xref: /freebsd/contrib/llvm-project/llvm/lib/IR/IRBuilder.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===- IRBuilder.cpp - Builder for LLVM Instrs ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the IRBuilder class, which is used as a convenient way
10 // to create LLVM instructions with a consistent and simplified interface.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/IRBuilder.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/IR/Constant.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/DebugInfoMetadata.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/GlobalVariable.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/Intrinsics.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/NoFolder.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/Statepoint.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/Casting.h"
32 #include <cassert>
33 #include <cstdint>
34 #include <optional>
35 #include <vector>
36 
37 using namespace llvm;
38 
39 /// CreateGlobalString - Make a new global variable with an initializer that
40 /// has array of i8 type filled in with the nul terminated string value
41 /// specified.  If Name is specified, it is the name of the global variable
42 /// created.
43 GlobalVariable *IRBuilderBase::CreateGlobalString(StringRef Str,
44                                                   const Twine &Name,
45                                                   unsigned AddressSpace,
46                                                   Module *M) {
47   Constant *StrConstant = ConstantDataArray::getString(Context, Str);
48   if (!M)
49     M = BB->getParent()->getParent();
50   auto *GV = new GlobalVariable(
51       *M, StrConstant->getType(), true, GlobalValue::PrivateLinkage,
52       StrConstant, Name, nullptr, GlobalVariable::NotThreadLocal, AddressSpace);
53   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
54   GV->setAlignment(Align(1));
55   return GV;
56 }
57 
58 Type *IRBuilderBase::getCurrentFunctionReturnType() const {
59   assert(BB && BB->getParent() && "No current function!");
60   return BB->getParent()->getReturnType();
61 }
62 
63 DebugLoc IRBuilderBase::getCurrentDebugLocation() const {
64   for (auto &KV : MetadataToCopy)
65     if (KV.first == LLVMContext::MD_dbg)
66       return {cast<DILocation>(KV.second)};
67 
68   return {};
69 }
70 void IRBuilderBase::SetInstDebugLocation(Instruction *I) const {
71   for (const auto &KV : MetadataToCopy)
72     if (KV.first == LLVMContext::MD_dbg) {
73       I->setDebugLoc(DebugLoc(KV.second));
74       return;
75     }
76 }
77 
78 CallInst *
79 IRBuilderBase::createCallHelper(Function *Callee, ArrayRef<Value *> Ops,
80                                 const Twine &Name, Instruction *FMFSource,
81                                 ArrayRef<OperandBundleDef> OpBundles) {
82   CallInst *CI = CreateCall(Callee, Ops, OpBundles, Name);
83   if (FMFSource)
84     CI->copyFastMathFlags(FMFSource);
85   return CI;
86 }
87 
88 Value *IRBuilderBase::CreateVScale(Constant *Scaling, const Twine &Name) {
89   assert(isa<ConstantInt>(Scaling) && "Expected constant integer");
90   if (cast<ConstantInt>(Scaling)->isZero())
91     return Scaling;
92   Module *M = GetInsertBlock()->getParent()->getParent();
93   Function *TheFn =
94       Intrinsic::getDeclaration(M, Intrinsic::vscale, {Scaling->getType()});
95   CallInst *CI = CreateCall(TheFn, {}, {}, Name);
96   return cast<ConstantInt>(Scaling)->isOne() ? CI : CreateMul(CI, Scaling);
97 }
98 
99 Value *IRBuilderBase::CreateElementCount(Type *DstType, ElementCount EC) {
100   Constant *MinEC = ConstantInt::get(DstType, EC.getKnownMinValue());
101   return EC.isScalable() ? CreateVScale(MinEC) : MinEC;
102 }
103 
104 Value *IRBuilderBase::CreateTypeSize(Type *DstType, TypeSize Size) {
105   Constant *MinSize = ConstantInt::get(DstType, Size.getKnownMinValue());
106   return Size.isScalable() ? CreateVScale(MinSize) : MinSize;
107 }
108 
109 Value *IRBuilderBase::CreateStepVector(Type *DstType, const Twine &Name) {
110   Type *STy = DstType->getScalarType();
111   if (isa<ScalableVectorType>(DstType)) {
112     Type *StepVecType = DstType;
113     // TODO: We expect this special case (element type < 8 bits) to be
114     // temporary - once the intrinsic properly supports < 8 bits this code
115     // can be removed.
116     if (STy->getScalarSizeInBits() < 8)
117       StepVecType =
118           VectorType::get(getInt8Ty(), cast<ScalableVectorType>(DstType));
119     Value *Res = CreateIntrinsic(Intrinsic::experimental_stepvector,
120                                  {StepVecType}, {}, nullptr, Name);
121     if (StepVecType != DstType)
122       Res = CreateTrunc(Res, DstType);
123     return Res;
124   }
125 
126   unsigned NumEls = cast<FixedVectorType>(DstType)->getNumElements();
127 
128   // Create a vector of consecutive numbers from zero to VF.
129   SmallVector<Constant *, 8> Indices;
130   for (unsigned i = 0; i < NumEls; ++i)
131     Indices.push_back(ConstantInt::get(STy, i));
132 
133   // Add the consecutive indices to the vector value.
134   return ConstantVector::get(Indices);
135 }
136 
137 CallInst *IRBuilderBase::CreateMemSet(Value *Ptr, Value *Val, Value *Size,
138                                       MaybeAlign Align, bool isVolatile,
139                                       MDNode *TBAATag, MDNode *ScopeTag,
140                                       MDNode *NoAliasTag) {
141   Value *Ops[] = {Ptr, Val, Size, getInt1(isVolatile)};
142   Type *Tys[] = { Ptr->getType(), Size->getType() };
143   Module *M = BB->getParent()->getParent();
144   Function *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys);
145 
146   CallInst *CI = CreateCall(TheFn, Ops);
147 
148   if (Align)
149     cast<MemSetInst>(CI)->setDestAlignment(*Align);
150 
151   // Set the TBAA info if present.
152   if (TBAATag)
153     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
154 
155   if (ScopeTag)
156     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
157 
158   if (NoAliasTag)
159     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
160 
161   return CI;
162 }
163 
164 CallInst *IRBuilderBase::CreateMemSetInline(Value *Dst, MaybeAlign DstAlign,
165                                             Value *Val, Value *Size,
166                                             bool IsVolatile, MDNode *TBAATag,
167                                             MDNode *ScopeTag,
168                                             MDNode *NoAliasTag) {
169   Value *Ops[] = {Dst, Val, Size, getInt1(IsVolatile)};
170   Type *Tys[] = {Dst->getType(), Size->getType()};
171   Module *M = BB->getParent()->getParent();
172   Function *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memset_inline, Tys);
173 
174   CallInst *CI = CreateCall(TheFn, Ops);
175 
176   if (DstAlign)
177     cast<MemSetInlineInst>(CI)->setDestAlignment(*DstAlign);
178 
179   // Set the TBAA info if present.
180   if (TBAATag)
181     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
182 
183   if (ScopeTag)
184     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
185 
186   if (NoAliasTag)
187     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
188 
189   return CI;
190 }
191 
192 CallInst *IRBuilderBase::CreateElementUnorderedAtomicMemSet(
193     Value *Ptr, Value *Val, Value *Size, Align Alignment, uint32_t ElementSize,
194     MDNode *TBAATag, MDNode *ScopeTag, MDNode *NoAliasTag) {
195 
196   Value *Ops[] = {Ptr, Val, Size, getInt32(ElementSize)};
197   Type *Tys[] = {Ptr->getType(), Size->getType()};
198   Module *M = BB->getParent()->getParent();
199   Function *TheFn = Intrinsic::getDeclaration(
200       M, Intrinsic::memset_element_unordered_atomic, Tys);
201 
202   CallInst *CI = CreateCall(TheFn, Ops);
203 
204   cast<AtomicMemSetInst>(CI)->setDestAlignment(Alignment);
205 
206   // Set the TBAA info if present.
