xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Function.cpp (revision f976241773df2260e6170317080761d1c5814fe5)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/SymbolTableListTraits.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Use.h"
42 #include "llvm/IR/User.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/IR/ValueSymbolTable.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstddef>
51 #include <cstdint>
52 #include <cstring>
53 #include <string>
54 
55 using namespace llvm;
56 using ProfileCount = Function::ProfileCount;
57 
58 // Explicit instantiations of SymbolTableListTraits since some of the methods
59 // are not in the public header file...
60 template class llvm::SymbolTableListTraits<BasicBlock>;
61 
62 //===----------------------------------------------------------------------===//
63 // Argument Implementation
64 //===----------------------------------------------------------------------===//
65 
66 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
67     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
68   setName(Name);
69 }
70 
71 void Argument::setParent(Function *parent) {
72   Parent = parent;
73 }
74 
75 bool Argument::hasNonNullAttr() const {
76   if (!getType()->isPointerTy()) return false;
77   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
78     return true;
79   else if (getDereferenceableBytes() > 0 &&
80            !NullPointerIsDefined(getParent(),
81                                  getType()->getPointerAddressSpace()))
82     return true;
83   return false;
84 }
85 
86 bool Argument::hasByValAttr() const {
87   if (!getType()->isPointerTy()) return false;
88   return hasAttribute(Attribute::ByVal);
89 }
90 
91 bool Argument::hasSwiftSelfAttr() const {
92   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
93 }
94 
95 bool Argument::hasSwiftErrorAttr() const {
96   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
97 }
98 
99 bool Argument::hasInAllocaAttr() const {
100   if (!getType()->isPointerTy()) return false;
101   return hasAttribute(Attribute::InAlloca);
102 }
103 
104 bool Argument::hasByValOrInAllocaAttr() const {
105   if (!getType()->isPointerTy()) return false;
106   AttributeList Attrs = getParent()->getAttributes();
107   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
108          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca);
109 }
110 
111 unsigned Argument::getParamAlignment() const {
112   assert(getType()->isPointerTy() && "Only pointers have alignments");
113   return getParent()->getParamAlignment(getArgNo());
114 }
115 
116 Type *Argument::getParamByValType() const {
117   assert(getType()->isPointerTy() && "Only pointers have byval types");
118   return getParent()->getParamByValType(getArgNo());
119 }
120 
121 uint64_t Argument::getDereferenceableBytes() const {
122   assert(getType()->isPointerTy() &&
123          "Only pointers have dereferenceable bytes");
124   return getParent()->getParamDereferenceableBytes(getArgNo());
125 }
126 
127 uint64_t Argument::getDereferenceableOrNullBytes() const {
128   assert(getType()->isPointerTy() &&
129          "Only pointers have dereferenceable bytes");
130   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
131 }
132 
133 bool Argument::hasNestAttr() const {
134   if (!getType()->isPointerTy()) return false;
135   return hasAttribute(Attribute::Nest);
136 }
137 
138 bool Argument::hasNoAliasAttr() const {
139   if (!getType()->isPointerTy()) return false;
140   return hasAttribute(Attribute::NoAlias);
141 }
142 
143 bool Argument::hasNoCaptureAttr() const {
144   if (!getType()->isPointerTy()) return false;
145   return hasAttribute(Attribute::NoCapture);
146 }
147 
148 bool Argument::hasStructRetAttr() const {
149   if (!getType()->isPointerTy()) return false;
150   return hasAttribute(Attribute::StructRet);
151 }
152 
153 bool Argument::hasInRegAttr() const {
154   return hasAttribute(Attribute::InReg);
155 }
156 
157 bool Argument::hasReturnedAttr() const {
158   return hasAttribute(Attribute::Returned);
159 }
160 
161 bool Argument::hasZExtAttr() const {
162   return hasAttribute(Attribute::ZExt);
163 }
164 
165 bool Argument::hasSExtAttr() const {
166   return hasAttribute(Attribute::SExt);
167 }
168 
169 bool Argument::onlyReadsMemory() const {
170   AttributeList Attrs = getParent()->getAttributes();
171   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
172          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
173 }
174 
175 void Argument::addAttrs(AttrBuilder &B) {
176   AttributeList AL = getParent()->getAttributes();
177   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
178   getParent()->setAttributes(AL);
179 }
180 
181 void Argument::addAttr(Attribute::AttrKind Kind) {
182   getParent()->addParamAttr(getArgNo(), Kind);
183 }
184 
185 void Argument::addAttr(Attribute Attr) {
186   getParent()->addParamAttr(getArgNo(), Attr);
187 }
188 
189 void Argument::removeAttr(Attribute::AttrKind Kind) {
190   getParent()->removeParamAttr(getArgNo(), Kind);
191 }
192 
193 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
194   return getParent()->hasParamAttribute(getArgNo(), Kind);
195 }
196 
197 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
198   return getParent()->getParamAttribute(getArgNo(), Kind);
199 }
200 
201 //===----------------------------------------------------------------------===//
202 // Helper Methods in Function
203 //===----------------------------------------------------------------------===//
204 
205 LLVMContext &Function::getContext() const {
206   return getType()->getContext();
207 }
208 
209 unsigned Function::getInstructionCount() const {
210   unsigned NumInstrs = 0;
211   for (const BasicBlock &BB : BasicBlocks)
212     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
213                                BB.instructionsWithoutDebug().end());
214   return NumInstrs;
215 }
216 
217 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
218                            const Twine &N, Module &M) {
219   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
220 }
221 
222 void Function::removeFromParent() {
223   getParent()->getFunctionList().remove(getIterator());
224 }
225 
226 void Function::eraseFromParent() {
227   getParent()->getFunctionList().erase(getIterator());
228 }
229 
230 //===----------------------------------------------------------------------===//
231 // Function Implementation
232 //===----------------------------------------------------------------------===//
233 
234 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
235   // If AS == -1 and we are passed a valid module pointer we place the function
236   // in the program address space. Otherwise we default to AS0.
