xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Instructions.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/SmallBitVector.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/ConstantRange.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/ProfDataUtils.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/AtomicOrdering.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CheckedArithmetic.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Support/ModRef.h"
44 #include "llvm/Support/TypeSize.h"
45 #include <algorithm>
46 #include <cassert>
47 #include <cstdint>
48 #include <optional>
49 #include <vector>
50 
51 using namespace llvm;
52 
53 static cl::opt<bool> DisableI2pP2iOpt(
54     "disable-i2p-p2i-opt", cl::init(false),
55     cl::desc("Disables inttoptr/ptrtoint roundtrip optimization"));
56 
57 //===----------------------------------------------------------------------===//
58 //                            AllocaInst Class
59 //===----------------------------------------------------------------------===//
60 
61 std::optional<TypeSize>
62 AllocaInst::getAllocationSize(const DataLayout &DL) const {
63   TypeSize Size = DL.getTypeAllocSize(getAllocatedType());
64   if (isArrayAllocation()) {
65     auto *C = dyn_cast<ConstantInt>(getArraySize());
66     if (!C)
67       return std::nullopt;
68     assert(!Size.isScalable() && "Array elements cannot have a scalable size");
69     auto CheckedProd =
70         checkedMulUnsigned(Size.getKnownMinValue(), C->getZExtValue());
71     if (!CheckedProd)
72       return std::nullopt;
73     return TypeSize::getFixed(*CheckedProd);
74   }
75   return Size;
76 }
77 
78 std::optional<TypeSize>
79 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
80   std::optional<TypeSize> Size = getAllocationSize(DL);
81   if (!Size)
82     return std::nullopt;
83   auto CheckedProd = checkedMulUnsigned(Size->getKnownMinValue(),
84                                         static_cast<TypeSize::ScalarTy>(8));
85   if (!CheckedProd)
86     return std::nullopt;
87   return TypeSize::get(*CheckedProd, Size->isScalable());
88 }
89 
90 //===----------------------------------------------------------------------===//
91 //                              SelectInst Class
92 //===----------------------------------------------------------------------===//
93 
94 /// areInvalidOperands - Return a string if the specified operands are invalid
95 /// for a select operation, otherwise return null.
96 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
97   if (Op1->getType() != Op2->getType())
98     return "both values to select must have same type";
99 
100   if (Op1->getType()->isTokenTy())
101     return "select values cannot have token type";
102 
103   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
104     // Vector select.
105     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
106       return "vector select condition element type must be i1";
107     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
108     if (!ET)
109       return "selected values for vector select must be vectors";
110     if (ET->getElementCount() != VT->getElementCount())
111       return "vector select requires selected vectors to have "
112                    "the same vector length as select condition";
113   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
114     return "select condition must be i1 or <n x i1>";
115   }
116   return nullptr;
117 }
118 
119 //===----------------------------------------------------------------------===//
120 //                               PHINode Class
121 //===----------------------------------------------------------------------===//
122 
123 PHINode::PHINode(const PHINode &PN)
124     : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
125       ReservedSpace(PN.getNumOperands()) {
126   allocHungoffUses(PN.getNumOperands());
127   std::copy(PN.op_begin(), PN.op_end(), op_begin());
128   copyIncomingBlocks(make_range(PN.block_begin(), PN.block_end()));
129   SubclassOptionalData = PN.SubclassOptionalData;
130 }
131 
132 // removeIncomingValue - Remove an incoming value.  This is useful if a
133 // predecessor basic block is deleted.
134 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
135   Value *Removed = getIncomingValue(Idx);
136 
137   // Move everything after this operand down.
138   //
139   // FIXME: we could just swap with the end of the list, then erase.  However,
140   // clients might not expect this to happen.  The code as it is thrashes the
141   // use/def lists, which is kinda lame.
142   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
143   copyIncomingBlocks(drop_begin(blocks(), Idx + 1), Idx);
144 
145   // Nuke the last value.
146   Op<-1>().set(nullptr);
147   setNumHungOffUseOperands(getNumOperands() - 1);
148 
149   // If the PHI node is dead, because it has zero entries, nuke it now.
150   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
151     // If anyone is using this PHI, make them use a dummy value instead...
152     replaceAllUsesWith(PoisonValue::get(getType()));
153     eraseFromParent();
154   }
155   return Removed;
156 }
157 
158 void PHINode::removeIncomingValueIf(function_ref<bool(unsigned)> Predicate,
159                                     bool DeletePHIIfEmpty) {
160   SmallDenseSet<unsigned> RemoveIndices;
161   for (unsigned Idx = 0; Idx < getNumIncomingValues(); ++Idx)
162     if (Predicate(Idx))
163       RemoveIndices.insert(Idx);
164 
165   if (RemoveIndices.empty())
166     return;
167 
168   // Remove operands.
169   auto NewOpEnd = remove_if(operands(), [&](Use &U) {
170     return RemoveIndices.contains(U.getOperandNo());
171   });
172   for (Use &U : make_range(NewOpEnd, op_end()))
173     U.set(nullptr);
174 
175   // Remove incoming blocks.
176   (void)std::remove_if(const_cast<block_iterator>(block_begin()),
177                  const_cast<block_iterator>(block_end()), [&](BasicBlock *&BB) {
178                    return RemoveIndices.contains(&BB - block_begin());
179                  });
180 
181   setNumHungOffUseOperands(getNumOperands() - RemoveIndices.size());
182 
183   // If the PHI node is dead, because it has zero entries, nuke it now.
184   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
185     // If anyone is using this PHI, make them use a dummy value instead...
186     replaceAllUsesWith(PoisonValue::get(getType()));
187     eraseFromParent();
188   }
189 }
190 
191 /// growOperands - grow operands - This grows the operand list in response
192 /// to a push_back style of operation.  This grows the number of ops by 1.5
193 /// times.
194 ///
195 void PHINode::growOperands() {
196   unsigned e = getNumOperands();
197   unsigned NumOps = e + e / 2;
198   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
199 
200   ReservedSpace = NumOps;
201   growHungoffUses(ReservedSpace, /* IsPhi */ true);
202 }
203 
204 /// hasConstantValue - If the specified PHI node always merges together the same
205 /// value, return the value, otherwise return null.
206 Value *PHINode::hasConstantValue() const {
207   // Exploit the fact that phi nodes always have at least one entry.
208   Value *ConstantValue = getIncomingValue(0);
209   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
210     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
211       if (ConstantValue != this)
212         return nullptr; // Incoming values not all the same.
213        // The case where the first value is this PHI.
214       ConstantValue = getIncomingValue(i);
215     }
216   if (ConstantValue == this)
217     return PoisonValue::get(getType());
218   return ConstantValue;
219 }
220 
221 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
222 /// together the same value, assuming that undefs result in the same value as
223 /// non-undefs.
224 /// Unlike \ref hasConstantValue, this does not return a value because the
225 /// unique non-undef incoming value need not dominate the PHI node.
226 bool PHINode::hasConstantOrUndefValue() const {
227   Value *ConstantValue = nullptr;
228   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
229     Value *Incoming = getIncomingValue(i);
230     if (Incoming != this && !isa<UndefValue>(Incoming)) {
231       if (ConstantValue && ConstantValue != Incoming)
232         return false;
233       ConstantValue = Incoming;
234     }
235   }
236   return true;
237 }
238 
239 //===----------------------------------------------------------------------===//
240 //                       LandingPadInst Implementation
241 //===----------------------------------------------------------------------===//
242 
243 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
244                                const Twine &NameStr,
245                                InsertPosition InsertBefore)
246     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
247   init(NumReservedValues, NameStr);
248 }
249 
250 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
251     : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
252                   LP.getNumOperands()),
253       ReservedSpace(LP.getNumOperands()) {
254   allocHungoffUses(LP.getNumOperands());
255   Use *OL = getOperandList();
256   const Use *InOL = LP.getOperandList();
257   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
258     OL[I] = InOL[I];
259 
260   setCleanup(LP.isCleanup());
261 }
262 
263 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
264                                        const Twine &NameStr,
265                                        InsertPosition InsertBefore) {
266   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
267 }
268 
269 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
270   ReservedSpace = NumReservedValues;
271   setNumHungOffUseOperands(0);
272   allocHungoffUses(ReservedSpace);
273   setName(NameStr);
274   setCleanup(false);
275 }
276 
277 /// growOperands - grow operands - This grows the operand list in response to a
278 /// push_back style of operation. This grows the number of ops by 2 times.
279 void LandingPadInst::growOperands(unsigned Size) {
280   unsigned e = getNumOperands();
281   if (ReservedSpace >= e + Size) return;
282   ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
283   growHungoffUses(ReservedSpace);
284 }
285 
286 void LandingPadInst::addClause(Constant *Val) {
287   unsigned OpNo = getNumOperands();
288   growOperands(1);
289   assert(OpNo < ReservedSpace && "Growing didn't work!");
290   setNumHungOffUseOperands(getNumOperands() + 1);
291   getOperandList()[OpNo] = Val;
292 }
293 
294 //===----------------------------------------------------------------------===//
295 //                        CallBase Implementation
296 //===----------------------------------------------------------------------===//
297 
298 CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles,
299                            InsertPosition InsertPt) {
300   switch (CB->getOpcode()) {
301   case Instruction::Call:
302     return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt);
303   case Instruction::Invoke:
304     return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt);
305   case Instruction::CallBr:
306     return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt);
307   default:
308     llvm_unreachable("Unknown CallBase sub-class!");
309   }
310 }
311 
312 CallBase *CallBase::Create(CallBase *CI, OperandBundleDef OpB,
313                            InsertPosition InsertPt) {
314   SmallVector<OperandBundleDef, 2> OpDefs;
315   for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) {
316     auto ChildOB = CI->getOperandBundleAt(i);
317     if (ChildOB.getTagName() != OpB.getTag())
318       OpDefs.emplace_back(ChildOB);
319   }
320   OpDefs.emplace_back(OpB);
321   return CallBase::Create(CI, OpDefs, InsertPt);
322 }
323 
324 Function *CallBase::getCaller() { return getParent()->getParent(); }
325 
326 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
327   assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
328   return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
329 }
330 
331 bool CallBase::isIndirectCall() const {
332   const Value *V = getCalledOperand();
333   if (isa<Function>(V) || isa<Constant>(V))
334     return false;
335   return !isInlineAsm();
336 }
337 
338 /// Tests if this call site must be tail call optimized. Only a CallInst can
339 /// be tail call optimized.
340 bool CallBase::isMustTailCall() const {
341   if (auto *CI = dyn_cast<CallInst>(this))
342     return CI->isMustTailCall();
343   return false;
344 }
345 
346 /// Tests if this call site is marked as a tail call.
347 bool CallBase::isTailCall() const {
348   if (auto *CI = dyn_cast<CallInst>(this))
349     return CI->isTailCall();
350   return false;
351 }
352 
353 Intrinsic::ID CallBase::getIntrinsicID() const {
354   if (auto *F = getCalledFunction())
355     return F->getIntrinsicID();
356   return Intrinsic::not_intrinsic;
357 }
358 
359 FPClassTest CallBase::getRetNoFPClass() const {
360   FPClassTest Mask = Attrs.getRetNoFPClass();
361 
362   if (const Function *F = getCalledFunction())
363     Mask |= F->getAttributes().getRetNoFPClass();
364   return Mask;
365 }
366 
367 FPClassTest CallBase::getParamNoFPClass(unsigned i) const {
368   FPClassTest Mask = Attrs.getParamNoFPClass(i);
369 
370   if (const Function *F = getCalledFunction())
371     Mask |= F->getAttributes().getParamNoFPClass(i);
372   return Mask;
373 }
374 
375 std::optional<ConstantRange> CallBase::getRange() const {
376   const Attribute RangeAttr = getRetAttr(llvm::Attribute::Range);
377   if (RangeAttr.isValid())
378     return RangeAttr.getRange();
379   return std::nullopt;
380 }
381 
382 bool CallBase::isReturnNonNull() const {
383   if (hasRetAttr(Attribute::NonNull))
384     return true;
385 
386   if (getRetDereferenceableBytes() > 0 &&
387       !NullPointerIsDefined(getCaller(), getType()->getPointerAddressSpace()))
388     return true;
389 
390   return false;
391 }
392 
393 Value *CallBase::getArgOperandWithAttribute(Attribute::AttrKind Kind) const {
394   unsigned Index;
395 
396   if (Attrs.hasAttrSomewhere(Kind, &Index))
397     return getArgOperand(Index - AttributeList::FirstArgIndex);
398   if (const Function *F = getCalledFunction())
399     if (F->getAttributes().hasAttrSomewhere(Kind, &Index))
400       return getArgOperand(Index - AttributeList::FirstArgIndex);
401 
402   return nullptr;
403 }
404 
405 /// Determine whether the argument or parameter has the given attribute.
406 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
407   assert(ArgNo < arg_size() && "Param index out of bounds!");
408 
409   if (Attrs.hasParamAttr(ArgNo, Kind))
410     return true;
411 
412   const Function *F = getCalledFunction();
413   if (!F)
414     return false;
415 
416   if (!F->getAttributes().hasParamAttr(ArgNo, Kind))
417     return false;
418 
419   // Take into account mod/ref by operand bundles.
420   switch (Kind) {
421   case Attribute::ReadNone:
422     return !hasReadingOperandBundles() && !hasClobberingOperandBundles();
423   case Attribute::ReadOnly:
424     return !hasClobberingOperandBundles();
425   case Attribute::WriteOnly:
426     return !hasReadingOperandBundles();
427   default:
428     return true;
429   }
430 }
431 
432 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
433   if (auto *F = dyn_cast<Function>(getCalledOperand()))
434     return F->getAttributes().hasFnAttr(Kind);
435 
436   return false;
437 }
438 
439 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
440   if (auto *F = dyn_cast<Function>(getCalledOperand()))
441     return F->getAttributes().hasFnAttr(Kind);
442 
443   return false;
444 }
445 
446 template <typename AK>
447 Attribute CallBase::getFnAttrOnCalledFunction(AK Kind) const {
448   if constexpr (std::is_same_v<AK, Attribute::AttrKind>) {
449     // getMemoryEffects() correctly combines memory effects from the call-site,
450     // operand bundles and function.
451     assert(Kind != Attribute::Memory && "Use getMemoryEffects() instead");
452   }
453 
454   if (auto *F = dyn_cast<Function>(getCalledOperand()))
455     return F->getAttributes().getFnAttr(Kind);
456 
457   return Attribute();
458 }
459 
460 template Attribute
461 CallBase::getFnAttrOnCalledFunction(Attribute::AttrKind Kind) const;
462 template Attribute CallBase::getFnAttrOnCalledFunction(StringRef Kind) const;
463 
464 template <typename AK>
465 Attribute CallBase::getParamAttrOnCalledFunction(unsigned ArgNo,
466                                                  AK Kind) const {
467   Value *V = getCalledOperand();
468 
469   if (auto *F = dyn_cast<Function>(V))
470     return F->getAttributes().getParamAttr(ArgNo, Kind);
471 
472   return Attribute();
473 }
474 template Attribute
475 CallBase::getParamAttrOnCalledFunction(unsigned ArgNo,
476                                        Attribute::AttrKind Kind) const;
477 template Attribute CallBase::getParamAttrOnCalledFunction(unsigned ArgNo,
478                                                           StringRef Kind) const;
479 
480 void CallBase::getOperandBundlesAsDefs(
481     SmallVectorImpl<OperandBundleDef> &Defs) const {
482   for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
483     Defs.emplace_back(getOperandBundleAt(i));
484 }
485 
486 CallBase::op_iterator
487 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
488                                      const unsigned BeginIndex) {
489   auto It = op_begin() + BeginIndex;
490   for (auto &B : Bundles)
491     It = std::copy(B.input_begin(), B.input_end(), It);
492 
493   auto *ContextImpl = getContext().pImpl;
494   auto BI = Bundles.begin();
495   unsigned CurrentIndex = BeginIndex;
496 
497   for (auto &BOI : bundle_op_infos()) {
498     assert(BI != Bundles.end() && "Incorrect allocation?");
499 
500     BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
501     BOI.Begin = CurrentIndex;
502     BOI.End = CurrentIndex + BI->input_size();
503     CurrentIndex = BOI.End;
504     BI++;
505   }
506 
507   assert(BI == Bundles.end() && "Incorrect allocation?");
508 
509   return It;
510 }
511 
512 CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) {
513   /// When there isn't many bundles, we do a simple linear search.
514   /// Else fallback to a binary-search that use the fact that bundles usually
515   /// have similar number of argument to get faster convergence.
516   if (bundle_op_info_end() - bundle_op_info_begin() < 8) {
517     for (auto &BOI : bundle_op_infos())
518       if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
519         return BOI;
520 
521     llvm_unreachable("Did not find operand bundle for operand!");
522   }
523 
524   assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles");
525   assert(bundle_op_info_end() - bundle_op_info_begin() > 0 &&
526          OpIdx < std::prev(bundle_op_info_end())->End &&
527          "The Idx isn't in the operand bundle");
528 
529   /// We need a decimal number below and to prevent using floating point numbers
530   /// we use an intergal value multiplied by this constant.
531   constexpr unsigned NumberScaling = 1024;
532 
533   bundle_op_iterator Begin = bundle_op_info_begin();
534   bundle_op_iterator End = bundle_op_info_end();
535   bundle_op_iterator Current = Begin;
536 
537   while (Begin != End) {
538     unsigned ScaledOperandPerBundle =
539         NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin);
540     Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) /
541                        ScaledOperandPerBundle);
542     if (Current >= End)
543       Current = std::prev(End);
544     assert(Current < End && Current >= Begin &&
545            "the operand bundle doesn't cover every value in the range");
546     if (OpIdx >= Current->Begin && OpIdx < Current->End)
547       break;
548     if (OpIdx >= Current->End)
549       Begin = Current + 1;
550     else
551       End = Current;
552   }
553 
554   assert(OpIdx >= Current->Begin && OpIdx < Current->End &&
555          "the operand bundle doesn't cover every value in the range");
556   return *Current;
557 }
558 
559 CallBase *CallBase::addOperandBundle(CallBase *CB, uint32_t ID,
560                                      OperandBundleDef OB,
561                                      InsertPosition InsertPt) {
562   if (CB->getOperandBundle(ID))
563     return CB;
564 
565   SmallVector<OperandBundleDef, 1> Bundles;
566   CB->getOperandBundlesAsDefs(Bundles);
567   Bundles.push_back(OB);
568   return Create(CB, Bundles, InsertPt);
569 }
570 
571 CallBase *CallBase::removeOperandBundle(CallBase *CB, uint32_t ID,
572                                         InsertPosition InsertPt) {
573   SmallVector<OperandBundleDef, 1> Bundles;
574   bool CreateNew = false;
575 
576   for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) {
577     auto Bundle = CB->getOperandBundleAt(I);
578     if (Bundle.getTagID() == ID) {
579       CreateNew = true;
580       continue;
581     }
582     Bundles.emplace_back(Bundle);
583   }
584 
585   return CreateNew ? Create(CB, Bundles, InsertPt) : CB;
586 }
587 
588 bool CallBase::hasReadingOperandBundles() const {
589   // Implementation note: this is a conservative implementation of operand
590   // bundle semantics, where *any* non-assume operand bundle (other than
591   // ptrauth) forces a callsite to be at least readonly.