207   if (TBAATag)
208     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
209 
210   if (ScopeTag)
211     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
212 
213   if (NoAliasTag)
214     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
215 
216   return CI;
217 }
218 
219 CallInst *IRBuilderBase::CreateMemTransferInst(
220     Intrinsic::ID IntrID, Value *Dst, MaybeAlign DstAlign, Value *Src,
221     MaybeAlign SrcAlign, Value *Size, bool isVolatile, MDNode *TBAATag,
222     MDNode *TBAAStructTag, MDNode *ScopeTag, MDNode *NoAliasTag) {
223   assert((IntrID == Intrinsic::memcpy || IntrID == Intrinsic::memcpy_inline ||
224           IntrID == Intrinsic::memmove) &&
225          "Unexpected intrinsic ID");
226   Value *Ops[] = {Dst, Src, Size, getInt1(isVolatile)};
227   Type *Tys[] = { Dst->getType(), Src->getType(), Size->getType() };
228   Module *M = BB->getParent()->getParent();
229   Function *TheFn = Intrinsic::getDeclaration(M, IntrID, Tys);
230 
231   CallInst *CI = CreateCall(TheFn, Ops);
232 
233   auto* MCI = cast<MemTransferInst>(CI);
234   if (DstAlign)
235     MCI->setDestAlignment(*DstAlign);
236   if (SrcAlign)
237     MCI->setSourceAlignment(*SrcAlign);
238 
239   // Set the TBAA info if present.
240   if (TBAATag)
241     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
242 
243   // Set the TBAA Struct info if present.
244   if (TBAAStructTag)
245     CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag);
246 
247   if (ScopeTag)
248     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
249 
250   if (NoAliasTag)
251     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
252 
253   return CI;
254 }
255 
256 CallInst *IRBuilderBase::CreateElementUnorderedAtomicMemCpy(
257     Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size,
258     uint32_t ElementSize, MDNode *TBAATag, MDNode *TBAAStructTag,
259     MDNode *ScopeTag, MDNode *NoAliasTag) {
260   assert(DstAlign >= ElementSize &&
261          "Pointer alignment must be at least element size");
262   assert(SrcAlign >= ElementSize &&
263          "Pointer alignment must be at least element size");
264   Value *Ops[] = {Dst, Src, Size, getInt32(ElementSize)};
265   Type *Tys[] = {Dst->getType(), Src->getType(), Size->getType()};
266   Module *M = BB->getParent()->getParent();
267   Function *TheFn = Intrinsic::getDeclaration(
268       M, Intrinsic::memcpy_element_unordered_atomic, Tys);
269 
270   CallInst *CI = CreateCall(TheFn, Ops);
271 
272   // Set the alignment of the pointer args.
273   auto *AMCI = cast<AtomicMemCpyInst>(CI);
274   AMCI->setDestAlignment(DstAlign);
275   AMCI->setSourceAlignment(SrcAlign);
276 
277   // Set the TBAA info if present.
278   if (TBAATag)
279     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
280 
281   // Set the TBAA Struct info if present.
282   if (TBAAStructTag)
283     CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag);
284 
285   if (ScopeTag)
286     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
287 
288   if (NoAliasTag)
289     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
290 
291   return CI;
292 }
293 
294 /// isConstantOne - Return true only if val is constant int 1
295 static bool isConstantOne(const Value *Val) {
296   assert(Val && "isConstantOne does not work with nullptr Val");
297   const ConstantInt *CVal = dyn_cast<ConstantInt>(Val);
298   return CVal && CVal->isOne();
299 }
300 
301 CallInst *IRBuilderBase::CreateMalloc(Type *IntPtrTy, Type *AllocTy,
302                                       Value *AllocSize, Value *ArraySize,
303                                       ArrayRef<OperandBundleDef> OpB,
304                                       Function *MallocF, const Twine &Name) {
305   // malloc(type) becomes:
306   //       i8* malloc(typeSize)
307   // malloc(type, arraySize) becomes:
308   //       i8* malloc(typeSize*arraySize)
309   if (!ArraySize)
310     ArraySize = ConstantInt::get(IntPtrTy, 1);
311   else if (ArraySize->getType() != IntPtrTy)
312     ArraySize = CreateIntCast(ArraySize, IntPtrTy, false);
313 
314   if (!isConstantOne(ArraySize)) {
315     if (isConstantOne(AllocSize)) {
316       AllocSize = ArraySize; // Operand * 1 = Operand
317     } else {
318       // Multiply type size by the array size...
319       AllocSize = CreateMul(ArraySize, AllocSize, "mallocsize");
320     }
321   }
322 
323   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
324   // Create the call to Malloc.
325   Module *M = BB->getParent()->getParent();
326   Type *BPTy = PointerType::getUnqual(Context);
327   FunctionCallee MallocFunc = MallocF;
328   if (!MallocFunc)
329     // prototype malloc as "void *malloc(size_t)"
330     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
331   CallInst *MCall = CreateCall(MallocFunc, AllocSize, OpB, Name);
332 
333   MCall->setTailCall();
334   if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
335     MCall->setCallingConv(F->getCallingConv());
336     F->setReturnDoesNotAlias();
337   }
338 
339   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
340 
341   return MCall;
342 }
343 
344 CallInst *IRBuilderBase::CreateMalloc(Type *IntPtrTy, Type *AllocTy,
345                                       Value *AllocSize, Value *ArraySize,
346                                       Function *MallocF, const Twine &Name) {
347 
348   return CreateMalloc(IntPtrTy, AllocTy, AllocSize, ArraySize, std::nullopt,
349                       MallocF, Name);
350 }
351 
352 /// CreateFree - Generate the IR for a call to the builtin free function.
353 CallInst *IRBuilderBase::CreateFree(Value *Source,
354                                     ArrayRef<OperandBundleDef> Bundles) {
355   assert(Source->getType()->isPointerTy() &&
356          "Can not free something of nonpointer type!");
357 
358   Module *M = BB->getParent()->getParent();
359 
360   Type *VoidTy = Type::getVoidTy(M->getContext());
361   Type *VoidPtrTy = PointerType::getUnqual(M->getContext());
362   // prototype free as "void free(void*)"
363   FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, VoidPtrTy);
364   CallInst *Result = CreateCall(FreeFunc, Source, Bundles, "");
365   Result->setTailCall();
366   if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
367     Result->setCallingConv(F->getCallingConv());
368 
369   return Result;
370 }
371 
372 CallInst *IRBuilderBase::CreateElementUnorderedAtomicMemMove(
373     Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size,
374     uint32_t ElementSize, MDNode *TBAATag, MDNode *TBAAStructTag,
375     MDNode *ScopeTag, MDNode *NoAliasTag) {
376   assert(DstAlign >= ElementSize &&
377          "Pointer alignment must be at least element size");
378   assert(SrcAlign >= ElementSize &&
379          "Pointer alignment must be at least element size");
380   Value *Ops[] = {Dst, Src, Size, getInt32(ElementSize)};
381   Type *Tys[] = {Dst->getType(), Src->getType(), Size->getType()};
382   Module *M = BB->getParent()->getParent();
383   Function *TheFn = Intrinsic::getDeclaration(
384       M, Intrinsic::memmove_element_unordered_atomic, Tys);
385 
386   CallInst *CI = CreateCall(TheFn, Ops);
387 
388   // Set the alignment of the pointer args.
389   CI->addParamAttr(0, Attribute::getWithAlignment(CI->getContext(), DstAlign));
390   CI->addParamAttr(1, Attribute::getWithAlignment(CI->getContext(), SrcAlign));
391 
392   // Set the TBAA info if present.
393   if (TBAATag)
394     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
395 
396   // Set the TBAA Struct info if present.
