xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Function.cpp (revision f126d349810fdb512c0b01e101342d430b947488)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsAArch64.h"
36 #include "llvm/IR/IntrinsicsAMDGPU.h"
37 #include "llvm/IR/IntrinsicsARM.h"
38 #include "llvm/IR/IntrinsicsBPF.h"
39 #include "llvm/IR/IntrinsicsHexagon.h"
40 #include "llvm/IR/IntrinsicsMips.h"
41 #include "llvm/IR/IntrinsicsNVPTX.h"
42 #include "llvm/IR/IntrinsicsPowerPC.h"
43 #include "llvm/IR/IntrinsicsR600.h"
44 #include "llvm/IR/IntrinsicsRISCV.h"
45 #include "llvm/IR/IntrinsicsS390.h"
46 #include "llvm/IR/IntrinsicsVE.h"
47 #include "llvm/IR/IntrinsicsWebAssembly.h"
48 #include "llvm/IR/IntrinsicsX86.h"
49 #include "llvm/IR/IntrinsicsXCore.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/SymbolTableListTraits.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Use.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/IR/ValueSymbolTable.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include <cassert>
66 #include <cstddef>
67 #include <cstdint>
68 #include <cstring>
69 #include <string>
70 
71 using namespace llvm;
72 using ProfileCount = Function::ProfileCount;
73 
74 // Explicit instantiations of SymbolTableListTraits since some of the methods
75 // are not in the public header file...
76 template class llvm::SymbolTableListTraits<BasicBlock>;
77 
78 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
79     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
80     cl::desc("Maximum size for the name of non-global values."));
81 
82 //===----------------------------------------------------------------------===//
83 // Argument Implementation
84 //===----------------------------------------------------------------------===//
85 
86 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
87     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
88   setName(Name);
89 }
90 
91 void Argument::setParent(Function *parent) {
92   Parent = parent;
93 }
94 
95 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
96   if (!getType()->isPointerTy()) return false;
97   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
98       (AllowUndefOrPoison ||
99        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
100     return true;
101   else if (getDereferenceableBytes() > 0 &&
102            !NullPointerIsDefined(getParent(),
103                                  getType()->getPointerAddressSpace()))
104     return true;
105   return false;
106 }
107 
108 bool Argument::hasByValAttr() const {
109   if (!getType()->isPointerTy()) return false;
110   return hasAttribute(Attribute::ByVal);
111 }
112 
113 bool Argument::hasByRefAttr() const {
114   if (!getType()->isPointerTy())
115     return false;
116   return hasAttribute(Attribute::ByRef);
117 }
118 
119 bool Argument::hasSwiftSelfAttr() const {
120   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
121 }
122 
123 bool Argument::hasSwiftErrorAttr() const {
124   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
125 }
126 
127 bool Argument::hasInAllocaAttr() const {
128   if (!getType()->isPointerTy()) return false;
129   return hasAttribute(Attribute::InAlloca);
130 }
131 
132 bool Argument::hasPreallocatedAttr() const {
133   if (!getType()->isPointerTy())
134     return false;
135   return hasAttribute(Attribute::Preallocated);
136 }
137 
138 bool Argument::hasPassPointeeByValueCopyAttr() const {
139   if (!getType()->isPointerTy()) return false;
140   AttributeList Attrs = getParent()->getAttributes();
141   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
142          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
143          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
144 }
145 
146 bool Argument::hasPointeeInMemoryValueAttr() const {
147   if (!getType()->isPointerTy())
148     return false;
149   AttributeList Attrs = getParent()->getAttributes();
150   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
151          Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
152          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
153          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
154          Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
155 }
156 
157 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
158 /// parameter type.
159 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
160   // FIXME: All the type carrying attributes are mutually exclusive, so there
161   // should be a single query to get the stored type that handles any of them.
