xref: /freebsd/contrib/llvm-project/llvm/lib/IR/IRBuilder.cpp (revision 7fdf597e96a02165cfe22ff357b857d5fa15ed8a)
1 //===- IRBuilder.cpp - Builder for LLVM Instrs ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the IRBuilder class, which is used as a convenient way
10 // to create LLVM instructions with a consistent and simplified interface.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/IRBuilder.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/IR/Constant.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/DebugInfoMetadata.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/GlobalVariable.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/Intrinsics.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/NoFolder.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/Statepoint.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/IR/Value.h"
32 #include "llvm/Support/Casting.h"
33 #include <cassert>
34 #include <cstdint>
35 #include <optional>
36 #include <vector>
37 
38 using namespace llvm;
39 
40 /// CreateGlobalString - Make a new global variable with an initializer that
41 /// has array of i8 type filled in with the nul terminated string value
42 /// specified.  If Name is specified, it is the name of the global variable
43 /// created.
44 GlobalVariable *IRBuilderBase::CreateGlobalString(StringRef Str,
45                                                   const Twine &Name,
46                                                   unsigned AddressSpace,
47                                                   Module *M, bool AddNull) {
48   Constant *StrConstant = ConstantDataArray::getString(Context, Str, AddNull);
49   if (!M)
50     M = BB->getParent()->getParent();
51   auto *GV = new GlobalVariable(
52       *M, StrConstant->getType(), true, GlobalValue::PrivateLinkage,
53       StrConstant, Name, nullptr, GlobalVariable::NotThreadLocal, AddressSpace);
54   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
55   GV->setAlignment(Align(1));
56   return GV;
57 }
58 
59 Type *IRBuilderBase::getCurrentFunctionReturnType() const {
60   assert(BB && BB->getParent() && "No current function!");
61   return BB->getParent()->getReturnType();
62 }
63 
64 DebugLoc IRBuilderBase::getCurrentDebugLocation() const {
65   for (auto &KV : MetadataToCopy)
66     if (KV.first == LLVMContext::MD_dbg)
67       return {cast<DILocation>(KV.second)};
68 
69   return {};
70 }
71 void IRBuilderBase::SetInstDebugLocation(Instruction *I) const {
72   for (const auto &KV : MetadataToCopy)
73     if (KV.first == LLVMContext::MD_dbg) {
74       I->setDebugLoc(DebugLoc(KV.second));
75       return;
76     }
77 }
78 
79 CallInst *
80 IRBuilderBase::createCallHelper(Function *Callee, ArrayRef<Value *> Ops,
81                                 const Twine &Name, Instruction *FMFSource,
82                                 ArrayRef<OperandBundleDef> OpBundles) {
83   CallInst *CI = CreateCall(Callee, Ops, OpBundles, Name);
84   if (FMFSource)
85     CI->copyFastMathFlags(FMFSource);
86   return CI;
87 }
88 
89 Value *IRBuilderBase::CreateVScale(Constant *Scaling, const Twine &Name) {
90   assert(isa<ConstantInt>(Scaling) && "Expected constant integer");
91   if (cast<ConstantInt>(Scaling)->isZero())
92     return Scaling;
93   Module *M = GetInsertBlock()->getParent()->getParent();
94   Function *TheFn =
95       Intrinsic::getDeclaration(M, Intrinsic::vscale, {Scaling->getType()});
96   CallInst *CI = CreateCall(TheFn, {}, {}, Name);
97   return cast<ConstantInt>(Scaling)->isOne() ? CI : CreateMul(CI, Scaling);
98 }
99 
100 Value *IRBuilderBase::CreateElementCount(Type *DstType, ElementCount EC) {
101   Constant *MinEC = ConstantInt::get(DstType, EC.getKnownMinValue());
102   return EC.isScalable() ? CreateVScale(MinEC) : MinEC;
103 }
104 
105 Value *IRBuilderBase::CreateTypeSize(Type *DstType, TypeSize Size) {
106   Constant *MinSize = ConstantInt::get(DstType, Size.getKnownMinValue());
107   return Size.isScalable() ? CreateVScale(MinSize) : MinSize;
108 }
109 
110 Value *IRBuilderBase::CreateStepVector(Type *DstType, const Twine &Name) {
111   Type *STy = DstType->getScalarType();
112   if (isa<ScalableVectorType>(DstType)) {
113     Type *StepVecType = DstType;
114     // TODO: We expect this special case (element type < 8 bits) to be
115     // temporary - once the intrinsic properly supports < 8 bits this code
116     // can be removed.
117     if (STy->getScalarSizeInBits() < 8)
118       StepVecType =
119           VectorType::get(getInt8Ty(), cast<ScalableVectorType>(DstType));
120     Value *Res = CreateIntrinsic(Intrinsic::experimental_stepvector,
121                                  {StepVecType}, {}, nullptr, Name);
122     if (StepVecType != DstType)
123       Res = CreateTrunc(Res, DstType);
124     return Res;
125   }
126 
127   unsigned NumEls = cast<FixedVectorType>(DstType)->getNumElements();
128 
129   // Create a vector of consecutive numbers from zero to VF.
130   SmallVector<Constant *, 8> Indices;
131   for (unsigned i = 0; i < NumEls; ++i)
132     Indices.push_back(ConstantInt::get(STy, i));
133 
134   // Add the consecutive indices to the vector value.
135   return ConstantVector::get(Indices);
136 }
137 
138 CallInst *IRBuilderBase::CreateMemSet(Value *Ptr, Value *Val, Value *Size,
139                                       MaybeAlign Align, bool isVolatile,
140                                       MDNode *TBAATag, MDNode *ScopeTag,
141                                       MDNode *NoAliasTag) {
142   Value *Ops[] = {Ptr, Val, Size, getInt1(isVolatile)};
143   Type *Tys[] = { Ptr->getType(), Size->getType() };
144   Module *M = BB->getParent()->getParent();
145   Function *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys);
146 
147   CallInst *CI = CreateCall(TheFn, Ops);
148 
149   if (Align)
150     cast<MemSetInst>(CI)->setDestAlignment(*Align);
151 
152   // Set the TBAA info if present.
153   if (TBAATag)
154     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
155 
156   if (ScopeTag)
157     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
158 
159   if (NoAliasTag)
160     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
161 
162   return CI;
163 }
164 
165 CallInst *IRBuilderBase::CreateMemSetInline(Value *Dst, MaybeAlign DstAlign,
166                                             Value *Val, Value *Size,
167                                             bool IsVolatile, MDNode *TBAATag,
168                                             MDNode *ScopeTag,
169                                             MDNode *NoAliasTag) {
170   Value *Ops[] = {Dst, Val, Size, getInt1(IsVolatile)};
171   Type *Tys[] = {Dst->getType(), Size->getType()};
172   Module *M = BB->getParent()->getParent();
173   Function *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memset_inline, Tys);
174 
175   CallInst *CI = CreateCall(TheFn, Ops);
176 
177   if (DstAlign)
178     cast<MemSetInlineInst>(CI)->setDestAlignment(*DstAlign);
179 
180   // Set the TBAA info if present.
181   if (TBAATag)
182     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
183 
184   if (ScopeTag)
185     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
186 
187   if (NoAliasTag)
188     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
189 
190   return CI;
191 }
192 
193 CallInst *IRBuilderBase::CreateElementUnorderedAtomicMemSet(
194     Value *Ptr, Value *Val, Value *Size, Align Alignment, uint32_t ElementSize,
195     MDNode *TBAATag, MDNode *ScopeTag, MDNode *NoAliasTag) {
196 
197   Value *Ops[] = {Ptr, Val, Size, getInt32(ElementSize)};
198   Type *Tys[] = {Ptr->getType(), Size->getType()};
199   Module *M = BB->getParent()->getParent();
200   Function *TheFn = Intrinsic::getDeclaration(
201       M, Intrinsic::memset_element_unordered_atomic, Tys);
202 
203   CallInst *CI = CreateCall(TheFn, Ops);
204 
205   cast<AtomicMemSetInst>(CI)->setDestAlignment(Alignment);
206 
207   // Set the TBAA info if present.