397   if (TBAAStructTag)
398     CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag);
399 
400   if (ScopeTag)
401     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
402 
403   if (NoAliasTag)
404     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
405 
406   return CI;
407 }
408 
409 CallInst *IRBuilderBase::getReductionIntrinsic(Intrinsic::ID ID, Value *Src) {
410   Module *M = GetInsertBlock()->getParent()->getParent();
411   Value *Ops[] = {Src};
412   Type *Tys[] = { Src->getType() };
413   auto Decl = Intrinsic::getDeclaration(M, ID, Tys);
414   return CreateCall(Decl, Ops);
415 }
416 
417 CallInst *IRBuilderBase::CreateFAddReduce(Value *Acc, Value *Src) {
418   Module *M = GetInsertBlock()->getParent()->getParent();
419   Value *Ops[] = {Acc, Src};
420   auto Decl = Intrinsic::getDeclaration(M, Intrinsic::vector_reduce_fadd,
421                                         {Src->getType()});
422   return CreateCall(Decl, Ops);
423 }
424 
425 CallInst *IRBuilderBase::CreateFMulReduce(Value *Acc, Value *Src) {
426   Module *M = GetInsertBlock()->getParent()->getParent();
427   Value *Ops[] = {Acc, Src};
428   auto Decl = Intrinsic::getDeclaration(M, Intrinsic::vector_reduce_fmul,
429                                         {Src->getType()});
430   return CreateCall(Decl, Ops);
431 }
432 
433 CallInst *IRBuilderBase::CreateAddReduce(Value *Src) {
434   return getReductionIntrinsic(Intrinsic::vector_reduce_add, Src);
435 }
436 
437 CallInst *IRBuilderBase::CreateMulReduce(Value *Src) {
438   return getReductionIntrinsic(Intrinsic::vector_reduce_mul, Src);
439 }
440 
441 CallInst *IRBuilderBase::CreateAndReduce(Value *Src) {
442   return getReductionIntrinsic(Intrinsic::vector_reduce_and, Src);
443 }
444 
445 CallInst *IRBuilderBase::CreateOrReduce(Value *Src) {
446   return getReductionIntrinsic(Intrinsic::vector_reduce_or, Src);
447 }
448 
449 CallInst *IRBuilderBase::CreateXorReduce(Value *Src) {
450   return getReductionIntrinsic(Intrinsic::vector_reduce_xor, Src);
451 }
452 
453 CallInst *IRBuilderBase::CreateIntMaxReduce(Value *Src, bool IsSigned) {
454   auto ID =
455       IsSigned ? Intrinsic::vector_reduce_smax : Intrinsic::vector_reduce_umax;
456   return getReductionIntrinsic(ID, Src);
457 }
458 
459 CallInst *IRBuilderBase::CreateIntMinReduce(Value *Src, bool IsSigned) {
460   auto ID =
461       IsSigned ? Intrinsic::vector_reduce_smin : Intrinsic::vector_reduce_umin;
462   return getReductionIntrinsic(ID, Src);
463 }
464 
465 CallInst *IRBuilderBase::CreateFPMaxReduce(Value *Src) {
466   return getReductionIntrinsic(Intrinsic::vector_reduce_fmax, Src);
467 }
468 
469 CallInst *IRBuilderBase::CreateFPMinReduce(Value *Src) {
470   return getReductionIntrinsic(Intrinsic::vector_reduce_fmin, Src);
471 }
472 
473 CallInst *IRBuilderBase::CreateFPMaximumReduce(Value *Src) {
474   return getReductionIntrinsic(Intrinsic::vector_reduce_fmaximum, Src);
475 }
476 
477 CallInst *IRBuilderBase::CreateFPMinimumReduce(Value *Src) {
478   return getReductionIntrinsic(Intrinsic::vector_reduce_fminimum, Src);
479 }
480 
481 CallInst *IRBuilderBase::CreateLifetimeStart(Value *Ptr, ConstantInt *Size) {
482   assert(isa<PointerType>(Ptr->getType()) &&
483          "lifetime.start only applies to pointers.");
484   if (!Size)
485     Size = getInt64(-1);
486   else
487     assert(Size->getType() == getInt64Ty() &&
488            "lifetime.start requires the size to be an i64");
489   Value *Ops[] = { Size, Ptr };
490   Module *M = BB->getParent()->getParent();
491   Function *TheFn =
492       Intrinsic::getDeclaration(M, Intrinsic::lifetime_start, {Ptr->getType()});
493   return CreateCall(TheFn, Ops);
494 }
495 
496 CallInst *IRBuilderBase::CreateLifetimeEnd(Value *Ptr, ConstantInt *Size) {
497   assert(isa<PointerType>(Ptr->getType()) &&
498          "lifetime.end only applies to pointers.");
499   if (!Size)
500     Size = getInt64(-1);
501   else
502     assert(Size->getType() == getInt64Ty() &&
503            "lifetime.end requires the size to be an i64");
504   Value *Ops[] = { Size, Ptr };
505   Module *M = BB->getParent()->getParent();
506   Function *TheFn =
507       Intrinsic::getDeclaration(M, Intrinsic::lifetime_end, {Ptr->getType()});
508   return CreateCall(TheFn, Ops);
509 }
510 
511 CallInst *IRBuilderBase::CreateInvariantStart(Value *Ptr, ConstantInt *Size) {
512 
513   assert(isa<PointerType>(Ptr->getType()) &&
514          "invariant.start only applies to pointers.");
515   if (!Size)
516     Size = getInt64(-1);
517   else
518     assert(Size->getType() == getInt64Ty() &&
519            "invariant.start requires the size to be an i64");
520 
521   Value *Ops[] = {Size, Ptr};
522   // Fill in the single overloaded type: memory object type.
523   Type *ObjectPtr[1] = {Ptr->getType()};
524   Module *M = BB->getParent()->getParent();
525   Function *TheFn =
526       Intrinsic::getDeclaration(M, Intrinsic::invariant_start, ObjectPtr);
527   return CreateCall(TheFn, Ops);
528 }
529 
530 static MaybeAlign getAlign(Value *Ptr) {
531   if (auto *O = dyn_cast<GlobalObject>(Ptr))
532     return O->getAlign();
533   if (auto *A = dyn_cast<GlobalAlias>(Ptr))
534     return A->getAliaseeObject()->getAlign();
535   return {};
536 }
537 
538 CallInst *IRBuilderBase::CreateThreadLocalAddress(Value *Ptr) {
539   assert(isa<GlobalValue>(Ptr) && cast<GlobalValue>(Ptr)->isThreadLocal() &&
540          "threadlocal_address only applies to thread local variables.");
541   CallInst *CI = CreateIntrinsic(llvm::Intrinsic::threadlocal_address,
542                                  {Ptr->getType()}, {Ptr});
543   if (MaybeAlign A = getAlign(Ptr)) {
544     CI->addParamAttr(0, Attribute::getWithAlignment(CI->getContext(), *A));
545     CI->addRetAttr(Attribute::getWithAlignment(CI->getContext(), *A));
546   }
547   return CI;
548 }
549 
550 CallInst *
551 IRBuilderBase::CreateAssumption(Value *Cond,
552                                 ArrayRef<OperandBundleDef> OpBundles) {
553   assert(Cond->getType() == getInt1Ty() &&
554          "an assumption condition must be of type i1");
555 
556   Value *Ops[] = { Cond };
557   Module *M = BB->getParent()->getParent();
558   Function *FnAssume = Intrinsic::getDeclaration(M, Intrinsic::assume);
559   return CreateCall(FnAssume, Ops, OpBundles);
560 }
561 
562 Instruction *IRBuilderBase::CreateNoAliasScopeDeclaration(Value *Scope) {
563   Module *M = BB->getModule();
564   auto *FnIntrinsic = Intrinsic::getDeclaration(
565       M, Intrinsic::experimental_noalias_scope_decl, {});
566   return CreateCall(FnIntrinsic, {Scope});
567 }
568 
569 /// Create a call to a Masked Load intrinsic.