592   return hasOperandBundlesOtherThan(
593              {LLVMContext::OB_ptrauth, LLVMContext::OB_kcfi}) &&
594          getIntrinsicID() != Intrinsic::assume;
595 }
596 
597 bool CallBase::hasClobberingOperandBundles() const {
598   return hasOperandBundlesOtherThan(
599              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
600               LLVMContext::OB_ptrauth, LLVMContext::OB_kcfi}) &&
601          getIntrinsicID() != Intrinsic::assume;
602 }
603 
604 MemoryEffects CallBase::getMemoryEffects() const {
605   MemoryEffects ME = getAttributes().getMemoryEffects();
606   if (auto *Fn = dyn_cast<Function>(getCalledOperand())) {
607     MemoryEffects FnME = Fn->getMemoryEffects();
608     if (hasOperandBundles()) {
609       // TODO: Add a method to get memory effects for operand bundles instead.
610       if (hasReadingOperandBundles())
611         FnME |= MemoryEffects::readOnly();
612       if (hasClobberingOperandBundles())
613         FnME |= MemoryEffects::writeOnly();
614     }
615     ME &= FnME;
616   }
617   return ME;
618 }
619 void CallBase::setMemoryEffects(MemoryEffects ME) {
620   addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME));
621 }
622 
623 /// Determine if the function does not access memory.
624 bool CallBase::doesNotAccessMemory() const {
625   return getMemoryEffects().doesNotAccessMemory();
626 }
627 void CallBase::setDoesNotAccessMemory() {
628   setMemoryEffects(MemoryEffects::none());
629 }
630 
631 /// Determine if the function does not access or only reads memory.
632 bool CallBase::onlyReadsMemory() const {
633   return getMemoryEffects().onlyReadsMemory();
634 }
635 void CallBase::setOnlyReadsMemory() {
636   setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly());
637 }
638 
639 /// Determine if the function does not access or only writes memory.
640 bool CallBase::onlyWritesMemory() const {
641   return getMemoryEffects().onlyWritesMemory();
642 }
643 void CallBase::setOnlyWritesMemory() {
644   setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly());
645 }
646 
647 /// Determine if the call can access memmory only using pointers based
648 /// on its arguments.
649 bool CallBase::onlyAccessesArgMemory() const {
650   return getMemoryEffects().onlyAccessesArgPointees();
651 }
652 void CallBase::setOnlyAccessesArgMemory() {
653   setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly());
654 }
655 
656 /// Determine if the function may only access memory that is
657 ///  inaccessible from the IR.
658 bool CallBase::onlyAccessesInaccessibleMemory() const {
659   return getMemoryEffects().onlyAccessesInaccessibleMem();
660 }
661 void CallBase::setOnlyAccessesInaccessibleMemory() {
662   setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly());
663 }
664 
665 /// Determine if the function may only access memory that is
666 ///  either inaccessible from the IR or pointed to by its arguments.
667 bool CallBase::onlyAccessesInaccessibleMemOrArgMem() const {
668   return getMemoryEffects().onlyAccessesInaccessibleOrArgMem();
669 }
670 void CallBase::setOnlyAccessesInaccessibleMemOrArgMem() {
671   setMemoryEffects(getMemoryEffects() &
672                    MemoryEffects::inaccessibleOrArgMemOnly());
673 }
674 
675 //===----------------------------------------------------------------------===//
676 //                        CallInst Implementation
677 //===----------------------------------------------------------------------===//
678 
679 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
680                     ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
681   this->FTy = FTy;
682   assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
683          "NumOperands not set up?");
684 
685 #ifndef NDEBUG
686   assert((Args.size() == FTy->getNumParams() ||
687           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
688          "Calling a function with bad signature!");
689 
690   for (unsigned i = 0; i != Args.size(); ++i)
691     assert((i >= FTy->getNumParams() ||
692             FTy->getParamType(i) == Args[i]->getType()) &&
693            "Calling a function with a bad signature!");
694 #endif
695 
696   // Set operands in order of their index to match use-list-order
697   // prediction.
698   llvm::copy(Args, op_begin());
699   setCalledOperand(Func);
700 
701   auto It = populateBundleOperandInfos(Bundles, Args.size());
702   (void)It;
703   assert(It + 1 == op_end() && "Should add up!");
704 
705   setName(NameStr);
706 }
707 
708 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
709   this->FTy = FTy;
710   assert(getNumOperands() == 1 && "NumOperands not set up?");
711   setCalledOperand(Func);
712 
713   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
714 
715   setName(NameStr);
716 }
717 
718 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
719                    InsertPosition InsertBefore)
720     : CallBase(Ty->getReturnType(), Instruction::Call,
721                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
722   init(Ty, Func, Name);
723 }
724 
725 CallInst::CallInst(const CallInst &CI)
726     : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
727                OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
728                CI.getNumOperands()) {
729   setTailCallKind(CI.getTailCallKind());
730   setCallingConv(CI.getCallingConv());
731 
732   std::copy(CI.op_begin(), CI.op_end(), op_begin());
733   std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
734             bundle_op_info_begin());
735   SubclassOptionalData = CI.SubclassOptionalData;
736 }
737 
738 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
739                            InsertPosition InsertPt) {
740   std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
741 
742   auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(),
743                                  Args, OpB, CI->getName(), InsertPt);
744   NewCI->setTailCallKind(CI->getTailCallKind());
745   NewCI->setCallingConv(CI->getCallingConv());
746   NewCI->SubclassOptionalData = CI->SubclassOptionalData;
747   NewCI->setAttributes(CI->getAttributes());
748   NewCI->setDebugLoc(CI->getDebugLoc());
749   return NewCI;
750 }
751 
752 // Update profile weight for call instruction by scaling it using the ratio
753 // of S/T. The meaning of "branch_weights" meta data for call instruction is
754 // transfered to represent call count.
755 void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
756   if (T == 0) {
757     LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
758                          "div by 0. Ignoring. Likely the function "
759                       << getParent()->getParent()->getName()
760                       << " has 0 entry count, and contains call instructions "
761                          "with non-zero prof info.");
762     return;
763   }
764   scaleProfData(*this, S, T);
765 }
766 
767 //===----------------------------------------------------------------------===//
768 //                        InvokeInst Implementation
769 //===----------------------------------------------------------------------===//
770 
771 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
772                       BasicBlock *IfException, ArrayRef<Value *> Args,
773                       ArrayRef<OperandBundleDef> Bundles,
774                       const Twine &NameStr) {
775   this->FTy = FTy;
776 
777   assert((int)getNumOperands() ==
778              ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
779          "NumOperands not set up?");
780 
781 #ifndef NDEBUG
782   assert(((Args.size() == FTy->getNumParams()) ||
783           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
784          "Invoking a function with bad signature");
785 
786   for (unsigned i = 0, e = Args.size(); i != e; i++)
787     assert((i >= FTy->getNumParams() ||
788             FTy->getParamType(i) == Args[i]->getType()) &&
789            "Invoking a function with a bad signature!");
790 #endif
791 
792   // Set operands in order of their index to match use-list-order
793   // prediction.
794   llvm::copy(Args, op_begin());
795   setNormalDest(IfNormal);
796   setUnwindDest(IfException);
797   setCalledOperand(Fn);
798 
799   auto It = populateBundleOperandInfos(Bundles, Args.size());
800   (void)It;
801   assert(It + 3 == op_end() && "Should add up!");
802 
803   setName(NameStr);
804 }
805 
806 InvokeInst::InvokeInst(const InvokeInst &II)
807     : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
808                OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
809                II.getNumOperands()) {
810   setCallingConv(II.getCallingConv());
811   std::copy(II.op_begin(), II.op_end(), op_begin());
812   std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
813             bundle_op_info_begin());
814   SubclassOptionalData = II.SubclassOptionalData;
815 }
816 
817 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
818                                InsertPosition InsertPt) {
819   std::vector<Value *> Args(II->arg_begin(), II->arg_end());
820 
821   auto *NewII = InvokeInst::Create(
822       II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(),
823       II->getUnwindDest(), Args, OpB, II->getName(), InsertPt);
824   NewII->setCallingConv(II->getCallingConv());
825   NewII->SubclassOptionalData = II->SubclassOptionalData;
826   NewII->setAttributes(II->getAttributes());
827   NewII->setDebugLoc(II->getDebugLoc());
828   return NewII;
829 }
830 
831 LandingPadInst *InvokeInst::getLandingPadInst() const {
832   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
833 }
834 
835 void InvokeInst::updateProfWeight(uint64_t S, uint64_t T) {
836   if (T == 0) {
837     LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
838                          "div by 0. Ignoring. Likely the function "
839                       << getParent()->getParent()->getName()
840                       << " has 0 entry count, and contains call instructions "
841                          "with non-zero prof info.");
842     return;
843   }
844   scaleProfData(*this, S, T);
845 }
846 
847 //===----------------------------------------------------------------------===//
848 //                        CallBrInst Implementation
849 //===----------------------------------------------------------------------===//
850 
851 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
852                       ArrayRef<BasicBlock *> IndirectDests,
853                       ArrayRef<Value *> Args,
854                       ArrayRef<OperandBundleDef> Bundles,
855                       const Twine &NameStr) {
856   this->FTy = FTy;
857 
858   assert((int)getNumOperands() ==
859              ComputeNumOperands(Args.size(), IndirectDests.size(),
860                                 CountBundleInputs(Bundles)) &&
861          "NumOperands not set up?");
862 
863 #ifndef NDEBUG
864   assert(((Args.size() == FTy->getNumParams()) ||
865           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
866          "Calling a function with bad signature");
867 
868   for (unsigned i = 0, e = Args.size(); i != e; i++)
869     assert((i >= FTy->getNumParams() ||
870             FTy->getParamType(i) == Args[i]->getType()) &&
871            "Calling a function with a bad signature!");
872 #endif
873 
874   // Set operands in order of their index to match use-list-order
875   // prediction.
876   std::copy(Args.begin(), Args.end(), op_begin());
877   NumIndirectDests = IndirectDests.size();
878   setDefaultDest(Fallthrough);
879   for (unsigned i = 0; i != NumIndirectDests; ++i)
880     setIndirectDest(i, IndirectDests[i]);
881   setCalledOperand(Fn);
882 
883   auto It = populateBundleOperandInfos(Bundles, Args.size());
884   (void)It;
885   assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
886 
887   setName(NameStr);
888 }
889 
890 CallBrInst::CallBrInst(const CallBrInst &CBI)
891     : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
892                OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
893                CBI.getNumOperands()) {
894   setCallingConv(CBI.getCallingConv());
895   std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
896   std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
897             bundle_op_info_begin());
898   SubclassOptionalData = CBI.SubclassOptionalData;
899   NumIndirectDests = CBI.NumIndirectDests;
900 }
901 
902 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
903                                InsertPosition InsertPt) {
904   std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
905 
906   auto *NewCBI = CallBrInst::Create(
907       CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(),
908       CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt);
909   NewCBI->setCallingConv(CBI->getCallingConv());
910   NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
911   NewCBI->setAttributes(CBI->getAttributes());
912   NewCBI->setDebugLoc(CBI->getDebugLoc());
913   NewCBI->NumIndirectDests = CBI->NumIndirectDests;
914   return NewCBI;
915 }
916 
917 //===----------------------------------------------------------------------===//
918 //                        ReturnInst Implementation
919 //===----------------------------------------------------------------------===//
920 
921 ReturnInst::ReturnInst(const ReturnInst &RI)
922     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
923                   OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
924                   RI.getNumOperands()) {
925   if (RI.getNumOperands())
926     Op<0>() = RI.Op<0>();
927   SubclassOptionalData = RI.SubclassOptionalData;
928 }
929 
930 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal,
931                        InsertPosition InsertBefore)
932     : Instruction(Type::getVoidTy(C), Instruction::Ret,
933                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
934                   InsertBefore) {
935   if (retVal)
936     Op<0>() = retVal;
937 }
938 
939 //===----------------------------------------------------------------------===//
940 //                        ResumeInst Implementation
941 //===----------------------------------------------------------------------===//
942 
943 ResumeInst::ResumeInst(const ResumeInst &RI)
944     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
945                   OperandTraits<ResumeInst>::op_begin(this), 1) {
946   Op<0>() = RI.Op<0>();
947 }
948 
949 ResumeInst::ResumeInst(Value *Exn, InsertPosition InsertBefore)
950     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
951                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
952   Op<0>() = Exn;
953 }
954 
955 //===----------------------------------------------------------------------===//
956 //                        CleanupReturnInst Implementation
957 //===----------------------------------------------------------------------===//
958 
959 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
960     : Instruction(CRI.getType(), Instruction::CleanupRet,
961                   OperandTraits<CleanupReturnInst>::op_end(this) -
962                       CRI.getNumOperands(),
963                   CRI.getNumOperands()) {
964   setSubclassData<Instruction::OpaqueField>(
965       CRI.getSubclassData<Instruction::OpaqueField>());
966   Op<0>() = CRI.Op<0>();
967   if (CRI.hasUnwindDest())
968     Op<1>() = CRI.Op<1>();
969 }
970 
971 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
972   if (UnwindBB)
973     setSubclassData<UnwindDestField>(true);
974 
975   Op<0>() = CleanupPad;
976   if (UnwindBB)
977     Op<1>() = UnwindBB;
978 }
979 
980 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
981                                      unsigned Values,
982                                      InsertPosition InsertBefore)
983     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
984                   Instruction::CleanupRet,
985                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
986                   Values, InsertBefore) {
987   init(CleanupPad, UnwindBB);
988 }
989 
990 //===----------------------------------------------------------------------===//
991 //                        CatchReturnInst Implementation
992 //===----------------------------------------------------------------------===//
993 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
994   Op<0>() = CatchPad;
995   Op<1>() = BB;
996 }
997 
998 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
999     : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
1000                   OperandTraits<CatchReturnInst>::op_begin(this), 2) {
1001   Op<0>() = CRI.Op<0>();
1002   Op<1>() = CRI.Op<1>();
1003 }
1004 
1005 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1006                                  InsertPosition InsertBefore)
1007     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1008                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
1009                   InsertBefore) {
1010   init(CatchPad, BB);
1011 }
1012 
1013 //===----------------------------------------------------------------------===//
1014 //                       CatchSwitchInst Implementation
1015 //===----------------------------------------------------------------------===//
1016 
1017 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1018                                  unsigned NumReservedValues,
1019                                  const Twine &NameStr,
1020                                  InsertPosition InsertBefore)
1021     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1022                   InsertBefore) {
1023   if (UnwindDest)
1024     ++NumReservedValues;
1025   init(ParentPad, UnwindDest, NumReservedValues + 1);
1026   setName(NameStr);
1027 }
1028 
1029 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1030     : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1031                   CSI.getNumOperands()) {
1032   init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1033   setNumHungOffUseOperands(ReservedSpace);
1034   Use *OL = getOperandList();
1035   const Use *InOL = CSI.getOperandList();
1036   for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1037     OL[I] = InOL[I];
1038 }
1039 
1040 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1041                            unsigned NumReservedValues) {
1042   assert(ParentPad && NumReservedValues);
1043 
1044   ReservedSpace = NumReservedValues;
1045   setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1046   allocHungoffUses(ReservedSpace);
1047 
1048   Op<0>() = ParentPad;
1049   if (UnwindDest) {
1050     setSubclassData<UnwindDestField>(true);
1051     setUnwindDest(UnwindDest);
1052   }
1053 }
1054 
1055 /// growOperands - grow operands - This grows the operand list in response to a
1056 /// push_back style of operation. This grows the number of ops by 2 times.
1057 void CatchSwitchInst::growOperands(unsigned Size) {
1058   unsigned NumOperands = getNumOperands();
1059   assert(NumOperands >= 1);
1060   if (ReservedSpace >= NumOperands + Size)
1061     return;
1062   ReservedSpace = (NumOperands + Size / 2) * 2;
1063   growHungoffUses(ReservedSpace);
1064 }
1065 
1066 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1067   unsigned OpNo = getNumOperands();
1068   growOperands(1);
1069   assert(OpNo < ReservedSpace && "Growing didn't work!");
1070   setNumHungOffUseOperands(getNumOperands() + 1);
1071   getOperandList()[OpNo] = Handler;
1072 }
1073 
1074 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1075   // Move all subsequent handlers up one.
1076   Use *EndDst = op_end() - 1;
1077   for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1078     *CurDst = *(CurDst + 1);
1079   // Null out the last handler use.
1080   *EndDst = nullptr;
1081 
1082   setNumHungOffUseOperands(getNumOperands() - 1);
1083 }
1084 
1085 //===----------------------------------------------------------------------===//
1086 //                        FuncletPadInst Implementation
1087 //===----------------------------------------------------------------------===//
1088 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1089                           const Twine &NameStr) {
1090   assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1091   llvm::copy(Args, op_begin());
1092   setParentPad(ParentPad);
1093   setName(NameStr);
1094 }
1095 
1096 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1097     : Instruction(FPI.getType(), FPI.getOpcode(),
1098                   OperandTraits<FuncletPadInst>::op_end(this) -
1099                       FPI.getNumOperands(),
1100                   FPI.getNumOperands()) {
1101   std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1102   setParentPad(FPI.getParentPad());
1103 }
1104 
1105 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1106                                ArrayRef<Value *> Args, unsigned Values,
1107                                const Twine &NameStr,
1108                                InsertPosition InsertBefore)
1109     : Instruction(ParentPad->getType(), Op,
1110                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1111                   InsertBefore) {
1112   init(ParentPad, Args, NameStr);
1113 }
1114 
1115 //===----------------------------------------------------------------------===//
1116 //                      UnreachableInst Implementation
1117 //===----------------------------------------------------------------------===//
1118 
1119 UnreachableInst::UnreachableInst(LLVMContext &Context,
1120                                  InsertPosition InsertBefore)
1121     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1122                   0, InsertBefore) {}
1123 
1124 //===----------------------------------------------------------------------===//
1125 //                        BranchInst Implementation
1126 //===----------------------------------------------------------------------===//
1127 
1128 void BranchInst::AssertOK() {
1129   if (isConditional())
1130     assert(getCondition()->getType()->isIntegerTy(1) &&
1131            "May only branch on boolean predicates!");
1132 }
1133 
1134 BranchInst::BranchInst(BasicBlock *IfTrue, InsertPosition InsertBefore)
1135     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1136                   OperandTraits<BranchInst>::op_end(this) - 1, 1,
1137                   InsertBefore) {
1138   assert(IfTrue && "Branch destination may not be null!");
1139   Op<-1>() = IfTrue;
1140 }
1141 
1142 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1143                        InsertPosition InsertBefore)
1144     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1145                   OperandTraits<BranchInst>::op_end(this) - 3, 3,
1146                   InsertBefore) {
1147   // Assign in order of operand index to make use-list order predictable.
