xref: /freebsd/contrib/llvm-project/llvm/lib/IR/IRBuilder.cpp (revision 184c1b943937986c81e1996d999d21626ec7a4ff)
1 //===- IRBuilder.cpp - Builder for LLVM Instrs ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the IRBuilder class, which is used as a convenient way
10 // to create LLVM instructions with a consistent and simplified interface.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/IRBuilder.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/IR/Constant.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/GlobalVariable.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/Intrinsics.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/NoFolder.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/Statepoint.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/MathExtras.h"
33 #include <cassert>
34 #include <cstdint>
35 #include <vector>
36 
37 using namespace llvm;
38 
39 /// CreateGlobalString - Make a new global variable with an initializer that
40 /// has array of i8 type filled in with the nul terminated string value
41 /// specified.  If Name is specified, it is the name of the global variable
42 /// created.
43 GlobalVariable *IRBuilderBase::CreateGlobalString(StringRef Str,
44                                                   const Twine &Name,
45                                                   unsigned AddressSpace,
46                                                   Module *M) {
47   Constant *StrConstant = ConstantDataArray::getString(Context, Str);
48   if (!M)
49     M = BB->getParent()->getParent();
50   auto *GV = new GlobalVariable(
51       *M, StrConstant->getType(), true, GlobalValue::PrivateLinkage,
52       StrConstant, Name, nullptr, GlobalVariable::NotThreadLocal, AddressSpace);
53   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
54   GV->setAlignment(Align(1));
55   return GV;
56 }
57 
58 Type *IRBuilderBase::getCurrentFunctionReturnType() const {
59   assert(BB && BB->getParent() && "No current function!");
60   return BB->getParent()->getReturnType();
61 }
62 
63 Value *IRBuilderBase::getCastedInt8PtrValue(Value *Ptr) {
64   auto *PT = cast<PointerType>(Ptr->getType());
65   if (PT->getElementType()->isIntegerTy(8))
66     return Ptr;
67 
68   // Otherwise, we need to insert a bitcast.
69   return CreateBitCast(Ptr, getInt8PtrTy(PT->getAddressSpace()));
70 }
71 
72 static CallInst *createCallHelper(Function *Callee, ArrayRef<Value *> Ops,
73                                   IRBuilderBase *Builder,
74                                   const Twine &Name = "",
75                                   Instruction *FMFSource = nullptr) {
76   CallInst *CI = Builder->CreateCall(Callee, Ops, Name);
77   if (FMFSource)
78     CI->copyFastMathFlags(FMFSource);
79   return CI;
80 }
81 
82 CallInst *IRBuilderBase::CreateMemSet(Value *Ptr, Value *Val, Value *Size,
83                                       MaybeAlign Align, bool isVolatile,
84                                       MDNode *TBAATag, MDNode *ScopeTag,
85                                       MDNode *NoAliasTag) {
86   Ptr = getCastedInt8PtrValue(Ptr);
87   Value *Ops[] = {Ptr, Val, Size, getInt1(isVolatile)};
88   Type *Tys[] = { Ptr->getType(), Size->getType() };
89   Module *M = BB->getParent()->getParent();
90   Function *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys);
91 
92   CallInst *CI = createCallHelper(TheFn, Ops, this);
93 
94   if (Align)
95     cast<MemSetInst>(CI)->setDestAlignment(Align->value());
96 
97   // Set the TBAA info if present.
98   if (TBAATag)
99     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
100 
101   if (ScopeTag)
102     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
103 
104   if (NoAliasTag)
105     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
106 
107   return CI;
108 }
109 
110 CallInst *IRBuilderBase::CreateElementUnorderedAtomicMemSet(
111     Value *Ptr, Value *Val, Value *Size, Align Alignment, uint32_t ElementSize,
112     MDNode *TBAATag, MDNode *ScopeTag, MDNode *NoAliasTag) {
113 
114   Ptr = getCastedInt8PtrValue(Ptr);
115   Value *Ops[] = {Ptr, Val, Size, getInt32(ElementSize)};
116   Type *Tys[] = {Ptr->getType(), Size->getType()};
117   Module *M = BB->getParent()->getParent();
118   Function *TheFn = Intrinsic::getDeclaration(
119       M, Intrinsic::memset_element_unordered_atomic, Tys);
120 
121   CallInst *CI = createCallHelper(TheFn, Ops, this);
122 
123   cast<AtomicMemSetInst>(CI)->setDestAlignment(Alignment);
124 
125   // Set the TBAA info if present.
126   if (TBAATag)
127     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
128 
129   if (ScopeTag)
130     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
131 
132   if (NoAliasTag)
133     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
134 
135   return CI;
136 }
137 
138 CallInst *IRBuilderBase::CreateMemCpy(Value *Dst, MaybeAlign DstAlign,
139                                       Value *Src, MaybeAlign SrcAlign,
140                                       Value *Size, bool isVolatile,
141                                       MDNode *TBAATag, MDNode *TBAAStructTag,
142                                       MDNode *ScopeTag, MDNode *NoAliasTag) {
143   Dst = getCastedInt8PtrValue(Dst);
144   Src = getCastedInt8PtrValue(Src);
145 
146   Value *Ops[] = {Dst, Src, Size, getInt1(isVolatile)};
147   Type *Tys[] = { Dst->getType(), Src->getType(), Size->getType() };
148   Module *M = BB->getParent()->getParent();
149   Function *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memcpy, Tys);
150 
151   CallInst *CI = createCallHelper(TheFn, Ops, this);
152 
153   auto* MCI = cast<MemCpyInst>(CI);
154   if (DstAlign)
155     MCI->setDestAlignment(*DstAlign);
156   if (SrcAlign)
157     MCI->setSourceAlignment(*SrcAlign);
158 
159   // Set the TBAA info if present.
160   if (TBAATag)
161     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
162 
163   // Set the TBAA Struct info if present.