237   if (AddrSpace == static_cast<unsigned>(-1))
238     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
239   return AddrSpace;
240 }
241 
242 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
243                    const Twine &name, Module *ParentModule)
244     : GlobalObject(Ty, Value::FunctionVal,
245                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
246                    computeAddrSpace(AddrSpace, ParentModule)),
247       NumArgs(Ty->getNumParams()) {
248   assert(FunctionType::isValidReturnType(getReturnType()) &&
249          "invalid return type");
250   setGlobalObjectSubClassData(0);
251 
252   // We only need a symbol table for a function if the context keeps value names
253   if (!getContext().shouldDiscardValueNames())
254     SymTab = make_unique<ValueSymbolTable>();
255 
256   // If the function has arguments, mark them as lazily built.
257   if (Ty->getNumParams())
258     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
259 
260   if (ParentModule)
261     ParentModule->getFunctionList().push_back(this);
262 
263   HasLLVMReservedName = getName().startswith("llvm.");
264   // Ensure intrinsics have the right parameter attributes.
265   // Note, the IntID field will have been set in Value::setName if this function
266   // name is a valid intrinsic ID.
267   if (IntID)
268     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
269 }
270 
271 Function::~Function() {
272   dropAllReferences();    // After this it is safe to delete instructions.
273 
274   // Delete all of the method arguments and unlink from symbol table...
275   if (Arguments)
276     clearArguments();
277 
278   // Remove the function from the on-the-side GC table.
279   clearGC();
280 }
281 
282 void Function::BuildLazyArguments() const {
283   // Create the arguments vector, all arguments start out unnamed.
284   auto *FT = getFunctionType();
285   if (NumArgs > 0) {
286     Arguments = std::allocator<Argument>().allocate(NumArgs);
287     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
288       Type *ArgTy = FT->getParamType(i);
289       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
290       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
291     }
292   }
293 
294   // Clear the lazy arguments bit.
295   unsigned SDC = getSubclassDataFromValue();
296   const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
297   assert(!hasLazyArguments());
298 }
299 
300 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
301   return MutableArrayRef<Argument>(Args, Count);
302 }
303 
304 void Function::clearArguments() {
305   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
306     A.setName("");
307     A.~Argument();
308   }
309   std::allocator<Argument>().deallocate(Arguments, NumArgs);
310   Arguments = nullptr;
311 }
312 
313 void Function::stealArgumentListFrom(Function &Src) {
314   assert(isDeclaration() && "Expected no references to current arguments");
315 
316   // Drop the current arguments, if any, and set the lazy argument bit.
317   if (!hasLazyArguments()) {
318     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
319                         [](const Argument &A) { return A.use_empty(); }) &&
320            "Expected arguments to be unused in declaration");
321     clearArguments();
322     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
323   }
324 
325   // Nothing to steal if Src has lazy arguments.
326   if (Src.hasLazyArguments())
327     return;
328 
329   // Steal arguments from Src, and fix the lazy argument bits.
330   assert(arg_size() == Src.arg_size());
331   Arguments = Src.Arguments;
332   Src.Arguments = nullptr;
333   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
334     // FIXME: This does the work of transferNodesFromList inefficiently.
335     SmallString<128> Name;
336     if (A.hasName())
337       Name = A.getName();
338     if (!Name.empty())
339       A.setName("");
340     A.setParent(this);
341     if (!Name.empty())
342       A.setName(Name);
343   }
344 
345   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
346   assert(!hasLazyArguments());
347   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
348 }
349 
350 // dropAllReferences() - This function causes all the subinstructions to "let
351 // go" of all references that they are maintaining.  This allows one to
352 // 'delete' a whole class at a time, even though there may be circular
353 // references... first all references are dropped, and all use counts go to
354 // zero.  Then everything is deleted for real.  Note that no operations are
355 // valid on an object that has "dropped all references", except operator
356 // delete.
357 //
358 void Function::dropAllReferences() {
359   setIsMaterializable(false);
360 
361   for (BasicBlock &BB : *this)
362     BB.dropAllReferences();
363 
364   // Delete all basic blocks. They are now unused, except possibly by
365   // blockaddresses, but BasicBlock's destructor takes care of those.
366   while (!BasicBlocks.empty())
367     BasicBlocks.begin()->eraseFromParent();
368 
369   // Drop uses of any optional data (real or placeholder).
370   if (getNumOperands()) {
371     User::dropAllReferences();
372     setNumHungOffUseOperands(0);
373     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
374   }
375 
376   // Metadata is stored in a side-table.
