 710 assert(getNumOperands() == 1 && "NumOperands not set up?"); 711 setCalledOperand(Func); 712 713 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature"); 714 715 setName(NameStr); 716 } 717 718 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name, 719 InsertPosition InsertBefore) 720 : CallBase(Ty->getReturnType(), Instruction::Call, 721 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) { 722 init(Ty, Func, Name); 723 } 724 725 CallInst::CallInst(const CallInst &CI) 726 : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call, 727 OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(), 728 CI.getNumOperands()) { 729 setTailCallKind(CI.getTailCallKind()); 730 setCallingConv(CI.getCallingConv()); 731 732 std::copy(CI.op_begin(), CI.op_end(), op_begin()); 733 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(), 734 bundle_op_info_begin()); 735 SubclassOptionalData = CI.SubclassOptionalData; 736 } 737 738 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB, 739 InsertPosition InsertPt) { 740 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end()); 741 742 auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(), 743 Args, OpB, CI->getName(), InsertPt); 744 NewCI->setTailCallKind(CI->getTailCallKind()); 745 NewCI->setCallingConv(CI->getCallingConv()); 746 NewCI->SubclassOptionalData = CI->SubclassOptionalData; 747 NewCI->setAttributes(CI->getAttributes()); 748 NewCI->setDebugLoc(CI->getDebugLoc()); 749 return NewCI; 750 } 751 752 // Update profile weight for call instruction by scaling it using the ratio 753 // of S/T. The meaning of "branch_weights" meta data for call instruction is 754 // transfered to represent call count. 755 void CallInst::updateProfWeight(uint64_t S, uint64_t T) { 756 if (T == 0) { 757 LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in " 758 "div by 0. Ignoring. Likely the function " 759 << getParent()->getParent()->getName() 760 << " has 0 entry count, and contains call instructions " 761 "with non-zero prof info."); 762 return; 763 } 764 scaleProfData(*this, S, T); 765 } 766 767 //===----------------------------------------------------------------------===// 768 // InvokeInst Implementation 769 //===----------------------------------------------------------------------===// 770 771 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal, 772 BasicBlock *IfException, ArrayRef<Value *> Args, 773 ArrayRef<OperandBundleDef> Bundles, 774 const Twine &NameStr) { 775 this->FTy = FTy; 776 777 assert((int)getNumOperands() == 778 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) && 779 "NumOperands not set up?"); 780 781 #ifndef NDEBUG 782 assert(((Args.size() == FTy->getNumParams()) || 783 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 784 "Invoking a function with bad signature"); 785 786 for (unsigned i = 0, e = Args.size(); i != e; i++) 787 assert((i >= FTy->getNumParams() || 788 FTy->getParamType(i) == Args[i]->getType()) && 789 "Invoking a function with a bad signature!"); 790 #endif 791 792 // Set operands in order of their index to match use-list-order 793 // prediction. 794 llvm::copy(Args, op_begin()); 795 setNormalDest(IfNormal); 796 setUnwindDest(IfException); 797 setCalledOperand(Fn); 798 799 auto It = populateBundleOperandInfos(Bundles, Args.size()); 800 (void)It; 801 assert(It + 3 == op_end() && "Should add up!"); 802 803 setName(NameStr); 804 } 805 806 InvokeInst::InvokeInst(const InvokeInst &II) 807 : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke, 808 OperandTraits<CallBase>::op_end(this) - II.getNumOperands(), 809 II.getNumOperands()) { 810 setCallingConv(II.getCallingConv()); 811 std::copy(II.op_begin(), II.op_end(), op_begin()); 812 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(), 813 bundle_op_info_begin()); 814 SubclassOptionalData = II.SubclassOptionalData; 815 } 816 817 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB, 818 InsertPosition InsertPt) { 819 std::vector<Value *> Args(II->arg_begin(), II->arg_end()); 820 821 auto *NewII = InvokeInst::Create( 822 II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(), 823 II->getUnwindDest(), Args, OpB, II->getName(), InsertPt); 824 NewII->setCallingConv(II->getCallingConv()); 825 NewII->SubclassOptionalData = II->SubclassOptionalData; 826 NewII->setAttributes(II->getAttributes()); 827 NewII->setDebugLoc(II->getDebugLoc()); 828 return NewII; 829 } 830 831 LandingPadInst *InvokeInst::getLandingPadInst() const { 832 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI()); 833 } 834 835 void InvokeInst::updateProfWeight(uint64_t S, uint64_t T) { 836 if (T == 0) { 837 LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in " 838 "div by 0. Ignoring. Likely the function " 839 << getParent()->getParent()->getName() 840 << " has 0 entry count, and contains call instructions " 841 "with non-zero prof info."); 842 return; 843 } 844 scaleProfData(*this, S, T); 845 } 846 847 //===----------------------------------------------------------------------===// 848 // CallBrInst Implementation 849 //===----------------------------------------------------------------------===// 850 851 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough, 852 ArrayRef<BasicBlock *> IndirectDests, 853 ArrayRef<Value *> Args, 854 ArrayRef<OperandBundleDef> Bundles, 855 const Twine &NameStr) { 856 this->FTy = FTy; 857 858 assert((int)getNumOperands() == 859 ComputeNumOperands(Args.size(), IndirectDests.size(), 860 CountBundleInputs(Bundles)) && 861 "NumOperands not set up?"); 862 863 #ifndef NDEBUG 864 assert(((Args.size() == FTy->getNumParams()) || 865 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 866 "Calling a function with bad signature"); 867 868 for (unsigned i = 0, e = Args.size(); i != e; i++) 869 assert((i >= FTy->getNumParams() || 870 FTy->getParamType(i) == Args[i]->getType()) && 871 "Calling a function with a bad signature!"); 872 #endif 873 874 // Set operands in order of their index to match use-list-order 875 // prediction. 876 std::copy(Args.begin(), Args.end(), op_begin()); 877 NumIndirectDests = IndirectDests.size(); 878 setDefaultDest(Fallthrough); 879 for (unsigned i = 0; i != NumIndirectDests; ++i) 880 setIndirectDest(i, IndirectDests[i]); 881 setCalledOperand(Fn); 882 883 auto It = populateBundleOperandInfos(Bundles, Args.size()); 884 (void)It; 885 assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!"); 886 887 setName(NameStr); 888 } 889 890 CallBrInst::CallBrInst(const CallBrInst &CBI) 891 : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr, 892 OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(), 893 CBI.getNumOperands()) { 894 setCallingConv(CBI.getCallingConv()); 895 std::copy(CBI.op_begin(), CBI.op_end(), op_begin()); 896 std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(), 897 bundle_op_info_begin()); 898 SubclassOptionalData = CBI.SubclassOptionalData; 899 NumIndirectDests = CBI.NumIndirectDests; 900 } 901 902 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB, 903 InsertPosition InsertPt) { 904 std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end()); 905 906 auto *NewCBI = CallBrInst::Create( 907 CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(), 908 CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt); 909 NewCBI->setCallingConv(CBI->getCallingConv()); 910 NewCBI->SubclassOptionalData = CBI->SubclassOptionalData; 911 NewCBI->setAttributes(CBI->getAttributes()); 912 NewCBI->setDebugLoc(CBI->getDebugLoc()); 913 NewCBI->NumIndirectDests = CBI->NumIndirectDests; 914 return NewCBI; 915 } 916 917 //===----------------------------------------------------------------------===// 918 // ReturnInst Implementation 919 //===----------------------------------------------------------------------===// 920 921 ReturnInst::ReturnInst(const ReturnInst &RI) 922 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret, 923 OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(), 924 RI.getNumOperands()) { 925 if (RI.getNumOperands()) 926 Op<0>() = RI.Op<0>(); 927 SubclassOptionalData = RI.SubclassOptionalData; 928 } 929 930 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, 931 InsertPosition InsertBefore) 932 : Instruction(Type::getVoidTy(C), Instruction::Ret, 933 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 934 InsertBefore) { 935 if (retVal) 936 Op<0>() = retVal; 937 } 938 939 //===----------------------------------------------------------------------===// 940 // ResumeInst Implementation 941 //===----------------------------------------------------------------------===// 942 943 ResumeInst::ResumeInst(const ResumeInst &RI) 944 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume, 945 OperandTraits<ResumeInst>::op_begin(this), 1) { 946 Op<0>() = RI.Op<0>(); 947 } 948 949 ResumeInst::ResumeInst(Value *Exn, InsertPosition InsertBefore) 950 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 951 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) { 952 Op<0>() = Exn; 953 } 954 955 //===----------------------------------------------------------------------===// 956 // CleanupReturnInst Implementation 957 //===----------------------------------------------------------------------===// 958 959 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI) 960 : Instruction(CRI.getType(), Instruction::CleanupRet, 961 OperandTraits<CleanupReturnInst>::op_end(this) - 962 CRI.getNumOperands(), 963 CRI.getNumOperands()) { 964 setSubclassData<Instruction::OpaqueField>( 965 CRI.getSubclassData<Instruction::OpaqueField>()); 966 Op<0>() = CRI.Op<0>(); 967 if (CRI.hasUnwindDest()) 968 Op<1>() = CRI.Op<1>(); 969 } 970 971 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) { 972 if (UnwindBB) 973 setSubclassData<UnwindDestField>(true); 974 975 Op<0>() = CleanupPad; 976 if (UnwindBB) 977 Op<1>() = UnwindBB; 978 } 979 980 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, 981 unsigned Values, 982 InsertPosition InsertBefore) 983 : Instruction(Type::getVoidTy(CleanupPad->getContext()), 984 Instruction::CleanupRet, 985 OperandTraits<CleanupReturnInst>::op_end(this) - Values, 986 Values, InsertBefore) { 987 init(CleanupPad, UnwindBB); 988 } 989 990 //===----------------------------------------------------------------------===// 991 // CatchReturnInst Implementation 992 //===----------------------------------------------------------------------===// 993 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) { 994 Op<0>() = CatchPad; 995 Op<1>() = BB; 996 } 997 998 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI) 999 : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet, 1000 OperandTraits<CatchReturnInst>::op_begin(this), 2) { 1001 Op<0>() = CRI.Op<0>(); 1002 Op<1>() = CRI.Op<1>(); 1003 } 1004 1005 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, 1006 InsertPosition InsertBefore) 1007 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, 1008 OperandTraits<CatchReturnInst>::op_begin(this), 2, 1009 InsertBefore) { 1010 init(CatchPad, BB); 1011 } 1012 1013 //===----------------------------------------------------------------------===// 1014 // CatchSwitchInst Implementation 1015 //===----------------------------------------------------------------------===// 1016 1017 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 1018 unsigned NumReservedValues, 1019 const Twine &NameStr, 1020 InsertPosition InsertBefore) 1021 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, 1022 InsertBefore) { 1023 if (UnwindDest) 1024 ++NumReservedValues; 1025 init(ParentPad, UnwindDest, NumReservedValues + 1); 1026 setName(NameStr); 1027 } 1028 1029 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI) 1030 : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr, 1031 CSI.getNumOperands()) { 1032 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands()); 1033 setNumHungOffUseOperands(ReservedSpace); 1034 Use *OL = getOperandList(); 1035 const Use *InOL = CSI.getOperandList(); 1036 for (unsigned I = 1, E = ReservedSpace; I != E; ++I) 1037 OL[I] = InOL[I]; 1038 } 1039 1040 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest, 1041 unsigned NumReservedValues) { 1042 assert(ParentPad && NumReservedValues); 1043 1044 ReservedSpace = NumReservedValues; 1045 setNumHungOffUseOperands(UnwindDest ? 2 : 1); 1046 allocHungoffUses(ReservedSpace); 1047 1048 Op<0>() = ParentPad; 1049 if (UnwindDest) { 1050 setSubclassData<UnwindDestField>(true); 1051 setUnwindDest(UnwindDest); 1052 } 1053 } 1054 1055 /// growOperands - grow operands - This grows the operand list in response to a 1056 /// push_back style of operation. This grows the number of ops by 2 times. 1057 void CatchSwitchInst::growOperands(unsigned Size) { 1058 unsigned NumOperands = getNumOperands(); 1059 assert(NumOperands >= 1); 1060 if (ReservedSpace >= NumOperands + Size) 1061 return; 1062 ReservedSpace = (NumOperands + Size / 2) * 2; 1063 growHungoffUses(ReservedSpace); 1064 } 1065 1066 void CatchSwitchInst::addHandler(BasicBlock *Handler) { 1067 unsigned OpNo = getNumOperands(); 1068 growOperands(1); 1069 assert(OpNo < ReservedSpace && "Growing didn't work!"); 1070 setNumHungOffUseOperands(getNumOperands() + 1); 1071 getOperandList()[OpNo] = Handler; 1072 } 1073 1074 void CatchSwitchInst::removeHandler(handler_iterator HI) { 1075 // Move all subsequent handlers up one. 1076 Use *EndDst = op_end() - 1; 1077 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst) 1078 *CurDst = *(CurDst + 1); 1079 // Null out the last handler use. 1080 *EndDst = nullptr; 1081 1082 setNumHungOffUseOperands(getNumOperands() - 1); 1083 } 1084 1085 //===----------------------------------------------------------------------===// 1086 // FuncletPadInst Implementation 1087 //===----------------------------------------------------------------------===// 1088 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args, 1089 const Twine &NameStr) { 1090 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?"); 1091 llvm::copy(Args, op_begin()); 1092 setParentPad(ParentPad); 1093 setName(NameStr); 1094 } 1095 1096 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI) 1097 : Instruction(FPI.getType(), FPI.getOpcode(), 1098 OperandTraits<FuncletPadInst>::op_end(this) - 1099 FPI.getNumOperands(), 1100 FPI.getNumOperands()) { 1101 std::copy(FPI.op_begin(), FPI.op_end(), op_begin()); 1102 setParentPad(FPI.getParentPad()); 1103 } 1104 1105 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, 1106 ArrayRef<Value *> Args, unsigned Values, 1107 const Twine &NameStr, 1108 InsertPosition InsertBefore) 1109 : Instruction(ParentPad->getType(), Op, 1110 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, 1111 InsertBefore) { 1112 init(ParentPad, Args, NameStr); 1113 } 1114 1115 //===----------------------------------------------------------------------===// 1116 // UnreachableInst Implementation 1117 //===----------------------------------------------------------------------===// 1118 1119 UnreachableInst::UnreachableInst(LLVMContext &Context, 1120 InsertPosition InsertBefore) 1121 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr, 1122 0, InsertBefore) {} 1123 1124 //===----------------------------------------------------------------------===// 1125 // BranchInst Implementation 1126 //===----------------------------------------------------------------------===// 1127 1128 void BranchInst::AssertOK() { 1129 if (isConditional()) 1130 assert(getCondition()->getType()->isIntegerTy(1) && 1131 "May only branch on boolean predicates!"); 1132 } 1133 1134 BranchInst::BranchInst(BasicBlock *IfTrue, InsertPosition InsertBefore) 1135 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1136 OperandTraits<BranchInst>::op_end(this) - 1, 1, 1137 InsertBefore) { 1138 assert(IfTrue && "Branch destination may not be null!"); 1139 Op<-1>() = IfTrue; 1140 } 1141 1142 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 1143 InsertPosition InsertBefore) 1144 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 1145 OperandTraits<BranchInst>::op_end(this) - 3, 3, 1146 InsertBefore) { 1147 // Assign in order of operand index to make use-list order predictable. 1148 Op<-3>() = Cond; 1149 Op<-2>() = IfFalse; 1150 Op<-1>() = IfTrue; 1151 #ifndef NDEBUG 1152 AssertOK(); 1153 #endif 1154 } 1155 1156 BranchInst::BranchInst(const BranchInst &BI) 1157 : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br, 1158 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(), 1159 BI.getNumOperands()) { 1160 // Assign in order of operand index to make use-list order predictable. 