1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/SymbolTableListTraits.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Use.h" 42 #include "llvm/IR/User.h" 43 #include "llvm/IR/Value.h" 44 #include "llvm/IR/ValueSymbolTable.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstddef> 51 #include <cstdint> 52 #include <cstring> 53 #include <string> 54 55 using namespace llvm; 56 using ProfileCount = Function::ProfileCount; 57 58 // Explicit instantiations of SymbolTableListTraits since some of the methods 59 // are not in the public header file... 60 template class llvm::SymbolTableListTraits<BasicBlock>; 61 62 //===----------------------------------------------------------------------===// 63 // Argument Implementation 64 //===----------------------------------------------------------------------===// 65 66 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 67 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 68 setName(Name); 69 } 70 71 void Argument::setParent(Function *parent) { 72 Parent = parent; 73 } 74 75 bool Argument::hasNonNullAttr() const { 76 if (!getType()->isPointerTy()) return false; 77 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull)) 78 return true; 79 else if (getDereferenceableBytes() > 0 && 80 !NullPointerIsDefined(getParent(), 81 getType()->getPointerAddressSpace())) 82 return true; 83 return false; 84 } 85 86 bool Argument::hasByValAttr() const { 87 if (!getType()->isPointerTy()) return false; 88 return hasAttribute(Attribute::ByVal); 89 } 90 91 bool Argument::hasSwiftSelfAttr() const { 92 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 93 } 94 95 bool Argument::hasSwiftErrorAttr() const { 96 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 97 } 98 99 bool Argument::hasInAllocaAttr() const { 100 if (!getType()->isPointerTy()) return false; 101 return hasAttribute(Attribute::InAlloca); 102 } 103 104 bool Argument::hasByValOrInAllocaAttr() const { 105 if (!getType()->isPointerTy()) return false; 106 AttributeList Attrs = getParent()->getAttributes(); 107 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 108 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca); 109 } 110 111 unsigned Argument::getParamAlignment() const { 112 assert(getType()->isPointerTy() && "Only pointers have alignments"); 113 return getParent()->getParamAlignment(getArgNo()); 114 } 115 116 Type *Argument::getParamByValType() const { 117 assert(getType()->isPointerTy() && "Only pointers have byval types"); 118 return getParent()->getParamByValType(getArgNo()); 119 } 120 121 uint64_t Argument::getDereferenceableBytes() const { 122 assert(getType()->isPointerTy() && 123 "Only pointers have dereferenceable bytes"); 124 return getParent()->getParamDereferenceableBytes(getArgNo()); 125 } 126 127 uint64_t Argument::getDereferenceableOrNullBytes() const { 128 assert(getType()->isPointerTy() && 129 "Only pointers have dereferenceable bytes"); 130 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 131 } 132 133 bool Argument::hasNestAttr() const { 134 if (!getType()->isPointerTy()) return false; 135 return hasAttribute(Attribute::Nest); 136 } 137 138 bool Argument::hasNoAliasAttr() const { 139 if (!getType()->isPointerTy()) return false; 140 return hasAttribute(Attribute::NoAlias); 141 } 142 143 bool Argument::hasNoCaptureAttr() const { 144 if (!getType()->isPointerTy()) return false; 145 return hasAttribute(Attribute::NoCapture); 146 } 147 148 bool Argument::hasStructRetAttr() const { 149 if (!getType()->isPointerTy()) return false; 150 return hasAttribute(Attribute::StructRet); 151 } 152 153 bool Argument::hasInRegAttr() const { 154 return hasAttribute(Attribute::InReg); 155 } 156 157 bool Argument::hasReturnedAttr() const { 158 return hasAttribute(Attribute::Returned); 159 } 160 161 bool Argument::hasZExtAttr() const { 162 return hasAttribute(Attribute::ZExt); 163 } 164 165 bool Argument::hasSExtAttr() const { 166 return hasAttribute(Attribute::SExt); 167 } 168 169 bool Argument::onlyReadsMemory() const { 170 AttributeList Attrs = getParent()->getAttributes(); 171 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 172 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 173 } 174 175 void Argument::addAttrs(AttrBuilder &B) { 176 AttributeList AL = getParent()->getAttributes(); 177 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 178 getParent()->setAttributes(AL); 179 } 180 181 void Argument::addAttr(Attribute::AttrKind Kind) { 182 getParent()->addParamAttr(getArgNo(), Kind); 183 } 184 185 void Argument::addAttr(Attribute Attr) { 186 getParent()->addParamAttr(getArgNo(), Attr); 187 } 188 189 void Argument::removeAttr(Attribute::AttrKind Kind) { 190 getParent()->removeParamAttr(getArgNo(), Kind); 191 } 192 193 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 194 return getParent()->hasParamAttribute(getArgNo(), Kind); 195 } 196 197 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 198 return getParent()->getParamAttribute(getArgNo(), Kind); 199 } 200 201 //===----------------------------------------------------------------------===// 202 // Helper Methods in Function 203 //===----------------------------------------------------------------------===// 204 205 LLVMContext &Function::getContext() const { 206 return getType()->getContext(); 207 } 208 209 unsigned Function::getInstructionCount() const { 210 unsigned NumInstrs = 0; 211 for (const BasicBlock &BB : BasicBlocks) 212 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 213 BB.instructionsWithoutDebug().end()); 214 return NumInstrs; 215 } 216 217 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 218 const Twine &N, Module &M) { 219 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 220 } 221 222 void Function::removeFromParent() { 223 getParent()->getFunctionList().remove(getIterator()); 224 } 225 226 void Function::eraseFromParent() { 227 getParent()->getFunctionList().erase(getIterator()); 228 } 229 230 //===----------------------------------------------------------------------===// 231 // Function Implementation 232 //===----------------------------------------------------------------------===// 233 234 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 235 // If AS == -1 and we are passed a valid module pointer we place the function 236 // in the program address space. Otherwise we default to AS0. 