377   clearMetadata();
378 }
379 
380 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
381   AttributeList PAL = getAttributes();
382   PAL = PAL.addAttribute(getContext(), i, Kind);
383   setAttributes(PAL);
384 }
385 
386 void Function::addAttribute(unsigned i, Attribute Attr) {
387   AttributeList PAL = getAttributes();
388   PAL = PAL.addAttribute(getContext(), i, Attr);
389   setAttributes(PAL);
390 }
391 
392 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
393   AttributeList PAL = getAttributes();
394   PAL = PAL.addAttributes(getContext(), i, Attrs);
395   setAttributes(PAL);
396 }
397 
398 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
399   AttributeList PAL = getAttributes();
400   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
401   setAttributes(PAL);
402 }
403 
404 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
405   AttributeList PAL = getAttributes();
406   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
407   setAttributes(PAL);
408 }
409 
410 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
411   AttributeList PAL = getAttributes();
412   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
413   setAttributes(PAL);
414 }
415 
416 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
417   AttributeList PAL = getAttributes();
418   PAL = PAL.removeAttribute(getContext(), i, Kind);
419   setAttributes(PAL);
420 }
421 
422 void Function::removeAttribute(unsigned i, StringRef Kind) {
423   AttributeList PAL = getAttributes();
424   PAL = PAL.removeAttribute(getContext(), i, Kind);
425   setAttributes(PAL);
426 }
427 
428 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
429   AttributeList PAL = getAttributes();
430   PAL = PAL.removeAttributes(getContext(), i, Attrs);
431   setAttributes(PAL);
432 }
433 
434 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
435   AttributeList PAL = getAttributes();
436   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
437   setAttributes(PAL);
438 }
439 
440 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
441   AttributeList PAL = getAttributes();
442   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
443   setAttributes(PAL);
444 }
445 
446 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
447   AttributeList PAL = getAttributes();
448   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
449   setAttributes(PAL);
450 }
451 
452 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
453   AttributeList PAL = getAttributes();
454   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
455   setAttributes(PAL);
456 }
457 
458 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
459   AttributeList PAL = getAttributes();
460   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
461   setAttributes(PAL);
462 }
463 
464 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
465   AttributeList PAL = getAttributes();
466   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
467   setAttributes(PAL);
468 }
469 
470 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
471                                                  uint64_t Bytes) {
472   AttributeList PAL = getAttributes();
473   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
474   setAttributes(PAL);
475 }
476 
477 const std::string &Function::getGC() const {
478   assert(hasGC() && "Function has no collector");
479   return getContext().getGC(*this);
480 }
481 
482 void Function::setGC(std::string Str) {
483   setValueSubclassDataBit(14, !Str.empty());
484   getContext().setGC(*this, std::move(Str));
485 }
486 
487 void Function::clearGC() {
488   if (!hasGC())
489     return;
490   getContext().deleteGC(*this);
491   setValueSubclassDataBit(14, false);
492 }
493 
494 /// Copy all additional attributes (those not needed to create a Function) from
495 /// the Function Src to this one.
496 void Function::copyAttributesFrom(const Function *Src) {
497   GlobalObject::copyAttributesFrom(Src);
498   setCallingConv(Src->getCallingConv());
499   setAttributes(Src->getAttributes());
500   if (Src->hasGC())
501     setGC(Src->getGC());
502   else
503     clearGC();
504   if (Src->hasPersonalityFn())
505     setPersonalityFn(Src->getPersonalityFn());
506   if (Src->hasPrefixData())
507     setPrefixData(Src->getPrefixData());
508   if (Src->hasPrologueData())
509     setPrologueData(Src->getPrologueData());
510 }
511 
512 /// Table of string intrinsic names indexed by enum value.
513 static const char * const IntrinsicNameTable[] = {
514   "not_intrinsic",
515 #define GET_INTRINSIC_NAME_TABLE
516 #include "llvm/IR/IntrinsicImpl.inc"
517 #undef GET_INTRINSIC_NAME_TABLE
518 };
519 
520 /// Table of per-target intrinsic name tables.
521 #define GET_INTRINSIC_TARGET_DATA
522 #include "llvm/IR/IntrinsicImpl.inc"
523 #undef GET_INTRINSIC_TARGET_DATA
524 
525 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
526 /// target as \c Name, or the generic table if \c Name is not target specific.
527 ///
528 /// Returns the relevant slice of \c IntrinsicNameTable
529 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
530   assert(Name.startswith("llvm."));
531 
532   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
533   // Drop "llvm." and take the first dotted component. That will be the target
534   // if this is target specific.
535   StringRef Target = Name.drop_front(5).split('.').first;
536   auto It = partition_point(
537       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
538   // We've either found the target or just fall back to the generic set, which
539   // is always first.
540   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
541   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
542 }
543 
544 /// This does the actual lookup of an intrinsic ID which
545 /// matches the given function name.
546 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
547   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
548   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
549   if (Idx == -1)
550     return Intrinsic::not_intrinsic;
551 
552   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
553   // an index into a sub-table.
554   int Adjust = NameTable.data() - IntrinsicNameTable;
555   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
556 
557   // If the intrinsic is not overloaded, require an exact match. If it is
558   // overloaded, require either exact or prefix match.
559   const auto MatchSize = strlen(NameTable[Idx]);
560   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
561   bool IsExactMatch = Name.size() == MatchSize;
562   return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
563 }
564 
565 void Function::recalculateIntrinsicID() {
566   StringRef Name = getName();
567   if (!Name.startswith("llvm.")) {
568     HasLLVMReservedName = false;
569     IntID = Intrinsic::not_intrinsic;
570     return;
571   }
572   HasLLVMReservedName = true;
573   IntID = lookupIntrinsicID(Name);
574 }
575 
576 /// Returns a stable mangling for the type specified for use in the name
577 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
578 /// of named types is simply their name.  Manglings for unnamed types consist
579 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
580 /// combined with the mangling of their component types.  A vararg function
581 /// type will have a suffix of 'vararg'.  Since function types can contain
582 /// other function types, we close a function type mangling with suffix 'f'
583 /// which can't be confused with it's prefix.  This ensures we don't have
584 /// collisions between two unrelated function types. Otherwise, you might
585 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
586 ///
587 static std::string getMangledTypeStr(Type* Ty) {
588   std::string Result;
589   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
590     Result += "p" + utostr(PTyp->getAddressSpace()) +
591       getMangledTypeStr(PTyp->getElementType());
592   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
593     Result += "a" + utostr(ATyp->getNumElements()) +
594       getMangledTypeStr(ATyp->getElementType());
595   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
596     if (!STyp->isLiteral()) {
597       Result += "s_";
598       Result += STyp->getName();
599     } else {
600       Result += "sl_";
601       for (auto Elem : STyp->elements())
602         Result += getMangledTypeStr(Elem);
603     }
604     // Ensure nested structs are distinguishable.
605     Result += "s";
606   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
607     Result += "f_" + getMangledTypeStr(FT->getReturnType());
608     for (size_t i = 0; i < FT->getNumParams(); i++)
609       Result += getMangledTypeStr(FT->getParamType(i));
610     if (FT->isVarArg())
611       Result += "vararg";
612     // Ensure nested function types are distinguishable.
