xref: /freebsd/contrib/llvm-project/llvm/lib/IR/IRBuilder.cpp (revision 43e29d03f416d7dda52112a29600a7c82ee1a91e)
1 //===- IRBuilder.cpp - Builder for LLVM Instrs ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the IRBuilder class, which is used as a convenient way
10 // to create LLVM instructions with a consistent and simplified interface.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/IRBuilder.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/IR/Constant.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/DebugInfoMetadata.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/GlobalVariable.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/Intrinsics.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/NoFolder.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/Statepoint.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/Casting.h"
32 #include <cassert>
33 #include <cstdint>
34 #include <optional>
35 #include <vector>
36 
37 using namespace llvm;
38 
39 /// CreateGlobalString - Make a new global variable with an initializer that
40 /// has array of i8 type filled in with the nul terminated string value
41 /// specified.  If Name is specified, it is the name of the global variable
42 /// created.
43 GlobalVariable *IRBuilderBase::CreateGlobalString(StringRef Str,
44                                                   const Twine &Name,
45                                                   unsigned AddressSpace,
46                                                   Module *M) {
47   Constant *StrConstant = ConstantDataArray::getString(Context, Str);
48   if (!M)
49     M = BB->getParent()->getParent();
50   auto *GV = new GlobalVariable(
51       *M, StrConstant->getType(), true, GlobalValue::PrivateLinkage,
52       StrConstant, Name, nullptr, GlobalVariable::NotThreadLocal, AddressSpace);
53   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
54   GV->setAlignment(Align(1));
55   return GV;
56 }
57 
58 Type *IRBuilderBase::getCurrentFunctionReturnType() const {
59   assert(BB && BB->getParent() && "No current function!");
60   return BB->getParent()->getReturnType();
61 }
62 
63 Value *IRBuilderBase::getCastedInt8PtrValue(Value *Ptr) {
64   auto *PT = cast<PointerType>(Ptr->getType());
65   if (PT->isOpaqueOrPointeeTypeMatches(getInt8Ty()))
66     return Ptr;
67 
68   // Otherwise, we need to insert a bitcast.
69   return CreateBitCast(Ptr, getInt8PtrTy(PT->getAddressSpace()));
70 }
71 
72 DebugLoc IRBuilderBase::getCurrentDebugLocation() const {
73   for (auto &KV : MetadataToCopy)
74     if (KV.first == LLVMContext::MD_dbg)
75       return {cast<DILocation>(KV.second)};
76 
77   return {};
78 }
79 void IRBuilderBase::SetInstDebugLocation(Instruction *I) const {
80   for (const auto &KV : MetadataToCopy)
81     if (KV.first == LLVMContext::MD_dbg) {
82       I->setDebugLoc(DebugLoc(KV.second));
83       return;
84     }
85 }
86 
87 CallInst *
88 IRBuilderBase::createCallHelper(Function *Callee, ArrayRef<Value *> Ops,
89                                 const Twine &Name, Instruction *FMFSource,
90                                 ArrayRef<OperandBundleDef> OpBundles) {
91   CallInst *CI = CreateCall(Callee, Ops, OpBundles, Name);
92   if (FMFSource)
93     CI->copyFastMathFlags(FMFSource);
94   return CI;
95 }
96 
97 Value *IRBuilderBase::CreateVScale(Constant *Scaling, const Twine &Name) {
98   assert(isa<ConstantInt>(Scaling) && "Expected constant integer");
99   if (cast<ConstantInt>(Scaling)->isZero())
100     return Scaling;
101   Module *M = GetInsertBlock()->getParent()->getParent();
102   Function *TheFn =
103       Intrinsic::getDeclaration(M, Intrinsic::vscale, {Scaling->getType()});
104   CallInst *CI = CreateCall(TheFn, {}, {}, Name);
105   return cast<ConstantInt>(Scaling)->getSExtValue() == 1
106              ? CI
107              : CreateMul(CI, Scaling);
108 }
109 
110 Value *IRBuilderBase::CreateStepVector(Type *DstType, const Twine &Name) {
111   Type *STy = DstType->getScalarType();
112   if (isa<ScalableVectorType>(DstType)) {
113     Type *StepVecType = DstType;
114     // TODO: We expect this special case (element type < 8 bits) to be
115     // temporary - once the intrinsic properly supports < 8 bits this code
116     // can be removed.
117     if (STy->getScalarSizeInBits() < 8)
118       StepVecType =
119           VectorType::get(getInt8Ty(), cast<ScalableVectorType>(DstType));
120     Value *Res = CreateIntrinsic(Intrinsic::experimental_stepvector,
121                                  {StepVecType}, {}, nullptr, Name);
122     if (StepVecType != DstType)
123       Res = CreateTrunc(Res, DstType);
124     return Res;
125   }
126 
127   unsigned NumEls = cast<FixedVectorType>(DstType)->getNumElements();
128 
129   // Create a vector of consecutive numbers from zero to VF.
130   SmallVector<Constant *, 8> Indices;
131   for (unsigned i = 0; i < NumEls; ++i)
132     Indices.push_back(ConstantInt::get(STy, i));
133 
134   // Add the consecutive indices to the vector value.
135   return ConstantVector::get(Indices);
136 }
137 
138 CallInst *IRBuilderBase::CreateMemSet(Value *Ptr, Value *Val, Value *Size,
139                                       MaybeAlign Align, bool isVolatile,
140                                       MDNode *TBAATag, MDNode *ScopeTag,
141                                       MDNode *NoAliasTag) {
142   Ptr = getCastedInt8PtrValue(Ptr);
143   Value *Ops[] = {Ptr, Val, Size, getInt1(isVolatile)};
144   Type *Tys[] = { Ptr->getType(), Size->getType() };
145   Module *M = BB->getParent()->getParent();
146   Function *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys);
147 
148   CallInst *CI = CreateCall(TheFn, Ops);
149 
150   if (Align)
151     cast<MemSetInst>(CI)->setDestAlignment(*Align);
152 
153   // Set the TBAA info if present.
154   if (TBAATag)
155     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
156 
157   if (ScopeTag)
158     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
159 
160   if (NoAliasTag)
161     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
162 
163   return CI;
164 }
165 
166 CallInst *IRBuilderBase::CreateMemSetInline(Value *Dst, MaybeAlign DstAlign,
167                                             Value *Val, Value *Size,
168                                             bool IsVolatile, MDNode *TBAATag,
169                                             MDNode *ScopeTag,
170                                             MDNode *NoAliasTag) {
171   Dst = getCastedInt8PtrValue(Dst);
172   Value *Ops[] = {Dst, Val, Size, getInt1(IsVolatile)};
173   Type *Tys[] = {Dst->getType(), Size->getType()};
174   Module *M = BB->getParent()->getParent();
175   Function *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memset_inline, Tys);
176 
177   CallInst *CI = CreateCall(TheFn, Ops);
178 
179   if (DstAlign)
180     cast<MemSetInlineInst>(CI)->setDestAlignment(*DstAlign);
181 
182   // Set the TBAA info if present.
183   if (TBAATag)
184     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
185 
186   if (ScopeTag)
187     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
188 
189   if (NoAliasTag)
190     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
191 
192   return CI;
193 }
194 
195 CallInst *IRBuilderBase::CreateElementUnorderedAtomicMemSet(
196     Value *Ptr, Value *Val, Value *Size, Align Alignment, uint32_t ElementSize,
197     MDNode *TBAATag, MDNode *ScopeTag, MDNode *NoAliasTag) {
198 
199   Ptr = getCastedInt8PtrValue(Ptr);
200   Value *Ops[] = {Ptr, Val, Size, getInt32(ElementSize)};
201   Type *Tys[] = {Ptr->getType(), Size->getType()};
202   Module *M = BB->getParent()->getParent();
203   Function *TheFn = Intrinsic::getDeclaration(
204       M, Intrinsic::memset_element_unordered_atomic, Tys);
205 
206   CallInst *CI = CreateCall(TheFn, Ops);
207 
208   cast<AtomicMemSetInst>(CI)->setDestAlignment(Alignment);
209 
210   // Set the TBAA info if present.