570 /// \p Ty        - vector type to load
571 /// \p Ptr       - base pointer for the load
572 /// \p Alignment - alignment of the source location
573 /// \p Mask      - vector of booleans which indicates what vector lanes should
574 ///                be accessed in memory
575 /// \p PassThru  - pass-through value that is used to fill the masked-off lanes
576 ///                of the result
577 /// \p Name      - name of the result variable
578 CallInst *IRBuilderBase::CreateMaskedLoad(Type *Ty, Value *Ptr, Align Alignment,
579                                           Value *Mask, Value *PassThru,
580                                           const Twine &Name) {
581   auto *PtrTy = cast<PointerType>(Ptr->getType());
582   assert(Ty->isVectorTy() && "Type should be vector");
583   assert(Mask && "Mask should not be all-ones (null)");
584   if (!PassThru)
585     PassThru = PoisonValue::get(Ty);
586   Type *OverloadedTypes[] = { Ty, PtrTy };
587   Value *Ops[] = {Ptr, getInt32(Alignment.value()), Mask, PassThru};
588   return CreateMaskedIntrinsic(Intrinsic::masked_load, Ops,
589                                OverloadedTypes, Name);
590 }
591 
592 /// Create a call to a Masked Store intrinsic.
593 /// \p Val       - data to be stored,
594 /// \p Ptr       - base pointer for the store
595 /// \p Alignment - alignment of the destination location
596 /// \p Mask      - vector of booleans which indicates what vector lanes should
597 ///                be accessed in memory
598 CallInst *IRBuilderBase::CreateMaskedStore(Value *Val, Value *Ptr,
599                                            Align Alignment, Value *Mask) {
600   auto *PtrTy = cast<PointerType>(Ptr->getType());
601   Type *DataTy = Val->getType();
602   assert(DataTy->isVectorTy() && "Val should be a vector");
603   assert(Mask && "Mask should not be all-ones (null)");
604   Type *OverloadedTypes[] = { DataTy, PtrTy };
605   Value *Ops[] = {Val, Ptr, getInt32(Alignment.value()), Mask};
606   return CreateMaskedIntrinsic(Intrinsic::masked_store, Ops, OverloadedTypes);
607 }
608 
609 /// Create a call to a Masked intrinsic, with given intrinsic Id,
610 /// an array of operands - Ops, and an array of overloaded types -
611 /// OverloadedTypes.
612 CallInst *IRBuilderBase::CreateMaskedIntrinsic(Intrinsic::ID Id,
613                                                ArrayRef<Value *> Ops,
614                                                ArrayRef<Type *> OverloadedTypes,
615                                                const Twine &Name) {
616   Module *M = BB->getParent()->getParent();
617   Function *TheFn = Intrinsic::getDeclaration(M, Id, OverloadedTypes);
618   return CreateCall(TheFn, Ops, {}, Name);
619 }
620 
621 /// Create a call to a Masked Gather intrinsic.
622 /// \p Ty       - vector type to gather
623 /// \p Ptrs     - vector of pointers for loading
624 /// \p Align    - alignment for one element
625 /// \p Mask     - vector of booleans which indicates what vector lanes should
626 ///               be accessed in memory
627 /// \p PassThru - pass-through value that is used to fill the masked-off lanes
628 ///               of the result
629 /// \p Name     - name of the result variable
630 CallInst *IRBuilderBase::CreateMaskedGather(Type *Ty, Value *Ptrs,
631                                             Align Alignment, Value *Mask,
632                                             Value *PassThru,
633                                             const Twine &Name) {
634   auto *VecTy = cast<VectorType>(Ty);
635   ElementCount NumElts = VecTy->getElementCount();
636   auto *PtrsTy = cast<VectorType>(Ptrs->getType());
637   assert(NumElts == PtrsTy->getElementCount() && "Element count mismatch");
638 
639   if (!Mask)
640     Mask = getAllOnesMask(NumElts);
641 
642   if (!PassThru)
643     PassThru = PoisonValue::get(Ty);
644 
645   Type *OverloadedTypes[] = {Ty, PtrsTy};
646   Value *Ops[] = {Ptrs, getInt32(Alignment.value()), Mask, PassThru};
647 
648   // We specify only one type when we create this intrinsic. Types of other
649   // arguments are derived from this type.
650   return CreateMaskedIntrinsic(Intrinsic::masked_gather, Ops, OverloadedTypes,
651                                Name);
652 }
653 
654 /// Create a call to a Masked Scatter intrinsic.
655 /// \p Data  - data to be stored,
656 /// \p Ptrs  - the vector of pointers, where the \p Data elements should be
657 ///            stored
658 /// \p Align - alignment for one element
659 /// \p Mask  - vector of booleans which indicates what vector lanes should
660 ///            be accessed in memory
661 CallInst *IRBuilderBase::CreateMaskedScatter(Value *Data, Value *Ptrs,
662                                              Align Alignment, Value *Mask) {
663   auto *PtrsTy = cast<VectorType>(Ptrs->getType());
664   auto *DataTy = cast<VectorType>(Data->getType());
665   ElementCount NumElts = PtrsTy->getElementCount();
666 
667   if (!Mask)
668     Mask = getAllOnesMask(NumElts);
669 
670   Type *OverloadedTypes[] = {DataTy, PtrsTy};
671   Value *Ops[] = {Data, Ptrs, getInt32(Alignment.value()), Mask};
672 
673   // We specify only one type when we create this intrinsic. Types of other
674   // arguments are derived from this type.
675   return CreateMaskedIntrinsic(Intrinsic::masked_scatter, Ops, OverloadedTypes);
676 }
677 
678 /// Create a call to Masked Expand Load intrinsic
679 /// \p Ty        - vector type to load
680 /// \p Ptr       - base pointer for the load
681 /// \p Mask      - vector of booleans which indicates what vector lanes should
682 ///                be accessed in memory
683 /// \p PassThru  - pass-through value that is used to fill the masked-off lanes
684 ///                of the result
685 /// \p Name      - name of the result variable
686 CallInst *IRBuilderBase::CreateMaskedExpandLoad(Type *Ty, Value *Ptr,
687                                                 Value *Mask, Value *PassThru,
688                                                 const Twine &Name) {
689   assert(Ty->isVectorTy() && "Type should be vector");
690   assert(Mask && "Mask should not be all-ones (null)");
691   if (!PassThru)
692     PassThru = PoisonValue::get(Ty);
693   Type *OverloadedTypes[] = {Ty};
694   Value *Ops[] = {Ptr, Mask, PassThru};
695   return CreateMaskedIntrinsic(Intrinsic::masked_expandload, Ops,
696                                OverloadedTypes, Name);
697 }
698 
699 /// Create a call to Masked Compress Store intrinsic
700 /// \p Val       - data to be stored,
701 /// \p Ptr       - base pointer for the store
702 /// \p Mask      - vector of booleans which indicates what vector lanes should
703 ///                be accessed in memory
704 CallInst *IRBuilderBase::CreateMaskedCompressStore(Value *Val, Value *Ptr,
705                                                    Value *Mask) {
706   Type *DataTy = Val->getType();
707   assert(DataTy->isVectorTy() && "Val should be a vector");
708   assert(Mask && "Mask should not be all-ones (null)");
709   Type *OverloadedTypes[] = {DataTy};
710   Value *Ops[] = {Val, Ptr, Mask};
711   return CreateMaskedIntrinsic(Intrinsic::masked_compressstore, Ops,
712                                OverloadedTypes);
713 }
714 
715 template <typename T0>
716 static std::vector<Value *>
717 getStatepointArgs(IRBuilderBase &B, uint64_t ID, uint32_t NumPatchBytes,
718                   Value *ActualCallee, uint32_t Flags, ArrayRef<T0> CallArgs) {
719   std::vector<Value *> Args;
720   Args.push_back(B.getInt64(ID));
721   Args.push_back(B.getInt32(NumPatchBytes));
722   Args.push_back(ActualCallee);
723   Args.push_back(B.getInt32(CallArgs.size()));
724   Args.push_back(B.getInt32(Flags));
725   llvm::append_range(Args, CallArgs);
726   // GC Transition and Deopt args are now always handled via operand bundle.
727   // They will be removed from the signature of gc.statepoint shortly.