613     Result += "f";
614   } else if (isa<VectorType>(Ty)) {
615     Result += "v" + utostr(Ty->getVectorNumElements()) +
616       getMangledTypeStr(Ty->getVectorElementType());
617   } else if (Ty) {
618     switch (Ty->getTypeID()) {
619     default: llvm_unreachable("Unhandled type");
620     case Type::VoidTyID:      Result += "isVoid";   break;
621     case Type::MetadataTyID:  Result += "Metadata"; break;
622     case Type::HalfTyID:      Result += "f16";      break;
623     case Type::FloatTyID:     Result += "f32";      break;
624     case Type::DoubleTyID:    Result += "f64";      break;
625     case Type::X86_FP80TyID:  Result += "f80";      break;
626     case Type::FP128TyID:     Result += "f128";     break;
627     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
628     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
629     case Type::IntegerTyID:
630       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
631       break;
632     }
633   }
634   return Result;
635 }
636 
637 StringRef Intrinsic::getName(ID id) {
638   assert(id < num_intrinsics && "Invalid intrinsic ID!");
639   assert(!isOverloaded(id) &&
640          "This version of getName does not support overloading");
641   return IntrinsicNameTable[id];
642 }
643 
644 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
645   assert(id < num_intrinsics && "Invalid intrinsic ID!");
646   std::string Result(IntrinsicNameTable[id]);
647   for (Type *Ty : Tys) {
648     Result += "." + getMangledTypeStr(Ty);
649   }
650   return Result;
651 }
652 
653 /// IIT_Info - These are enumerators that describe the entries returned by the
654 /// getIntrinsicInfoTableEntries function.
655 ///
656 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
657 enum IIT_Info {
658   // Common values should be encoded with 0-15.
659   IIT_Done = 0,
660   IIT_I1   = 1,
661   IIT_I8   = 2,
662   IIT_I16  = 3,
663   IIT_I32  = 4,
664   IIT_I64  = 5,
665   IIT_F16  = 6,
666   IIT_F32  = 7,
667   IIT_F64  = 8,
668   IIT_V2   = 9,
669   IIT_V4   = 10,
670   IIT_V8   = 11,
671   IIT_V16  = 12,
672   IIT_V32  = 13,
673   IIT_PTR  = 14,
674   IIT_ARG  = 15,
675 
676   // Values from 16+ are only encodable with the inefficient encoding.
677   IIT_V64  = 16,
678   IIT_MMX  = 17,
679   IIT_TOKEN = 18,
680   IIT_METADATA = 19,
681   IIT_EMPTYSTRUCT = 20,
682   IIT_STRUCT2 = 21,
683   IIT_STRUCT3 = 22,
684   IIT_STRUCT4 = 23,
685   IIT_STRUCT5 = 24,
686   IIT_EXTEND_ARG = 25,
687   IIT_TRUNC_ARG = 26,
688   IIT_ANYPTR = 27,
689   IIT_V1   = 28,
690   IIT_VARARG = 29,
691   IIT_HALF_VEC_ARG = 30,
692   IIT_SAME_VEC_WIDTH_ARG = 31,
693   IIT_PTR_TO_ARG = 32,
694   IIT_PTR_TO_ELT = 33,
695   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
696   IIT_I128 = 35,
697   IIT_V512 = 36,
698   IIT_V1024 = 37,
699   IIT_STRUCT6 = 38,
700   IIT_STRUCT7 = 39,
701   IIT_STRUCT8 = 40,
702   IIT_F128 = 41,
703   IIT_VEC_ELEMENT = 42
704 };
705 
706 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
707                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
708   using namespace Intrinsic;
709 
710   IIT_Info Info = IIT_Info(Infos[NextElt++]);
711   unsigned StructElts = 2;
712 
713   switch (Info) {
714   case IIT_Done:
715     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
716     return;
717   case IIT_VARARG:
718     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
719     return;
720   case IIT_MMX:
721     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
722     return;
723   case IIT_TOKEN:
724     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
725     return;
726   case IIT_METADATA:
727     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
728     return;
729   case IIT_F16:
730     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
731     return;
732   case IIT_F32:
733     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
734     return;
735   case IIT_F64:
736     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
737     return;
738   case IIT_F128:
739     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
740     return;
741   case IIT_I1:
742     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
743     return;
744   case IIT_I8:
745     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
746     return;
747   case IIT_I16:
748     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
749     return;
750   case IIT_I32:
751     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
752     return;
753   case IIT_I64:
754     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
755     return;
756   case IIT_I128:
757     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
758     return;
759   case IIT_V1:
760     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
761     DecodeIITType(NextElt, Infos, OutputTable);
762     return;
763   case IIT_V2:
764     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
765     DecodeIITType(NextElt, Infos, OutputTable);
766     return;
767   case IIT_V4:
768     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
769     DecodeIITType(NextElt, Infos, OutputTable);
770     return;
771   case IIT_V8:
772     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
773     DecodeIITType(NextElt, Infos, OutputTable);
774     return;
775   case IIT_V16:
776     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
777     DecodeIITType(NextElt, Infos, OutputTable);
778     return;
779   case IIT_V32:
780     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
781     DecodeIITType(NextElt, Infos, OutputTable);
782     return;
783   case IIT_V64:
784     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
785     DecodeIITType(NextElt, Infos, OutputTable);
786     return;
787   case IIT_V512:
788     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
789     DecodeIITType(NextElt, Infos, OutputTable);
790     return;
791   case IIT_V1024:
792     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
793     DecodeIITType(NextElt, Infos, OutputTable);
794     return;
795   case IIT_PTR:
796     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
797     DecodeIITType(NextElt, Infos, OutputTable);
798     return;
799   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
800     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
801                                              Infos[NextElt++]));
802     DecodeIITType(NextElt, Infos, OutputTable);
803     return;
804   }
805   case IIT_ARG: {
806     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
807     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
808     return;
809   }
810   case IIT_EXTEND_ARG: {
811     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
812     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
813                                              ArgInfo));
814     return;
815   }
816   case IIT_TRUNC_ARG: {
817     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
818     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
819                                              ArgInfo));
820     return;
821   }
822   case IIT_HALF_VEC_ARG: {
823     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
824     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
825                                              ArgInfo));
826     return;
827   }
828   case IIT_SAME_VEC_WIDTH_ARG: {
829     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
830     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
831                                              ArgInfo));
832     return;
833   }
834   case IIT_PTR_TO_ARG: {
835     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
836     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
837                                              ArgInfo));
838     return;
839   }
840   case IIT_PTR_TO_ELT: {
841     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
842     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
843     return;
844   }
845   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
846     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
847     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
848     OutputTable.push_back(
849         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
850     return;
851   }
852   case IIT_EMPTYSTRUCT:
853     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
854     return;
855   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
856   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
857   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
858   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
859   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
860   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
861   case IIT_STRUCT2: {
862     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
863 
864     for (unsigned i = 0; i != StructElts; ++i)
865       DecodeIITType(NextElt, Infos, OutputTable);
866     return;
867   }
868   case IIT_VEC_ELEMENT: {
869     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
870     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
871                                              ArgInfo));
872     return;
873   }
874   }
875   llvm_unreachable("unhandled");
876 }
877 
878 #define GET_INTRINSIC_GENERATOR_GLOBAL
879 #include "llvm/IR/IntrinsicImpl.inc"
880 #undef GET_INTRINSIC_GENERATOR_GLOBAL
881 
882 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
883                                              SmallVectorImpl<IITDescriptor> &T){
884   // Check to see if the intrinsic's type was expressible by the table.