211   if (TBAATag)
212     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
213 
214   if (ScopeTag)
215     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
216 
217   if (NoAliasTag)
218     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
219 
220   return CI;
221 }
222 
223 CallInst *IRBuilderBase::CreateMemTransferInst(
224     Intrinsic::ID IntrID, Value *Dst, MaybeAlign DstAlign, Value *Src,
225     MaybeAlign SrcAlign, Value *Size, bool isVolatile, MDNode *TBAATag,
226     MDNode *TBAAStructTag, MDNode *ScopeTag, MDNode *NoAliasTag) {
227   Dst = getCastedInt8PtrValue(Dst);
228   Src = getCastedInt8PtrValue(Src);
229 
230   Value *Ops[] = {Dst, Src, Size, getInt1(isVolatile)};
231   Type *Tys[] = { Dst->getType(), Src->getType(), Size->getType() };
232   Module *M = BB->getParent()->getParent();
233   Function *TheFn = Intrinsic::getDeclaration(M, IntrID, Tys);
234 
235   CallInst *CI = CreateCall(TheFn, Ops);
236 
237   auto* MCI = cast<MemTransferInst>(CI);
238   if (DstAlign)
239     MCI->setDestAlignment(*DstAlign);
240   if (SrcAlign)
241     MCI->setSourceAlignment(*SrcAlign);
242 
243   // Set the TBAA info if present.
244   if (TBAATag)
245     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
246 
247   // Set the TBAA Struct info if present.
248   if (TBAAStructTag)
249     CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag);
250 
251   if (ScopeTag)
252     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
253 
254   if (NoAliasTag)
255     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
256 
257   return CI;
258 }
259 
260 CallInst *IRBuilderBase::CreateMemCpyInline(
261     Value *Dst, MaybeAlign DstAlign, Value *Src, MaybeAlign SrcAlign,
262     Value *Size, bool IsVolatile, MDNode *TBAATag, MDNode *TBAAStructTag,
263     MDNode *ScopeTag, MDNode *NoAliasTag) {
264   Dst = getCastedInt8PtrValue(Dst);
265   Src = getCastedInt8PtrValue(Src);
266 
267   Value *Ops[] = {Dst, Src, Size, getInt1(IsVolatile)};
268   Type *Tys[] = {Dst->getType(), Src->getType(), Size->getType()};
269   Function *F = BB->getParent();
270   Module *M = F->getParent();
271   Function *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memcpy_inline, Tys);
272 
273   CallInst *CI = CreateCall(TheFn, Ops);
274 
275   auto *MCI = cast<MemCpyInlineInst>(CI);
276   if (DstAlign)
277     MCI->setDestAlignment(*DstAlign);
278   if (SrcAlign)
279     MCI->setSourceAlignment(*SrcAlign);
280 
281   // Set the TBAA info if present.
282   if (TBAATag)
283     MCI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
284 
285   // Set the TBAA Struct info if present.
286   if (TBAAStructTag)
287     MCI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag);
288 
289   if (ScopeTag)
290     MCI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
291 
292   if (NoAliasTag)
293     MCI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
294 
295   return CI;
296 }
297 
298 CallInst *IRBuilderBase::CreateElementUnorderedAtomicMemCpy(
299     Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size,
300     uint32_t ElementSize, MDNode *TBAATag, MDNode *TBAAStructTag,
301     MDNode *ScopeTag, MDNode *NoAliasTag) {
302   assert(DstAlign >= ElementSize &&
303          "Pointer alignment must be at least element size");
304   assert(SrcAlign >= ElementSize &&
305          "Pointer alignment must be at least element size");
306   Dst = getCastedInt8PtrValue(Dst);
307   Src = getCastedInt8PtrValue(Src);
308 
309   Value *Ops[] = {Dst, Src, Size, getInt32(ElementSize)};
310   Type *Tys[] = {Dst->getType(), Src->getType(), Size->getType()};
311   Module *M = BB->getParent()->getParent();
312   Function *TheFn = Intrinsic::getDeclaration(
313       M, Intrinsic::memcpy_element_unordered_atomic, Tys);
314 
315   CallInst *CI = CreateCall(TheFn, Ops);
316 
317   // Set the alignment of the pointer args.
318   auto *AMCI = cast<AtomicMemCpyInst>(CI);
319   AMCI->setDestAlignment(DstAlign);
320   AMCI->setSourceAlignment(SrcAlign);
321 
322   // Set the TBAA info if present.
323   if (TBAATag)
324     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
325 
326   // Set the TBAA Struct info if present.
327   if (TBAAStructTag)
328     CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag);
329 
330   if (ScopeTag)
331     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
332 
333   if (NoAliasTag)
334     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
335 
336   return CI;
337 }
338 
339 CallInst *IRBuilderBase::CreateMemMove(Value *Dst, MaybeAlign DstAlign,
340                                        Value *Src, MaybeAlign SrcAlign,
341                                        Value *Size, bool isVolatile,
342                                        MDNode *TBAATag, MDNode *ScopeTag,
343                                        MDNode *NoAliasTag) {
344   Dst = getCastedInt8PtrValue(Dst);
345   Src = getCastedInt8PtrValue(Src);
346 
347   Value *Ops[] = {Dst, Src, Size, getInt1(isVolatile)};
348   Type *Tys[] = { Dst->getType(), Src->getType(), Size->getType() };
349   Module *M = BB->getParent()->getParent();
350   Function *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memmove, Tys);
351 
352   CallInst *CI = CreateCall(TheFn, Ops);
353 
354   auto *MMI = cast<MemMoveInst>(CI);
355   if (DstAlign)
356     MMI->setDestAlignment(*DstAlign);
357   if (SrcAlign)
358     MMI->setSourceAlignment(*SrcAlign);
359 
360   // Set the TBAA info if present.
361   if (TBAATag)
362     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
363 
364   if (ScopeTag)
365     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
366 
367   if (NoAliasTag)
368     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
369 
370   return CI;
371 }
372 
373 CallInst *IRBuilderBase::CreateElementUnorderedAtomicMemMove(
374     Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size,
375     uint32_t ElementSize, MDNode *TBAATag, MDNode *TBAAStructTag,
376     MDNode *ScopeTag, MDNode *NoAliasTag) {
377   assert(DstAlign >= ElementSize &&
378          "Pointer alignment must be at least element size");
379   assert(SrcAlign >= ElementSize &&
380          "Pointer alignment must be at least element size");
381   Dst = getCastedInt8PtrValue(Dst);
382   Src = getCastedInt8PtrValue(Src);
383 
384   Value *Ops[] = {Dst, Src, Size, getInt32(ElementSize)};
385   Type *Tys[] = {Dst->getType(), Src->getType(), Size->getType()};
386   Module *M = BB->getParent()->getParent();
387   Function *TheFn = Intrinsic::getDeclaration(
388       M, Intrinsic::memmove_element_unordered_atomic, Tys);
389 
390   CallInst *CI = CreateCall(TheFn, Ops);
391 
392   // Set the alignment of the pointer args.
393   CI->addParamAttr(0, Attribute::getWithAlignment(CI->getContext(), DstAlign));
394   CI->addParamAttr(1, Attribute::getWithAlignment(CI->getContext(), SrcAlign));
395 
396   // Set the TBAA info if present.
397   if (TBAATag)
398     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
399 
400   // Set the TBAA Struct info if present.