1161 if (BI.getNumOperands() != 1) { 1162 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!"); 1163 Op<-3>() = BI.Op<-3>(); 1164 Op<-2>() = BI.Op<-2>(); 1165 } 1166 Op<-1>() = BI.Op<-1>(); 1167 SubclassOptionalData = BI.SubclassOptionalData; 1168 } 1169 1170 void BranchInst::swapSuccessors() { 1171 assert(isConditional() && 1172 "Cannot swap successors of an unconditional branch"); 1173 Op<-1>().swap(Op<-2>()); 1174 1175 // Update profile metadata if present and it matches our structural 1176 // expectations. 1177 swapProfMetadata(); 1178 } 1179 1180 //===----------------------------------------------------------------------===// 1181 // AllocaInst Implementation 1182 //===----------------------------------------------------------------------===// 1183 1184 static Value *getAISize(LLVMContext &Context, Value *Amt) { 1185 if (!Amt) 1186 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1); 1187 else { 1188 assert(!isa<BasicBlock>(Amt) && 1189 "Passed basic block into allocation size parameter! Use other ctor"); 1190 assert(Amt->getType()->isIntegerTy() && 1191 "Allocation array size is not an integer!"); 1192 } 1193 return Amt; 1194 } 1195 1196 static Align computeAllocaDefaultAlign(Type *Ty, InsertPosition Pos) { 1197 assert(Pos.isValid() && 1198 "Insertion position cannot be null when alignment not provided!"); 1199 BasicBlock *BB = Pos.getBasicBlock(); 1200 assert(BB->getParent() && 1201 "BB must be in a Function when alignment not provided!"); 1202 const DataLayout &DL = BB->getDataLayout(); 1203 return DL.getPrefTypeAlign(Ty); 1204 } 1205 1206 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, 1207 InsertPosition InsertBefore) 1208 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {} 1209 1210 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1211 const Twine &Name, InsertPosition InsertBefore) 1212 : AllocaInst(Ty, AddrSpace, ArraySize, 1213 computeAllocaDefaultAlign(Ty, InsertBefore), Name, 1214 InsertBefore) {} 1215 1216 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 1217 Align Align, const Twine &Name, 1218 InsertPosition InsertBefore) 1219 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca, 1220 getAISize(Ty->getContext(), ArraySize), InsertBefore), 1221 AllocatedType(Ty) { 1222 setAlignment(Align); 1223 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 1224 setName(Name); 1225 } 1226 1227 bool AllocaInst::isArrayAllocation() const { 1228 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0))) 1229 return !CI->isOne(); 1230 return true; 1231 } 1232 1233 /// isStaticAlloca - Return true if this alloca is in the entry block of the 1234 /// function and is a constant size. If so, the code generator will fold it 1235 /// into the prolog/epilog code, so it is basically free. 1236 bool AllocaInst::isStaticAlloca() const { 1237 // Must be constant size. 1238 if (!isa<ConstantInt>(getArraySize())) return false; 1239 1240 // Must be in the entry block. 1241 const BasicBlock *Parent = getParent(); 1242 return Parent->isEntryBlock() && !isUsedWithInAlloca(); 1243 } 1244 1245 //===----------------------------------------------------------------------===// 1246 // LoadInst Implementation 1247 //===----------------------------------------------------------------------===// 1248 1249 void LoadInst::AssertOK() { 1250 assert(getOperand(0)->getType()->isPointerTy() && 1251 "Ptr must have pointer type."); 1252 } 1253 1254 static Align computeLoadStoreDefaultAlign(Type *Ty, InsertPosition Pos) { 1255 assert(Pos.isValid() && 1256 "Insertion position cannot be null when alignment not provided!"); 1257 BasicBlock *BB = Pos.getBasicBlock(); 1258 assert(BB->getParent() && 1259 "BB must be in a Function when alignment not provided!"); 1260 const DataLayout &DL = BB->getDataLayout(); 1261 return DL.getABITypeAlign(Ty); 1262 } 1263 1264 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, 1265 InsertPosition InsertBef) 1266 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {} 1267 1268 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1269 InsertPosition InsertBef) 1270 : LoadInst(Ty, Ptr, Name, isVolatile, 1271 computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {} 1272 1273 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1274 Align Align, InsertPosition InsertBef) 1275 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, 1276 SyncScope::System, InsertBef) {} 1277 1278 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, 1279 Align Align, AtomicOrdering Order, SyncScope::ID SSID, 1280 InsertPosition InsertBef) 1281 : UnaryInstruction(Ty, Load, Ptr, InsertBef) { 1282 setVolatile(isVolatile); 1283 setAlignment(Align); 1284 setAtomic(Order, SSID); 1285 AssertOK(); 1286 setName(Name); 1287 } 1288 1289 //===----------------------------------------------------------------------===// 1290 // StoreInst Implementation 1291 //===----------------------------------------------------------------------===// 1292 1293 void StoreInst::AssertOK() { 1294 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!"); 1295 assert(getOperand(1)->getType()->isPointerTy() && 1296 "Ptr must have pointer type!"); 1297 } 1298 1299 StoreInst::StoreInst(Value *val, Value *addr, InsertPosition InsertBefore) 1300 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {} 1301 1302 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1303 InsertPosition InsertBefore) 1304 : StoreInst(val, addr, isVolatile, 1305 computeLoadStoreDefaultAlign(val->getType(), InsertBefore), 1306 InsertBefore) {} 1307 1308 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align, 1309 InsertPosition InsertBefore) 1310 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, 1311 SyncScope::System, InsertBefore) {} 1312 1313 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align, 1314 AtomicOrdering Order, SyncScope::ID SSID, 1315 InsertPosition InsertBefore) 1316 : Instruction(Type::getVoidTy(val->getContext()), Store, 1317 OperandTraits<StoreInst>::op_begin(this), 1318 OperandTraits<StoreInst>::operands(this), InsertBefore) { 1319 Op<0>() = val; 1320 Op<1>() = addr; 1321 setVolatile(isVolatile); 1322 setAlignment(Align); 1323 setAtomic(Order, SSID); 1324 AssertOK(); 1325 } 1326 1327 //===----------------------------------------------------------------------===// 1328 // AtomicCmpXchgInst Implementation 1329 //===----------------------------------------------------------------------===// 1330 1331 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal, 1332 Align Alignment, AtomicOrdering SuccessOrdering, 1333 AtomicOrdering FailureOrdering, 1334 SyncScope::ID SSID) { 1335 Op<0>() = Ptr; 1336 Op<1>() = Cmp; 1337 Op<2>() = NewVal; 1338 setSuccessOrdering(SuccessOrdering); 1339 setFailureOrdering(FailureOrdering); 1340 setSyncScopeID(SSID); 1341 setAlignment(Alignment); 1342 1343 assert(getOperand(0) && getOperand(1) && getOperand(2) && 1344 "All operands must be non-null!"); 1345 assert(getOperand(0)->getType()->isPointerTy() && 1346 "Ptr must have pointer type!"); 1347 assert(getOperand(1)->getType() == getOperand(2)->getType() && 1348 "Cmp type and NewVal type must be same!"); 1349 } 1350 1351 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1352 Align Alignment, 1353 AtomicOrdering SuccessOrdering, 1354 AtomicOrdering FailureOrdering, 1355 SyncScope::ID SSID, 1356 InsertPosition InsertBefore) 1357 : Instruction( 1358 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())), 1359 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1360 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) { 1361 Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID); 1362 } 1363 1364 //===----------------------------------------------------------------------===// 1365 // AtomicRMWInst Implementation 1366 //===----------------------------------------------------------------------===// 1367 1368 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val, 1369 Align Alignment, AtomicOrdering Ordering, 1370 SyncScope::ID SSID) { 1371 assert(Ordering != AtomicOrdering::NotAtomic && 1372 "atomicrmw instructions can only be atomic."); 1373 assert(Ordering != AtomicOrdering::Unordered && 1374 "atomicrmw instructions cannot be unordered."); 1375 Op<0>() = Ptr; 1376 Op<1>() = Val; 1377 setOperation(Operation); 1378 setOrdering(Ordering); 1379 setSyncScopeID(SSID); 1380 setAlignment(Alignment); 1381 1382 assert(getOperand(0) && getOperand(1) && "All operands must be non-null!"); 1383 assert(getOperand(0)->getType()->isPointerTy() && 1384 "Ptr must have pointer type!"); 1385 assert(Ordering != AtomicOrdering::NotAtomic && 1386 "AtomicRMW instructions must be atomic!"); 1387 } 1388 1389 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1390 Align Alignment, AtomicOrdering Ordering, 1391 SyncScope::ID SSID, InsertPosition InsertBefore) 1392 : Instruction(Val->getType(), AtomicRMW, 1393 OperandTraits<AtomicRMWInst>::op_begin(this), 1394 OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) { 1395 Init(Operation, Ptr, Val, Alignment, Ordering, SSID); 1396 } 1397 1398 StringRef AtomicRMWInst::getOperationName(BinOp Op) { 1399 switch (Op) { 1400 case AtomicRMWInst::Xchg: 1401 return "xchg"; 1402 case AtomicRMWInst::Add: 1403 return "add"; 1404 case AtomicRMWInst::Sub: 1405 return "sub"; 1406 case AtomicRMWInst::And: 1407 return "and"; 1408 case AtomicRMWInst::Nand: 1409 return "nand"; 1410 case AtomicRMWInst::Or: 1411 return "or"; 1412 case AtomicRMWInst::Xor: 1413 return "xor"; 1414 case AtomicRMWInst::Max: 1415 return "max"; 1416 case AtomicRMWInst::Min: 1417 return "min"; 1418 case AtomicRMWInst::UMax: 1419 return "umax"; 1420 case AtomicRMWInst::UMin: 1421 return "umin"; 1422 case AtomicRMWInst::FAdd: 1423 return "fadd"; 1424 case AtomicRMWInst::FSub: 1425 return "fsub"; 1426 case AtomicRMWInst::FMax: 1427 return "fmax"; 1428 case AtomicRMWInst::FMin: 1429 return "fmin"; 1430 case AtomicRMWInst::UIncWrap: 1431 return "uinc_wrap"; 1432 case AtomicRMWInst::UDecWrap: 1433 return "udec_wrap"; 1434 case AtomicRMWInst::BAD_BINOP: 1435 return "<invalid operation>"; 1436 } 1437 1438 llvm_unreachable("invalid atomicrmw operation"); 1439 } 1440 1441 //===----------------------------------------------------------------------===// 1442 // FenceInst Implementation 1443 //===----------------------------------------------------------------------===// 1444 1445 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1446 SyncScope::ID SSID, InsertPosition InsertBefore) 1447 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) { 1448 setOrdering(Ordering); 1449 setSyncScopeID(SSID); 1450 } 1451 1452 //===----------------------------------------------------------------------===// 1453 // GetElementPtrInst Implementation 1454 //===----------------------------------------------------------------------===// 1455 1456 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList, 1457 const Twine &Name) { 1458 assert(getNumOperands() == 1 + IdxList.size() && 1459 "NumOperands not initialized?"); 1460 Op<0>() = Ptr; 1461 llvm::copy(IdxList, op_begin() + 1); 1462 setName(Name); 1463 } 1464 1465 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI) 1466 : Instruction(GEPI.getType(), GetElementPtr, 1467 OperandTraits<GetElementPtrInst>::op_end(this) - 1468 GEPI.getNumOperands(), 1469 GEPI.getNumOperands()), 1470 SourceElementType(GEPI.SourceElementType), 1471 ResultElementType(GEPI.ResultElementType) { 1472 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin()); 1473 SubclassOptionalData = GEPI.SubclassOptionalData; 1474 } 1475 1476 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) { 1477 if (auto *Struct = dyn_cast<StructType>(Ty)) { 1478 if (!Struct->indexValid(Idx)) 1479 return nullptr; 1480 return Struct->getTypeAtIndex(Idx); 1481 } 1482 if (!Idx->getType()->isIntOrIntVectorTy()) 1483 return nullptr; 1484 if (auto *Array = dyn_cast<ArrayType>(Ty)) 1485 return Array->getElementType(); 1486 if (auto *Vector = dyn_cast<VectorType>(Ty)) 1487 return Vector->getElementType(); 1488 return nullptr; 1489 } 1490 1491 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) { 1492 if (auto *Struct = dyn_cast<StructType>(Ty)) { 1493 if (Idx >= Struct->getNumElements()) 1494 return nullptr; 1495 return Struct->getElementType(Idx); 1496 } 1497 if (auto *Array = dyn_cast<ArrayType>(Ty)) 1498 return Array->getElementType(); 1499 if (auto *Vector = dyn_cast<VectorType>(Ty)) 1500 return Vector->getElementType(); 1501 return nullptr; 1502 } 1503 1504 template <typename IndexTy> 1505 static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) { 1506 if (IdxList.empty()) 1507 return Ty; 1508 for (IndexTy V : IdxList.slice(1)) { 1509 Ty = GetElementPtrInst::getTypeAtIndex(Ty, V); 1510 if (!Ty) 1511 return Ty; 1512 } 1513 return Ty; 1514 } 1515 1516 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) { 1517 return getIndexedTypeInternal(Ty, IdxList); 1518 } 1519 1520 Type *GetElementPtrInst::getIndexedType(Type *Ty, 1521 ArrayRef<Constant *> IdxList) { 1522 return getIndexedTypeInternal(Ty, IdxList); 1523 } 1524 1525 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) { 1526 return getIndexedTypeInternal(Ty, IdxList); 1527 } 1528 1529 /// hasAllZeroIndices - Return true if all of the indices of this GEP are 1530 /// zeros. If so, the result pointer and the first operand have the same 1531 /// value, just potentially different types. 1532 bool GetElementPtrInst::hasAllZeroIndices() const { 1533 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1534 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) { 1535 if (!CI->isZero()) return false; 1536 } else { 1537 return false; 1538 } 1539 } 1540 return true; 1541 } 1542 1543 /// hasAllConstantIndices - Return true if all of the indices of this GEP are 1544 /// constant integers. If so, the result pointer and the first operand have 1545 /// a constant offset between them. 1546 bool GetElementPtrInst::hasAllConstantIndices() const { 1547 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1548 if (!isa<ConstantInt>(getOperand(i))) 1549 return false; 1550 } 1551 return true; 1552 } 1553 1554 void GetElementPtrInst::setNoWrapFlags(GEPNoWrapFlags NW) { 1555 SubclassOptionalData = NW.getRaw(); 1556 } 1557 1558 void GetElementPtrInst::setIsInBounds(bool B) { 1559 GEPNoWrapFlags NW = cast<GEPOperator>(this)->getNoWrapFlags(); 1560 if (B) 1561 NW |= GEPNoWrapFlags::inBounds(); 1562 else 1563 NW = NW.withoutInBounds(); 1564 setNoWrapFlags(NW); 1565 } 1566 1567 GEPNoWrapFlags GetElementPtrInst::getNoWrapFlags() const { 1568 return cast<GEPOperator>(this)->getNoWrapFlags(); 1569 } 1570 1571 bool GetElementPtrInst::isInBounds() const { 1572 return cast<GEPOperator>(this)->isInBounds(); 1573 } 1574 1575 bool GetElementPtrInst::hasNoUnsignedSignedWrap() const { 1576 return cast<GEPOperator>(this)->hasNoUnsignedSignedWrap(); 1577 } 1578 1579 bool GetElementPtrInst::hasNoUnsignedWrap() const { 1580 return cast<GEPOperator>(this)->hasNoUnsignedWrap(); 1581 } 1582 1583 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL, 1584 APInt &Offset) const { 1585 // Delegate to the generic GEPOperator implementation. 1586 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset); 1587 } 1588 1589 bool GetElementPtrInst::collectOffset( 1590 const DataLayout &DL, unsigned BitWidth, 1591 MapVector<Value *, APInt> &VariableOffsets, 1592 APInt &ConstantOffset) const { 1593 // Delegate to the generic GEPOperator implementation. 