885   unsigned TableVal = IIT_Table[id-1];
886 
887   // Decode the TableVal into an array of IITValues.
888   SmallVector<unsigned char, 8> IITValues;
889   ArrayRef<unsigned char> IITEntries;
890   unsigned NextElt = 0;
891   if ((TableVal >> 31) != 0) {
892     // This is an offset into the IIT_LongEncodingTable.
893     IITEntries = IIT_LongEncodingTable;
894 
895     // Strip sentinel bit.
896     NextElt = (TableVal << 1) >> 1;
897   } else {
898     // Decode the TableVal into an array of IITValues.  If the entry was encoded
899     // into a single word in the table itself, decode it now.
900     do {
901       IITValues.push_back(TableVal & 0xF);
902       TableVal >>= 4;
903     } while (TableVal);
904 
905     IITEntries = IITValues;
906     NextElt = 0;
907   }
908 
909   // Okay, decode the table into the output vector of IITDescriptors.
910   DecodeIITType(NextElt, IITEntries, T);
911   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
912     DecodeIITType(NextElt, IITEntries, T);
913 }
914 
915 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
916                              ArrayRef<Type*> Tys, LLVMContext &Context) {
917   using namespace Intrinsic;
918 
919   IITDescriptor D = Infos.front();
920   Infos = Infos.slice(1);
921 
922   switch (D.Kind) {
923   case IITDescriptor::Void: return Type::getVoidTy(Context);
924   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
925   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
926   case IITDescriptor::Token: return Type::getTokenTy(Context);
927   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
928   case IITDescriptor::Half: return Type::getHalfTy(Context);
929   case IITDescriptor::Float: return Type::getFloatTy(Context);
930   case IITDescriptor::Double: return Type::getDoubleTy(Context);
931   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
932 
933   case IITDescriptor::Integer:
934     return IntegerType::get(Context, D.Integer_Width);
935   case IITDescriptor::Vector:
936     return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
937   case IITDescriptor::Pointer:
938     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
939                             D.Pointer_AddressSpace);
940   case IITDescriptor::Struct: {
941     SmallVector<Type *, 8> Elts;
942     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
943       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
944     return StructType::get(Context, Elts);
945   }
946   case IITDescriptor::Argument:
947     return Tys[D.getArgumentNumber()];
948   case IITDescriptor::ExtendArgument: {
949     Type *Ty = Tys[D.getArgumentNumber()];
950     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
951       return VectorType::getExtendedElementVectorType(VTy);
952 
953     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
954   }
955   case IITDescriptor::TruncArgument: {
956     Type *Ty = Tys[D.getArgumentNumber()];
957     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
958       return VectorType::getTruncatedElementVectorType(VTy);
959 
960     IntegerType *ITy = cast<IntegerType>(Ty);
961     assert(ITy->getBitWidth() % 2 == 0);
962     return IntegerType::get(Context, ITy->getBitWidth() / 2);
963   }
964   case IITDescriptor::HalfVecArgument:
965     return VectorType::getHalfElementsVectorType(cast<VectorType>(
966                                                   Tys[D.getArgumentNumber()]));
967   case IITDescriptor::SameVecWidthArgument: {
968     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
969     Type *Ty = Tys[D.getArgumentNumber()];
970     if (auto *VTy = dyn_cast<VectorType>(Ty))
971       return VectorType::get(EltTy, VTy->getNumElements());
972     return EltTy;
973   }
974   case IITDescriptor::PtrToArgument: {
975     Type *Ty = Tys[D.getArgumentNumber()];
976     return PointerType::getUnqual(Ty);
977   }
978   case IITDescriptor::PtrToElt: {
979     Type *Ty = Tys[D.getArgumentNumber()];
980     VectorType *VTy = dyn_cast<VectorType>(Ty);
981     if (!VTy)
982       llvm_unreachable("Expected an argument of Vector Type");
983     Type *EltTy = VTy->getVectorElementType();
984     return PointerType::getUnqual(EltTy);
985   }
986   case IITDescriptor::VecElementArgument: {
987     Type *Ty = Tys[D.getArgumentNumber()];
988     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
989       return VTy->getElementType();
990     llvm_unreachable("Expected an argument of Vector Type");
991   }
992   case IITDescriptor::VecOfAnyPtrsToElt:
993     // Return the overloaded type (which determines the pointers address space)
994     return Tys[D.getOverloadArgNumber()];
995   }
996   llvm_unreachable("unhandled");
997 }
998 
999 FunctionType *Intrinsic::getType(LLVMContext &Context,
1000                                  ID id, ArrayRef<Type*> Tys) {
1001   SmallVector<IITDescriptor, 8> Table;
1002   getIntrinsicInfoTableEntries(id, Table);
1003 
1004   ArrayRef<IITDescriptor> TableRef = Table;
1005   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1006 
1007   SmallVector<Type*, 8> ArgTys;
1008   while (!TableRef.empty())
1009     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1010 
1011   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1012   // If we see void type as the type of the last argument, it is vararg intrinsic
1013   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1014     ArgTys.pop_back();
1015     return FunctionType::get(ResultTy, ArgTys, true);
1016   }
1017   return FunctionType::get(ResultTy, ArgTys, false);
1018 }
1019 
1020 bool Intrinsic::isOverloaded(ID id) {
1021 #define GET_INTRINSIC_OVERLOAD_TABLE
1022 #include "llvm/IR/IntrinsicImpl.inc"
1023 #undef GET_INTRINSIC_OVERLOAD_TABLE
1024 }
1025 