208   if (TBAATag)
209     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
210 
211   if (ScopeTag)
212     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
213 
214   if (NoAliasTag)
215     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
216 
217   return CI;
218 }
219 
220 CallInst *IRBuilderBase::CreateMemTransferInst(
221     Intrinsic::ID IntrID, Value *Dst, MaybeAlign DstAlign, Value *Src,
222     MaybeAlign SrcAlign, Value *Size, bool isVolatile, MDNode *TBAATag,
223     MDNode *TBAAStructTag, MDNode *ScopeTag, MDNode *NoAliasTag) {
224   assert((IntrID == Intrinsic::memcpy || IntrID == Intrinsic::memcpy_inline ||
225           IntrID == Intrinsic::memmove) &&
226          "Unexpected intrinsic ID");
227   Value *Ops[] = {Dst, Src, Size, getInt1(isVolatile)};
228   Type *Tys[] = { Dst->getType(), Src->getType(), Size->getType() };
229   Module *M = BB->getParent()->getParent();
230   Function *TheFn = Intrinsic::getDeclaration(M, IntrID, Tys);
231 
232   CallInst *CI = CreateCall(TheFn, Ops);
233 
234   auto* MCI = cast<MemTransferInst>(CI);
235   if (DstAlign)
236     MCI->setDestAlignment(*DstAlign);
237   if (SrcAlign)
238     MCI->setSourceAlignment(*SrcAlign);
239 
240   // Set the TBAA info if present.
241   if (TBAATag)
242     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
243 
244   // Set the TBAA Struct info if present.
245   if (TBAAStructTag)
246     CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag);
247 
248   if (ScopeTag)
249     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
250 
251   if (NoAliasTag)
252     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
253 
254   return CI;
255 }
256 
257 CallInst *IRBuilderBase::CreateElementUnorderedAtomicMemCpy(
258     Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size,
259     uint32_t ElementSize, MDNode *TBAATag, MDNode *TBAAStructTag,
260     MDNode *ScopeTag, MDNode *NoAliasTag) {
261   assert(DstAlign >= ElementSize &&
262          "Pointer alignment must be at least element size");
263   assert(SrcAlign >= ElementSize &&
264          "Pointer alignment must be at least element size");
265   Value *Ops[] = {Dst, Src, Size, getInt32(ElementSize)};
266   Type *Tys[] = {Dst->getType(), Src->getType(), Size->getType()};
267   Module *M = BB->getParent()->getParent();
268   Function *TheFn = Intrinsic::getDeclaration(
269       M, Intrinsic::memcpy_element_unordered_atomic, Tys);
270 
271   CallInst *CI = CreateCall(TheFn, Ops);
272 
273   // Set the alignment of the pointer args.
274   auto *AMCI = cast<AtomicMemCpyInst>(CI);
275   AMCI->setDestAlignment(DstAlign);
276   AMCI->setSourceAlignment(SrcAlign);
277 
278   // Set the TBAA info if present.
279   if (TBAATag)
280     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
281 
282   // Set the TBAA Struct info if present.
283   if (TBAAStructTag)
284     CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag);
285 
286   if (ScopeTag)
287     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
288 
289   if (NoAliasTag)
290     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
291 
292   return CI;
293 }
294 
295 /// isConstantOne - Return true only if val is constant int 1
296 static bool isConstantOne(const Value *Val) {
297   assert(Val && "isConstantOne does not work with nullptr Val");
298   const ConstantInt *CVal = dyn_cast<ConstantInt>(Val);
299   return CVal && CVal->isOne();
300 }
301 
302 CallInst *IRBuilderBase::CreateMalloc(Type *IntPtrTy, Type *AllocTy,
303                                       Value *AllocSize, Value *ArraySize,
304                                       ArrayRef<OperandBundleDef> OpB,
305                                       Function *MallocF, const Twine &Name) {
306   // malloc(type) becomes:
307   //       i8* malloc(typeSize)
308   // malloc(type, arraySize) becomes:
309   //       i8* malloc(typeSize*arraySize)
310   if (!ArraySize)
311     ArraySize = ConstantInt::get(IntPtrTy, 1);
312   else if (ArraySize->getType() != IntPtrTy)
313     ArraySize = CreateIntCast(ArraySize, IntPtrTy, false);
314 
315   if (!isConstantOne(ArraySize)) {
316     if (isConstantOne(AllocSize)) {
317       AllocSize = ArraySize; // Operand * 1 = Operand
318     } else {
319       // Multiply type size by the array size...
320       AllocSize = CreateMul(ArraySize, AllocSize, "mallocsize");
321     }
322   }
323 
324   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
325   // Create the call to Malloc.
326   Module *M = BB->getParent()->getParent();
327   Type *BPTy = PointerType::getUnqual(Context);
328   FunctionCallee MallocFunc = MallocF;
329   if (!MallocFunc)
330     // prototype malloc as "void *malloc(size_t)"
331     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
332   CallInst *MCall = CreateCall(MallocFunc, AllocSize, OpB, Name);
333 
334   MCall->setTailCall();
335   if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
336     MCall->setCallingConv(F->getCallingConv());
337     F->setReturnDoesNotAlias();
338   }
339 
340   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
341 
342   return MCall;
343 }
344 
345 CallInst *IRBuilderBase::CreateMalloc(Type *IntPtrTy, Type *AllocTy,
346                                       Value *AllocSize, Value *ArraySize,
347                                       Function *MallocF, const Twine &Name) {
348 
349   return CreateMalloc(IntPtrTy, AllocTy, AllocSize, ArraySize, std::nullopt,
350                       MallocF, Name);
351 }
352 
353 /// CreateFree - Generate the IR for a call to the builtin free function.
354 CallInst *IRBuilderBase::CreateFree(Value *Source,
355                                     ArrayRef<OperandBundleDef> Bundles) {
356   assert(Source->getType()->isPointerTy() &&
357          "Can not free something of nonpointer type!");
358 
359   Module *M = BB->getParent()->getParent();
360 
361   Type *VoidTy = Type::getVoidTy(M->getContext());
362   Type *VoidPtrTy = PointerType::getUnqual(M->getContext());
363   // prototype free as "void free(void*)"
364   FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, VoidPtrTy);
365   CallInst *Result = CreateCall(FreeFunc, Source, Bundles, "");
366   Result->setTailCall();
367   if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
368     Result->setCallingConv(F->getCallingConv());
369 
370   return Result;
371 }
372 
373 CallInst *IRBuilderBase::CreateElementUnorderedAtomicMemMove(
374     Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size,
375     uint32_t ElementSize, MDNode *TBAATag, MDNode *TBAAStructTag,
376     MDNode *ScopeTag, MDNode *NoAliasTag) {
377   assert(DstAlign >= ElementSize &&
378          "Pointer alignment must be at least element size");
379   assert(SrcAlign >= ElementSize &&
380          "Pointer alignment must be at least element size");
381   Value *Ops[] = {Dst, Src, Size, getInt32(ElementSize)};
382   Type *Tys[] = {Dst->getType(), Src->getType(), Size->getType()};
383   Module *M = BB->getParent()->getParent();
384   Function *TheFn = Intrinsic::getDeclaration(
385       M, Intrinsic::memmove_element_unordered_atomic, Tys);
386 
387   CallInst *CI = CreateCall(TheFn, Ops);
388 
389   // Set the alignment of the pointer args.
390   CI->addParamAttr(0, Attribute::getWithAlignment(CI->getContext(), DstAlign));
391   CI->addParamAttr(1, Attribute::getWithAlignment(CI->getContext(), SrcAlign));
392 
393   // Set the TBAA info if present.
394   if (TBAATag)
395     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
396 
397   // Set the TBAA Struct info if present.