401   if (TBAAStructTag)
402     CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag);
403 
404   if (ScopeTag)
405     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
406 
407   if (NoAliasTag)
408     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
409 
410   return CI;
411 }
412 
413 CallInst *IRBuilderBase::getReductionIntrinsic(Intrinsic::ID ID, Value *Src) {
414   Module *M = GetInsertBlock()->getParent()->getParent();
415   Value *Ops[] = {Src};
416   Type *Tys[] = { Src->getType() };
417   auto Decl = Intrinsic::getDeclaration(M, ID, Tys);
418   return CreateCall(Decl, Ops);
419 }
420 
421 CallInst *IRBuilderBase::CreateFAddReduce(Value *Acc, Value *Src) {
422   Module *M = GetInsertBlock()->getParent()->getParent();
423   Value *Ops[] = {Acc, Src};
424   auto Decl = Intrinsic::getDeclaration(M, Intrinsic::vector_reduce_fadd,
425                                         {Src->getType()});
426   return CreateCall(Decl, Ops);
427 }
428 
429 CallInst *IRBuilderBase::CreateFMulReduce(Value *Acc, Value *Src) {
430   Module *M = GetInsertBlock()->getParent()->getParent();
431   Value *Ops[] = {Acc, Src};
432   auto Decl = Intrinsic::getDeclaration(M, Intrinsic::vector_reduce_fmul,
433                                         {Src->getType()});
434   return CreateCall(Decl, Ops);
435 }
436 
437 CallInst *IRBuilderBase::CreateAddReduce(Value *Src) {
438   return getReductionIntrinsic(Intrinsic::vector_reduce_add, Src);
439 }
440 
441 CallInst *IRBuilderBase::CreateMulReduce(Value *Src) {
442   return getReductionIntrinsic(Intrinsic::vector_reduce_mul, Src);
443 }
444 
445 CallInst *IRBuilderBase::CreateAndReduce(Value *Src) {
446   return getReductionIntrinsic(Intrinsic::vector_reduce_and, Src);
447 }
448 
449 CallInst *IRBuilderBase::CreateOrReduce(Value *Src) {
450   return getReductionIntrinsic(Intrinsic::vector_reduce_or, Src);
451 }
452 
453 CallInst *IRBuilderBase::CreateXorReduce(Value *Src) {
454   return getReductionIntrinsic(Intrinsic::vector_reduce_xor, Src);
455 }
456 
457 CallInst *IRBuilderBase::CreateIntMaxReduce(Value *Src, bool IsSigned) {
458   auto ID =
459       IsSigned ? Intrinsic::vector_reduce_smax : Intrinsic::vector_reduce_umax;
460   return getReductionIntrinsic(ID, Src);
461 }
462 
463 CallInst *IRBuilderBase::CreateIntMinReduce(Value *Src, bool IsSigned) {
464   auto ID =
465       IsSigned ? Intrinsic::vector_reduce_smin : Intrinsic::vector_reduce_umin;
466   return getReductionIntrinsic(ID, Src);
467 }
468 
469 CallInst *IRBuilderBase::CreateFPMaxReduce(Value *Src) {
470   return getReductionIntrinsic(Intrinsic::vector_reduce_fmax, Src);
471 }
472 
473 CallInst *IRBuilderBase::CreateFPMinReduce(Value *Src) {
474   return getReductionIntrinsic(Intrinsic::vector_reduce_fmin, Src);
475 }
476 
477 CallInst *IRBuilderBase::CreateLifetimeStart(Value *Ptr, ConstantInt *Size) {
478   assert(isa<PointerType>(Ptr->getType()) &&
479          "lifetime.start only applies to pointers.");
480   Ptr = getCastedInt8PtrValue(Ptr);
481   if (!Size)
482     Size = getInt64(-1);
483   else
484     assert(Size->getType() == getInt64Ty() &&
485            "lifetime.start requires the size to be an i64");
486   Value *Ops[] = { Size, Ptr };
487   Module *M = BB->getParent()->getParent();
488   Function *TheFn =
489       Intrinsic::getDeclaration(M, Intrinsic::lifetime_start, {Ptr->getType()});
490   return CreateCall(TheFn, Ops);
491 }
492 
493 CallInst *IRBuilderBase::CreateLifetimeEnd(Value *Ptr, ConstantInt *Size) {
494   assert(isa<PointerType>(Ptr->getType()) &&
495          "lifetime.end only applies to pointers.");
496   Ptr = getCastedInt8PtrValue(Ptr);
497   if (!Size)
498     Size = getInt64(-1);
499   else
500     assert(Size->getType() == getInt64Ty() &&
501            "lifetime.end requires the size to be an i64");
502   Value *Ops[] = { Size, Ptr };
503   Module *M = BB->getParent()->getParent();
504   Function *TheFn =
505       Intrinsic::getDeclaration(M, Intrinsic::lifetime_end, {Ptr->getType()});
506   return CreateCall(TheFn, Ops);
507 }
508 
509 CallInst *IRBuilderBase::CreateInvariantStart(Value *Ptr, ConstantInt *Size) {
510 
511   assert(isa<PointerType>(Ptr->getType()) &&
512          "invariant.start only applies to pointers.");
513   Ptr = getCastedInt8PtrValue(Ptr);
514   if (!Size)
515     Size = getInt64(-1);
516   else
517     assert(Size->getType() == getInt64Ty() &&
518            "invariant.start requires the size to be an i64");
519 
520   Value *Ops[] = {Size, Ptr};
521   // Fill in the single overloaded type: memory object type.
522   Type *ObjectPtr[1] = {Ptr->getType()};
523   Module *M = BB->getParent()->getParent();
524   Function *TheFn =
525       Intrinsic::getDeclaration(M, Intrinsic::invariant_start, ObjectPtr);
526   return CreateCall(TheFn, Ops);
527 }
528 
529 static MaybeAlign getAlign(Value *Ptr) {
530   if (auto *O = dyn_cast<GlobalObject>(Ptr))
531     return O->getAlign();
532   if (auto *A = dyn_cast<GlobalAlias>(Ptr))
533     return A->getAliaseeObject()->getAlign();
534   return {};
535 }
536 
537 CallInst *IRBuilderBase::CreateThreadLocalAddress(Value *Ptr) {
538 #ifndef NDEBUG
539   // Handle specially for constexpr cast. This is possible when
540   // opaque pointers not enabled since constant could be sinked
541   // directly by the design of llvm. This could be eliminated
542   // after we eliminate the abuse of constexpr.
543   auto *V = Ptr;
544   if (auto *CE = dyn_cast<ConstantExpr>(V))
545     if (CE->isCast())
546       V = CE->getOperand(0);
547 
548   assert(isa<GlobalValue>(V) && cast<GlobalValue>(V)->isThreadLocal() &&
549          "threadlocal_address only applies to thread local variables.");
550 #endif
551   CallInst *CI = CreateIntrinsic(llvm::Intrinsic::threadlocal_address,
552                                  {Ptr->getType()}, {Ptr});
553   if (MaybeAlign A = getAlign(Ptr)) {
554     CI->addParamAttr(0, Attribute::getWithAlignment(CI->getContext(), *A));
555     CI->addRetAttr(Attribute::getWithAlignment(CI->getContext(), *A));
556   }
557   return CI;
558 }
559 
560 CallInst *
561 IRBuilderBase::CreateAssumption(Value *Cond,
562                                 ArrayRef<OperandBundleDef> OpBundles) {
563   assert(Cond->getType() == getInt1Ty() &&
564          "an assumption condition must be of type i1");
565 
566   Value *Ops[] = { Cond };
567   Module *M = BB->getParent()->getParent();
568   Function *FnAssume = Intrinsic::getDeclaration(M, Intrinsic::assume);
569   return CreateCall(FnAssume, Ops, OpBundles);
570 }
571 
572 Instruction *IRBuilderBase::CreateNoAliasScopeDeclaration(Value *Scope) {
573   Module *M = BB->getModule();
574   auto *FnIntrinsic = Intrinsic::getDeclaration(
575       M, Intrinsic::experimental_noalias_scope_decl, {});
576   return CreateCall(FnIntrinsic, {Scope});
577 }
578 
579 /// Create a call to a Masked Load intrinsic.
580 /// \p Ty        - vector type to load
581 /// \p Ptr       - base pointer for the load
582 /// \p Alignment - alignment of the source location
583 /// \p Mask      - vector of booleans which indicates what vector lanes should
584 ///                be accessed in memory
585 /// \p PassThru  - pass-through value that is used to fill the masked-off lanes
586 ///                of the result
587 /// \p Name      - name of the result variable
588 CallInst *IRBuilderBase::CreateMaskedLoad(Type *Ty, Value *Ptr, Align Alignment,
589                                           Value *Mask, Value *PassThru,
590                                           const Twine &Name) {
591   auto *PtrTy = cast<PointerType>(Ptr->getType());
592   assert(Ty->isVectorTy() && "Type should be vector");
593   assert(PtrTy->isOpaqueOrPointeeTypeMatches(Ty) && "Wrong element type");
594   assert(Mask && "Mask should not be all-ones (null)");
595   if (!PassThru)
596     PassThru = PoisonValue::get(Ty);
597   Type *OverloadedTypes[] = { Ty, PtrTy };
598   Value *Ops[] = {Ptr, getInt32(Alignment.value()), Mask, PassThru};
599   return CreateMaskedIntrinsic(Intrinsic::masked_load, Ops,
600                                OverloadedTypes, Name);
601 }
602 
603 /// Create a call to a Masked Store intrinsic.
