1 //===- IRBuilder.cpp - Builder for LLVM Instrs ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the IRBuilder class, which is used as a convenient way 10 // to create LLVM instructions with a consistent and simplified interface. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/IRBuilder.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/IR/Constant.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/DebugInfoMetadata.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/GlobalVariable.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/Intrinsics.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/NoFolder.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/Statepoint.h" 30 #include "llvm/IR/Type.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/Support/Casting.h" 33 #include <cassert> 34 #include <cstdint> 35 #include <optional> 36 #include <vector> 37 38 using namespace llvm; 39 40 /// CreateGlobalString - Make a new global variable with an initializer that 41 /// has array of i8 type filled in with the nul terminated string value 42 /// specified. If Name is specified, it is the name of the global variable 43 /// created. 44 GlobalVariable *IRBuilderBase::CreateGlobalString(StringRef Str, 45 const Twine &Name, 46 unsigned AddressSpace, 47 Module *M, bool AddNull) { 48 Constant *StrConstant = ConstantDataArray::getString(Context, Str, AddNull); 49 if (!M) 50 M = BB->getParent()->getParent(); 51 auto *GV = new GlobalVariable( 52 *M, StrConstant->getType(), true, GlobalValue::PrivateLinkage, 53 StrConstant, Name, nullptr, GlobalVariable::NotThreadLocal, AddressSpace); 54 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 55 GV->setAlignment(Align(1)); 56 return GV; 57 } 58 59 Type *IRBuilderBase::getCurrentFunctionReturnType() const { 60 assert(BB && BB->getParent() && "No current function!"); 61 return BB->getParent()->getReturnType(); 62 } 63 64 DebugLoc IRBuilderBase::getCurrentDebugLocation() const { 65 for (auto &KV : MetadataToCopy) 66 if (KV.first == LLVMContext::MD_dbg) 67 return {cast<DILocation>(KV.second)}; 68 69 return {}; 70 } 71 void IRBuilderBase::SetInstDebugLocation(Instruction *I) const { 72 for (const auto &KV : MetadataToCopy) 73 if (KV.first == LLVMContext::MD_dbg) { 74 I->setDebugLoc(DebugLoc(KV.second)); 75 return; 76 } 77 } 78 79 CallInst * 80 IRBuilderBase::createCallHelper(Function *Callee, ArrayRef<Value *> Ops, 81 const Twine &Name, Instruction *FMFSource, 82 ArrayRef<OperandBundleDef> OpBundles) { 83 CallInst *CI = CreateCall(Callee, Ops, OpBundles, Name); 84 if (FMFSource) 85 CI->copyFastMathFlags(FMFSource); 86 return CI; 87 } 88 89 Value *IRBuilderBase::CreateVScale(Constant *Scaling, const Twine &Name) { 90 assert(isa<ConstantInt>(Scaling) && "Expected constant integer"); 91 if (cast<ConstantInt>(Scaling)->isZero()) 92 return Scaling; 93 Module *M = GetInsertBlock()->getParent()->getParent(); 94 Function *TheFn = 95 Intrinsic::getDeclaration(M, Intrinsic::vscale, {Scaling->getType()}); 96 CallInst *CI = CreateCall(TheFn, {}, {}, Name); 97 return cast<ConstantInt>(Scaling)->isOne() ? CI : CreateMul(CI, Scaling); 98 } 99 100 Value *IRBuilderBase::CreateElementCount(Type *DstType, ElementCount EC) { 101 Constant *MinEC = ConstantInt::get(DstType, EC.getKnownMinValue()); 102 return EC.isScalable() ? CreateVScale(MinEC) : MinEC; 103 } 104 105 Value *IRBuilderBase::CreateTypeSize(Type *DstType, TypeSize Size) { 106 Constant *MinSize = ConstantInt::get(DstType, Size.getKnownMinValue()); 107 return Size.isScalable() ? CreateVScale(MinSize) : MinSize; 108 } 109 110 Value *IRBuilderBase::CreateStepVector(Type *DstType, const Twine &Name) { 111 Type *STy = DstType->getScalarType(); 112 if (isa<ScalableVectorType>(DstType)) { 113 Type *StepVecType = DstType; 114 // TODO: We expect this special case (element type < 8 bits) to be 115 // temporary - once the intrinsic properly supports < 8 bits this code 116 // can be removed. 117 if (STy->getScalarSizeInBits() < 8) 118 StepVecType = 119 VectorType::get(getInt8Ty(), cast<ScalableVectorType>(DstType)); 120 Value *Res = CreateIntrinsic(Intrinsic::experimental_stepvector, 121 {StepVecType}, {}, nullptr, Name); 122 if (StepVecType != DstType) 123 Res = CreateTrunc(Res, DstType); 124 return Res; 125 } 126 127 unsigned NumEls = cast<FixedVectorType>(DstType)->getNumElements(); 128 129 // Create a vector of consecutive numbers from zero to VF. 130 SmallVector<Constant *, 8> Indices; 131 for (unsigned i = 0; i < NumEls; ++i) 132 Indices.push_back(ConstantInt::get(STy, i)); 133 134 // Add the consecutive indices to the vector value. 135 return ConstantVector::get(Indices); 136 } 137 138 CallInst *IRBuilderBase::CreateMemSet(Value *Ptr, Value *Val, Value *Size, 139 MaybeAlign Align, bool isVolatile, 140 MDNode *TBAATag, MDNode *ScopeTag, 141 MDNode *NoAliasTag) { 142 Value *Ops[] = {Ptr, Val, Size, getInt1(isVolatile)}; 143 Type *Tys[] = { Ptr->getType(), Size->getType() }; 144 Module *M = BB->getParent()->getParent(); 145 Function *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys); 146 147 CallInst *CI = CreateCall(TheFn, Ops); 148 149 if (Align) 150 cast<MemSetInst>(CI)->setDestAlignment(*Align); 151 152 // Set the TBAA info if present. 153 if (TBAATag) 154 CI->setMetadata(LLVMContext::MD_tbaa, TBAATag); 155 156 if (ScopeTag) 157 CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag); 158 159 if (NoAliasTag) 160 CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag); 161 162 return CI; 163 } 164 165 CallInst *IRBuilderBase::CreateMemSetInline(Value *Dst, MaybeAlign DstAlign, 166 Value *Val, Value *Size, 167 bool IsVolatile, MDNode *TBAATag, 168 MDNode *ScopeTag, 169 MDNode *NoAliasTag) { 170 Value *Ops[] = {Dst, Val, Size, getInt1(IsVolatile)}; 171 Type *Tys[] = {Dst->getType(), Size->getType()}; 172 Module *M = BB->getParent()->getParent(); 173 Function *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memset_inline, Tys); 174 175 CallInst *CI = CreateCall(TheFn, Ops); 176 177 if (DstAlign) 178 cast<MemSetInlineInst>(CI)->setDestAlignment(*DstAlign); 179 180 // Set the TBAA info if present. 