237 if (AddrSpace == static_cast<unsigned>(-1)) 238 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 239 return AddrSpace; 240 } 241 242 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 243 const Twine &name, Module *ParentModule) 244 : GlobalObject(Ty, Value::FunctionVal, 245 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 246 computeAddrSpace(AddrSpace, ParentModule)), 247 NumArgs(Ty->getNumParams()) { 248 assert(FunctionType::isValidReturnType(getReturnType()) && 249 "invalid return type"); 250 setGlobalObjectSubClassData(0); 251 252 // We only need a symbol table for a function if the context keeps value names 253 if (!getContext().shouldDiscardValueNames()) 254 SymTab = make_unique<ValueSymbolTable>(); 255 256 // If the function has arguments, mark them as lazily built. 257 if (Ty->getNumParams()) 258 setValueSubclassData(1); // Set the "has lazy arguments" bit. 259 260 if (ParentModule) 261 ParentModule->getFunctionList().push_back(this); 262 263 HasLLVMReservedName = getName().startswith("llvm."); 264 // Ensure intrinsics have the right parameter attributes. 265 // Note, the IntID field will have been set in Value::setName if this function 266 // name is a valid intrinsic ID. 267 if (IntID) 268 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 269 } 270 271 Function::~Function() { 272 dropAllReferences(); // After this it is safe to delete instructions. 273 274 // Delete all of the method arguments and unlink from symbol table... 275 if (Arguments) 276 clearArguments(); 277 278 // Remove the function from the on-the-side GC table. 279 clearGC(); 280 } 281 282 void Function::BuildLazyArguments() const { 283 // Create the arguments vector, all arguments start out unnamed. 284 auto *FT = getFunctionType(); 285 if (NumArgs > 0) { 286 Arguments = std::allocator<Argument>().allocate(NumArgs); 287 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 288 Type *ArgTy = FT->getParamType(i); 289 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 290 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 291 } 292 } 293 294 // Clear the lazy arguments bit. 295 unsigned SDC = getSubclassDataFromValue(); 296 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 297 assert(!hasLazyArguments()); 298 } 299 300 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 301 return MutableArrayRef<Argument>(Args, Count); 302 } 303 304 void Function::clearArguments() { 305 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 306 A.setName(""); 307 A.~Argument(); 308 } 309 std::allocator<Argument>().deallocate(Arguments, NumArgs); 310 Arguments = nullptr; 311 } 312 313 void Function::stealArgumentListFrom(Function &Src) { 314 assert(isDeclaration() && "Expected no references to current arguments"); 315 316 // Drop the current arguments, if any, and set the lazy argument bit. 317 if (!hasLazyArguments()) { 318 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 319 [](const Argument &A) { return A.use_empty(); }) && 320 "Expected arguments to be unused in declaration"); 321 clearArguments(); 322 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 323 } 324 325 // Nothing to steal if Src has lazy arguments. 326 if (Src.hasLazyArguments()) 327 return; 328 329 // Steal arguments from Src, and fix the lazy argument bits. 330 assert(arg_size() == Src.arg_size()); 331 Arguments = Src.Arguments; 332 Src.Arguments = nullptr; 333 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 334 // FIXME: This does the work of transferNodesFromList inefficiently. 335 SmallString<128> Name; 336 if (A.hasName()) 337 Name = A.getName(); 338 if (!Name.empty()) 339 A.setName(""); 340 A.setParent(this); 341 if (!Name.empty()) 342 A.setName(Name); 343 } 344 345 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 346 assert(!hasLazyArguments()); 347 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 348 } 349 350 // dropAllReferences() - This function causes all the subinstructions to "let 351 // go" of all references that they are maintaining. This allows one to 352 // 'delete' a whole class at a time, even though there may be circular 353 // references... first all references are dropped, and all use counts go to 354 // zero. Then everything is deleted for real. Note that no operations are 355 // valid on an object that has "dropped all references", except operator 356 // delete. 357 // 358 void Function::dropAllReferences() { 359 setIsMaterializable(false); 360 361 for (BasicBlock &BB : *this) 362 BB.dropAllReferences(); 363 364 // Delete all basic blocks. They are now unused, except possibly by 365 // blockaddresses, but BasicBlock's destructor takes care of those. 366 while (!BasicBlocks.empty()) 367 BasicBlocks.begin()->eraseFromParent(); 368 369 // Drop uses of any optional data (real or placeholder). 370 if (getNumOperands()) { 371 User::dropAllReferences(); 372 setNumHungOffUseOperands(0); 373 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 374 } 375 376 // Metadata is stored in a side-table. 377 clearMetadata(); 378 } 379 380 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 381 AttributeList PAL = getAttributes(); 382 PAL = PAL.addAttribute(getContext(), i, Kind); 383 setAttributes(PAL); 384 } 385 386 void Function::addAttribute(unsigned i, Attribute Attr) { 387 AttributeList PAL = getAttributes(); 388 PAL = PAL.addAttribute(getContext(), i, Attr); 389 setAttributes(PAL); 390 } 391 392 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 393 AttributeList PAL = getAttributes(); 394 PAL = PAL.addAttributes(getContext(), i, Attrs); 395 setAttributes(PAL); 396 } 397 398 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 399 AttributeList PAL = getAttributes(); 400 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); 401 setAttributes(PAL); 402 } 403 404 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 405 AttributeList PAL = getAttributes(); 406 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); 407 setAttributes(PAL); 408 } 409 410 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 411 AttributeList PAL = getAttributes(); 412 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); 413 setAttributes(PAL); 414 } 415 416 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 417 AttributeList PAL = getAttributes(); 418 PAL = PAL.removeAttribute(getContext(), i, Kind); 419 setAttributes(PAL); 420 } 421 422 void Function::removeAttribute(unsigned i, StringRef Kind) { 423 AttributeList PAL = getAttributes(); 424 PAL = PAL.removeAttribute(getContext(), i, Kind); 425 setAttributes(PAL); 426 } 427 428 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 429 AttributeList PAL = getAttributes(); 430 PAL = PAL.removeAttributes(getContext(), i, Attrs); 431 setAttributes(PAL); 432 } 433 434 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 435 AttributeList PAL = getAttributes(); 436 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 437 setAttributes(PAL); 438 } 439 440 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 441 AttributeList PAL = getAttributes(); 442 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 443 setAttributes(PAL); 444 } 445 446 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 447 AttributeList PAL = getAttributes(); 448 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); 449 setAttributes(PAL); 450 } 451 452 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 453 AttributeList PAL = getAttributes(); 454 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 455 setAttributes(PAL); 456 } 457 458 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 459 AttributeList PAL = getAttributes(); 460 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 461 setAttributes(PAL); 462 } 463 464 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 465 AttributeList PAL = getAttributes(); 466 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 467 setAttributes(PAL); 468 } 469 470 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 471 uint64_t Bytes) { 472 AttributeList PAL = getAttributes(); 473 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); 474 setAttributes(PAL); 475 } 476 477 const std::string &Function::getGC() const { 478 assert(hasGC() && "Function has no collector"); 479 return getContext().getGC(*this); 480 } 481 482 void Function::setGC(std::string Str) { 483 setValueSubclassDataBit(14, !Str.empty()); 484 getContext().setGC(*this, std::move(Str)); 485 } 486 487 void Function::clearGC() { 488 if (!hasGC()) 489 return; 490 getContext().deleteGC(*this); 491 setValueSubclassDataBit(14, false); 492 } 493 494 /// Copy all additional attributes (those not needed to create a Function) from 495 /// the Function Src to this one. 496 void Function::copyAttributesFrom(const Function *Src) { 497 GlobalObject::copyAttributesFrom(Src); 498 setCallingConv(Src->getCallingConv()); 499 setAttributes(Src->getAttributes()); 500 if (Src->hasGC()) 501 setGC(Src->getGC()); 502 else 503 clearGC(); 504 if (Src->hasPersonalityFn()) 505 setPersonalityFn(Src->getPersonalityFn()); 506 if (Src->hasPrefixData()) 507 setPrefixData(Src->getPrefixData()); 508 if (Src->hasPrologueData()) 509 setPrologueData(Src->getPrologueData()); 510 } 511 512 /// Table of string intrinsic names indexed by enum value. 513 static const char * const IntrinsicNameTable[] = { 514 "not_intrinsic", 515 #define GET_INTRINSIC_NAME_TABLE 516 #include "llvm/IR/IntrinsicImpl.inc" 517 #undef GET_INTRINSIC_NAME_TABLE 518 }; 519 520 /// Table of per-target intrinsic name tables. 521 #define GET_INTRINSIC_TARGET_DATA 522 #include "llvm/IR/IntrinsicImpl.inc" 523 #undef GET_INTRINSIC_TARGET_DATA 524 525 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 526 /// target as \c Name, or the generic table if \c Name is not target specific. 527 /// 528 /// Returns the relevant slice of \c IntrinsicNameTable 529 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 530 assert(Name.startswith("llvm.")); 531 532 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 533 // Drop "llvm." and take the first dotted component. That will be the target 534 // if this is target specific. 535 StringRef Target = Name.drop_front(5).split('.').first; 536 auto It = partition_point( 537 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 538 // We've either found the target or just fall back to the generic set, which 539 // is always first. 540 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 541 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 542 } 543 544 /// This does the actual lookup of an intrinsic ID which 545 /// matches the given function name. 546 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 547 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 548 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 549 if (Idx == -1) 550 return Intrinsic::not_intrinsic; 551 552 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 553 // an index into a sub-table. 554 int Adjust = NameTable.data() - IntrinsicNameTable; 555 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 556 557 // If the intrinsic is not overloaded, require an exact match. If it is 558 // overloaded, require either exact or prefix match. 559 const auto MatchSize = strlen(NameTable[Idx]); 560 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 561 bool IsExactMatch = Name.size() == MatchSize; 562 return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 563 } 564 565 void Function::recalculateIntrinsicID() { 566 StringRef Name = getName(); 567 if (!Name.startswith("llvm.")) { 568 HasLLVMReservedName = false; 569 IntID = Intrinsic::not_intrinsic; 570 return; 571 } 572 HasLLVMReservedName = true; 573 IntID = lookupIntrinsicID(Name); 574 } 575 576 /// Returns a stable mangling for the type specified for use in the name 577 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 578 /// of named types is simply their name. Manglings for unnamed types consist 579 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 580 /// combined with the mangling of their component types. A vararg function 581 /// type will have a suffix of 'vararg'. Since function types can contain 582 /// other function types, we close a function type mangling with suffix 'f' 583 /// which can't be confused with it's prefix. This ensures we don't have 584 /// collisions between two unrelated function types. Otherwise, you might 585 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 586 /// 587 static std::string getMangledTypeStr(Type* Ty) { 588 std::string Result; 589 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 590 Result += "p" + utostr(PTyp->getAddressSpace()) + 591 getMangledTypeStr(PTyp->getElementType()); 592 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 593 Result += "a" + utostr(ATyp->getNumElements()) + 594 getMangledTypeStr(ATyp->getElementType()); 595 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 596 if (!STyp->isLiteral()) { 597 Result += "s_"; 598 Result += STyp->getName(); 599 } else { 600 Result += "sl_"; 601 for (auto Elem : STyp->elements()) 602 Result += getMangledTypeStr(Elem); 603 } 604 // Ensure nested structs are distinguishable. 