1148   Op<-3>() = Cond;
1149   Op<-2>() = IfFalse;
1150   Op<-1>() = IfTrue;
1151 #ifndef NDEBUG
1152   AssertOK();
1153 #endif
1154 }
1155 
1156 BranchInst::BranchInst(const BranchInst &BI)
1157     : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1158                   OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1159                   BI.getNumOperands()) {
1160   // Assign in order of operand index to make use-list order predictable.
1161   if (BI.getNumOperands() != 1) {
1162     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1163     Op<-3>() = BI.Op<-3>();
1164     Op<-2>() = BI.Op<-2>();
1165   }
1166   Op<-1>() = BI.Op<-1>();
1167   SubclassOptionalData = BI.SubclassOptionalData;
1168 }
1169 
1170 void BranchInst::swapSuccessors() {
1171   assert(isConditional() &&
1172          "Cannot swap successors of an unconditional branch");
1173   Op<-1>().swap(Op<-2>());
1174 
1175   // Update profile metadata if present and it matches our structural
1176   // expectations.
1177   swapProfMetadata();
1178 }
1179 
1180 //===----------------------------------------------------------------------===//
1181 //                        AllocaInst Implementation
1182 //===----------------------------------------------------------------------===//
1183 
1184 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1185   if (!Amt)
1186     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1187   else {
1188     assert(!isa<BasicBlock>(Amt) &&
1189            "Passed basic block into allocation size parameter! Use other ctor");
1190     assert(Amt->getType()->isIntegerTy() &&
1191            "Allocation array size is not an integer!");
1192   }
1193   return Amt;
1194 }
1195 
1196 static Align computeAllocaDefaultAlign(Type *Ty, InsertPosition Pos) {
1197   assert(Pos.isValid() &&
1198          "Insertion position cannot be null when alignment not provided!");
1199   BasicBlock *BB = Pos.getBasicBlock();
1200   assert(BB->getParent() &&
1201          "BB must be in a Function when alignment not provided!");
1202   const DataLayout &DL = BB->getDataLayout();
1203   return DL.getPrefTypeAlign(Ty);
1204 }
1205 
1206 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1207                        InsertPosition InsertBefore)
1208     : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1209 
1210 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1211                        const Twine &Name, InsertPosition InsertBefore)
1212     : AllocaInst(Ty, AddrSpace, ArraySize,
1213                  computeAllocaDefaultAlign(Ty, InsertBefore), Name,
1214                  InsertBefore) {}
1215 
1216 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1217                        Align Align, const Twine &Name,
1218                        InsertPosition InsertBefore)
1219     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1220                        getAISize(Ty->getContext(), ArraySize), InsertBefore),
1221       AllocatedType(Ty) {
1222   setAlignment(Align);
1223   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1224   setName(Name);
1225 }
1226 
1227 bool AllocaInst::isArrayAllocation() const {
1228   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1229     return !CI->isOne();
1230   return true;
1231 }
1232 
1233 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1234 /// function and is a constant size.  If so, the code generator will fold it
1235 /// into the prolog/epilog code, so it is basically free.
1236 bool AllocaInst::isStaticAlloca() const {
1237   // Must be constant size.
1238   if (!isa<ConstantInt>(getArraySize())) return false;
1239 
1240   // Must be in the entry block.
1241   const BasicBlock *Parent = getParent();
1242   return Parent->isEntryBlock() && !isUsedWithInAlloca();
1243 }
1244 
1245 //===----------------------------------------------------------------------===//
1246 //                           LoadInst Implementation
1247 //===----------------------------------------------------------------------===//
1248 
1249 void LoadInst::AssertOK() {
1250   assert(getOperand(0)->getType()->isPointerTy() &&
1251          "Ptr must have pointer type.");
1252 }
1253 
1254 static Align computeLoadStoreDefaultAlign(Type *Ty, InsertPosition Pos) {
1255   assert(Pos.isValid() &&
1256          "Insertion position cannot be null when alignment not provided!");
1257   BasicBlock *BB = Pos.getBasicBlock();
1258   assert(BB->getParent() &&
1259          "BB must be in a Function when alignment not provided!");
1260   const DataLayout &DL = BB->getDataLayout();
1261   return DL.getABITypeAlign(Ty);
1262 }
1263 
1264 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1265                    InsertPosition InsertBef)
1266     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1267 
1268 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1269                    InsertPosition InsertBef)
1270     : LoadInst(Ty, Ptr, Name, isVolatile,
1271                computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {}
1272 
1273 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1274                    Align Align, InsertPosition InsertBef)
1275     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1276                SyncScope::System, InsertBef) {}
1277 
1278 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1279                    Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1280                    InsertPosition InsertBef)
1281     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1282   setVolatile(isVolatile);
1283   setAlignment(Align);
1284   setAtomic(Order, SSID);
1285   AssertOK();
1286   setName(Name);
1287 }
1288 
1289 //===----------------------------------------------------------------------===//
1290 //                           StoreInst Implementation
1291 //===----------------------------------------------------------------------===//
1292 
1293 void StoreInst::AssertOK() {
1294   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1295   assert(getOperand(1)->getType()->isPointerTy() &&
1296          "Ptr must have pointer type!");
1297 }
1298 
1299 StoreInst::StoreInst(Value *val, Value *addr, InsertPosition InsertBefore)
1300     : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1301 
1302 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1303                      InsertPosition InsertBefore)
1304     : StoreInst(val, addr, isVolatile,
1305                 computeLoadStoreDefaultAlign(val->getType(), InsertBefore),
1306                 InsertBefore) {}
1307 
1308 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1309                      InsertPosition InsertBefore)
1310     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1311                 SyncScope::System, InsertBefore) {}
1312 
1313 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1314                      AtomicOrdering Order, SyncScope::ID SSID,
1315                      InsertPosition InsertBefore)
1316     : Instruction(Type::getVoidTy(val->getContext()), Store,
1317                   OperandTraits<StoreInst>::op_begin(this),
1318                   OperandTraits<StoreInst>::operands(this), InsertBefore) {
1319   Op<0>() = val;
1320   Op<1>() = addr;
1321   setVolatile(isVolatile);
1322   setAlignment(Align);
1323   setAtomic(Order, SSID);
1324   AssertOK();
1325 }
1326 
1327 //===----------------------------------------------------------------------===//
1328 //                       AtomicCmpXchgInst Implementation
1329 //===----------------------------------------------------------------------===//
1330 
1331 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1332                              Align Alignment, AtomicOrdering SuccessOrdering,
1333                              AtomicOrdering FailureOrdering,
1334                              SyncScope::ID SSID) {
1335   Op<0>() = Ptr;
1336   Op<1>() = Cmp;
1337   Op<2>() = NewVal;
1338   setSuccessOrdering(SuccessOrdering);
1339   setFailureOrdering(FailureOrdering);
1340   setSyncScopeID(SSID);
1341   setAlignment(Alignment);
1342 
1343   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1344          "All operands must be non-null!");
1345   assert(getOperand(0)->getType()->isPointerTy() &&
1346          "Ptr must have pointer type!");
1347   assert(getOperand(1)->getType() == getOperand(2)->getType() &&
1348          "Cmp type and NewVal type must be same!");
1349 }
1350 
1351 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1352                                      Align Alignment,
1353                                      AtomicOrdering SuccessOrdering,
1354                                      AtomicOrdering FailureOrdering,
1355                                      SyncScope::ID SSID,
1356                                      InsertPosition InsertBefore)
1357     : Instruction(
1358           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1359           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1360           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1361   Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1362 }
1363 
1364 //===----------------------------------------------------------------------===//
1365 //                       AtomicRMWInst Implementation
1366 //===----------------------------------------------------------------------===//
1367 
1368 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1369                          Align Alignment, AtomicOrdering Ordering,
1370                          SyncScope::ID SSID) {
1371   assert(Ordering != AtomicOrdering::NotAtomic &&
1372          "atomicrmw instructions can only be atomic.");
1373   assert(Ordering != AtomicOrdering::Unordered &&
1374          "atomicrmw instructions cannot be unordered.");
1375   Op<0>() = Ptr;
1376   Op<1>() = Val;
1377   setOperation(Operation);
1378   setOrdering(Ordering);
1379   setSyncScopeID(SSID);
1380   setAlignment(Alignment);
1381 
1382   assert(getOperand(0) && getOperand(1) && "All operands must be non-null!");
1383   assert(getOperand(0)->getType()->isPointerTy() &&
1384          "Ptr must have pointer type!");
1385   assert(Ordering != AtomicOrdering::NotAtomic &&
1386          "AtomicRMW instructions must be atomic!");
1387 }
1388 
1389 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1390                              Align Alignment, AtomicOrdering Ordering,
1391                              SyncScope::ID SSID, InsertPosition InsertBefore)
1392     : Instruction(Val->getType(), AtomicRMW,
1393                   OperandTraits<AtomicRMWInst>::op_begin(this),
1394                   OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) {
1395   Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1396 }
1397 
1398 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1399   switch (Op) {
1400   case AtomicRMWInst::Xchg:
1401     return "xchg";
1402   case AtomicRMWInst::Add:
1403     return "add";
1404   case AtomicRMWInst::Sub:
1405     return "sub";
1406   case AtomicRMWInst::And:
1407     return "and";
1408   case AtomicRMWInst::Nand:
1409     return "nand";
1410   case AtomicRMWInst::Or:
1411     return "or";
1412   case AtomicRMWInst::Xor:
1413     return "xor";
1414   case AtomicRMWInst::Max:
1415     return "max";
1416   case AtomicRMWInst::Min:
1417     return "min";
1418   case AtomicRMWInst::UMax:
1419     return "umax";
1420   case AtomicRMWInst::UMin:
1421     return "umin";
1422   case AtomicRMWInst::FAdd:
1423     return "fadd";
1424   case AtomicRMWInst::FSub:
1425     return "fsub";
1426   case AtomicRMWInst::FMax:
1427     return "fmax";
1428   case AtomicRMWInst::FMin:
1429     return "fmin";
1430   case AtomicRMWInst::UIncWrap:
1431     return "uinc_wrap";
1432   case AtomicRMWInst::UDecWrap:
1433     return "udec_wrap";
1434   case AtomicRMWInst::BAD_BINOP:
1435     return "<invalid operation>";
1436   }
1437 
1438   llvm_unreachable("invalid atomicrmw operation");
1439 }
1440 
1441 //===----------------------------------------------------------------------===//
1442 //                       FenceInst Implementation
1443 //===----------------------------------------------------------------------===//
1444 
1445 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1446                      SyncScope::ID SSID, InsertPosition InsertBefore)
1447     : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1448   setOrdering(Ordering);
1449   setSyncScopeID(SSID);
1450 }
1451 
1452 //===----------------------------------------------------------------------===//
1453 //                       GetElementPtrInst Implementation
1454 //===----------------------------------------------------------------------===//
1455 
1456 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1457                              const Twine &Name) {
1458   assert(getNumOperands() == 1 + IdxList.size() &&
1459          "NumOperands not initialized?");
1460   Op<0>() = Ptr;
1461   llvm::copy(IdxList, op_begin() + 1);
1462   setName(Name);
1463 }
1464 
1465 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1466     : Instruction(GEPI.getType(), GetElementPtr,
1467                   OperandTraits<GetElementPtrInst>::op_end(this) -
1468                       GEPI.getNumOperands(),
1469                   GEPI.getNumOperands()),
1470       SourceElementType(GEPI.SourceElementType),
1471       ResultElementType(GEPI.ResultElementType) {
1472   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1473   SubclassOptionalData = GEPI.SubclassOptionalData;
1474 }
1475 
1476 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) {
1477   if (auto *Struct = dyn_cast<StructType>(Ty)) {
1478     if (!Struct->indexValid(Idx))
1479       return nullptr;
1480     return Struct->getTypeAtIndex(Idx);
1481   }
1482   if (!Idx->getType()->isIntOrIntVectorTy())
1483     return nullptr;
1484   if (auto *Array = dyn_cast<ArrayType>(Ty))
1485     return Array->getElementType();
1486   if (auto *Vector = dyn_cast<VectorType>(Ty))
1487     return Vector->getElementType();
1488   return nullptr;
1489 }
1490 
1491 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) {
1492   if (auto *Struct = dyn_cast<StructType>(Ty)) {
1493     if (Idx >= Struct->getNumElements())
1494       return nullptr;
1495     return Struct->getElementType(Idx);
1496   }
1497   if (auto *Array = dyn_cast<ArrayType>(Ty))
1498     return Array->getElementType();
1499   if (auto *Vector = dyn_cast<VectorType>(Ty))
1500     return Vector->getElementType();
1501   return nullptr;
1502 }
1503 
1504 template <typename IndexTy>
1505 static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) {
1506   if (IdxList.empty())
1507     return Ty;
1508   for (IndexTy V : IdxList.slice(1)) {
1509     Ty = GetElementPtrInst::getTypeAtIndex(Ty, V);
1510     if (!Ty)
1511       return Ty;
1512   }
1513   return Ty;
1514 }
1515 
1516 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1517   return getIndexedTypeInternal(Ty, IdxList);
1518 }
1519 
1520 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1521                                         ArrayRef<Constant *> IdxList) {
1522   return getIndexedTypeInternal(Ty, IdxList);
1523 }
1524 
1525 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1526   return getIndexedTypeInternal(Ty, IdxList);
1527 }
1528 
1529 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1530 /// zeros.  If so, the result pointer and the first operand have the same
1531 /// value, just potentially different types.
1532 bool GetElementPtrInst::hasAllZeroIndices() const {
1533   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1534     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1535       if (!CI->isZero()) return false;
1536     } else {
1537       return false;
1538     }
1539   }
1540   return true;
1541 }
1542 
1543 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1544 /// constant integers.  If so, the result pointer and the first operand have
1545 /// a constant offset between them.
1546 bool GetElementPtrInst::hasAllConstantIndices() const {
1547   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1548     if (!isa<ConstantInt>(getOperand(i)))
1549       return false;
1550   }
1551   return true;
1552 }
1553 
1554 void GetElementPtrInst::setNoWrapFlags(GEPNoWrapFlags NW) {
1555   SubclassOptionalData = NW.getRaw();
1556 }
1557 
1558 void GetElementPtrInst::setIsInBounds(bool B) {
1559   GEPNoWrapFlags NW = cast<GEPOperator>(this)->getNoWrapFlags();
1560   if (B)
1561     NW |= GEPNoWrapFlags::inBounds();
1562   else
1563     NW = NW.withoutInBounds();
1564   setNoWrapFlags(NW);
1565 }
1566 
1567 GEPNoWrapFlags GetElementPtrInst::getNoWrapFlags() const {
1568   return cast<GEPOperator>(this)->getNoWrapFlags();
1569 }
1570 
1571 bool GetElementPtrInst::isInBounds() const {
1572   return cast<GEPOperator>(this)->isInBounds();
1573 }
1574 
1575 bool GetElementPtrInst::hasNoUnsignedSignedWrap() const {
1576   return cast<GEPOperator>(this)->hasNoUnsignedSignedWrap();
1577 }
1578 
1579 bool GetElementPtrInst::hasNoUnsignedWrap() const {
1580   return cast<GEPOperator>(this)->hasNoUnsignedWrap();
1581 }
1582 
1583 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1584                                                  APInt &Offset) const {
1585   // Delegate to the generic GEPOperator implementation.
1586   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1587 }
1588 
1589 bool GetElementPtrInst::collectOffset(
1590     const DataLayout &DL, unsigned BitWidth,
1591     MapVector<Value *, APInt> &VariableOffsets,
1592     APInt &ConstantOffset) const {
1593   // Delegate to the generic GEPOperator implementation.
1594   return cast<GEPOperator>(this)->collectOffset(DL, BitWidth, VariableOffsets,
1595                                                 ConstantOffset);
1596 }
1597 
1598 //===----------------------------------------------------------------------===//
1599 //                           ExtractElementInst Implementation
1600 //===----------------------------------------------------------------------===//
1601 
1602 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1603                                        const Twine &Name,
1604                                        InsertPosition InsertBef)
1605     : Instruction(
1606           cast<VectorType>(Val->getType())->getElementType(), ExtractElement,
1607           OperandTraits<ExtractElementInst>::op_begin(this), 2, InsertBef) {
1608   assert(isValidOperands(Val, Index) &&
1609          "Invalid extractelement instruction operands!");
1610   Op<0>() = Val;
1611   Op<1>() = Index;
1612   setName(Name);
1613 }
1614 
1615 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1616   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1617     return false;
1618   return true;
1619 }
1620 
1621 //===----------------------------------------------------------------------===//
1622 //                           InsertElementInst Implementation
1623 //===----------------------------------------------------------------------===//
1624 
1625 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1626                                      const Twine &Name,
1627                                      InsertPosition InsertBef)
1628     : Instruction(Vec->getType(), InsertElement,
1629                   OperandTraits<InsertElementInst>::op_begin(this), 3,
1630                   InsertBef) {
1631   assert(isValidOperands(Vec, Elt, Index) &&
1632          "Invalid insertelement instruction operands!");
1633   Op<0>() = Vec;
1634   Op<1>() = Elt;
1635   Op<2>() = Index;
1636   setName(Name);
1637 }
1638 
1639 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1640                                         const Value *Index) {
1641   if (!Vec->getType()->isVectorTy())
1642     return false;   // First operand of insertelement must be vector type.
1643 
1644   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1645     return false;// Second operand of insertelement must be vector element type.
1646 
1647   if (!Index->getType()->isIntegerTy())
1648     return false;  // Third operand of insertelement must be i32.