164   if (TBAAStructTag)
165     CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag);
166 
167   if (ScopeTag)
168     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
169 
170   if (NoAliasTag)
171     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
172 
173   return CI;
174 }
175 
176 CallInst *IRBuilderBase::CreateMemCpyInline(Value *Dst, MaybeAlign DstAlign,
177                                             Value *Src, MaybeAlign SrcAlign,
178                                             Value *Size) {
179   Dst = getCastedInt8PtrValue(Dst);
180   Src = getCastedInt8PtrValue(Src);
181   Value *IsVolatile = getInt1(false);
182 
183   Value *Ops[] = {Dst, Src, Size, IsVolatile};
184   Type *Tys[] = {Dst->getType(), Src->getType(), Size->getType()};
185   Function *F = BB->getParent();
186   Module *M = F->getParent();
187   Function *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memcpy_inline, Tys);
188 
189   CallInst *CI = createCallHelper(TheFn, Ops, this);
190 
191   auto *MCI = cast<MemCpyInlineInst>(CI);
192   if (DstAlign)
193     MCI->setDestAlignment(*DstAlign);
194   if (SrcAlign)
195     MCI->setSourceAlignment(*SrcAlign);
196 
197   return CI;
198 }
199 
200 CallInst *IRBuilderBase::CreateElementUnorderedAtomicMemCpy(
201     Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size,
202     uint32_t ElementSize, MDNode *TBAATag, MDNode *TBAAStructTag,
203     MDNode *ScopeTag, MDNode *NoAliasTag) {
204   assert(DstAlign >= ElementSize &&
205          "Pointer alignment must be at least element size");
206   assert(SrcAlign >= ElementSize &&
207          "Pointer alignment must be at least element size");
208   Dst = getCastedInt8PtrValue(Dst);
209   Src = getCastedInt8PtrValue(Src);
210 
211   Value *Ops[] = {Dst, Src, Size, getInt32(ElementSize)};
212   Type *Tys[] = {Dst->getType(), Src->getType(), Size->getType()};
213   Module *M = BB->getParent()->getParent();
214   Function *TheFn = Intrinsic::getDeclaration(
215       M, Intrinsic::memcpy_element_unordered_atomic, Tys);
216 
217   CallInst *CI = createCallHelper(TheFn, Ops, this);
218 
219   // Set the alignment of the pointer args.
220   auto *AMCI = cast<AtomicMemCpyInst>(CI);
221   AMCI->setDestAlignment(DstAlign);
222   AMCI->setSourceAlignment(SrcAlign);
223 
224   // Set the TBAA info if present.
225   if (TBAATag)
226     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
227 
228   // Set the TBAA Struct info if present.
229   if (TBAAStructTag)
230     CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag);
231 
232   if (ScopeTag)
233     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
234 
235   if (NoAliasTag)
236     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
237 
238   return CI;
239 }
240 
241 CallInst *IRBuilderBase::CreateMemMove(Value *Dst, MaybeAlign DstAlign,
242                                        Value *Src, MaybeAlign SrcAlign,
243                                        Value *Size, bool isVolatile,
244                                        MDNode *TBAATag, MDNode *ScopeTag,
245                                        MDNode *NoAliasTag) {
246   Dst = getCastedInt8PtrValue(Dst);
247   Src = getCastedInt8PtrValue(Src);
248 
249   Value *Ops[] = {Dst, Src, Size, getInt1(isVolatile)};
250   Type *Tys[] = { Dst->getType(), Src->getType(), Size->getType() };
251   Module *M = BB->getParent()->getParent();
252   Function *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memmove, Tys);
253 
254   CallInst *CI = createCallHelper(TheFn, Ops, this);
255 
256   auto *MMI = cast<MemMoveInst>(CI);
257   if (DstAlign)
258     MMI->setDestAlignment(*DstAlign);
259   if (SrcAlign)
260     MMI->setSourceAlignment(*SrcAlign);
261 
262   // Set the TBAA info if present.
263   if (TBAATag)
264     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
265 
266   if (ScopeTag)
267     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
268 
269   if (NoAliasTag)
270     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
271 
272   return CI;
273 }
274 
275 CallInst *IRBuilderBase::CreateElementUnorderedAtomicMemMove(
276     Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size,
277     uint32_t ElementSize, MDNode *TBAATag, MDNode *TBAAStructTag,
278     MDNode *ScopeTag, MDNode *NoAliasTag) {
279   assert(DstAlign >= ElementSize &&
280          "Pointer alignment must be at least element size");
281   assert(SrcAlign >= ElementSize &&
282          "Pointer alignment must be at least element size");
283   Dst = getCastedInt8PtrValue(Dst);
284   Src = getCastedInt8PtrValue(Src);
285 
286   Value *Ops[] = {Dst, Src, Size, getInt32(ElementSize)};
287   Type *Tys[] = {Dst->getType(), Src->getType(), Size->getType()};
288   Module *M = BB->getParent()->getParent();
289   Function *TheFn = Intrinsic::getDeclaration(
290       M, Intrinsic::memmove_element_unordered_atomic, Tys);
291 
292   CallInst *CI = createCallHelper(TheFn, Ops, this);
293 
294   // Set the alignment of the pointer args.
295   CI->addParamAttr(0, Attribute::getWithAlignment(CI->getContext(), DstAlign));
296   CI->addParamAttr(1, Attribute::getWithAlignment(CI->getContext(), SrcAlign));
297 
298   // Set the TBAA info if present.
299   if (TBAATag)
300     CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
301 
302   // Set the TBAA Struct info if present.
303   if (TBAAStructTag)
304     CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag);
305 
306   if (ScopeTag)
307     CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
308 
309   if (NoAliasTag)
310     CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
311 
312   return CI;
313 }
314 
315 static CallInst *getReductionIntrinsic(IRBuilderBase *Builder, Intrinsic::ID ID,
316                                     Value *Src) {
317   Module *M = Builder->GetInsertBlock()->getParent()->getParent();
318   Value *Ops[] = {Src};
319   Type *Tys[] = { Src->getType() };
320   auto Decl = Intrinsic::getDeclaration(M, ID, Tys);
321   return createCallHelper(Decl, Ops, Builder);
322 }
323 
324 CallInst *IRBuilderBase::CreateFAddReduce(Value *Acc, Value *Src) {
325   Module *M = GetInsertBlock()->getParent()->getParent();
326   Value *Ops[] = {Acc, Src};
327   Type *Tys[] = {Acc->getType(), Src->getType()};
328   auto Decl = Intrinsic::getDeclaration(
329       M, Intrinsic::experimental_vector_reduce_v2_fadd, Tys);
330   return createCallHelper(Decl, Ops, this);
331 }
332 
333 CallInst *IRBuilderBase::CreateFMulReduce(Value *Acc, Value *Src) {
334   Module *M = GetInsertBlock()->getParent()->getParent();
335   Value *Ops[] = {Acc, Src};
336   Type *Tys[] = {Acc->getType(), Src->getType()};
337   auto Decl = Intrinsic::getDeclaration(
338       M, Intrinsic::experimental_vector_reduce_v2_fmul, Tys);
339   return createCallHelper(Decl, Ops, this);
340 }
341 
342 CallInst *IRBuilderBase::CreateAddReduce(Value *Src) {