604 /// \p Val       - data to be stored,
605 /// \p Ptr       - base pointer for the store
606 /// \p Alignment - alignment of the destination location
607 /// \p Mask      - vector of booleans which indicates what vector lanes should
608 ///                be accessed in memory
609 CallInst *IRBuilderBase::CreateMaskedStore(Value *Val, Value *Ptr,
610                                            Align Alignment, Value *Mask) {
611   auto *PtrTy = cast<PointerType>(Ptr->getType());
612   Type *DataTy = Val->getType();
613   assert(DataTy->isVectorTy() && "Val should be a vector");
614   assert(PtrTy->isOpaqueOrPointeeTypeMatches(DataTy) && "Wrong element type");
615   assert(Mask && "Mask should not be all-ones (null)");
616   Type *OverloadedTypes[] = { DataTy, PtrTy };
617   Value *Ops[] = {Val, Ptr, getInt32(Alignment.value()), Mask};
618   return CreateMaskedIntrinsic(Intrinsic::masked_store, Ops, OverloadedTypes);
619 }
620 
621 /// Create a call to a Masked intrinsic, with given intrinsic Id,
622 /// an array of operands - Ops, and an array of overloaded types -
623 /// OverloadedTypes.
624 CallInst *IRBuilderBase::CreateMaskedIntrinsic(Intrinsic::ID Id,
625                                                ArrayRef<Value *> Ops,
626                                                ArrayRef<Type *> OverloadedTypes,
627                                                const Twine &Name) {
628   Module *M = BB->getParent()->getParent();
629   Function *TheFn = Intrinsic::getDeclaration(M, Id, OverloadedTypes);
630   return CreateCall(TheFn, Ops, {}, Name);
631 }
632 
633 /// Create a call to a Masked Gather intrinsic.
634 /// \p Ty       - vector type to gather
635 /// \p Ptrs     - vector of pointers for loading
636 /// \p Align    - alignment for one element
637 /// \p Mask     - vector of booleans which indicates what vector lanes should
638 ///               be accessed in memory
639 /// \p PassThru - pass-through value that is used to fill the masked-off lanes
640 ///               of the result
641 /// \p Name     - name of the result variable
642 CallInst *IRBuilderBase::CreateMaskedGather(Type *Ty, Value *Ptrs,
643                                             Align Alignment, Value *Mask,
644                                             Value *PassThru,
645                                             const Twine &Name) {
646   auto *VecTy = cast<VectorType>(Ty);
647   ElementCount NumElts = VecTy->getElementCount();
648   auto *PtrsTy = cast<VectorType>(Ptrs->getType());
649   assert(cast<PointerType>(PtrsTy->getElementType())
650              ->isOpaqueOrPointeeTypeMatches(
651                  cast<VectorType>(Ty)->getElementType()) &&
652          "Element type mismatch");
653   assert(NumElts == PtrsTy->getElementCount() && "Element count mismatch");
654 
655   if (!Mask)
656     Mask = Constant::getAllOnesValue(
657         VectorType::get(Type::getInt1Ty(Context), NumElts));
658 
659   if (!PassThru)
660     PassThru = PoisonValue::get(Ty);
661 
662   Type *OverloadedTypes[] = {Ty, PtrsTy};
663   Value *Ops[] = {Ptrs, getInt32(Alignment.value()), Mask, PassThru};
664 
665   // We specify only one type when we create this intrinsic. Types of other
666   // arguments are derived from this type.
667   return CreateMaskedIntrinsic(Intrinsic::masked_gather, Ops, OverloadedTypes,
668                                Name);
669 }
670 
671 /// Create a call to a Masked Scatter intrinsic.
672 /// \p Data  - data to be stored,
673 /// \p Ptrs  - the vector of pointers, where the \p Data elements should be
674 ///            stored
675 /// \p Align - alignment for one element
676 /// \p Mask  - vector of booleans which indicates what vector lanes should
677 ///            be accessed in memory
678 CallInst *IRBuilderBase::CreateMaskedScatter(Value *Data, Value *Ptrs,
679                                              Align Alignment, Value *Mask) {
680   auto *PtrsTy = cast<VectorType>(Ptrs->getType());
681   auto *DataTy = cast<VectorType>(Data->getType());
682   ElementCount NumElts = PtrsTy->getElementCount();
683 
684 #ifndef NDEBUG
685   auto *PtrTy = cast<PointerType>(PtrsTy->getElementType());
686   assert(NumElts == DataTy->getElementCount() &&
687          PtrTy->isOpaqueOrPointeeTypeMatches(DataTy->getElementType()) &&
688          "Incompatible pointer and data types");
689 #endif
690 
691   if (!Mask)
692     Mask = Constant::getAllOnesValue(
693         VectorType::get(Type::getInt1Ty(Context), NumElts));
694 
695   Type *OverloadedTypes[] = {DataTy, PtrsTy};
696   Value *Ops[] = {Data, Ptrs, getInt32(Alignment.value()), Mask};
697 
698   // We specify only one type when we create this intrinsic. Types of other
699   // arguments are derived from this type.
700   return CreateMaskedIntrinsic(Intrinsic::masked_scatter, Ops, OverloadedTypes);
701 }
702 
703 /// Create a call to Masked Expand Load intrinsic
704 /// \p Ty        - vector type to load
705 /// \p Ptr       - base pointer for the load
706 /// \p Mask      - vector of booleans which indicates what vector lanes should
707 ///                be accessed in memory
708 /// \p PassThru  - pass-through value that is used to fill the masked-off lanes
709 ///                of the result
710 /// \p Name      - name of the result variable
711 CallInst *IRBuilderBase::CreateMaskedExpandLoad(Type *Ty, Value *Ptr,
712                                                 Value *Mask, Value *PassThru,
713                                                 const Twine &Name) {
714   auto *PtrTy = cast<PointerType>(Ptr->getType());
715   assert(Ty->isVectorTy() && "Type should be vector");
716   assert(PtrTy->isOpaqueOrPointeeTypeMatches(
717              cast<FixedVectorType>(Ty)->getElementType()) &&
718          "Wrong element type");
719   (void)PtrTy;
720   assert(Mask && "Mask should not be all-ones (null)");
721   if (!PassThru)
722     PassThru = PoisonValue::get(Ty);
723   Type *OverloadedTypes[] = {Ty};
724   Value *Ops[] = {Ptr, Mask, PassThru};
725   return CreateMaskedIntrinsic(Intrinsic::masked_expandload, Ops,
726                                OverloadedTypes, Name);
727 }
728 
729 /// Create a call to Masked Compress Store intrinsic
730 /// \p Val       - data to be stored,
731 /// \p Ptr       - base pointer for the store
732 /// \p Mask      - vector of booleans which indicates what vector lanes should
733 ///                be accessed in memory
734 CallInst *IRBuilderBase::CreateMaskedCompressStore(Value *Val, Value *Ptr,
735                                                    Value *Mask) {
736   auto *PtrTy = cast<PointerType>(Ptr->getType());
737   Type *DataTy = Val->getType();
738   assert(DataTy->isVectorTy() && "Val should be a vector");
739   assert(PtrTy->isOpaqueOrPointeeTypeMatches(
740              cast<FixedVectorType>(DataTy)->getElementType()) &&
741          "Wrong element type");
742   (void)PtrTy;
743   assert(Mask && "Mask should not be all-ones (null)");
744   Type *OverloadedTypes[] = {DataTy};
745   Value *Ops[] = {Val, Ptr, Mask};
746   return CreateMaskedIntrinsic(Intrinsic::masked_compressstore, Ops,
747                                OverloadedTypes);
748 }
749 
750 template <typename T0>
751 static std::vector<Value *>
752 getStatepointArgs(IRBuilderBase &B, uint64_t ID, uint32_t NumPatchBytes,
753                   Value *ActualCallee, uint32_t Flags, ArrayRef<T0> CallArgs) {
754   std::vector<Value *> Args;
755   Args.push_back(B.getInt64(ID));
756   Args.push_back(B.getInt32(NumPatchBytes));
757   Args.push_back(ActualCallee);
758   Args.push_back(B.getInt32(CallArgs.size()));
759   Args.push_back(B.getInt32(Flags));
760   llvm::append_range(Args, CallArgs);
761   // GC Transition and Deopt args are now always handled via operand bundle.