1649   return true;
1650 }
1651 
1652 //===----------------------------------------------------------------------===//
1653 //                      ShuffleVectorInst Implementation
1654 //===----------------------------------------------------------------------===//
1655 
1656 static Value *createPlaceholderForShuffleVector(Value *V) {
1657   assert(V && "Cannot create placeholder of nullptr V");
1658   return PoisonValue::get(V->getType());
1659 }
1660 
1661 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *Mask, const Twine &Name,
1662                                      InsertPosition InsertBefore)
1663     : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
1664                         InsertBefore) {}
1665 
1666 ShuffleVectorInst::ShuffleVectorInst(Value *V1, ArrayRef<int> Mask,
1667                                      const Twine &Name,
1668                                      InsertPosition InsertBefore)
1669     : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
1670                         InsertBefore) {}
1671 
1672 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1673                                      const Twine &Name,
1674                                      InsertPosition InsertBefore)
1675     : Instruction(
1676           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1677                           cast<VectorType>(Mask->getType())->getElementCount()),
1678           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1679           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1680   assert(isValidOperands(V1, V2, Mask) &&
1681          "Invalid shuffle vector instruction operands!");
1682 
1683   Op<0>() = V1;
1684   Op<1>() = V2;
1685   SmallVector<int, 16> MaskArr;
1686   getShuffleMask(cast<Constant>(Mask), MaskArr);
1687   setShuffleMask(MaskArr);
1688   setName(Name);
1689 }
1690 
1691 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1692                                      const Twine &Name,
1693                                      InsertPosition InsertBefore)
1694     : Instruction(
1695           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1696                           Mask.size(), isa<ScalableVectorType>(V1->getType())),
1697           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1698           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1699   assert(isValidOperands(V1, V2, Mask) &&
1700          "Invalid shuffle vector instruction operands!");
1701   Op<0>() = V1;
1702   Op<1>() = V2;
1703   setShuffleMask(Mask);
1704   setName(Name);
1705 }
1706 
1707 void ShuffleVectorInst::commute() {
1708   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
1709   int NumMaskElts = ShuffleMask.size();
1710   SmallVector<int, 16> NewMask(NumMaskElts);
1711   for (int i = 0; i != NumMaskElts; ++i) {
1712     int MaskElt = getMaskValue(i);
1713     if (MaskElt == PoisonMaskElem) {
1714       NewMask[i] = PoisonMaskElem;
1715       continue;
1716     }
1717     assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
1718     MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1719     NewMask[i] = MaskElt;
1720   }
1721   setShuffleMask(NewMask);
1722   Op<0>().swap(Op<1>());
1723 }
1724 
1725 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1726                                         ArrayRef<int> Mask) {
1727   // V1 and V2 must be vectors of the same type.
1728   if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
1729     return false;
1730 
1731   // Make sure the mask elements make sense.
1732   int V1Size =
1733       cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
1734   for (int Elem : Mask)
1735     if (Elem != PoisonMaskElem && Elem >= V1Size * 2)
1736       return false;
1737 
1738   if (isa<ScalableVectorType>(V1->getType()))
1739     if ((Mask[0] != 0 && Mask[0] != PoisonMaskElem) || !all_equal(Mask))
1740       return false;
1741 
1742   return true;
1743 }
1744 
1745 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1746                                         const Value *Mask) {
1747   // V1 and V2 must be vectors of the same type.
1748   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1749     return false;
1750 
1751   // Mask must be vector of i32, and must be the same kind of vector as the
1752   // input vectors
1753   auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1754   if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
1755       isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType()))
1756     return false;
1757 
1758   // Check to see if Mask is valid.
1759   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1760     return true;
1761 
1762   if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1763     unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
1764     for (Value *Op : MV->operands()) {
1765       if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1766         if (CI->uge(V1Size*2))
1767           return false;
1768       } else if (!isa<UndefValue>(Op)) {
1769         return false;
1770       }
1771     }
1772     return true;
1773   }
1774 
1775   if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1776     unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
1777     for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements();
1778          i != e; ++i)
1779       if (CDS->getElementAsInteger(i) >= V1Size*2)
1780         return false;
1781     return true;
1782   }
1783 
1784   return false;
1785 }
1786 
1787 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
1788                                        SmallVectorImpl<int> &Result) {
1789   ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount();
1790 
1791   if (isa<ConstantAggregateZero>(Mask)) {
1792     Result.resize(EC.getKnownMinValue(), 0);
1793     return;
1794   }
1795 
1796   Result.reserve(EC.getKnownMinValue());
1797 
1798   if (EC.isScalable()) {
1799     assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) &&
1800            "Scalable vector shuffle mask must be undef or zeroinitializer");
1801     int MaskVal = isa<UndefValue>(Mask) ? -1 : 0;
1802     for (unsigned I = 0; I < EC.getKnownMinValue(); ++I)
1803       Result.emplace_back(MaskVal);
1804     return;
1805   }
1806 
1807   unsigned NumElts = EC.getKnownMinValue();
1808 
1809   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1810     for (unsigned i = 0; i != NumElts; ++i)
1811       Result.push_back(CDS->getElementAsInteger(i));
1812     return;
1813   }
1814   for (unsigned i = 0; i != NumElts; ++i) {
1815     Constant *C = Mask->getAggregateElement(i);
1816     Result.push_back(isa<UndefValue>(C) ? -1 :
1817                      cast<ConstantInt>(C)->getZExtValue());
1818   }
1819 }
1820 
1821 void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) {
1822   ShuffleMask.assign(Mask.begin(), Mask.end());
1823   ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType());
1824 }
1825 
1826 Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask,
1827                                                           Type *ResultTy) {
1828   Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext());
1829   if (isa<ScalableVectorType>(ResultTy)) {
1830     assert(all_equal(Mask) && "Unexpected shuffle");
1831     Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true);
1832     if (Mask[0] == 0)
1833       return Constant::getNullValue(VecTy);
1834     return PoisonValue::get(VecTy);
1835   }
1836   SmallVector<Constant *, 16> MaskConst;
1837   for (int Elem : Mask) {
1838     if (Elem == PoisonMaskElem)
1839       MaskConst.push_back(PoisonValue::get(Int32Ty));
1840     else
1841       MaskConst.push_back(ConstantInt::get(Int32Ty, Elem));
1842   }
1843   return ConstantVector::get(MaskConst);
1844 }
1845 
1846 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1847   assert(!Mask.empty() && "Shuffle mask must contain elements");
1848   bool UsesLHS = false;
1849   bool UsesRHS = false;
1850   for (int I : Mask) {
1851     if (I == -1)
1852       continue;
1853     assert(I >= 0 && I < (NumOpElts * 2) &&
1854            "Out-of-bounds shuffle mask element");
1855     UsesLHS |= (I < NumOpElts);
1856     UsesRHS |= (I >= NumOpElts);
1857     if (UsesLHS && UsesRHS)
1858       return false;
1859   }
1860   // Allow for degenerate case: completely undef mask means neither source is used.
1861   return UsesLHS || UsesRHS;
1862 }
1863 
1864 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask, int NumSrcElts) {
1865   // We don't have vector operand size information, so assume operands are the
1866   // same size as the mask.
1867   return isSingleSourceMaskImpl(Mask, NumSrcElts);
1868 }
1869 
1870 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1871   if (!isSingleSourceMaskImpl(Mask, NumOpElts))
1872     return false;
1873   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1874     if (Mask[i] == -1)
1875       continue;
1876     if (Mask[i] != i && Mask[i] != (NumOpElts + i))
1877       return false;
1878   }
1879   return true;
1880 }
1881 
1882 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask, int NumSrcElts) {
1883   if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1884     return false;
1885   // We don't have vector operand size information, so assume operands are the
1886   // same size as the mask.
1887   return isIdentityMaskImpl(Mask, NumSrcElts);
1888 }
1889 
1890 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask, int NumSrcElts) {
1891   if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1892     return false;
1893   if (!isSingleSourceMask(Mask, NumSrcElts))
1894     return false;
1895 
1896   // The number of elements in the mask must be at least 2.
1897   if (NumSrcElts < 2)
1898     return false;
1899 
1900   for (int I = 0, E = Mask.size(); I < E; ++I) {
1901     if (Mask[I] == -1)
1902       continue;
1903     if (Mask[I] != (NumSrcElts - 1 - I) &&
1904         Mask[I] != (NumSrcElts + NumSrcElts - 1 - I))
1905       return false;
1906   }
1907   return true;
1908 }
1909 
1910 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask, int NumSrcElts) {
1911   if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1912     return false;
1913   if (!isSingleSourceMask(Mask, NumSrcElts))
1914     return false;
1915   for (int I = 0, E = Mask.size(); I < E; ++I) {
1916     if (Mask[I] == -1)
1917       continue;
1918     if (Mask[I] != 0 && Mask[I] != NumSrcElts)
1919       return false;
1920   }
1921   return true;
1922 }
1923 
1924 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask, int NumSrcElts) {
1925   if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1926     return false;
1927   // Select is differentiated from identity. It requires using both sources.
1928   if (isSingleSourceMask(Mask, NumSrcElts))
1929     return false;
1930   for (int I = 0, E = Mask.size(); I < E; ++I) {
1931     if (Mask[I] == -1)
1932       continue;
1933     if (Mask[I] != I && Mask[I] != (NumSrcElts + I))
1934       return false;
1935   }
1936   return true;
1937 }
1938 
1939 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask, int NumSrcElts) {
1940   // Example masks that will return true:
1941   // v1 = <a, b, c, d>
1942   // v2 = <e, f, g, h>
1943   // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
1944   // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
1945 
1946   if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1947     return false;
1948   // 1. The number of elements in the mask must be a power-of-2 and at least 2.
1949   int Sz = Mask.size();
1950   if (Sz < 2 || !isPowerOf2_32(Sz))
1951     return false;
1952 
1953   // 2. The first element of the mask must be either a 0 or a 1.
1954   if (Mask[0] != 0 && Mask[0] != 1)
1955     return false;
1956 
1957   // 3. The difference between the first 2 elements must be equal to the
1958   // number of elements in the mask.
1959   if ((Mask[1] - Mask[0]) != NumSrcElts)
1960     return false;
1961 
1962   // 4. The difference between consecutive even-numbered and odd-numbered
1963   // elements must be equal to 2.
1964   for (int I = 2; I < Sz; ++I) {
1965     int MaskEltVal = Mask[I];
1966     if (MaskEltVal == -1)
1967       return false;
1968     int MaskEltPrevVal = Mask[I - 2];
1969     if (MaskEltVal - MaskEltPrevVal != 2)
1970       return false;
1971   }
1972   return true;
1973 }
1974 
1975 bool ShuffleVectorInst::isSpliceMask(ArrayRef<int> Mask, int NumSrcElts,
1976                                      int &Index) {
1977   if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1978     return false;
1979   // Example: shufflevector <4 x n> A, <4 x n> B, <1,2,3,4>
1980   int StartIndex = -1;
1981   for (int I = 0, E = Mask.size(); I != E; ++I) {
1982     int MaskEltVal = Mask[I];
1983     if (MaskEltVal == -1)
1984       continue;
1985 
1986     if (StartIndex == -1) {
1987       // Don't support a StartIndex that begins in the second input, or if the
1988       // first non-undef index would access below the StartIndex.
1989       if (MaskEltVal < I || NumSrcElts <= (MaskEltVal - I))
1990         return false;
1991 
1992       StartIndex = MaskEltVal - I;
1993       continue;
1994     }
1995 
1996     // Splice is sequential starting from StartIndex.
1997     if (MaskEltVal != (StartIndex + I))
1998       return false;
1999   }
2000 
2001   if (StartIndex == -1)
2002     return false;
2003 
2004   // NOTE: This accepts StartIndex == 0 (COPY).
2005   Index = StartIndex;
2006   return true;
2007 }
2008 
2009 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2010                                                int NumSrcElts, int &Index) {
2011   // Must extract from a single source.
2012   if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2013     return false;
2014 
2015   // Must be smaller (else this is an Identity shuffle).
2016   if (NumSrcElts <= (int)Mask.size())
2017     return false;
2018 
2019   // Find start of extraction, accounting that we may start with an UNDEF.
2020   int SubIndex = -1;
2021   for (int i = 0, e = Mask.size(); i != e; ++i) {
2022     int M = Mask[i];
2023     if (M < 0)
2024       continue;
2025     int Offset = (M % NumSrcElts) - i;
2026     if (0 <= SubIndex && SubIndex != Offset)
2027       return false;
2028     SubIndex = Offset;
2029   }
2030 
2031   if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
2032     Index = SubIndex;
2033     return true;
2034   }
2035   return false;
2036 }
2037 
2038 bool ShuffleVectorInst::isInsertSubvectorMask(ArrayRef<int> Mask,
2039                                               int NumSrcElts, int &NumSubElts,
2040                                               int &Index) {
2041   int NumMaskElts = Mask.size();
2042 
2043   // Don't try to match if we're shuffling to a smaller size.
2044   if (NumMaskElts < NumSrcElts)
2045     return false;
2046 
2047   // TODO: We don't recognize self-insertion/widening.
2048   if (isSingleSourceMaskImpl(Mask, NumSrcElts))
2049     return false;
2050 
2051   // Determine which mask elements are attributed to which source.
2052   APInt UndefElts = APInt::getZero(NumMaskElts);
2053   APInt Src0Elts = APInt::getZero(NumMaskElts);
2054   APInt Src1Elts = APInt::getZero(NumMaskElts);
2055   bool Src0Identity = true;
2056   bool Src1Identity = true;
2057 
2058   for (int i = 0; i != NumMaskElts; ++i) {
2059     int M = Mask[i];
2060     if (M < 0) {
2061       UndefElts.setBit(i);
2062       continue;
2063     }
2064     if (M < NumSrcElts) {
2065       Src0Elts.setBit(i);
2066       Src0Identity &= (M == i);
2067       continue;
2068     }
2069     Src1Elts.setBit(i);
2070     Src1Identity &= (M == (i + NumSrcElts));
2071   }
2072   assert((Src0Elts | Src1Elts | UndefElts).isAllOnes() &&
2073          "unknown shuffle elements");
2074   assert(!Src0Elts.isZero() && !Src1Elts.isZero() &&
2075          "2-source shuffle not found");
2076 
2077   // Determine lo/hi span ranges.
2078   // TODO: How should we handle undefs at the start of subvector insertions?
2079   int Src0Lo = Src0Elts.countr_zero();
2080   int Src1Lo = Src1Elts.countr_zero();
2081   int Src0Hi = NumMaskElts - Src0Elts.countl_zero();
2082   int Src1Hi = NumMaskElts - Src1Elts.countl_zero();
2083 
2084   // If src0 is in place, see if the src1 elements is inplace within its own
2085   // span.
2086   if (Src0Identity) {
2087     int NumSub1Elts = Src1Hi - Src1Lo;
2088     ArrayRef<int> Sub1Mask = Mask.slice(Src1Lo, NumSub1Elts);
2089     if (isIdentityMaskImpl(Sub1Mask, NumSrcElts)) {
2090       NumSubElts = NumSub1Elts;
2091       Index = Src1Lo;
2092       return true;
2093     }
2094   }
2095 
2096   // If src1 is in place, see if the src0 elements is inplace within its own
2097   // span.
2098   if (Src1Identity) {
2099     int NumSub0Elts = Src0Hi - Src0Lo;
2100     ArrayRef<int> Sub0Mask = Mask.slice(Src0Lo, NumSub0Elts);
2101     if (isIdentityMaskImpl(Sub0Mask, NumSrcElts)) {
2102       NumSubElts = NumSub0Elts;
2103       Index = Src0Lo;
2104       return true;
2105     }
2106   }
2107 
2108   return false;
2109 }
2110 
2111 bool ShuffleVectorInst::isIdentityWithPadding() const {
2112   // FIXME: Not currently possible to express a shuffle mask for a scalable
2113   // vector for this case.
2114   if (isa<ScalableVectorType>(getType()))
2115     return false;
2116 
2117   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2118   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2119   if (NumMaskElts <= NumOpElts)
2120     return false;
2121 
2122   // The first part of the mask must choose elements from exactly 1 source op.
2123   ArrayRef<int> Mask = getShuffleMask();
2124   if (!isIdentityMaskImpl(Mask, NumOpElts))
2125     return false;
2126 
2127   // All extending must be with undef elements.
2128   for (int i = NumOpElts; i < NumMaskElts; ++i)
2129     if (Mask[i] != -1)
2130       return false;
2131 
2132   return true;
2133 }
2134 
2135 bool ShuffleVectorInst::isIdentityWithExtract() const {
2136   // FIXME: Not currently possible to express a shuffle mask for a scalable
2137   // vector for this case.
2138   if (isa<ScalableVectorType>(getType()))
2139     return false;
2140 
2141   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2142   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2143   if (NumMaskElts >= NumOpElts)
2144     return false;
2145 
2146   return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2147 }
2148 
2149 bool ShuffleVectorInst::isConcat() const {
2150   // Vector concatenation is differentiated from identity with padding.
2151   if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()))
2152     return false;
2153 
2154   // FIXME: Not currently possible to express a shuffle mask for a scalable
2155   // vector for this case.
2156   if (isa<ScalableVectorType>(getType()))
2157     return false;
2158 
2159   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2160   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2161   if (NumMaskElts != NumOpElts * 2)
2162     return false;
2163 
2164   // Use the mask length rather than the operands' vector lengths here. We
2165   // already know that the shuffle returns a vector twice as long as the inputs,
2166   // and neither of the inputs are undef vectors. If the mask picks consecutive
2167   // elements from both inputs, then this is a concatenation of the inputs.
2168   return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2169 }
2170 
2171 static bool isReplicationMaskWithParams(ArrayRef<int> Mask,
2172                                         int ReplicationFactor, int VF) {
2173   assert(Mask.size() == (unsigned)ReplicationFactor * VF &&
2174          "Unexpected mask size.");
2175 
2176   for (int CurrElt : seq(VF)) {
2177     ArrayRef<int> CurrSubMask = Mask.take_front(ReplicationFactor);
2178     assert(CurrSubMask.size() == (unsigned)ReplicationFactor &&
2179            "Run out of mask?");
2180     Mask = Mask.drop_front(ReplicationFactor);
2181     if (!all_of(CurrSubMask, [CurrElt](int MaskElt) {
2182           return MaskElt == PoisonMaskElem || MaskElt == CurrElt;
2183         }))
2184       return false;
2185   }
2186   assert(Mask.empty() && "Did not consume the whole mask?");
2187 
2188   return true;
2189 }
2190 
2191 bool ShuffleVectorInst::isReplicationMask(ArrayRef<int> Mask,
2192                                           int &ReplicationFactor, int &VF) {
2193   // undef-less case is trivial.
2194   if (!llvm::is_contained(Mask, PoisonMaskElem)) {
2195     ReplicationFactor =
2196         Mask.take_while([](int MaskElt) { return MaskElt == 0; }).size();
2197     if (ReplicationFactor == 0 || Mask.size() % ReplicationFactor != 0)
2198       return false;
2199     VF = Mask.size() / ReplicationFactor;
2200     return isReplicationMaskWithParams(Mask, ReplicationFactor, VF);
2201   }
2202 
2203   // However, if the mask contains undef's, we have to enumerate possible tuples
2204   // and pick one. There are bounds on replication factor: [1, mask size]
2205   // (where RF=1 is an identity shuffle, RF=mask size is a broadcast shuffle)
2206   // Additionally, mask size is a replication factor multiplied by vector size,
2207   // which further significantly reduces the search space.
2208 
2209   // Before doing that, let's perform basic correctness checking first.
2210   int Largest = -1;
2211   for (int MaskElt : Mask) {
2212     if (MaskElt == PoisonMaskElem)
2213       continue;
2214     // Elements must be in non-decreasing order.
2215     if (MaskElt < Largest)
2216       return false;
2217     Largest = std::max(Largest, MaskElt);
2218   }
2219 
2220   // Prefer larger replication factor if all else equal.