1026 bool Intrinsic::isLeaf(ID id) {
1027   switch (id) {
1028   default:
1029     return true;
1030 
1031   case Intrinsic::experimental_gc_statepoint:
1032   case Intrinsic::experimental_patchpoint_void:
1033   case Intrinsic::experimental_patchpoint_i64:
1034     return false;
1035   }
1036 }
1037 
1038 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1039 #define GET_INTRINSIC_ATTRIBUTES
1040 #include "llvm/IR/IntrinsicImpl.inc"
1041 #undef GET_INTRINSIC_ATTRIBUTES
1042 
1043 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1044   // There can never be multiple globals with the same name of different types,
1045   // because intrinsics must be a specific type.
1046   return cast<Function>(
1047       M->getOrInsertFunction(getName(id, Tys),
1048                              getType(M->getContext(), id, Tys))
1049           .getCallee());
1050 }
1051 
1052 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1053 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1054 #include "llvm/IR/IntrinsicImpl.inc"
1055 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1056 
1057 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1058 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1059 #include "llvm/IR/IntrinsicImpl.inc"
1060 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1061 
1062 using DeferredIntrinsicMatchPair =
1063     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1064 
1065 static bool matchIntrinsicType(
1066     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1067     SmallVectorImpl<Type *> &ArgTys,
1068     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1069     bool IsDeferredCheck) {
1070   using namespace Intrinsic;
1071 
1072   // If we ran out of descriptors, there are too many arguments.
1073   if (Infos.empty()) return true;
1074 
1075   // Do this before slicing off the 'front' part
1076   auto InfosRef = Infos;
1077   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1078     DeferredChecks.emplace_back(T, InfosRef);
1079     return false;
1080   };
1081 
1082   IITDescriptor D = Infos.front();
1083   Infos = Infos.slice(1);
1084 
1085   switch (D.Kind) {
1086     case IITDescriptor::Void: return !Ty->isVoidTy();
1087     case IITDescriptor::VarArg: return true;
1088     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1089     case IITDescriptor::Token: return !Ty->isTokenTy();
1090     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1091     case IITDescriptor::Half: return !Ty->isHalfTy();
1092     case IITDescriptor::Float: return !Ty->isFloatTy();
1093     case IITDescriptor::Double: return !Ty->isDoubleTy();
1094     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1095     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1096     case IITDescriptor::Vector: {
1097       VectorType *VT = dyn_cast<VectorType>(Ty);
1098       return !VT || VT->getNumElements() != D.Vector_Width ||
1099              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1100                                 DeferredChecks, IsDeferredCheck);
1101     }
1102     case IITDescriptor::Pointer: {
1103       PointerType *PT = dyn_cast<PointerType>(Ty);
1104       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1105              matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1106                                 DeferredChecks, IsDeferredCheck);
1107     }
1108 
1109     case IITDescriptor::Struct: {
1110       StructType *ST = dyn_cast<StructType>(Ty);
1111       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1112         return true;
1113 
1114       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1115         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1116                                DeferredChecks, IsDeferredCheck))
1117           return true;
1118       return false;
1119     }
1120 
1121     case IITDescriptor::Argument:
1122       // If this is the second occurrence of an argument,
1123       // verify that the later instance matches the previous instance.
1124       if (D.getArgumentNumber() < ArgTys.size())
1125         return Ty != ArgTys[D.getArgumentNumber()];
1126 
1127       if (D.getArgumentNumber() > ArgTys.size() ||
1128           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1129         return IsDeferredCheck || DeferCheck(Ty);
1130 
1131       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1132              "Table consistency error");
1133       ArgTys.push_back(Ty);
1134 
1135       switch (D.getArgumentKind()) {
1136         case IITDescriptor::AK_Any:        return false; // Success
1137         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1138         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1139         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1140         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1141         default:                           break;
1142       }
1143       llvm_unreachable("all argument kinds not covered");
1144 
1145     case IITDescriptor::ExtendArgument: {
1146       // If this is a forward reference, defer the check for later.
1147       if (D.getArgumentNumber() >= ArgTys.size())
1148         return IsDeferredCheck || DeferCheck(Ty);
1149 
1150       Type *NewTy = ArgTys[D.getArgumentNumber()];
1151       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1152         NewTy = VectorType::getExtendedElementVectorType(VTy);
1153       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1154         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1155       else
1156         return true;
1157 
1158       return Ty != NewTy;
1159     }
1160     case IITDescriptor::TruncArgument: {
1161       // If this is a forward reference, defer the check for later.