1594 return cast<GEPOperator>(this)->collectOffset(DL, BitWidth, VariableOffsets, 1595 ConstantOffset); 1596 } 1597 1598 //===----------------------------------------------------------------------===// 1599 // ExtractElementInst Implementation 1600 //===----------------------------------------------------------------------===// 1601 1602 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1603 const Twine &Name, 1604 InsertPosition InsertBef) 1605 : Instruction( 1606 cast<VectorType>(Val->getType())->getElementType(), ExtractElement, 1607 OperandTraits<ExtractElementInst>::op_begin(this), 2, InsertBef) { 1608 assert(isValidOperands(Val, Index) && 1609 "Invalid extractelement instruction operands!"); 1610 Op<0>() = Val; 1611 Op<1>() = Index; 1612 setName(Name); 1613 } 1614 1615 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) { 1616 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy()) 1617 return false; 1618 return true; 1619 } 1620 1621 //===----------------------------------------------------------------------===// 1622 // InsertElementInst Implementation 1623 //===----------------------------------------------------------------------===// 1624 1625 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1626 const Twine &Name, 1627 InsertPosition InsertBef) 1628 : Instruction(Vec->getType(), InsertElement, 1629 OperandTraits<InsertElementInst>::op_begin(this), 3, 1630 InsertBef) { 1631 assert(isValidOperands(Vec, Elt, Index) && 1632 "Invalid insertelement instruction operands!"); 1633 Op<0>() = Vec; 1634 Op<1>() = Elt; 1635 Op<2>() = Index; 1636 setName(Name); 1637 } 1638 1639 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, 1640 const Value *Index) { 1641 if (!Vec->getType()->isVectorTy()) 1642 return false; // First operand of insertelement must be vector type. 1643 1644 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType()) 1645 return false;// Second operand of insertelement must be vector element type. 1646 1647 if (!Index->getType()->isIntegerTy()) 1648 return false; // Third operand of insertelement must be i32. 1649 return true; 1650 } 1651 1652 //===----------------------------------------------------------------------===// 1653 // ShuffleVectorInst Implementation 1654 //===----------------------------------------------------------------------===// 1655 1656 static Value *createPlaceholderForShuffleVector(Value *V) { 1657 assert(V && "Cannot create placeholder of nullptr V"); 1658 return PoisonValue::get(V->getType()); 1659 } 1660 1661 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *Mask, const Twine &Name, 1662 InsertPosition InsertBefore) 1663 : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name, 1664 InsertBefore) {} 1665 1666 ShuffleVectorInst::ShuffleVectorInst(Value *V1, ArrayRef<int> Mask, 1667 const Twine &Name, 1668 InsertPosition InsertBefore) 1669 : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name, 1670 InsertBefore) {} 1671 1672 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1673 const Twine &Name, 1674 InsertPosition InsertBefore) 1675 : Instruction( 1676 VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1677 cast<VectorType>(Mask->getType())->getElementCount()), 1678 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this), 1679 OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) { 1680 assert(isValidOperands(V1, V2, Mask) && 1681 "Invalid shuffle vector instruction operands!"); 1682 1683 Op<0>() = V1; 1684 Op<1>() = V2; 1685 SmallVector<int, 16> MaskArr; 1686 getShuffleMask(cast<Constant>(Mask), MaskArr); 1687 setShuffleMask(MaskArr); 1688 setName(Name); 1689 } 1690 1691 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, 1692 const Twine &Name, 1693 InsertPosition InsertBefore) 1694 : Instruction( 1695 VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1696 Mask.size(), isa<ScalableVectorType>(V1->getType())), 1697 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this), 1698 OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) { 1699 assert(isValidOperands(V1, V2, Mask) && 1700 "Invalid shuffle vector instruction operands!"); 1701 Op<0>() = V1; 1702 Op<1>() = V2; 1703 setShuffleMask(Mask); 1704 setName(Name); 1705 } 1706 1707 void ShuffleVectorInst::commute() { 1708 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); 1709 int NumMaskElts = ShuffleMask.size(); 1710 SmallVector<int, 16> NewMask(NumMaskElts); 1711 for (int i = 0; i != NumMaskElts; ++i) { 1712 int MaskElt = getMaskValue(i); 1713 if (MaskElt == PoisonMaskElem) { 1714 NewMask[i] = PoisonMaskElem; 1715 continue; 1716 } 1717 assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask"); 1718 MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts; 1719 NewMask[i] = MaskElt; 1720 } 1721 setShuffleMask(NewMask); 1722 Op<0>().swap(Op<1>()); 1723 } 1724 1725 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, 1726 ArrayRef<int> Mask) { 1727 // V1 and V2 must be vectors of the same type. 1728 if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType()) 1729 return false; 1730 1731 // Make sure the mask elements make sense. 1732 int V1Size = 1733 cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue(); 1734 for (int Elem : Mask) 1735 if (Elem != PoisonMaskElem && Elem >= V1Size * 2) 1736 return false; 1737 1738 if (isa<ScalableVectorType>(V1->getType())) 1739 if ((Mask[0] != 0 && Mask[0] != PoisonMaskElem) || !all_equal(Mask)) 1740 return false; 1741 1742 return true; 1743 } 1744 1745 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, 1746 const Value *Mask) { 1747 // V1 and V2 must be vectors of the same type. 1748 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType()) 1749 return false; 1750 1751 // Mask must be vector of i32, and must be the same kind of vector as the 1752 // input vectors 1753 auto *MaskTy = dyn_cast<VectorType>(Mask->getType()); 1754 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) || 1755 isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType())) 1756 return false; 1757 1758 // Check to see if Mask is valid. 1759 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask)) 1760 return true; 1761 1762 if (const auto *MV = dyn_cast<ConstantVector>(Mask)) { 1763 unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements(); 1764 for (Value *Op : MV->operands()) { 1765 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 1766 if (CI->uge(V1Size*2)) 1767 return false; 1768 } else if (!isa<UndefValue>(Op)) { 1769 return false; 1770 } 1771 } 1772 return true; 1773 } 1774 1775 if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) { 1776 unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements(); 1777 for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements(); 1778 i != e; ++i) 1779 if (CDS->getElementAsInteger(i) >= V1Size*2) 1780 return false; 1781 return true; 1782 } 1783 1784 return false; 1785 } 1786 1787 void ShuffleVectorInst::getShuffleMask(const Constant *Mask, 1788 SmallVectorImpl<int> &Result) { 1789 ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount(); 1790 1791 if (isa<ConstantAggregateZero>(Mask)) { 1792 Result.resize(EC.getKnownMinValue(), 0); 1793 return; 1794 } 1795 1796 Result.reserve(EC.getKnownMinValue()); 1797 1798 if (EC.isScalable()) { 1799 assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) && 1800 "Scalable vector shuffle mask must be undef or zeroinitializer"); 1801 int MaskVal = isa<UndefValue>(Mask) ? -1 : 0; 1802 for (unsigned I = 0; I < EC.getKnownMinValue(); ++I) 1803 Result.emplace_back(MaskVal); 1804 return; 1805 } 1806 1807 unsigned NumElts = EC.getKnownMinValue(); 1808 1809 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) { 1810 for (unsigned i = 0; i != NumElts; ++i) 1811 Result.push_back(CDS->getElementAsInteger(i)); 1812 return; 1813 } 1814 for (unsigned i = 0; i != NumElts; ++i) { 1815 Constant *C = Mask->getAggregateElement(i); 1816 Result.push_back(isa<UndefValue>(C) ? -1 : 1817 cast<ConstantInt>(C)->getZExtValue()); 1818 } 1819 } 1820 1821 void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) { 1822 ShuffleMask.assign(Mask.begin(), Mask.end()); 1823 ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType()); 1824 } 1825 1826 Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask, 1827 Type *ResultTy) { 1828 Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext()); 1829 if (isa<ScalableVectorType>(ResultTy)) { 1830 assert(all_equal(Mask) && "Unexpected shuffle"); 1831 Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true); 1832 if (Mask[0] == 0) 1833 return Constant::getNullValue(VecTy); 1834 return PoisonValue::get(VecTy); 1835 } 1836 SmallVector<Constant *, 16> MaskConst; 1837 for (int Elem : Mask) { 1838 if (Elem == PoisonMaskElem) 1839 MaskConst.push_back(PoisonValue::get(Int32Ty)); 1840 else 1841 MaskConst.push_back(ConstantInt::get(Int32Ty, Elem)); 1842 } 1843 return ConstantVector::get(MaskConst); 1844 } 1845 1846 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) { 1847 assert(!Mask.empty() && "Shuffle mask must contain elements"); 1848 bool UsesLHS = false; 1849 bool UsesRHS = false; 1850 for (int I : Mask) { 1851 if (I == -1) 1852 continue; 1853 assert(I >= 0 && I < (NumOpElts * 2) && 1854 "Out-of-bounds shuffle mask element"); 1855 UsesLHS |= (I < NumOpElts); 1856 UsesRHS |= (I >= NumOpElts); 1857 if (UsesLHS && UsesRHS) 1858 return false; 1859 } 1860 // Allow for degenerate case: completely undef mask means neither source is used. 1861 return UsesLHS || UsesRHS; 1862 } 1863 1864 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask, int NumSrcElts) { 1865 // We don't have vector operand size information, so assume operands are the 1866 // same size as the mask. 1867 return isSingleSourceMaskImpl(Mask, NumSrcElts); 1868 } 1869 1870 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) { 1871 if (!isSingleSourceMaskImpl(Mask, NumOpElts)) 1872 return false; 1873 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) { 1874 if (Mask[i] == -1) 1875 continue; 1876 if (Mask[i] != i && Mask[i] != (NumOpElts + i)) 1877 return false; 1878 } 1879 return true; 1880 } 1881 1882 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask, int NumSrcElts) { 1883 if (Mask.size() != static_cast<unsigned>(NumSrcElts)) 1884 return false; 1885 // We don't have vector operand size information, so assume operands are the 1886 // same size as the mask. 1887 return isIdentityMaskImpl(Mask, NumSrcElts); 1888 } 1889 1890 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask, int NumSrcElts) { 1891 if (Mask.size() != static_cast<unsigned>(NumSrcElts)) 1892 return false; 1893 if (!isSingleSourceMask(Mask, NumSrcElts)) 1894 return false; 1895 1896 // The number of elements in the mask must be at least 2. 1897 if (NumSrcElts < 2) 1898 return false; 1899 1900 for (int I = 0, E = Mask.size(); I < E; ++I) { 1901 if (Mask[I] == -1) 1902 continue; 1903 if (Mask[I] != (NumSrcElts - 1 - I) && 1904 Mask[I] != (NumSrcElts + NumSrcElts - 1 - I)) 1905 return false; 1906 } 1907 return true; 1908 } 1909 1910 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask, int NumSrcElts) { 1911 if (Mask.size() != static_cast<unsigned>(NumSrcElts)) 1912 return false; 1913 if (!isSingleSourceMask(Mask, NumSrcElts)) 1914 return false; 1915 for (int I = 0, E = Mask.size(); I < E; ++I) { 1916 if (Mask[I] == -1) 1917 continue; 1918 if (Mask[I] != 0 && Mask[I] != NumSrcElts) 1919 return false; 1920 } 1921 return true; 1922 } 1923 1924 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask, int NumSrcElts) { 1925 if (Mask.size() != static_cast<unsigned>(NumSrcElts)) 1926 return false; 1927 // Select is differentiated from identity. It requires using both sources. 1928 if (isSingleSourceMask(Mask, NumSrcElts)) 1929 return false; 1930 for (int I = 0, E = Mask.size(); I < E; ++I) { 1931 if (Mask[I] == -1) 1932 continue; 1933 if (Mask[I] != I && Mask[I] != (NumSrcElts + I)) 1934 return false; 1935 } 1936 return true; 1937 } 1938 1939 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask, int NumSrcElts) { 1940 // Example masks that will return true: 1941 // v1 = <a, b, c, d> 1942 // v2 = <e, f, g, h> 1943 // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g> 1944 // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h> 1945 1946 if (Mask.size() != static_cast<unsigned>(NumSrcElts)) 1947 return false; 1948 // 1. The number of elements in the mask must be a power-of-2 and at least 2. 1949 int Sz = Mask.size(); 1950 if (Sz < 2 || !isPowerOf2_32(Sz)) 1951 return false; 1952 1953 // 2. The first element of the mask must be either a 0 or a 1. 1954 if (Mask[0] != 0 && Mask[0] != 1) 1955 return false; 1956 1957 // 3. The difference between the first 2 elements must be equal to the 1958 // number of elements in the mask. 1959 if ((Mask[1] - Mask[0]) != NumSrcElts) 1960 return false; 1961 1962 // 4. The difference between consecutive even-numbered and odd-numbered 1963 // elements must be equal to 2. 1964 for (int I = 2; I < Sz; ++I) { 1965 int MaskEltVal = Mask[I]; 1966 if (MaskEltVal == -1) 1967 return false; 1968 int MaskEltPrevVal = Mask[I - 2]; 1969 if (MaskEltVal - MaskEltPrevVal != 2) 1970 return false; 1971 } 1972 return true; 1973 } 1974 1975 bool ShuffleVectorInst::isSpliceMask(ArrayRef<int> Mask, int NumSrcElts, 1976 int &Index) { 1977 if (Mask.size() != static_cast<unsigned>(NumSrcElts)) 1978 return false; 1979 // Example: shufflevector <4 x n> A, <4 x n> B, <1,2,3,4> 1980 int StartIndex = -1; 1981 for (int I = 0, E = Mask.size(); I != E; ++I) { 1982 int MaskEltVal = Mask[I]; 1983 if (MaskEltVal == -1) 1984 continue; 1985 1986 if (StartIndex == -1) { 1987 // Don't support a StartIndex that begins in the second input, or if the 1988 // first non-undef index would access below the StartIndex. 1989 if (MaskEltVal < I || NumSrcElts <= (MaskEltVal - I)) 1990 return false; 1991 1992 StartIndex = MaskEltVal - I; 1993 continue; 1994 } 1995 1996 // Splice is sequential starting from StartIndex. 1997 if (MaskEltVal != (StartIndex + I)) 1998 return false; 1999 } 2000 2001 if (StartIndex == -1) 2002 return false; 2003 2004 // NOTE: This accepts StartIndex == 0 (COPY). 2005 Index = StartIndex; 2006 return true; 2007 } 2008 2009 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask, 2010 int NumSrcElts, int &Index) { 2011 // Must extract from a single source. 2012 if (!isSingleSourceMaskImpl(Mask, NumSrcElts)) 2013 return false; 2014 2015 // Must be smaller (else this is an Identity shuffle). 2016 if (NumSrcElts <= (int)Mask.size()) 2017 return false; 2018 2019 // Find start of extraction, accounting that we may start with an UNDEF. 2020 int SubIndex = -1; 2021 for (int i = 0, e = Mask.size(); i != e; ++i) { 2022 int M = Mask[i]; 2023 if (M < 0) 2024 continue; 2025 int Offset = (M % NumSrcElts) - i; 2026 if (0 <= SubIndex && SubIndex != Offset) 2027 return false; 2028 SubIndex = Offset; 2029 } 2030 2031 if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) { 2032 Index = SubIndex; 2033 return true; 2034 } 2035 return false; 2036 } 2037 2038 bool ShuffleVectorInst::isInsertSubvectorMask(ArrayRef<int> Mask, 2039 int NumSrcElts, int &NumSubElts, 2040 int &Index) { 2041 int NumMaskElts = Mask.size(); 2042 2043 // Don't try to match if we're shuffling to a smaller size. 2044 if (NumMaskElts < NumSrcElts) 2045 return false; 2046 2047 // TODO: We don't recognize self-insertion/widening. 2048 if (isSingleSourceMaskImpl(Mask, NumSrcElts)) 2049 return false; 2050 2051 // Determine which mask elements are attributed to which source. 2052 APInt UndefElts = APInt::getZero(NumMaskElts); 2053 APInt Src0Elts = APInt::getZero(NumMaskElts); 2054 APInt Src1Elts = APInt::getZero(NumMaskElts); 2055 bool Src0Identity = true; 2056 bool Src1Identity = true; 2057 2058 for (int i = 0; i != NumMaskElts; ++i) { 2059 int M = Mask[i]; 2060 if (M < 0) { 2061 UndefElts.setBit(i); 2062 continue; 2063 } 2064 if (M < NumSrcElts) { 2065 Src0Elts.setBit(i); 2066 Src0Identity &= (M == i); 2067 continue; 2068 } 2069 Src1Elts.setBit(i); 2070 Src1Identity &= (M == (i + NumSrcElts)); 2071 } 2072 assert((Src0Elts | Src1Elts | UndefElts).isAllOnes() && 2073 "unknown shuffle elements"); 2074 assert(!Src0Elts.isZero() && !Src1Elts.isZero() && 2075 "2-source shuffle not found"); 2076 2077 // Determine lo/hi span ranges. 2078 // TODO: How should we handle undefs at the start of subvector insertions? 2079 int Src0Lo = Src0Elts.countr_zero(); 2080 int Src1Lo = Src1Elts.countr_zero(); 2081 int Src0Hi = NumMaskElts - Src0Elts.countl_zero(); 2082 int Src1Hi = NumMaskElts - Src1Elts.countl_zero(); 2083 2084 // If src0 is in place, see if the src1 elements is inplace within its own 2085 // span. 2086 if (Src0Identity) { 2087 int NumSub1Elts = Src1Hi - Src1Lo; 2088 ArrayRef<int> Sub1Mask = Mask.slice(Src1Lo, NumSub1Elts); 2089 if (isIdentityMaskImpl(Sub1Mask, NumSrcElts)) { 2090 NumSubElts = NumSub1Elts; 2091 Index = Src1Lo; 2092 return true; 2093 } 2094 } 2095 2096 // If src1 is in place, see if the src0 elements is inplace within its own 2097 // span. 2098 if (Src1Identity) { 2099 int NumSub0Elts = Src0Hi - Src0Lo; 2100 ArrayRef<int> Sub0Mask = Mask.slice(Src0Lo, NumSub0Elts); 2101 if (isIdentityMaskImpl(Sub0Mask, NumSrcElts)) { 2102 NumSubElts = NumSub0Elts; 2103 Index = Src0Lo; 2104 return true; 2105 } 2106 } 2107 2108 return false; 2109 } 2110 2111 bool ShuffleVectorInst::isIdentityWithPadding() const { 2112 // FIXME: Not currently possible to express a shuffle mask for a scalable 2113 // vector for this case. 2114 if (isa<ScalableVectorType>(getType())) 2115 return false; 2116 2117 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); 2118 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements(); 2119 if (NumMaskElts <= NumOpElts) 2120 return false; 2121 2122 // The first part of the mask must choose elements from exactly 1 source op. 2123 ArrayRef<int> Mask = getShuffleMask(); 2124 if (!isIdentityMaskImpl(Mask, NumOpElts)) 2125 return false; 2126 2127 // All extending must be with undef elements. 