181 if (TBAATag) 182 CI->setMetadata(LLVMContext::MD_tbaa, TBAATag); 183 184 if (ScopeTag) 185 CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag); 186 187 if (NoAliasTag) 188 CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag); 189 190 return CI; 191 } 192 193 CallInst *IRBuilderBase::CreateElementUnorderedAtomicMemSet( 194 Value *Ptr, Value *Val, Value *Size, Align Alignment, uint32_t ElementSize, 195 MDNode *TBAATag, MDNode *ScopeTag, MDNode *NoAliasTag) { 196 197 Value *Ops[] = {Ptr, Val, Size, getInt32(ElementSize)}; 198 Type *Tys[] = {Ptr->getType(), Size->getType()}; 199 Module *M = BB->getParent()->getParent(); 200 Function *TheFn = Intrinsic::getDeclaration( 201 M, Intrinsic::memset_element_unordered_atomic, Tys); 202 203 CallInst *CI = CreateCall(TheFn, Ops); 204 205 cast<AtomicMemSetInst>(CI)->setDestAlignment(Alignment); 206 207 // Set the TBAA info if present. 208 if (TBAATag) 209 CI->setMetadata(LLVMContext::MD_tbaa, TBAATag); 210 211 if (ScopeTag) 212 CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag); 213 214 if (NoAliasTag) 215 CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag); 216 217 return CI; 218 } 219 220 CallInst *IRBuilderBase::CreateMemTransferInst( 221 Intrinsic::ID IntrID, Value *Dst, MaybeAlign DstAlign, Value *Src, 222 MaybeAlign SrcAlign, Value *Size, bool isVolatile, MDNode *TBAATag, 223 MDNode *TBAAStructTag, MDNode *ScopeTag, MDNode *NoAliasTag) { 224 assert((IntrID == Intrinsic::memcpy || IntrID == Intrinsic::memcpy_inline || 225 IntrID == Intrinsic::memmove) && 226 "Unexpected intrinsic ID"); 227 Value *Ops[] = {Dst, Src, Size, getInt1(isVolatile)}; 228 Type *Tys[] = { Dst->getType(), Src->getType(), Size->getType() }; 229 Module *M = BB->getParent()->getParent(); 230 Function *TheFn = Intrinsic::getDeclaration(M, IntrID, Tys); 231 232 CallInst *CI = CreateCall(TheFn, Ops); 233 234 auto* MCI = cast<MemTransferInst>(CI); 235 if (DstAlign) 236 MCI->setDestAlignment(*DstAlign); 237 if (SrcAlign) 238 MCI->setSourceAlignment(*SrcAlign); 239 240 // Set the TBAA info if present. 241 if (TBAATag) 242 CI->setMetadata(LLVMContext::MD_tbaa, TBAATag); 243 244 // Set the TBAA Struct info if present. 245 if (TBAAStructTag) 246 CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag); 247 248 if (ScopeTag) 249 CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag); 250 251 if (NoAliasTag) 252 CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag); 253 254 return CI; 255 } 256 257 CallInst *IRBuilderBase::CreateElementUnorderedAtomicMemCpy( 258 Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size, 259 uint32_t ElementSize, MDNode *TBAATag, MDNode *TBAAStructTag, 260 MDNode *ScopeTag, MDNode *NoAliasTag) { 261 assert(DstAlign >= ElementSize && 262 "Pointer alignment must be at least element size"); 263 assert(SrcAlign >= ElementSize && 264 "Pointer alignment must be at least element size"); 265 Value *Ops[] = {Dst, Src, Size, getInt32(ElementSize)}; 266 Type *Tys[] = {Dst->getType(), Src->getType(), Size->getType()}; 267 Module *M = BB->getParent()->getParent(); 268 Function *TheFn = Intrinsic::getDeclaration( 269 M, Intrinsic::memcpy_element_unordered_atomic, Tys); 270 271 CallInst *CI = CreateCall(TheFn, Ops); 272 273 // Set the alignment of the pointer args. 274 auto *AMCI = cast<AtomicMemCpyInst>(CI); 275 AMCI->setDestAlignment(DstAlign); 276 AMCI->setSourceAlignment(SrcAlign); 277 278 // Set the TBAA info if present. 279 if (TBAATag) 280 CI->setMetadata(LLVMContext::MD_tbaa, TBAATag); 281 282 // Set the TBAA Struct info if present. 283 if (TBAAStructTag) 284 CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag); 285 286 if (ScopeTag) 287 CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag); 288 289 if (NoAliasTag) 290 CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag); 291 292 return CI; 293 } 294 295 /// isConstantOne - Return true only if val is constant int 1 296 static bool isConstantOne(const Value *Val) { 297 assert(Val && "isConstantOne does not work with nullptr Val"); 298 const ConstantInt *CVal = dyn_cast<ConstantInt>(Val); 299 return CVal && CVal->isOne(); 300 } 301 302 CallInst *IRBuilderBase::CreateMalloc(Type *IntPtrTy, Type *AllocTy, 303 Value *AllocSize, Value *ArraySize, 304 ArrayRef<OperandBundleDef> OpB, 305 Function *MallocF, const Twine &Name) { 306 // malloc(type) becomes: 307 // i8* malloc(typeSize) 308 // malloc(type, arraySize) becomes: 309 // i8* malloc(typeSize*arraySize) 310 if (!ArraySize) 311 ArraySize = ConstantInt::get(IntPtrTy, 1); 312 else if (ArraySize->getType() != IntPtrTy) 313 ArraySize = CreateIntCast(ArraySize, IntPtrTy, false); 314 315 if (!isConstantOne(ArraySize)) { 316 if (isConstantOne(AllocSize)) { 317 AllocSize = ArraySize; // Operand * 1 = Operand 318 } else { 319 // Multiply type size by the array size... 320 AllocSize = CreateMul(ArraySize, AllocSize, "mallocsize"); 321 } 322 } 323 324 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size"); 325 // Create the call to Malloc. 326 Module *M = BB->getParent()->getParent(); 327 Type *BPTy = PointerType::getUnqual(Context); 328 FunctionCallee MallocFunc = MallocF; 329 if (!MallocFunc) 330 // prototype malloc as "void *malloc(size_t)" 331 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy); 332 CallInst *MCall = CreateCall(MallocFunc, AllocSize, OpB, Name); 333 334 MCall->setTailCall(); 335 if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) { 336 MCall->setCallingConv(F->getCallingConv()); 337 F->setReturnDoesNotAlias(); 338 } 339 340 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type"); 341 342 return MCall; 343 } 344 345 CallInst *IRBuilderBase::CreateMalloc(Type *IntPtrTy, Type *AllocTy, 346 Value *AllocSize, Value *ArraySize, 347 Function *MallocF, const Twine &Name) { 348 349 return CreateMalloc(IntPtrTy, AllocTy, AllocSize, ArraySize, std::nullopt, 350 MallocF, Name); 351 } 352 353 /// CreateFree - Generate the IR for a call to the builtin free function. 