343   return getReductionIntrinsic(this, Intrinsic::experimental_vector_reduce_add,
344                                Src);
345 }
346 
347 CallInst *IRBuilderBase::CreateMulReduce(Value *Src) {
348   return getReductionIntrinsic(this, Intrinsic::experimental_vector_reduce_mul,
349                                Src);
350 }
351 
352 CallInst *IRBuilderBase::CreateAndReduce(Value *Src) {
353   return getReductionIntrinsic(this, Intrinsic::experimental_vector_reduce_and,
354                                Src);
355 }
356 
357 CallInst *IRBuilderBase::CreateOrReduce(Value *Src) {
358   return getReductionIntrinsic(this, Intrinsic::experimental_vector_reduce_or,
359                                Src);
360 }
361 
362 CallInst *IRBuilderBase::CreateXorReduce(Value *Src) {
363   return getReductionIntrinsic(this, Intrinsic::experimental_vector_reduce_xor,
364                                Src);
365 }
366 
367 CallInst *IRBuilderBase::CreateIntMaxReduce(Value *Src, bool IsSigned) {
368   auto ID = IsSigned ? Intrinsic::experimental_vector_reduce_smax
369                      : Intrinsic::experimental_vector_reduce_umax;
370   return getReductionIntrinsic(this, ID, Src);
371 }
372 
373 CallInst *IRBuilderBase::CreateIntMinReduce(Value *Src, bool IsSigned) {
374   auto ID = IsSigned ? Intrinsic::experimental_vector_reduce_smin
375                      : Intrinsic::experimental_vector_reduce_umin;
376   return getReductionIntrinsic(this, ID, Src);
377 }
378 
379 CallInst *IRBuilderBase::CreateFPMaxReduce(Value *Src, bool NoNaN) {
380   auto Rdx = getReductionIntrinsic(
381       this, Intrinsic::experimental_vector_reduce_fmax, Src);
382   if (NoNaN) {
383     FastMathFlags FMF;
384     FMF.setNoNaNs();
385     Rdx->setFastMathFlags(FMF);
386   }
387   return Rdx;
388 }
389 
390 CallInst *IRBuilderBase::CreateFPMinReduce(Value *Src, bool NoNaN) {
391   auto Rdx = getReductionIntrinsic(
392       this, Intrinsic::experimental_vector_reduce_fmin, Src);
393   if (NoNaN) {
394     FastMathFlags FMF;
395     FMF.setNoNaNs();
396     Rdx->setFastMathFlags(FMF);
397   }
398   return Rdx;
399 }
400 
401 CallInst *IRBuilderBase::CreateLifetimeStart(Value *Ptr, ConstantInt *Size) {
402   assert(isa<PointerType>(Ptr->getType()) &&
403          "lifetime.start only applies to pointers.");
404   Ptr = getCastedInt8PtrValue(Ptr);
405   if (!Size)
406     Size = getInt64(-1);
407   else
408     assert(Size->getType() == getInt64Ty() &&
409            "lifetime.start requires the size to be an i64");
410   Value *Ops[] = { Size, Ptr };
411   Module *M = BB->getParent()->getParent();
412   Function *TheFn =
413       Intrinsic::getDeclaration(M, Intrinsic::lifetime_start, {Ptr->getType()});
414   return createCallHelper(TheFn, Ops, this);
415 }
416 
417 CallInst *IRBuilderBase::CreateLifetimeEnd(Value *Ptr, ConstantInt *Size) {
418   assert(isa<PointerType>(Ptr->getType()) &&
419          "lifetime.end only applies to pointers.");
420   Ptr = getCastedInt8PtrValue(Ptr);
421   if (!Size)
422     Size = getInt64(-1);
423   else
424     assert(Size->getType() == getInt64Ty() &&
425            "lifetime.end requires the size to be an i64");
426   Value *Ops[] = { Size, Ptr };
427   Module *M = BB->getParent()->getParent();
428   Function *TheFn =
429       Intrinsic::getDeclaration(M, Intrinsic::lifetime_end, {Ptr->getType()});
430   return createCallHelper(TheFn, Ops, this);
431 }
432 
433 CallInst *IRBuilderBase::CreateInvariantStart(Value *Ptr, ConstantInt *Size) {
434 
435   assert(isa<PointerType>(Ptr->getType()) &&
436          "invariant.start only applies to pointers.");
437   Ptr = getCastedInt8PtrValue(Ptr);
438   if (!Size)
439     Size = getInt64(-1);
440   else
441     assert(Size->getType() == getInt64Ty() &&
442            "invariant.start requires the size to be an i64");
443 
444   Value *Ops[] = {Size, Ptr};
445   // Fill in the single overloaded type: memory object type.
446   Type *ObjectPtr[1] = {Ptr->getType()};
447   Module *M = BB->getParent()->getParent();
448   Function *TheFn =
449       Intrinsic::getDeclaration(M, Intrinsic::invariant_start, ObjectPtr);
450   return createCallHelper(TheFn, Ops, this);
451 }
452 
453 CallInst *IRBuilderBase::CreateAssumption(Value *Cond) {
454   assert(Cond->getType() == getInt1Ty() &&
455          "an assumption condition must be of type i1");
456 
457   Value *Ops[] = { Cond };
458   Module *M = BB->getParent()->getParent();
459   Function *FnAssume = Intrinsic::getDeclaration(M, Intrinsic::assume);
460   return createCallHelper(FnAssume, Ops, this);
461 }
462 
463 /// Create a call to a Masked Load intrinsic.
464 /// \p Ptr       - base pointer for the load
465 /// \p Alignment - alignment of the source location
466 /// \p Mask      - vector of booleans which indicates what vector lanes should
467 ///                be accessed in memory
468 /// \p PassThru  - pass-through value that is used to fill the masked-off lanes
469 ///                of the result
470 /// \p Name      - name of the result variable
471 CallInst *IRBuilderBase::CreateMaskedLoad(Value *Ptr, Align Alignment,
472                                           Value *Mask, Value *PassThru,
473                                           const Twine &Name) {
474   auto *PtrTy = cast<PointerType>(Ptr->getType());
475   Type *DataTy = PtrTy->getElementType();
476   assert(DataTy->isVectorTy() && "Ptr should point to a vector");
477   assert(Mask && "Mask should not be all-ones (null)");
478   if (!PassThru)
479     PassThru = UndefValue::get(DataTy);
480   Type *OverloadedTypes[] = { DataTy, PtrTy };
481   Value *Ops[] = {Ptr, getInt32(Alignment.value()), Mask, PassThru};
482   return CreateMaskedIntrinsic(Intrinsic::masked_load, Ops,
483                                OverloadedTypes, Name);
484 }
485 
486 /// Create a call to a Masked Store intrinsic.
487 /// \p Val       - data to be stored,
488 /// \p Ptr       - base pointer for the store
489 /// \p Alignment - alignment of the destination location
490 /// \p Mask      - vector of booleans which indicates what vector lanes should
491 ///                be accessed in memory
492 CallInst *IRBuilderBase::CreateMaskedStore(Value *Val, Value *Ptr,
493                                            Align Alignment, Value *Mask) {
494   auto *PtrTy = cast<PointerType>(Ptr->getType());
495   Type *DataTy = PtrTy->getElementType();
496   assert(DataTy->isVectorTy() && "Ptr should point to a vector");
497   assert(Mask && "Mask should not be all-ones (null)");
498   Type *OverloadedTypes[] = { DataTy, PtrTy };
499   Value *Ops[] = {Val, Ptr, getInt32(Alignment.value()), Mask};
500   return CreateMaskedIntrinsic(Intrinsic::masked_store, Ops, OverloadedTypes);
501 }
502 
503 /// Create a call to a Masked intrinsic, with given intrinsic Id,
504 /// an array of operands - Ops, and an array of overloaded types -
505 /// OverloadedTypes.