728   Args.push_back(B.getInt32(0));
729   Args.push_back(B.getInt32(0));
730   // GC args are now encoded in the gc-live operand bundle
731   return Args;
732 }
733 
734 template<typename T1, typename T2, typename T3>
735 static std::vector<OperandBundleDef>
736 getStatepointBundles(std::optional<ArrayRef<T1>> TransitionArgs,
737                      std::optional<ArrayRef<T2>> DeoptArgs,
738                      ArrayRef<T3> GCArgs) {
739   std::vector<OperandBundleDef> Rval;
740   if (DeoptArgs) {
741     SmallVector<Value*, 16> DeoptValues;
742     llvm::append_range(DeoptValues, *DeoptArgs);
743     Rval.emplace_back("deopt", DeoptValues);
744   }
745   if (TransitionArgs) {
746     SmallVector<Value*, 16> TransitionValues;
747     llvm::append_range(TransitionValues, *TransitionArgs);
748     Rval.emplace_back("gc-transition", TransitionValues);
749   }
750   if (GCArgs.size()) {
751     SmallVector<Value*, 16> LiveValues;
752     llvm::append_range(LiveValues, GCArgs);
753     Rval.emplace_back("gc-live", LiveValues);
754   }
755   return Rval;
756 }
757 
758 template <typename T0, typename T1, typename T2, typename T3>
759 static CallInst *CreateGCStatepointCallCommon(
760     IRBuilderBase *Builder, uint64_t ID, uint32_t NumPatchBytes,
761     FunctionCallee ActualCallee, uint32_t Flags, ArrayRef<T0> CallArgs,
762     std::optional<ArrayRef<T1>> TransitionArgs,
763     std::optional<ArrayRef<T2>> DeoptArgs, ArrayRef<T3> GCArgs,
764     const Twine &Name) {
765   Module *M = Builder->GetInsertBlock()->getParent()->getParent();
766   // Fill in the one generic type'd argument (the function is also vararg)
767   Function *FnStatepoint =
768       Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_statepoint,
769                                 {ActualCallee.getCallee()->getType()});
770 
771   std::vector<Value *> Args = getStatepointArgs(
772       *Builder, ID, NumPatchBytes, ActualCallee.getCallee(), Flags, CallArgs);
773 
774   CallInst *CI = Builder->CreateCall(
775       FnStatepoint, Args,
776       getStatepointBundles(TransitionArgs, DeoptArgs, GCArgs), Name);
777   CI->addParamAttr(2,
778                    Attribute::get(Builder->getContext(), Attribute::ElementType,
779                                   ActualCallee.getFunctionType()));
780   return CI;
781 }
782 
783 CallInst *IRBuilderBase::CreateGCStatepointCall(
784     uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualCallee,
785     ArrayRef<Value *> CallArgs, std::optional<ArrayRef<Value *>> DeoptArgs,
786     ArrayRef<Value *> GCArgs, const Twine &Name) {
787   return CreateGCStatepointCallCommon<Value *, Value *, Value *, Value *>(
788       this, ID, NumPatchBytes, ActualCallee, uint32_t(StatepointFlags::None),
789       CallArgs, std::nullopt /* No Transition Args */, DeoptArgs, GCArgs, Name);
790 }
791 
792 CallInst *IRBuilderBase::CreateGCStatepointCall(
793     uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualCallee,
794     uint32_t Flags, ArrayRef<Value *> CallArgs,
795     std::optional<ArrayRef<Use>> TransitionArgs,
796     std::optional<ArrayRef<Use>> DeoptArgs, ArrayRef<Value *> GCArgs,
797     const Twine &Name) {
798   return CreateGCStatepointCallCommon<Value *, Use, Use, Value *>(
799       this, ID, NumPatchBytes, ActualCallee, Flags, CallArgs, TransitionArgs,
800       DeoptArgs, GCArgs, Name);
801 }
802 
803 CallInst *IRBuilderBase::CreateGCStatepointCall(
804     uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualCallee,
805     ArrayRef<Use> CallArgs, std::optional<ArrayRef<Value *>> DeoptArgs,
806     ArrayRef<Value *> GCArgs, const Twine &Name) {
807   return CreateGCStatepointCallCommon<Use, Value *, Value *, Value *>(
808       this, ID, NumPatchBytes, ActualCallee, uint32_t(StatepointFlags::None),
809       CallArgs, std::nullopt, DeoptArgs, GCArgs, Name);
810 }
811 
812 template <typename T0, typename T1, typename T2, typename T3>
813 static InvokeInst *CreateGCStatepointInvokeCommon(
814     IRBuilderBase *Builder, uint64_t ID, uint32_t NumPatchBytes,
815     FunctionCallee ActualInvokee, BasicBlock *NormalDest,
816     BasicBlock *UnwindDest, uint32_t Flags, ArrayRef<T0> InvokeArgs,
817     std::optional<ArrayRef<T1>> TransitionArgs,
818     std::optional<ArrayRef<T2>> DeoptArgs, ArrayRef<T3> GCArgs,
819     const Twine &Name) {
820   Module *M = Builder->GetInsertBlock()->getParent()->getParent();
821   // Fill in the one generic type'd argument (the function is also vararg)
822   Function *FnStatepoint =
823       Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_statepoint,
824                                 {ActualInvokee.getCallee()->getType()});
825 
826   std::vector<Value *> Args =
827       getStatepointArgs(*Builder, ID, NumPatchBytes, ActualInvokee.getCallee(),
828                         Flags, InvokeArgs);
829 
830   InvokeInst *II = Builder->CreateInvoke(
831       FnStatepoint, NormalDest, UnwindDest, Args,
832       getStatepointBundles(TransitionArgs, DeoptArgs, GCArgs), Name);
833   II->addParamAttr(2,
834                    Attribute::get(Builder->getContext(), Attribute::ElementType,
835                                   ActualInvokee.getFunctionType()));
836   return II;
837 }
838 
839 InvokeInst *IRBuilderBase::CreateGCStatepointInvoke(
840     uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualInvokee,
841     BasicBlock *NormalDest, BasicBlock *UnwindDest,
842     ArrayRef<Value *> InvokeArgs, std::optional<ArrayRef<Value *>> DeoptArgs,
843     ArrayRef<Value *> GCArgs, const Twine &Name) {
844   return CreateGCStatepointInvokeCommon<Value *, Value *, Value *, Value *>(
845       this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest,
846       uint32_t(StatepointFlags::None), InvokeArgs,
847       std::nullopt /* No Transition Args*/, DeoptArgs, GCArgs, Name);
848 }
849 
850 InvokeInst *IRBuilderBase::CreateGCStatepointInvoke(
851     uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualInvokee,
852     BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags,
853     ArrayRef<Value *> InvokeArgs, std::optional<ArrayRef<Use>> TransitionArgs,
854     std::optional<ArrayRef<Use>> DeoptArgs, ArrayRef<Value *> GCArgs,
855     const Twine &Name) {
856   return CreateGCStatepointInvokeCommon<Value *, Use, Use, Value *>(
857       this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest, Flags,
858       InvokeArgs, TransitionArgs, DeoptArgs, GCArgs, Name);
859 }
860 
861 InvokeInst *IRBuilderBase::CreateGCStatepointInvoke(
862     uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualInvokee,
863     BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef<Use> InvokeArgs,
864     std::optional<ArrayRef<Value *>> DeoptArgs, ArrayRef<Value *> GCArgs,
865     const Twine &Name) {
866   return CreateGCStatepointInvokeCommon<Use, Value *, Value *, Value *>(
867       this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest,
868       uint32_t(StatepointFlags::None), InvokeArgs, std::nullopt, DeoptArgs,
869       GCArgs, Name);
870 }
871 
872 CallInst *IRBuilderBase::CreateGCResult(Instruction *Statepoint,
873                                         Type *ResultType, const Twine &Name) {
874   Intrinsic::ID ID = Intrinsic::experimental_gc_result;
875   Module *M = BB->getParent()->getParent();
876   Type *Types[] = {ResultType};
877   Function *FnGCResult = Intrinsic::getDeclaration(M, ID, Types);