2128 for (int i = NumOpElts; i < NumMaskElts; ++i) 2129 if (Mask[i] != -1) 2130 return false; 2131 2132 return true; 2133 } 2134 2135 bool ShuffleVectorInst::isIdentityWithExtract() const { 2136 // FIXME: Not currently possible to express a shuffle mask for a scalable 2137 // vector for this case. 2138 if (isa<ScalableVectorType>(getType())) 2139 return false; 2140 2141 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); 2142 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements(); 2143 if (NumMaskElts >= NumOpElts) 2144 return false; 2145 2146 return isIdentityMaskImpl(getShuffleMask(), NumOpElts); 2147 } 2148 2149 bool ShuffleVectorInst::isConcat() const { 2150 // Vector concatenation is differentiated from identity with padding. 2151 if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>())) 2152 return false; 2153 2154 // FIXME: Not currently possible to express a shuffle mask for a scalable 2155 // vector for this case. 2156 if (isa<ScalableVectorType>(getType())) 2157 return false; 2158 2159 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); 2160 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements(); 2161 if (NumMaskElts != NumOpElts * 2) 2162 return false; 2163 2164 // Use the mask length rather than the operands' vector lengths here. We 2165 // already know that the shuffle returns a vector twice as long as the inputs, 2166 // and neither of the inputs are undef vectors. If the mask picks consecutive 2167 // elements from both inputs, then this is a concatenation of the inputs. 2168 return isIdentityMaskImpl(getShuffleMask(), NumMaskElts); 2169 } 2170 2171 static bool isReplicationMaskWithParams(ArrayRef<int> Mask, 2172 int ReplicationFactor, int VF) { 2173 assert(Mask.size() == (unsigned)ReplicationFactor * VF && 2174 "Unexpected mask size."); 2175 2176 for (int CurrElt : seq(VF)) { 2177 ArrayRef<int> CurrSubMask = Mask.take_front(ReplicationFactor); 2178 assert(CurrSubMask.size() == (unsigned)ReplicationFactor && 2179 "Run out of mask?"); 2180 Mask = Mask.drop_front(ReplicationFactor); 2181 if (!all_of(CurrSubMask, [CurrElt](int MaskElt) { 2182 return MaskElt == PoisonMaskElem || MaskElt == CurrElt; 2183 })) 2184 return false; 2185 } 2186 assert(Mask.empty() && "Did not consume the whole mask?"); 2187 2188 return true; 2189 } 2190 2191 bool ShuffleVectorInst::isReplicationMask(ArrayRef<int> Mask, 2192 int &ReplicationFactor, int &VF) { 2193 // undef-less case is trivial. 2194 if (!llvm::is_contained(Mask, PoisonMaskElem)) { 2195 ReplicationFactor = 2196 Mask.take_while([](int MaskElt) { return MaskElt == 0; }).size(); 2197 if (ReplicationFactor == 0 || Mask.size() % ReplicationFactor != 0) 2198 return false; 2199 VF = Mask.size() / ReplicationFactor; 2200 return isReplicationMaskWithParams(Mask, ReplicationFactor, VF); 2201 } 2202 2203 // However, if the mask contains undef's, we have to enumerate possible tuples 2204 // and pick one. There are bounds on replication factor: [1, mask size] 2205 // (where RF=1 is an identity shuffle, RF=mask size is a broadcast shuffle) 2206 // Additionally, mask size is a replication factor multiplied by vector size, 2207 // which further significantly reduces the search space. 2208 2209 // Before doing that, let's perform basic correctness checking first. 2210 int Largest = -1; 2211 for (int MaskElt : Mask) { 2212 if (MaskElt == PoisonMaskElem) 2213 continue; 2214 // Elements must be in non-decreasing order. 2215 if (MaskElt < Largest) 2216 return false; 2217 Largest = std::max(Largest, MaskElt); 2218 } 2219 2220 // Prefer larger replication factor if all else equal. 2221 for (int PossibleReplicationFactor : 2222 reverse(seq_inclusive<unsigned>(1, Mask.size()))) { 2223 if (Mask.size() % PossibleReplicationFactor != 0) 2224 continue; 2225 int PossibleVF = Mask.size() / PossibleReplicationFactor; 2226 if (!isReplicationMaskWithParams(Mask, PossibleReplicationFactor, 2227 PossibleVF)) 2228 continue; 2229 ReplicationFactor = PossibleReplicationFactor; 2230 VF = PossibleVF; 2231 return true; 2232 } 2233 2234 return false; 2235 } 2236 2237 bool ShuffleVectorInst::isReplicationMask(int &ReplicationFactor, 2238 int &VF) const { 2239 // Not possible to express a shuffle mask for a scalable vector for this 2240 // case. 2241 if (isa<ScalableVectorType>(getType())) 2242 return false; 2243 2244 VF = cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); 2245 if (ShuffleMask.size() % VF != 0) 2246 return false; 2247 ReplicationFactor = ShuffleMask.size() / VF; 2248 2249 return isReplicationMaskWithParams(ShuffleMask, ReplicationFactor, VF); 2250 } 2251 2252 bool ShuffleVectorInst::isOneUseSingleSourceMask(ArrayRef<int> Mask, int VF) { 2253 if (VF <= 0 || Mask.size() < static_cast<unsigned>(VF) || 2254 Mask.size() % VF != 0) 2255 return false; 2256 for (unsigned K = 0, Sz = Mask.size(); K < Sz; K += VF) { 2257 ArrayRef<int> SubMask = Mask.slice(K, VF); 2258 if (all_of(SubMask, [](int Idx) { return Idx == PoisonMaskElem; })) 2259 continue; 2260 SmallBitVector Used(VF, false); 2261 for (int Idx : SubMask) { 2262 if (Idx != PoisonMaskElem && Idx < VF) 2263 Used.set(Idx); 2264 } 2265 if (!Used.all()) 2266 return false; 2267 } 2268 return true; 2269 } 2270 2271 /// Return true if this shuffle mask is a replication mask. 2272 bool ShuffleVectorInst::isOneUseSingleSourceMask(int VF) const { 2273 // Not possible to express a shuffle mask for a scalable vector for this 2274 // case. 2275 if (isa<ScalableVectorType>(getType())) 2276 return false; 2277 if (!isSingleSourceMask(ShuffleMask, VF)) 2278 return false; 2279 2280 return isOneUseSingleSourceMask(ShuffleMask, VF); 2281 } 2282 2283 bool ShuffleVectorInst::isInterleave(unsigned Factor) { 2284 FixedVectorType *OpTy = dyn_cast<FixedVectorType>(getOperand(0)->getType()); 2285 // shuffle_vector can only interleave fixed length vectors - for scalable 2286 // vectors, see the @llvm.vector.interleave2 intrinsic 2287 if (!OpTy) 2288 return false; 2289 unsigned OpNumElts = OpTy->getNumElements(); 2290 2291 return isInterleaveMask(ShuffleMask, Factor, OpNumElts * 2); 2292 } 2293 2294 bool ShuffleVectorInst::isInterleaveMask( 2295 ArrayRef<int> Mask, unsigned Factor, unsigned NumInputElts, 2296 SmallVectorImpl<unsigned> &StartIndexes) { 2297 unsigned NumElts = Mask.size(); 2298 if (NumElts % Factor) 2299 return false; 2300 2301 unsigned LaneLen = NumElts / Factor; 2302 if (!isPowerOf2_32(LaneLen)) 2303 return false; 2304 2305 StartIndexes.resize(Factor); 2306 2307 // Check whether each element matches the general interleaved rule. 2308 // Ignore undef elements, as long as the defined elements match the rule. 2309 // Outer loop processes all factors (x, y, z in the above example) 2310 unsigned I = 0, J; 2311 for (; I < Factor; I++) { 2312 unsigned SavedLaneValue; 2313 unsigned SavedNoUndefs = 0; 2314 2315 // Inner loop processes consecutive accesses (x, x+1... in the example) 2316 for (J = 0; J < LaneLen - 1; J++) { 2317 // Lane computes x's position in the Mask 2318 unsigned Lane = J * Factor + I; 2319 unsigned NextLane = Lane + Factor; 2320 int LaneValue = Mask[Lane]; 2321 int NextLaneValue = Mask[NextLane]; 2322 2323 // If both are defined, values must be sequential 2324 if (LaneValue >= 0 && NextLaneValue >= 0 && 2325 LaneValue + 1 != NextLaneValue) 2326 break; 2327 2328 // If the next value is undef, save the current one as reference 2329 if (LaneValue >= 0 && NextLaneValue < 0) { 2330 SavedLaneValue = LaneValue; 2331 SavedNoUndefs = 1; 2332 } 2333 2334 // Undefs are allowed, but defined elements must still be consecutive: 2335 // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, .... 2336 // Verify this by storing the last non-undef followed by an undef 2337 // Check that following non-undef masks are incremented with the 2338 // corresponding distance. 2339 if (SavedNoUndefs > 0 && LaneValue < 0) { 2340 SavedNoUndefs++; 2341 if (NextLaneValue >= 0 && 2342 SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue) 2343 break; 2344 } 2345 } 2346 2347 if (J < LaneLen - 1) 2348 return false; 2349 2350 int StartMask = 0; 2351 if (Mask[I] >= 0) { 2352 // Check that the start of the I range (J=0) is greater than 0 2353 StartMask = Mask[I]; 2354 } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) { 2355 // StartMask defined by the last value in lane 2356 StartMask = Mask[(LaneLen - 1) * Factor + I] - J; 2357 } else if (SavedNoUndefs > 0) { 2358 // StartMask defined by some non-zero value in the j loop 2359 StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs); 2360 } 2361 // else StartMask remains set to 0, i.e. all elements are undefs 2362 2363 if (StartMask < 0) 2364 return false; 2365 // We must stay within the vectors; This case can happen with undefs. 2366 if (StartMask + LaneLen > NumInputElts) 2367 return false; 2368 2369 StartIndexes[I] = StartMask; 2370 } 2371 2372 return true; 2373 } 2374 2375 /// Check if the mask is a DE-interleave mask of the given factor 2376 /// \p Factor like: 2377 /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor> 2378 bool ShuffleVectorInst::isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, 2379 unsigned Factor, 2380 unsigned &Index) { 2381 // Check all potential start indices from 0 to (Factor - 1). 2382 for (unsigned Idx = 0; Idx < Factor; Idx++) { 2383 unsigned I = 0; 2384 2385 // Check that elements are in ascending order by Factor. Ignore undef 2386 // elements. 2387 for (; I < Mask.size(); I++) 2388 if (Mask[I] >= 0 && static_cast<unsigned>(Mask[I]) != Idx + I * Factor) 2389 break; 2390 2391 if (I == Mask.size()) { 2392 Index = Idx; 2393 return true; 2394 } 2395 } 2396 2397 return false; 2398 } 2399 2400 /// Try to lower a vector shuffle as a bit rotation. 2401 /// 2402 /// Look for a repeated rotation pattern in each sub group. 2403 /// Returns an element-wise left bit rotation amount or -1 if failed. 2404 static int matchShuffleAsBitRotate(ArrayRef<int> Mask, int NumSubElts) { 2405 int NumElts = Mask.size(); 2406 assert((NumElts % NumSubElts) == 0 && "Illegal shuffle mask"); 2407 2408 int RotateAmt = -1; 2409 for (int i = 0; i != NumElts; i += NumSubElts) { 2410 for (int j = 0; j != NumSubElts; ++j) { 2411 int M = Mask[i + j]; 2412 if (M < 0) 2413 continue; 2414 if (M < i || M >= i + NumSubElts) 2415 return -1; 2416 int Offset = (NumSubElts - (M - (i + j))) % NumSubElts; 2417 if (0 <= RotateAmt && Offset != RotateAmt) 2418 return -1; 2419 RotateAmt = Offset; 2420 } 2421 } 2422 return RotateAmt; 2423 } 2424 2425 bool ShuffleVectorInst::isBitRotateMask( 2426 ArrayRef<int> Mask, unsigned EltSizeInBits, unsigned MinSubElts, 2427 unsigned MaxSubElts, unsigned &NumSubElts, unsigned &RotateAmt) { 2428 for (NumSubElts = MinSubElts; NumSubElts <= MaxSubElts; NumSubElts *= 2) { 2429 int EltRotateAmt = matchShuffleAsBitRotate(Mask, NumSubElts); 2430 if (EltRotateAmt < 0) 2431 continue; 2432 RotateAmt = EltRotateAmt * EltSizeInBits; 2433 return true; 2434 } 2435 2436 return false; 2437 } 2438 2439 //===----------------------------------------------------------------------===// 2440 // InsertValueInst Class 2441 //===----------------------------------------------------------------------===// 2442 2443 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 2444 const Twine &Name) { 2445 assert(getNumOperands() == 2 && "NumOperands not initialized?"); 2446 2447 // There's no fundamental reason why we require at least one index 2448 // (other than weirdness with &*IdxBegin being invalid; see 2449 // getelementptr's init routine for example). But there's no 2450 // present need to support it. 2451 assert(!Idxs.empty() && "InsertValueInst must have at least one index"); 2452 2453 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) == 2454 Val->getType() && "Inserted value must match indexed type!"); 2455 Op<0>() = Agg; 2456 Op<1>() = Val; 2457 2458 Indices.append(Idxs.begin(), Idxs.end()); 2459 setName(Name); 2460 } 2461 2462 InsertValueInst::InsertValueInst(const InsertValueInst &IVI) 2463 : Instruction(IVI.getType(), InsertValue, 2464 OperandTraits<InsertValueInst>::op_begin(this), 2), 2465 Indices(IVI.Indices) { 2466 Op<0>() = IVI.getOperand(0); 2467 Op<1>() = IVI.getOperand(1); 2468 SubclassOptionalData = IVI.SubclassOptionalData; 2469 } 2470 2471 //===----------------------------------------------------------------------===// 2472 // ExtractValueInst Class 2473 //===----------------------------------------------------------------------===// 2474 2475 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) { 2476 assert(getNumOperands() == 1 && "NumOperands not initialized?"); 2477 2478 // There's no fundamental reason why we require at least one index. 2479 // But there's no present need to support it. 2480 assert(!Idxs.empty() && "ExtractValueInst must have at least one index"); 2481 2482 Indices.append(Idxs.begin(), Idxs.end()); 2483 setName(Name); 2484 } 2485 2486 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI) 2487 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)), 2488 Indices(EVI.Indices) { 2489 SubclassOptionalData = EVI.SubclassOptionalData; 2490 } 2491 2492 // getIndexedType - Returns the type of the element that would be extracted 2493 // with an extractvalue instruction with the specified parameters. 2494 // 2495 // A null type is returned if the indices are invalid for the specified 2496 // pointer type. 2497 // 2498 Type *ExtractValueInst::getIndexedType(Type *Agg, 2499 ArrayRef<unsigned> Idxs) { 2500 for (unsigned Index : Idxs) { 2501 // We can't use CompositeType::indexValid(Index) here. 2502 // indexValid() always returns true for arrays because getelementptr allows 2503 // out-of-bounds indices. Since we don't allow those for extractvalue and 2504 // insertvalue we need to check array indexing manually. 2505 // Since the only other types we can index into are struct types it's just 2506 // as easy to check those manually as well. 2507 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) { 2508 if (Index >= AT->getNumElements()) 2509 return nullptr; 2510 Agg = AT->getElementType(); 2511 } else if (StructType *ST = dyn_cast<StructType>(Agg)) { 2512 if (Index >= ST->getNumElements()) 2513 return nullptr; 2514 Agg = ST->getElementType(Index); 2515 } else { 2516 // Not a valid type to index into. 2517 return nullptr; 2518 } 2519 } 2520 return const_cast<Type*>(Agg); 2521 } 2522 2523 //===----------------------------------------------------------------------===// 2524 // UnaryOperator Class 2525 //===----------------------------------------------------------------------===// 2526 2527 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S, Type *Ty, 2528 const Twine &Name, InsertPosition InsertBefore) 2529 : UnaryInstruction(Ty, iType, S, InsertBefore) { 2530 Op<0>() = S; 2531 setName(Name); 2532 AssertOK(); 2533 } 2534 2535 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S, const Twine &Name, 2536 InsertPosition InsertBefore) { 2537 return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore); 2538 } 2539 2540 void UnaryOperator::AssertOK() { 2541 Value *LHS = getOperand(0); 2542 (void)LHS; // Silence warnings. 2543 #ifndef NDEBUG 2544 switch (getOpcode()) { 2545 case FNeg: 2546 assert(getType() == LHS->getType() && 2547 "Unary operation should return same type as operand!"); 2548 assert(getType()->isFPOrFPVectorTy() && 2549 "Tried to create a floating-point operation on a " 2550 "non-floating-point type!"); 2551 break; 2552 default: llvm_unreachable("Invalid opcode provided"); 2553 } 2554 #endif 2555 } 2556 2557 //===----------------------------------------------------------------------===// 2558 // BinaryOperator Class 2559 //===----------------------------------------------------------------------===// 2560 2561 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty, 2562 const Twine &Name, InsertPosition InsertBefore) 2563 : Instruction(Ty, iType, OperandTraits<BinaryOperator>::op_begin(this), 2564 OperandTraits<BinaryOperator>::operands(this), InsertBefore) { 2565 Op<0>() = S1; 2566 Op<1>() = S2; 2567 setName(Name); 2568 AssertOK(); 2569 } 2570 2571 void BinaryOperator::AssertOK() { 2572 Value *LHS = getOperand(0), *RHS = getOperand(1); 2573 (void)LHS; (void)RHS; // Silence warnings. 