762   // They will be removed from the signature of gc.statepoint shortly.
763   Args.push_back(B.getInt32(0));
764   Args.push_back(B.getInt32(0));
765   // GC args are now encoded in the gc-live operand bundle
766   return Args;
767 }
768 
769 template<typename T1, typename T2, typename T3>
770 static std::vector<OperandBundleDef>
771 getStatepointBundles(std::optional<ArrayRef<T1>> TransitionArgs,
772                      std::optional<ArrayRef<T2>> DeoptArgs,
773                      ArrayRef<T3> GCArgs) {
774   std::vector<OperandBundleDef> Rval;
775   if (DeoptArgs) {
776     SmallVector<Value*, 16> DeoptValues;
777     llvm::append_range(DeoptValues, *DeoptArgs);
778     Rval.emplace_back("deopt", DeoptValues);
779   }
780   if (TransitionArgs) {
781     SmallVector<Value*, 16> TransitionValues;
782     llvm::append_range(TransitionValues, *TransitionArgs);
783     Rval.emplace_back("gc-transition", TransitionValues);
784   }
785   if (GCArgs.size()) {
786     SmallVector<Value*, 16> LiveValues;
787     llvm::append_range(LiveValues, GCArgs);
788     Rval.emplace_back("gc-live", LiveValues);
789   }
790   return Rval;
791 }
792 
793 template <typename T0, typename T1, typename T2, typename T3>
794 static CallInst *CreateGCStatepointCallCommon(
795     IRBuilderBase *Builder, uint64_t ID, uint32_t NumPatchBytes,
796     FunctionCallee ActualCallee, uint32_t Flags, ArrayRef<T0> CallArgs,
797     std::optional<ArrayRef<T1>> TransitionArgs,
798     std::optional<ArrayRef<T2>> DeoptArgs, ArrayRef<T3> GCArgs,
799     const Twine &Name) {
800   Module *M = Builder->GetInsertBlock()->getParent()->getParent();
801   // Fill in the one generic type'd argument (the function is also vararg)
802   Function *FnStatepoint =
803       Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_statepoint,
804                                 {ActualCallee.getCallee()->getType()});
805 
806   std::vector<Value *> Args = getStatepointArgs(
807       *Builder, ID, NumPatchBytes, ActualCallee.getCallee(), Flags, CallArgs);
808 
809   CallInst *CI = Builder->CreateCall(
810       FnStatepoint, Args,
811       getStatepointBundles(TransitionArgs, DeoptArgs, GCArgs), Name);
812   CI->addParamAttr(2,
813                    Attribute::get(Builder->getContext(), Attribute::ElementType,
814                                   ActualCallee.getFunctionType()));
815   return CI;
816 }
817 
818 CallInst *IRBuilderBase::CreateGCStatepointCall(
819     uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualCallee,
820     ArrayRef<Value *> CallArgs, std::optional<ArrayRef<Value *>> DeoptArgs,
821     ArrayRef<Value *> GCArgs, const Twine &Name) {
822   return CreateGCStatepointCallCommon<Value *, Value *, Value *, Value *>(
823       this, ID, NumPatchBytes, ActualCallee, uint32_t(StatepointFlags::None),
824       CallArgs, std::nullopt /* No Transition Args */, DeoptArgs, GCArgs, Name);
825 }
826 
827 CallInst *IRBuilderBase::CreateGCStatepointCall(
828     uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualCallee,
829     uint32_t Flags, ArrayRef<Value *> CallArgs,
830     std::optional<ArrayRef<Use>> TransitionArgs,
831     std::optional<ArrayRef<Use>> DeoptArgs, ArrayRef<Value *> GCArgs,
832     const Twine &Name) {
833   return CreateGCStatepointCallCommon<Value *, Use, Use, Value *>(
834       this, ID, NumPatchBytes, ActualCallee, Flags, CallArgs, TransitionArgs,
835       DeoptArgs, GCArgs, Name);
836 }
837 
838 CallInst *IRBuilderBase::CreateGCStatepointCall(
839     uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualCallee,
840     ArrayRef<Use> CallArgs, std::optional<ArrayRef<Value *>> DeoptArgs,
841     ArrayRef<Value *> GCArgs, const Twine &Name) {
842   return CreateGCStatepointCallCommon<Use, Value *, Value *, Value *>(
843       this, ID, NumPatchBytes, ActualCallee, uint32_t(StatepointFlags::None),
844       CallArgs, std::nullopt, DeoptArgs, GCArgs, Name);
845 }
846 
847 template <typename T0, typename T1, typename T2, typename T3>
848 static InvokeInst *CreateGCStatepointInvokeCommon(
849     IRBuilderBase *Builder, uint64_t ID, uint32_t NumPatchBytes,
850     FunctionCallee ActualInvokee, BasicBlock *NormalDest,
851     BasicBlock *UnwindDest, uint32_t Flags, ArrayRef<T0> InvokeArgs,
852     std::optional<ArrayRef<T1>> TransitionArgs,
853     std::optional<ArrayRef<T2>> DeoptArgs, ArrayRef<T3> GCArgs,
854     const Twine &Name) {
855   Module *M = Builder->GetInsertBlock()->getParent()->getParent();
856   // Fill in the one generic type'd argument (the function is also vararg)
857   Function *FnStatepoint =
858       Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_statepoint,
859                                 {ActualInvokee.getCallee()->getType()});
860 
861   std::vector<Value *> Args =
862       getStatepointArgs(*Builder, ID, NumPatchBytes, ActualInvokee.getCallee(),
863                         Flags, InvokeArgs);
864 
865   InvokeInst *II = Builder->CreateInvoke(
866       FnStatepoint, NormalDest, UnwindDest, Args,
867       getStatepointBundles(TransitionArgs, DeoptArgs, GCArgs), Name);
868   II->addParamAttr(2,
869                    Attribute::get(Builder->getContext(), Attribute::ElementType,
870                                   ActualInvokee.getFunctionType()));
871   return II;
872 }
873 
874 InvokeInst *IRBuilderBase::CreateGCStatepointInvoke(
875     uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualInvokee,
876     BasicBlock *NormalDest, BasicBlock *UnwindDest,
877     ArrayRef<Value *> InvokeArgs, std::optional<ArrayRef<Value *>> DeoptArgs,
878     ArrayRef<Value *> GCArgs, const Twine &Name) {
879   return CreateGCStatepointInvokeCommon<Value *, Value *, Value *, Value *>(
880       this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest,
881       uint32_t(StatepointFlags::None), InvokeArgs,
882       std::nullopt /* No Transition Args*/, DeoptArgs, GCArgs, Name);
883 }
884 
885 InvokeInst *IRBuilderBase::CreateGCStatepointInvoke(
886     uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualInvokee,
887     BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags,
888     ArrayRef<Value *> InvokeArgs, std::optional<ArrayRef<Use>> TransitionArgs,
889     std::optional<ArrayRef<Use>> DeoptArgs, ArrayRef<Value *> GCArgs,
890     const Twine &Name) {
891   return CreateGCStatepointInvokeCommon<Value *, Use, Use, Value *>(
892       this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest, Flags,
893       InvokeArgs, TransitionArgs, DeoptArgs, GCArgs, Name);
894 }
895 
896 InvokeInst *IRBuilderBase::CreateGCStatepointInvoke(
897     uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualInvokee,
898     BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef<Use> InvokeArgs,
899     std::optional<ArrayRef<Value *>> DeoptArgs, ArrayRef<Value *> GCArgs,
900     const Twine &Name) {
901   return CreateGCStatepointInvokeCommon<Use, Value *, Value *, Value *>(
902       this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest,
903       uint32_t(StatepointFlags::None), InvokeArgs, std::nullopt, DeoptArgs,
904       GCArgs, Name);
905 }
906 
907 CallInst *IRBuilderBase::CreateGCResult(Instruction *Statepoint,
908                                         Type *ResultType, const Twine &Name) {
909   Intrinsic::ID ID = Intrinsic::experimental_gc_result;
910   Module *M = BB->getParent()->getParent();
911   Type *Types[] = {ResultType};
912   Function *FnGCResult = Intrinsic::getDeclaration(M, ID, Types);
913 
914   Value *Args[] = {Statepoint};