398   if (TBAAStructTag)
399     CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag);
400 
401   if (ScopeTag)
402     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
403 
404   if (NoAliasTag)
405     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
406 
407   return CI;
408 }
409 
410 CallInst *IRBuilderBase::getReductionIntrinsic(Intrinsic::ID ID, Value *Src) {
411   Module *M = GetInsertBlock()->getParent()->getParent();
412   Value *Ops[] = {Src};
413   Type *Tys[] = { Src->getType() };
414   auto Decl = Intrinsic::getDeclaration(M, ID, Tys);
415   return CreateCall(Decl, Ops);
416 }
417 
418 CallInst *IRBuilderBase::CreateFAddReduce(Value *Acc, Value *Src) {
419   Module *M = GetInsertBlock()->getParent()->getParent();
420   Value *Ops[] = {Acc, Src};
421   auto Decl = Intrinsic::getDeclaration(M, Intrinsic::vector_reduce_fadd,
422                                         {Src->getType()});
423   return CreateCall(Decl, Ops);
424 }
425 
426 CallInst *IRBuilderBase::CreateFMulReduce(Value *Acc, Value *Src) {
427   Module *M = GetInsertBlock()->getParent()->getParent();
428   Value *Ops[] = {Acc, Src};
429   auto Decl = Intrinsic::getDeclaration(M, Intrinsic::vector_reduce_fmul,
430                                         {Src->getType()});
431   return CreateCall(Decl, Ops);
432 }
433 
434 CallInst *IRBuilderBase::CreateAddReduce(Value *Src) {
435   return getReductionIntrinsic(Intrinsic::vector_reduce_add, Src);
436 }
437 
438 CallInst *IRBuilderBase::CreateMulReduce(Value *Src) {
439   return getReductionIntrinsic(Intrinsic::vector_reduce_mul, Src);
440 }
441 
442 CallInst *IRBuilderBase::CreateAndReduce(Value *Src) {
443   return getReductionIntrinsic(Intrinsic::vector_reduce_and, Src);
444 }
445 
446 CallInst *IRBuilderBase::CreateOrReduce(Value *Src) {
447   return getReductionIntrinsic(Intrinsic::vector_reduce_or, Src);
448 }
449 
450 CallInst *IRBuilderBase::CreateXorReduce(Value *Src) {
451   return getReductionIntrinsic(Intrinsic::vector_reduce_xor, Src);
452 }
453 
454 CallInst *IRBuilderBase::CreateIntMaxReduce(Value *Src, bool IsSigned) {
455   auto ID =
456       IsSigned ? Intrinsic::vector_reduce_smax : Intrinsic::vector_reduce_umax;
457   return getReductionIntrinsic(ID, Src);
458 }
459 
460 CallInst *IRBuilderBase::CreateIntMinReduce(Value *Src, bool IsSigned) {
461   auto ID =
462       IsSigned ? Intrinsic::vector_reduce_smin : Intrinsic::vector_reduce_umin;
463   return getReductionIntrinsic(ID, Src);
464 }
465 
466 CallInst *IRBuilderBase::CreateFPMaxReduce(Value *Src) {
467   return getReductionIntrinsic(Intrinsic::vector_reduce_fmax, Src);
468 }
469 
470 CallInst *IRBuilderBase::CreateFPMinReduce(Value *Src) {
471   return getReductionIntrinsic(Intrinsic::vector_reduce_fmin, Src);
472 }
473 
474 CallInst *IRBuilderBase::CreateFPMaximumReduce(Value *Src) {
475   return getReductionIntrinsic(Intrinsic::vector_reduce_fmaximum, Src);
476 }
477 
478 CallInst *IRBuilderBase::CreateFPMinimumReduce(Value *Src) {
479   return getReductionIntrinsic(Intrinsic::vector_reduce_fminimum, Src);
480 }
481 
482 CallInst *IRBuilderBase::CreateLifetimeStart(Value *Ptr, ConstantInt *Size) {
483   assert(isa<PointerType>(Ptr->getType()) &&
484          "lifetime.start only applies to pointers.");
485   if (!Size)
486     Size = getInt64(-1);
487   else
488     assert(Size->getType() == getInt64Ty() &&
489            "lifetime.start requires the size to be an i64");
490   Value *Ops[] = { Size, Ptr };
491   Module *M = BB->getParent()->getParent();
492   Function *TheFn =
493       Intrinsic::getDeclaration(M, Intrinsic::lifetime_start, {Ptr->getType()});
494   return CreateCall(TheFn, Ops);
495 }
496 
497 CallInst *IRBuilderBase::CreateLifetimeEnd(Value *Ptr, ConstantInt *Size) {
498   assert(isa<PointerType>(Ptr->getType()) &&
499          "lifetime.end only applies to pointers.");
500   if (!Size)
501     Size = getInt64(-1);
502   else
503     assert(Size->getType() == getInt64Ty() &&
504            "lifetime.end requires the size to be an i64");
505   Value *Ops[] = { Size, Ptr };
506   Module *M = BB->getParent()->getParent();
507   Function *TheFn =
508       Intrinsic::getDeclaration(M, Intrinsic::lifetime_end, {Ptr->getType()});
509   return CreateCall(TheFn, Ops);
510 }
511 
512 CallInst *IRBuilderBase::CreateInvariantStart(Value *Ptr, ConstantInt *Size) {
513 
514   assert(isa<PointerType>(Ptr->getType()) &&
515          "invariant.start only applies to pointers.");
516   if (!Size)
517     Size = getInt64(-1);
518   else
519     assert(Size->getType() == getInt64Ty() &&
520            "invariant.start requires the size to be an i64");
521 
522   Value *Ops[] = {Size, Ptr};
523   // Fill in the single overloaded type: memory object type.
524   Type *ObjectPtr[1] = {Ptr->getType()};
525   Module *M = BB->getParent()->getParent();
526   Function *TheFn =
527       Intrinsic::getDeclaration(M, Intrinsic::invariant_start, ObjectPtr);
528   return CreateCall(TheFn, Ops);
529 }
530 
531 static MaybeAlign getAlign(Value *Ptr) {
532   if (auto *O = dyn_cast<GlobalObject>(Ptr))
533     return O->getAlign();
534   if (auto *A = dyn_cast<GlobalAlias>(Ptr))
535     return A->getAliaseeObject()->getAlign();
536   return {};
537 }
538 
539 CallInst *IRBuilderBase::CreateThreadLocalAddress(Value *Ptr) {
540   assert(isa<GlobalValue>(Ptr) && cast<GlobalValue>(Ptr)->isThreadLocal() &&
541          "threadlocal_address only applies to thread local variables.");
542   CallInst *CI = CreateIntrinsic(llvm::Intrinsic::threadlocal_address,
543                                  {Ptr->getType()}, {Ptr});
544   if (MaybeAlign A = getAlign(Ptr)) {
545     CI->addParamAttr(0, Attribute::getWithAlignment(CI->getContext(), *A));
546     CI->addRetAttr(Attribute::getWithAlignment(CI->getContext(), *A));
547   }
548   return CI;
549 }
550 
551 CallInst *
552 IRBuilderBase::CreateAssumption(Value *Cond,
553                                 ArrayRef<OperandBundleDef> OpBundles) {
554   assert(Cond->getType() == getInt1Ty() &&
555          "an assumption condition must be of type i1");
556 
557   Value *Ops[] = { Cond };
558   Module *M = BB->getParent()->getParent();
559   Function *FnAssume = Intrinsic::getDeclaration(M, Intrinsic::assume);
560   return CreateCall(FnAssume, Ops, OpBundles);
561 }
562 
563 Instruction *IRBuilderBase::CreateNoAliasScopeDeclaration(Value *Scope) {
564   Module *M = BB->getModule();
565   auto *FnIntrinsic = Intrinsic::getDeclaration(
566       M, Intrinsic::experimental_noalias_scope_decl, {});
567   return CreateCall(FnIntrinsic, {Scope});
568 }
569 
570 /// Create a call to a Masked Load intrinsic.