605 Result += "s"; 606 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 607 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 608 for (size_t i = 0; i < FT->getNumParams(); i++) 609 Result += getMangledTypeStr(FT->getParamType(i)); 610 if (FT->isVarArg()) 611 Result += "vararg"; 612 // Ensure nested function types are distinguishable. 613 Result += "f"; 614 } else if (isa<VectorType>(Ty)) { 615 Result += "v" + utostr(Ty->getVectorNumElements()) + 616 getMangledTypeStr(Ty->getVectorElementType()); 617 } else if (Ty) { 618 switch (Ty->getTypeID()) { 619 default: llvm_unreachable("Unhandled type"); 620 case Type::VoidTyID: Result += "isVoid"; break; 621 case Type::MetadataTyID: Result += "Metadata"; break; 622 case Type::HalfTyID: Result += "f16"; break; 623 case Type::FloatTyID: Result += "f32"; break; 624 case Type::DoubleTyID: Result += "f64"; break; 625 case Type::X86_FP80TyID: Result += "f80"; break; 626 case Type::FP128TyID: Result += "f128"; break; 627 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 628 case Type::X86_MMXTyID: Result += "x86mmx"; break; 629 case Type::IntegerTyID: 630 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 631 break; 632 } 633 } 634 return Result; 635 } 636 637 StringRef Intrinsic::getName(ID id) { 638 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 639 assert(!isOverloaded(id) && 640 "This version of getName does not support overloading"); 641 return IntrinsicNameTable[id]; 642 } 643 644 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 645 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 646 std::string Result(IntrinsicNameTable[id]); 647 for (Type *Ty : Tys) { 648 Result += "." + getMangledTypeStr(Ty); 649 } 650 return Result; 651 } 652 653 /// IIT_Info - These are enumerators that describe the entries returned by the 654 /// getIntrinsicInfoTableEntries function. 655 /// 656 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 657 enum IIT_Info { 658 // Common values should be encoded with 0-15. 659 IIT_Done = 0, 660 IIT_I1 = 1, 661 IIT_I8 = 2, 662 IIT_I16 = 3, 663 IIT_I32 = 4, 664 IIT_I64 = 5, 665 IIT_F16 = 6, 666 IIT_F32 = 7, 667 IIT_F64 = 8, 668 IIT_V2 = 9, 669 IIT_V4 = 10, 670 IIT_V8 = 11, 671 IIT_V16 = 12, 672 IIT_V32 = 13, 673 IIT_PTR = 14, 674 IIT_ARG = 15, 675 676 // Values from 16+ are only encodable with the inefficient encoding. 677 IIT_V64 = 16, 678 IIT_MMX = 17, 679 IIT_TOKEN = 18, 680 IIT_METADATA = 19, 681 IIT_EMPTYSTRUCT = 20, 682 IIT_STRUCT2 = 21, 683 IIT_STRUCT3 = 22, 684 IIT_STRUCT4 = 23, 685 IIT_STRUCT5 = 24, 686 IIT_EXTEND_ARG = 25, 687 IIT_TRUNC_ARG = 26, 688 IIT_ANYPTR = 27, 689 IIT_V1 = 28, 690 IIT_VARARG = 29, 691 IIT_HALF_VEC_ARG = 30, 692 IIT_SAME_VEC_WIDTH_ARG = 31, 693 IIT_PTR_TO_ARG = 32, 694 IIT_PTR_TO_ELT = 33, 695 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 696 IIT_I128 = 35, 697 IIT_V512 = 36, 698 IIT_V1024 = 37, 699 IIT_STRUCT6 = 38, 700 IIT_STRUCT7 = 39, 701 IIT_STRUCT8 = 40, 702 IIT_F128 = 41, 703 IIT_VEC_ELEMENT = 42 704 }; 705 706 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 707 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 708 using namespace Intrinsic; 709 710 IIT_Info Info = IIT_Info(Infos[NextElt++]); 711 unsigned StructElts = 2; 712 713 switch (Info) { 714 case IIT_Done: 715 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 716 return; 717 case IIT_VARARG: 718 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 719 return; 720 case IIT_MMX: 721 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 722 return; 723 case IIT_TOKEN: 724 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 725 return; 726 case IIT_METADATA: 727 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 728 return; 729 case IIT_F16: 730 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 731 return; 732 case IIT_F32: 733 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 734 return; 735 case IIT_F64: 736 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 737 return; 738 case IIT_F128: 739 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 740 return; 741 case IIT_I1: 742 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 743 return; 744 case IIT_I8: 745 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 746 return; 747 case IIT_I16: 748 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 749 return; 750 case IIT_I32: 751 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 752 return; 753 case IIT_I64: 754 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 755 return; 756 case IIT_I128: 757 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 758 return; 759 case IIT_V1: 760 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 761 DecodeIITType(NextElt, Infos, OutputTable); 762 return; 763 case IIT_V2: 764 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 765 DecodeIITType(NextElt, Infos, OutputTable); 766 return; 767 case IIT_V4: 768 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 769 DecodeIITType(NextElt, Infos, OutputTable); 770 return; 771 case IIT_V8: 772 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 773 DecodeIITType(NextElt, Infos, OutputTable); 774 return; 775 case IIT_V16: 776 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 777 DecodeIITType(NextElt, Infos, OutputTable); 778 return; 779 case IIT_V32: 780 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 781 DecodeIITType(NextElt, Infos, OutputTable); 782 return; 783 case IIT_V64: 784 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 785 DecodeIITType(NextElt, Infos, OutputTable); 786 return; 787 case IIT_V512: 788 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 789 DecodeIITType(NextElt, Infos, OutputTable); 790 return; 791 case IIT_V1024: 792 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 793 DecodeIITType(NextElt, Infos, OutputTable); 794 return; 795 case IIT_PTR: 796 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 797 DecodeIITType(NextElt, Infos, OutputTable); 798 return; 799 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 800 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 801 Infos[NextElt++])); 802 DecodeIITType(NextElt, Infos, OutputTable); 