2221   for (int PossibleReplicationFactor :
2222        reverse(seq_inclusive<unsigned>(1, Mask.size()))) {
2223     if (Mask.size() % PossibleReplicationFactor != 0)
2224       continue;
2225     int PossibleVF = Mask.size() / PossibleReplicationFactor;
2226     if (!isReplicationMaskWithParams(Mask, PossibleReplicationFactor,
2227                                      PossibleVF))
2228       continue;
2229     ReplicationFactor = PossibleReplicationFactor;
2230     VF = PossibleVF;
2231     return true;
2232   }
2233 
2234   return false;
2235 }
2236 
2237 bool ShuffleVectorInst::isReplicationMask(int &ReplicationFactor,
2238                                           int &VF) const {
2239   // Not possible to express a shuffle mask for a scalable vector for this
2240   // case.
2241   if (isa<ScalableVectorType>(getType()))
2242     return false;
2243 
2244   VF = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2245   if (ShuffleMask.size() % VF != 0)
2246     return false;
2247   ReplicationFactor = ShuffleMask.size() / VF;
2248 
2249   return isReplicationMaskWithParams(ShuffleMask, ReplicationFactor, VF);
2250 }
2251 
2252 bool ShuffleVectorInst::isOneUseSingleSourceMask(ArrayRef<int> Mask, int VF) {
2253   if (VF <= 0 || Mask.size() < static_cast<unsigned>(VF) ||
2254       Mask.size() % VF != 0)
2255     return false;
2256   for (unsigned K = 0, Sz = Mask.size(); K < Sz; K += VF) {
2257     ArrayRef<int> SubMask = Mask.slice(K, VF);
2258     if (all_of(SubMask, [](int Idx) { return Idx == PoisonMaskElem; }))
2259       continue;
2260     SmallBitVector Used(VF, false);
2261     for (int Idx : SubMask) {
2262       if (Idx != PoisonMaskElem && Idx < VF)
2263         Used.set(Idx);
2264     }
2265     if (!Used.all())
2266       return false;
2267   }
2268   return true;
2269 }
2270 
2271 /// Return true if this shuffle mask is a replication mask.
2272 bool ShuffleVectorInst::isOneUseSingleSourceMask(int VF) const {
2273   // Not possible to express a shuffle mask for a scalable vector for this
2274   // case.
2275   if (isa<ScalableVectorType>(getType()))
2276     return false;
2277   if (!isSingleSourceMask(ShuffleMask, VF))
2278     return false;
2279 
2280   return isOneUseSingleSourceMask(ShuffleMask, VF);
2281 }
2282 
2283 bool ShuffleVectorInst::isInterleave(unsigned Factor) {
2284   FixedVectorType *OpTy = dyn_cast<FixedVectorType>(getOperand(0)->getType());
2285   // shuffle_vector can only interleave fixed length vectors - for scalable
2286   // vectors, see the @llvm.vector.interleave2 intrinsic
2287   if (!OpTy)
2288     return false;
2289   unsigned OpNumElts = OpTy->getNumElements();
2290 
2291   return isInterleaveMask(ShuffleMask, Factor, OpNumElts * 2);
2292 }
2293 
2294 bool ShuffleVectorInst::isInterleaveMask(
2295     ArrayRef<int> Mask, unsigned Factor, unsigned NumInputElts,
2296     SmallVectorImpl<unsigned> &StartIndexes) {
2297   unsigned NumElts = Mask.size();
2298   if (NumElts % Factor)
2299     return false;
2300 
2301   unsigned LaneLen = NumElts / Factor;
2302   if (!isPowerOf2_32(LaneLen))
2303     return false;
2304 
2305   StartIndexes.resize(Factor);
2306 
2307   // Check whether each element matches the general interleaved rule.
2308   // Ignore undef elements, as long as the defined elements match the rule.
2309   // Outer loop processes all factors (x, y, z in the above example)
2310   unsigned I = 0, J;
2311   for (; I < Factor; I++) {
2312     unsigned SavedLaneValue;
2313     unsigned SavedNoUndefs = 0;
2314 
2315     // Inner loop processes consecutive accesses (x, x+1... in the example)
2316     for (J = 0; J < LaneLen - 1; J++) {
2317       // Lane computes x's position in the Mask
2318       unsigned Lane = J * Factor + I;
2319       unsigned NextLane = Lane + Factor;
2320       int LaneValue = Mask[Lane];
2321       int NextLaneValue = Mask[NextLane];
2322 
2323       // If both are defined, values must be sequential
2324       if (LaneValue >= 0 && NextLaneValue >= 0 &&
2325           LaneValue + 1 != NextLaneValue)
2326         break;
2327 
2328       // If the next value is undef, save the current one as reference
2329       if (LaneValue >= 0 && NextLaneValue < 0) {
2330         SavedLaneValue = LaneValue;
2331         SavedNoUndefs = 1;
2332       }
2333 
2334       // Undefs are allowed, but defined elements must still be consecutive:
2335       // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
2336       // Verify this by storing the last non-undef followed by an undef
2337       // Check that following non-undef masks are incremented with the
2338       // corresponding distance.
2339       if (SavedNoUndefs > 0 && LaneValue < 0) {
2340         SavedNoUndefs++;
2341         if (NextLaneValue >= 0 &&
2342             SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
2343           break;
2344       }
2345     }
2346 
2347     if (J < LaneLen - 1)
2348       return false;
2349 
2350     int StartMask = 0;
2351     if (Mask[I] >= 0) {
2352       // Check that the start of the I range (J=0) is greater than 0
2353       StartMask = Mask[I];
2354     } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
2355       // StartMask defined by the last value in lane
2356       StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
2357     } else if (SavedNoUndefs > 0) {
2358       // StartMask defined by some non-zero value in the j loop
2359       StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
2360     }
2361     // else StartMask remains set to 0, i.e. all elements are undefs
2362 
2363     if (StartMask < 0)
2364       return false;
2365     // We must stay within the vectors; This case can happen with undefs.
2366     if (StartMask + LaneLen > NumInputElts)
2367       return false;
2368 
2369     StartIndexes[I] = StartMask;
2370   }
2371 
2372   return true;
2373 }
2374 
2375 /// Check if the mask is a DE-interleave mask of the given factor
2376 /// \p Factor like:
2377 ///     <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
2378 bool ShuffleVectorInst::isDeInterleaveMaskOfFactor(ArrayRef<int> Mask,
2379                                                    unsigned Factor,
2380                                                    unsigned &Index) {
2381   // Check all potential start indices from 0 to (Factor - 1).
2382   for (unsigned Idx = 0; Idx < Factor; Idx++) {
2383     unsigned I = 0;
2384 
2385     // Check that elements are in ascending order by Factor. Ignore undef
2386     // elements.
2387     for (; I < Mask.size(); I++)
2388       if (Mask[I] >= 0 && static_cast<unsigned>(Mask[I]) != Idx + I * Factor)
2389         break;
2390 
2391     if (I == Mask.size()) {
2392       Index = Idx;
2393       return true;
2394     }
2395   }
2396 
2397   return false;
2398 }
2399 
2400 /// Try to lower a vector shuffle as a bit rotation.
2401 ///
2402 /// Look for a repeated rotation pattern in each sub group.
2403 /// Returns an element-wise left bit rotation amount or -1 if failed.
2404 static int matchShuffleAsBitRotate(ArrayRef<int> Mask, int NumSubElts) {
2405   int NumElts = Mask.size();
2406   assert((NumElts % NumSubElts) == 0 && "Illegal shuffle mask");
2407 
2408   int RotateAmt = -1;
2409   for (int i = 0; i != NumElts; i += NumSubElts) {
2410     for (int j = 0; j != NumSubElts; ++j) {
2411       int M = Mask[i + j];
2412       if (M < 0)
2413         continue;
2414       if (M < i || M >= i + NumSubElts)
2415         return -1;
2416       int Offset = (NumSubElts - (M - (i + j))) % NumSubElts;
2417       if (0 <= RotateAmt && Offset != RotateAmt)
2418         return -1;
2419       RotateAmt = Offset;
2420     }
2421   }
2422   return RotateAmt;
2423 }
2424 
2425 bool ShuffleVectorInst::isBitRotateMask(
2426     ArrayRef<int> Mask, unsigned EltSizeInBits, unsigned MinSubElts,
2427     unsigned MaxSubElts, unsigned &NumSubElts, unsigned &RotateAmt) {
2428   for (NumSubElts = MinSubElts; NumSubElts <= MaxSubElts; NumSubElts *= 2) {
2429     int EltRotateAmt = matchShuffleAsBitRotate(Mask, NumSubElts);
2430     if (EltRotateAmt < 0)
2431       continue;
2432     RotateAmt = EltRotateAmt * EltSizeInBits;
2433     return true;
2434   }
2435 
2436   return false;
2437 }
2438 
2439 //===----------------------------------------------------------------------===//
2440 //                             InsertValueInst Class
2441 //===----------------------------------------------------------------------===//
2442 
2443 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2444                            const Twine &Name) {
2445   assert(getNumOperands() == 2 && "NumOperands not initialized?");
2446 
2447   // There's no fundamental reason why we require at least one index
2448   // (other than weirdness with &*IdxBegin being invalid; see
2449   // getelementptr's init routine for example). But there's no
2450   // present need to support it.
2451   assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2452 
2453   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2454          Val->getType() && "Inserted value must match indexed type!");
2455   Op<0>() = Agg;
2456   Op<1>() = Val;
2457 
2458   Indices.append(Idxs.begin(), Idxs.end());
2459   setName(Name);
2460 }
2461 
2462 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2463   : Instruction(IVI.getType(), InsertValue,
2464                 OperandTraits<InsertValueInst>::op_begin(this), 2),
2465     Indices(IVI.Indices) {
2466   Op<0>() = IVI.getOperand(0);
2467   Op<1>() = IVI.getOperand(1);
2468   SubclassOptionalData = IVI.SubclassOptionalData;
2469 }
2470 
2471 //===----------------------------------------------------------------------===//
2472 //                             ExtractValueInst Class
2473 //===----------------------------------------------------------------------===//
2474 
2475 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2476   assert(getNumOperands() == 1 && "NumOperands not initialized?");
2477 
2478   // There's no fundamental reason why we require at least one index.
2479   // But there's no present need to support it.
2480   assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2481 
2482   Indices.append(Idxs.begin(), Idxs.end());
2483   setName(Name);
2484 }
2485 
2486 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2487   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2488     Indices(EVI.Indices) {
2489   SubclassOptionalData = EVI.SubclassOptionalData;
2490 }
2491 
2492 // getIndexedType - Returns the type of the element that would be extracted
2493 // with an extractvalue instruction with the specified parameters.
2494 //
2495 // A null type is returned if the indices are invalid for the specified
2496 // pointer type.
2497 //
2498 Type *ExtractValueInst::getIndexedType(Type *Agg,
2499                                        ArrayRef<unsigned> Idxs) {
2500   for (unsigned Index : Idxs) {
2501     // We can't use CompositeType::indexValid(Index) here.
2502     // indexValid() always returns true for arrays because getelementptr allows
2503     // out-of-bounds indices. Since we don't allow those for extractvalue and
2504     // insertvalue we need to check array indexing manually.
2505     // Since the only other types we can index into are struct types it's just
2506     // as easy to check those manually as well.
2507     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2508       if (Index >= AT->getNumElements())
2509         return nullptr;
2510       Agg = AT->getElementType();
2511     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2512       if (Index >= ST->getNumElements())
2513         return nullptr;
2514       Agg = ST->getElementType(Index);
2515     } else {
2516       // Not a valid type to index into.
2517       return nullptr;
2518     }
2519   }
2520   return const_cast<Type*>(Agg);
2521 }
2522 
2523 //===----------------------------------------------------------------------===//
2524 //                             UnaryOperator Class
2525 //===----------------------------------------------------------------------===//
2526 
2527 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S, Type *Ty,
2528                              const Twine &Name, InsertPosition InsertBefore)
2529     : UnaryInstruction(Ty, iType, S, InsertBefore) {
2530   Op<0>() = S;
2531   setName(Name);
2532   AssertOK();
2533 }
2534 
2535 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S, const Twine &Name,
2536                                      InsertPosition InsertBefore) {
2537   return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2538 }
2539 
2540 void UnaryOperator::AssertOK() {
2541   Value *LHS = getOperand(0);
2542   (void)LHS; // Silence warnings.
2543 #ifndef NDEBUG
2544   switch (getOpcode()) {
2545   case FNeg:
2546     assert(getType() == LHS->getType() &&
2547            "Unary operation should return same type as operand!");
2548     assert(getType()->isFPOrFPVectorTy() &&
2549            "Tried to create a floating-point operation on a "
2550            "non-floating-point type!");
2551     break;
2552   default: llvm_unreachable("Invalid opcode provided");
2553   }
2554 #endif
2555 }
2556 
2557 //===----------------------------------------------------------------------===//
2558 //                             BinaryOperator Class
2559 //===----------------------------------------------------------------------===//
2560 
2561 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
2562                                const Twine &Name, InsertPosition InsertBefore)
2563     : Instruction(Ty, iType, OperandTraits<BinaryOperator>::op_begin(this),
2564                   OperandTraits<BinaryOperator>::operands(this), InsertBefore) {
2565   Op<0>() = S1;
2566   Op<1>() = S2;
2567   setName(Name);
2568   AssertOK();
2569 }
2570 
2571 void BinaryOperator::AssertOK() {
2572   Value *LHS = getOperand(0), *RHS = getOperand(1);
2573   (void)LHS; (void)RHS; // Silence warnings.
2574   assert(LHS->getType() == RHS->getType() &&
2575          "Binary operator operand types must match!");
2576 #ifndef NDEBUG
2577   switch (getOpcode()) {
2578   case Add: case Sub:
2579   case Mul:
2580     assert(getType() == LHS->getType() &&
2581            "Arithmetic operation should return same type as operands!");
2582     assert(getType()->isIntOrIntVectorTy() &&
2583            "Tried to create an integer operation on a non-integer type!");
2584     break;
2585   case FAdd: case FSub:
2586   case FMul:
2587     assert(getType() == LHS->getType() &&
2588            "Arithmetic operation should return same type as operands!");
2589     assert(getType()->isFPOrFPVectorTy() &&
2590            "Tried to create a floating-point operation on a "
2591            "non-floating-point type!");
2592     break;
2593   case UDiv:
2594   case SDiv:
2595     assert(getType() == LHS->getType() &&
2596            "Arithmetic operation should return same type as operands!");
2597     assert(getType()->isIntOrIntVectorTy() &&
2598            "Incorrect operand type (not integer) for S/UDIV");
2599     break;
2600   case FDiv:
2601     assert(getType() == LHS->getType() &&
2602            "Arithmetic operation should return same type as operands!");
2603     assert(getType()->isFPOrFPVectorTy() &&
2604            "Incorrect operand type (not floating point) for FDIV");
2605     break;
2606   case URem:
2607   case SRem:
2608     assert(getType() == LHS->getType() &&
2609            "Arithmetic operation should return same type as operands!");
2610     assert(getType()->isIntOrIntVectorTy() &&
2611            "Incorrect operand type (not integer) for S/UREM");
2612     break;
2613   case FRem:
2614     assert(getType() == LHS->getType() &&
2615            "Arithmetic operation should return same type as operands!");
2616     assert(getType()->isFPOrFPVectorTy() &&
2617            "Incorrect operand type (not floating point) for FREM");
2618     break;
2619   case Shl:
2620   case LShr:
2621   case AShr:
2622     assert(getType() == LHS->getType() &&
2623            "Shift operation should return same type as operands!");
2624     assert(getType()->isIntOrIntVectorTy() &&
2625            "Tried to create a shift operation on a non-integral type!");
2626     break;
2627   case And: case Or:
2628   case Xor:
2629     assert(getType() == LHS->getType() &&
2630            "Logical operation should return same type as operands!");
2631     assert(getType()->isIntOrIntVectorTy() &&
2632            "Tried to create a logical operation on a non-integral type!");
2633     break;
2634   default: llvm_unreachable("Invalid opcode provided");
2635   }
2636 #endif
2637 }
2638 
2639 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2640                                        const Twine &Name,
2641                                        InsertPosition InsertBefore) {
2642   assert(S1->getType() == S2->getType() &&
2643          "Cannot create binary operator with two operands of differing type!");
2644   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2645 }
2646 
2647 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2648                                           InsertPosition InsertBefore) {
2649   Value *Zero = ConstantInt::get(Op->getType(), 0);
2650   return new BinaryOperator(Instruction::Sub, Zero, Op, Op->getType(), Name,
2651                             InsertBefore);
2652 }
2653 
2654 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2655                                              InsertPosition InsertBefore) {
2656   Value *Zero = ConstantInt::get(Op->getType(), 0);
2657   return BinaryOperator::CreateNSWSub(Zero, Op, Name, InsertBefore);
2658 }
2659 
2660 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2661                                           InsertPosition InsertBefore) {
2662   Constant *C = Constant::getAllOnesValue(Op->getType());
2663   return new BinaryOperator(Instruction::Xor, Op, C,
2664                             Op->getType(), Name, InsertBefore);
2665 }
2666 
2667 // Exchange the two operands to this instruction. This instruction is safe to
2668 // use on any binary instruction and does not modify the semantics of the
2669 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2670 // is changed.
2671 bool BinaryOperator::swapOperands() {
2672   if (!isCommutative())
2673     return true; // Can't commute operands
2674   Op<0>().swap(Op<1>());
2675   return false;
2676 }
2677 
2678 //===----------------------------------------------------------------------===//
2679 //                             FPMathOperator Class
2680 //===----------------------------------------------------------------------===//
2681 
2682 float FPMathOperator::getFPAccuracy() const {
2683   const MDNode *MD =
2684       cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2685   if (!MD)
2686     return 0.0;
2687   ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2688   return Accuracy->getValueAPF().convertToFloat();
2689 }
2690 
2691 //===----------------------------------------------------------------------===//
2692 //                                CastInst Class
2693 //===----------------------------------------------------------------------===//
2694 
2695 // Just determine if this cast only deals with integral->integral conversion.
2696 bool CastInst::isIntegerCast() const {
2697   switch (getOpcode()) {
2698     default: return false;
2699     case Instruction::ZExt:
2700     case Instruction::SExt:
2701     case Instruction::Trunc:
2702       return true;
2703     case Instruction::BitCast:
2704       return getOperand(0)->getType()->isIntegerTy() &&
2705         getType()->isIntegerTy();
2706   }
2707 }
2708 
2709 /// This function determines if the CastInst does not require any bits to be
2710 /// changed in order to effect the cast. Essentially, it identifies cases where
2711 /// no code gen is necessary for the cast, hence the name no-op cast.  For
2712 /// example, the following are all no-op casts:
2713 /// # bitcast i32* %x to i8*
2714 /// # bitcast <2 x i32> %x to <4 x i16>
2715 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2716 /// Determine if the described cast is a no-op.