571 /// \p Ty        - vector type to load
572 /// \p Ptr       - base pointer for the load
573 /// \p Alignment - alignment of the source location
574 /// \p Mask      - vector of booleans which indicates what vector lanes should
575 ///                be accessed in memory
576 /// \p PassThru  - pass-through value that is used to fill the masked-off lanes
577 ///                of the result
578 /// \p Name      - name of the result variable
579 CallInst *IRBuilderBase::CreateMaskedLoad(Type *Ty, Value *Ptr, Align Alignment,
580                                           Value *Mask, Value *PassThru,
581                                           const Twine &Name) {
582   auto *PtrTy = cast<PointerType>(Ptr->getType());
583   assert(Ty->isVectorTy() && "Type should be vector");
584   assert(Mask && "Mask should not be all-ones (null)");
585   if (!PassThru)
586     PassThru = PoisonValue::get(Ty);
587   Type *OverloadedTypes[] = { Ty, PtrTy };
588   Value *Ops[] = {Ptr, getInt32(Alignment.value()), Mask, PassThru};
589   return CreateMaskedIntrinsic(Intrinsic::masked_load, Ops,
590                                OverloadedTypes, Name);
591 }
592 
593 /// Create a call to a Masked Store intrinsic.
594 /// \p Val       - data to be stored,
595 /// \p Ptr       - base pointer for the store
596 /// \p Alignment - alignment of the destination location
597 /// \p Mask      - vector of booleans which indicates what vector lanes should
598 ///                be accessed in memory
599 CallInst *IRBuilderBase::CreateMaskedStore(Value *Val, Value *Ptr,
600                                            Align Alignment, Value *Mask) {
601   auto *PtrTy = cast<PointerType>(Ptr->getType());
602   Type *DataTy = Val->getType();
603   assert(DataTy->isVectorTy() && "Val should be a vector");
604   assert(Mask && "Mask should not be all-ones (null)");
605   Type *OverloadedTypes[] = { DataTy, PtrTy };
606   Value *Ops[] = {Val, Ptr, getInt32(Alignment.value()), Mask};
607   return CreateMaskedIntrinsic(Intrinsic::masked_store, Ops, OverloadedTypes);
608 }
609 
610 /// Create a call to a Masked intrinsic, with given intrinsic Id,
611 /// an array of operands - Ops, and an array of overloaded types -
612 /// OverloadedTypes.
613 CallInst *IRBuilderBase::CreateMaskedIntrinsic(Intrinsic::ID Id,
614                                                ArrayRef<Value *> Ops,
615                                                ArrayRef<Type *> OverloadedTypes,
616                                                const Twine &Name) {
617   Module *M = BB->getParent()->getParent();
618   Function *TheFn = Intrinsic::getDeclaration(M, Id, OverloadedTypes);
619   return CreateCall(TheFn, Ops, {}, Name);
620 }
621 
622 /// Create a call to a Masked Gather intrinsic.
623 /// \p Ty       - vector type to gather
624 /// \p Ptrs     - vector of pointers for loading
625 /// \p Align    - alignment for one element
626 /// \p Mask     - vector of booleans which indicates what vector lanes should
627 ///               be accessed in memory
628 /// \p PassThru - pass-through value that is used to fill the masked-off lanes
629 ///               of the result
630 /// \p Name     - name of the result variable
631 CallInst *IRBuilderBase::CreateMaskedGather(Type *Ty, Value *Ptrs,
632                                             Align Alignment, Value *Mask,
633                                             Value *PassThru,
634                                             const Twine &Name) {
635   auto *VecTy = cast<VectorType>(Ty);
636   ElementCount NumElts = VecTy->getElementCount();
637   auto *PtrsTy = cast<VectorType>(Ptrs->getType());
638   assert(NumElts == PtrsTy->getElementCount() && "Element count mismatch");
639 
640   if (!Mask)
641     Mask = getAllOnesMask(NumElts);
642 
643   if (!PassThru)
644     PassThru = PoisonValue::get(Ty);
645 
646   Type *OverloadedTypes[] = {Ty, PtrsTy};
647   Value *Ops[] = {Ptrs, getInt32(Alignment.value()), Mask, PassThru};
648 
649   // We specify only one type when we create this intrinsic. Types of other
650   // arguments are derived from this type.
651   return CreateMaskedIntrinsic(Intrinsic::masked_gather, Ops, OverloadedTypes,
652                                Name);
653 }
654 
655 /// Create a call to a Masked Scatter intrinsic.
656 /// \p Data  - data to be stored,
657 /// \p Ptrs  - the vector of pointers, where the \p Data elements should be
658 ///            stored
659 /// \p Align - alignment for one element
660 /// \p Mask  - vector of booleans which indicates what vector lanes should
661 ///            be accessed in memory
662 CallInst *IRBuilderBase::CreateMaskedScatter(Value *Data, Value *Ptrs,
663                                              Align Alignment, Value *Mask) {
664   auto *PtrsTy = cast<VectorType>(Ptrs->getType());
665   auto *DataTy = cast<VectorType>(Data->getType());
666   ElementCount NumElts = PtrsTy->getElementCount();
667 
668   if (!Mask)
669     Mask = getAllOnesMask(NumElts);
670 
671   Type *OverloadedTypes[] = {DataTy, PtrsTy};
672   Value *Ops[] = {Data, Ptrs, getInt32(Alignment.value()), Mask};
673 
674   // We specify only one type when we create this intrinsic. Types of other
675   // arguments are derived from this type.
676   return CreateMaskedIntrinsic(Intrinsic::masked_scatter, Ops, OverloadedTypes);
677 }
678 
679 /// Create a call to Masked Expand Load intrinsic
680 /// \p Ty        - vector type to load
681 /// \p Ptr       - base pointer for the load
682 /// \p Mask      - vector of booleans which indicates what vector lanes should
683 ///                be accessed in memory
684 /// \p PassThru  - pass-through value that is used to fill the masked-off lanes
685 ///                of the result
686 /// \p Name      - name of the result variable
687 CallInst *IRBuilderBase::CreateMaskedExpandLoad(Type *Ty, Value *Ptr,
688                                                 Value *Mask, Value *PassThru,
689                                                 const Twine &Name) {
690   assert(Ty->isVectorTy() && "Type should be vector");
691   assert(Mask && "Mask should not be all-ones (null)");
692   if (!PassThru)
693     PassThru = PoisonValue::get(Ty);
694   Type *OverloadedTypes[] = {Ty};
695   Value *Ops[] = {Ptr, Mask, PassThru};
696   return CreateMaskedIntrinsic(Intrinsic::masked_expandload, Ops,
697                                OverloadedTypes, Name);
698 }
699 
700 /// Create a call to Masked Compress Store intrinsic
701 /// \p Val       - data to be stored,
702 /// \p Ptr       - base pointer for the store
703 /// \p Mask      - vector of booleans which indicates what vector lanes should
704 ///                be accessed in memory
705 CallInst *IRBuilderBase::CreateMaskedCompressStore(Value *Val, Value *Ptr,
706                                                    Value *Mask) {
707   Type *DataTy = Val->getType();
708   assert(DataTy->isVectorTy() && "Val should be a vector");
709   assert(Mask && "Mask should not be all-ones (null)");
710   Type *OverloadedTypes[] = {DataTy};
711   Value *Ops[] = {Val, Ptr, Mask};
712   return CreateMaskedIntrinsic(Intrinsic::masked_compressstore, Ops,
713                                OverloadedTypes);
714 }
715 
716 template <typename T0>
717 static std::vector<Value *>
718 getStatepointArgs(IRBuilderBase &B, uint64_t ID, uint32_t NumPatchBytes,
719                   Value *ActualCallee, uint32_t Flags, ArrayRef<T0> CallArgs) {
720   std::vector<Value *> Args;
721   Args.push_back(B.getInt64(ID));
722   Args.push_back(B.getInt32(NumPatchBytes));
723   Args.push_back(ActualCallee);
724   Args.push_back(B.getInt32(CallArgs.size()));
725   Args.push_back(B.getInt32(Flags));
726   llvm::append_range(Args, CallArgs);
727   // GC Transition and Deopt args are now always handled via operand bundle.