506 CallInst *IRBuilderBase::CreateMaskedIntrinsic(Intrinsic::ID Id,
507                                                ArrayRef<Value *> Ops,
508                                                ArrayRef<Type *> OverloadedTypes,
509                                                const Twine &Name) {
510   Module *M = BB->getParent()->getParent();
511   Function *TheFn = Intrinsic::getDeclaration(M, Id, OverloadedTypes);
512   return createCallHelper(TheFn, Ops, this, Name);
513 }
514 
515 /// Create a call to a Masked Gather intrinsic.
516 /// \p Ptrs     - vector of pointers for loading
517 /// \p Align    - alignment for one element
518 /// \p Mask     - vector of booleans which indicates what vector lanes should
519 ///               be accessed in memory
520 /// \p PassThru - pass-through value that is used to fill the masked-off lanes
521 ///               of the result
522 /// \p Name     - name of the result variable
523 CallInst *IRBuilderBase::CreateMaskedGather(Value *Ptrs, Align Alignment,
524                                             Value *Mask, Value *PassThru,
525                                             const Twine &Name) {
526   auto PtrsTy = cast<VectorType>(Ptrs->getType());
527   auto PtrTy = cast<PointerType>(PtrsTy->getElementType());
528   unsigned NumElts = PtrsTy->getNumElements();
529   auto *DataTy = FixedVectorType::get(PtrTy->getElementType(), NumElts);
530 
531   if (!Mask)
532     Mask = Constant::getAllOnesValue(
533         FixedVectorType::get(Type::getInt1Ty(Context), NumElts));
534 
535   if (!PassThru)
536     PassThru = UndefValue::get(DataTy);
537 
538   Type *OverloadedTypes[] = {DataTy, PtrsTy};
539   Value *Ops[] = {Ptrs, getInt32(Alignment.value()), Mask, PassThru};
540 
541   // We specify only one type when we create this intrinsic. Types of other
542   // arguments are derived from this type.
543   return CreateMaskedIntrinsic(Intrinsic::masked_gather, Ops, OverloadedTypes,
544                                Name);
545 }
546 
547 /// Create a call to a Masked Scatter intrinsic.
548 /// \p Data  - data to be stored,
549 /// \p Ptrs  - the vector of pointers, where the \p Data elements should be
550 ///            stored
551 /// \p Align - alignment for one element
552 /// \p Mask  - vector of booleans which indicates what vector lanes should
553 ///            be accessed in memory
554 CallInst *IRBuilderBase::CreateMaskedScatter(Value *Data, Value *Ptrs,
555                                              Align Alignment, Value *Mask) {
556   auto PtrsTy = cast<VectorType>(Ptrs->getType());
557   auto DataTy = cast<VectorType>(Data->getType());
558   unsigned NumElts = PtrsTy->getNumElements();
559 
560 #ifndef NDEBUG
561   auto PtrTy = cast<PointerType>(PtrsTy->getElementType());
562   assert(NumElts == DataTy->getNumElements() &&
563          PtrTy->getElementType() == DataTy->getElementType() &&
564          "Incompatible pointer and data types");
565 #endif
566 
567   if (!Mask)
568     Mask = Constant::getAllOnesValue(
569         FixedVectorType::get(Type::getInt1Ty(Context), NumElts));
570 
571   Type *OverloadedTypes[] = {DataTy, PtrsTy};
572   Value *Ops[] = {Data, Ptrs, getInt32(Alignment.value()), Mask};
573 
574   // We specify only one type when we create this intrinsic. Types of other
575   // arguments are derived from this type.
576   return CreateMaskedIntrinsic(Intrinsic::masked_scatter, Ops, OverloadedTypes);
577 }
578 
579 template <typename T0>
580 static std::vector<Value *>
581 getStatepointArgs(IRBuilderBase &B, uint64_t ID, uint32_t NumPatchBytes,
582                   Value *ActualCallee, uint32_t Flags, ArrayRef<T0> CallArgs) {
583   std::vector<Value *> Args;
584   Args.push_back(B.getInt64(ID));
585   Args.push_back(B.getInt32(NumPatchBytes));
586   Args.push_back(ActualCallee);
587   Args.push_back(B.getInt32(CallArgs.size()));
588   Args.push_back(B.getInt32(Flags));
589   Args.insert(Args.end(), CallArgs.begin(), CallArgs.end());
590   // GC Transition and Deopt args are now always handled via operand bundle.
591   // They will be removed from the signature of gc.statepoint shortly.
592   Args.push_back(B.getInt32(0));
593   Args.push_back(B.getInt32(0));
594   // GC args are now encoded in the gc-live operand bundle
595   return Args;
596 }
597 
598 template<typename T1, typename T2, typename T3>
599 static std::vector<OperandBundleDef>
600 getStatepointBundles(Optional<ArrayRef<T1>> TransitionArgs,
601                      Optional<ArrayRef<T2>> DeoptArgs,
602                      ArrayRef<T3> GCArgs) {
603   std::vector<OperandBundleDef> Rval;
604   if (DeoptArgs) {
605     SmallVector<Value*, 16> DeoptValues;
606     DeoptValues.insert(DeoptValues.end(), DeoptArgs->begin(), DeoptArgs->end());
607     Rval.emplace_back("deopt", DeoptValues);
608   }
609   if (TransitionArgs) {
610     SmallVector<Value*, 16> TransitionValues;
611     TransitionValues.insert(TransitionValues.end(),
612                             TransitionArgs->begin(), TransitionArgs->end());
613     Rval.emplace_back("gc-transition", TransitionValues);
614   }
615   if (GCArgs.size()) {
616     SmallVector<Value*, 16> LiveValues;
617     LiveValues.insert(LiveValues.end(), GCArgs.begin(), GCArgs.end());
618     Rval.emplace_back("gc-live", LiveValues);
619   }
620   return Rval;
621 }
622 
623 template <typename T0, typename T1, typename T2, typename T3>
624 static CallInst *CreateGCStatepointCallCommon(
625     IRBuilderBase *Builder, uint64_t ID, uint32_t NumPatchBytes,
626     Value *ActualCallee, uint32_t Flags, ArrayRef<T0> CallArgs,
627     Optional<ArrayRef<T1>> TransitionArgs,
628     Optional<ArrayRef<T2>> DeoptArgs, ArrayRef<T3> GCArgs,
629     const Twine &Name) {
630   // Extract out the type of the callee.