2717 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2718                           Type *SrcTy,
2719                           Type *DestTy,
2720                           const DataLayout &DL) {
2721   assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition");
2722   switch (Opcode) {
2723     default: llvm_unreachable("Invalid CastOp");
2724     case Instruction::Trunc:
2725     case Instruction::ZExt:
2726     case Instruction::SExt:
2727     case Instruction::FPTrunc:
2728     case Instruction::FPExt:
2729     case Instruction::UIToFP:
2730     case Instruction::SIToFP:
2731     case Instruction::FPToUI:
2732     case Instruction::FPToSI:
2733     case Instruction::AddrSpaceCast:
2734       // TODO: Target informations may give a more accurate answer here.
2735       return false;
2736     case Instruction::BitCast:
2737       return true;  // BitCast never modifies bits.
2738     case Instruction::PtrToInt:
2739       return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2740              DestTy->getScalarSizeInBits();
2741     case Instruction::IntToPtr:
2742       return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2743              SrcTy->getScalarSizeInBits();
2744   }
2745 }
2746 
2747 bool CastInst::isNoopCast(const DataLayout &DL) const {
2748   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2749 }
2750 
2751 /// This function determines if a pair of casts can be eliminated and what
2752 /// opcode should be used in the elimination. This assumes that there are two
2753 /// instructions like this:
2754 /// *  %F = firstOpcode SrcTy %x to MidTy
2755 /// *  %S = secondOpcode MidTy %F to DstTy
2756 /// The function returns a resultOpcode so these two casts can be replaced with:
2757 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2758 /// If no such cast is permitted, the function returns 0.
2759 unsigned CastInst::isEliminableCastPair(
2760   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2761   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2762   Type *DstIntPtrTy) {
2763   // Define the 144 possibilities for these two cast instructions. The values
2764   // in this matrix determine what to do in a given situation and select the
2765   // case in the switch below.  The rows correspond to firstOp, the columns
2766   // correspond to secondOp.  In looking at the table below, keep in mind
2767   // the following cast properties:
2768   //
2769   //          Size Compare       Source               Destination
2770   // Operator  Src ? Size   Type       Sign         Type       Sign
2771   // -------- ------------ -------------------   ---------------------
2772   // TRUNC         >       Integer      Any        Integral     Any
2773   // ZEXT          <       Integral   Unsigned     Integer      Any
2774   // SEXT          <       Integral    Signed      Integer      Any
2775   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2776   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2777   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2778   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2779   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2780   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2781   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2782   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2783   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2784   // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2785   //
2786   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2787   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2788   // into "fptoui double to i64", but this loses information about the range
2789   // of the produced value (we no longer know the top-part is all zeros).
2790   // Further this conversion is often much more expensive for typical hardware,
2791   // and causes issues when building libgcc.  We disallow fptosi+sext for the
2792   // same reason.
2793   const unsigned numCastOps =
2794     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2795   static const uint8_t CastResults[numCastOps][numCastOps] = {
2796     // T        F  F  U  S  F  F  P  I  B  A  -+
2797     // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2798     // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2799     // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2800     // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2801     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2802     {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
2803     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2804     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2805     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2806     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2807     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2808     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
2809     { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt          |
2810     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2811     { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2812     {  5, 5, 5, 0, 0, 5, 5, 0, 0,16, 5, 1,14}, // BitCast        |
2813     {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2814   };
2815 
2816   // TODO: This logic could be encoded into the table above and handled in the
2817   // switch below.
2818   // If either of the casts are a bitcast from scalar to vector, disallow the
2819   // merging. However, any pair of bitcasts are allowed.
2820   bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
2821   bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2822   bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2823 
2824   // Check if any of the casts convert scalars <-> vectors.
2825   if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2826       (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2827     if (!AreBothBitcasts)
2828       return 0;
2829 
2830   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2831                             [secondOp-Instruction::CastOpsBegin];
2832   switch (ElimCase) {
2833     case 0:
2834       // Categorically disallowed.
2835       return 0;
2836     case 1:
2837       // Allowed, use first cast's opcode.
2838       return firstOp;
2839     case 2:
2840       // Allowed, use second cast's opcode.
2841       return secondOp;
2842     case 3:
2843       // No-op cast in second op implies firstOp as long as the DestTy
2844       // is integer and we are not converting between a vector and a
2845       // non-vector type.
2846       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2847         return firstOp;
2848       return 0;
2849     case 4:
2850       // No-op cast in second op implies firstOp as long as the DestTy
2851       // matches MidTy.
2852       if (DstTy == MidTy)
2853         return firstOp;
2854       return 0;
2855     case 5:
2856       // No-op cast in first op implies secondOp as long as the SrcTy
2857       // is an integer.
2858       if (SrcTy->isIntegerTy())
2859         return secondOp;
2860       return 0;
2861     case 7: {
2862       // Disable inttoptr/ptrtoint optimization if enabled.
2863       if (DisableI2pP2iOpt)
2864         return 0;
2865 
2866       // Cannot simplify if address spaces are different!
2867       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2868         return 0;
2869 
2870       unsigned MidSize = MidTy->getScalarSizeInBits();
2871       // We can still fold this without knowing the actual sizes as long we
2872       // know that the intermediate pointer is the largest possible
2873       // pointer size.
2874       // FIXME: Is this always true?
2875       if (MidSize == 64)
2876         return Instruction::BitCast;
2877 
2878       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2879       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2880         return 0;
2881       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2882       if (MidSize >= PtrSize)
2883         return Instruction::BitCast;
2884       return 0;
2885     }
2886     case 8: {
2887       // ext, trunc -> bitcast,    if the SrcTy and DstTy are the same
2888       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2889       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2890       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2891       unsigned DstSize = DstTy->getScalarSizeInBits();
2892       if (SrcTy == DstTy)
2893         return Instruction::BitCast;
2894       if (SrcSize < DstSize)
2895         return firstOp;
2896       if (SrcSize > DstSize)
2897         return secondOp;
2898       return 0;
2899     }
2900     case 9:
2901       // zext, sext -> zext, because sext can't sign extend after zext
2902       return Instruction::ZExt;
2903     case 11: {
2904       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2905       if (!MidIntPtrTy)
2906         return 0;
2907       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2908       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2909       unsigned DstSize = DstTy->getScalarSizeInBits();
2910       if (SrcSize <= PtrSize && SrcSize == DstSize)
2911         return Instruction::BitCast;
2912       return 0;
2913     }
2914     case 12:
2915       // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
2916       // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2917       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2918         return Instruction::AddrSpaceCast;
2919       return Instruction::BitCast;
2920     case 13:
2921       // FIXME: this state can be merged with (1), but the following assert
2922       // is useful to check the correcteness of the sequence due to semantic
2923       // change of bitcast.
2924       assert(
2925         SrcTy->isPtrOrPtrVectorTy() &&
2926         MidTy->isPtrOrPtrVectorTy() &&
2927         DstTy->isPtrOrPtrVectorTy() &&
2928         SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2929         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2930         "Illegal addrspacecast, bitcast sequence!");
2931       // Allowed, use first cast's opcode
2932       return firstOp;
2933     case 14:
2934       // bitcast, addrspacecast -> addrspacecast
2935       return Instruction::AddrSpaceCast;
2936     case 15:
2937       // FIXME: this state can be merged with (1), but the following assert
2938       // is useful to check the correcteness of the sequence due to semantic
2939       // change of bitcast.
2940       assert(
2941         SrcTy->isIntOrIntVectorTy() &&
2942         MidTy->isPtrOrPtrVectorTy() &&
2943         DstTy->isPtrOrPtrVectorTy() &&
2944         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2945         "Illegal inttoptr, bitcast sequence!");
2946       // Allowed, use first cast's opcode
2947       return firstOp;
2948     case 16:
2949       // FIXME: this state can be merged with (2), but the following assert
2950       // is useful to check the correcteness of the sequence due to semantic
2951       // change of bitcast.
2952       assert(
2953         SrcTy->isPtrOrPtrVectorTy() &&
2954         MidTy->isPtrOrPtrVectorTy() &&
2955         DstTy->isIntOrIntVectorTy() &&
2956         SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2957         "Illegal bitcast, ptrtoint sequence!");
2958       // Allowed, use second cast's opcode
2959       return secondOp;
2960     case 17:
2961       // (sitofp (zext x)) -> (uitofp x)
2962       return Instruction::UIToFP;
2963     case 99:
2964       // Cast combination can't happen (error in input). This is for all cases
2965       // where the MidTy is not the same for the two cast instructions.
2966       llvm_unreachable("Invalid Cast Combination");
2967     default:
2968       llvm_unreachable("Error in CastResults table!!!");
2969   }
2970 }
2971 
2972 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2973                            const Twine &Name, InsertPosition InsertBefore) {
2974   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2975   // Construct and return the appropriate CastInst subclass
2976   switch (op) {
2977   case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
2978   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
2979   case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
2980   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
2981   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
2982   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
2983   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
2984   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
2985   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
2986   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
2987   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
2988   case BitCast:
2989     return new BitCastInst(S, Ty, Name, InsertBefore);
2990   case AddrSpaceCast:
2991     return new AddrSpaceCastInst(S, Ty, Name, InsertBefore);
2992   default:
2993     llvm_unreachable("Invalid opcode provided");
2994   }
2995 }
2996 
2997 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, const Twine &Name,
2998                                         InsertPosition InsertBefore) {
2999   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3000     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3001   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
3002 }
3003 
3004 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, const Twine &Name,
3005                                         InsertPosition InsertBefore) {
3006   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3007     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3008   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
3009 }
3010 
3011 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name,
3012                                          InsertPosition InsertBefore) {
3013   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3014     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3015   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
3016 }
3017 
3018 /// Create a BitCast or a PtrToInt cast instruction
3019 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, const Twine &Name,
3020                                       InsertPosition InsertBefore) {
3021   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3022   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3023          "Invalid cast");
3024   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3025   assert((!Ty->isVectorTy() ||
3026           cast<VectorType>(Ty)->getElementCount() ==
3027               cast<VectorType>(S->getType())->getElementCount()) &&
3028          "Invalid cast");
3029 
3030   if (Ty->isIntOrIntVectorTy())
3031     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3032 
3033   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
3034 }
3035 
3036 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3037     Value *S, Type *Ty, const Twine &Name, InsertPosition InsertBefore) {
3038   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3039   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3040 
3041   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3042     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
3043 
3044   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3045 }
3046 
3047 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
3048                                            const Twine &Name,
3049                                            InsertPosition InsertBefore) {
3050   if (S->getType()->isPointerTy() && Ty->isIntegerTy())
3051     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3052   if (S->getType()->isIntegerTy() && Ty->isPointerTy())
3053     return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
3054 
3055   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3056 }
3057 
3058 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, bool isSigned,
3059                                       const Twine &Name,
3060                                       InsertPosition InsertBefore) {
3061   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3062          "Invalid integer cast");
3063   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3064   unsigned DstBits = Ty->getScalarSizeInBits();
3065   Instruction::CastOps opcode =
3066     (SrcBits == DstBits ? Instruction::BitCast :
3067      (SrcBits > DstBits ? Instruction::Trunc :
3068       (isSigned ? Instruction::SExt : Instruction::ZExt)));
3069   return Create(opcode, C, Ty, Name, InsertBefore);
3070 }
3071 
3072 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, const Twine &Name,
3073                                  InsertPosition InsertBefore) {
3074   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3075          "Invalid cast");
3076   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3077   unsigned DstBits = Ty->getScalarSizeInBits();
3078   assert((C->getType() == Ty || SrcBits != DstBits) && "Invalid cast");
3079   Instruction::CastOps opcode =
3080     (SrcBits == DstBits ? Instruction::BitCast :
3081      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3082   return Create(opcode, C, Ty, Name, InsertBefore);
3083 }
3084 
3085 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3086   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3087     return false;
3088 
3089   if (SrcTy == DestTy)
3090     return true;
3091 
3092   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3093     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3094       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3095         // An element by element cast. Valid if casting the elements is valid.
3096         SrcTy = SrcVecTy->getElementType();
3097         DestTy = DestVecTy->getElementType();
3098       }
3099     }
3100   }
3101 
3102   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3103     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3104       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3105     }
3106   }
3107 
3108   TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3109   TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3110 
3111   // Could still have vectors of pointers if the number of elements doesn't
3112   // match
3113   if (SrcBits.getKnownMinValue() == 0 || DestBits.getKnownMinValue() == 0)
3114     return false;
3115 
3116   if (SrcBits != DestBits)
3117     return false;
3118 
3119   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3120     return false;
3121 
3122   return true;
3123 }
3124 
3125 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3126                                           const DataLayout &DL) {
3127   // ptrtoint and inttoptr are not allowed on non-integral pointers
3128   if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3129     if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3130       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3131               !DL.isNonIntegralPointerType(PtrTy));
3132   if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3133     if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3134       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3135               !DL.isNonIntegralPointerType(PtrTy));
3136 
3137   return isBitCastable(SrcTy, DestTy);
3138 }
3139 
3140 // Provide a way to get a "cast" where the cast opcode is inferred from the
3141 // types and size of the operand. This, basically, is a parallel of the
3142 // logic in the castIsValid function below.  This axiom should hold:
3143 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3144 // should not assert in castIsValid. In other words, this produces a "correct"
3145 // casting opcode for the arguments passed to it.
3146 Instruction::CastOps
3147 CastInst::getCastOpcode(
3148   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3149   Type *SrcTy = Src->getType();
3150 
3151   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3152          "Only first class types are castable!");
3153 
3154   if (SrcTy == DestTy)
3155     return BitCast;
3156 
3157   // FIXME: Check address space sizes here
3158   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3159     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3160       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3161         // An element by element cast.  Find the appropriate opcode based on the
3162         // element types.
3163         SrcTy = SrcVecTy->getElementType();
3164         DestTy = DestVecTy->getElementType();
3165       }
3166 
3167   // Get the bit sizes, we'll need these
3168   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3169   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3170 
3171   // Run through the possibilities ...
3172   if (DestTy->isIntegerTy()) {                      // Casting to integral
3173     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3174       if (DestBits < SrcBits)
3175         return Trunc;                               // int -> smaller int
3176       else if (DestBits > SrcBits) {                // its an extension
3177         if (SrcIsSigned)
3178           return SExt;                              // signed -> SEXT
3179         else
3180           return ZExt;                              // unsigned -> ZEXT
3181       } else {
3182         return BitCast;                             // Same size, No-op cast
3183       }
3184     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3185       if (DestIsSigned)
3186         return FPToSI;                              // FP -> sint
3187       else
3188         return FPToUI;                              // FP -> uint
3189     } else if (SrcTy->isVectorTy()) {
3190       assert(DestBits == SrcBits &&
3191              "Casting vector to integer of different width");
3192       return BitCast;                             // Same size, no-op cast
3193     } else {
3194       assert(SrcTy->isPointerTy() &&
3195              "Casting from a value that is not first-class type");
3196       return PtrToInt;                              // ptr -> int
3197     }
3198   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
3199     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3200       if (SrcIsSigned)
3201         return SIToFP;                              // sint -> FP
3202       else
3203         return UIToFP;                              // uint -> FP
3204     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3205       if (DestBits < SrcBits) {
3206         return FPTrunc;                             // FP -> smaller FP
3207       } else if (DestBits > SrcBits) {
3208         return FPExt;                               // FP -> larger FP
3209       } else  {
3210         return BitCast;                             // same size, no-op cast
3211       }
3212     } else if (SrcTy->isVectorTy()) {
3213       assert(DestBits == SrcBits &&
3214              "Casting vector to floating point of different width");
3215       return BitCast;                             // same size, no-op cast
3216     }
3217     llvm_unreachable("Casting pointer or non-first class to float");
3218   } else if (DestTy->isVectorTy()) {
3219     assert(DestBits == SrcBits &&
3220            "Illegal cast to vector (wrong type or size)");
3221     return BitCast;
3222   } else if (DestTy->isPointerTy()) {
3223     if (SrcTy->isPointerTy()) {
3224       if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3225         return AddrSpaceCast;
3226       return BitCast;                               // ptr -> ptr
3227     } else if (SrcTy->isIntegerTy()) {
3228       return IntToPtr;                              // int -> ptr
3229     }
3230     llvm_unreachable("Casting pointer to other than pointer or int");
3231   } else if (DestTy->isX86_MMXTy()) {
3232     if (SrcTy->isVectorTy()) {
3233       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3234       return BitCast;                               // 64-bit vector to MMX
3235     }
3236     llvm_unreachable("Illegal cast to X86_MMX");
3237   }
3238   llvm_unreachable("Casting to type that is not first-class");
3239 }
3240 
3241 //===----------------------------------------------------------------------===//
3242 //                    CastInst SubClass Constructors
3243 //===----------------------------------------------------------------------===//
3244 
3245 /// Check that the construction parameters for a CastInst are correct. This
3246 /// could be broken out into the separate constructors but it is useful to have
3247 /// it in one place and to eliminate the redundant code for getting the sizes
3248 /// of the types involved.
3249 bool
3250 CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) {
3251   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3252       SrcTy->isAggregateType() || DstTy->isAggregateType())
3253     return false;
3254 
3255   // Get the size of the types in bits, and whether we are dealing
3256   // with vector types, we'll need this later.
3257   bool SrcIsVec = isa<VectorType>(SrcTy);
3258   bool DstIsVec = isa<VectorType>(DstTy);
3259   unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
3260   unsigned DstScalarBitSize = DstTy->getScalarSizeInBits();
3261 
3262   // If these are vector types, get the lengths of the vectors (using zero for
3263   // scalar types means that checking that vector lengths match also checks that
3264   // scalars are not being converted to vectors or vectors to scalars).
3265   ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
3266                                 : ElementCount::getFixed(0);
3267   ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
3268                                 : ElementCount::getFixed(0);
3269 
3270   // Switch on the opcode provided
3271   switch (op) {
3272   default: return false; // This is an input error
3273   case Instruction::Trunc:
3274     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3275            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3276   case Instruction::ZExt:
3277     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3278            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3279   case Instruction::SExt:
3280     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3281            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3282   case Instruction::FPTrunc:
3283     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3284            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3285   case Instruction::FPExt:
3286     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3287            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3288   case Instruction::UIToFP:
3289   case Instruction::SIToFP:
3290     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3291            SrcEC == DstEC;
3292   case Instruction::FPToUI:
3293   case Instruction::FPToSI:
3294     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3295            SrcEC == DstEC;
3296   case Instruction::PtrToInt:
3297     if (SrcEC != DstEC)
3298       return false;
3299     return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3300   case Instruction::IntToPtr:
3301     if (SrcEC != DstEC)
3302       return false;
3303     return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3304   case Instruction::BitCast: {
3305     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3306     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3307 
3308     // BitCast implies a no-op cast of type only. No bits change.
3309     // However, you can't cast pointers to anything but pointers.