915   return CreateCall(FnGCResult, Args, {}, Name);
916 }
917 
918 CallInst *IRBuilderBase::CreateGCRelocate(Instruction *Statepoint,
919                                           int BaseOffset, int DerivedOffset,
920                                           Type *ResultType, const Twine &Name) {
921   Module *M = BB->getParent()->getParent();
922   Type *Types[] = {ResultType};
923   Function *FnGCRelocate =
924       Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types);
925 
926   Value *Args[] = {Statepoint, getInt32(BaseOffset), getInt32(DerivedOffset)};
927   return CreateCall(FnGCRelocate, Args, {}, Name);
928 }
929 
930 CallInst *IRBuilderBase::CreateGCGetPointerBase(Value *DerivedPtr,
931                                                 const Twine &Name) {
932   Module *M = BB->getParent()->getParent();
933   Type *PtrTy = DerivedPtr->getType();
934   Function *FnGCFindBase = Intrinsic::getDeclaration(
935       M, Intrinsic::experimental_gc_get_pointer_base, {PtrTy, PtrTy});
936   return CreateCall(FnGCFindBase, {DerivedPtr}, {}, Name);
937 }
938 
939 CallInst *IRBuilderBase::CreateGCGetPointerOffset(Value *DerivedPtr,
940                                                   const Twine &Name) {
941   Module *M = BB->getParent()->getParent();
942   Type *PtrTy = DerivedPtr->getType();
943   Function *FnGCGetOffset = Intrinsic::getDeclaration(
944       M, Intrinsic::experimental_gc_get_pointer_offset, {PtrTy});
945   return CreateCall(FnGCGetOffset, {DerivedPtr}, {}, Name);
946 }
947 
948 CallInst *IRBuilderBase::CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V,
949                                               Instruction *FMFSource,
950                                               const Twine &Name) {
951   Module *M = BB->getModule();
952   Function *Fn = Intrinsic::getDeclaration(M, ID, {V->getType()});
953   return createCallHelper(Fn, {V}, Name, FMFSource);
954 }
955 
956 CallInst *IRBuilderBase::CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS,
957                                                Value *RHS,
958                                                Instruction *FMFSource,
959                                                const Twine &Name) {
960   Module *M = BB->getModule();
961   Function *Fn = Intrinsic::getDeclaration(M, ID, { LHS->getType() });
962   return createCallHelper(Fn, {LHS, RHS}, Name, FMFSource);
963 }
964 
965 CallInst *IRBuilderBase::CreateIntrinsic(Intrinsic::ID ID,
966                                          ArrayRef<Type *> Types,
967                                          ArrayRef<Value *> Args,
968                                          Instruction *FMFSource,
969                                          const Twine &Name) {
970   Module *M = BB->getModule();
971   Function *Fn = Intrinsic::getDeclaration(M, ID, Types);
972   return createCallHelper(Fn, Args, Name, FMFSource);
973 }
974 
975 CallInst *IRBuilderBase::CreateIntrinsic(Type *RetTy, Intrinsic::ID ID,
976                                          ArrayRef<Value *> Args,
977                                          Instruction *FMFSource,
978                                          const Twine &Name) {
979   Module *M = BB->getModule();
980 
981   SmallVector<Intrinsic::IITDescriptor> Table;
982   Intrinsic::getIntrinsicInfoTableEntries(ID, Table);
983   ArrayRef<Intrinsic::IITDescriptor> TableRef(Table);
984 
985   SmallVector<Type *> ArgTys;
986   ArgTys.reserve(Args.size());
987   for (auto &I : Args)
988     ArgTys.push_back(I->getType());
989   FunctionType *FTy = FunctionType::get(RetTy, ArgTys, false);
990   SmallVector<Type *> OverloadTys;
991   Intrinsic::MatchIntrinsicTypesResult Res =
992       matchIntrinsicSignature(FTy, TableRef, OverloadTys);
993   (void)Res;
994   assert(Res == Intrinsic::MatchIntrinsicTypes_Match && TableRef.empty() &&
995          "Wrong types for intrinsic!");
996   // TODO: Handle varargs intrinsics.
997 
998   Function *Fn = Intrinsic::getDeclaration(M, ID, OverloadTys);
999   return createCallHelper(Fn, Args, Name, FMFSource);
1000 }
1001 
1002 CallInst *IRBuilderBase::CreateConstrainedFPBinOp(
1003     Intrinsic::ID ID, Value *L, Value *R, Instruction *FMFSource,
1004     const Twine &Name, MDNode *FPMathTag,
1005     std::optional<RoundingMode> Rounding,
1006     std::optional<fp::ExceptionBehavior> Except) {
1007   Value *RoundingV = getConstrainedFPRounding(Rounding);
1008   Value *ExceptV = getConstrainedFPExcept(Except);
1009 
1010   FastMathFlags UseFMF = FMF;
1011   if (FMFSource)
1012     UseFMF = FMFSource->getFastMathFlags();
1013 
1014   CallInst *C = CreateIntrinsic(ID, {L->getType()},
1015                                 {L, R, RoundingV, ExceptV}, nullptr, Name);
1016   setConstrainedFPCallAttr(C);
1017   setFPAttrs(C, FPMathTag, UseFMF);
1018   return C;
1019 }
1020 
1021 Value *IRBuilderBase::CreateNAryOp(unsigned Opc, ArrayRef<Value *> Ops,
1022                                    const Twine &Name, MDNode *FPMathTag) {
1023   if (Instruction::isBinaryOp(Opc)) {
1024     assert(Ops.size() == 2 && "Invalid number of operands!");
1025     return CreateBinOp(static_cast<Instruction::BinaryOps>(Opc),
1026                        Ops[0], Ops[1], Name, FPMathTag);
1027   }
1028   if (Instruction::isUnaryOp(Opc)) {
1029     assert(Ops.size() == 1 && "Invalid number of operands!");
1030     return CreateUnOp(static_cast<Instruction::UnaryOps>(Opc),
1031                       Ops[0], Name, FPMathTag);
1032   }
1033   llvm_unreachable("Unexpected opcode!");
1034 }
1035 
1036 CallInst *IRBuilderBase::CreateConstrainedFPCast(
1037     Intrinsic::ID ID, Value *V, Type *DestTy,
1038     Instruction *FMFSource, const Twine &Name, MDNode *FPMathTag,
1039     std::optional<RoundingMode> Rounding,
1040     std::optional<fp::ExceptionBehavior> Except) {
1041   Value *ExceptV = getConstrainedFPExcept(Except);
1042 
1043   FastMathFlags UseFMF = FMF;
1044   if (FMFSource)
1045     UseFMF = FMFSource->getFastMathFlags();
1046 
1047   CallInst *C;
1048   bool HasRoundingMD = false;
1049   switch (ID) {
1050   default:
1051     break;
1052 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)        \
1053   case Intrinsic::INTRINSIC:                                \
1054     HasRoundingMD = ROUND_MODE;                             \
1055     break;
1056 #include "llvm/IR/ConstrainedOps.def"
1057   }
1058   if (HasRoundingMD) {
1059     Value *RoundingV = getConstrainedFPRounding(Rounding);
1060     C = CreateIntrinsic(ID, {DestTy, V->getType()}, {V, RoundingV, ExceptV},
1061                         nullptr, Name);
1062   } else
1063     C = CreateIntrinsic(ID, {DestTy, V->getType()}, {V, ExceptV}, nullptr,
1064                         Name);
1065 
1066   setConstrainedFPCallAttr(C);
1067 
1068   if (isa<FPMathOperator>(C))
1069     setFPAttrs(C, FPMathTag, UseFMF);
1070   return C;
1071 }
1072 
1073 Value *IRBuilderBase::CreateFCmpHelper(
1074     CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name,
1075     MDNode *FPMathTag, bool IsSignaling) {
1076   if (IsFPConstrained) {
1077     auto ID = IsSignaling ? Intrinsic::experimental_constrained_fcmps
1078                           : Intrinsic::experimental_constrained_fcmp;
1079     return CreateConstrainedFPCmp(ID, P, LHS, RHS, Name);
1080   }
1081 
1082   if (auto *LC = dyn_cast<Constant>(LHS))
1083     if (auto *RC = dyn_cast<Constant>(RHS))
1084       return Insert(Folder.CreateFCmp(P, LC, RC), Name);