878 
879   Value *Args[] = {Statepoint};
880   return CreateCall(FnGCResult, Args, {}, Name);
881 }
882 
883 CallInst *IRBuilderBase::CreateGCRelocate(Instruction *Statepoint,
884                                           int BaseOffset, int DerivedOffset,
885                                           Type *ResultType, const Twine &Name) {
886   Module *M = BB->getParent()->getParent();
887   Type *Types[] = {ResultType};
888   Function *FnGCRelocate =
889       Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types);
890 
891   Value *Args[] = {Statepoint, getInt32(BaseOffset), getInt32(DerivedOffset)};
892   return CreateCall(FnGCRelocate, Args, {}, Name);
893 }
894 
895 CallInst *IRBuilderBase::CreateGCGetPointerBase(Value *DerivedPtr,
896                                                 const Twine &Name) {
897   Module *M = BB->getParent()->getParent();
898   Type *PtrTy = DerivedPtr->getType();
899   Function *FnGCFindBase = Intrinsic::getDeclaration(
900       M, Intrinsic::experimental_gc_get_pointer_base, {PtrTy, PtrTy});
901   return CreateCall(FnGCFindBase, {DerivedPtr}, {}, Name);
902 }
903 
904 CallInst *IRBuilderBase::CreateGCGetPointerOffset(Value *DerivedPtr,
905                                                   const Twine &Name) {
906   Module *M = BB->getParent()->getParent();
907   Type *PtrTy = DerivedPtr->getType();
908   Function *FnGCGetOffset = Intrinsic::getDeclaration(
909       M, Intrinsic::experimental_gc_get_pointer_offset, {PtrTy});
910   return CreateCall(FnGCGetOffset, {DerivedPtr}, {}, Name);
911 }
912 
913 CallInst *IRBuilderBase::CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V,
914                                               Instruction *FMFSource,
915                                               const Twine &Name) {
916   Module *M = BB->getModule();
917   Function *Fn = Intrinsic::getDeclaration(M, ID, {V->getType()});
918   return createCallHelper(Fn, {V}, Name, FMFSource);
919 }
920 
921 CallInst *IRBuilderBase::CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS,
922                                                Value *RHS,
923                                                Instruction *FMFSource,
924                                                const Twine &Name) {
925   Module *M = BB->getModule();
926   Function *Fn = Intrinsic::getDeclaration(M, ID, { LHS->getType() });
927   return createCallHelper(Fn, {LHS, RHS}, Name, FMFSource);
928 }
929 
930 CallInst *IRBuilderBase::CreateIntrinsic(Intrinsic::ID ID,
931                                          ArrayRef<Type *> Types,
932                                          ArrayRef<Value *> Args,
933                                          Instruction *FMFSource,
934                                          const Twine &Name) {
935   Module *M = BB->getModule();
936   Function *Fn = Intrinsic::getDeclaration(M, ID, Types);
937   return createCallHelper(Fn, Args, Name, FMFSource);
938 }
939 
940 CallInst *IRBuilderBase::CreateIntrinsic(Type *RetTy, Intrinsic::ID ID,
941                                          ArrayRef<Value *> Args,
942                                          Instruction *FMFSource,
943                                          const Twine &Name) {
944   Module *M = BB->getModule();
945 
946   SmallVector<Intrinsic::IITDescriptor> Table;
947   Intrinsic::getIntrinsicInfoTableEntries(ID, Table);
948   ArrayRef<Intrinsic::IITDescriptor> TableRef(Table);
949 
950   SmallVector<Type *> ArgTys;
951   ArgTys.reserve(Args.size());
952   for (auto &I : Args)
953     ArgTys.push_back(I->getType());
954   FunctionType *FTy = FunctionType::get(RetTy, ArgTys, false);
955   SmallVector<Type *> OverloadTys;
956   Intrinsic::MatchIntrinsicTypesResult Res =
957       matchIntrinsicSignature(FTy, TableRef, OverloadTys);
958   (void)Res;
959   assert(Res == Intrinsic::MatchIntrinsicTypes_Match && TableRef.empty() &&
960          "Wrong types for intrinsic!");
961   // TODO: Handle varargs intrinsics.
962 
963   Function *Fn = Intrinsic::getDeclaration(M, ID, OverloadTys);
964   return createCallHelper(Fn, Args, Name, FMFSource);
965 }
966 
967 CallInst *IRBuilderBase::CreateConstrainedFPBinOp(
968     Intrinsic::ID ID, Value *L, Value *R, Instruction *FMFSource,
969     const Twine &Name, MDNode *FPMathTag,
970     std::optional<RoundingMode> Rounding,
971     std::optional<fp::ExceptionBehavior> Except) {
972   Value *RoundingV = getConstrainedFPRounding(Rounding);
973   Value *ExceptV = getConstrainedFPExcept(Except);
974 
975   FastMathFlags UseFMF = FMF;
976   if (FMFSource)
977     UseFMF = FMFSource->getFastMathFlags();
978 
979   CallInst *C = CreateIntrinsic(ID, {L->getType()},
980                                 {L, R, RoundingV, ExceptV}, nullptr, Name);
981   setConstrainedFPCallAttr(C);
982   setFPAttrs(C, FPMathTag, UseFMF);
983   return C;
984 }
985 
986 CallInst *IRBuilderBase::CreateConstrainedFPUnroundedBinOp(
987     Intrinsic::ID ID, Value *L, Value *R, Instruction *FMFSource,
988     const Twine &Name, MDNode *FPMathTag,
989     std::optional<fp::ExceptionBehavior> Except) {
990   Value *ExceptV = getConstrainedFPExcept(Except);
991 
992   FastMathFlags UseFMF = FMF;
993   if (FMFSource)
994     UseFMF = FMFSource->getFastMathFlags();
995 
996   CallInst *C =
997       CreateIntrinsic(ID, {L->getType()}, {L, R, ExceptV}, nullptr, Name);
998   setConstrainedFPCallAttr(C);
999   setFPAttrs(C, FPMathTag, UseFMF);
1000   return C;
1001 }
1002 
1003 Value *IRBuilderBase::CreateNAryOp(unsigned Opc, ArrayRef<Value *> Ops,
1004                                    const Twine &Name, MDNode *FPMathTag) {
1005   if (Instruction::isBinaryOp(Opc)) {
1006     assert(Ops.size() == 2 && "Invalid number of operands!");
1007     return CreateBinOp(static_cast<Instruction::BinaryOps>(Opc),
1008                        Ops[0], Ops[1], Name, FPMathTag);
1009   }
1010   if (Instruction::isUnaryOp(Opc)) {
1011     assert(Ops.size() == 1 && "Invalid number of operands!");
1012     return CreateUnOp(static_cast<Instruction::UnaryOps>(Opc),
1013                       Ops[0], Name, FPMathTag);
1014   }
1015   llvm_unreachable("Unexpected opcode!");
1016 }
1017 
1018 CallInst *IRBuilderBase::CreateConstrainedFPCast(
1019     Intrinsic::ID ID, Value *V, Type *DestTy,
1020     Instruction *FMFSource, const Twine &Name, MDNode *FPMathTag,
1021     std::optional<RoundingMode> Rounding,
1022     std::optional<fp::ExceptionBehavior> Except) {
1023   Value *ExceptV = getConstrainedFPExcept(Except);
1024 
1025   FastMathFlags UseFMF = FMF;
1026   if (FMFSource)
1027     UseFMF = FMFSource->getFastMathFlags();
1028 
1029   CallInst *C;
1030   bool HasRoundingMD = false;
1031   switch (ID) {
1032   default:
1033     break;
1034 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)        \
1035   case Intrinsic::INTRINSIC:                                \
1036     HasRoundingMD = ROUND_MODE;                             \
1037     break;
1038 #include "llvm/IR/ConstrainedOps.def"
1039   }
1040   if (HasRoundingMD) {
1041     Value *RoundingV = getConstrainedFPRounding(Rounding);
1042     C = CreateIntrinsic(ID, {DestTy, V->getType()}, {V, RoundingV, ExceptV},
1043                         nullptr, Name);
1044   } else
1045     C = CreateIntrinsic(ID, {DestTy, V->getType()}, {V, ExceptV}, nullptr,
1046                         Name);
1047 
1048   setConstrainedFPCallAttr(C);
1049 