3310     if (!SrcPtrTy != !DstPtrTy)
3311       return false;
3312 
3313     // For non-pointer cases, the cast is okay if the source and destination bit
3314     // widths are identical.
3315     if (!SrcPtrTy)
3316       return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3317 
3318     // If both are pointers then the address spaces must match.
3319     if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3320       return false;
3321 
3322     // A vector of pointers must have the same number of elements.
3323     if (SrcIsVec && DstIsVec)
3324       return SrcEC == DstEC;
3325     if (SrcIsVec)
3326       return SrcEC == ElementCount::getFixed(1);
3327     if (DstIsVec)
3328       return DstEC == ElementCount::getFixed(1);
3329 
3330     return true;
3331   }
3332   case Instruction::AddrSpaceCast: {
3333     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3334     if (!SrcPtrTy)
3335       return false;
3336 
3337     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3338     if (!DstPtrTy)
3339       return false;
3340 
3341     if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3342       return false;
3343 
3344     return SrcEC == DstEC;
3345   }
3346   }
3347 }
3348 
3349 TruncInst::TruncInst(Value *S, Type *Ty, const Twine &Name,
3350                      InsertPosition InsertBefore)
3351     : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3352   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3353 }
3354 
3355 ZExtInst::ZExtInst(Value *S, Type *Ty, const Twine &Name,
3356                    InsertPosition InsertBefore)
3357     : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3358   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3359 }
3360 
3361 SExtInst::SExtInst(Value *S, Type *Ty, const Twine &Name,
3362                    InsertPosition InsertBefore)
3363     : CastInst(Ty, SExt, S, Name, InsertBefore) {
3364   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3365 }
3366 
3367 FPTruncInst::FPTruncInst(Value *S, Type *Ty, const Twine &Name,
3368                          InsertPosition InsertBefore)
3369     : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3370   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3371 }
3372 
3373 FPExtInst::FPExtInst(Value *S, Type *Ty, const Twine &Name,
3374                      InsertPosition InsertBefore)
3375     : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3376   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3377 }
3378 
3379 UIToFPInst::UIToFPInst(Value *S, Type *Ty, const Twine &Name,
3380                        InsertPosition InsertBefore)
3381     : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3382   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3383 }
3384 
3385 SIToFPInst::SIToFPInst(Value *S, Type *Ty, const Twine &Name,
3386                        InsertPosition InsertBefore)
3387     : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3388   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3389 }
3390 
3391 FPToUIInst::FPToUIInst(Value *S, Type *Ty, const Twine &Name,
3392                        InsertPosition InsertBefore)
3393     : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3394   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3395 }
3396 
3397 FPToSIInst::FPToSIInst(Value *S, Type *Ty, const Twine &Name,
3398                        InsertPosition InsertBefore)
3399     : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3400   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3401 }
3402 
3403 PtrToIntInst::PtrToIntInst(Value *S, Type *Ty, const Twine &Name,
3404                            InsertPosition InsertBefore)
3405     : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3406   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3407 }
3408 
3409 IntToPtrInst::IntToPtrInst(Value *S, Type *Ty, const Twine &Name,
3410                            InsertPosition InsertBefore)
3411     : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3412   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3413 }
3414 
3415 BitCastInst::BitCastInst(Value *S, Type *Ty, const Twine &Name,
3416                          InsertPosition InsertBefore)
3417     : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3418   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3419 }
3420 
3421 AddrSpaceCastInst::AddrSpaceCastInst(Value *S, Type *Ty, const Twine &Name,
3422                                      InsertPosition InsertBefore)
3423     : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3424   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3425 }
3426 
3427 //===----------------------------------------------------------------------===//
3428 //                               CmpInst Classes
3429 //===----------------------------------------------------------------------===//
3430 
3431 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3432                  Value *RHS, const Twine &Name, InsertPosition InsertBefore,
3433                  Instruction *FlagsSource)
3434     : Instruction(ty, op, OperandTraits<CmpInst>::op_begin(this),
3435                   OperandTraits<CmpInst>::operands(this), InsertBefore) {
3436   Op<0>() = LHS;
3437   Op<1>() = RHS;
3438   setPredicate((Predicate)predicate);
3439   setName(Name);
3440   if (FlagsSource)
3441     copyIRFlags(FlagsSource);
3442 }
3443 
3444 CmpInst *CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3445                          const Twine &Name, InsertPosition InsertBefore) {
3446   if (Op == Instruction::ICmp) {
3447     if (InsertBefore.isValid())
3448       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3449                           S1, S2, Name);
3450     else
3451       return new ICmpInst(CmpInst::Predicate(predicate),
3452                           S1, S2, Name);
3453   }
3454 
3455   if (InsertBefore.isValid())
3456     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3457                         S1, S2, Name);
3458   else
3459     return new FCmpInst(CmpInst::Predicate(predicate),
3460                         S1, S2, Name);
3461 }
3462 
3463 CmpInst *CmpInst::CreateWithCopiedFlags(OtherOps Op, Predicate Pred, Value *S1,
3464                                         Value *S2,
3465                                         const Instruction *FlagsSource,
3466                                         const Twine &Name,
3467                                         InsertPosition InsertBefore) {
3468   CmpInst *Inst = Create(Op, Pred, S1, S2, Name, InsertBefore);
3469   Inst->copyIRFlags(FlagsSource);
3470   return Inst;
3471 }
3472 
3473 void CmpInst::swapOperands() {
3474   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3475     IC->swapOperands();
3476   else
3477     cast<FCmpInst>(this)->swapOperands();
3478 }
3479 
3480 bool CmpInst::isCommutative() const {
3481   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3482     return IC->isCommutative();
3483   return cast<FCmpInst>(this)->isCommutative();
3484 }
3485 
3486 bool CmpInst::isEquality(Predicate P) {
3487   if (ICmpInst::isIntPredicate(P))
3488     return ICmpInst::isEquality(P);
3489   if (FCmpInst::isFPPredicate(P))
3490     return FCmpInst::isEquality(P);
3491   llvm_unreachable("Unsupported predicate kind");
3492 }
3493 
3494 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3495   switch (pred) {
3496     default: llvm_unreachable("Unknown cmp predicate!");
3497     case ICMP_EQ: return ICMP_NE;
3498     case ICMP_NE: return ICMP_EQ;
3499     case ICMP_UGT: return ICMP_ULE;
3500     case ICMP_ULT: return ICMP_UGE;
3501     case ICMP_UGE: return ICMP_ULT;
3502     case ICMP_ULE: return ICMP_UGT;
3503     case ICMP_SGT: return ICMP_SLE;
3504     case ICMP_SLT: return ICMP_SGE;
3505     case ICMP_SGE: return ICMP_SLT;
3506     case ICMP_SLE: return ICMP_SGT;
3507 
3508     case FCMP_OEQ: return FCMP_UNE;
3509     case FCMP_ONE: return FCMP_UEQ;
3510     case FCMP_OGT: return FCMP_ULE;
3511     case FCMP_OLT: return FCMP_UGE;
3512     case FCMP_OGE: return FCMP_ULT;
3513     case FCMP_OLE: return FCMP_UGT;
3514     case FCMP_UEQ: return FCMP_ONE;
3515     case FCMP_UNE: return FCMP_OEQ;
3516     case FCMP_UGT: return FCMP_OLE;
3517     case FCMP_ULT: return FCMP_OGE;
3518     case FCMP_UGE: return FCMP_OLT;
3519     case FCMP_ULE: return FCMP_OGT;
3520     case FCMP_ORD: return FCMP_UNO;
3521     case FCMP_UNO: return FCMP_ORD;
3522     case FCMP_TRUE: return FCMP_FALSE;
3523     case FCMP_FALSE: return FCMP_TRUE;
3524   }
3525 }
3526 
3527 StringRef CmpInst::getPredicateName(Predicate Pred) {
3528   switch (Pred) {
3529   default:                   return "unknown";
3530   case FCmpInst::FCMP_FALSE: return "false";
3531   case FCmpInst::FCMP_OEQ:   return "oeq";
3532   case FCmpInst::FCMP_OGT:   return "ogt";
3533   case FCmpInst::FCMP_OGE:   return "oge";
3534   case FCmpInst::FCMP_OLT:   return "olt";
3535   case FCmpInst::FCMP_OLE:   return "ole";
3536   case FCmpInst::FCMP_ONE:   return "one";
3537   case FCmpInst::FCMP_ORD:   return "ord";
3538   case FCmpInst::FCMP_UNO:   return "uno";
3539   case FCmpInst::FCMP_UEQ:   return "ueq";
3540   case FCmpInst::FCMP_UGT:   return "ugt";
3541   case FCmpInst::FCMP_UGE:   return "uge";
3542   case FCmpInst::FCMP_ULT:   return "ult";
3543   case FCmpInst::FCMP_ULE:   return "ule";
3544   case FCmpInst::FCMP_UNE:   return "une";
3545   case FCmpInst::FCMP_TRUE:  return "true";
3546   case ICmpInst::ICMP_EQ:    return "eq";
3547   case ICmpInst::ICMP_NE:    return "ne";
3548   case ICmpInst::ICMP_SGT:   return "sgt";
3549   case ICmpInst::ICMP_SGE:   return "sge";
3550   case ICmpInst::ICMP_SLT:   return "slt";
3551   case ICmpInst::ICMP_SLE:   return "sle";
3552   case ICmpInst::ICMP_UGT:   return "ugt";
3553   case ICmpInst::ICMP_UGE:   return "uge";
3554   case ICmpInst::ICMP_ULT:   return "ult";
3555   case ICmpInst::ICMP_ULE:   return "ule";
3556   }
3557 }
3558 
3559 raw_ostream &llvm::operator<<(raw_ostream &OS, CmpInst::Predicate Pred) {
3560   OS << CmpInst::getPredicateName(Pred);
3561   return OS;
3562 }
3563 
3564 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3565   switch (pred) {
3566     default: llvm_unreachable("Unknown icmp predicate!");
3567     case ICMP_EQ: case ICMP_NE:
3568     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3569        return pred;
3570     case ICMP_UGT: return ICMP_SGT;
3571     case ICMP_ULT: return ICMP_SLT;
3572     case ICMP_UGE: return ICMP_SGE;
3573     case ICMP_ULE: return ICMP_SLE;
3574   }
3575 }
3576 
3577 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3578   switch (pred) {
3579     default: llvm_unreachable("Unknown icmp predicate!");
3580     case ICMP_EQ: case ICMP_NE:
3581     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3582        return pred;
3583     case ICMP_SGT: return ICMP_UGT;
3584     case ICMP_SLT: return ICMP_ULT;
3585     case ICMP_SGE: return ICMP_UGE;
3586     case ICMP_SLE: return ICMP_ULE;
3587   }
3588 }
3589 
3590 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3591   switch (pred) {
3592     default: llvm_unreachable("Unknown cmp predicate!");
3593     case ICMP_EQ: case ICMP_NE:
3594       return pred;
3595     case ICMP_SGT: return ICMP_SLT;
3596     case ICMP_SLT: return ICMP_SGT;
3597     case ICMP_SGE: return ICMP_SLE;
3598     case ICMP_SLE: return ICMP_SGE;
3599     case ICMP_UGT: return ICMP_ULT;
3600     case ICMP_ULT: return ICMP_UGT;
3601     case ICMP_UGE: return ICMP_ULE;
3602     case ICMP_ULE: return ICMP_UGE;
3603 
3604     case FCMP_FALSE: case FCMP_TRUE:
3605     case FCMP_OEQ: case FCMP_ONE:
3606     case FCMP_UEQ: case FCMP_UNE:
3607     case FCMP_ORD: case FCMP_UNO:
3608       return pred;
3609     case FCMP_OGT: return FCMP_OLT;
3610     case FCMP_OLT: return FCMP_OGT;
3611     case FCMP_OGE: return FCMP_OLE;
3612     case FCMP_OLE: return FCMP_OGE;
3613     case FCMP_UGT: return FCMP_ULT;
3614     case FCMP_ULT: return FCMP_UGT;
3615     case FCMP_UGE: return FCMP_ULE;
3616     case FCMP_ULE: return FCMP_UGE;
3617   }
3618 }
3619 
3620 bool CmpInst::isNonStrictPredicate(Predicate pred) {
3621   switch (pred) {
3622   case ICMP_SGE:
3623   case ICMP_SLE:
3624   case ICMP_UGE:
3625   case ICMP_ULE:
3626   case FCMP_OGE:
3627   case FCMP_OLE:
3628   case FCMP_UGE:
3629   case FCMP_ULE:
3630     return true;
3631   default:
3632     return false;
3633   }
3634 }
3635 
3636 bool CmpInst::isStrictPredicate(Predicate pred) {
3637   switch (pred) {
3638   case ICMP_SGT:
3639   case ICMP_SLT:
3640   case ICMP_UGT:
3641   case ICMP_ULT:
3642   case FCMP_OGT:
3643   case FCMP_OLT:
3644   case FCMP_UGT:
3645   case FCMP_ULT:
3646     return true;
3647   default:
3648     return false;
3649   }
3650 }
3651 
3652 CmpInst::Predicate CmpInst::getStrictPredicate(Predicate pred) {
3653   switch (pred) {
3654   case ICMP_SGE:
3655     return ICMP_SGT;
3656   case ICMP_SLE:
3657     return ICMP_SLT;
3658   case ICMP_UGE:
3659     return ICMP_UGT;
3660   case ICMP_ULE:
3661     return ICMP_ULT;
3662   case FCMP_OGE:
3663     return FCMP_OGT;
3664   case FCMP_OLE:
3665     return FCMP_OLT;
3666   case FCMP_UGE:
3667     return FCMP_UGT;
3668   case FCMP_ULE:
3669     return FCMP_ULT;
3670   default:
3671     return pred;
3672   }
3673 }
3674 
3675 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3676   switch (pred) {
3677   case ICMP_SGT:
3678     return ICMP_SGE;
3679   case ICMP_SLT:
3680     return ICMP_SLE;
3681   case ICMP_UGT:
3682     return ICMP_UGE;
3683   case ICMP_ULT:
3684     return ICMP_ULE;
3685   case FCMP_OGT:
3686     return FCMP_OGE;
3687   case FCMP_OLT:
3688     return FCMP_OLE;
3689   case FCMP_UGT:
3690     return FCMP_UGE;
3691   case FCMP_ULT:
3692     return FCMP_ULE;
3693   default:
3694     return pred;
3695   }
3696 }
3697 
3698 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3699   assert(CmpInst::isRelational(pred) && "Call only with relational predicate!");
3700 
3701   if (isStrictPredicate(pred))
3702     return getNonStrictPredicate(pred);
3703   if (isNonStrictPredicate(pred))
3704     return getStrictPredicate(pred);
3705 
3706   llvm_unreachable("Unknown predicate!");
3707 }
3708 
3709 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3710   assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!");
3711 
3712   switch (pred) {
3713   default:
3714     llvm_unreachable("Unknown predicate!");
3715   case CmpInst::ICMP_ULT:
3716     return CmpInst::ICMP_SLT;
3717   case CmpInst::ICMP_ULE:
3718     return CmpInst::ICMP_SLE;
3719   case CmpInst::ICMP_UGT:
3720     return CmpInst::ICMP_SGT;
3721   case CmpInst::ICMP_UGE:
3722     return CmpInst::ICMP_SGE;
3723   }
3724 }
3725 
3726 CmpInst::Predicate CmpInst::getUnsignedPredicate(Predicate pred) {
3727   assert(CmpInst::isSigned(pred) && "Call only with signed predicates!");
3728 
3729   switch (pred) {
3730   default:
3731     llvm_unreachable("Unknown predicate!");
3732   case CmpInst::ICMP_SLT:
3733     return CmpInst::ICMP_ULT;
3734   case CmpInst::ICMP_SLE:
3735     return CmpInst::ICMP_ULE;
3736   case CmpInst::ICMP_SGT:
3737     return CmpInst::ICMP_UGT;
3738   case CmpInst::ICMP_SGE:
3739     return CmpInst::ICMP_UGE;
3740   }
3741 }
3742 
3743 bool CmpInst::isUnsigned(Predicate predicate) {
3744   switch (predicate) {
3745     default: return false;
3746     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3747     case ICmpInst::ICMP_UGE: return true;
3748   }
3749 }
3750 
3751 bool CmpInst::isSigned(Predicate predicate) {
3752   switch (predicate) {
3753     default: return false;
3754     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3755     case ICmpInst::ICMP_SGE: return true;
3756   }
3757 }
3758 
3759 bool ICmpInst::compare(const APInt &LHS, const APInt &RHS,
3760                        ICmpInst::Predicate Pred) {
3761   assert(ICmpInst::isIntPredicate(Pred) && "Only for integer predicates!");
3762   switch (Pred) {
3763   case ICmpInst::Predicate::ICMP_EQ:
3764     return LHS.eq(RHS);
3765   case ICmpInst::Predicate::ICMP_NE:
3766     return LHS.ne(RHS);
3767   case ICmpInst::Predicate::ICMP_UGT:
3768     return LHS.ugt(RHS);
3769   case ICmpInst::Predicate::ICMP_UGE:
3770     return LHS.uge(RHS);
3771   case ICmpInst::Predicate::ICMP_ULT:
3772     return LHS.ult(RHS);
3773   case ICmpInst::Predicate::ICMP_ULE:
3774     return LHS.ule(RHS);
3775   case ICmpInst::Predicate::ICMP_SGT:
3776     return LHS.sgt(RHS);
3777   case ICmpInst::Predicate::ICMP_SGE:
3778     return LHS.sge(RHS);
3779   case ICmpInst::Predicate::ICMP_SLT:
3780     return LHS.slt(RHS);
3781   case ICmpInst::Predicate::ICMP_SLE:
3782     return LHS.sle(RHS);
3783   default:
3784     llvm_unreachable("Unexpected non-integer predicate.");
3785   };
3786 }
3787 
3788 bool FCmpInst::compare(const APFloat &LHS, const APFloat &RHS,
3789                        FCmpInst::Predicate Pred) {
3790   APFloat::cmpResult R = LHS.compare(RHS);
3791   switch (Pred) {
3792   default:
3793     llvm_unreachable("Invalid FCmp Predicate");
3794   case FCmpInst::FCMP_FALSE:
3795     return false;
3796   case FCmpInst::FCMP_TRUE:
3797     return true;
3798   case FCmpInst::FCMP_UNO:
3799     return R == APFloat::cmpUnordered;
3800   case FCmpInst::FCMP_ORD:
3801     return R != APFloat::cmpUnordered;
3802   case FCmpInst::FCMP_UEQ:
3803     return R == APFloat::cmpUnordered || R == APFloat::cmpEqual;
3804   case FCmpInst::FCMP_OEQ:
3805     return R == APFloat::cmpEqual;
3806   case FCmpInst::FCMP_UNE:
3807     return R != APFloat::cmpEqual;
3808   case FCmpInst::FCMP_ONE:
3809     return R == APFloat::cmpLessThan || R == APFloat::cmpGreaterThan;
3810   case FCmpInst::FCMP_ULT:
3811     return R == APFloat::cmpUnordered || R == APFloat::cmpLessThan;
3812   case FCmpInst::FCMP_OLT:
3813     return R == APFloat::cmpLessThan;
3814   case FCmpInst::FCMP_UGT:
3815     return R == APFloat::cmpUnordered || R == APFloat::cmpGreaterThan;
3816   case FCmpInst::FCMP_OGT:
3817     return R == APFloat::cmpGreaterThan;
3818   case FCmpInst::FCMP_ULE:
3819     return R != APFloat::cmpGreaterThan;
3820   case FCmpInst::FCMP_OLE:
3821     return R == APFloat::cmpLessThan || R == APFloat::cmpEqual;
3822   case FCmpInst::FCMP_UGE:
3823     return R != APFloat::cmpLessThan;
3824   case FCmpInst::FCMP_OGE:
3825     return R == APFloat::cmpGreaterThan || R == APFloat::cmpEqual;
3826   }
3827 }
3828 
3829 CmpInst::Predicate CmpInst::getFlippedSignednessPredicate(Predicate pred) {
3830   assert(CmpInst::isRelational(pred) &&
3831          "Call only with non-equality predicates!");
3832 
3833   if (isSigned(pred))
3834     return getUnsignedPredicate(pred);
3835   if (isUnsigned(pred))
3836     return getSignedPredicate(pred);
3837 
3838   llvm_unreachable("Unknown predicate!");
3839 }
3840 
3841 bool CmpInst::isOrdered(Predicate predicate) {
3842   switch (predicate) {
3843     default: return false;
3844     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3845     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3846     case FCmpInst::FCMP_ORD: return true;
3847   }
3848 }
3849 
3850 bool CmpInst::isUnordered(Predicate predicate) {
3851   switch (predicate) {
3852     default: return false;
3853     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3854     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3855     case FCmpInst::FCMP_UNO: return true;
3856   }
3857 }
3858 
3859 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3860   switch(predicate) {
3861     default: return false;
3862     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3863     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3864   }
3865 }
3866 
3867 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3868   switch(predicate) {
3869   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3870   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3871   default: return false;
3872   }
3873 }
3874 
3875 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3876   // If the predicates match, then we know the first condition implies the
3877   // second is true.