162   if (Type *ByValTy = ParamAttrs.getByValType())
163     return ByValTy;
164   if (Type *ByRefTy = ParamAttrs.getByRefType())
165     return ByRefTy;
166   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
167     return PreAllocTy;
168   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
169     return InAllocaTy;
170   if (Type *SRetTy = ParamAttrs.getStructRetType())
171     return SRetTy;
172 
173   return nullptr;
174 }
175 
176 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
177   AttributeSet ParamAttrs =
178       getParent()->getAttributes().getParamAttrs(getArgNo());
179   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
180     return DL.getTypeAllocSize(MemTy);
181   return 0;
182 }
183 
184 Type *Argument::getPointeeInMemoryValueType() const {
185   AttributeSet ParamAttrs =
186       getParent()->getAttributes().getParamAttrs(getArgNo());
187   return getMemoryParamAllocType(ParamAttrs);
188 }
189 
190 uint64_t Argument::getParamAlignment() const {
191   assert(getType()->isPointerTy() && "Only pointers have alignments");
192   return getParent()->getParamAlignment(getArgNo());
193 }
194 
195 MaybeAlign Argument::getParamAlign() const {
196   assert(getType()->isPointerTy() && "Only pointers have alignments");
197   return getParent()->getParamAlign(getArgNo());
198 }
199 
200 MaybeAlign Argument::getParamStackAlign() const {
201   return getParent()->getParamStackAlign(getArgNo());
202 }
203 
204 Type *Argument::getParamByValType() const {
205   assert(getType()->isPointerTy() && "Only pointers have byval types");
206   return getParent()->getParamByValType(getArgNo());
207 }
208 
209 Type *Argument::getParamStructRetType() const {
210   assert(getType()->isPointerTy() && "Only pointers have sret types");
211   return getParent()->getParamStructRetType(getArgNo());
212 }
213 
214 Type *Argument::getParamByRefType() const {
215   assert(getType()->isPointerTy() && "Only pointers have byref types");
216   return getParent()->getParamByRefType(getArgNo());
217 }
218 
219 Type *Argument::getParamInAllocaType() const {
220   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
221   return getParent()->getParamInAllocaType(getArgNo());
222 }
223 
224 uint64_t Argument::getDereferenceableBytes() const {
225   assert(getType()->isPointerTy() &&
226          "Only pointers have dereferenceable bytes");
227   return getParent()->getParamDereferenceableBytes(getArgNo());
228 }
229 
230 uint64_t Argument::getDereferenceableOrNullBytes() const {
231   assert(getType()->isPointerTy() &&
232          "Only pointers have dereferenceable bytes");
233   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
234 }
235 
236 bool Argument::hasNestAttr() const {
237   if (!getType()->isPointerTy()) return false;
238   return hasAttribute(Attribute::Nest);
239 }
240 
241 bool Argument::hasNoAliasAttr() const {
242   if (!getType()->isPointerTy()) return false;
243   return hasAttribute(Attribute::NoAlias);
244 }
245 
246 bool Argument::hasNoCaptureAttr() const {
247   if (!getType()->isPointerTy()) return false;
248   return hasAttribute(Attribute::NoCapture);
249 }
250 
251 bool Argument::hasNoFreeAttr() const {
252   if (!getType()->isPointerTy()) return false;
253   return hasAttribute(Attribute::NoFree);
254 }
255 
256 bool Argument::hasStructRetAttr() const {
257   if (!getType()->isPointerTy()) return false;
258   return hasAttribute(Attribute::StructRet);
259 }
260 
261 bool Argument::hasInRegAttr() const {
262   return hasAttribute(Attribute::InReg);
263 }
264 
265 bool Argument::hasReturnedAttr() const {
266   return hasAttribute(Attribute::Returned);
267 }
268 
269 bool Argument::hasZExtAttr() const {
270   return hasAttribute(Attribute::ZExt);
271 }
272 
273 bool Argument::hasSExtAttr() const {
274   return hasAttribute(Attribute::SExt);
275 }
276 
277 bool Argument::onlyReadsMemory() const {
278   AttributeList Attrs = getParent()->getAttributes();
279   return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
280          Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
281 }
282 
283 void Argument::addAttrs(AttrBuilder &B) {
284   AttributeList AL = getParent()->getAttributes();
285   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
286   getParent()->setAttributes(AL);
287 }
288 
289 void Argument::addAttr(Attribute::AttrKind Kind) {
290   getParent()->addParamAttr(getArgNo(), Kind);
291 }
292 
293 void Argument::addAttr(Attribute Attr) {