2574 assert(LHS->getType() == RHS->getType() && 2575 "Binary operator operand types must match!"); 2576 #ifndef NDEBUG 2577 switch (getOpcode()) { 2578 case Add: case Sub: 2579 case Mul: 2580 assert(getType() == LHS->getType() && 2581 "Arithmetic operation should return same type as operands!"); 2582 assert(getType()->isIntOrIntVectorTy() && 2583 "Tried to create an integer operation on a non-integer type!"); 2584 break; 2585 case FAdd: case FSub: 2586 case FMul: 2587 assert(getType() == LHS->getType() && 2588 "Arithmetic operation should return same type as operands!"); 2589 assert(getType()->isFPOrFPVectorTy() && 2590 "Tried to create a floating-point operation on a " 2591 "non-floating-point type!"); 2592 break; 2593 case UDiv: 2594 case SDiv: 2595 assert(getType() == LHS->getType() && 2596 "Arithmetic operation should return same type as operands!"); 2597 assert(getType()->isIntOrIntVectorTy() && 2598 "Incorrect operand type (not integer) for S/UDIV"); 2599 break; 2600 case FDiv: 2601 assert(getType() == LHS->getType() && 2602 "Arithmetic operation should return same type as operands!"); 2603 assert(getType()->isFPOrFPVectorTy() && 2604 "Incorrect operand type (not floating point) for FDIV"); 2605 break; 2606 case URem: 2607 case SRem: 2608 assert(getType() == LHS->getType() && 2609 "Arithmetic operation should return same type as operands!"); 2610 assert(getType()->isIntOrIntVectorTy() && 2611 "Incorrect operand type (not integer) for S/UREM"); 2612 break; 2613 case FRem: 2614 assert(getType() == LHS->getType() && 2615 "Arithmetic operation should return same type as operands!"); 2616 assert(getType()->isFPOrFPVectorTy() && 2617 "Incorrect operand type (not floating point) for FREM"); 2618 break; 2619 case Shl: 2620 case LShr: 2621 case AShr: 2622 assert(getType() == LHS->getType() && 2623 "Shift operation should return same type as operands!"); 2624 assert(getType()->isIntOrIntVectorTy() && 2625 "Tried to create a shift operation on a non-integral type!"); 2626 break; 2627 case And: case Or: 2628 case Xor: 2629 assert(getType() == LHS->getType() && 2630 "Logical operation should return same type as operands!"); 2631 assert(getType()->isIntOrIntVectorTy() && 2632 "Tried to create a logical operation on a non-integral type!"); 2633 break; 2634 default: llvm_unreachable("Invalid opcode provided"); 2635 } 2636 #endif 2637 } 2638 2639 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 2640 const Twine &Name, 2641 InsertPosition InsertBefore) { 2642 assert(S1->getType() == S2->getType() && 2643 "Cannot create binary operator with two operands of differing type!"); 2644 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); 2645 } 2646 2647 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 2648 InsertPosition InsertBefore) { 2649 Value *Zero = ConstantInt::get(Op->getType(), 0); 2650 return new BinaryOperator(Instruction::Sub, Zero, Op, Op->getType(), Name, 2651 InsertBefore); 2652 } 2653 2654 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 2655 InsertPosition InsertBefore) { 2656 Value *Zero = ConstantInt::get(Op->getType(), 0); 2657 return BinaryOperator::CreateNSWSub(Zero, Op, Name, InsertBefore); 2658 } 2659 2660 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 2661 InsertPosition InsertBefore) { 2662 Constant *C = Constant::getAllOnesValue(Op->getType()); 2663 return new BinaryOperator(Instruction::Xor, Op, C, 2664 Op->getType(), Name, InsertBefore); 2665 } 2666 2667 // Exchange the two operands to this instruction. This instruction is safe to 2668 // use on any binary instruction and does not modify the semantics of the 2669 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode 2670 // is changed. 2671 bool BinaryOperator::swapOperands() { 2672 if (!isCommutative()) 2673 return true; // Can't commute operands 2674 Op<0>().swap(Op<1>()); 2675 return false; 2676 } 2677 2678 //===----------------------------------------------------------------------===// 2679 // FPMathOperator Class 2680 //===----------------------------------------------------------------------===// 2681 2682 float FPMathOperator::getFPAccuracy() const { 2683 const MDNode *MD = 2684 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath); 2685 if (!MD) 2686 return 0.0; 2687 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0)); 2688 return Accuracy->getValueAPF().convertToFloat(); 2689 } 2690 2691 //===----------------------------------------------------------------------===// 2692 // CastInst Class 2693 //===----------------------------------------------------------------------===// 2694 2695 // Just determine if this cast only deals with integral->integral conversion. 2696 bool CastInst::isIntegerCast() const { 2697 switch (getOpcode()) { 2698 default: return false; 2699 case Instruction::ZExt: 2700 case Instruction::SExt: 2701 case Instruction::Trunc: 2702 return true; 2703 case Instruction::BitCast: 2704 return getOperand(0)->getType()->isIntegerTy() && 2705 getType()->isIntegerTy(); 2706 } 2707 } 2708 2709 /// This function determines if the CastInst does not require any bits to be 2710 /// changed in order to effect the cast. Essentially, it identifies cases where 2711 /// no code gen is necessary for the cast, hence the name no-op cast. For 2712 /// example, the following are all no-op casts: 2713 /// # bitcast i32* %x to i8* 2714 /// # bitcast <2 x i32> %x to <4 x i16> 2715 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only 2716 /// Determine if the described cast is a no-op. 2717 bool CastInst::isNoopCast(Instruction::CastOps Opcode, 2718 Type *SrcTy, 2719 Type *DestTy, 2720 const DataLayout &DL) { 2721 assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition"); 2722 switch (Opcode) { 2723 default: llvm_unreachable("Invalid CastOp"); 2724 case Instruction::Trunc: 2725 case Instruction::ZExt: 2726 case Instruction::SExt: 2727 case Instruction::FPTrunc: 2728 case Instruction::FPExt: 2729 case Instruction::UIToFP: 2730 case Instruction::SIToFP: 2731 case Instruction::FPToUI: 2732 case Instruction::FPToSI: 2733 case Instruction::AddrSpaceCast: 2734 // TODO: Target informations may give a more accurate answer here. 2735 return false; 2736 case Instruction::BitCast: 2737 return true; // BitCast never modifies bits. 2738 case Instruction::PtrToInt: 2739 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() == 2740 DestTy->getScalarSizeInBits(); 2741 case Instruction::IntToPtr: 2742 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() == 2743 SrcTy->getScalarSizeInBits(); 2744 } 2745 } 2746 2747 bool CastInst::isNoopCast(const DataLayout &DL) const { 2748 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL); 2749 } 2750 2751 /// This function determines if a pair of casts can be eliminated and what 2752 /// opcode should be used in the elimination. This assumes that there are two 2753 /// instructions like this: 2754 /// * %F = firstOpcode SrcTy %x to MidTy 2755 /// * %S = secondOpcode MidTy %F to DstTy 2756 /// The function returns a resultOpcode so these two casts can be replaced with: 2757 /// * %Replacement = resultOpcode %SrcTy %x to DstTy 2758 /// If no such cast is permitted, the function returns 0. 2759 unsigned CastInst::isEliminableCastPair( 2760 Instruction::CastOps firstOp, Instruction::CastOps secondOp, 2761 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, 2762 Type *DstIntPtrTy) { 2763 // Define the 144 possibilities for these two cast instructions. The values 2764 // in this matrix determine what to do in a given situation and select the 2765 // case in the switch below. The rows correspond to firstOp, the columns 2766 // correspond to secondOp. In looking at the table below, keep in mind 2767 // the following cast properties: 2768 // 2769 // Size Compare Source Destination 2770 // Operator Src ? Size Type Sign Type Sign 2771 // -------- ------------ ------------------- --------------------- 2772 // TRUNC > Integer Any Integral Any 2773 // ZEXT < Integral Unsigned Integer Any 2774 // SEXT < Integral Signed Integer Any 2775 // FPTOUI n/a FloatPt n/a Integral Unsigned 2776 // FPTOSI n/a FloatPt n/a Integral Signed 2777 // UITOFP n/a Integral Unsigned FloatPt n/a 2778 // SITOFP n/a Integral Signed FloatPt n/a 2779 // FPTRUNC > FloatPt n/a FloatPt n/a 2780 // FPEXT < FloatPt n/a FloatPt n/a 2781 // PTRTOINT n/a Pointer n/a Integral Unsigned 2782 // INTTOPTR n/a Integral Unsigned Pointer n/a 2783 // BITCAST = FirstClass n/a FirstClass n/a 2784 // ADDRSPCST n/a Pointer n/a Pointer n/a 2785 // 2786 // NOTE: some transforms are safe, but we consider them to be non-profitable. 2787 // For example, we could merge "fptoui double to i32" + "zext i32 to i64", 2788 // into "fptoui double to i64", but this loses information about the range 2789 // of the produced value (we no longer know the top-part is all zeros). 2790 // Further this conversion is often much more expensive for typical hardware, 2791 // and causes issues when building libgcc. We disallow fptosi+sext for the 2792 // same reason. 2793 const unsigned numCastOps = 2794 Instruction::CastOpsEnd - Instruction::CastOpsBegin; 2795 static const uint8_t CastResults[numCastOps][numCastOps] = { 2796 // T F F U S F F P I B A -+ 2797 // R Z S P P I I T P 2 N T S | 2798 // U E E 2 2 2 2 R E I T C C +- secondOp 2799 // N X X U S F F N X N 2 V V | 2800 // C T T I I P P C T T P T T -+ 2801 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+ 2802 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt | 2803 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt | 2804 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI | 2805 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI | 2806 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp 2807 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP | 2808 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc | 2809 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt | 2810 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt | 2811 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr | 2812 { 5, 5, 5, 0, 0, 5, 5, 0, 0,16, 5, 1,14}, // BitCast | 2813 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+ 2814 }; 2815 2816 // TODO: This logic could be encoded into the table above and handled in the 2817 // switch below. 2818 // If either of the casts are a bitcast from scalar to vector, disallow the 2819 // merging. However, any pair of bitcasts are allowed. 2820 bool IsFirstBitcast = (firstOp == Instruction::BitCast); 2821 bool IsSecondBitcast = (secondOp == Instruction::BitCast); 2822 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast; 2823 2824 // Check if any of the casts convert scalars <-> vectors. 2825 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) || 2826 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy))) 2827 if (!AreBothBitcasts) 2828 return 0; 2829 2830 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin] 2831 [secondOp-Instruction::CastOpsBegin]; 2832 switch (ElimCase) { 2833 case 0: 2834 // Categorically disallowed. 2835 return 0; 2836 case 1: 2837 // Allowed, use first cast's opcode. 2838 return firstOp; 2839 case 2: 2840 // Allowed, use second cast's opcode. 2841 return secondOp; 2842 case 3: 2843 // No-op cast in second op implies firstOp as long as the DestTy 2844 // is integer and we are not converting between a vector and a 2845 // non-vector type. 2846 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy()) 2847 return firstOp; 2848 return 0; 2849 case 4: 2850 // No-op cast in second op implies firstOp as long as the DestTy 2851 // matches MidTy. 2852 if (DstTy == MidTy) 2853 return firstOp; 2854 return 0; 2855 case 5: 2856 // No-op cast in first op implies secondOp as long as the SrcTy 2857 // is an integer. 2858 if (SrcTy->isIntegerTy()) 2859 return secondOp; 2860 return 0; 2861 case 7: { 2862 // Disable inttoptr/ptrtoint optimization if enabled. 2863 if (DisableI2pP2iOpt) 2864 return 0; 2865 2866 // Cannot simplify if address spaces are different! 2867 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) 2868 return 0; 2869 2870 unsigned MidSize = MidTy->getScalarSizeInBits(); 2871 // We can still fold this without knowing the actual sizes as long we 2872 // know that the intermediate pointer is the largest possible 2873 // pointer size. 2874 // FIXME: Is this always true? 2875 if (MidSize == 64) 2876 return Instruction::BitCast; 2877 2878 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size. 2879 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy) 2880 return 0; 2881 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits(); 2882 if (MidSize >= PtrSize) 2883 return Instruction::BitCast; 2884 return 0; 2885 } 2886 case 8: { 2887 // ext, trunc -> bitcast, if the SrcTy and DstTy are the same 2888 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy) 2889 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy) 2890 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2891 unsigned DstSize = DstTy->getScalarSizeInBits(); 2892 if (SrcTy == DstTy) 2893 return Instruction::BitCast; 2894 if (SrcSize < DstSize) 2895 return firstOp; 2896 if (SrcSize > DstSize) 2897 return secondOp; 2898 return 0; 2899 } 2900 case 9: 2901 // zext, sext -> zext, because sext can't sign extend after zext 2902 return Instruction::ZExt; 2903 case 11: { 2904 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize 2905 if (!MidIntPtrTy) 2906 return 0; 2907 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits(); 2908 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2909 unsigned DstSize = DstTy->getScalarSizeInBits(); 2910 if (SrcSize <= PtrSize && SrcSize == DstSize) 2911 return Instruction::BitCast; 2912 return 0; 2913 } 2914 case 12: 2915 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS 2916 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS 2917 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) 2918 return Instruction::AddrSpaceCast; 2919 return Instruction::BitCast; 2920 case 13: 2921 // FIXME: this state can be merged with (1), but the following assert 2922 // is useful to check the correcteness of the sequence due to semantic 2923 // change of bitcast. 2924 assert( 2925 SrcTy->isPtrOrPtrVectorTy() && 2926 MidTy->isPtrOrPtrVectorTy() && 2927 DstTy->isPtrOrPtrVectorTy() && 2928 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() && 2929 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && 2930 "Illegal addrspacecast, bitcast sequence!"); 2931 // Allowed, use first cast's opcode 2932 return firstOp; 2933 case 14: 2934 // bitcast, addrspacecast -> addrspacecast 2935 return Instruction::AddrSpaceCast; 2936 case 15: 2937 // FIXME: this state can be merged with (1), but the following assert 2938 // is useful to check the correcteness of the sequence due to semantic 2939 // change of bitcast. 2940 assert( 2941 SrcTy->isIntOrIntVectorTy() && 2942 MidTy->isPtrOrPtrVectorTy() && 2943 DstTy->isPtrOrPtrVectorTy() && 2944 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && 2945 "Illegal inttoptr, bitcast sequence!"); 2946 // Allowed, use first cast's opcode 2947 return firstOp; 2948 case 16: 2949 // FIXME: this state can be merged with (2), but the following assert 2950 // is useful to check the correcteness of the sequence due to semantic 2951 // change of bitcast. 2952 assert( 2953 SrcTy->isPtrOrPtrVectorTy() && 2954 MidTy->isPtrOrPtrVectorTy() && 2955 DstTy->isIntOrIntVectorTy() && 2956 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() && 2957 "Illegal bitcast, ptrtoint sequence!"); 2958 // Allowed, use second cast's opcode 2959 return secondOp; 2960 case 17: 2961 // (sitofp (zext x)) -> (uitofp x) 2962 return Instruction::UIToFP; 2963 case 99: 2964 // Cast combination can't happen (error in input). This is for all cases 2965 // where the MidTy is not the same for the two cast instructions. 