354 CallInst *IRBuilderBase::CreateFree(Value *Source, 355 ArrayRef<OperandBundleDef> Bundles) { 356 assert(Source->getType()->isPointerTy() && 357 "Can not free something of nonpointer type!"); 358 359 Module *M = BB->getParent()->getParent(); 360 361 Type *VoidTy = Type::getVoidTy(M->getContext()); 362 Type *VoidPtrTy = PointerType::getUnqual(M->getContext()); 363 // prototype free as "void free(void*)" 364 FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, VoidPtrTy); 365 CallInst *Result = CreateCall(FreeFunc, Source, Bundles, ""); 366 Result->setTailCall(); 367 if (Function *F = dyn_cast<Function>(FreeFunc.getCallee())) 368 Result->setCallingConv(F->getCallingConv()); 369 370 return Result; 371 } 372 373 CallInst *IRBuilderBase::CreateElementUnorderedAtomicMemMove( 374 Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size, 375 uint32_t ElementSize, MDNode *TBAATag, MDNode *TBAAStructTag, 376 MDNode *ScopeTag, MDNode *NoAliasTag) { 377 assert(DstAlign >= ElementSize && 378 "Pointer alignment must be at least element size"); 379 assert(SrcAlign >= ElementSize && 380 "Pointer alignment must be at least element size"); 381 Value *Ops[] = {Dst, Src, Size, getInt32(ElementSize)}; 382 Type *Tys[] = {Dst->getType(), Src->getType(), Size->getType()}; 383 Module *M = BB->getParent()->getParent(); 384 Function *TheFn = Intrinsic::getDeclaration( 385 M, Intrinsic::memmove_element_unordered_atomic, Tys); 386 387 CallInst *CI = CreateCall(TheFn, Ops); 388 389 // Set the alignment of the pointer args. 390 CI->addParamAttr(0, Attribute::getWithAlignment(CI->getContext(), DstAlign)); 391 CI->addParamAttr(1, Attribute::getWithAlignment(CI->getContext(), SrcAlign)); 392 393 // Set the TBAA info if present. 394 if (TBAATag) 395 CI->setMetadata(LLVMContext::MD_tbaa, TBAATag); 396 397 // Set the TBAA Struct info if present. 398 if (TBAAStructTag) 399 CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag); 400 401 if (ScopeTag) 402 CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag); 403 404 if (NoAliasTag) 405 CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag); 406 407 return CI; 408 } 409 410 CallInst *IRBuilderBase::getReductionIntrinsic(Intrinsic::ID ID, Value *Src) { 411 Module *M = GetInsertBlock()->getParent()->getParent(); 412 Value *Ops[] = {Src}; 413 Type *Tys[] = { Src->getType() }; 414 auto Decl = Intrinsic::getDeclaration(M, ID, Tys); 415 return CreateCall(Decl, Ops); 416 } 417 418 CallInst *IRBuilderBase::CreateFAddReduce(Value *Acc, Value *Src) { 419 Module *M = GetInsertBlock()->getParent()->getParent(); 420 Value *Ops[] = {Acc, Src}; 421 auto Decl = Intrinsic::getDeclaration(M, Intrinsic::vector_reduce_fadd, 422 {Src->getType()}); 423 return CreateCall(Decl, Ops); 424 } 425 426 CallInst *IRBuilderBase::CreateFMulReduce(Value *Acc, Value *Src) { 427 Module *M = GetInsertBlock()->getParent()->getParent(); 428 Value *Ops[] = {Acc, Src}; 429 auto Decl = Intrinsic::getDeclaration(M, Intrinsic::vector_reduce_fmul, 430 {Src->getType()}); 431 return CreateCall(Decl, Ops); 432 } 433 434 CallInst *IRBuilderBase::CreateAddReduce(Value *Src) { 435 return getReductionIntrinsic(Intrinsic::vector_reduce_add, Src); 436 } 437 438 CallInst *IRBuilderBase::CreateMulReduce(Value *Src) { 439 return getReductionIntrinsic(Intrinsic::vector_reduce_mul, Src); 440 } 441 442 CallInst *IRBuilderBase::CreateAndReduce(Value *Src) { 443 return getReductionIntrinsic(Intrinsic::vector_reduce_and, Src); 444 } 445 446 CallInst *IRBuilderBase::CreateOrReduce(Value *Src) { 447 return getReductionIntrinsic(Intrinsic::vector_reduce_or, Src); 448 } 449 450 CallInst *IRBuilderBase::CreateXorReduce(Value *Src) { 451 return getReductionIntrinsic(Intrinsic::vector_reduce_xor, Src); 452 } 453 454 CallInst *IRBuilderBase::CreateIntMaxReduce(Value *Src, bool IsSigned) { 455 auto ID = 456 IsSigned ? Intrinsic::vector_reduce_smax : Intrinsic::vector_reduce_umax; 457 return getReductionIntrinsic(ID, Src); 458 } 459 460 CallInst *IRBuilderBase::CreateIntMinReduce(Value *Src, bool IsSigned) { 461 auto ID = 462 IsSigned ? Intrinsic::vector_reduce_smin : Intrinsic::vector_reduce_umin; 463 return getReductionIntrinsic(ID, Src); 464 } 465 466 CallInst *IRBuilderBase::CreateFPMaxReduce(Value *Src) { 467 return getReductionIntrinsic(Intrinsic::vector_reduce_fmax, Src); 468 } 469 470 CallInst *IRBuilderBase::CreateFPMinReduce(Value *Src) { 471 return getReductionIntrinsic(Intrinsic::vector_reduce_fmin, Src); 472 } 473 474 CallInst *IRBuilderBase::CreateFPMaximumReduce(Value *Src) { 475 return getReductionIntrinsic(Intrinsic::vector_reduce_fmaximum, Src); 476 } 477 478 CallInst *IRBuilderBase::CreateFPMinimumReduce(Value *Src) { 479 return getReductionIntrinsic(Intrinsic::vector_reduce_fminimum, Src); 480 } 481 482 CallInst *IRBuilderBase::CreateLifetimeStart(Value *Ptr, ConstantInt *Size) { 483 assert(isa<PointerType>(Ptr->getType()) && 484 "lifetime.start only applies to pointers."); 485 if (!Size) 486 Size = getInt64(-1); 487 else 488 assert(Size->getType() == getInt64Ty() && 489 "lifetime.start requires the size to be an i64"); 490 Value *Ops[] = { Size, Ptr }; 491 Module *M = BB->getParent()->getParent(); 492 Function *TheFn = 493 Intrinsic::getDeclaration(M, Intrinsic::lifetime_start, {Ptr->getType()}); 494 return CreateCall(TheFn, Ops); 495 } 496 497 CallInst *IRBuilderBase::CreateLifetimeEnd(Value *Ptr, ConstantInt *Size) { 498 assert(isa<PointerType>(Ptr->getType()) && 499 "lifetime.end only applies to pointers."); 500 if (!Size) 501 Size = getInt64(-1); 502 else 503 assert(Size->getType() == getInt64Ty() && 504 "lifetime.end requires the size to be an i64"); 505 Value *Ops[] = { Size, Ptr }; 506 Module *M = BB->getParent()->getParent(); 507 Function *TheFn = 508 Intrinsic::getDeclaration(M, Intrinsic::lifetime_end, {Ptr->getType()}); 509 return CreateCall(TheFn, Ops); 510 } 511 512 CallInst *IRBuilderBase::CreateInvariantStart(Value *Ptr, ConstantInt *Size) { 513 514 assert(isa<PointerType>(Ptr->getType()) && 515 "invariant.start only applies to pointers."); 516 if (!Size) 517 Size = getInt64(-1); 518 else 519 assert(Size->getType() == getInt64Ty() && 520 "invariant.start requires the size to be an i64"); 521 522 Value *Ops[] = {Size, Ptr}; 523 // Fill in the single overloaded type: memory object type. 524 Type *ObjectPtr[1] = {Ptr->getType()}; 525 Module *M = BB->getParent()->getParent(); 526 Function *TheFn = 527 Intrinsic::getDeclaration(M, Intrinsic::invariant_start, ObjectPtr); 528 return CreateCall(TheFn, Ops); 529 } 530 531 static MaybeAlign getAlign(Value *Ptr) { 532 if (auto *O = dyn_cast<GlobalObject>(Ptr)) 533 return O->getAlign(); 534 if (auto *A = dyn_cast<GlobalAlias>(Ptr)) 535 return A->getAliaseeObject()->getAlign(); 536 return {}; 537 } 538 539 CallInst *IRBuilderBase::CreateThreadLocalAddress(Value *Ptr) { 540 assert(isa<GlobalValue>(Ptr) && cast<GlobalValue>(Ptr)->isThreadLocal() && 541 "threadlocal_address only applies to thread local variables."); 542 CallInst *CI = CreateIntrinsic(llvm::Intrinsic::threadlocal_address, 543 {Ptr->getType()}, {Ptr}); 544 if (MaybeAlign A = getAlign(Ptr)) { 545 CI->addParamAttr(0, Attribute::getWithAlignment(CI->getContext(), *A)); 546 CI->addRetAttr(Attribute::getWithAlignment(CI->getContext(), *A)); 547 } 548 return CI; 549 } 550 551 CallInst * 552 IRBuilderBase::CreateAssumption(Value *Cond, 553 ArrayRef<OperandBundleDef> OpBundles) { 554 assert(Cond->getType() == getInt1Ty() && 555 "an assumption condition must be of type i1"); 556 557 Value *Ops[] = { Cond }; 558 Module *M = BB->getParent()->getParent(); 559 Function *FnAssume = Intrinsic::getDeclaration(M, Intrinsic::assume); 560 return CreateCall(FnAssume, Ops, OpBundles); 561 } 562 563 Instruction *IRBuilderBase::CreateNoAliasScopeDeclaration(Value *Scope) { 564 Module *M = BB->getModule(); 565 auto *FnIntrinsic = Intrinsic::getDeclaration( 566 M, Intrinsic::experimental_noalias_scope_decl, {}); 567 return CreateCall(FnIntrinsic, {Scope}); 568 } 569 570 /// Create a call to a Masked Load intrinsic. 