803 return; 804 } 805 case IIT_ARG: { 806 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 807 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 808 return; 809 } 810 case IIT_EXTEND_ARG: { 811 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 812 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 813 ArgInfo)); 814 return; 815 } 816 case IIT_TRUNC_ARG: { 817 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 818 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 819 ArgInfo)); 820 return; 821 } 822 case IIT_HALF_VEC_ARG: { 823 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 824 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 825 ArgInfo)); 826 return; 827 } 828 case IIT_SAME_VEC_WIDTH_ARG: { 829 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 830 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 831 ArgInfo)); 832 return; 833 } 834 case IIT_PTR_TO_ARG: { 835 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 836 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 837 ArgInfo)); 838 return; 839 } 840 case IIT_PTR_TO_ELT: { 841 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 842 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 843 return; 844 } 845 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 846 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 847 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 848 OutputTable.push_back( 849 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 850 return; 851 } 852 case IIT_EMPTYSTRUCT: 853 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 854 return; 855 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 856 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 857 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 858 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 859 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 860 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 861 case IIT_STRUCT2: { 862 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 863 864 for (unsigned i = 0; i != StructElts; ++i) 865 DecodeIITType(NextElt, Infos, OutputTable); 866 return; 867 } 868 case IIT_VEC_ELEMENT: { 869 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 870 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 871 ArgInfo)); 872 return; 873 } 874 } 875 llvm_unreachable("unhandled"); 876 } 877 878 #define GET_INTRINSIC_GENERATOR_GLOBAL 879 #include "llvm/IR/IntrinsicImpl.inc" 880 #undef GET_INTRINSIC_GENERATOR_GLOBAL 881 882 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 883 SmallVectorImpl<IITDescriptor> &T){ 884 // Check to see if the intrinsic's type was expressible by the table. 885 unsigned TableVal = IIT_Table[id-1]; 886 887 // Decode the TableVal into an array of IITValues. 888 SmallVector<unsigned char, 8> IITValues; 889 ArrayRef<unsigned char> IITEntries; 890 unsigned NextElt = 0; 891 if ((TableVal >> 31) != 0) { 892 // This is an offset into the IIT_LongEncodingTable. 893 IITEntries = IIT_LongEncodingTable; 894 895 // Strip sentinel bit. 896 NextElt = (TableVal << 1) >> 1; 897 } else { 898 // Decode the TableVal into an array of IITValues. If the entry was encoded 899 // into a single word in the table itself, decode it now. 900 do { 901 IITValues.push_back(TableVal & 0xF); 902 TableVal >>= 4; 903 } while (TableVal); 904 905 IITEntries = IITValues; 906 NextElt = 0; 907 } 908 909 // Okay, decode the table into the output vector of IITDescriptors. 910 DecodeIITType(NextElt, IITEntries, T); 911 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 912 DecodeIITType(NextElt, IITEntries, T); 913 } 914 915 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 916 ArrayRef<Type*> Tys, LLVMContext &Context) { 917 using namespace Intrinsic; 918 919 IITDescriptor D = Infos.front(); 920 Infos = Infos.slice(1); 921 922 switch (D.Kind) { 923 case IITDescriptor::Void: return Type::getVoidTy(Context); 924 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 925 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 926 case IITDescriptor::Token: return Type::getTokenTy(Context); 927 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 928 case IITDescriptor::Half: return Type::getHalfTy(Context); 929 case IITDescriptor::Float: return Type::getFloatTy(Context); 930 case IITDescriptor::Double: return Type::getDoubleTy(Context); 931 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 932 933 case IITDescriptor::Integer: 934 return IntegerType::get(Context, D.Integer_Width); 935 case IITDescriptor::Vector: 936 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 937 case IITDescriptor::Pointer: 938 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 939 D.Pointer_AddressSpace); 940 case IITDescriptor::Struct: { 941 SmallVector<Type *, 8> Elts; 942 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 943 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 944 return StructType::get(Context, Elts); 945 } 946 case IITDescriptor::Argument: 947 return Tys[D.getArgumentNumber()]; 948 case IITDescriptor::ExtendArgument: { 949 Type *Ty = Tys[D.getArgumentNumber()]; 950 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 951 return VectorType::getExtendedElementVectorType(VTy); 952 953 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 954 } 955 case IITDescriptor::TruncArgument: { 956 Type *Ty = Tys[D.getArgumentNumber()]; 957 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 958 return VectorType::getTruncatedElementVectorType(VTy); 959 960 IntegerType *ITy = cast<IntegerType>(Ty); 961 assert(ITy->getBitWidth() % 2 == 0); 962 return IntegerType::get(Context, ITy->getBitWidth() / 2); 963 } 964 case IITDescriptor::HalfVecArgument: 965 return VectorType::getHalfElementsVectorType(cast<VectorType>( 966 Tys[D.getArgumentNumber()])); 967 case IITDescriptor::SameVecWidthArgument: { 968 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 969 Type *Ty = Tys[D.getArgumentNumber()]; 970 if (auto *VTy = dyn_cast<VectorType>(Ty)) 971 return VectorType::get(EltTy, VTy->getNumElements()); 972 return EltTy; 973 } 974 case IITDescriptor::PtrToArgument: { 975 Type *Ty = Tys[D.getArgumentNumber()]; 976 return PointerType::getUnqual(Ty); 977 } 978 case IITDescriptor::PtrToElt: { 979 Type *Ty = Tys[D.getArgumentNumber()]; 980 VectorType *VTy = dyn_cast<VectorType>(Ty); 981 if (!VTy) 982 llvm_unreachable("Expected an argument of Vector