2966 llvm_unreachable("Invalid Cast Combination"); 2967 default: 2968 llvm_unreachable("Error in CastResults table!!!"); 2969 } 2970 } 2971 2972 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2973 const Twine &Name, InsertPosition InsertBefore) { 2974 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2975 // Construct and return the appropriate CastInst subclass 2976 switch (op) { 2977 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore); 2978 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore); 2979 case SExt: return new SExtInst (S, Ty, Name, InsertBefore); 2980 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore); 2981 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore); 2982 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore); 2983 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore); 2984 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore); 2985 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore); 2986 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore); 2987 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore); 2988 case BitCast: 2989 return new BitCastInst(S, Ty, Name, InsertBefore); 2990 case AddrSpaceCast: 2991 return new AddrSpaceCastInst(S, Ty, Name, InsertBefore); 2992 default: 2993 llvm_unreachable("Invalid opcode provided"); 2994 } 2995 } 2996 2997 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, const Twine &Name, 2998 InsertPosition InsertBefore) { 2999 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 3000 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 3001 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore); 3002 } 3003 3004 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, const Twine &Name, 3005 InsertPosition InsertBefore) { 3006 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 3007 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 3008 return Create(Instruction::SExt, S, Ty, Name, InsertBefore); 3009 } 3010 3011 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name, 3012 InsertPosition InsertBefore) { 3013 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 3014 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 3015 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore); 3016 } 3017 3018 /// Create a BitCast or a PtrToInt cast instruction 3019 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, const Twine &Name, 3020 InsertPosition InsertBefore) { 3021 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 3022 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 3023 "Invalid cast"); 3024 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 3025 assert((!Ty->isVectorTy() || 3026 cast<VectorType>(Ty)->getElementCount() == 3027 cast<VectorType>(S->getType())->getElementCount()) && 3028 "Invalid cast"); 3029 3030 if (Ty->isIntOrIntVectorTy()) 3031 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 3032 3033 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore); 3034 } 3035 3036 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( 3037 Value *S, Type *Ty, const Twine &Name, InsertPosition InsertBefore) { 3038 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 3039 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 3040 3041 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 3042 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore); 3043 3044 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 3045 } 3046 3047 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty, 3048 const Twine &Name, 3049 InsertPosition InsertBefore) { 3050 if (S->getType()->isPointerTy() && Ty->isIntegerTy()) 3051 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 3052 if (S->getType()->isIntegerTy() && Ty->isPointerTy()) 3053 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore); 3054 3055 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 3056 } 3057 3058 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, bool isSigned, 3059 const Twine &Name, 3060 InsertPosition InsertBefore) { 3061 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 3062 "Invalid integer cast"); 3063 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 3064 unsigned DstBits = Ty->getScalarSizeInBits(); 3065 Instruction::CastOps opcode = 3066 (SrcBits == DstBits ? Instruction::BitCast : 3067 (SrcBits > DstBits ? Instruction::Trunc : 3068 (isSigned ? Instruction::SExt : Instruction::ZExt))); 3069 return Create(opcode, C, Ty, Name, InsertBefore); 3070 } 3071 3072 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, const Twine &Name, 3073 InsertPosition InsertBefore) { 3074 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 3075 "Invalid cast"); 3076 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 3077 unsigned DstBits = Ty->getScalarSizeInBits(); 3078 assert((C->getType() == Ty || SrcBits != DstBits) && "Invalid cast"); 3079 Instruction::CastOps opcode = 3080 (SrcBits == DstBits ? Instruction::BitCast : 3081 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 3082 return Create(opcode, C, Ty, Name, InsertBefore); 3083 } 3084 3085 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) { 3086 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) 3087 return false; 3088 3089 if (SrcTy == DestTy) 3090 return true; 3091 3092 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { 3093 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) { 3094 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) { 3095 // An element by element cast. Valid if casting the elements is valid. 3096 SrcTy = SrcVecTy->getElementType(); 3097 DestTy = DestVecTy->getElementType(); 3098 } 3099 } 3100 } 3101 3102 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) { 3103 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) { 3104 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace(); 3105 } 3106 } 3107 3108 TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 3109 TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 3110 3111 // Could still have vectors of pointers if the number of elements doesn't 3112 // match 3113 if (SrcBits.getKnownMinValue() == 0 || DestBits.getKnownMinValue() == 0) 3114 return false; 3115 3116 if (SrcBits != DestBits) 3117 return false; 3118 3119 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy()) 3120 return false; 3121 3122 return true; 3123 } 3124 3125 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, 3126 const DataLayout &DL) { 3127 // ptrtoint and inttoptr are not allowed on non-integral pointers 3128 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy)) 3129 if (auto *IntTy = dyn_cast<IntegerType>(DestTy)) 3130 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) && 3131 !DL.isNonIntegralPointerType(PtrTy)); 3132 if (auto *PtrTy = dyn_cast<PointerType>(DestTy)) 3133 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy)) 3134 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) && 3135 !DL.isNonIntegralPointerType(PtrTy)); 3136 3137 return isBitCastable(SrcTy, DestTy); 3138 } 3139 3140 // Provide a way to get a "cast" where the cast opcode is inferred from the 3141 // types and size of the operand. This, basically, is a parallel of the 3142 // logic in the castIsValid function below. This axiom should hold: 3143 // castIsValid( getCastOpcode(Val, Ty), Val, Ty) 3144 // should not assert in castIsValid. In other words, this produces a "correct" 3145 // casting opcode for the arguments passed to it. 3146 Instruction::CastOps 3147 CastInst::getCastOpcode( 3148 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) { 3149 Type *SrcTy = Src->getType(); 3150 3151 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() && 3152 "Only first class types are castable!"); 3153 3154 if (SrcTy == DestTy) 3155 return BitCast; 3156 3157 // FIXME: Check address space sizes here 3158 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 3159 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 3160 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) { 3161 // An element by element cast. Find the appropriate opcode based on the 3162 // element types. 3163 SrcTy = SrcVecTy->getElementType(); 3164 DestTy = DestVecTy->getElementType(); 3165 } 3166 3167 // Get the bit sizes, we'll need these 3168 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 3169 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 3170 3171 // Run through the possibilities ... 3172 if (DestTy->isIntegerTy()) { // Casting to integral 3173 if (SrcTy->isIntegerTy()) { // Casting from integral 3174 if (DestBits < SrcBits) 3175 return Trunc; // int -> smaller int 3176 else if (DestBits > SrcBits) { // its an extension 3177 if (SrcIsSigned) 3178 return SExt; // signed -> SEXT 3179 else 3180 return ZExt; // unsigned -> ZEXT 3181 } else { 3182 return BitCast; // Same size, No-op cast 3183 } 3184 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 3185 if (DestIsSigned) 3186 return FPToSI; // FP -> sint 3187 else 3188 return FPToUI; // FP -> uint 3189 } else if (SrcTy->isVectorTy()) { 3190 assert(DestBits == SrcBits && 3191 "Casting vector to integer of different width"); 3192 return BitCast; // Same size, no-op cast 3193 } else { 3194 assert(SrcTy->isPointerTy() && 3195 "Casting from a value that is not first-class type"); 3196 return PtrToInt; // ptr -> int 3197 } 3198 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt 3199 if (SrcTy->isIntegerTy()) { // Casting from integral 3200 if (SrcIsSigned) 3201 return SIToFP; // sint -> FP 3202 else 3203 return UIToFP; // uint -> FP 3204 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 3205 if (DestBits < SrcBits) { 3206 return FPTrunc; // FP -> smaller FP 3207 } else if (DestBits > SrcBits) { 3208 return FPExt; // FP -> larger FP 3209 } else { 3210 return BitCast; // same size, no-op cast 3211 } 3212 } else if (SrcTy->isVectorTy()) { 3213 assert(DestBits == SrcBits && 3214 "Casting vector to floating point of different width"); 3215 return BitCast; // same size, no-op cast 3216 } 3217 llvm_unreachable("Casting pointer or non-first class to float"); 3218 } else if (DestTy->isVectorTy()) { 3219 assert(DestBits == SrcBits && 3220 "Illegal cast to vector (wrong type or size)"); 3221 return BitCast; 3222 } else if (DestTy->isPointerTy()) { 3223 if (SrcTy->isPointerTy()) { 3224 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace()) 3225 return AddrSpaceCast; 3226 return BitCast; // ptr -> ptr 3227 } else if (SrcTy->isIntegerTy()) { 3228 return IntToPtr; // int -> ptr 3229 } 3230 llvm_unreachable("Casting pointer to other than pointer or int"); 3231 } else if (DestTy->isX86_MMXTy()) { 3232 if (SrcTy->isVectorTy()) { 3233 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX"); 3234 return BitCast; // 64-bit vector to MMX 3235 } 3236 llvm_unreachable("Illegal cast to X86_MMX"); 3237 } 3238 llvm_unreachable("Casting to type that is not first-class"); 3239 } 3240 3241 //===----------------------------------------------------------------------===// 3242 // CastInst SubClass Constructors 3243 //===----------------------------------------------------------------------===// 3244 3245 /// Check that the construction parameters for a CastInst are correct. This 3246 /// could be broken out into the separate constructors but it is useful to have 3247 /// it in one place and to eliminate the redundant code for getting the sizes 3248 /// of the types involved. 3249 bool 3250 CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) { 3251 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() || 3252 SrcTy->isAggregateType() || DstTy->isAggregateType()) 3253 return false; 3254 3255 // Get the size of the types in bits, and whether we are dealing 3256 // with vector types, we'll need this later. 3257 bool SrcIsVec = isa<VectorType>(SrcTy); 3258 bool DstIsVec = isa<VectorType>(DstTy); 3259 unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits(); 3260 unsigned DstScalarBitSize = DstTy->getScalarSizeInBits(); 3261 3262 // If these are vector types, get the lengths of the vectors (using zero for 3263 // scalar types means that checking that vector lengths match also checks that 3264 // scalars are not being converted to vectors or vectors to scalars). 3265 ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount() 3266 : ElementCount::getFixed(0); 3267 ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount() 3268 : ElementCount::getFixed(0); 3269 3270 // Switch on the opcode provided 3271 switch (op) { 3272 default: return false; // This is an input error 3273 case Instruction::Trunc: 3274 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3275 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize; 3276 case Instruction::ZExt: 3277 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3278 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize; 3279 case Instruction::SExt: 3280 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 3281 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize; 3282 case Instruction::FPTrunc: 3283 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 3284 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize; 3285 case Instruction::FPExt: 3286 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 3287 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize; 3288 case Instruction::UIToFP: 3289 case Instruction::SIToFP: 3290 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() && 3291 SrcEC == DstEC; 3292 case Instruction::FPToUI: 3293 case Instruction::FPToSI: 3294 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() && 3295 SrcEC == DstEC; 3296 case Instruction::PtrToInt: 3297 if (SrcEC != DstEC) 3298 return false; 3299 return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy(); 3300 case Instruction::IntToPtr: 3301 if (SrcEC != DstEC) 3302 return false; 3303 return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy(); 3304 case Instruction::BitCast: { 3305 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); 3306 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); 3307 3308 // BitCast implies a no-op cast of type only. No bits change. 3309 // However, you can't cast pointers to anything but pointers. 3310 if (!SrcPtrTy != !DstPtrTy) 3311 return false; 3312 3313 // For non-pointer cases, the cast is okay if the source and destination bit 3314 // widths are identical. 3315 if (!SrcPtrTy) 3316 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits(); 3317 3318 // If both are pointers then the address spaces must match. 3319 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) 3320 return false; 3321 3322 // A vector of pointers must have the same number of elements. 