571 /// \p Ty - vector type to load 572 /// \p Ptr - base pointer for the load 573 /// \p Alignment - alignment of the source location 574 /// \p Mask - vector of booleans which indicates what vector lanes should 575 /// be accessed in memory 576 /// \p PassThru - pass-through value that is used to fill the masked-off lanes 577 /// of the result 578 /// \p Name - name of the result variable 579 CallInst *IRBuilderBase::CreateMaskedLoad(Type *Ty, Value *Ptr, Align Alignment, 580 Value *Mask, Value *PassThru, 581 const Twine &Name) { 582 auto *PtrTy = cast<PointerType>(Ptr->getType()); 583 assert(Ty->isVectorTy() && "Type should be vector"); 584 assert(Mask && "Mask should not be all-ones (null)"); 585 if (!PassThru) 586 PassThru = PoisonValue::get(Ty); 587 Type *OverloadedTypes[] = { Ty, PtrTy }; 588 Value *Ops[] = {Ptr, getInt32(Alignment.value()), Mask, PassThru}; 589 return CreateMaskedIntrinsic(Intrinsic::masked_load, Ops, 590 OverloadedTypes, Name); 591 } 592 593 /// Create a call to a Masked Store intrinsic. 594 /// \p Val - data to be stored, 595 /// \p Ptr - base pointer for the store 596 /// \p Alignment - alignment of the destination location 597 /// \p Mask - vector of booleans which indicates what vector lanes should 598 /// be accessed in memory 599 CallInst *IRBuilderBase::CreateMaskedStore(Value *Val, Value *Ptr, 600 Align Alignment, Value *Mask) { 601 auto *PtrTy = cast<PointerType>(Ptr->getType()); 602 Type *DataTy = Val->getType(); 603 assert(DataTy->isVectorTy() && "Val should be a vector"); 604 assert(Mask && "Mask should not be all-ones (null)"); 605 Type *OverloadedTypes[] = { DataTy, PtrTy }; 606 Value *Ops[] = {Val, Ptr, getInt32(Alignment.value()), Mask}; 607 return CreateMaskedIntrinsic(Intrinsic::masked_store, Ops, OverloadedTypes); 608 } 609 610 /// Create a call to a Masked intrinsic, with given intrinsic Id, 611 /// an array of operands - Ops, and an array of overloaded types - 612 /// OverloadedTypes. 613 CallInst *IRBuilderBase::CreateMaskedIntrinsic(Intrinsic::ID Id, 614 ArrayRef<Value *> Ops, 615 ArrayRef<Type *> OverloadedTypes, 616 const Twine &Name) { 617 Module *M = BB->getParent()->getParent(); 618 Function *TheFn = Intrinsic::getDeclaration(M, Id, OverloadedTypes); 619 return CreateCall(TheFn, Ops, {}, Name); 620 } 621 622 /// Create a call to a Masked Gather intrinsic. 623 /// \p Ty - vector type to gather 624 /// \p Ptrs - vector of pointers for loading 625 /// \p Align - alignment for one element 626 /// \p Mask - vector of booleans which indicates what vector lanes should 627 /// be accessed in memory 628 /// \p PassThru - pass-through value that is used to fill the masked-off lanes 629 /// of the result 630 /// \p Name - name of the result variable 631 CallInst *IRBuilderBase::CreateMaskedGather(Type *Ty, Value *Ptrs, 632 Align Alignment, Value *Mask, 633 Value *PassThru, 634 const Twine &Name) { 635 auto *VecTy = cast<VectorType>(Ty); 636 ElementCount NumElts = VecTy->getElementCount(); 637 auto *PtrsTy = cast<VectorType>(Ptrs->getType()); 638 assert(NumElts == PtrsTy->getElementCount() && "Element count mismatch"); 639 640 if (!Mask) 641 Mask = getAllOnesMask(NumElts); 642 643 if (!PassThru) 644 PassThru = PoisonValue::get(Ty); 645 646 Type *OverloadedTypes[] = {Ty, PtrsTy}; 647 Value *Ops[] = {Ptrs, getInt32(Alignment.value()), Mask, PassThru}; 648 649 // We specify only one type when we create this intrinsic. Types of other 650 // arguments are derived from this type. 651 return CreateMaskedIntrinsic(Intrinsic::masked_gather, Ops, OverloadedTypes, 652 Name); 653 } 654 655 /// Create a call to a Masked Scatter intrinsic. 656 /// \p Data - data to be stored, 657 /// \p Ptrs - the vector of pointers, where the \p Data elements should be 658 /// stored 659 /// \p Align - alignment for one element 660 /// \p Mask - vector of booleans which indicates what vector lanes should 661 /// be accessed in memory 662 CallInst *IRBuilderBase::CreateMaskedScatter(Value *Data, Value *Ptrs, 663 Align Alignment, Value *Mask) { 664 auto *PtrsTy = cast<VectorType>(Ptrs->getType()); 665 auto *DataTy = cast<VectorType>(Data->getType()); 666 ElementCount NumElts = PtrsTy->getElementCount(); 667 668 if (!Mask) 669 Mask = getAllOnesMask(NumElts); 670 671 Type *OverloadedTypes[] = {DataTy, PtrsTy}; 672 Value *Ops[] = {Data, Ptrs, getInt32(Alignment.value()), Mask}; 673 674 // We specify only one type when we create this intrinsic. Types of other 675 // arguments are derived from this type. 676 return CreateMaskedIntrinsic(Intrinsic::masked_scatter, Ops, OverloadedTypes); 677 } 678 679 /// Create a call to Masked Expand Load intrinsic 680 /// \p Ty - vector type to load 681 /// \p Ptr - base pointer for the load 682 /// \p Mask - vector of booleans which indicates what vector lanes should 683 /// be accessed in memory 684 /// \p PassThru - pass-through value that is used to fill the masked-off lanes 685 /// of the result 686 /// \p Name - name of the result variable 687 CallInst *IRBuilderBase::CreateMaskedExpandLoad(Type *Ty, Value *Ptr, 688 Value *Mask, Value *PassThru, 689 const Twine &Name) { 690 assert(Ty->isVectorTy() && "Type should be vector"); 691 assert(Mask && "Mask should not be all-ones (null)"); 692 if (!PassThru) 693 PassThru = PoisonValue::get(Ty); 694 Type *OverloadedTypes[] = {Ty}; 695 Value *Ops[] = {Ptr, Mask, PassThru}; 696 return CreateMaskedIntrinsic(Intrinsic::masked_expandload, Ops, 697 OverloadedTypes, Name); 698 } 699 700 /// Create a call to Masked