631   auto *FuncPtrType = cast<PointerType>(ActualCallee->getType());
632   assert(isa<FunctionType>(FuncPtrType->getElementType()) &&
633          "actual callee must be a callable value");
634 
635   Module *M = Builder->GetInsertBlock()->getParent()->getParent();
636   // Fill in the one generic type'd argument (the function is also vararg)
637   Type *ArgTypes[] = { FuncPtrType };
638   Function *FnStatepoint =
639     Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_statepoint,
640                               ArgTypes);
641 
642   std::vector<Value *> Args =
643       getStatepointArgs(*Builder, ID, NumPatchBytes, ActualCallee, Flags,
644                         CallArgs);
645 
646   return Builder->CreateCall(FnStatepoint, Args,
647                              getStatepointBundles(TransitionArgs, DeoptArgs,
648                                                   GCArgs),
649                              Name);
650 }
651 
652 CallInst *IRBuilderBase::CreateGCStatepointCall(
653     uint64_t ID, uint32_t NumPatchBytes, Value *ActualCallee,
654     ArrayRef<Value *> CallArgs, Optional<ArrayRef<Value *>> DeoptArgs,
655     ArrayRef<Value *> GCArgs, const Twine &Name) {
656   return CreateGCStatepointCallCommon<Value *, Value *, Value *, Value *>(
657       this, ID, NumPatchBytes, ActualCallee, uint32_t(StatepointFlags::None),
658       CallArgs, None /* No Transition Args */, DeoptArgs, GCArgs, Name);
659 }
660 
661 CallInst *IRBuilderBase::CreateGCStatepointCall(
662     uint64_t ID, uint32_t NumPatchBytes, Value *ActualCallee, uint32_t Flags,
663     ArrayRef<Use> CallArgs, Optional<ArrayRef<Use>> TransitionArgs,
664     Optional<ArrayRef<Use>> DeoptArgs, ArrayRef<Value *> GCArgs,
665     const Twine &Name) {
666   return CreateGCStatepointCallCommon<Use, Use, Use, Value *>(
667       this, ID, NumPatchBytes, ActualCallee, Flags, CallArgs, TransitionArgs,
668       DeoptArgs, GCArgs, Name);
669 }
670 
671 CallInst *IRBuilderBase::CreateGCStatepointCall(
672     uint64_t ID, uint32_t NumPatchBytes, Value *ActualCallee,
673     ArrayRef<Use> CallArgs, Optional<ArrayRef<Value *>> DeoptArgs,
674     ArrayRef<Value *> GCArgs, const Twine &Name) {
675   return CreateGCStatepointCallCommon<Use, Value *, Value *, Value *>(
676       this, ID, NumPatchBytes, ActualCallee, uint32_t(StatepointFlags::None),
677       CallArgs, None, DeoptArgs, GCArgs, Name);
678 }
679 
680 template <typename T0, typename T1, typename T2, typename T3>
681 static InvokeInst *CreateGCStatepointInvokeCommon(
682     IRBuilderBase *Builder, uint64_t ID, uint32_t NumPatchBytes,
683     Value *ActualInvokee, BasicBlock *NormalDest, BasicBlock *UnwindDest,
684     uint32_t Flags, ArrayRef<T0> InvokeArgs,
685     Optional<ArrayRef<T1>> TransitionArgs, Optional<ArrayRef<T2>> DeoptArgs,
686     ArrayRef<T3> GCArgs, const Twine &Name) {
687   // Extract out the type of the callee.
688   auto *FuncPtrType = cast<PointerType>(ActualInvokee->getType());
689   assert(isa<FunctionType>(FuncPtrType->getElementType()) &&
690          "actual callee must be a callable value");
691 
692   Module *M = Builder->GetInsertBlock()->getParent()->getParent();
693   // Fill in the one generic type'd argument (the function is also vararg)
694   Function *FnStatepoint = Intrinsic::getDeclaration(
695       M, Intrinsic::experimental_gc_statepoint, {FuncPtrType});
696 
697   std::vector<Value *> Args =
698       getStatepointArgs(*Builder, ID, NumPatchBytes, ActualInvokee, Flags,
699                         InvokeArgs);
700 
701   return Builder->CreateInvoke(FnStatepoint, NormalDest, UnwindDest, Args,
702                                getStatepointBundles(TransitionArgs, DeoptArgs,
703                                                     GCArgs),
704                                Name);
705 }
706 
707 InvokeInst *IRBuilderBase::CreateGCStatepointInvoke(
708     uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee,
709     BasicBlock *NormalDest, BasicBlock *UnwindDest,
710     ArrayRef<Value *> InvokeArgs, Optional<ArrayRef<Value *>> DeoptArgs,
711     ArrayRef<Value *> GCArgs, const Twine &Name) {
712   return CreateGCStatepointInvokeCommon<Value *, Value *, Value *, Value *>(
713       this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest,
714       uint32_t(StatepointFlags::None), InvokeArgs, None /* No Transition Args*/,
715       DeoptArgs, GCArgs, Name);
716 }
717 
718 InvokeInst *IRBuilderBase::CreateGCStatepointInvoke(
719     uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee,
720     BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags,
721     ArrayRef<Use> InvokeArgs, Optional<ArrayRef<Use>> TransitionArgs,
722     Optional<ArrayRef<Use>> DeoptArgs, ArrayRef<Value *> GCArgs, const Twine &Name) {
723   return CreateGCStatepointInvokeCommon<Use, Use, Use, Value *>(
724       this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest, Flags,
725       InvokeArgs, TransitionArgs, DeoptArgs, GCArgs, Name);
726 }
727 
728 InvokeInst *IRBuilderBase::CreateGCStatepointInvoke(
729     uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee,
730     BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef<Use> InvokeArgs,
731     Optional<ArrayRef<Value *>> DeoptArgs, ArrayRef<Value *> GCArgs, const Twine &Name) {
732   return CreateGCStatepointInvokeCommon<Use, Value *, Value *, Value *>(
733       this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest,
734       uint32_t(StatepointFlags::None), InvokeArgs, None, DeoptArgs, GCArgs,
735       Name);
736 }
737 
738 CallInst *IRBuilderBase::CreateGCResult(Instruction *Statepoint,
739                                        Type *ResultType,
740                                        const Twine &Name) {