728   // They will be removed from the signature of gc.statepoint shortly.
729   Args.push_back(B.getInt32(0));
730   Args.push_back(B.getInt32(0));
731   // GC args are now encoded in the gc-live operand bundle
732   return Args;
733 }
734 
735 template<typename T1, typename T2, typename T3>
736 static std::vector<OperandBundleDef>
737 getStatepointBundles(std::optional<ArrayRef<T1>> TransitionArgs,
738                      std::optional<ArrayRef<T2>> DeoptArgs,
739                      ArrayRef<T3> GCArgs) {
740   std::vector<OperandBundleDef> Rval;
741   if (DeoptArgs) {
742     SmallVector<Value*, 16> DeoptValues;
743     llvm::append_range(DeoptValues, *DeoptArgs);
744     Rval.emplace_back("deopt", DeoptValues);
745   }
746   if (TransitionArgs) {
747     SmallVector<Value*, 16> TransitionValues;
748     llvm::append_range(TransitionValues, *TransitionArgs);
749     Rval.emplace_back("gc-transition", TransitionValues);
750   }
751   if (GCArgs.size()) {
752     SmallVector<Value*, 16> LiveValues;
753     llvm::append_range(LiveValues, GCArgs);
754     Rval.emplace_back("gc-live", LiveValues);
755   }
756   return Rval;
757 }
758 
759 template <typename T0, typename T1, typename T2, typename T3>
760 static CallInst *CreateGCStatepointCallCommon(
761     IRBuilderBase *Builder, uint64_t ID, uint32_t NumPatchBytes,
762     FunctionCallee ActualCallee, uint32_t Flags, ArrayRef<T0> CallArgs,
763     std::optional<ArrayRef<T1>> TransitionArgs,
764     std::optional<ArrayRef<T2>> DeoptArgs, ArrayRef<T3> GCArgs,
765     const Twine &Name) {
766   Module *M = Builder->GetInsertBlock()->getParent()->getParent();
767   // Fill in the one generic type'd argument (the function is also vararg)
768   Function *FnStatepoint =
769       Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_statepoint,
770                                 {ActualCallee.getCallee()->getType()});
771 
772   std::vector<Value *> Args = getStatepointArgs(
773       *Builder, ID, NumPatchBytes, ActualCallee.getCallee(), Flags, CallArgs);
774 
775   CallInst *CI = Builder->CreateCall(
776       FnStatepoint, Args,
777       getStatepointBundles(TransitionArgs, DeoptArgs, GCArgs), Name);
778   CI->addParamAttr(2,
779                    Attribute::get(Builder->getContext(), Attribute::ElementType,
780                                   ActualCallee.getFunctionType()));
781   return CI;
782 }
783 
784 CallInst *IRBuilderBase::CreateGCStatepointCall(
785     uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualCallee,
786     ArrayRef<Value *> CallArgs, std::optional<ArrayRef<Value *>> DeoptArgs,
787     ArrayRef<Value *> GCArgs, const Twine &Name) {
788   return CreateGCStatepointCallCommon<Value *, Value *, Value *, Value *>(
789       this, ID, NumPatchBytes, ActualCallee, uint32_t(StatepointFlags::None),
790       CallArgs, std::nullopt /* No Transition Args */, DeoptArgs, GCArgs, Name);
791 }
792 
793 CallInst *IRBuilderBase::CreateGCStatepointCall(
794     uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualCallee,
795     uint32_t Flags, ArrayRef<Value *> CallArgs,
796     std::optional<ArrayRef<Use>> TransitionArgs,
797     std::optional<ArrayRef<Use>> DeoptArgs, ArrayRef<Value *> GCArgs,
798     const Twine &Name) {
799   return CreateGCStatepointCallCommon<Value *, Use, Use, Value *>(
800       this, ID, NumPatchBytes, ActualCallee, Flags, CallArgs, TransitionArgs,
801       DeoptArgs, GCArgs, Name);
802 }
803 
804 CallInst *IRBuilderBase::CreateGCStatepointCall(
805     uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualCallee,
806     ArrayRef<Use> CallArgs, std::optional<ArrayRef<Value *>> DeoptArgs,
807     ArrayRef<Value *> GCArgs, const Twine &Name) {
808   return CreateGCStatepointCallCommon<Use, Value *, Value *, Value *>(
809       this, ID, NumPatchBytes, ActualCallee, uint32_t(StatepointFlags::None),
810       CallArgs, std::nullopt, DeoptArgs, GCArgs, Name);
811 }
812 
813 template <typename T0, typename T1, typename T2, typename T3>
814 static InvokeInst *CreateGCStatepointInvokeCommon(
815     IRBuilderBase *Builder, uint64_t ID, uint32_t NumPatchBytes,
816     FunctionCallee ActualInvokee, BasicBlock *NormalDest,
817     BasicBlock *UnwindDest, uint32_t Flags, ArrayRef<T0> InvokeArgs,
818     std::optional<ArrayRef<T1>> TransitionArgs,
819     std::optional<ArrayRef<T2>> DeoptArgs, ArrayRef<T3> GCArgs,
820     const Twine &Name) {
821   Module *M = Builder->GetInsertBlock()->getParent()->getParent();
822   // Fill in the one generic type'd argument (the function is also vararg)
823   Function *FnStatepoint =
824       Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_statepoint,
825                                 {ActualInvokee.getCallee()->getType()});
826 
827   std::vector<Value *> Args =
828       getStatepointArgs(*Builder, ID, NumPatchBytes, ActualInvokee.getCallee(),
829                         Flags, InvokeArgs);
830 
831   InvokeInst *II = Builder->CreateInvoke(
832       FnStatepoint, NormalDest, UnwindDest, Args,
833       getStatepointBundles(TransitionArgs, DeoptArgs, GCArgs), Name);
834   II->addParamAttr(2,
835                    Attribute::get(Builder->getContext(), Attribute::ElementType,
836                                   ActualInvokee.getFunctionType()));
837   return II;
838 }
839 
840 InvokeInst *IRBuilderBase::CreateGCStatepointInvoke(
841     uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualInvokee,
842     BasicBlock *NormalDest, BasicBlock *UnwindDest,
843     ArrayRef<Value *> InvokeArgs, std::optional<ArrayRef<Value *>> DeoptArgs,
844     ArrayRef<Value *> GCArgs, const Twine &Name) {
845   return CreateGCStatepointInvokeCommon<Value *, Value *, Value *, Value *>(
846       this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest,
847       uint32_t(StatepointFlags::None), InvokeArgs,
848       std::nullopt /* No Transition Args*/, DeoptArgs, GCArgs, Name);
849 }
850 
851 InvokeInst *IRBuilderBase::CreateGCStatepointInvoke(
852     uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualInvokee,
853     BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags,
854     ArrayRef<Value *> InvokeArgs, std::optional<ArrayRef<Use>> TransitionArgs,
855     std::optional<ArrayRef<Use>> DeoptArgs, ArrayRef<Value *> GCArgs,
856     const Twine &Name) {
857   return CreateGCStatepointInvokeCommon<Value *, Use, Use, Value *>(
858       this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest, Flags,
859       InvokeArgs, TransitionArgs, DeoptArgs, GCArgs, Name);
860 }
861 
862 InvokeInst *IRBuilderBase::CreateGCStatepointInvoke(
863     uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualInvokee,
864     BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef<Use> InvokeArgs,
865     std::optional<ArrayRef<Value *>> DeoptArgs, ArrayRef<Value *> GCArgs,
866     const Twine &Name) {
867   return CreateGCStatepointInvokeCommon<Use, Value *, Value *, Value *>(
868       this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest,
869       uint32_t(StatepointFlags::None), InvokeArgs, std::nullopt, DeoptArgs,
870       GCArgs, Name);
871 }
872 
873 CallInst *IRBuilderBase::CreateGCResult(Instruction *Statepoint,