Type"); 983 Type *EltTy = VTy->getVectorElementType(); 984 return PointerType::getUnqual(EltTy); 985 } 986 case IITDescriptor::VecElementArgument: { 987 Type *Ty = Tys[D.getArgumentNumber()]; 988 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 989 return VTy->getElementType(); 990 llvm_unreachable("Expected an argument of Vector Type"); 991 } 992 case IITDescriptor::VecOfAnyPtrsToElt: 993 // Return the overloaded type (which determines the pointers address space) 994 return Tys[D.getOverloadArgNumber()]; 995 } 996 llvm_unreachable("unhandled"); 997 } 998 999 FunctionType *Intrinsic::getType(LLVMContext &Context, 1000 ID id, ArrayRef<Type*> Tys) { 1001 SmallVector<IITDescriptor, 8> Table; 1002 getIntrinsicInfoTableEntries(id, Table); 1003 1004 ArrayRef<IITDescriptor> TableRef = Table; 1005 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1006 1007 SmallVector<Type*, 8> ArgTys; 1008 while (!TableRef.empty()) 1009 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1010 1011 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1012 // If we see void type as the type of the last argument, it is vararg intrinsic 1013 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1014 ArgTys.pop_back(); 1015 return FunctionType::get(ResultTy, ArgTys, true); 1016 } 1017 return FunctionType::get(ResultTy, ArgTys, false); 1018 } 1019 1020 bool Intrinsic::isOverloaded(ID id) { 1021 #define GET_INTRINSIC_OVERLOAD_TABLE 1022 #include "llvm/IR/IntrinsicImpl.inc" 1023 #undef GET_INTRINSIC_OVERLOAD_TABLE 1024 } 1025 1026 bool Intrinsic::isLeaf(ID id) { 1027 switch (id) { 1028 default: 1029 return true; 1030 1031 case Intrinsic::experimental_gc_statepoint: 1032 case Intrinsic::experimental_patchpoint_void: 1033 case Intrinsic::experimental_patchpoint_i64: 1034 return false; 1035 } 1036 } 1037 1038 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1039 #define GET_INTRINSIC_ATTRIBUTES 1040 #include "llvm/IR/IntrinsicImpl.inc" 1041 #undef GET_INTRINSIC_ATTRIBUTES 1042 1043 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1044 // There can never be multiple globals with the same name of different types, 1045 // because intrinsics must be a specific type. 1046 return cast<Function>( 1047 M->getOrInsertFunction(getName(id, Tys), 1048 getType(M->getContext(), id, Tys)) 1049 .getCallee()); 1050 } 1051 1052 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 1053 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1054 #include "llvm/IR/IntrinsicImpl.inc" 1055 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1056 1057 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1058 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1059 #include "llvm/IR/IntrinsicImpl.inc" 1060 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1061 1062 using DeferredIntrinsicMatchPair = 1063 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1064 1065 static bool matchIntrinsicType( 1066 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1067 SmallVectorImpl<Type *> &ArgTys, 1068 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1069 bool IsDeferredCheck) { 1070 using namespace Intrinsic; 1071 1072 // If we ran out of descriptors, there are too many arguments. 1073 if (Infos.empty()) return true; 1074 1075 // Do this before slicing off the 'front' part 1076 auto InfosRef = Infos; 1077 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1078 DeferredChecks.emplace_back(T, InfosRef); 1079 return false; 1080 }; 1081 1082 IITDescriptor D = Infos.front(); 1083 Infos = Infos.slice(1); 1084 1085 switch (D.Kind) { 1086 case IITDescriptor::Void: return !Ty->isVoidTy(); 1087 case IITDescriptor::VarArg: return true; 1088 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1089 case IITDescriptor::Token: return !Ty->isTokenTy(); 1090 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1091 case IITDescriptor::Half: return !Ty->isHalfTy(); 1092 case IITDescriptor::Float: return !Ty->isFloatTy(); 1093 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1094 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1095 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1096 case IITDescriptor::Vector: { 1097 VectorType *VT = dyn_cast<VectorType>(Ty); 1098 return !VT || VT->getNumElements() != D.Vector_Width || 1099 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1100 DeferredChecks, IsDeferredCheck); 1101 } 1102 case IITDescriptor::Pointer: { 1103 PointerType *PT = dyn_cast<PointerType>(Ty); 1104 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 1105 matchIntrinsicType(PT->getElementType(), Infos, ArgTys, 1106 DeferredChecks, IsDeferredCheck); 1107 } 1108 1109 case IITDescriptor::Struct: { 1110 StructType *ST = dyn_cast<StructType>(Ty); 1111 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1112 return true; 1113 1114 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1115 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1116 DeferredChecks, IsDeferredCheck)) 1117 return true; 1118 return false; 1119 } 1120 1121 case IITDescriptor::Argument: 1122 // If this is the second occurrence of an argument, 1123 // verify that the later instance matches the previous instance. 1124 if (D.getArgumentNumber() < ArgTys.size()) 1125 return Ty != ArgTys[D.getArgumentNumber()]; 1126 1127 if (D.getArgumentNumber() > ArgTys.size() || 1128 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1129 return IsDeferredCheck || DeferCheck(Ty); 1130 1131 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1132 "Table consistency error"); 1133 ArgTys.push_back(Ty); 1134 1135 switch (D.getArgumentKind()) { 1136 case IITDescriptor::AK_Any: return false; // Success 1137 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1138 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1139 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1140 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1141 default: break; 1142 } 1143 llvm_unreachable("all argument kinds not covered"); 1144 1145 case IITDescriptor::ExtendArgument: { 1146 // If this is a forward reference, defer the check for later. 1147 if (D.getArgumentNumber() >= ArgTys.size()) 1148 return IsDeferredCheck || DeferCheck(Ty); 1149 1150 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1151 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1152 NewTy = VectorType::getExtendedElementVectorType(VTy); 1153 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1154 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1155 else 1156 return true; 1157 1158 return Ty != NewTy; 1159 } 1160 case IITDescriptor::TruncArgument: { 1161 // If this is a forward reference, defer the check for later. 