Compress Store intrinsic 701 /// \p Val - data to be stored, 702 /// \p Ptr - base pointer for the store 703 /// \p Mask - vector of booleans which indicates what vector lanes should 704 /// be accessed in memory 705 CallInst *IRBuilderBase::CreateMaskedCompressStore(Value *Val, Value *Ptr, 706 Value *Mask) { 707 Type *DataTy = Val->getType(); 708 assert(DataTy->isVectorTy() && "Val should be a vector"); 709 assert(Mask && "Mask should not be all-ones (null)"); 710 Type *OverloadedTypes[] = {DataTy}; 711 Value *Ops[] = {Val, Ptr, Mask}; 712 return CreateMaskedIntrinsic(Intrinsic::masked_compressstore, Ops, 713 OverloadedTypes); 714 } 715 716 template <typename T0> 717 static std::vector<Value *> 718 getStatepointArgs(IRBuilderBase &B, uint64_t ID, uint32_t NumPatchBytes, 719 Value *ActualCallee, uint32_t Flags, ArrayRef<T0> CallArgs) { 720 std::vector<Value *> Args; 721 Args.push_back(B.getInt64(ID)); 722 Args.push_back(B.getInt32(NumPatchBytes)); 723 Args.push_back(ActualCallee); 724 Args.push_back(B.getInt32(CallArgs.size())); 725 Args.push_back(B.getInt32(Flags)); 726 llvm::append_range(Args, CallArgs); 727 // GC Transition and Deopt args are now always handled via operand bundle. 728 // They will be removed from the signature of gc.statepoint shortly. 729 Args.push_back(B.getInt32(0)); 730 Args.push_back(B.getInt32(0)); 731 // GC args are now encoded in the gc-live operand bundle 732 return Args; 733 } 734 735 template<typename T1, typename T2, typename T3> 736 static std::vector<OperandBundleDef> 737 getStatepointBundles(std::optional<ArrayRef<T1>> TransitionArgs, 738 std::optional<ArrayRef<T2>> DeoptArgs, 739 ArrayRef<T3> GCArgs) { 740 std::vector<OperandBundleDef> Rval; 741 if (DeoptArgs) { 742 SmallVector<Value*, 16> DeoptValues; 743 llvm::append_range(DeoptValues, *DeoptArgs); 744 Rval.emplace_back("deopt", DeoptValues); 745 } 746 if (TransitionArgs) { 747 SmallVector<Value*, 16> TransitionValues; 748 llvm::append_range(TransitionValues, *TransitionArgs); 749 Rval.emplace_back("gc-transition", TransitionValues); 750 } 751 if (GCArgs.size()) { 752 SmallVector<Value*, 16> LiveValues; 753 llvm::append_range(LiveValues, GCArgs); 754 Rval.emplace_back("gc-live", LiveValues); 755 } 756 return Rval; 757 } 758 759 template <typename T0, typename T1, typename T2, typename T3> 760 static CallInst *CreateGCStatepointCallCommon( 761 IRBuilderBase *Builder, uint64_t ID, uint32_t NumPatchBytes, 762 FunctionCallee ActualCallee, uint32_t Flags, ArrayRef<T0> CallArgs, 763 std::optional<ArrayRef<T1>> TransitionArgs, 764 std::optional<ArrayRef<T2>> DeoptArgs, ArrayRef<T3> GCArgs, 765 const Twine &Name) { 766 Module *M = Builder->GetInsertBlock()->getParent()->getParent(); 767 // Fill in the one generic type'd argument (the function is also vararg) 768 Function *FnStatepoint = 769 Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_statepoint, 770 {ActualCallee.getCallee()->getType()}); 771 772 std::vector<Value *> Args = getStatepointArgs( 773 *Builder, ID, NumPatchBytes, ActualCallee.getCallee(), Flags, CallArgs); 774 775 CallInst *CI = Builder->CreateCall( 776 FnStatepoint, Args, 777 getStatepointBundles(TransitionArgs, DeoptArgs, GCArgs), Name); 778 CI->addParamAttr(2, 779 Attribute::get(Builder->getContext(), Attribute::ElementType, 780 ActualCallee.getFunctionType())); 781 return CI; 782 } 783 784 CallInst *IRBuilderBase::CreateGCStatepointCall( 785 uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualCallee, 786 ArrayRef<Value *> CallArgs, std::optional<ArrayRef<Value *>> DeoptArgs, 787 ArrayRef<Value *> GCArgs, const Twine &Name) { 788 return CreateGCStatepointCallCommon<Value *, Value *, Value *, Value *>( 789 this, ID, NumPatchBytes, ActualCallee, uint32_t(StatepointFlags::None), 790 CallArgs, std::nullopt /* No Transition Args */, DeoptArgs, GCArgs, Name); 791 } 792 793 CallInst *IRBuilderBase::CreateGCStatepointCall( 794 uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualCallee, 795 uint32_t Flags, ArrayRef<Value *> CallArgs, 796 std::optional<ArrayRef<Use>> TransitionArgs, 797 std::optional<ArrayRef<Use>> DeoptArgs, ArrayRef<Value *> GCArgs, 798 const Twine &Name) { 799 return CreateGCStatepointCallCommon<Value *, Use, Use, Value *>( 800 this, ID, NumPatchBytes, ActualCallee, Flags, CallArgs, TransitionArgs, 801 DeoptArgs, GCArgs, Name); 802 } 803 804 CallInst *IRBuilderBase::CreateGCStatepointCall( 805 uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualCallee, 806 ArrayRef<Use> CallArgs, std::optional<ArrayRef<Value *>> DeoptArgs, 807 ArrayRef<Value *> GCArgs, const Twine &Name) { 808 return CreateGCStatepointCallCommon<Use, Value *, Value *, Value *>( 809 this, ID, NumPatchBytes, ActualCallee, uint32_t(StatepointFlags::None), 810 CallArgs, std::nullopt, DeoptArgs, GCArgs, Name); 811 } 812 813 template <typename T0, typename T1, typename T2, typename T3> 814 static InvokeInst *CreateGCStatepointInvokeCommon( 815 IRBuilderBase *Builder, uint64_t ID, uint32_t NumPatchBytes, 816 FunctionCallee ActualInvokee, BasicBlock *NormalDest, 817 BasicBlock *UnwindDest, uint32_t Flags, ArrayRef<T0> InvokeArgs, 818 std::optional<ArrayRef<T1>> TransitionArgs, 819 std::optional<ArrayRef<T2>> DeoptArgs, ArrayRef<T3> GCArgs, 820 const Twine &Name) { 821 Module *M = Builder->GetInsertBlock()->getParent()->getParent(); 822 // Fill in the one generic type'd argument (the function is also vararg) 823 Function *FnStatepoint = 824 Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_statepoint, 825 {ActualInvokee.getCallee()->getType()}); 826 827 std::vector<Value *> Args = 828 getStatepointArgs(*Builder, ID, NumPatchBytes, ActualInvokee.getCallee(), 829 Flags, InvokeArgs); 830 831 InvokeInst *II = Builder->CreateInvoke( 832 FnStatepoint, NormalDest, UnwindDest, Args, 833 getStatepointBundles(TransitionArgs, DeoptArgs, GCArgs), Name); 834 II->addParamAttr(2, 835 Attribute::get(Builder->getContext(), Attribute::ElementType, 836 ActualInvokee.getFunctionType())); 837 return II; 838 } 839 840 InvokeInst *IRBuilderBase::CreateGCStatepointInvoke( 841 uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualInvokee, 842 BasicBlock *NormalDest, BasicBlock *UnwindDest, 843 ArrayRef<Value *> InvokeArgs, std::optional<ArrayRef<Value *>> DeoptArgs, 844 ArrayRef<Value *> GCArgs, const Twine &Name) { 845 return CreateGCStatepointInvokeCommon<Value *, Value *, Value *, Value *>( 846 