874                                         Type *ResultType, const Twine &Name) {
875   Intrinsic::ID ID = Intrinsic::experimental_gc_result;
876   Module *M = BB->getParent()->getParent();
877   Type *Types[] = {ResultType};
878   Function *FnGCResult = Intrinsic::getDeclaration(M, ID, Types);
879 
880   Value *Args[] = {Statepoint};
881   return CreateCall(FnGCResult, Args, {}, Name);
882 }
883 
884 CallInst *IRBuilderBase::CreateGCRelocate(Instruction *Statepoint,
885                                           int BaseOffset, int DerivedOffset,
886                                           Type *ResultType, const Twine &Name) {
887   Module *M = BB->getParent()->getParent();
888   Type *Types[] = {ResultType};
889   Function *FnGCRelocate =
890       Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types);
891 
892   Value *Args[] = {Statepoint, getInt32(BaseOffset), getInt32(DerivedOffset)};
893   return CreateCall(FnGCRelocate, Args, {}, Name);
894 }
895 
896 CallInst *IRBuilderBase::CreateGCGetPointerBase(Value *DerivedPtr,
897                                                 const Twine &Name) {
898   Module *M = BB->getParent()->getParent();
899   Type *PtrTy = DerivedPtr->getType();
900   Function *FnGCFindBase = Intrinsic::getDeclaration(
901       M, Intrinsic::experimental_gc_get_pointer_base, {PtrTy, PtrTy});
902   return CreateCall(FnGCFindBase, {DerivedPtr}, {}, Name);
903 }
904 
905 CallInst *IRBuilderBase::CreateGCGetPointerOffset(Value *DerivedPtr,
906                                                   const Twine &Name) {
907   Module *M = BB->getParent()->getParent();
908   Type *PtrTy = DerivedPtr->getType();
909   Function *FnGCGetOffset = Intrinsic::getDeclaration(
910       M, Intrinsic::experimental_gc_get_pointer_offset, {PtrTy});
911   return CreateCall(FnGCGetOffset, {DerivedPtr}, {}, Name);
912 }
913 
914 CallInst *IRBuilderBase::CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V,
915                                               Instruction *FMFSource,
916                                               const Twine &Name) {
917   Module *M = BB->getModule();
918   Function *Fn = Intrinsic::getDeclaration(M, ID, {V->getType()});
919   return createCallHelper(Fn, {V}, Name, FMFSource);
920 }
921 
922 Value *IRBuilderBase::CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS,
923                                             Value *RHS, Instruction *FMFSource,
924                                             const Twine &Name) {
925   Module *M = BB->getModule();
926   Function *Fn = Intrinsic::getDeclaration(M, ID, { LHS->getType() });
927   if (Value *V = Folder.FoldBinaryIntrinsic(ID, LHS, RHS, Fn->getReturnType(),
928                                             FMFSource))
929     return V;
930   return createCallHelper(Fn, {LHS, RHS}, Name, FMFSource);
931 }
932 
933 CallInst *IRBuilderBase::CreateIntrinsic(Intrinsic::ID ID,
934                                          ArrayRef<Type *> Types,
935                                          ArrayRef<Value *> Args,
936                                          Instruction *FMFSource,
937                                          const Twine &Name) {
938   Module *M = BB->getModule();
939   Function *Fn = Intrinsic::getDeclaration(M, ID, Types);
940   return createCallHelper(Fn, Args, Name, FMFSource);
941 }
942 
943 CallInst *IRBuilderBase::CreateIntrinsic(Type *RetTy, Intrinsic::ID ID,
944                                          ArrayRef<Value *> Args,
945                                          Instruction *FMFSource,
946                                          const Twine &Name) {
947   Module *M = BB->getModule();
948 
949   SmallVector<Intrinsic::IITDescriptor> Table;
950   Intrinsic::getIntrinsicInfoTableEntries(ID, Table);
951   ArrayRef<Intrinsic::IITDescriptor> TableRef(Table);
952 
953   SmallVector<Type *> ArgTys;
954   ArgTys.reserve(Args.size());
955   for (auto &I : Args)
956     ArgTys.push_back(I->getType());
957   FunctionType *FTy = FunctionType::get(RetTy, ArgTys, false);
958   SmallVector<Type *> OverloadTys;
959   Intrinsic::MatchIntrinsicTypesResult Res =
960       matchIntrinsicSignature(FTy, TableRef, OverloadTys);
961   (void)Res;
962   assert(Res == Intrinsic::MatchIntrinsicTypes_Match && TableRef.empty() &&
963          "Wrong types for intrinsic!");
964   // TODO: Handle varargs intrinsics.
965 
966   Function *Fn = Intrinsic::getDeclaration(M, ID, OverloadTys);
967   return createCallHelper(Fn, Args, Name, FMFSource);
968 }
969 
970 CallInst *IRBuilderBase::CreateConstrainedFPBinOp(
971     Intrinsic::ID ID, Value *L, Value *R, Instruction *FMFSource,
972     const Twine &Name, MDNode *FPMathTag,
973     std::optional<RoundingMode> Rounding,
974     std::optional<fp::ExceptionBehavior> Except) {
975   Value *RoundingV = getConstrainedFPRounding(Rounding);
976   Value *ExceptV = getConstrainedFPExcept(Except);
977 
978   FastMathFlags UseFMF = FMF;
979   if (FMFSource)
980     UseFMF = FMFSource->getFastMathFlags();
981 
982   CallInst *C = CreateIntrinsic(ID, {L->getType()},
983                                 {L, R, RoundingV, ExceptV}, nullptr, Name);
984   setConstrainedFPCallAttr(C);
985   setFPAttrs(C, FPMathTag, UseFMF);
986   return C;
987 }
988 
989 CallInst *IRBuilderBase::CreateConstrainedFPUnroundedBinOp(
990     Intrinsic::ID ID, Value *L, Value *R, Instruction *FMFSource,
991     const Twine &Name, MDNode *FPMathTag,
992     std::optional<fp::ExceptionBehavior> Except) {
993   Value *ExceptV = getConstrainedFPExcept(Except);
994 
995   FastMathFlags UseFMF = FMF;
996   if (FMFSource)
997     UseFMF = FMFSource->getFastMathFlags();
998 
999   CallInst *C =
1000       CreateIntrinsic(ID, {L->getType()}, {L, R, ExceptV}, nullptr, Name);
1001   setConstrainedFPCallAttr(C);
1002   setFPAttrs(C, FPMathTag, UseFMF);
1003   return C;
1004 }
1005 
1006 Value *IRBuilderBase::CreateNAryOp(unsigned Opc, ArrayRef<Value *> Ops,
1007                                    const Twine &Name, MDNode *FPMathTag) {
1008   if (Instruction::isBinaryOp(Opc)) {
1009     assert(Ops.size() == 2 && "Invalid number of operands!");
1010     return CreateBinOp(static_cast<Instruction::BinaryOps>(Opc),
1011                        Ops[0], Ops[1], Name, FPMathTag);
1012   }
1013   if (Instruction::isUnaryOp(Opc)) {
1014     assert(Ops.size() == 1 && "Invalid number of operands!");
1015     return CreateUnOp(static_cast<Instruction::UnaryOps>(Opc),
1016                       Ops[0], Name, FPMathTag);
1017   }
1018   llvm_unreachable("Unexpected opcode!");
1019 }
1020 
1021 CallInst *IRBuilderBase::CreateConstrainedFPCast(
1022     Intrinsic::ID ID, Value *V, Type *DestTy,
1023     Instruction *FMFSource, const Twine &Name, MDNode *FPMathTag,
1024     std::optional<RoundingMode> Rounding,
1025     std::optional<fp::ExceptionBehavior> Except) {
1026   Value *ExceptV = getConstrainedFPExcept(Except);
1027 
1028   FastMathFlags UseFMF = FMF;
1029   if (FMFSource)
1030     UseFMF = FMFSource->getFastMathFlags();
1031 
1032   CallInst *C;
1033   if (Intrinsic::hasConstrainedFPRoundingModeOperand(ID)) {
1034     Value *RoundingV = getConstrainedFPRounding(Rounding);
1035     C = CreateIntrinsic(ID, {DestTy, V->getType()}, {V, RoundingV, ExceptV},