1162 if (D.getArgumentNumber() >= ArgTys.size()) 1163 return IsDeferredCheck || DeferCheck(Ty); 1164 1165 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1166 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1167 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1168 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1169 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1170 else 1171 return true; 1172 1173 return Ty != NewTy; 1174 } 1175 case IITDescriptor::HalfVecArgument: 1176 // If this is a forward reference, defer the check for later. 1177 return D.getArgumentNumber() >= ArgTys.size() || 1178 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1179 VectorType::getHalfElementsVectorType( 1180 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1181 case IITDescriptor::SameVecWidthArgument: { 1182 if (D.getArgumentNumber() >= ArgTys.size()) { 1183 // Defer check and subsequent check for the vector element type. 1184 Infos = Infos.slice(1); 1185 return IsDeferredCheck || DeferCheck(Ty); 1186 } 1187 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1188 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1189 // Both must be vectors of the same number of elements or neither. 1190 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1191 return true; 1192 Type *EltTy = Ty; 1193 if (ThisArgType) { 1194 if (ReferenceType->getVectorNumElements() != 1195 ThisArgType->getVectorNumElements()) 1196 return true; 1197 EltTy = ThisArgType->getVectorElementType(); 1198 } 1199 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1200 IsDeferredCheck); 1201 } 1202 case IITDescriptor::PtrToArgument: { 1203 if (D.getArgumentNumber() >= ArgTys.size()) 1204 return IsDeferredCheck || DeferCheck(Ty); 1205 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1206 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1207 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1208 } 1209 case IITDescriptor::PtrToElt: { 1210 if (D.getArgumentNumber() >= ArgTys.size()) 1211 return IsDeferredCheck || DeferCheck(Ty); 1212 VectorType * ReferenceType = 1213 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1214 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1215 1216 return (!ThisArgType || !ReferenceType || 1217 ThisArgType->getElementType() != ReferenceType->getElementType()); 1218 } 1219 case IITDescriptor::VecOfAnyPtrsToElt: { 1220 unsigned RefArgNumber = D.getRefArgNumber(); 1221 if (RefArgNumber >= ArgTys.size()) { 1222 if (IsDeferredCheck) 1223 return true; 1224 // If forward referencing, already add the pointer-vector type and 1225 // defer the checks for later. 1226 ArgTys.push_back(Ty); 1227 return DeferCheck(Ty); 1228 } 1229 1230 if (!IsDeferredCheck){ 1231 assert(D.getOverloadArgNumber() == ArgTys.size() && 1232 "Table consistency error"); 1233 ArgTys.push_back(Ty); 1234 } 1235 1236 // Verify the overloaded type "matches" the Ref type. 1237 // i.e. Ty is a vector with the same width as Ref. 1238 // Composed of pointers to the same element type as Ref. 1239 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1240 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1241 if (!ThisArgVecTy || !ReferenceType || 1242 (ReferenceType->getVectorNumElements() != 1243 ThisArgVecTy->getVectorNumElements())) 1244 return true; 1245 PointerType *ThisArgEltTy = 1246 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1247 if (!ThisArgEltTy) 1248 return true; 1249 return ThisArgEltTy->getElementType() != 1250 ReferenceType->getVectorElementType(); 1251 } 1252 case IITDescriptor::VecElementArgument: { 1253 if (D.getArgumentNumber() >= ArgTys.size()) 1254 return IsDeferredCheck ? true : DeferCheck(Ty); 1255 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1256 return !ReferenceType || Ty != ReferenceType->getElementType(); 1257 } 1258 } 1259 llvm_unreachable("unhandled"); 1260 } 1261 1262 Intrinsic::MatchIntrinsicTypesResult 1263 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1264 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1265 SmallVectorImpl<Type *> &ArgTys) { 1266 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1267 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1268 false)) 1269 return MatchIntrinsicTypes_NoMatchRet; 1270 1271 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1272 1273 for (auto Ty : FTy->params()) 1274 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1275 return MatchIntrinsicTypes_NoMatchArg; 1276 1277 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1278 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1279 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1280 true)) 1281 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1282 : MatchIntrinsicTypes_NoMatchArg; 1283 } 1284 1285 return MatchIntrinsicTypes_Match; 1286 } 1287 1288 bool 1289 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1290 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1291 // If there are no descriptors left, then it can't be a vararg. 1292 if (Infos.empty()) 1293 return isVarArg; 1294 1295 // There should be only one descriptor remaining at this point. 1296 if (Infos.size() != 1) 1297 return true; 1298 1299 // Check and verify the descriptor. 