1162       if (D.getArgumentNumber() >= ArgTys.size())
1163         return IsDeferredCheck || DeferCheck(Ty);
1164 
1165       Type *NewTy = ArgTys[D.getArgumentNumber()];
1166       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1167         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1168       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1169         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1170       else
1171         return true;
1172 
1173       return Ty != NewTy;
1174     }
1175     case IITDescriptor::HalfVecArgument:
1176       // If this is a forward reference, defer the check for later.
1177       return D.getArgumentNumber() >= ArgTys.size() ||
1178              !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1179              VectorType::getHalfElementsVectorType(
1180                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1181     case IITDescriptor::SameVecWidthArgument: {
1182       if (D.getArgumentNumber() >= ArgTys.size()) {
1183         // Defer check and subsequent check for the vector element type.
1184         Infos = Infos.slice(1);
1185         return IsDeferredCheck || DeferCheck(Ty);
1186       }
1187       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1188       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1189       // Both must be vectors of the same number of elements or neither.
1190       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1191         return true;
1192       Type *EltTy = Ty;
1193       if (ThisArgType) {
1194         if (ReferenceType->getVectorNumElements() !=
1195             ThisArgType->getVectorNumElements())
1196           return true;
1197         EltTy = ThisArgType->getVectorElementType();
1198       }
1199       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1200                                 IsDeferredCheck);
1201     }
1202     case IITDescriptor::PtrToArgument: {
1203       if (D.getArgumentNumber() >= ArgTys.size())
1204         return IsDeferredCheck || DeferCheck(Ty);
1205       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1206       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1207       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1208     }
1209     case IITDescriptor::PtrToElt: {
1210       if (D.getArgumentNumber() >= ArgTys.size())
1211         return IsDeferredCheck || DeferCheck(Ty);
1212       VectorType * ReferenceType =
1213         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1214       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1215 
1216       return (!ThisArgType || !ReferenceType ||
1217               ThisArgType->getElementType() != ReferenceType->getElementType());
1218     }
1219     case IITDescriptor::VecOfAnyPtrsToElt: {
1220       unsigned RefArgNumber = D.getRefArgNumber();
1221       if (RefArgNumber >= ArgTys.size()) {
1222         if (IsDeferredCheck)
1223           return true;
1224         // If forward referencing, already add the pointer-vector type and
1225         // defer the checks for later.
1226         ArgTys.push_back(Ty);
1227         return DeferCheck(Ty);
1228       }
1229 
1230       if (!IsDeferredCheck){
1231         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1232                "Table consistency error");
1233         ArgTys.push_back(Ty);
1234       }
1235 
1236       // Verify the overloaded type "matches" the Ref type.
1237       // i.e. Ty is a vector with the same width as Ref.
1238       // Composed of pointers to the same element type as Ref.
1239       VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1240       VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1241       if (!ThisArgVecTy || !ReferenceType ||
1242           (ReferenceType->getVectorNumElements() !=
1243            ThisArgVecTy->getVectorNumElements()))
1244         return true;
1245       PointerType *ThisArgEltTy =
1246               dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1247       if (!ThisArgEltTy)
1248         return true;
1249       return ThisArgEltTy->getElementType() !=
1250              ReferenceType->getVectorElementType();
1251     }
1252     case IITDescriptor::VecElementArgument: {
1253       if (D.getArgumentNumber() >= ArgTys.size())
1254         return IsDeferredCheck ? true : DeferCheck(Ty);
1255       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1256       return !ReferenceType || Ty != ReferenceType->getElementType();
1257     }
1258   }
1259   llvm_unreachable("unhandled");
1260 }
1261 
1262 Intrinsic::MatchIntrinsicTypesResult
1263 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1264                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1265                                    SmallVectorImpl<Type *> &ArgTys) {
1266   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1267   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1268                          false))
1269     return MatchIntrinsicTypes_NoMatchRet;
1270 
1271   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1272 
1273   for (auto Ty : FTy->params())
1274     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1275       return MatchIntrinsicTypes_NoMatchArg;
1276 
1277   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1278     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1279     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1280                            true))
1281       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1282                                          : MatchIntrinsicTypes_NoMatchArg;
1283   }
1284 
1285   return MatchIntrinsicTypes_Match;
1286 }
1287 
1288 bool
1289 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1290                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1291   // If there are no descriptors left, then it can't be a vararg.
1292   if (Infos.empty())
1293     return isVarArg;
1294 
1295   // There should be only one descriptor remaining at this point.
1296   if (Infos.size() != 1)
1297     return true;
1298 
1299   // Check and verify the descriptor.
1300   IITDescriptor D = Infos.front();
1301   Infos = Infos.slice(1);
1302   if (D.Kind == IITDescriptor::VarArg)
1303     return !isVarArg;
1304 
1305   return true;
1306 }
1307 
1308 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1309   Intrinsic::ID ID = F->getIntrinsicID();
1310   if (!ID)
1311     return None;
1312 
1313   FunctionType *FTy = F->getFunctionType();
1314   // Accumulate an array of overloaded types for the given intrinsic
1315   SmallVector<Type *, 4> ArgTys;
1316   {
1317     SmallVector<Intrinsic::IITDescriptor, 8> Table;
1318     getIntrinsicInfoTableEntries(ID, Table);
1319     ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1320 
1321     if (Intrinsic::matchIntrinsicSignature(FTy, TableRef, ArgTys))
1322       return None;
1323     if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1324       return None;
1325   }
1326 
1327   StringRef Name = F->getName();
1328   if (Name == Intrinsic::getName(ID, ArgTys))
1329     return None;
1330 
1331   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1332   NewDecl->setCallingConv(F->getCallingConv());
1333   assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1334   return NewDecl;
1335 }
1336 
1337 /// hasAddressTaken - returns true if there are any uses of this function
1338 /// other than direct calls or invokes to it.