1036                         nullptr, Name);
1037   } else
1038     C = CreateIntrinsic(ID, {DestTy, V->getType()}, {V, ExceptV}, nullptr,
1039                         Name);
1040 
1041   setConstrainedFPCallAttr(C);
1042 
1043   if (isa<FPMathOperator>(C))
1044     setFPAttrs(C, FPMathTag, UseFMF);
1045   return C;
1046 }
1047 
1048 Value *IRBuilderBase::CreateFCmpHelper(
1049     CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name,
1050     MDNode *FPMathTag, bool IsSignaling) {
1051   if (IsFPConstrained) {
1052     auto ID = IsSignaling ? Intrinsic::experimental_constrained_fcmps
1053                           : Intrinsic::experimental_constrained_fcmp;
1054     return CreateConstrainedFPCmp(ID, P, LHS, RHS, Name);
1055   }
1056 
1057   if (auto *V = Folder.FoldCmp(P, LHS, RHS))
1058     return V;
1059   return Insert(setFPAttrs(new FCmpInst(P, LHS, RHS), FPMathTag, FMF), Name);
1060 }
1061 
1062 CallInst *IRBuilderBase::CreateConstrainedFPCmp(
1063     Intrinsic::ID ID, CmpInst::Predicate P, Value *L, Value *R,
1064     const Twine &Name, std::optional<fp::ExceptionBehavior> Except) {
1065   Value *PredicateV = getConstrainedFPPredicate(P);
1066   Value *ExceptV = getConstrainedFPExcept(Except);
1067 
1068   CallInst *C = CreateIntrinsic(ID, {L->getType()},
1069                                 {L, R, PredicateV, ExceptV}, nullptr, Name);
1070   setConstrainedFPCallAttr(C);
1071   return C;
1072 }
1073 
1074 CallInst *IRBuilderBase::CreateConstrainedFPCall(
1075     Function *Callee, ArrayRef<Value *> Args, const Twine &Name,
1076     std::optional<RoundingMode> Rounding,
1077     std::optional<fp::ExceptionBehavior> Except) {
1078   llvm::SmallVector<Value *, 6> UseArgs;
1079 
1080   append_range(UseArgs, Args);
1081 
1082   if (Intrinsic::hasConstrainedFPRoundingModeOperand(Callee->getIntrinsicID()))
1083     UseArgs.push_back(getConstrainedFPRounding(Rounding));
1084   UseArgs.push_back(getConstrainedFPExcept(Except));
1085 
1086   CallInst *C = CreateCall(Callee, UseArgs, Name);
1087   setConstrainedFPCallAttr(C);
1088   return C;
1089 }
1090 
1091 Value *IRBuilderBase::CreateSelect(Value *C, Value *True, Value *False,
1092                                    const Twine &Name, Instruction *MDFrom) {
1093   if (auto *V = Folder.FoldSelect(C, True, False))
1094     return V;
1095 
1096   SelectInst *Sel = SelectInst::Create(C, True, False);
1097   if (MDFrom) {
1098     MDNode *Prof = MDFrom->getMetadata(LLVMContext::MD_prof);
1099     MDNode *Unpred = MDFrom->getMetadata(LLVMContext::MD_unpredictable);
1100     Sel = addBranchMetadata(Sel, Prof, Unpred);
1101   }
1102   if (isa<FPMathOperator>(Sel))
1103     setFPAttrs(Sel, nullptr /* MDNode* */, FMF);
1104   return Insert(Sel, Name);
1105 }
1106 
1107 Value *IRBuilderBase::CreatePtrDiff(Type *ElemTy, Value *LHS, Value *RHS,
1108                                     const Twine &Name) {
1109   assert(LHS->getType() == RHS->getType() &&
1110          "Pointer subtraction operand types must match!");
1111   Value *LHS_int = CreatePtrToInt(LHS, Type::getInt64Ty(Context));
1112   Value *RHS_int = CreatePtrToInt(RHS, Type::getInt64Ty(Context));
1113   Value *Difference = CreateSub(LHS_int, RHS_int);
1114   return CreateExactSDiv(Difference, ConstantExpr::getSizeOf(ElemTy),
1115                          Name);
1116 }
1117 
1118 Value *IRBuilderBase::CreateLaunderInvariantGroup(Value *Ptr) {
1119   assert(isa<PointerType>(Ptr->getType()) &&
1120          "launder.invariant.group only applies to pointers.");
1121   auto *PtrType = Ptr->getType();
1122   Module *M = BB->getParent()->getParent();
1123   Function *FnLaunderInvariantGroup = Intrinsic::getDeclaration(
1124       M, Intrinsic::launder_invariant_group, {PtrType});
1125 
1126   assert(FnLaunderInvariantGroup->getReturnType() == PtrType &&
1127          FnLaunderInvariantGroup->getFunctionType()->getParamType(0) ==
1128              PtrType &&
1129          "LaunderInvariantGroup should take and return the same type");
1130 
1131   return CreateCall(FnLaunderInvariantGroup, {Ptr});
1132 }
1133 
1134 Value *IRBuilderBase::CreateStripInvariantGroup(Value *Ptr) {
1135   assert(isa<PointerType>(Ptr->getType()) &&
1136          "strip.invariant.group only applies to pointers.");
1137 
1138   auto *PtrType = Ptr->getType();
1139   Module *M = BB->getParent()->getParent();
1140   Function *FnStripInvariantGroup = Intrinsic::getDeclaration(
1141       M, Intrinsic::strip_invariant_group, {PtrType});
1142 
1143   assert(FnStripInvariantGroup->getReturnType() == PtrType &&
1144          FnStripInvariantGroup->getFunctionType()->getParamType(0) ==
1145              PtrType &&
1146          "StripInvariantGroup should take and return the same type");
1147 
1148   return CreateCall(FnStripInvariantGroup, {Ptr});
1149 }
1150 
1151 Value *IRBuilderBase::CreateVectorReverse(Value *V, const Twine &Name) {
1152   auto *Ty = cast<VectorType>(V->getType());
1153   if (isa<ScalableVectorType>(Ty)) {
1154     Module *M = BB->getParent()->getParent();
1155     Function *F = Intrinsic::getDeclaration(M, Intrinsic::vector_reverse, Ty);
1156     return Insert(CallInst::Create(F, V), Name);
1157   }
1158   // Keep the original behaviour for fixed vector
1159   SmallVector<int, 8> ShuffleMask;
1160   int NumElts = Ty->getElementCount().getKnownMinValue();
1161   for (int i = 0; i < NumElts; ++i)
1162     ShuffleMask.push_back(NumElts - i - 1);
1163   return CreateShuffleVector(V, ShuffleMask, Name);
1164 }
1165 
1166 Value *IRBuilderBase::CreateVectorSplice(Value *V1, Value *V2, int64_t Imm,
1167                                          const Twine &Name) {
1168   assert(isa<VectorType>(V1->getType()) && "Unexpected type");
1169   assert(V1->getType() == V2->getType() &&
1170          "Splice expects matching operand types!");
1171 
1172   if (auto *VTy = dyn_cast<ScalableVectorType>(V1->getType())) {
1173     Module *M = BB->getParent()->getParent();
1174     Function *F = Intrinsic::getDeclaration(M, Intrinsic::vector_splice, VTy);
1175 
1176     Value *Ops[] = {V1, V2, getInt32(Imm)};
1177     return Insert(CallInst::Create(F, Ops), Name);
1178   }
1179 
1180   unsigned NumElts = cast<FixedVectorType>(V1->getType())->getNumElements();
1181   assert(((-Imm <= NumElts) || (Imm < NumElts)) &&
1182          "Invalid immediate for vector splice!");
1183 
1184   // Keep the original behaviour for fixed vector
1185   unsigned Idx = (NumElts + Imm) % NumElts;
1186   SmallVector<int, 8> Mask;
1187   for (unsigned I = 0; I < NumElts; ++I)
1188     Mask.push_back(Idx + I);
1189 
1190   return CreateShuffleVector(V1, V2, Mask);
1191 }
1192 
1193 Value *IRBuilderBase::CreateVectorSplat(unsigned NumElts, Value *V,
1194                                         const Twine &Name) {
1195   auto EC = ElementCount::getFixed(NumElts);
1196   return CreateVectorSplat(EC, V, Name);
1197 }
1198 
1199 Value *IRBuilderBase::CreateVectorSplat(ElementCount EC, Value *V,
1200                                         const Twine &Name) {
1201   assert(EC.isNonZero() && "Cannot splat to an empty vector!");
1202 
1203   // First insert it into a poison vector so we can shuffle it.