1300 IITDescriptor D = Infos.front(); 1301 Infos = Infos.slice(1); 1302 if (D.Kind == IITDescriptor::VarArg) 1303 return !isVarArg; 1304 1305 return true; 1306 } 1307 1308 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1309 Intrinsic::ID ID = F->getIntrinsicID(); 1310 if (!ID) 1311 return None; 1312 1313 FunctionType *FTy = F->getFunctionType(); 1314 // Accumulate an array of overloaded types for the given intrinsic 1315 SmallVector<Type *, 4> ArgTys; 1316 { 1317 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1318 getIntrinsicInfoTableEntries(ID, Table); 1319 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1320 1321 if (Intrinsic::matchIntrinsicSignature(FTy, TableRef, ArgTys)) 1322 return None; 1323 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1324 return None; 1325 } 1326 1327 StringRef Name = F->getName(); 1328 if (Name == Intrinsic::getName(ID, ArgTys)) 1329 return None; 1330 1331 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1332 NewDecl->setCallingConv(F->getCallingConv()); 1333 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1334 return NewDecl; 1335 } 1336 1337 /// hasAddressTaken - returns true if there are any uses of this function 1338 /// other than direct calls or invokes to it. 1339 bool Function::hasAddressTaken(const User* *PutOffender) const { 1340 for (const Use &U : uses()) { 1341 const User *FU = U.getUser(); 1342 if (isa<BlockAddress>(FU)) 1343 continue; 1344 const auto *Call = dyn_cast<CallBase>(FU); 1345 if (!Call) { 1346 if (PutOffender) 1347 *PutOffender = FU; 1348 return true; 1349 } 1350 if (!Call->isCallee(&U)) { 1351 if (PutOffender) 1352 *PutOffender = FU; 1353 return true; 1354 } 1355 } 1356 return false; 1357 } 1358 1359 bool Function::isDefTriviallyDead() const { 1360 // Check the linkage 1361 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1362 !hasAvailableExternallyLinkage()) 1363 return false; 1364 1365 // Check if the function is used by anything other than a blockaddress. 1366 for (const User *U : users()) 1367 if (!isa<BlockAddress>(U)) 1368 return false; 1369 1370 return true; 1371 } 1372 1373 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1374 /// setjmp or other function that gcc recognizes as "returning twice". 1375 bool Function::callsFunctionThatReturnsTwice() const { 1376 for (const Instruction &I : instructions(this)) 1377 if (const auto *Call = dyn_cast<CallBase>(&I)) 1378 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1379 return true; 1380 1381 return false; 1382 } 1383 1384 Constant *Function::getPersonalityFn() const { 1385 assert(hasPersonalityFn() && getNumOperands()); 1386 return cast<Constant>(Op<0>()); 1387 } 1388 1389 void Function::setPersonalityFn(Constant *Fn) { 1390 setHungoffOperand<0>(Fn); 1391 setValueSubclassDataBit(3, Fn != nullptr); 1392 } 1393 1394 Constant *Function::getPrefixData() const { 1395 assert(hasPrefixData() && getNumOperands()); 1396 return cast<Constant>(Op<1>()); 1397 } 1398 1399 void Function::setPrefixData(Constant *PrefixData) { 1400 setHungoffOperand<1>(PrefixData); 1401 setValueSubclassDataBit(1, PrefixData != nullptr); 1402 } 1403 1404 Constant *Function::getPrologueData() const { 1405 assert(hasPrologueData() && getNumOperands()); 1406 return cast<Constant>(Op<2>()); 1407 } 1408 1409 void Function::setPrologueData(Constant *PrologueData) { 1410 setHungoffOperand<2>(PrologueData); 1411 setValueSubclassDataBit(2, PrologueData != nullptr); 1412 } 1413 1414 void Function::allocHungoffUselist() { 1415 // If we've already allocated a uselist, stop here. 1416 if (getNumOperands()) 1417 return; 1418 1419 allocHungoffUses(3, /*IsPhi=*/ false); 1420 setNumHungOffUseOperands(3); 1421 1422 // Initialize the uselist with placeholder operands to allow traversal. 1423 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1424 Op<0>().set(CPN); 1425 Op<1>().set(CPN); 1426 Op<2>().set(CPN); 1427 } 1428 1429 template <int Idx> 1430 void Function::setHungoffOperand(Constant *C) { 1431 if (C) { 1432 allocHungoffUselist(); 1433 Op<Idx>().set(C); 1434 } else if (getNumOperands()) { 1435 Op<Idx>().set( 1436 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1437 } 1438 } 1439 1440 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1441 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1442 if (On) 1443 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1444 else 1445 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1446 } 1447 1448 void Function::setEntryCount(ProfileCount Count, 1449 const DenseSet<GlobalValue::GUID> *S) { 1450 assert(Count.hasValue()); 1451 #if !defined(NDEBUG) 1452 auto PrevCount = getEntryCount(); 1453 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); 1454 #endif 1455 MDBuilder MDB(getContext()); 1456 setMetadata( 1457 LLVMContext::MD_prof, 1458 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1459 } 1460 1461 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1462 const DenseSet<GlobalValue::GUID> *Imports) { 1463 setEntryCount(ProfileCount(Count, Type), Imports); 1464 } 1465 1466 ProfileCount Function::getEntryCount(bool AllowSynthetic) const { 1467 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1468 if (MD && MD->getOperand(0)) 1469 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1470 if (MDS->getString().equals("function_entry_count")) { 1471 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1472 uint64_t Count = CI->getValue().getZExtValue(); 1473 // A value of -1 is used for SamplePGO when there were no samples. 1474 // Treat this the same as unknown. 1475 if (Count == (uint64_t)-1) 1476 return ProfileCount::getInvalid(); 1477 return ProfileCount(Count, PCT_Real); 1478 } else if (AllowSynthetic && 1479 MDS->getString().equals("synthetic_function_entry_count")) { 1480 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1481 uint64_t Count = CI->getValue().getZExtValue(); 1482 return ProfileCount(Count, PCT_Synthetic); 1483 } 1484 } 1485 return ProfileCount::getInvalid(); 1486 } 1487 1488 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1489 DenseSet<GlobalValue::GUID> R; 1490 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1491 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1492 if (MDS->getString().equals("function_entry_count")) 1493 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1494 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1495 ->getValue() 1496 .getZExtValue()); 1497 return R; 1498 } 1499 1500 void Function::setSectionPrefix(StringRef Prefix) { 1501 MDBuilder MDB(getContext()); 1502 setMetadata(LLVMContext::MD_section_prefix, 1503 MDB.createFunctionSectionPrefix(Prefix)); 1504 } 1505 1506 Optional<StringRef> Function::getSectionPrefix() const { 1507 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1508 assert(cast<MDString>(MD->getOperand(0)) 1509 ->getString() 1510 .equals("function_section_prefix") && 1511 "Metadata not match"); 1512 return cast<MDString>(MD->getOperand(1))->getString(); 1513 } 1514 return None; 1515 } 1516 1517 bool Function::nullPointerIsDefined() const { 1518 return getFnAttribute("null-pointer-is-valid") 1519 .getValueAsString() 1520 .equals("true"); 1521 } 1522 1523 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1524 if (F && F->nullPointerIsDefined()) 1525 return true; 1526 1527 if (AS != 0) 1528 return true; 1529 1530 return false; 1531 } 1532