1050   if (isa<FPMathOperator>(C))
1051     setFPAttrs(C, FPMathTag, UseFMF);
1052   return C;
1053 }
1054 
1055 Value *IRBuilderBase::CreateFCmpHelper(
1056     CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name,
1057     MDNode *FPMathTag, bool IsSignaling) {
1058   if (IsFPConstrained) {
1059     auto ID = IsSignaling ? Intrinsic::experimental_constrained_fcmps
1060                           : Intrinsic::experimental_constrained_fcmp;
1061     return CreateConstrainedFPCmp(ID, P, LHS, RHS, Name);
1062   }
1063 
1064   if (auto *LC = dyn_cast<Constant>(LHS))
1065     if (auto *RC = dyn_cast<Constant>(RHS))
1066       return Insert(Folder.CreateFCmp(P, LC, RC), Name);
1067   return Insert(setFPAttrs(new FCmpInst(P, LHS, RHS), FPMathTag, FMF), Name);
1068 }
1069 
1070 CallInst *IRBuilderBase::CreateConstrainedFPCmp(
1071     Intrinsic::ID ID, CmpInst::Predicate P, Value *L, Value *R,
1072     const Twine &Name, std::optional<fp::ExceptionBehavior> Except) {
1073   Value *PredicateV = getConstrainedFPPredicate(P);
1074   Value *ExceptV = getConstrainedFPExcept(Except);
1075 
1076   CallInst *C = CreateIntrinsic(ID, {L->getType()},
1077                                 {L, R, PredicateV, ExceptV}, nullptr, Name);
1078   setConstrainedFPCallAttr(C);
1079   return C;
1080 }
1081 
1082 CallInst *IRBuilderBase::CreateConstrainedFPCall(
1083     Function *Callee, ArrayRef<Value *> Args, const Twine &Name,
1084     std::optional<RoundingMode> Rounding,
1085     std::optional<fp::ExceptionBehavior> Except) {
1086   llvm::SmallVector<Value *, 6> UseArgs;
1087 
1088   append_range(UseArgs, Args);
1089   bool HasRoundingMD = false;
1090   switch (Callee->getIntrinsicID()) {
1091   default:
1092     break;
1093 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)        \
1094   case Intrinsic::INTRINSIC:                                \
1095     HasRoundingMD = ROUND_MODE;                             \
1096     break;
1097 #include "llvm/IR/ConstrainedOps.def"
1098   }
1099   if (HasRoundingMD)
1100     UseArgs.push_back(getConstrainedFPRounding(Rounding));
1101   UseArgs.push_back(getConstrainedFPExcept(Except));
1102 
1103   CallInst *C = CreateCall(Callee, UseArgs, Name);
1104   setConstrainedFPCallAttr(C);
1105   return C;
1106 }
1107 
1108 Value *IRBuilderBase::CreateSelect(Value *C, Value *True, Value *False,
1109                                    const Twine &Name, Instruction *MDFrom) {
1110   if (auto *V = Folder.FoldSelect(C, True, False))
1111     return V;
1112 
1113   SelectInst *Sel = SelectInst::Create(C, True, False);
1114   if (MDFrom) {
1115     MDNode *Prof = MDFrom->getMetadata(LLVMContext::MD_prof);
1116     MDNode *Unpred = MDFrom->getMetadata(LLVMContext::MD_unpredictable);
1117     Sel = addBranchMetadata(Sel, Prof, Unpred);
1118   }
1119   if (isa<FPMathOperator>(Sel))
1120     setFPAttrs(Sel, nullptr /* MDNode* */, FMF);
1121   return Insert(Sel, Name);
1122 }
1123 
1124 Value *IRBuilderBase::CreatePtrDiff(Type *ElemTy, Value *LHS, Value *RHS,
1125                                     const Twine &Name) {
1126   assert(LHS->getType() == RHS->getType() &&
1127          "Pointer subtraction operand types must match!");
1128   Value *LHS_int = CreatePtrToInt(LHS, Type::getInt64Ty(Context));
1129   Value *RHS_int = CreatePtrToInt(RHS, Type::getInt64Ty(Context));
1130   Value *Difference = CreateSub(LHS_int, RHS_int);
1131   return CreateExactSDiv(Difference, ConstantExpr::getSizeOf(ElemTy),
1132                          Name);
1133 }
1134 
1135 Value *IRBuilderBase::CreateLaunderInvariantGroup(Value *Ptr) {
1136   assert(isa<PointerType>(Ptr->getType()) &&
1137          "launder.invariant.group only applies to pointers.");
1138   auto *PtrType = Ptr->getType();
1139   Module *M = BB->getParent()->getParent();
1140   Function *FnLaunderInvariantGroup = Intrinsic::getDeclaration(
1141       M, Intrinsic::launder_invariant_group, {PtrType});
1142 
1143   assert(FnLaunderInvariantGroup->getReturnType() == PtrType &&
1144          FnLaunderInvariantGroup->getFunctionType()->getParamType(0) ==
1145              PtrType &&
1146          "LaunderInvariantGroup should take and return the same type");
1147 
1148   return CreateCall(FnLaunderInvariantGroup, {Ptr});
1149 }
1150 
1151 Value *IRBuilderBase::CreateStripInvariantGroup(Value *Ptr) {
1152   assert(isa<PointerType>(Ptr->getType()) &&
1153          "strip.invariant.group only applies to pointers.");
1154 
1155   auto *PtrType = Ptr->getType();
1156   Module *M = BB->getParent()->getParent();
1157   Function *FnStripInvariantGroup = Intrinsic::getDeclaration(
1158       M, Intrinsic::strip_invariant_group, {PtrType});
1159 
1160   assert(FnStripInvariantGroup->getReturnType() == PtrType &&
1161          FnStripInvariantGroup->getFunctionType()->getParamType(0) ==
1162              PtrType &&
1163          "StripInvariantGroup should take and return the same type");
1164 
1165   return CreateCall(FnStripInvariantGroup, {Ptr});
1166 }
1167 
1168 Value *IRBuilderBase::CreateVectorReverse(Value *V, const Twine &Name) {
1169   auto *Ty = cast<VectorType>(V->getType());
1170   if (isa<ScalableVectorType>(Ty)) {
1171     Module *M = BB->getParent()->getParent();
1172     Function *F = Intrinsic::getDeclaration(
1173         M, Intrinsic::experimental_vector_reverse, Ty);
1174     return Insert(CallInst::Create(F, V), Name);
1175   }
1176   // Keep the original behaviour for fixed vector
1177   SmallVector<int, 8> ShuffleMask;
1178   int NumElts = Ty->getElementCount().getKnownMinValue();
1179   for (int i = 0; i < NumElts; ++i)
1180     ShuffleMask.push_back(NumElts - i - 1);
1181   return CreateShuffleVector(V, ShuffleMask, Name);
1182 }
1183 
1184 Value *IRBuilderBase::CreateVectorSplice(Value *V1, Value *V2, int64_t Imm,
1185                                          const Twine &Name) {
1186   assert(isa<VectorType>(V1->getType()) && "Unexpected type");
1187   assert(V1->getType() == V2->getType() &&
1188          "Splice expects matching operand types!");
1189 
1190   if (auto *VTy = dyn_cast<ScalableVectorType>(V1->getType())) {
1191     Module *M = BB->getParent()->getParent();
1192     Function *F = Intrinsic::getDeclaration(
1193         M, Intrinsic::experimental_vector_splice, VTy);
1194 
1195     Value *Ops[] = {V1, V2, getInt32(Imm)};
1196     return Insert(CallInst::Create(F, Ops), Name);
1197   }
1198 
1199   unsigned NumElts = cast<FixedVectorType>(V1->getType())->getNumElements();
1200   assert(((-Imm <= NumElts) || (Imm < NumElts)) &&
1201          "Invalid immediate for vector splice!");
1202 
1203   // Keep the original behaviour for fixed vector
1204   unsigned Idx = (NumElts + Imm) % NumElts;
1205   SmallVector<int, 8> Mask;
1206   for (unsigned I = 0; I < NumElts; ++I)
1207     Mask.push_back(Idx + I);
1208 
1209   return CreateShuffleVector(V1, V2, Mask);
1210 }
1211 
1212 Value *IRBuilderBase::CreateVectorSplat(unsigned NumElts, Value *V,
1213                                         const Twine &Name) {
1214   auto EC = ElementCount::getFixed(NumElts);
1215   return CreateVectorSplat(EC, V, Name);
1216 }
1217 
1218 Value *IRBuilderBase::CreateVectorSplat(ElementCount EC, Value *V,
1219                                         const Twine &Name) {
1220   assert(EC.isNonZero() && "Cannot splat to an empty vector!");
1221 
1222   // First insert it into a poison vector so we can shuffle it.