294   getParent()->addParamAttr(getArgNo(), Attr);
295 }
296 
297 void Argument::removeAttr(Attribute::AttrKind Kind) {
298   getParent()->removeParamAttr(getArgNo(), Kind);
299 }
300 
301 void Argument::removeAttrs(const AttributeMask &AM) {
302   AttributeList AL = getParent()->getAttributes();
303   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
304   getParent()->setAttributes(AL);
305 }
306 
307 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
308   return getParent()->hasParamAttribute(getArgNo(), Kind);
309 }
310 
311 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
312   return getParent()->getParamAttribute(getArgNo(), Kind);
313 }
314 
315 //===----------------------------------------------------------------------===//
316 // Helper Methods in Function
317 //===----------------------------------------------------------------------===//
318 
319 LLVMContext &Function::getContext() const {
320   return getType()->getContext();
321 }
322 
323 unsigned Function::getInstructionCount() const {
324   unsigned NumInstrs = 0;
325   for (const BasicBlock &BB : BasicBlocks)
326     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
327                                BB.instructionsWithoutDebug().end());
328   return NumInstrs;
329 }
330 
331 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
332                            const Twine &N, Module &M) {
333   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
334 }
335 
336 Function *Function::createWithDefaultAttr(FunctionType *Ty,
337                                           LinkageTypes Linkage,
338                                           unsigned AddrSpace, const Twine &N,
339                                           Module *M) {
340   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
341   AttrBuilder B(F->getContext());
342   if (M->getUwtable())
343     B.addAttribute(Attribute::UWTable);
344   switch (M->getFramePointer()) {
345   case FramePointerKind::None:
346     // 0 ("none") is the default.
347     break;
348   case FramePointerKind::NonLeaf:
349     B.addAttribute("frame-pointer", "non-leaf");
350     break;
351   case FramePointerKind::All:
352     B.addAttribute("frame-pointer", "all");
353     break;
354   }
355   F->addFnAttrs(B);
356   return F;
357 }
358 
359 void Function::removeFromParent() {
360   getParent()->getFunctionList().remove(getIterator());
361 }
362 
363 void Function::eraseFromParent() {
364   getParent()->getFunctionList().erase(getIterator());
365 }
366 
367 //===----------------------------------------------------------------------===//
368 // Function Implementation
369 //===----------------------------------------------------------------------===//
370 
371 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
372   // If AS == -1 and we are passed a valid module pointer we place the function
373   // in the program address space. Otherwise we default to AS0.
374   if (AddrSpace == static_cast<unsigned>(-1))
375     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
376   return AddrSpace;
377 }
378 
379 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
380                    const Twine &name, Module *ParentModule)
381     : GlobalObject(Ty, Value::FunctionVal,
382                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
383                    computeAddrSpace(AddrSpace, ParentModule)),
384       NumArgs(Ty->getNumParams()) {
385   assert(FunctionType::isValidReturnType(getReturnType()) &&
386          "invalid return type");
387   setGlobalObjectSubClassData(0);
388 
389   // We only need a symbol table for a function if the context keeps value names
390   if (!getContext().shouldDiscardValueNames())
391     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
392 
393   // If the function has arguments, mark them as lazily built.
394   if (Ty->getNumParams())
395     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
396 
397   if (ParentModule)
398     ParentModule->getFunctionList().push_back(this);
399 
400   HasLLVMReservedName = getName().startswith("llvm.");
401   // Ensure intrinsics have the right parameter attributes.
402   // Note, the IntID field will have been set in Value::setName if this function
403   // name is a valid intrinsic ID.
404   if (IntID)
405     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
406 }
407 
408 Function::~Function() {
409   dropAllReferences();    // After this it is safe to delete instructions.