1085   return Insert(setFPAttrs(new FCmpInst(P, LHS, RHS), FPMathTag, FMF), Name);
1086 }
1087 
1088 CallInst *IRBuilderBase::CreateConstrainedFPCmp(
1089     Intrinsic::ID ID, CmpInst::Predicate P, Value *L, Value *R,
1090     const Twine &Name, std::optional<fp::ExceptionBehavior> Except) {
1091   Value *PredicateV = getConstrainedFPPredicate(P);
1092   Value *ExceptV = getConstrainedFPExcept(Except);
1093 
1094   CallInst *C = CreateIntrinsic(ID, {L->getType()},
1095                                 {L, R, PredicateV, ExceptV}, nullptr, Name);
1096   setConstrainedFPCallAttr(C);
1097   return C;
1098 }
1099 
1100 CallInst *IRBuilderBase::CreateConstrainedFPCall(
1101     Function *Callee, ArrayRef<Value *> Args, const Twine &Name,
1102     std::optional<RoundingMode> Rounding,
1103     std::optional<fp::ExceptionBehavior> Except) {
1104   llvm::SmallVector<Value *, 6> UseArgs;
1105 
1106   append_range(UseArgs, Args);
1107   bool HasRoundingMD = false;
1108   switch (Callee->getIntrinsicID()) {
1109   default:
1110     break;
1111 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)        \
1112   case Intrinsic::INTRINSIC:                                \
1113     HasRoundingMD = ROUND_MODE;                             \
1114     break;
1115 #include "llvm/IR/ConstrainedOps.def"
1116   }
1117   if (HasRoundingMD)
1118     UseArgs.push_back(getConstrainedFPRounding(Rounding));
1119   UseArgs.push_back(getConstrainedFPExcept(Except));
1120 
1121   CallInst *C = CreateCall(Callee, UseArgs, Name);
1122   setConstrainedFPCallAttr(C);
1123   return C;
1124 }
1125 
1126 Value *IRBuilderBase::CreateSelect(Value *C, Value *True, Value *False,
1127                                    const Twine &Name, Instruction *MDFrom) {
1128   if (auto *V = Folder.FoldSelect(C, True, False))
1129     return V;
1130 
1131   SelectInst *Sel = SelectInst::Create(C, True, False);
1132   if (MDFrom) {
1133     MDNode *Prof = MDFrom->getMetadata(LLVMContext::MD_prof);
1134     MDNode *Unpred = MDFrom->getMetadata(LLVMContext::MD_unpredictable);
1135     Sel = addBranchMetadata(Sel, Prof, Unpred);
1136   }
1137   if (isa<FPMathOperator>(Sel))
1138     setFPAttrs(Sel, nullptr /* MDNode* */, FMF);
1139   return Insert(Sel, Name);
1140 }
1141 
1142 Value *IRBuilderBase::CreatePtrDiff(Type *ElemTy, Value *LHS, Value *RHS,
1143                                     const Twine &Name) {
1144   assert(LHS->getType() == RHS->getType() &&
1145          "Pointer subtraction operand types must match!");
1146   assert(cast<PointerType>(LHS->getType())
1147              ->isOpaqueOrPointeeTypeMatches(ElemTy) &&
1148          "Pointer type must match element type");
1149   Value *LHS_int = CreatePtrToInt(LHS, Type::getInt64Ty(Context));
1150   Value *RHS_int = CreatePtrToInt(RHS, Type::getInt64Ty(Context));
1151   Value *Difference = CreateSub(LHS_int, RHS_int);
1152   return CreateExactSDiv(Difference, ConstantExpr::getSizeOf(ElemTy),
1153                          Name);
1154 }
1155 
1156 Value *IRBuilderBase::CreateLaunderInvariantGroup(Value *Ptr) {
1157   assert(isa<PointerType>(Ptr->getType()) &&
1158          "launder.invariant.group only applies to pointers.");
1159   // FIXME: we could potentially avoid casts to/from i8*.
1160   auto *PtrType = Ptr->getType();
1161   auto *Int8PtrTy = getInt8PtrTy(PtrType->getPointerAddressSpace());
1162   if (PtrType != Int8PtrTy)
1163     Ptr = CreateBitCast(Ptr, Int8PtrTy);
1164   Module *M = BB->getParent()->getParent();
1165   Function *FnLaunderInvariantGroup = Intrinsic::getDeclaration(
1166       M, Intrinsic::launder_invariant_group, {Int8PtrTy});
1167 
1168   assert(FnLaunderInvariantGroup->getReturnType() == Int8PtrTy &&
1169          FnLaunderInvariantGroup->getFunctionType()->getParamType(0) ==
1170              Int8PtrTy &&
1171          "LaunderInvariantGroup should take and return the same type");
1172 
1173   CallInst *Fn = CreateCall(FnLaunderInvariantGroup, {Ptr});
1174 
1175   if (PtrType != Int8PtrTy)
1176     return CreateBitCast(Fn, PtrType);
1177   return Fn;
1178 }
1179 
1180 Value *IRBuilderBase::CreateStripInvariantGroup(Value *Ptr) {
1181   assert(isa<PointerType>(Ptr->getType()) &&
1182          "strip.invariant.group only applies to pointers.");
1183 
1184   // FIXME: we could potentially avoid casts to/from i8*.
1185   auto *PtrType = Ptr->getType();
1186   auto *Int8PtrTy = getInt8PtrTy(PtrType->getPointerAddressSpace());
1187   if (PtrType != Int8PtrTy)
1188     Ptr = CreateBitCast(Ptr, Int8PtrTy);
1189   Module *M = BB->getParent()->getParent();
1190   Function *FnStripInvariantGroup = Intrinsic::getDeclaration(
1191       M, Intrinsic::strip_invariant_group, {Int8PtrTy});
1192 
1193   assert(FnStripInvariantGroup->getReturnType() == Int8PtrTy &&
1194          FnStripInvariantGroup->getFunctionType()->getParamType(0) ==
1195              Int8PtrTy &&
1196          "StripInvariantGroup should take and return the same type");
1197 
1198   CallInst *Fn = CreateCall(FnStripInvariantGroup, {Ptr});
1199 
1200   if (PtrType != Int8PtrTy)
1201     return CreateBitCast(Fn, PtrType);
1202   return Fn;
1203 }
1204 
1205 Value *IRBuilderBase::CreateVectorReverse(Value *V, const Twine &Name) {
1206   auto *Ty = cast<VectorType>(V->getType());
1207   if (isa<ScalableVectorType>(Ty)) {
1208     Module *M = BB->getParent()->getParent();
1209     Function *F = Intrinsic::getDeclaration(
1210         M, Intrinsic::experimental_vector_reverse, Ty);
1211     return Insert(CallInst::Create(F, V), Name);
1212   }
1213   // Keep the original behaviour for fixed vector
1214   SmallVector<int, 8> ShuffleMask;
1215   int NumElts = Ty->getElementCount().getKnownMinValue();
1216   for (int i = 0; i < NumElts; ++i)
1217     ShuffleMask.push_back(NumElts - i - 1);
1218   return CreateShuffleVector(V, ShuffleMask, Name);
1219 }
1220 
1221 Value *IRBuilderBase::CreateVectorSplice(Value *V1, Value *V2, int64_t Imm,
1222                                          const Twine &Name) {
1223   assert(isa<VectorType>(V1->getType()) && "Unexpected type");
1224   assert(V1->getType() == V2->getType() &&
1225          "Splice expects matching operand types!");
1226 
1227   if (auto *VTy = dyn_cast<ScalableVectorType>(V1->getType())) {
1228     Module *M = BB->getParent()->getParent();
1229     Function *F = Intrinsic::getDeclaration(
1230         M, Intrinsic::experimental_vector_splice, VTy);
1231 
1232     Value *Ops[] = {V1, V2, getInt32(Imm)};
1233     return Insert(CallInst::Create(F, Ops), Name);
1234   }
1235 
1236   unsigned NumElts = cast<FixedVectorType>(V1->getType())->getNumElements();
1237   assert(((-Imm <= NumElts) || (Imm < NumElts)) &&
1238          "Invalid immediate for vector splice!");
1239 
1240   // Keep the original behaviour for fixed vector
1241   unsigned Idx = (NumElts + Imm) % NumElts;
1242   SmallVector<int, 8> Mask;
1243   for (unsigned I = 0; I < NumElts; ++I)
1244     Mask.push_back(Idx + I);
1245 
1246   return CreateShuffleVector(V1, V2, Mask);
1247 }
1248 
1249 Value *IRBuilderBase::CreateVectorSplat(unsigned NumElts, Value *V,
1250                                         const Twine &Name) {
1251   auto EC = ElementCount::getFixed(NumElts);
1252   return CreateVectorSplat(EC, V, Name);
1253 }
1254 
1255 Value *IRBuilderBase::CreateVectorSplat(ElementCount EC, Value *V,
1256                                         const Twine &Name) {
1257   assert(EC.isNonZero() && "Cannot splat to an empty vector!");
1258 
1259   // First insert it into a poison vector so we can shuffle it.