741  Intrinsic::ID ID = Intrinsic::experimental_gc_result;
742  Module *M = BB->getParent()->getParent();
743  Type *Types[] = {ResultType};
744  Function *FnGCResult = Intrinsic::getDeclaration(M, ID, Types);
745 
746  Value *Args[] = {Statepoint};
747  return createCallHelper(FnGCResult, Args, this, Name);
748 }
749 
750 CallInst *IRBuilderBase::CreateGCRelocate(Instruction *Statepoint,
751                                          int BaseOffset,
752                                          int DerivedOffset,
753                                          Type *ResultType,
754                                          const Twine &Name) {
755  Module *M = BB->getParent()->getParent();
756  Type *Types[] = {ResultType};
757  Function *FnGCRelocate =
758      Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types);
759 
760  Value *Args[] = {Statepoint,
761                   getInt32(BaseOffset),
762                   getInt32(DerivedOffset)};
763  return createCallHelper(FnGCRelocate, Args, this, Name);
764 }
765 
766 CallInst *IRBuilderBase::CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V,
767                                               Instruction *FMFSource,
768                                               const Twine &Name) {
769   Module *M = BB->getModule();
770   Function *Fn = Intrinsic::getDeclaration(M, ID, {V->getType()});
771   return createCallHelper(Fn, {V}, this, Name, FMFSource);
772 }
773 
774 CallInst *IRBuilderBase::CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS,
775                                                Value *RHS,
776                                                Instruction *FMFSource,
777                                                const Twine &Name) {
778   Module *M = BB->getModule();
779   Function *Fn = Intrinsic::getDeclaration(M, ID, { LHS->getType() });
780   return createCallHelper(Fn, {LHS, RHS}, this, Name, FMFSource);
781 }
782 
783 CallInst *IRBuilderBase::CreateIntrinsic(Intrinsic::ID ID,
784                                          ArrayRef<Type *> Types,
785                                          ArrayRef<Value *> Args,
786                                          Instruction *FMFSource,
787                                          const Twine &Name) {
788   Module *M = BB->getModule();
789   Function *Fn = Intrinsic::getDeclaration(M, ID, Types);
790   return createCallHelper(Fn, Args, this, Name, FMFSource);
791 }
792 
793 CallInst *IRBuilderBase::CreateConstrainedFPBinOp(
794     Intrinsic::ID ID, Value *L, Value *R, Instruction *FMFSource,
795     const Twine &Name, MDNode *FPMathTag,
796     Optional<RoundingMode> Rounding,
797     Optional<fp::ExceptionBehavior> Except) {
798   Value *RoundingV = getConstrainedFPRounding(Rounding);
799   Value *ExceptV = getConstrainedFPExcept(Except);
800 
801   FastMathFlags UseFMF = FMF;
802   if (FMFSource)
803     UseFMF = FMFSource->getFastMathFlags();
804 
805   CallInst *C = CreateIntrinsic(ID, {L->getType()},
806                                 {L, R, RoundingV, ExceptV}, nullptr, Name);
807   setConstrainedFPCallAttr(C);
808   setFPAttrs(C, FPMathTag, UseFMF);
809   return C;
810 }
811 
812 Value *IRBuilderBase::CreateNAryOp(unsigned Opc, ArrayRef<Value *> Ops,
813                                    const Twine &Name, MDNode *FPMathTag) {
814   if (Instruction::isBinaryOp(Opc)) {
815     assert(Ops.size() == 2 && "Invalid number of operands!");
816     return CreateBinOp(static_cast<Instruction::BinaryOps>(Opc),
817                        Ops[0], Ops[1], Name, FPMathTag);
818   }
819   if (Instruction::isUnaryOp(Opc)) {
820     assert(Ops.size() == 1 && "Invalid number of operands!");
821     return CreateUnOp(static_cast<Instruction::UnaryOps>(Opc),
822                       Ops[0], Name, FPMathTag);
823   }
824   llvm_unreachable("Unexpected opcode!");
825 }
826 
827 CallInst *IRBuilderBase::CreateConstrainedFPCast(
828     Intrinsic::ID ID, Value *V, Type *DestTy,
829     Instruction *FMFSource, const Twine &Name, MDNode *FPMathTag,
830     Optional<RoundingMode> Rounding,
831     Optional<fp::ExceptionBehavior> Except) {
832   Value *ExceptV = getConstrainedFPExcept(Except);
833 
834   FastMathFlags UseFMF = FMF;
835   if (FMFSource)
836     UseFMF = FMFSource->getFastMathFlags();
837 
838   CallInst *C;
839   bool HasRoundingMD = false;
840   switch (ID) {
841   default:
842     break;
843 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)        \
844   case Intrinsic::INTRINSIC:                                \
845     HasRoundingMD = ROUND_MODE;                             \
846     break;
847 #include "llvm/IR/ConstrainedOps.def"
848   }
849   if (HasRoundingMD) {
850     Value *RoundingV = getConstrainedFPRounding(Rounding);
851     C = CreateIntrinsic(ID, {DestTy, V->getType()}, {V, RoundingV, ExceptV},
852                         nullptr, Name);
853   } else
854     C = CreateIntrinsic(ID, {DestTy, V->getType()}, {V, ExceptV}, nullptr,
855                         Name);
856 
857   setConstrainedFPCallAttr(C);
858 
859   if (isa<FPMathOperator>(C))
860     setFPAttrs(C, FPMathTag, UseFMF);
861   return C;
862 }
863 
864 Value *IRBuilderBase::CreateFCmpHelper(
865     CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name,
866     MDNode *FPMathTag, bool IsSignaling) {
867   if (IsFPConstrained) {
868     auto ID = IsSignaling ? Intrinsic::experimental_constrained_fcmps
869                           : Intrinsic::experimental_constrained_fcmp;
870     return CreateConstrainedFPCmp(ID, P, LHS, RHS, Name);
871   }
872 
873   if (auto *LC = dyn_cast<Constant>(LHS))
874     if (auto *RC = dyn_cast<Constant>(RHS))
875       return Insert(Folder.CreateFCmp(P, LC, RC), Name);