410 
411   // Delete all of the method arguments and unlink from symbol table...
412   if (Arguments)
413     clearArguments();
414 
415   // Remove the function from the on-the-side GC table.
416   clearGC();
417 }
418 
419 void Function::BuildLazyArguments() const {
420   // Create the arguments vector, all arguments start out unnamed.
421   auto *FT = getFunctionType();
422   if (NumArgs > 0) {
423     Arguments = std::allocator<Argument>().allocate(NumArgs);
424     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
425       Type *ArgTy = FT->getParamType(i);
426       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
427       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
428     }
429   }
430 
431   // Clear the lazy arguments bit.
432   unsigned SDC = getSubclassDataFromValue();
433   SDC &= ~(1 << 0);
434   const_cast<Function*>(this)->setValueSubclassData(SDC);
435   assert(!hasLazyArguments());
436 }
437 
438 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
439   return MutableArrayRef<Argument>(Args, Count);
440 }
441 
442 bool Function::isConstrainedFPIntrinsic() const {
443   switch (getIntrinsicID()) {
444 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
445   case Intrinsic::INTRINSIC:
446 #include "llvm/IR/ConstrainedOps.def"
447     return true;
448 #undef INSTRUCTION
449   default:
450     return false;
451   }
452 }
453 
454 void Function::clearArguments() {
455   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
456     A.setName("");
457     A.~Argument();
458   }
459   std::allocator<Argument>().deallocate(Arguments, NumArgs);
460   Arguments = nullptr;
461 }
462 
463 void Function::stealArgumentListFrom(Function &Src) {
464   assert(isDeclaration() && "Expected no references to current arguments");
465 
466   // Drop the current arguments, if any, and set the lazy argument bit.
467   if (!hasLazyArguments()) {
468     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
469                         [](const Argument &A) { return A.use_empty(); }) &&
470            "Expected arguments to be unused in declaration");
471     clearArguments();
472     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
473   }
474 
475   // Nothing to steal if Src has lazy arguments.
476   if (Src.hasLazyArguments())
477     return;
478 
479   // Steal arguments from Src, and fix the lazy argument bits.
480   assert(arg_size() == Src.arg_size());
481   Arguments = Src.Arguments;
482   Src.Arguments = nullptr;
483   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
484     // FIXME: This does the work of transferNodesFromList inefficiently.
485     SmallString<128> Name;
486     if (A.hasName())
487       Name = A.getName();
488     if (!Name.empty())
489       A.setName("");
490     A.setParent(this);
491     if (!Name.empty())
492       A.setName(Name);
493   }
494 
495   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
496   assert(!hasLazyArguments());
497   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
498 }
499 
500 // dropAllReferences() - This function causes all the subinstructions to "let
501 // go" of all references that they are maintaining.  This allows one to
502 // 'delete' a whole class at a time, even though there may be circular
503 // references... first all references are dropped, and all use counts go to
504 // zero.  Then everything is deleted for real.  Note that no operations are
505 // valid on an object that has "dropped all references", except operator
506 // delete.
507 //
508 void Function::dropAllReferences() {
509   setIsMaterializable(false);
510 
511   for (BasicBlock &BB : *this)
512     BB.dropAllReferences();
513 
514   // Delete all basic blocks. They are now unused, except possibly by
515   // blockaddresses, but BasicBlock's destructor takes care of those.
516   while (!BasicBlocks.empty())
517     BasicBlocks.begin()->eraseFromParent();
518 
519   // Drop uses of any optional data (real or placeholder).
520   if (getNumOperands()) {
521     User::dropAllReferences();
522     setNumHungOffUseOperands(0);
523     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
524   }
525 
526   // Metadata is stored in a side-table.