this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest, 847 uint32_t(StatepointFlags::None), InvokeArgs, 848 std::nullopt /* No Transition Args*/, DeoptArgs, GCArgs, Name); 849 } 850 851 InvokeInst *IRBuilderBase::CreateGCStatepointInvoke( 852 uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualInvokee, 853 BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags, 854 ArrayRef<Value *> InvokeArgs, std::optional<ArrayRef<Use>> TransitionArgs, 855 std::optional<ArrayRef<Use>> DeoptArgs, ArrayRef<Value *> GCArgs, 856 const Twine &Name) { 857 return CreateGCStatepointInvokeCommon<Value *, Use, Use, Value *>( 858 this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest, Flags, 859 InvokeArgs, TransitionArgs, DeoptArgs, GCArgs, Name); 860 } 861 862 InvokeInst *IRBuilderBase::CreateGCStatepointInvoke( 863 uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualInvokee, 864 BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef<Use> InvokeArgs, 865 std::optional<ArrayRef<Value *>> DeoptArgs, ArrayRef<Value *> GCArgs, 866 const Twine &Name) { 867 return CreateGCStatepointInvokeCommon<Use, Value *, Value *, Value *>( 868 this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest, 869 uint32_t(StatepointFlags::None), InvokeArgs, std::nullopt, DeoptArgs, 870 GCArgs, Name); 871 } 872 873 CallInst *IRBuilderBase::CreateGCResult(Instruction *Statepoint, 874 Type *ResultType, const Twine &Name) { 875 Intrinsic::ID ID = Intrinsic::experimental_gc_result; 876 Module *M = BB->getParent()->getParent(); 877 Type *Types[] = {ResultType}; 878 Function *FnGCResult = Intrinsic::getDeclaration(M, ID, Types); 879 880 Value *Args[] = {Statepoint}; 881 return CreateCall(FnGCResult, Args, {}, Name); 882 } 883 884 CallInst *IRBuilderBase::CreateGCRelocate(Instruction *Statepoint, 885 int BaseOffset, int DerivedOffset, 886 Type *ResultType, const Twine &Name) { 887 Module *M = BB->getParent()->getParent(); 888 Type *Types[] = {ResultType}; 889 Function *FnGCRelocate = 890 Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types); 891 892 Value *Args[] = {Statepoint, getInt32(BaseOffset), getInt32(DerivedOffset)}; 893 return CreateCall(FnGCRelocate, Args, {}, Name); 894 } 895 896 CallInst *IRBuilderBase::CreateGCGetPointerBase(Value *DerivedPtr, 897 const Twine &Name) { 898 Module *M = BB->getParent()->getParent(); 899 Type *PtrTy = DerivedPtr->getType(); 900 Function *FnGCFindBase = Intrinsic::getDeclaration( 901 M, Intrinsic::experimental_gc_get_pointer_base, {PtrTy, PtrTy}); 902 return CreateCall(FnGCFindBase, {DerivedPtr}, {}, Name); 903 } 904 905 CallInst *IRBuilderBase::CreateGCGetPointerOffset(Value *DerivedPtr, 906 const Twine &Name) { 907 Module *M = BB->getParent()->getParent(); 908 Type *PtrTy = DerivedPtr->getType(); 909 Function *FnGCGetOffset = Intrinsic::getDeclaration( 910 M, Intrinsic::experimental_gc_get_pointer_offset, {PtrTy}); 911 return CreateCall(FnGCGetOffset, {DerivedPtr}, {}, Name); 912 } 913 914 CallInst *IRBuilderBase::CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, 915 Instruction *FMFSource, 916 const Twine &Name) { 917 Module *M = BB->getModule(); 918 Function *Fn = Intrinsic::getDeclaration(M, ID, {V->getType()}); 919 return createCallHelper(Fn, {V}, Name, FMFSource); 920 } 921 922 Value *IRBuilderBase::CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, 923 Value *RHS, Instruction *FMFSource, 924 const Twine &Name) { 925 Module *M = BB->getModule(); 926 Function *Fn = Intrinsic::getDeclaration(M, ID, { LHS->getType() }); 927 if (Value *V = Folder.FoldBinaryIntrinsic(ID, LHS, RHS, Fn->getReturnType(), 928 FMFSource)) 929 return V; 930 return createCallHelper(Fn, {LHS, RHS}, Name, FMFSource); 931 } 932 933 CallInst *IRBuilderBase::CreateIntrinsic(Intrinsic::ID ID, 934 ArrayRef<Type *> Types, 935 ArrayRef<Value *> Args, 936 Instruction *FMFSource, 937 const Twine &Name) { 938 Module *M = BB->getModule(); 939 Function *Fn = Intrinsic::getDeclaration(M, ID, Types); 940 return createCallHelper(Fn, Args, Name, FMFSource); 941 } 942 943 CallInst *IRBuilderBase::CreateIntrinsic(Type *RetTy, Intrinsic::ID ID, 944 ArrayRef<Value *> Args, 945 Instruction *FMFSource, 946 const Twine &Name) { 947 Module *M = BB->getModule(); 948 949 SmallVector<Intrinsic::IITDescriptor> Table; 950 Intrinsic::getIntrinsicInfoTableEntries(ID, Table); 951 ArrayRef<Intrinsic::IITDescriptor> TableRef(Table); 952 953 SmallVector<Type *> ArgTys; 954 ArgTys.reserve(Args.size()); 955 for (auto &I : Args) 956 ArgTys.push_back(I->getType()); 957 FunctionType *FTy = FunctionType::get(RetTy, ArgTys, false); 958 SmallVector<Type *> OverloadTys; 959 Intrinsic::MatchIntrinsicTypesResult Res = 960 matchIntrinsicSignature(FTy, TableRef, OverloadTys); 961 (void)Res; 962 assert(Res == Intrinsic::MatchIntrinsicTypes_Match && TableRef.empty() && 963 "Wrong types for intrinsic!"); 964 // TODO: Handle varargs intrinsics. 965 966 Function *Fn = Intrinsic::getDeclaration(M, ID, OverloadTys); 967 return createCallHelper(Fn, Args, Name, FMFSource); 968 } 969 970 CallInst *IRBuilderBase::CreateConstrainedFPBinOp( 971 Intrinsic::ID ID, Value *L, Value *R, Instruction *FMFSource, 972 const Twine &Name, MDNode *FPMathTag, 973 std::optional<RoundingMode> Rounding, 974 std::optional<fp::ExceptionBehavior> Except) { 975 Value *RoundingV = getConstrainedFPRounding(Rounding); 976 Value *ExceptV = getConstrainedFPExcept(Except); 977 978 FastMathFlags UseFMF = FMF; 979 if (FMFSource) 980 UseFMF = FMFSource->getFastMathFlags(); 981 982 CallInst *C = CreateIntrinsic(ID, {L->getType()}, 983 {L, R, RoundingV, ExceptV}, nullptr, Name); 984 setConstrainedFPCallAttr(C); 985 setFPAttrs(C, FPMathTag, UseFMF); 986 return C; 987 } 988 989 CallInst *IRBuilderBase::CreateConstrainedFPUnroundedBinOp( 990 Intrinsic::ID ID, Value *L, Value *R, Instruction *FMFSource, 991 const Twine &Name, MDNode *FPMathTag, 992 std::optional<fp::ExceptionBehavior> Except) { 993 Value *ExceptV = getConstrainedFPExcept(Except); 994 995 FastMathFlags UseFMF = FMF; 996 if (FMFSource) 997 UseFMF = FMFSource->getFastMathFlags(); 998 999 CallInst *C = 1000 CreateIntrinsic(ID, {L->getType()}, {L, R, ExceptV}, nullptr, Name); 1001 setConstrainedFPCallAttr(C); 1002 setFPAttrs(C, FPMathTag, UseFMF); 1003 return C; 1004 } 1005 1006 Value *IRBuilderBase::CreateNAryOp(unsigned Opc, ArrayRef<Value *> Ops, 1007 const Twine &Name, MDNode *FPMathTag) { 1008 if (Instruction::isBinaryOp(Opc)) { 1009 assert(Ops.size() == 2 && "Invalid number of operands!"); 1010 return CreateBinOp(static_cast<Instruction::BinaryOps>(Opc), 1011 Ops[0], Ops[1], Name, FPMathTag); 1012 } 1013 if (Instruction::isUnaryOp(Opc)) { 1014 assert(Ops.size() == 1 && "Invalid number of operands!"); 1015 return CreateUnOp(static_cast<Instruction::UnaryOps>(Opc), 1016 Ops[0], Name, FPMathTag); 1017 } 1018 llvm_unreachable("Unexpected opcode!"); 1019 } 1020 1021 CallInst *IRBuilderBase::CreateConstrainedFPCast( 1022 Intrinsic::ID ID, Value *V, Type *DestTy, 1023 Instruction *FMFSource, const Twine &Name, MDNode *FPMathTag, 1024 std::optional<RoundingMode> Rounding, 1025 std::optional<fp::ExceptionBehavior> Except) { 1026 Value *ExceptV = getConstrainedFPExcept(Except); 1027 1028 FastMathFlags UseFMF = FMF; 1029 if (FMFSource) 1030 UseFMF = FMFSource->getFastMathFlags(); 1031 1032 CallInst *C; 1033 if (Intrinsic::hasConstrainedFPRoundingModeOperand(ID)) { 1034 Value *RoundingV = getConstrainedFPRounding(Rounding); 1035 C = CreateIntrinsic(ID, {DestTy, V->getType()}, {V, RoundingV, ExceptV}, 1036 nullptr, Name); 1037 } else 1038 C = CreateIntrinsic(ID, {DestTy, V->getType()}, {V, ExceptV}, nullptr, 1039 Name); 1040 1041 setConstrainedFPCallAttr(C); 1042 1043 if (isa<FPMathOperator>(C)) 1044 setFPAttrs(C, FPMathTag, UseFMF); 1045 return C; 1046 } 1047 1048 Value *IRBuilderBase::CreateFCmpHelper( 1049 CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name, 1050 MDNode *FPMathTag, bool IsSignaling) { 1051 if (IsFPConstrained) { 1052 auto ID = IsSignaling ? Intrinsic::experimental_constrained_fcmps 1053 : Intrinsic::experimental_constrained_fcmp; 1054 return CreateConstrainedFPCmp(ID, P, LHS, RHS, Name); 1055 } 1056 1057 if (auto *V = Folder.FoldCmp(P, LHS, RHS)) 1058 return V; 1059 return Insert(setFPAttrs(new FCmpInst(P, LHS, RHS), FPMathTag, FMF), Name); 1060 } 1061 1062 CallInst *IRBuilderBase::CreateConstrainedFPCmp( 1063 Intrinsic::ID ID, CmpInst::Predicate P, Value *L, Value *R, 1064 const Twine &Name, std::optional<fp::ExceptionBehavior> Except) { 1065 Value *PredicateV = getConstrainedFPPredicate(P); 1066 Value *ExceptV = getConstrainedFPExcept(Except); 1067 1068 CallInst *C = CreateIntrinsic(ID, {L->getType()}, 1069 {L, R, PredicateV, ExceptV}, nullptr, Name); 1070 setConstrainedFPCallAttr(C); 1071 return C; 1072 } 1073 1074 CallInst *IRBuilderBase::CreateConstrainedFPCall( 1075 Function *Callee, ArrayRef<Value *> Args, const Twine &Name, 1076 std::optional<RoundingMode> Rounding, 1077 std::optional<fp::ExceptionBehavior> Except) { 1078 llvm::SmallVector<Value *, 6> UseArgs; 1079 1080 append_range(UseArgs, Args); 1081 1082 if (Intrinsic::hasConstrainedFPRoundingModeOperand(Callee->getIntrinsicID())) 1083 UseArgs.push_back(getConstrainedFPRounding(Rounding)); 1084 UseArgs.push_back(getConstrainedFPExcept(Except)); 1085 1086 CallInst *C = CreateCall(Callee, UseArgs, Name); 1087 setConstrainedFPCallAttr(C); 1088 return C; 1089 } 1090 1091 Value *IRBuilderBase::CreateSelect(Value *C, Value *True, Value *False, 1092 const Twine &Name, Instruction *MDFrom) { 1093 if (auto *V = Folder.FoldSelect(C, True, False)) 1094 return V; 1095 1096 SelectInst *Sel = SelectInst::Create(C, True, False); 1097 if (MDFrom) { 1098 MDNode *Prof = MDFrom->getMetadata(LLVMContext::MD_prof); 1099 MDNode *Unpred = MDFrom->getMetadata(LLVMContext::MD_unpredictable); 1100 Sel = addBranchMetadata(Sel, Prof, Unpred); 1101 } 1102 if (isa<FPMathOperator>(Sel)) 1103 setFPAttrs(Sel, nullptr /* MDNode* */, FMF); 1104 return Insert(Sel, Name); 1105 } 1106 1107 Value *IRBuilderBase::CreatePtrDiff(Type *ElemTy, Value *LHS, Value *RHS, 1108 const Twine &Name) { 1109 assert(LHS->getType() == RHS->getType() && 1110 "Pointer subtraction operand types must match!"); 1111 Value *LHS_int = CreatePtrToInt(LHS, Type::getInt64Ty(Context)); 1112 Value *RHS_int = CreatePtrToInt(RHS, Type::getInt64Ty(Context)); 1113 Value *Difference = CreateSub(LHS_int, RHS_int); 1114 return CreateExactSDiv(Difference, ConstantExpr::getSizeOf(ElemTy), 1115 Name); 1116 } 1117 1118 Value *IRBuilderBase::CreateLaunderInvariantGroup(Value *Ptr) { 1119 assert(isa<PointerType>(Ptr->getType()) && 1120 "launder.invariant.group only applies to pointers."); 1121 auto *PtrType = Ptr->getType(); 1122 Module *M = BB->getParent()->getParent(); 1123 Function *FnLaunderInvariantGroup = Intrinsic::getDeclaration( 1124 M, Intrinsic::launder_invariant_group, {PtrType}); 1125 1126 assert(FnLaunderInvariantGroup->getReturnType() == PtrType && 1127 FnLaunderInvariantGroup->getFunctionType()->getParamType(0) == 1128 PtrType && 1129 "LaunderInvariantGroup should take and return the same type"); 1130 1131 return CreateCall(FnLaunderInvariantGroup, {Ptr}); 1132 } 1133 1134 Value *IRBuilderBase::CreateStripInvariantGroup(Value *Ptr) { 1135 assert(isa<PointerType>(Ptr->getType()) && 1136 "strip.invariant.group only applies to pointers."); 1137 1138 auto *PtrType = Ptr->getType(); 1139 Module *M = BB->getParent()->getParent(); 1140 Function *FnStripInvariantGroup = Intrinsic::getDeclaration( 1141 M, Intrinsic::strip_invariant_group, {PtrType}); 1142 1143 assert(FnStripInvariantGroup->getReturnType() == PtrType && 1144 FnStripInvariantGroup->getFunctionType()->getParamType(0) == 1145 PtrType && 1146 "StripInvariantGroup should take and return the same type"); 1147 1148 return CreateCall(FnStripInvariantGroup, {Ptr}); 1149 } 1150 1151 Value *IRBuilderBase::CreateVectorReverse(Value *V, const Twine &Name) { 1152 auto *Ty = cast<VectorType>(V->getType()); 1153 if (isa<ScalableVectorType>(Ty)) { 1154 Module *M = BB->getParent()->getParent(); 1155 Function *F = Intrinsic::getDeclaration(M, Intrinsic::vector_reverse, Ty); 1156 return Insert(CallInst::Create(F, V), Name); 1157 } 1158 // Keep the original behaviour for fixed vector 1159 SmallVector<int, 8> ShuffleMask; 1160 int NumElts = Ty->getElementCount().getKnownMinValue(); 1161 for (int i = 0; i < NumElts; ++i) 1162 ShuffleMask.push_back(NumElts - i - 1); 1163 return CreateShuffleVector(V, ShuffleMask, Name); 1164 } 1165 1166 Value *IRBuilderBase::CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, 1167 const Twine &Name) { 1168 assert(isa<VectorType>(V1->getType()) && "Unexpected type"); 1169 assert(V1->getType() == V2->getType() && 1170 "Splice expects matching operand types!"); 1171 1172 if (auto *VTy = dyn_cast<ScalableVectorType>(V1->getType())) { 1173 Module *M = BB->getParent()->getParent(); 1174 Function *F = Intrinsic::getDeclaration(M, Intrinsic::vector_splice, VTy); 1175 1176 Value *Ops[] = {V1, V2, getInt32(Imm)}; 1177 return Insert(CallInst::Create(F, Ops), Name); 1178 } 1179 1180 unsigned NumElts = cast<FixedVectorType>(V1->getType())->getNumElements(); 1181 assert(((-Imm <= NumElts) || (Imm < NumElts)) && 1182 "Invalid immediate for vector splice!"); 1183 1184 // Keep the original behaviour for fixed vector 1185 unsigned Idx = (NumElts + Imm) % NumElts; 1186 SmallVector<int, 8> Mask; 1187 for (unsigned I = 0; I < NumElts; ++I) 1188 Mask.push_back(Idx + I); 1189 1190 return CreateShuffleVector(V1, V2, Mask); 1191 } 1192 1193 Value *IRBuilderBase::CreateVectorSplat(unsigned NumElts, Value *V, 1194 const Twine &Name) { 1195 auto EC = ElementCount::getFixed(NumElts); 1196 return CreateVectorSplat(EC, V, Name); 1197 } 1198 1199 Value *IRBuilderBase::CreateVectorSplat(ElementCount EC, Value *V, 1200 const Twine &Name) { 1201 assert(EC.isNonZero() && "Cannot splat to an empty vector!"); 1202 1203 // First insert it into a poison vector so we can shuffle it. 1204 Value *Poison = PoisonValue::get(VectorType::get(V->getType(), EC)); 1205 V = CreateInsertElement(Poison, V, getInt64(0), Name + ".splatinsert"); 1206 1207 // Shuffle the value across the desired number of elements. 1208 SmallVector<int, 16> Zeros; 1209 Zeros.resize(EC.getKnownMinValue()); 1210 return CreateShuffleVector(V, Zeros, Name + ".splat"); 1211 } 1212 1213 Value *IRBuilderBase::CreatePreserveArrayAccessIndex( 1214 Type *ElTy, Value *Base, unsigned Dimension, unsigned LastIndex, 1215 MDNode *DbgInfo) { 1216 auto *BaseType = Base->getType(); 1217 assert(isa<PointerType>(BaseType) && 1218 "Invalid Base ptr type for preserve.array.access.index."); 1219 1220 Value *LastIndexV = getInt32(LastIndex); 1221 Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0); 1222 SmallVector<Value *, 4> IdxList(Dimension, Zero); 1223 IdxList.push_back(LastIndexV); 1224 1225 Type *ResultType = GetElementPtrInst::getGEPReturnType(Base, IdxList); 1226 1227 Module *M = BB->getParent()->getParent(); 1228 Function *FnPreserveArrayAccessIndex = Intrinsic::getDeclaration( 1229 M, Intrinsic::preserve_array_access_index, {ResultType, BaseType}); 1230 1231 Value *DimV = getInt32(Dimension); 1232 CallInst *Fn = 1233 CreateCall(FnPreserveArrayAccessIndex, {Base, DimV, LastIndexV}); 1234 Fn->addParamAttr( 1235 0, Attribute::get(Fn->getContext(), Attribute::ElementType, ElTy)); 1236 if (DbgInfo) 1237 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo); 1238 1239 return Fn; 1240 } 1241 1242 Value *IRBuilderBase::CreatePreserveUnionAccessIndex( 1243 Value *Base, unsigned FieldIndex, MDNode *DbgInfo) { 1244 assert(isa<PointerType>(Base->getType()) && 1245 "Invalid Base ptr type for preserve.union.access.index."); 1246 auto *BaseType = Base->getType(); 1247 1248 Module *M = BB->getParent()->getParent(); 1249 Function *FnPreserveUnionAccessIndex = Intrinsic::getDeclaration( 1250 M, Intrinsic::preserve_union_access_index, {BaseType, BaseType}); 1251 1252 Value *DIIndex = getInt32(FieldIndex); 1253 CallInst *Fn = 1254 CreateCall(FnPreserveUnionAccessIndex, {Base, DIIndex}); 1255 if (DbgInfo) 1256 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo); 1257 1258 return Fn; 1259 } 1260 1261 Value *IRBuilderBase::CreatePreserveStructAccessIndex( 1262 Type *ElTy, Value *Base, unsigned Index, unsigned FieldIndex, 1263 MDNode *DbgInfo) { 1264 auto *BaseType = Base->getType(); 1265 assert(isa<PointerType>(BaseType) && 1266 "Invalid Base ptr type for preserve.struct.access.index."); 1267 1268 Value *GEPIndex = getInt32(Index); 1269 Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0); 1270 Type *ResultType = 1271 GetElementPtrInst::getGEPReturnType(Base, {Zero, GEPIndex}); 1272 1273 Module *M = BB->getParent()->getParent(); 1274 Function *FnPreserveStructAccessIndex = Intrinsic::getDeclaration( 1275 M, Intrinsic::preserve_struct_access_index, {ResultType, BaseType}); 1276 1277 Value *DIIndex = getInt32(FieldIndex); 1278 CallInst *Fn = CreateCall(FnPreserveStructAccessIndex, 1279 {Base, GEPIndex, DIIndex}); 1280 Fn->addParamAttr( 1281 0, Attribute::get(Fn->getContext(), Attribute::ElementType, ElTy)); 1282 if (DbgInfo) 1283 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo); 1284 1285 return Fn; 1286 } 1287 1288 Value *IRBuilderBase::createIsFPClass(Value *FPNum, unsigned Test) { 1289 ConstantInt *TestV = getInt32(Test); 1290 Module *M = BB->getParent()->getParent(); 1291 Function *FnIsFPClass = 1292 Intrinsic::getDeclaration(M, Intrinsic::is_fpclass, {FPNum->getType()}); 1293 return CreateCall(FnIsFPClass, {FPNum, TestV}); 1294 } 1295 1296 CallInst *IRBuilderBase::CreateAlignmentAssumptionHelper(const DataLayout &DL, 1297 Value *PtrValue, 1298 Value *AlignValue, 1299 Value *OffsetValue) { 1300 SmallVector<Value *, 4> Vals({PtrValue, AlignValue}); 1301 if (OffsetValue) 1302 Vals.push_back(OffsetValue); 1303 OperandBundleDefT<Value *> AlignOpB("align", Vals); 1304 return CreateAssumption(ConstantInt::getTrue(getContext()), {AlignOpB}); 1305 } 1306 1307 CallInst *IRBuilderBase::CreateAlignmentAssumption(const DataLayout &DL, 1308 Value *PtrValue, 1309 unsigned Alignment, 1310 Value *OffsetValue) { 1311 assert(isa<PointerType>(PtrValue->getType()) && 1312 "trying to create an alignment assumption on a non-pointer?"); 1313 assert(Alignment != 0 && "Invalid Alignment"); 1314 auto *PtrTy = cast<PointerType>(PtrValue->getType()); 1315 Type *IntPtrTy = getIntPtrTy(DL, PtrTy->getAddressSpace()); 1316 Value *AlignValue = ConstantInt::get(IntPtrTy, Alignment); 1317 return CreateAlignmentAssumptionHelper(DL, PtrValue, AlignValue, OffsetValue); 1318 } 1319 1320 CallInst *IRBuilderBase::CreateAlignmentAssumption(const DataLayout &DL, 1321 Value *PtrValue, 1322 Value *Alignment, 1323 Value *OffsetValue) { 1324 assert(isa<PointerType>(PtrValue->getType()) && 1325 "trying to create an alignment assumption on a non-pointer?"); 1326 return CreateAlignmentAssumptionHelper(DL, PtrValue, Alignment, OffsetValue); 1327 } 1328 1329 IRBuilderDefaultInserter::~IRBuilderDefaultInserter() = default; 1330 IRBuilderCallbackInserter::~IRBuilderCallbackInserter() = default; 1331 IRBuilderFolder::~IRBuilderFolder() = default; 1332 void ConstantFolder::anchor() {} 1333 void NoFolder::anchor() {} 1334