1260   Value *Poison = PoisonValue::get(VectorType::get(V->getType(), EC));
1261   V = CreateInsertElement(Poison, V, getInt64(0), Name + ".splatinsert");
1262 
1263   // Shuffle the value across the desired number of elements.
1264   SmallVector<int, 16> Zeros;
1265   Zeros.resize(EC.getKnownMinValue());
1266   return CreateShuffleVector(V, Zeros, Name + ".splat");
1267 }
1268 
1269 Value *IRBuilderBase::CreateExtractInteger(
1270     const DataLayout &DL, Value *From, IntegerType *ExtractedTy,
1271     uint64_t Offset, const Twine &Name) {
1272   auto *IntTy = cast<IntegerType>(From->getType());
1273   assert(DL.getTypeStoreSize(ExtractedTy) + Offset <=
1274              DL.getTypeStoreSize(IntTy) &&
1275          "Element extends past full value");
1276   uint64_t ShAmt = 8 * Offset;
1277   Value *V = From;
1278   if (DL.isBigEndian())
1279     ShAmt = 8 * (DL.getTypeStoreSize(IntTy) -
1280                  DL.getTypeStoreSize(ExtractedTy) - Offset);
1281   if (ShAmt) {
1282     V = CreateLShr(V, ShAmt, Name + ".shift");
1283   }
1284   assert(ExtractedTy->getBitWidth() <= IntTy->getBitWidth() &&
1285          "Cannot extract to a larger integer!");
1286   if (ExtractedTy != IntTy) {
1287     V = CreateTrunc(V, ExtractedTy, Name + ".trunc");
1288   }
1289   return V;
1290 }
1291 
1292 Value *IRBuilderBase::CreatePreserveArrayAccessIndex(
1293     Type *ElTy, Value *Base, unsigned Dimension, unsigned LastIndex,
1294     MDNode *DbgInfo) {
1295   auto *BaseType = Base->getType();
1296   assert(isa<PointerType>(BaseType) &&
1297          "Invalid Base ptr type for preserve.array.access.index.");
1298   assert(cast<PointerType>(BaseType)->isOpaqueOrPointeeTypeMatches(ElTy) &&
1299          "Pointer element type mismatch");
1300 
1301   Value *LastIndexV = getInt32(LastIndex);
1302   Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
1303   SmallVector<Value *, 4> IdxList(Dimension, Zero);
1304   IdxList.push_back(LastIndexV);
1305 
1306   Type *ResultType =
1307       GetElementPtrInst::getGEPReturnType(ElTy, Base, IdxList);
1308 
1309   Module *M = BB->getParent()->getParent();
1310   Function *FnPreserveArrayAccessIndex = Intrinsic::getDeclaration(
1311       M, Intrinsic::preserve_array_access_index, {ResultType, BaseType});
1312 
1313   Value *DimV = getInt32(Dimension);
1314   CallInst *Fn =
1315       CreateCall(FnPreserveArrayAccessIndex, {Base, DimV, LastIndexV});
1316   Fn->addParamAttr(
1317       0, Attribute::get(Fn->getContext(), Attribute::ElementType, ElTy));
1318   if (DbgInfo)
1319     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
1320 
1321   return Fn;
1322 }
1323 
1324 Value *IRBuilderBase::CreatePreserveUnionAccessIndex(
1325     Value *Base, unsigned FieldIndex, MDNode *DbgInfo) {
1326   assert(isa<PointerType>(Base->getType()) &&
1327          "Invalid Base ptr type for preserve.union.access.index.");
1328   auto *BaseType = Base->getType();
1329 
1330   Module *M = BB->getParent()->getParent();
1331   Function *FnPreserveUnionAccessIndex = Intrinsic::getDeclaration(
1332       M, Intrinsic::preserve_union_access_index, {BaseType, BaseType});
1333 
1334   Value *DIIndex = getInt32(FieldIndex);
1335   CallInst *Fn =
1336       CreateCall(FnPreserveUnionAccessIndex, {Base, DIIndex});
1337   if (DbgInfo)
1338     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
1339 
1340   return Fn;
1341 }
1342 
1343 Value *IRBuilderBase::CreatePreserveStructAccessIndex(
1344     Type *ElTy, Value *Base, unsigned Index, unsigned FieldIndex,
1345     MDNode *DbgInfo) {
1346   auto *BaseType = Base->getType();
1347   assert(isa<PointerType>(BaseType) &&
1348          "Invalid Base ptr type for preserve.struct.access.index.");
1349   assert(cast<PointerType>(BaseType)->isOpaqueOrPointeeTypeMatches(ElTy) &&
1350          "Pointer element type mismatch");
1351 
1352   Value *GEPIndex = getInt32(Index);
1353   Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
1354   Type *ResultType =
1355       GetElementPtrInst::getGEPReturnType(ElTy, Base, {Zero, GEPIndex});
1356 
1357   Module *M = BB->getParent()->getParent();
1358   Function *FnPreserveStructAccessIndex = Intrinsic::getDeclaration(
1359       M, Intrinsic::preserve_struct_access_index, {ResultType, BaseType});
1360 
1361   Value *DIIndex = getInt32(FieldIndex);
1362   CallInst *Fn = CreateCall(FnPreserveStructAccessIndex,
1363                             {Base, GEPIndex, DIIndex});
1364   Fn->addParamAttr(
1365       0, Attribute::get(Fn->getContext(), Attribute::ElementType, ElTy));
1366   if (DbgInfo)
1367     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
1368 
1369   return Fn;
1370 }
1371 
1372 CallInst *IRBuilderBase::CreateAlignmentAssumptionHelper(const DataLayout &DL,
1373                                                          Value *PtrValue,
1374                                                          Value *AlignValue,
1375                                                          Value *OffsetValue) {
1376   SmallVector<Value *, 4> Vals({PtrValue, AlignValue});
1377   if (OffsetValue)
1378     Vals.push_back(OffsetValue);
1379   OperandBundleDefT<Value *> AlignOpB("align", Vals);
1380   return CreateAssumption(ConstantInt::getTrue(getContext()), {AlignOpB});
1381 }
1382 
1383 CallInst *IRBuilderBase::CreateAlignmentAssumption(const DataLayout &DL,
1384                                                    Value *PtrValue,
1385                                                    unsigned Alignment,
1386                                                    Value *OffsetValue) {
1387   assert(isa<PointerType>(PtrValue->getType()) &&
1388          "trying to create an alignment assumption on a non-pointer?");
1389   assert(Alignment != 0 && "Invalid Alignment");
1390   auto *PtrTy = cast<PointerType>(PtrValue->getType());
1391   Type *IntPtrTy = getIntPtrTy(DL, PtrTy->getAddressSpace());
1392   Value *AlignValue = ConstantInt::get(IntPtrTy, Alignment);
1393   return CreateAlignmentAssumptionHelper(DL, PtrValue, AlignValue, OffsetValue);
1394 }
1395 
1396 CallInst *IRBuilderBase::CreateAlignmentAssumption(const DataLayout &DL,
1397                                                    Value *PtrValue,
1398                                                    Value *Alignment,
1399                                                    Value *OffsetValue) {
1400   assert(isa<PointerType>(PtrValue->getType()) &&
1401          "trying to create an alignment assumption on a non-pointer?");
1402   return CreateAlignmentAssumptionHelper(DL, PtrValue, Alignment, OffsetValue);
1403 }
1404 
1405 IRBuilderDefaultInserter::~IRBuilderDefaultInserter() = default;
1406 IRBuilderCallbackInserter::~IRBuilderCallbackInserter() = default;
1407 IRBuilderFolder::~IRBuilderFolder() = default;
1408 void ConstantFolder::anchor() {}
1409 void NoFolder::anchor() {}
1410