527   clearMetadata();
528 }
529 
530 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
531   AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
532 }
533 
534 void Function::addFnAttr(Attribute::AttrKind Kind) {
535   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
536 }
537 
538 void Function::addFnAttr(StringRef Kind, StringRef Val) {
539   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
540 }
541 
542 void Function::addFnAttr(Attribute Attr) {
543   AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
544 }
545 
546 void Function::addFnAttrs(const AttrBuilder &Attrs) {
547   AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
548 }
549 
550 void Function::addRetAttr(Attribute::AttrKind Kind) {
551   AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
552 }
553 
554 void Function::addRetAttr(Attribute Attr) {
555   AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
556 }
557 
558 void Function::addRetAttrs(const AttrBuilder &Attrs) {
559   AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
560 }
561 
562 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
563   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
564 }
565 
566 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
567   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
568 }
569 
570 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
571   AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
572 }
573 
574 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
575   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
576 }
577 
578 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
579   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
580 }
581 
582 void Function::removeFnAttr(Attribute::AttrKind Kind) {
583   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
584 }
585 
586 void Function::removeFnAttr(StringRef Kind) {
587   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
588 }
589 
590 void Function::removeFnAttrs(const AttributeMask &AM) {
591   AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
592 }
593 
594 void Function::removeRetAttr(Attribute::AttrKind Kind) {
595   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
596 }
597 
598 void Function::removeRetAttr(StringRef Kind) {
599   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
600 }
601 
602 void Function::removeRetAttrs(const AttributeMask &Attrs) {
603   AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
604 }
605 
606 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
607   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
608 }
609 
610 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
611   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
612 }
613 
614 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
615   AttributeSets =
616       AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
617 }
618 
619 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
620   AttributeSets =
621       AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
622 }
623 
624 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
625   return AttributeSets.hasFnAttr(Kind);
626 }
627 
628 bool Function::hasFnAttribute(StringRef Kind) const {
629   return AttributeSets.hasFnAttr(Kind);
630 }
631 
632 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
633   return AttributeSets.hasRetAttr(Kind);
634 }
635 
636 bool Function::hasParamAttribute(unsigned ArgNo,
637                                  Attribute::AttrKind Kind) const {
638   return AttributeSets.hasParamAttr(ArgNo, Kind);
639 }
640 
641 Attribute Function::getAttributeAtIndex(unsigned i,
642                                         Attribute::AttrKind Kind) const {
643   return AttributeSets.getAttributeAtIndex(i, Kind);
644 }
645 
646 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
647   return AttributeSets.getAttributeAtIndex(i, Kind);
648 }
649 
650 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
651   return AttributeSets.getFnAttr(Kind);
652 }
653 
654 Attribute Function::getFnAttribute(StringRef Kind) const {
655   return AttributeSets.getFnAttr(Kind);
656 }
657 
658 /// gets the specified attribute from the list of attributes.
659 Attribute Function::getParamAttribute(unsigned ArgNo,
660                                       Attribute::AttrKind Kind) const {
661   return AttributeSets.getParamAttr(ArgNo, Kind);
662 }
663 
664 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
665                                                  uint64_t Bytes) {
666   AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
667                                                                   ArgNo, Bytes);
668 }
669 
670 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
671   if (&FPType == &APFloat::IEEEsingle()) {
672     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
673     StringRef Val = Attr.getValueAsString();
674     if (!Val.empty())
675       return parseDenormalFPAttribute(Val);
676 
677     // If the f32 variant of the attribute isn't specified, try to use the
678     // generic one.
679   }
680 
681   Attribute Attr = getFnAttribute("denormal-fp-math");
682   return parseDenormalFPAttribute(Attr.getValueAsString());
683 }
684 
685 const std::string &Function::getGC() const {
686   assert(hasGC() && "Function has no collector");
687   return getContext().getGC(*this);
688 }
689 
690 void Function::setGC(std::string Str) {
691   setValueSubclassDataBit(14, !Str.empty());
692   getContext().setGC(*this, std::move(Str));
693 }
694 
695 void Function::clearGC() {
696   if (!hasGC())
697     return;
698   getContext().deleteGC(*this);
699   setValueSubclassDataBit(14, false);
700 }
701 
702 bool Function::hasStackProtectorFnAttr() const {
703   return hasFnAttribute(Attribute::StackProtect) ||
704          hasFnAttribute(Attribute::StackProtectStrong) ||
705          hasFnAttribute(Attribute::StackProtectReq);
706 }
707 
708 /// Copy all additional attributes (those not needed to create a Function) from
709 /// the Function Src to this one.