3323 if (SrcIsVec && DstIsVec) 3324 return SrcEC == DstEC; 3325 if (SrcIsVec) 3326 return SrcEC == ElementCount::getFixed(1); 3327 if (DstIsVec) 3328 return DstEC == ElementCount::getFixed(1); 3329 3330 return true; 3331 } 3332 case Instruction::AddrSpaceCast: { 3333 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); 3334 if (!SrcPtrTy) 3335 return false; 3336 3337 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); 3338 if (!DstPtrTy) 3339 return false; 3340 3341 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) 3342 return false; 3343 3344 return SrcEC == DstEC; 3345 } 3346 } 3347 } 3348 3349 TruncInst::TruncInst(Value *S, Type *Ty, const Twine &Name, 3350 InsertPosition InsertBefore) 3351 : CastInst(Ty, Trunc, S, Name, InsertBefore) { 3352 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 3353 } 3354 3355 ZExtInst::ZExtInst(Value *S, Type *Ty, const Twine &Name, 3356 InsertPosition InsertBefore) 3357 : CastInst(Ty, ZExt, S, Name, InsertBefore) { 3358 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 3359 } 3360 3361 SExtInst::SExtInst(Value *S, Type *Ty, const Twine &Name, 3362 InsertPosition InsertBefore) 3363 : CastInst(Ty, SExt, S, Name, InsertBefore) { 3364 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 3365 } 3366 3367 FPTruncInst::FPTruncInst(Value *S, Type *Ty, const Twine &Name, 3368 InsertPosition InsertBefore) 3369 : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 3370 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 3371 } 3372 3373 FPExtInst::FPExtInst(Value *S, Type *Ty, const Twine &Name, 3374 InsertPosition InsertBefore) 3375 : CastInst(Ty, FPExt, S, Name, InsertBefore) { 3376 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 3377 } 3378 3379 UIToFPInst::UIToFPInst(Value *S, Type *Ty, const Twine &Name, 3380 InsertPosition InsertBefore) 3381 : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 3382 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 3383 } 3384 3385 SIToFPInst::SIToFPInst(Value *S, Type *Ty, const Twine &Name, 3386 InsertPosition InsertBefore) 3387 : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 3388 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 3389 } 3390 3391 FPToUIInst::FPToUIInst(Value *S, Type *Ty, const Twine &Name, 3392 InsertPosition InsertBefore) 3393 : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 3394 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 3395 } 3396 3397 FPToSIInst::FPToSIInst(Value *S, Type *Ty, const Twine &Name, 3398 InsertPosition InsertBefore) 3399 : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 3400 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 3401 } 3402 3403 PtrToIntInst::PtrToIntInst(Value *S, Type *Ty, const Twine &Name, 3404 InsertPosition InsertBefore) 3405 : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 3406 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 3407 } 3408 3409 IntToPtrInst::IntToPtrInst(Value *S, Type *Ty, const Twine &Name, 3410 InsertPosition InsertBefore) 3411 : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 3412 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 3413 } 3414 3415 BitCastInst::BitCastInst(Value *S, Type *Ty, const Twine &Name, 3416 InsertPosition InsertBefore) 3417 : CastInst(Ty, BitCast, S, Name, InsertBefore) { 3418 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 3419 } 3420 3421 AddrSpaceCastInst::AddrSpaceCastInst(Value *S, Type *Ty, const Twine &Name, 3422 InsertPosition InsertBefore) 3423 : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) { 3424 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); 3425 } 3426 3427 //===----------------------------------------------------------------------===// 3428 // CmpInst Classes 3429 //===----------------------------------------------------------------------===// 3430 3431 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, 3432 Value *RHS, const Twine &Name, InsertPosition InsertBefore, 3433 Instruction *FlagsSource) 3434 : Instruction(ty, op, OperandTraits<CmpInst>::op_begin(this), 3435 OperandTraits<CmpInst>::operands(this), InsertBefore) { 3436 Op<0>() = LHS; 3437 Op<1>() = RHS; 3438 setPredicate((Predicate)predicate); 3439 setName(Name); 3440 if (FlagsSource) 3441 copyIRFlags(FlagsSource); 3442 } 3443 3444 CmpInst *CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, 3445 const Twine &Name, InsertPosition InsertBefore) { 3446 if (Op == Instruction::ICmp) { 3447 if (InsertBefore.isValid()) 3448 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate), 3449 S1, S2, Name); 3450 else 3451 return new ICmpInst(CmpInst::Predicate(predicate), 3452 S1, S2, Name); 3453 } 3454 3455 if (InsertBefore.isValid()) 3456 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate), 3457 S1, S2, Name); 3458 else 3459 return new FCmpInst(CmpInst::Predicate(predicate), 3460 S1, S2, Name); 3461 } 3462 3463 CmpInst *CmpInst::CreateWithCopiedFlags(OtherOps Op, Predicate Pred, Value *S1, 3464 Value *S2, 3465 const Instruction *FlagsSource, 3466 const Twine &Name, 3467 InsertPosition InsertBefore) { 3468 CmpInst *Inst = Create(Op, Pred, S1, S2, Name, InsertBefore); 3469 Inst->copyIRFlags(FlagsSource); 3470 return Inst; 3471 } 3472 3473 void CmpInst::swapOperands() { 3474 if (ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3475 IC->swapOperands(); 3476 else 3477 cast<FCmpInst>(this)->swapOperands(); 3478 } 3479 3480 bool CmpInst::isCommutative() const { 3481 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3482 return IC->isCommutative(); 3483 return cast<FCmpInst>(this)->isCommutative(); 3484 } 3485 3486 bool CmpInst::isEquality(Predicate P) { 3487 if (ICmpInst::isIntPredicate(P)) 3488 return ICmpInst::isEquality(P); 3489 if (FCmpInst::isFPPredicate(P)) 3490 return FCmpInst::isEquality(P); 3491 llvm_unreachable("Unsupported predicate kind"); 3492 } 3493 3494 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) { 3495 switch (pred) { 3496 default: llvm_unreachable("Unknown cmp predicate!"); 3497 case ICMP_EQ: return ICMP_NE; 3498 case ICMP_NE: return ICMP_EQ; 3499 case ICMP_UGT: return ICMP_ULE; 3500 case ICMP_ULT: return ICMP_UGE; 3501 case ICMP_UGE: return ICMP_ULT; 3502 case ICMP_ULE: return ICMP_UGT; 3503 case ICMP_SGT: return ICMP_SLE; 3504 case ICMP_SLT: return ICMP_SGE; 3505 case ICMP_SGE: return ICMP_SLT; 3506 case ICMP_SLE: return ICMP_SGT; 3507 3508 case FCMP_OEQ: return FCMP_UNE; 3509 case FCMP_ONE: return FCMP_UEQ; 3510 case FCMP_OGT: return FCMP_ULE; 3511 case FCMP_OLT: return FCMP_UGE; 3512 case FCMP_OGE: return FCMP_ULT; 3513 case FCMP_OLE: return FCMP_UGT; 3514 case FCMP_UEQ: return FCMP_ONE; 3515 case FCMP_UNE: return FCMP_OEQ; 3516 case FCMP_UGT: return FCMP_OLE; 3517 case FCMP_ULT: return FCMP_OGE; 3518 case FCMP_UGE: return FCMP_OLT; 3519 case FCMP_ULE: return FCMP_OGT; 3520 case FCMP_ORD: return FCMP_UNO; 3521 case FCMP_UNO: return FCMP_ORD; 3522 case FCMP_TRUE: return FCMP_FALSE; 3523 case FCMP_FALSE: return FCMP_TRUE; 3524 } 3525 } 3526 3527 StringRef CmpInst::getPredicateName(Predicate Pred) { 3528 switch (Pred) { 3529 default: return "unknown"; 3530 case FCmpInst::FCMP_FALSE: return "false"; 3531 case FCmpInst::FCMP_OEQ: return "oeq"; 3532 case FCmpInst::FCMP_OGT: return "ogt"; 3533 case FCmpInst::FCMP_OGE: return "oge"; 3534 case FCmpInst::FCMP_OLT: return "olt"; 3535 case FCmpInst::FCMP_OLE: return "ole"; 3536 case FCmpInst::FCMP_ONE: return "one"; 3537 case FCmpInst::FCMP_ORD: return "ord"; 3538 case FCmpInst::FCMP_UNO: return "uno"; 3539 case FCmpInst::FCMP_UEQ: return "ueq"; 3540 case FCmpInst::FCMP_UGT: return "ugt"; 3541 case FCmpInst::FCMP_UGE: return "uge"; 3542 case FCmpInst::FCMP_ULT: return "ult"; 3543 case FCmpInst::FCMP_ULE: return "ule"; 3544 case FCmpInst::FCMP_UNE: return "une"; 3545 case FCmpInst::FCMP_TRUE: return "true"; 3546 case ICmpInst::ICMP_EQ: return "eq"; 3547 case ICmpInst::ICMP_NE: return "ne"; 3548 case ICmpInst::ICMP_SGT: return "sgt"; 3549 case ICmpInst::ICMP_SGE: return "sge"; 3550 case ICmpInst::ICMP_SLT: return "slt"; 3551 case ICmpInst::ICMP_SLE: return "sle"; 3552 case ICmpInst::ICMP_UGT: return "ugt"; 3553 case ICmpInst::ICMP_UGE: return "uge"; 3554 case ICmpInst::ICMP_ULT: return "ult"; 3555 case ICmpInst::ICMP_ULE: return "ule"; 3556 } 3557 } 3558 3559 raw_ostream &llvm::operator<<(raw_ostream &OS, CmpInst::Predicate Pred) { 3560 OS << CmpInst::getPredicateName(Pred); 3561 return OS; 3562 } 3563 3564 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) { 3565 switch (pred) { 3566 default: llvm_unreachable("Unknown icmp predicate!"); 3567 case ICMP_EQ: case ICMP_NE: 3568 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 3569 return pred; 3570 case ICMP_UGT: return ICMP_SGT; 3571 case ICMP_ULT: return ICMP_SLT; 3572 case ICMP_UGE: return ICMP_SGE; 3573 case ICMP_ULE: return ICMP_SLE; 3574 } 3575 } 3576 3577 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) { 3578 switch (pred) { 3579 default: llvm_unreachable("Unknown icmp predicate!"); 3580 case ICMP_EQ: case ICMP_NE: 3581 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: 3582 return pred; 3583 case ICMP_SGT: return ICMP_UGT; 3584 case ICMP_SLT: return ICMP_ULT; 3585 case ICMP_SGE: return ICMP_UGE; 3586 case ICMP_SLE: return ICMP_ULE; 3587 } 3588 } 3589 3590 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) { 3591 switch (pred) { 3592 default: llvm_unreachable("Unknown cmp predicate!"); 3593 case ICMP_EQ: case ICMP_NE: 3594 return pred; 3595 case ICMP_SGT: return ICMP_SLT; 3596 case ICMP_SLT: return ICMP_SGT; 3597 case ICMP_SGE: return ICMP_SLE; 3598 case ICMP_SLE: return ICMP_SGE; 3599 case ICMP_UGT: return ICMP_ULT; 3600 case ICMP_ULT: return ICMP_UGT; 3601 case ICMP_UGE: return ICMP_ULE; 3602 case ICMP_ULE: return ICMP_UGE; 3603 3604 case FCMP_FALSE: case FCMP_TRUE: 3605 case FCMP_OEQ: case FCMP_ONE: 3606 case FCMP_UEQ: case FCMP_UNE: 3607 case FCMP_ORD: case FCMP_UNO: 3608 return pred; 3609 case FCMP_OGT: return FCMP_OLT; 3610 case FCMP_OLT: return FCMP_OGT; 3611 case FCMP_OGE: return FCMP_OLE; 3612 case FCMP_OLE: return FCMP_OGE; 3613 case FCMP_UGT: return FCMP_ULT; 3614 case FCMP_ULT: return FCMP_UGT; 3615 case FCMP_UGE: return FCMP_ULE; 3616 case FCMP_ULE: return FCMP_UGE; 3617 } 3618 } 3619 3620 bool CmpInst::isNonStrictPredicate(Predicate pred) { 3621 switch (pred) { 3622 case ICMP_SGE: 3623 case ICMP_SLE: 3624 case ICMP_UGE: 3625 case ICMP_ULE: 3626 case FCMP_OGE: 3627 case FCMP_OLE: 3628 case FCMP_UGE: 3629 case FCMP_ULE: 3630 return true; 3631 default: 3632 return false; 3633 } 3634 } 3635 3636 bool CmpInst::isStrictPredicate(Predicate pred) { 3637 switch (pred) { 3638 case ICMP_SGT: 3639 case ICMP_SLT: 3640 case ICMP_UGT: 3641 case ICMP_ULT: 3642 case FCMP_OGT: 3643 case FCMP_OLT: 3644 case FCMP_UGT: 3645 case FCMP_ULT: 3646 return true; 3647 default: 3648 return false; 3649 } 3650 } 3651 3652 CmpInst::Predicate CmpInst::getStrictPredicate(Predicate pred) { 3653 switch (pred) { 3654 case ICMP_SGE: 3655 return ICMP_SGT; 3656 case ICMP_SLE: 3657 return ICMP_SLT; 3658 case ICMP_UGE: 3659 return ICMP_UGT; 3660 case ICMP_ULE: 3661 return ICMP_ULT; 3662 case FCMP_OGE: 3663 return FCMP_OGT; 3664 case FCMP_OLE: 3665 return FCMP_OLT; 3666 case FCMP_UGE: 3667 return FCMP_UGT; 3668 case FCMP_ULE: 3669 return FCMP_ULT; 3670 default: 3671 return pred; 3672 } 3673 } 3674 3675 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) { 3676 switch (pred) { 3677 case ICMP_SGT: 3678 return ICMP_SGE; 3679 case ICMP_SLT: 3680 return ICMP_SLE; 3681 case ICMP_UGT: 3682 return ICMP_UGE; 3683 case ICMP_ULT: 3684 return ICMP_ULE; 3685 case FCMP_OGT: 3686 return FCMP_OGE; 3687 case FCMP_OLT: 3688 return FCMP_OLE; 3689 case FCMP_UGT: 3690 return FCMP_UGE; 3691 case FCMP_ULT: 3692 return FCMP_ULE; 3693 default: 3694 return pred; 3695 } 3696 } 3697 3698 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) { 3699 assert(CmpInst::isRelational(pred) && "Call only with relational predicate!"); 3700 3701 if (isStrictPredicate(pred)) 3702 return getNonStrictPredicate(pred); 3703 if (isNonStrictPredicate(pred)) 3704 return getStrictPredicate(pred); 3705 3706 llvm_unreachable("Unknown predicate!"); 3707 } 3708 3709 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) { 3710 assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!"); 3711 3712 switch (pred) { 3713 default: 3714 llvm_unreachable("Unknown predicate!"); 3715 case CmpInst::ICMP_ULT: 3716 return CmpInst::ICMP_SLT; 3717 case CmpInst::ICMP_ULE: 3718 return CmpInst::ICMP_SLE; 3719 case CmpInst::ICMP_UGT: 3720 return CmpInst::ICMP_SGT; 3721 case CmpInst::ICMP_UGE: 3722 return CmpInst::ICMP_SGE; 3723 } 3724 } 3725 3726 CmpInst::Predicate CmpInst::getUnsignedPredicate(Predicate pred) { 3727 assert(CmpInst::isSigned(pred) && "Call only with signed predicates!"); 3728 3729 switch (pred) { 3730 default: 3731 llvm_unreachable("Unknown predicate!"); 3732 case CmpInst::ICMP_SLT: 3733 return CmpInst::ICMP_ULT; 3734 case CmpInst::ICMP_SLE: 3735 return CmpInst::ICMP_ULE; 3736 case CmpInst::ICMP_SGT: 3737 return CmpInst::ICMP_UGT; 3738 case CmpInst::ICMP_SGE: 3739 return CmpInst::ICMP_UGE; 3740 } 3741 } 3742 3743 bool CmpInst::isUnsigned(Predicate predicate) { 3744 switch (predicate) { 3745 default: return false; 3746 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: 3747 case ICmpInst::ICMP_UGE: return true; 3748 } 3749 } 3750 3751 bool CmpInst::isSigned(Predicate predicate) { 3752 switch (predicate) { 3753 default: return false; 3754 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: 3755 case ICmpInst::ICMP_SGE: return true; 3756 } 3757 } 3758 3759 bool ICmpInst::compare(const APInt &LHS, const APInt &RHS, 3760 ICmpInst::Predicate Pred) { 3761 assert(ICmpInst::isIntPredicate(Pred) && "Only for integer predicates!"); 3762 switch (Pred) { 3763 case ICmpInst::Predicate::ICMP_EQ: 3764 return LHS.eq(RHS); 3765 case ICmpInst::Predicate::ICMP_NE: 3766 return LHS.ne(RHS); 3767 case ICmpInst::Predicate::ICMP_UGT: 3768 return LHS.ugt(RHS); 3769 case ICmpInst::Predicate::ICMP_UGE: 3770 return LHS.uge(RHS); 3771 case ICmpInst::Predicate::ICMP_ULT: 3772 return LHS.ult(RHS); 3773 case ICmpInst::Predicate::ICMP_ULE: 3774 return LHS.ule(RHS); 3775 case ICmpInst::Predicate::ICMP_SGT: 3776 return LHS.sgt(RHS); 3777 case ICmpInst::Predicate::ICMP_SGE: 3778 return LHS.sge(RHS); 3779 case ICmpInst::Predicate::ICMP_SLT: 3780 return LHS.slt(RHS); 3781 case ICmpInst::Predicate::ICMP_SLE: 3782 return LHS.sle(RHS); 3783 default: 3784 llvm_unreachable("Unexpected non-integer predicate."); 3785 }; 3786 } 3787 3788 bool FCmpInst::compare(const APFloat &LHS, const APFloat &RHS, 3789 FCmpInst::Predicate Pred) { 3790 APFloat::cmpResult R = LHS.compare(RHS); 3791 switch (Pred) { 3792 default: 3793 llvm_unreachable("Invalid FCmp Predicate"); 3794 case FCmpInst::FCMP_FALSE: 3795 return false; 3796 case FCmpInst::FCMP_TRUE: 3797 return true; 3798 case FCmpInst::FCMP_UNO: 3799 return R == APFloat::cmpUnordered; 3800 case FCmpInst::FCMP_ORD: 3801 return R != APFloat::cmpUnordered; 3802 case FCmpInst::FCMP_UEQ: 3803 return R == APFloat::cmpUnordered || R == APFloat::cmpEqual; 3804 case FCmpInst::FCMP_OEQ: 3805 return R == APFloat::cmpEqual; 3806 case FCmpInst::FCMP_UNE: 3807 return R != APFloat::cmpEqual; 3808 case FCmpInst::FCMP_ONE: 3809 return R == APFloat::cmpLessThan || R == APFloat::cmpGreaterThan; 3810 case FCmpInst::FCMP_ULT: 3811 return R == APFloat::cmpUnordered || R == APFloat::cmpLessThan; 3812 case FCmpInst::FCMP_OLT: 3813 return R == APFloat::cmpLessThan; 3814 case FCmpInst::FCMP_UGT: 3815 return R == APFloat::cmpUnordered || R == APFloat::cmpGreaterThan; 3816 case FCmpInst::FCMP_OGT: 3817 return R == APFloat::cmpGreaterThan; 3818 case FCmpInst::FCMP_ULE: 3819 return R != APFloat::cmpGreaterThan; 3820 case FCmpInst::FCMP_OLE: 3821 return R == APFloat::cmpLessThan || R == APFloat::cmpEqual; 3822 case FCmpInst::FCMP_UGE: 3823 return R != APFloat::cmpLessThan; 3824 case FCmpInst::FCMP_OGE: 3825 return R == APFloat::cmpGreaterThan || R == APFloat::cmpEqual; 3826 } 3827 } 3828 3829 CmpInst::Predicate CmpInst::getFlippedSignednessPredicate(Predicate pred) { 3830 assert(CmpInst::isRelational(pred) && 3831 "Call only with non-equality predicates!"); 3832 3833 if (isSigned(pred)) 3834 return getUnsignedPredicate(pred); 3835 if (isUnsigned(pred)) 3836 return getSignedPredicate(pred); 3837 3838 llvm_unreachable("Unknown predicate!"); 3839 } 3840 3841 bool CmpInst::isOrdered(Predicate predicate) { 3842 switch (predicate) { 3843 default: return false; 3844 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: 3845 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: 3846 case FCmpInst::FCMP_ORD: return true; 3847 } 3848 } 3849 3850 bool CmpInst::isUnordered(Predicate predicate) { 3851 switch (predicate) { 3852 default: return false; 3853 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: 3854 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: 3855 case FCmpInst::FCMP_UNO: return true; 3856 } 3857 } 3858 3859 bool CmpInst::isTrueWhenEqual(Predicate predicate) { 3860 switch(predicate) { 3861 default: return false; 3862 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE: 3863 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true; 3864 } 3865 } 3866 3867 bool CmpInst::isFalseWhenEqual(Predicate predicate) { 3868 switch(predicate) { 3869 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT: 3870 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true; 3871 default: return false; 3872 } 3873 } 3874 3875 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) { 3876 // If the predicates match, then we know the first condition implies the 3877 // second is true. 3878 if (Pred1 == Pred2) 3879 return true; 3880 3881 switch (Pred1) { 3882 default: 3883 break; 3884 case ICMP_EQ: 3885 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true. 3886 return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE || 3887 Pred2 == ICMP_SLE; 3888 case ICMP_UGT: // A >u B implies A != B and A >=u B are true. 3889 return Pred2 == ICMP_NE || Pred2 == ICMP_UGE; 3890 case ICMP_ULT: // A <u B implies A != B and A <=u B are true. 3891 return Pred2 == ICMP_NE || Pred2 == ICMP_ULE; 3892 case ICMP_SGT: // A >s B implies A != B and A >=s B are true. 3893 return Pred2 == ICMP_NE || Pred2 == ICMP_SGE; 3894 case ICMP_SLT: // A <s B implies A != B and A <=s B are true. 3895 return Pred2 == ICMP_NE || Pred2 == ICMP_SLE; 3896 } 3897 return false; 3898 } 3899 3900 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) { 3901 return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2)); 3902 } 3903 3904 //===----------------------------------------------------------------------===// 3905 // SwitchInst Implementation 3906 //===----------------------------------------------------------------------===// 3907 3908 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) { 3909 assert(Value && Default && NumReserved); 3910 ReservedSpace = NumReserved; 3911 setNumHungOffUseOperands(2); 3912 allocHungoffUses(ReservedSpace); 3913 3914 Op<0>() = Value; 3915 Op<1>() = Default; 3916 } 3917 3918 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3919 /// switch on and a default destination. The number of additional cases can 3920 /// be specified here to make memory allocation more efficient. This 3921 /// constructor can also autoinsert before another instruction. 