876   return Insert(setFPAttrs(new FCmpInst(P, LHS, RHS), FPMathTag, FMF), Name);
877 }
878 
879 CallInst *IRBuilderBase::CreateConstrainedFPCmp(
880     Intrinsic::ID ID, CmpInst::Predicate P, Value *L, Value *R,
881     const Twine &Name, Optional<fp::ExceptionBehavior> Except) {
882   Value *PredicateV = getConstrainedFPPredicate(P);
883   Value *ExceptV = getConstrainedFPExcept(Except);
884 
885   CallInst *C = CreateIntrinsic(ID, {L->getType()},
886                                 {L, R, PredicateV, ExceptV}, nullptr, Name);
887   setConstrainedFPCallAttr(C);
888   return C;
889 }
890 
891 CallInst *IRBuilderBase::CreateConstrainedFPCall(
892     Function *Callee, ArrayRef<Value *> Args, const Twine &Name,
893     Optional<RoundingMode> Rounding,
894     Optional<fp::ExceptionBehavior> Except) {
895   llvm::SmallVector<Value *, 6> UseArgs;
896 
897   for (auto *OneArg : Args)
898     UseArgs.push_back(OneArg);
899   bool HasRoundingMD = false;
900   switch (Callee->getIntrinsicID()) {
901   default:
902     break;
903 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)        \
904   case Intrinsic::INTRINSIC:                                \
905     HasRoundingMD = ROUND_MODE;                             \
906     break;
907 #include "llvm/IR/ConstrainedOps.def"
908   }
909   if (HasRoundingMD)
910     UseArgs.push_back(getConstrainedFPRounding(Rounding));
911   UseArgs.push_back(getConstrainedFPExcept(Except));
912 
913   CallInst *C = CreateCall(Callee, UseArgs, Name);
914   setConstrainedFPCallAttr(C);
915   return C;
916 }
917 
918 Value *IRBuilderBase::CreateSelect(Value *C, Value *True, Value *False,
919                                    const Twine &Name, Instruction *MDFrom) {
920   if (auto *CC = dyn_cast<Constant>(C))
921     if (auto *TC = dyn_cast<Constant>(True))
922       if (auto *FC = dyn_cast<Constant>(False))
923         return Insert(Folder.CreateSelect(CC, TC, FC), Name);
924 
925   SelectInst *Sel = SelectInst::Create(C, True, False);
926   if (MDFrom) {
927     MDNode *Prof = MDFrom->getMetadata(LLVMContext::MD_prof);
928     MDNode *Unpred = MDFrom->getMetadata(LLVMContext::MD_unpredictable);
929     Sel = addBranchMetadata(Sel, Prof, Unpred);
930   }
931   if (isa<FPMathOperator>(Sel))
932     setFPAttrs(Sel, nullptr /* MDNode* */, FMF);
933   return Insert(Sel, Name);
934 }
935 
936 Value *IRBuilderBase::CreatePtrDiff(Value *LHS, Value *RHS,
937                                     const Twine &Name) {
938   assert(LHS->getType() == RHS->getType() &&
939          "Pointer subtraction operand types must match!");
940   auto *ArgType = cast<PointerType>(LHS->getType());
941   Value *LHS_int = CreatePtrToInt(LHS, Type::getInt64Ty(Context));
942   Value *RHS_int = CreatePtrToInt(RHS, Type::getInt64Ty(Context));
943   Value *Difference = CreateSub(LHS_int, RHS_int);
944   return CreateExactSDiv(Difference,
945                          ConstantExpr::getSizeOf(ArgType->getElementType()),
946                          Name);
947 }
948 
949 Value *IRBuilderBase::CreateLaunderInvariantGroup(Value *Ptr) {
950   assert(isa<PointerType>(Ptr->getType()) &&
951          "launder.invariant.group only applies to pointers.");
952   // FIXME: we could potentially avoid casts to/from i8*.
953   auto *PtrType = Ptr->getType();
954   auto *Int8PtrTy = getInt8PtrTy(PtrType->getPointerAddressSpace());
955   if (PtrType != Int8PtrTy)
956     Ptr = CreateBitCast(Ptr, Int8PtrTy);
957   Module *M = BB->getParent()->getParent();
958   Function *FnLaunderInvariantGroup = Intrinsic::getDeclaration(
959       M, Intrinsic::launder_invariant_group, {Int8PtrTy});
960 
961   assert(FnLaunderInvariantGroup->getReturnType() == Int8PtrTy &&
962          FnLaunderInvariantGroup->getFunctionType()->getParamType(0) ==
963              Int8PtrTy &&
964          "LaunderInvariantGroup should take and return the same type");
965 
966   CallInst *Fn = CreateCall(FnLaunderInvariantGroup, {Ptr});
967 
968   if (PtrType != Int8PtrTy)
969     return CreateBitCast(Fn, PtrType);
970   return Fn;
971 }
972 
973 Value *IRBuilderBase::CreateStripInvariantGroup(Value *Ptr) {
974   assert(isa<PointerType>(Ptr->getType()) &&
975          "strip.invariant.group only applies to pointers.");
976 
977   // FIXME: we could potentially avoid casts to/from i8*.
978   auto *PtrType = Ptr->getType();
979   auto *Int8PtrTy = getInt8PtrTy(PtrType->getPointerAddressSpace());
980   if (PtrType != Int8PtrTy)
981     Ptr = CreateBitCast(Ptr, Int8PtrTy);
982   Module *M = BB->getParent()->getParent();
983   Function *FnStripInvariantGroup = Intrinsic::getDeclaration(
984       M, Intrinsic::strip_invariant_group, {Int8PtrTy});
985 
986   assert(FnStripInvariantGroup->getReturnType() == Int8PtrTy &&
987          FnStripInvariantGroup->getFunctionType()->getParamType(0) ==
988              Int8PtrTy &&
989          "StripInvariantGroup should take and return the same type");
990 
991   CallInst *Fn = CreateCall(FnStripInvariantGroup, {Ptr});
992 
993   if (PtrType != Int8PtrTy)
994     return CreateBitCast(Fn, PtrType);
995   return Fn;
996 }
997 
998 Value *IRBuilderBase::CreateVectorSplat(unsigned NumElts, Value *V,
999                                         const Twine &Name) {
1000   assert(NumElts > 0 && "Cannot splat to an empty vector!");
1001 
1002   // First insert it into an undef vector so we can shuffle it.
1003   Type *I32Ty = getInt32Ty();
1004   Value *Undef = UndefValue::get(FixedVectorType::get(V->getType(), NumElts));
1005   V = CreateInsertElement(Undef, V, ConstantInt::get(I32Ty, 0),
1006                           Name + ".splatinsert");
1007 
1008   // Shuffle the value across the desired number of elements.