3878   if (Pred1 == Pred2)
3879     return true;
3880 
3881   switch (Pred1) {
3882   default:
3883     break;
3884   case ICMP_EQ:
3885     // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3886     return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3887            Pred2 == ICMP_SLE;
3888   case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3889     return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3890   case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3891     return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3892   case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3893     return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3894   case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3895     return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3896   }
3897   return false;
3898 }
3899 
3900 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3901   return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3902 }
3903 
3904 //===----------------------------------------------------------------------===//
3905 //                        SwitchInst Implementation
3906 //===----------------------------------------------------------------------===//
3907 
3908 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3909   assert(Value && Default && NumReserved);
3910   ReservedSpace = NumReserved;
3911   setNumHungOffUseOperands(2);
3912   allocHungoffUses(ReservedSpace);
3913 
3914   Op<0>() = Value;
3915   Op<1>() = Default;
3916 }
3917 
3918 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3919 /// switch on and a default destination.  The number of additional cases can
3920 /// be specified here to make memory allocation more efficient.  This
3921 /// constructor can also autoinsert before another instruction.
3922 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3923                        InsertPosition InsertBefore)
3924     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3925                   nullptr, 0, InsertBefore) {
3926   init(Value, Default, 2+NumCases*2);
3927 }
3928 
3929 SwitchInst::SwitchInst(const SwitchInst &SI)
3930     : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
3931   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3932   setNumHungOffUseOperands(SI.getNumOperands());
3933   Use *OL = getOperandList();
3934   const Use *InOL = SI.getOperandList();
3935   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3936     OL[i] = InOL[i];
3937     OL[i+1] = InOL[i+1];
3938   }
3939   SubclassOptionalData = SI.SubclassOptionalData;
3940 }
3941 
3942 /// addCase - Add an entry to the switch instruction...
3943 ///
3944 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3945   unsigned NewCaseIdx = getNumCases();
3946   unsigned OpNo = getNumOperands();
3947   if (OpNo+2 > ReservedSpace)
3948     growOperands();  // Get more space!
3949   // Initialize some new operands.
3950   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3951   setNumHungOffUseOperands(OpNo+2);
3952   CaseHandle Case(this, NewCaseIdx);
3953   Case.setValue(OnVal);
3954   Case.setSuccessor(Dest);
3955 }
3956 
3957 /// removeCase - This method removes the specified case and its successor
3958 /// from the switch instruction.
3959 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
3960   unsigned idx = I->getCaseIndex();
3961 
3962   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3963 
3964   unsigned NumOps = getNumOperands();
3965   Use *OL = getOperandList();
3966 
3967   // Overwrite this case with the end of the list.
3968   if (2 + (idx + 1) * 2 != NumOps) {
3969     OL[2 + idx * 2] = OL[NumOps - 2];
3970     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3971   }
3972 
3973   // Nuke the last value.
3974   OL[NumOps-2].set(nullptr);
3975   OL[NumOps-2+1].set(nullptr);
3976   setNumHungOffUseOperands(NumOps-2);
3977 
3978   return CaseIt(this, idx);
3979 }
3980 
3981 /// growOperands - grow operands - This grows the operand list in response
3982 /// to a push_back style of operation.  This grows the number of ops by 3 times.
3983 ///
3984 void SwitchInst::growOperands() {
3985   unsigned e = getNumOperands();
3986   unsigned NumOps = e*3;
3987 
3988   ReservedSpace = NumOps;
3989   growHungoffUses(ReservedSpace);
3990 }
3991 
3992 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
3993   assert(Changed && "called only if metadata has changed");
3994 
3995   if (!Weights)
3996     return nullptr;
3997 
3998   assert(SI.getNumSuccessors() == Weights->size() &&
3999          "num of prof branch_weights must accord with num of successors");
4000 
4001   bool AllZeroes = all_of(*Weights, [](uint32_t W) { return W == 0; });
4002 
4003   if (AllZeroes || Weights->size() < 2)
4004     return nullptr;
4005 
4006   return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
4007 }
4008 
4009 void SwitchInstProfUpdateWrapper::init() {
4010   MDNode *ProfileData = getBranchWeightMDNode(SI);
4011   if (!ProfileData)
4012     return;
4013 
4014   if (getNumBranchWeights(*ProfileData) != SI.getNumSuccessors()) {
4015     llvm_unreachable("number of prof branch_weights metadata operands does "
4016                      "not correspond to number of succesors");
4017   }
4018 
4019   SmallVector<uint32_t, 8> Weights;
4020   if (!extractBranchWeights(ProfileData, Weights))
4021     return;
4022   this->Weights = std::move(Weights);
4023 }
4024 
4025 SwitchInst::CaseIt
4026 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
4027   if (Weights) {
4028     assert(SI.getNumSuccessors() == Weights->size() &&
4029            "num of prof branch_weights must accord with num of successors");
4030     Changed = true;
4031     // Copy the last case to the place of the removed one and shrink.
4032     // This is tightly coupled with the way SwitchInst::removeCase() removes
4033     // the cases in SwitchInst::removeCase(CaseIt).
4034     (*Weights)[I->getCaseIndex() + 1] = Weights->back();
4035     Weights->pop_back();
4036   }
4037   return SI.removeCase(I);
4038 }
4039 
4040 void SwitchInstProfUpdateWrapper::addCase(
4041     ConstantInt *OnVal, BasicBlock *Dest,
4042     SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4043   SI.addCase(OnVal, Dest);
4044 
4045   if (!Weights && W && *W) {
4046     Changed = true;
4047     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4048     (*Weights)[SI.getNumSuccessors() - 1] = *W;
4049   } else if (Weights) {
4050     Changed = true;
4051     Weights->push_back(W.value_or(0));
4052   }
4053   if (Weights)
4054     assert(SI.getNumSuccessors() == Weights->size() &&
4055            "num of prof branch_weights must accord with num of successors");
4056 }
4057 
4058 Instruction::InstListType::iterator
4059 SwitchInstProfUpdateWrapper::eraseFromParent() {
4060   // Instruction is erased. Mark as unchanged to not touch it in the destructor.
4061   Changed = false;
4062   if (Weights)
4063     Weights->resize(0);
4064   return SI.eraseFromParent();
4065 }
4066 
4067 SwitchInstProfUpdateWrapper::CaseWeightOpt
4068 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
4069   if (!Weights)
4070     return std::nullopt;
4071   return (*Weights)[idx];
4072 }
4073 
4074 void SwitchInstProfUpdateWrapper::setSuccessorWeight(
4075     unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4076   if (!W)
4077     return;
4078 
4079   if (!Weights && *W)
4080     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4081 
4082   if (Weights) {
4083     auto &OldW = (*Weights)[idx];
4084     if (*W != OldW) {
4085       Changed = true;
4086       OldW = *W;
4087     }
4088   }
4089 }
4090 
4091 SwitchInstProfUpdateWrapper::CaseWeightOpt
4092 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
4093                                                 unsigned idx) {
4094   if (MDNode *ProfileData = getBranchWeightMDNode(SI))
4095     if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4096       return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4097           ->getValue()
4098           .getZExtValue();
4099 
4100   return std::nullopt;
4101 }
4102 
4103 //===----------------------------------------------------------------------===//
4104 //                        IndirectBrInst Implementation
4105 //===----------------------------------------------------------------------===//
4106 
4107 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4108   assert(Address && Address->getType()->isPointerTy() &&
4109          "Address of indirectbr must be a pointer");
4110   ReservedSpace = 1+NumDests;
4111   setNumHungOffUseOperands(1);
4112   allocHungoffUses(ReservedSpace);
4113 
4114   Op<0>() = Address;
4115 }
4116 
4117 
4118 /// growOperands - grow operands - This grows the operand list in response
4119 /// to a push_back style of operation.  This grows the number of ops by 2 times.
4120 ///
4121 void IndirectBrInst::growOperands() {
4122   unsigned e = getNumOperands();
4123   unsigned NumOps = e*2;
4124 
4125   ReservedSpace = NumOps;
4126   growHungoffUses(ReservedSpace);
4127 }
4128 
4129 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4130                                InsertPosition InsertBefore)
4131     : Instruction(Type::getVoidTy(Address->getContext()),
4132                   Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4133   init(Address, NumCases);
4134 }
4135 
4136 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4137     : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4138                   nullptr, IBI.getNumOperands()) {
4139   allocHungoffUses(IBI.getNumOperands());
4140   Use *OL = getOperandList();
4141   const Use *InOL = IBI.getOperandList();
4142   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4143     OL[i] = InOL[i];
4144   SubclassOptionalData = IBI.SubclassOptionalData;
4145 }
4146 
4147 /// addDestination - Add a destination.
4148 ///
4149 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4150   unsigned OpNo = getNumOperands();
4151   if (OpNo+1 > ReservedSpace)
4152     growOperands();  // Get more space!
4153   // Initialize some new operands.
4154   assert(OpNo < ReservedSpace && "Growing didn't work!");
4155   setNumHungOffUseOperands(OpNo+1);
4156   getOperandList()[OpNo] = DestBB;
4157 }
4158 
4159 /// removeDestination - This method removes the specified successor from the
4160 /// indirectbr instruction.
4161 void IndirectBrInst::removeDestination(unsigned idx) {
4162   assert(idx < getNumOperands()-1 && "Successor index out of range!");
4163 
4164   unsigned NumOps = getNumOperands();
4165   Use *OL = getOperandList();
4166 
4167   // Replace this value with the last one.
4168   OL[idx+1] = OL[NumOps-1];
4169 
4170   // Nuke the last value.
4171   OL[NumOps-1].set(nullptr);
4172   setNumHungOffUseOperands(NumOps-1);
4173 }
4174 
4175 //===----------------------------------------------------------------------===//
4176 //                            FreezeInst Implementation
4177 //===----------------------------------------------------------------------===//
4178 
4179 FreezeInst::FreezeInst(Value *S, const Twine &Name, InsertPosition InsertBefore)
4180     : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
4181   setName(Name);
4182 }
4183 
4184 //===----------------------------------------------------------------------===//
4185 //                           cloneImpl() implementations
4186 //===----------------------------------------------------------------------===//
4187 
4188 // Define these methods here so vtables don't get emitted into every translation
4189 // unit that uses these classes.
4190 
4191 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4192   return new (getNumOperands()) GetElementPtrInst(*this);
4193 }
4194 
4195 UnaryOperator *UnaryOperator::cloneImpl() const {
4196   return Create(getOpcode(), Op<0>());
4197 }
4198 
4199 BinaryOperator *BinaryOperator::cloneImpl() const {
4200   return Create(getOpcode(), Op<0>(), Op<1>());
4201 }
4202 
4203 FCmpInst *FCmpInst::cloneImpl() const {
4204   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4205 }
4206 
4207 ICmpInst *ICmpInst::cloneImpl() const {
4208   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4209 }
4210 
4211 ExtractValueInst *ExtractValueInst::cloneImpl() const {
4212   return new ExtractValueInst(*this);
4213 }
4214 
4215 InsertValueInst *InsertValueInst::cloneImpl() const {
4216   return new InsertValueInst(*this);
4217 }
4218 
4219 AllocaInst *AllocaInst::cloneImpl() const {
4220   AllocaInst *Result = new AllocaInst(getAllocatedType(), getAddressSpace(),
4221                                       getOperand(0), getAlign());
4222   Result->setUsedWithInAlloca(isUsedWithInAlloca());
4223   Result->setSwiftError(isSwiftError());
4224   return Result;
4225 }
4226 
4227 LoadInst *LoadInst::cloneImpl() const {
4228   return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4229                       getAlign(), getOrdering(), getSyncScopeID());
4230 }
4231 
4232 StoreInst *StoreInst::cloneImpl() const {
4233   return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(),
4234                        getOrdering(), getSyncScopeID());
4235 }
4236 
4237 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4238   AtomicCmpXchgInst *Result = new AtomicCmpXchgInst(
4239       getOperand(0), getOperand(1), getOperand(2), getAlign(),
4240       getSuccessOrdering(), getFailureOrdering(), getSyncScopeID());
4241   Result->setVolatile(isVolatile());
4242   Result->setWeak(isWeak());
4243   return Result;
4244 }
4245 
4246 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4247   AtomicRMWInst *Result =
4248       new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4249                         getAlign(), getOrdering(), getSyncScopeID());
4250   Result->setVolatile(isVolatile());
4251   return Result;
4252 }
4253 
4254 FenceInst *FenceInst::cloneImpl() const {
4255   return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4256 }
4257 
4258 TruncInst *TruncInst::cloneImpl() const {
4259   return new TruncInst(getOperand(0), getType());
4260 }
4261 
4262 ZExtInst *ZExtInst::cloneImpl() const {
4263   return new ZExtInst(getOperand(0), getType());
4264 }
4265 
4266 SExtInst *SExtInst::cloneImpl() const {
4267   return new SExtInst(getOperand(0), getType());
4268 }
4269 
4270 FPTruncInst *FPTruncInst::cloneImpl() const {
4271   return new FPTruncInst(getOperand(0), getType());
4272 }
4273 
4274 FPExtInst *FPExtInst::cloneImpl() const {
4275   return new FPExtInst(getOperand(0), getType());
4276 }
4277 
4278 UIToFPInst *UIToFPInst::cloneImpl() const {
4279   return new UIToFPInst(getOperand(0), getType());
4280 }
4281 
4282 SIToFPInst *SIToFPInst::cloneImpl() const {
4283   return new SIToFPInst(getOperand(0), getType());
4284 }
4285 
4286 FPToUIInst *FPToUIInst::cloneImpl() const {
4287   return new FPToUIInst(getOperand(0), getType());
4288 }
4289 
4290 FPToSIInst *FPToSIInst::cloneImpl() const {
4291   return new FPToSIInst(getOperand(0), getType());
4292 }
4293 
4294 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4295   return new PtrToIntInst(getOperand(0), getType());
4296 }
4297 
4298 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4299   return new IntToPtrInst(getOperand(0), getType());
4300 }
4301 
4302 BitCastInst *BitCastInst::cloneImpl() const {
4303   return new BitCastInst(getOperand(0), getType());
4304 }
4305 
4306 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4307   return new AddrSpaceCastInst(getOperand(0), getType());
4308 }
4309 
4310 CallInst *CallInst::cloneImpl() const {
4311   if (hasOperandBundles()) {
4312     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4313     return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4314   }
4315   return  new(getNumOperands()) CallInst(*this);
4316 }
4317 
4318 SelectInst *SelectInst::cloneImpl() const {
4319   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4320 }
4321 
4322 VAArgInst *VAArgInst::cloneImpl() const {
4323   return new VAArgInst(getOperand(0), getType());
4324 }
4325 
4326 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4327   return ExtractElementInst::Create(getOperand(0), getOperand(1));
4328 }
4329 
4330 InsertElementInst *InsertElementInst::cloneImpl() const {
4331   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4332 }
4333 
4334 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4335   return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask());
4336 }
4337 
4338 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4339 
4340 LandingPadInst *LandingPadInst::cloneImpl() const {
4341   return new LandingPadInst(*this);
4342 }
4343 
4344 ReturnInst *ReturnInst::cloneImpl() const {
4345   return new(getNumOperands()) ReturnInst(*this);
4346 }
4347 
4348 BranchInst *BranchInst::cloneImpl() const {
4349   return new(getNumOperands()) BranchInst(*this);
4350 }
4351 
4352 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4353 
4354 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4355   return new IndirectBrInst(*this);
4356 }
4357 
4358 InvokeInst *InvokeInst::cloneImpl() const {
4359   if (hasOperandBundles()) {
4360     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4361     return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4362   }
4363   return new(getNumOperands()) InvokeInst(*this);
4364 }
4365 
4366 CallBrInst *CallBrInst::cloneImpl() const {
4367   if (hasOperandBundles()) {
4368     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4369     return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4370   }
4371   return new (getNumOperands()) CallBrInst(*this);
4372 }
4373 
4374 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4375 
4376 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4377   return new (getNumOperands()) CleanupReturnInst(*this);
4378 }
4379 
4380 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4381   return new (getNumOperands()) CatchReturnInst(*this);
4382 }
4383 
4384 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4385   return new CatchSwitchInst(*this);
4386 }
4387 
4388 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4389   return new (getNumOperands()) FuncletPadInst(*this);
4390 }
4391 
4392 UnreachableInst *UnreachableInst::cloneImpl() const {
4393   LLVMContext &Context = getContext();
4394   return new UnreachableInst(Context);
4395 }
4396 
4397 FreezeInst *FreezeInst::cloneImpl() const {
4398   return new FreezeInst(getOperand(0));
4399 }
4400