3922 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3923 InsertPosition InsertBefore) 3924 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch, 3925 nullptr, 0, InsertBefore) { 3926 init(Value, Default, 2+NumCases*2); 3927 } 3928 3929 SwitchInst::SwitchInst(const SwitchInst &SI) 3930 : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) { 3931 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands()); 3932 setNumHungOffUseOperands(SI.getNumOperands()); 3933 Use *OL = getOperandList(); 3934 const Use *InOL = SI.getOperandList(); 3935 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) { 3936 OL[i] = InOL[i]; 3937 OL[i+1] = InOL[i+1]; 3938 } 3939 SubclassOptionalData = SI.SubclassOptionalData; 3940 } 3941 3942 /// addCase - Add an entry to the switch instruction... 3943 /// 3944 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) { 3945 unsigned NewCaseIdx = getNumCases(); 3946 unsigned OpNo = getNumOperands(); 3947 if (OpNo+2 > ReservedSpace) 3948 growOperands(); // Get more space! 3949 // Initialize some new operands. 3950 assert(OpNo+1 < ReservedSpace && "Growing didn't work!"); 3951 setNumHungOffUseOperands(OpNo+2); 3952 CaseHandle Case(this, NewCaseIdx); 3953 Case.setValue(OnVal); 3954 Case.setSuccessor(Dest); 3955 } 3956 3957 /// removeCase - This method removes the specified case and its successor 3958 /// from the switch instruction. 3959 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) { 3960 unsigned idx = I->getCaseIndex(); 3961 3962 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!"); 3963 3964 unsigned NumOps = getNumOperands(); 3965 Use *OL = getOperandList(); 3966 3967 // Overwrite this case with the end of the list. 3968 if (2 + (idx + 1) * 2 != NumOps) { 3969 OL[2 + idx * 2] = OL[NumOps - 2]; 3970 OL[2 + idx * 2 + 1] = OL[NumOps - 1]; 3971 } 3972 3973 // Nuke the last value. 3974 OL[NumOps-2].set(nullptr); 3975 OL[NumOps-2+1].set(nullptr); 3976 setNumHungOffUseOperands(NumOps-2); 3977 3978 return CaseIt(this, idx); 3979 } 3980 3981 /// growOperands - grow operands - This grows the operand list in response 3982 /// to a push_back style of operation. This grows the number of ops by 3 times. 3983 /// 3984 void SwitchInst::growOperands() { 3985 unsigned e = getNumOperands(); 3986 unsigned NumOps = e*3; 3987 3988 ReservedSpace = NumOps; 3989 growHungoffUses(ReservedSpace); 3990 } 3991 3992 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() { 3993 assert(Changed && "called only if metadata has changed"); 3994 3995 if (!Weights) 3996 return nullptr; 3997 3998 assert(SI.getNumSuccessors() == Weights->size() && 3999 "num of prof branch_weights must accord with num of successors"); 4000 4001 bool AllZeroes = all_of(*Weights, [](uint32_t W) { return W == 0; }); 4002 4003 if (AllZeroes || Weights->size() < 2) 4004 return nullptr; 4005 4006 return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights); 4007 } 4008 4009 void SwitchInstProfUpdateWrapper::init() { 4010 MDNode *ProfileData = getBranchWeightMDNode(SI); 4011 if (!ProfileData) 4012 return; 4013 4014 if (getNumBranchWeights(*ProfileData) != SI.getNumSuccessors()) { 4015 llvm_unreachable("number of prof branch_weights metadata operands does " 4016 "not correspond to number of succesors"); 4017 } 4018 4019 SmallVector<uint32_t, 8> Weights; 4020 if (!extractBranchWeights(ProfileData, Weights)) 4021 return; 4022 this->Weights = std::move(Weights); 4023 } 4024 4025 SwitchInst::CaseIt 4026 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) { 4027 if (Weights) { 4028 assert(SI.getNumSuccessors() == Weights->size() && 4029 "num of prof branch_weights must accord with num of successors"); 4030 Changed = true; 4031 // Copy the last case to the place of the removed one and shrink. 4032 // This is tightly coupled with the way SwitchInst::removeCase() removes 4033 // the cases in SwitchInst::removeCase(CaseIt). 4034 (*Weights)[I->getCaseIndex() + 1] = Weights->back(); 4035 Weights->pop_back(); 4036 } 4037 return SI.removeCase(I); 4038 } 4039 4040 void SwitchInstProfUpdateWrapper::addCase( 4041 ConstantInt *OnVal, BasicBlock *Dest, 4042 SwitchInstProfUpdateWrapper::CaseWeightOpt W) { 4043 SI.addCase(OnVal, Dest); 4044 4045 if (!Weights && W && *W) { 4046 Changed = true; 4047 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0); 4048 (*Weights)[SI.getNumSuccessors() - 1] = *W; 4049 } else if (Weights) { 4050 Changed = true; 4051 Weights->push_back(W.value_or(0)); 4052 } 4053 if (Weights) 4054 assert(SI.getNumSuccessors() == Weights->size() && 4055 "num of prof branch_weights must accord with num of successors"); 4056 } 4057 4058 Instruction::InstListType::iterator 4059 SwitchInstProfUpdateWrapper::eraseFromParent() { 4060 // Instruction is erased. Mark as unchanged to not touch it in the destructor. 4061 Changed = false; 4062 if (Weights) 4063 Weights->resize(0); 4064 return SI.eraseFromParent(); 4065 } 4066 4067 SwitchInstProfUpdateWrapper::CaseWeightOpt 4068 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) { 4069 if (!Weights) 4070 return std::nullopt; 4071 return (*Weights)[idx]; 4072 } 4073 4074 void SwitchInstProfUpdateWrapper::setSuccessorWeight( 4075 unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) { 4076 if (!W) 4077 return; 4078 4079 if (!Weights && *W) 4080 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0); 4081 4082 if (Weights) { 4083 auto &OldW = (*Weights)[idx]; 4084 if (*W != OldW) { 4085 Changed = true; 4086 OldW = *W; 4087 } 4088 } 4089 } 4090 4091 SwitchInstProfUpdateWrapper::CaseWeightOpt 4092 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI, 4093 unsigned idx) { 4094 if (MDNode *ProfileData = getBranchWeightMDNode(SI)) 4095 if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1) 4096 return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1)) 4097 ->getValue() 4098 .getZExtValue(); 4099 4100 return std::nullopt; 4101 } 4102 4103 //===----------------------------------------------------------------------===// 4104 // IndirectBrInst Implementation 4105 //===----------------------------------------------------------------------===// 4106 4107 void IndirectBrInst::init(Value *Address, unsigned NumDests) { 4108 assert(Address && Address->getType()->isPointerTy() && 4109 "Address of indirectbr must be a pointer"); 4110 ReservedSpace = 1+NumDests; 4111 setNumHungOffUseOperands(1); 4112 allocHungoffUses(ReservedSpace); 4113 4114 Op<0>() = Address; 4115 } 4116 4117 4118 /// growOperands - grow operands - This grows the operand list in response 4119 /// to a push_back style of operation. This grows the number of ops by 2 times. 4120 /// 4121 void IndirectBrInst::growOperands() { 4122 unsigned e = getNumOperands(); 4123 unsigned NumOps = e*2; 4124 4125 ReservedSpace = NumOps; 4126 growHungoffUses(ReservedSpace); 4127 } 4128 4129 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 4130 InsertPosition InsertBefore) 4131 : Instruction(Type::getVoidTy(Address->getContext()), 4132 Instruction::IndirectBr, nullptr, 0, InsertBefore) { 4133 init(Address, NumCases); 4134 } 4135 4136 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI) 4137 : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr, 4138 nullptr, IBI.getNumOperands()) { 4139 allocHungoffUses(IBI.getNumOperands()); 4140 Use *OL = getOperandList(); 4141 const Use *InOL = IBI.getOperandList(); 4142 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i) 4143 OL[i] = InOL[i]; 4144 SubclassOptionalData = IBI.SubclassOptionalData; 4145 } 4146 4147 /// addDestination - Add a destination. 4148 /// 4149 void IndirectBrInst::addDestination(BasicBlock *DestBB) { 4150 unsigned OpNo = getNumOperands(); 4151 if (OpNo+1 > ReservedSpace) 4152 growOperands(); // Get more space! 4153 // Initialize some new operands. 4154 assert(OpNo < ReservedSpace && "Growing didn't work!"); 4155 setNumHungOffUseOperands(OpNo+1); 4156 getOperandList()[OpNo] = DestBB; 4157 } 4158 4159 /// removeDestination - This method removes the specified successor from the 4160 /// indirectbr instruction. 4161 void IndirectBrInst::removeDestination(unsigned idx) { 4162 assert(idx < getNumOperands()-1 && "Successor index out of range!"); 4163 4164 unsigned NumOps = getNumOperands(); 4165 Use *OL = getOperandList(); 4166 4167 // Replace this value with the last one. 4168 OL[idx+1] = OL[NumOps-1]; 4169 4170 // Nuke the last value. 4171 OL[NumOps-1].set(nullptr); 4172 setNumHungOffUseOperands(NumOps-1); 4173 } 4174 4175 //===----------------------------------------------------------------------===// 4176 // FreezeInst Implementation 4177 //===----------------------------------------------------------------------===// 4178 4179 FreezeInst::FreezeInst(Value *S, const Twine &Name, InsertPosition InsertBefore) 4180 : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) { 4181 setName(Name); 4182 } 4183 4184 //===----------------------------------------------------------------------===// 4185 // cloneImpl() implementations 4186 //===----------------------------------------------------------------------===// 4187 4188 // Define these methods here so vtables don't get emitted into every translation 4189 // unit that uses these classes. 4190 4191 GetElementPtrInst *GetElementPtrInst::cloneImpl() const { 4192 return new (getNumOperands()) GetElementPtrInst(*this); 4193 } 4194 4195 UnaryOperator *UnaryOperator::cloneImpl() const { 4196 return Create(getOpcode(), Op<0>()); 4197 } 4198 4199 BinaryOperator *BinaryOperator::cloneImpl() const { 4200 return Create(getOpcode(), Op<0>(), Op<1>()); 4201 } 4202 4203 FCmpInst *FCmpInst::cloneImpl() const { 4204 return new FCmpInst(getPredicate(), Op<0>(), Op<1>()); 4205 } 4206 4207 ICmpInst *ICmpInst::cloneImpl() const { 4208 return new ICmpInst(getPredicate(), Op<0>(), Op<1>()); 4209 } 4210 4211 ExtractValueInst *ExtractValueInst::cloneImpl() const { 4212 return new ExtractValueInst(*this); 4213 } 4214 4215 InsertValueInst *InsertValueInst::cloneImpl() const { 4216 return new InsertValueInst(*this); 4217 } 4218 4219 AllocaInst *AllocaInst::cloneImpl() const { 4220 AllocaInst *Result = new AllocaInst(getAllocatedType(), getAddressSpace(), 4221 getOperand(0), getAlign()); 4222 Result->setUsedWithInAlloca(isUsedWithInAlloca()); 4223 Result->setSwiftError(isSwiftError()); 4224 return Result; 4225 } 4226 4227 LoadInst *LoadInst::cloneImpl() const { 4228 return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(), 4229 getAlign(), getOrdering(), getSyncScopeID()); 4230 } 4231 4232 StoreInst *StoreInst::cloneImpl() const { 4233 return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(), 4234 getOrdering(), getSyncScopeID()); 4235 } 4236 4237 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const { 4238 AtomicCmpXchgInst *Result = new AtomicCmpXchgInst( 4239 getOperand(0), getOperand(1), getOperand(2), getAlign(), 4240 getSuccessOrdering(), getFailureOrdering(), getSyncScopeID()); 4241 Result->setVolatile(isVolatile()); 4242 Result->setWeak(isWeak()); 4243 return Result; 4244 } 4245 4246 AtomicRMWInst *AtomicRMWInst::cloneImpl() const { 4247 AtomicRMWInst *Result = 4248 new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1), 4249 getAlign(), getOrdering(), getSyncScopeID()); 4250 Result->setVolatile(isVolatile()); 4251 return Result; 4252 } 4253 4254 FenceInst *FenceInst::cloneImpl() const { 4255 return new FenceInst(getContext(), getOrdering(), getSyncScopeID()); 4256 } 4257 4258 TruncInst *TruncInst::cloneImpl() const { 4259 return new TruncInst(getOperand(0), getType()); 4260 } 4261 4262 ZExtInst *ZExtInst::cloneImpl() const { 4263 return new ZExtInst(getOperand(0), getType()); 4264 } 4265 4266 SExtInst *SExtInst::cloneImpl() const { 4267 return new SExtInst(getOperand(0), getType()); 4268 } 4269 4270 FPTruncInst *FPTruncInst::cloneImpl() const { 4271 return new FPTruncInst(getOperand(0), getType()); 4272 } 4273 4274 FPExtInst *FPExtInst::cloneImpl() const { 4275 return new FPExtInst(getOperand(0), getType()); 4276 } 4277 4278 UIToFPInst *UIToFPInst::cloneImpl() const { 4279 return new UIToFPInst(getOperand(0), getType()); 4280 } 4281 4282 SIToFPInst *SIToFPInst::cloneImpl() const { 4283 return new SIToFPInst(getOperand(0), getType()); 4284 } 4285 4286 FPToUIInst *FPToUIInst::cloneImpl() const { 4287 return new FPToUIInst(getOperand(0), getType()); 4288 } 4289 4290 FPToSIInst *FPToSIInst::cloneImpl() const { 4291 return new FPToSIInst(getOperand(0), getType()); 4292 } 4293 4294 PtrToIntInst *PtrToIntInst::cloneImpl() const { 4295 return new PtrToIntInst(getOperand(0), getType()); 4296 } 4297 4298 IntToPtrInst *IntToPtrInst::cloneImpl() const { 4299 return new IntToPtrInst(getOperand(0), getType()); 4300 } 4301 4302 BitCastInst *BitCastInst::cloneImpl() const { 4303 return new BitCastInst(getOperand(0), getType()); 4304 } 4305 4306 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const { 4307 return new AddrSpaceCastInst(getOperand(0), getType()); 4308 } 4309 4310 CallInst *CallInst::cloneImpl() const { 4311 if (hasOperandBundles()) { 4312 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 4313 return new(getNumOperands(), DescriptorBytes) CallInst(*this); 4314 } 4315 return new(getNumOperands()) CallInst(*this); 4316 } 4317 4318 SelectInst *SelectInst::cloneImpl() const { 4319 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2)); 4320 } 4321 4322 VAArgInst *VAArgInst::cloneImpl() const { 4323 return new VAArgInst(getOperand(0), getType()); 4324 } 4325 4326 ExtractElementInst *ExtractElementInst::cloneImpl() const { 4327 return ExtractElementInst::Create(getOperand(0), getOperand(1)); 4328 } 4329 4330 InsertElementInst *InsertElementInst::cloneImpl() const { 4331 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2)); 4332 } 4333 4334 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const { 4335 return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask()); 4336 } 4337 4338 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); } 4339 4340 LandingPadInst *LandingPadInst::cloneImpl() const { 4341 return new LandingPadInst(*this); 4342 } 4343 4344 ReturnInst *ReturnInst::cloneImpl() const { 4345 return new(getNumOperands()) ReturnInst(*this); 4346 } 4347 4348 BranchInst *BranchInst::cloneImpl() const { 4349 return new(getNumOperands()) BranchInst(*this); 4350 } 4351 4352 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); } 4353 4354 IndirectBrInst *IndirectBrInst::cloneImpl() const { 4355 return new IndirectBrInst(*this); 4356 } 4357 4358 InvokeInst *InvokeInst::cloneImpl() const { 4359 if (hasOperandBundles()) { 4360 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 4361 return new(getNumOperands(), DescriptorBytes) InvokeInst(*this); 4362 } 4363 return new(getNumOperands()) InvokeInst(*this); 4364 } 4365 4366 CallBrInst *CallBrInst::cloneImpl() const { 4367 if (hasOperandBundles()) { 4368 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); 4369 return new (getNumOperands(), DescriptorBytes) CallBrInst(*this); 4370 } 4371 return new (getNumOperands()) CallBrInst(*this); 4372 } 4373 4374 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); } 4375 4376 CleanupReturnInst *CleanupReturnInst::cloneImpl() const { 4377 return new (getNumOperands()) CleanupReturnInst(*this); 4378 } 4379 4380 CatchReturnInst *CatchReturnInst::cloneImpl() const { 4381 return new (getNumOperands()) CatchReturnInst(*this); 4382 } 4383 4384 CatchSwitchInst *CatchSwitchInst::cloneImpl() const { 4385 return new CatchSwitchInst(*this); 4386 } 4387 4388 FuncletPadInst *FuncletPadInst::cloneImpl() const { 4389 return new (getNumOperands()) FuncletPadInst(*this); 4390 } 4391 4392 UnreachableInst *UnreachableInst::cloneImpl() const { 4393 LLVMContext &Context = getContext(); 4394 return new UnreachableInst(Context); 4395 } 4396 4397 FreezeInst *FreezeInst::cloneImpl() const { 4398 return new FreezeInst(getOperand(0)); 4399 } 4400