1223   Value *Poison = PoisonValue::get(VectorType::get(V->getType(), EC));
1224   V = CreateInsertElement(Poison, V, getInt64(0), Name + ".splatinsert");
1225 
1226   // Shuffle the value across the desired number of elements.
1227   SmallVector<int, 16> Zeros;
1228   Zeros.resize(EC.getKnownMinValue());
1229   return CreateShuffleVector(V, Zeros, Name + ".splat");
1230 }
1231 
1232 Value *IRBuilderBase::CreatePreserveArrayAccessIndex(
1233     Type *ElTy, Value *Base, unsigned Dimension, unsigned LastIndex,
1234     MDNode *DbgInfo) {
1235   auto *BaseType = Base->getType();
1236   assert(isa<PointerType>(BaseType) &&
1237          "Invalid Base ptr type for preserve.array.access.index.");
1238 
1239   Value *LastIndexV = getInt32(LastIndex);
1240   Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
1241   SmallVector<Value *, 4> IdxList(Dimension, Zero);
1242   IdxList.push_back(LastIndexV);
1243 
1244   Type *ResultType = GetElementPtrInst::getGEPReturnType(Base, IdxList);
1245 
1246   Module *M = BB->getParent()->getParent();
1247   Function *FnPreserveArrayAccessIndex = Intrinsic::getDeclaration(
1248       M, Intrinsic::preserve_array_access_index, {ResultType, BaseType});
1249 
1250   Value *DimV = getInt32(Dimension);
1251   CallInst *Fn =
1252       CreateCall(FnPreserveArrayAccessIndex, {Base, DimV, LastIndexV});
1253   Fn->addParamAttr(
1254       0, Attribute::get(Fn->getContext(), Attribute::ElementType, ElTy));
1255   if (DbgInfo)
1256     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
1257 
1258   return Fn;
1259 }
1260 
1261 Value *IRBuilderBase::CreatePreserveUnionAccessIndex(
1262     Value *Base, unsigned FieldIndex, MDNode *DbgInfo) {
1263   assert(isa<PointerType>(Base->getType()) &&
1264          "Invalid Base ptr type for preserve.union.access.index.");
1265   auto *BaseType = Base->getType();
1266 
1267   Module *M = BB->getParent()->getParent();
1268   Function *FnPreserveUnionAccessIndex = Intrinsic::getDeclaration(
1269       M, Intrinsic::preserve_union_access_index, {BaseType, BaseType});
1270 
1271   Value *DIIndex = getInt32(FieldIndex);
1272   CallInst *Fn =
1273       CreateCall(FnPreserveUnionAccessIndex, {Base, DIIndex});
1274   if (DbgInfo)
1275     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
1276 
1277   return Fn;
1278 }
1279 
1280 Value *IRBuilderBase::CreatePreserveStructAccessIndex(
1281     Type *ElTy, Value *Base, unsigned Index, unsigned FieldIndex,
1282     MDNode *DbgInfo) {
1283   auto *BaseType = Base->getType();
1284   assert(isa<PointerType>(BaseType) &&
1285          "Invalid Base ptr type for preserve.struct.access.index.");
1286 
1287   Value *GEPIndex = getInt32(Index);
1288   Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
1289   Type *ResultType =
1290       GetElementPtrInst::getGEPReturnType(Base, {Zero, GEPIndex});
1291 
1292   Module *M = BB->getParent()->getParent();
1293   Function *FnPreserveStructAccessIndex = Intrinsic::getDeclaration(
1294       M, Intrinsic::preserve_struct_access_index, {ResultType, BaseType});
1295 
1296   Value *DIIndex = getInt32(FieldIndex);
1297   CallInst *Fn = CreateCall(FnPreserveStructAccessIndex,
1298                             {Base, GEPIndex, DIIndex});
1299   Fn->addParamAttr(
1300       0, Attribute::get(Fn->getContext(), Attribute::ElementType, ElTy));
1301   if (DbgInfo)
1302     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
1303 
1304   return Fn;
1305 }
1306 
1307 Value *IRBuilderBase::createIsFPClass(Value *FPNum, unsigned Test) {
1308   ConstantInt *TestV = getInt32(Test);
1309   Module *M = BB->getParent()->getParent();
1310   Function *FnIsFPClass =
1311       Intrinsic::getDeclaration(M, Intrinsic::is_fpclass, {FPNum->getType()});
1312   return CreateCall(FnIsFPClass, {FPNum, TestV});
1313 }
1314 
1315 CallInst *IRBuilderBase::CreateAlignmentAssumptionHelper(const DataLayout &DL,
1316                                                          Value *PtrValue,
1317                                                          Value *AlignValue,
1318                                                          Value *OffsetValue) {
1319   SmallVector<Value *, 4> Vals({PtrValue, AlignValue});
1320   if (OffsetValue)
1321     Vals.push_back(OffsetValue);
1322   OperandBundleDefT<Value *> AlignOpB("align", Vals);
1323   return CreateAssumption(ConstantInt::getTrue(getContext()), {AlignOpB});
1324 }
1325 
1326 CallInst *IRBuilderBase::CreateAlignmentAssumption(const DataLayout &DL,
1327                                                    Value *PtrValue,
1328                                                    unsigned Alignment,
1329                                                    Value *OffsetValue) {
1330   assert(isa<PointerType>(PtrValue->getType()) &&
1331          "trying to create an alignment assumption on a non-pointer?");
1332   assert(Alignment != 0 && "Invalid Alignment");
1333   auto *PtrTy = cast<PointerType>(PtrValue->getType());
1334   Type *IntPtrTy = getIntPtrTy(DL, PtrTy->getAddressSpace());
1335   Value *AlignValue = ConstantInt::get(IntPtrTy, Alignment);
1336   return CreateAlignmentAssumptionHelper(DL, PtrValue, AlignValue, OffsetValue);
1337 }
1338 
1339 CallInst *IRBuilderBase::CreateAlignmentAssumption(const DataLayout &DL,
1340                                                    Value *PtrValue,
1341                                                    Value *Alignment,
1342                                                    Value *OffsetValue) {
1343   assert(isa<PointerType>(PtrValue->getType()) &&
1344          "trying to create an alignment assumption on a non-pointer?");
1345   return CreateAlignmentAssumptionHelper(DL, PtrValue, Alignment, OffsetValue);
1346 }
1347 
1348 IRBuilderDefaultInserter::~IRBuilderDefaultInserter() = default;
1349 IRBuilderCallbackInserter::~IRBuilderCallbackInserter() = default;
1350 IRBuilderFolder::~IRBuilderFolder() = default;
1351 void ConstantFolder::anchor() {}
1352 void NoFolder::anchor() {}
1353