1339 bool Function::hasAddressTaken(const User* *PutOffender) const {
1340   for (const Use &U : uses()) {
1341     const User *FU = U.getUser();
1342     if (isa<BlockAddress>(FU))
1343       continue;
1344     const auto *Call = dyn_cast<CallBase>(FU);
1345     if (!Call) {
1346       if (PutOffender)
1347         *PutOffender = FU;
1348       return true;
1349     }
1350     if (!Call->isCallee(&U)) {
1351       if (PutOffender)
1352         *PutOffender = FU;
1353       return true;
1354     }
1355   }
1356   return false;
1357 }
1358 
1359 bool Function::isDefTriviallyDead() const {
1360   // Check the linkage
1361   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1362       !hasAvailableExternallyLinkage())
1363     return false;
1364 
1365   // Check if the function is used by anything other than a blockaddress.
1366   for (const User *U : users())
1367     if (!isa<BlockAddress>(U))
1368       return false;
1369 
1370   return true;
1371 }
1372 
1373 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1374 /// setjmp or other function that gcc recognizes as "returning twice".
1375 bool Function::callsFunctionThatReturnsTwice() const {
1376   for (const Instruction &I : instructions(this))
1377     if (const auto *Call = dyn_cast<CallBase>(&I))
1378       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1379         return true;
1380 
1381   return false;
1382 }
1383 
1384 Constant *Function::getPersonalityFn() const {
1385   assert(hasPersonalityFn() && getNumOperands());
1386   return cast<Constant>(Op<0>());
1387 }
1388 
1389 void Function::setPersonalityFn(Constant *Fn) {
1390   setHungoffOperand<0>(Fn);
1391   setValueSubclassDataBit(3, Fn != nullptr);
1392 }
1393 
1394 Constant *Function::getPrefixData() const {
1395   assert(hasPrefixData() && getNumOperands());
1396   return cast<Constant>(Op<1>());
1397 }
1398 
1399 void Function::setPrefixData(Constant *PrefixData) {
1400   setHungoffOperand<1>(PrefixData);
1401   setValueSubclassDataBit(1, PrefixData != nullptr);
1402 }
1403 
1404 Constant *Function::getPrologueData() const {
1405   assert(hasPrologueData() && getNumOperands());
1406   return cast<Constant>(Op<2>());
1407 }
1408 
1409 void Function::setPrologueData(Constant *PrologueData) {
1410   setHungoffOperand<2>(PrologueData);
1411   setValueSubclassDataBit(2, PrologueData != nullptr);
1412 }
1413 
1414 void Function::allocHungoffUselist() {
1415   // If we've already allocated a uselist, stop here.
1416   if (getNumOperands())
1417     return;
1418 
1419   allocHungoffUses(3, /*IsPhi=*/ false);
1420   setNumHungOffUseOperands(3);
1421 
1422   // Initialize the uselist with placeholder operands to allow traversal.
1423   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1424   Op<0>().set(CPN);
1425   Op<1>().set(CPN);
1426   Op<2>().set(CPN);
1427 }
1428 
1429 template <int Idx>
1430 void Function::setHungoffOperand(Constant *C) {
1431   if (C) {
1432     allocHungoffUselist();
1433     Op<Idx>().set(C);
1434   } else if (getNumOperands()) {
1435     Op<Idx>().set(
1436         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1437   }
1438 }
1439 
1440 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1441   assert(Bit < 16 && "SubclassData contains only 16 bits");
1442   if (On)
1443     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1444   else
1445     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1446 }
1447 
1448 void Function::setEntryCount(ProfileCount Count,
1449                              const DenseSet<GlobalValue::GUID> *S) {
1450   assert(Count.hasValue());
1451 #if !defined(NDEBUG)
1452   auto PrevCount = getEntryCount();
1453   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1454 #endif
1455   MDBuilder MDB(getContext());
1456   setMetadata(
1457       LLVMContext::MD_prof,
1458       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1459 }
1460 
1461 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1462                              const DenseSet<GlobalValue::GUID> *Imports) {
1463   setEntryCount(ProfileCount(Count, Type), Imports);
1464 }
1465 
1466 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1467   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1468   if (MD && MD->getOperand(0))
1469     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1470       if (MDS->getString().equals("function_entry_count")) {
1471         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1472         uint64_t Count = CI->getValue().getZExtValue();
1473         // A value of -1 is used for SamplePGO when there were no samples.
1474         // Treat this the same as unknown.
1475         if (Count == (uint64_t)-1)
1476           return ProfileCount::getInvalid();
1477         return ProfileCount(Count, PCT_Real);
1478       } else if (AllowSynthetic &&
1479                  MDS->getString().equals("synthetic_function_entry_count")) {
1480         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1481         uint64_t Count = CI->getValue().getZExtValue();
1482         return ProfileCount(Count, PCT_Synthetic);
1483       }
1484     }
1485   return ProfileCount::getInvalid();
1486 }
1487 
1488 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1489   DenseSet<GlobalValue::GUID> R;
1490   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1491     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1492       if (MDS->getString().equals("function_entry_count"))
1493         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1494           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1495                        ->getValue()
1496                        .getZExtValue());
1497   return R;
1498 }
1499 
1500 void Function::setSectionPrefix(StringRef Prefix) {
1501   MDBuilder MDB(getContext());
1502   setMetadata(LLVMContext::MD_section_prefix,
1503               MDB.createFunctionSectionPrefix(Prefix));
1504 }
1505 
1506 Optional<StringRef> Function::getSectionPrefix() const {
1507   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1508     assert(cast<MDString>(MD->getOperand(0))
1509                ->getString()
1510                .equals("function_section_prefix") &&
1511            "Metadata not match");
1512     return cast<MDString>(MD->getOperand(1))->getString();
1513   }
1514   return None;
1515 }
1516 
1517 bool Function::nullPointerIsDefined() const {
1518   return getFnAttribute("null-pointer-is-valid")
1519           .getValueAsString()
1520           .equals("true");
1521 }
1522 
1523 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1524   if (F && F->nullPointerIsDefined())
1525     return true;
1526 
1527   if (AS != 0)
1528     return true;
1529 
1530   return false;
1531 }
1532