1009   Value *Zeros =
1010       ConstantAggregateZero::get(FixedVectorType::get(I32Ty, NumElts));
1011   return CreateShuffleVector(V, Undef, Zeros, Name + ".splat");
1012 }
1013 
1014 Value *IRBuilderBase::CreateExtractInteger(
1015     const DataLayout &DL, Value *From, IntegerType *ExtractedTy,
1016     uint64_t Offset, const Twine &Name) {
1017   auto *IntTy = cast<IntegerType>(From->getType());
1018   assert(DL.getTypeStoreSize(ExtractedTy) + Offset <=
1019              DL.getTypeStoreSize(IntTy) &&
1020          "Element extends past full value");
1021   uint64_t ShAmt = 8 * Offset;
1022   Value *V = From;
1023   if (DL.isBigEndian())
1024     ShAmt = 8 * (DL.getTypeStoreSize(IntTy) -
1025                  DL.getTypeStoreSize(ExtractedTy) - Offset);
1026   if (ShAmt) {
1027     V = CreateLShr(V, ShAmt, Name + ".shift");
1028   }
1029   assert(ExtractedTy->getBitWidth() <= IntTy->getBitWidth() &&
1030          "Cannot extract to a larger integer!");
1031   if (ExtractedTy != IntTy) {
1032     V = CreateTrunc(V, ExtractedTy, Name + ".trunc");
1033   }
1034   return V;
1035 }
1036 
1037 Value *IRBuilderBase::CreatePreserveArrayAccessIndex(
1038     Type *ElTy, Value *Base, unsigned Dimension, unsigned LastIndex,
1039     MDNode *DbgInfo) {
1040   assert(isa<PointerType>(Base->getType()) &&
1041          "Invalid Base ptr type for preserve.array.access.index.");
1042   auto *BaseType = Base->getType();
1043 
1044   Value *LastIndexV = getInt32(LastIndex);
1045   Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
1046   SmallVector<Value *, 4> IdxList;
1047   for (unsigned I = 0; I < Dimension; ++I)
1048     IdxList.push_back(Zero);
1049   IdxList.push_back(LastIndexV);
1050 
1051   Type *ResultType =
1052       GetElementPtrInst::getGEPReturnType(ElTy, Base, IdxList);
1053 
1054   Module *M = BB->getParent()->getParent();
1055   Function *FnPreserveArrayAccessIndex = Intrinsic::getDeclaration(
1056       M, Intrinsic::preserve_array_access_index, {ResultType, BaseType});
1057 
1058   Value *DimV = getInt32(Dimension);
1059   CallInst *Fn =
1060       CreateCall(FnPreserveArrayAccessIndex, {Base, DimV, LastIndexV});
1061   if (DbgInfo)
1062     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
1063 
1064   return Fn;
1065 }
1066 
1067 Value *IRBuilderBase::CreatePreserveUnionAccessIndex(
1068     Value *Base, unsigned FieldIndex, MDNode *DbgInfo) {
1069   assert(isa<PointerType>(Base->getType()) &&
1070          "Invalid Base ptr type for preserve.union.access.index.");
1071   auto *BaseType = Base->getType();
1072 
1073   Module *M = BB->getParent()->getParent();
1074   Function *FnPreserveUnionAccessIndex = Intrinsic::getDeclaration(
1075       M, Intrinsic::preserve_union_access_index, {BaseType, BaseType});
1076 
1077   Value *DIIndex = getInt32(FieldIndex);
1078   CallInst *Fn =
1079       CreateCall(FnPreserveUnionAccessIndex, {Base, DIIndex});
1080   if (DbgInfo)
1081     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
1082 
1083   return Fn;
1084 }
1085 
1086 Value *IRBuilderBase::CreatePreserveStructAccessIndex(
1087     Type *ElTy, Value *Base, unsigned Index, unsigned FieldIndex,
1088     MDNode *DbgInfo) {
1089   assert(isa<PointerType>(Base->getType()) &&
1090          "Invalid Base ptr type for preserve.struct.access.index.");
1091   auto *BaseType = Base->getType();
1092 
1093   Value *GEPIndex = getInt32(Index);
1094   Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
1095   Type *ResultType =
1096       GetElementPtrInst::getGEPReturnType(ElTy, Base, {Zero, GEPIndex});
1097 
1098   Module *M = BB->getParent()->getParent();
1099   Function *FnPreserveStructAccessIndex = Intrinsic::getDeclaration(
1100       M, Intrinsic::preserve_struct_access_index, {ResultType, BaseType});
1101 
1102   Value *DIIndex = getInt32(FieldIndex);
1103   CallInst *Fn = CreateCall(FnPreserveStructAccessIndex,
1104                             {Base, GEPIndex, DIIndex});
1105   if (DbgInfo)
1106     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
1107 
1108   return Fn;
1109 }
1110 
1111 CallInst *IRBuilderBase::CreateAlignmentAssumptionHelper(
1112     const DataLayout &DL, Value *PtrValue, Value *Mask, Type *IntPtrTy,
1113     Value *OffsetValue, Value **TheCheck) {
1114   Value *PtrIntValue = CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
1115 
1116   if (OffsetValue) {
1117     bool IsOffsetZero = false;
1118     if (const auto *CI = dyn_cast<ConstantInt>(OffsetValue))
1119       IsOffsetZero = CI->isZero();
1120 
1121     if (!IsOffsetZero) {
1122       if (OffsetValue->getType() != IntPtrTy)
1123         OffsetValue = CreateIntCast(OffsetValue, IntPtrTy, /*isSigned*/ true,
1124                                     "offsetcast");
1125       PtrIntValue = CreateSub(PtrIntValue, OffsetValue, "offsetptr");
1126     }
1127   }
1128 
1129   Value *Zero = ConstantInt::get(IntPtrTy, 0);
1130   Value *MaskedPtr = CreateAnd(PtrIntValue, Mask, "maskedptr");
1131   Value *InvCond = CreateICmpEQ(MaskedPtr, Zero, "maskcond");
1132   if (TheCheck)
1133     *TheCheck = InvCond;
1134 
1135   return CreateAssumption(InvCond);
1136 }
1137 
1138 CallInst *IRBuilderBase::CreateAlignmentAssumption(
1139     const DataLayout &DL, Value *PtrValue, unsigned Alignment,
1140     Value *OffsetValue, Value **TheCheck) {
1141   assert(isa<PointerType>(PtrValue->getType()) &&
1142          "trying to create an alignment assumption on a non-pointer?");
1143   assert(Alignment != 0 && "Invalid Alignment");
1144   auto *PtrTy = cast<PointerType>(PtrValue->getType());
1145   Type *IntPtrTy = getIntPtrTy(DL, PtrTy->getAddressSpace());
1146 
1147   Value *Mask = ConstantInt::get(IntPtrTy, Alignment - 1);
1148   return CreateAlignmentAssumptionHelper(DL, PtrValue, Mask, IntPtrTy,
1149                                          OffsetValue, TheCheck);
1150 }
1151 
1152 CallInst *IRBuilderBase::CreateAlignmentAssumption(
1153     const DataLayout &DL, Value *PtrValue, Value *Alignment,
1154     Value *OffsetValue, Value **TheCheck) {
1155   assert(isa<PointerType>(PtrValue->getType()) &&
1156          "trying to create an alignment assumption on a non-pointer?");
1157   auto *PtrTy = cast<PointerType>(PtrValue->getType());
1158   Type *IntPtrTy = getIntPtrTy(DL, PtrTy->getAddressSpace());
1159 
1160   if (Alignment->getType() != IntPtrTy)
1161     Alignment = CreateIntCast(Alignment, IntPtrTy, /*isSigned*/ false,
1162                               "alignmentcast");
1163 
1164   Value *Mask = CreateSub(Alignment, ConstantInt::get(IntPtrTy, 1), "mask");
1165 
1166   return CreateAlignmentAssumptionHelper(DL, PtrValue, Mask, IntPtrTy,
1167                                          OffsetValue, TheCheck);
1168 }
1169 
1170 IRBuilderDefaultInserter::~IRBuilderDefaultInserter() {}
1171 IRBuilderCallbackInserter::~IRBuilderCallbackInserter() {}
1172 IRBuilderFolder::~IRBuilderFolder() {}
1173 void ConstantFolder::anchor() {}
1174 void NoFolder::anchor() {}
1175