1204   Value *Poison = PoisonValue::get(VectorType::get(V->getType(), EC));
1205   V = CreateInsertElement(Poison, V, getInt64(0), Name + ".splatinsert");
1206 
1207   // Shuffle the value across the desired number of elements.
1208   SmallVector<int, 16> Zeros;
1209   Zeros.resize(EC.getKnownMinValue());
1210   return CreateShuffleVector(V, Zeros, Name + ".splat");
1211 }
1212 
1213 Value *IRBuilderBase::CreatePreserveArrayAccessIndex(
1214     Type *ElTy, Value *Base, unsigned Dimension, unsigned LastIndex,
1215     MDNode *DbgInfo) {
1216   auto *BaseType = Base->getType();
1217   assert(isa<PointerType>(BaseType) &&
1218          "Invalid Base ptr type for preserve.array.access.index.");
1219 
1220   Value *LastIndexV = getInt32(LastIndex);
1221   Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
1222   SmallVector<Value *, 4> IdxList(Dimension, Zero);
1223   IdxList.push_back(LastIndexV);
1224 
1225   Type *ResultType = GetElementPtrInst::getGEPReturnType(Base, IdxList);
1226 
1227   Module *M = BB->getParent()->getParent();
1228   Function *FnPreserveArrayAccessIndex = Intrinsic::getDeclaration(
1229       M, Intrinsic::preserve_array_access_index, {ResultType, BaseType});
1230 
1231   Value *DimV = getInt32(Dimension);
1232   CallInst *Fn =
1233       CreateCall(FnPreserveArrayAccessIndex, {Base, DimV, LastIndexV});
1234   Fn->addParamAttr(
1235       0, Attribute::get(Fn->getContext(), Attribute::ElementType, ElTy));
1236   if (DbgInfo)
1237     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
1238 
1239   return Fn;
1240 }
1241 
1242 Value *IRBuilderBase::CreatePreserveUnionAccessIndex(
1243     Value *Base, unsigned FieldIndex, MDNode *DbgInfo) {
1244   assert(isa<PointerType>(Base->getType()) &&
1245          "Invalid Base ptr type for preserve.union.access.index.");
1246   auto *BaseType = Base->getType();
1247 
1248   Module *M = BB->getParent()->getParent();
1249   Function *FnPreserveUnionAccessIndex = Intrinsic::getDeclaration(
1250       M, Intrinsic::preserve_union_access_index, {BaseType, BaseType});
1251 
1252   Value *DIIndex = getInt32(FieldIndex);
1253   CallInst *Fn =
1254       CreateCall(FnPreserveUnionAccessIndex, {Base, DIIndex});
1255   if (DbgInfo)
1256     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
1257 
1258   return Fn;
1259 }
1260 
1261 Value *IRBuilderBase::CreatePreserveStructAccessIndex(
1262     Type *ElTy, Value *Base, unsigned Index, unsigned FieldIndex,
1263     MDNode *DbgInfo) {
1264   auto *BaseType = Base->getType();
1265   assert(isa<PointerType>(BaseType) &&
1266          "Invalid Base ptr type for preserve.struct.access.index.");
1267 
1268   Value *GEPIndex = getInt32(Index);
1269   Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
1270   Type *ResultType =
1271       GetElementPtrInst::getGEPReturnType(Base, {Zero, GEPIndex});
1272 
1273   Module *M = BB->getParent()->getParent();
1274   Function *FnPreserveStructAccessIndex = Intrinsic::getDeclaration(
1275       M, Intrinsic::preserve_struct_access_index, {ResultType, BaseType});
1276 
1277   Value *DIIndex = getInt32(FieldIndex);
1278   CallInst *Fn = CreateCall(FnPreserveStructAccessIndex,
1279                             {Base, GEPIndex, DIIndex});
1280   Fn->addParamAttr(
1281       0, Attribute::get(Fn->getContext(), Attribute::ElementType, ElTy));
1282   if (DbgInfo)
1283     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
1284 
1285   return Fn;
1286 }
1287 
1288 Value *IRBuilderBase::createIsFPClass(Value *FPNum, unsigned Test) {
1289   ConstantInt *TestV = getInt32(Test);
1290   Module *M = BB->getParent()->getParent();
1291   Function *FnIsFPClass =
1292       Intrinsic::getDeclaration(M, Intrinsic::is_fpclass, {FPNum->getType()});
1293   return CreateCall(FnIsFPClass, {FPNum, TestV});
1294 }
1295 
1296 CallInst *IRBuilderBase::CreateAlignmentAssumptionHelper(const DataLayout &DL,
1297                                                          Value *PtrValue,
1298                                                          Value *AlignValue,
1299                                                          Value *OffsetValue) {
1300   SmallVector<Value *, 4> Vals({PtrValue, AlignValue});
1301   if (OffsetValue)
1302     Vals.push_back(OffsetValue);
1303   OperandBundleDefT<Value *> AlignOpB("align", Vals);
1304   return CreateAssumption(ConstantInt::getTrue(getContext()), {AlignOpB});
1305 }
1306 
1307 CallInst *IRBuilderBase::CreateAlignmentAssumption(const DataLayout &DL,
1308                                                    Value *PtrValue,
1309                                                    unsigned Alignment,
1310                                                    Value *OffsetValue) {
1311   assert(isa<PointerType>(PtrValue->getType()) &&
1312          "trying to create an alignment assumption on a non-pointer?");
1313   assert(Alignment != 0 && "Invalid Alignment");
1314   auto *PtrTy = cast<PointerType>(PtrValue->getType());
1315   Type *IntPtrTy = getIntPtrTy(DL, PtrTy->getAddressSpace());
1316   Value *AlignValue = ConstantInt::get(IntPtrTy, Alignment);
1317   return CreateAlignmentAssumptionHelper(DL, PtrValue, AlignValue, OffsetValue);
1318 }
1319 
1320 CallInst *IRBuilderBase::CreateAlignmentAssumption(const DataLayout &DL,
1321                                                    Value *PtrValue,
1322                                                    Value *Alignment,
1323                                                    Value *OffsetValue) {
1324   assert(isa<PointerType>(PtrValue->getType()) &&
1325          "trying to create an alignment assumption on a non-pointer?");
1326   return CreateAlignmentAssumptionHelper(DL, PtrValue, Alignment, OffsetValue);
1327 }
1328 
1329 IRBuilderDefaultInserter::~IRBuilderDefaultInserter() = default;
1330 IRBuilderCallbackInserter::~IRBuilderCallbackInserter() = default;
1331 IRBuilderFolder::~IRBuilderFolder() = default;
1332 void ConstantFolder::anchor() {}
1333 void NoFolder::anchor() {}
1334