710 void Function::copyAttributesFrom(const Function *Src) {
711   GlobalObject::copyAttributesFrom(Src);
712   setCallingConv(Src->getCallingConv());
713   setAttributes(Src->getAttributes());
714   if (Src->hasGC())
715     setGC(Src->getGC());
716   else
717     clearGC();
718   if (Src->hasPersonalityFn())
719     setPersonalityFn(Src->getPersonalityFn());
720   if (Src->hasPrefixData())
721     setPrefixData(Src->getPrefixData());
722   if (Src->hasPrologueData())
723     setPrologueData(Src->getPrologueData());
724 }
725 
726 /// Table of string intrinsic names indexed by enum value.
727 static const char * const IntrinsicNameTable[] = {
728   "not_intrinsic",
729 #define GET_INTRINSIC_NAME_TABLE
730 #include "llvm/IR/IntrinsicImpl.inc"
731 #undef GET_INTRINSIC_NAME_TABLE
732 };
733 
734 /// Table of per-target intrinsic name tables.
735 #define GET_INTRINSIC_TARGET_DATA
736 #include "llvm/IR/IntrinsicImpl.inc"
737 #undef GET_INTRINSIC_TARGET_DATA
738 
739 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
740   return IID > TargetInfos[0].Count;
741 }
742 
743 bool Function::isTargetIntrinsic() const {
744   return isTargetIntrinsic(IntID);
745 }
746 
747 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
748 /// target as \c Name, or the generic table if \c Name is not target specific.
749 ///
750 /// Returns the relevant slice of \c IntrinsicNameTable
751 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
752   assert(Name.startswith("llvm."));
753 
754   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
755   // Drop "llvm." and take the first dotted component. That will be the target
756   // if this is target specific.
757   StringRef Target = Name.drop_front(5).split('.').first;
758   auto It = partition_point(
759       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
760   // We've either found the target or just fall back to the generic set, which
761   // is always first.
762   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
763   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
764 }
765 
766 /// This does the actual lookup of an intrinsic ID which
767 /// matches the given function name.
768 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
769   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
770   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
771   if (Idx == -1)
772     return Intrinsic::not_intrinsic;
773 
774   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
775   // an index into a sub-table.
776   int Adjust = NameTable.data() - IntrinsicNameTable;
777   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
778 
779   // If the intrinsic is not overloaded, require an exact match. If it is
780   // overloaded, require either exact or prefix match.
781   const auto MatchSize = strlen(NameTable[Idx]);
782   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
783   bool IsExactMatch = Name.size() == MatchSize;
784   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
785                                                      : Intrinsic::not_intrinsic;
786 }
787 
788 void Function::recalculateIntrinsicID() {
789   StringRef Name = getName();
790   if (!Name.startswith("llvm.")) {
791     HasLLVMReservedName = false;
792     IntID = Intrinsic::not_intrinsic;
793     return;
794   }
795   HasLLVMReservedName = true;
796   IntID = lookupIntrinsicID(Name);
797 }
798 
799 /// Returns a stable mangling for the type specified for use in the name
800 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
801 /// of named types is simply their name.  Manglings for unnamed types consist
802 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
803 /// combined with the mangling of their component types.  A vararg function
804 /// type will have a suffix of 'vararg'.  Since function types can contain
805 /// other function types, we close a function type mangling with suffix 'f'
806 /// which can't be confused with it's prefix.  This ensures we don't have
807 /// collisions between two unrelated function types. Otherwise, you might
808 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
809 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
810 /// indicating that extra care must be taken to ensure a unique name.
811 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
812   std::string Result;
813   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
814     Result += "p" + utostr(PTyp->getAddressSpace());
815     // Opaque pointer doesn't have pointee type information, so we just mangle
816     // address space for opaque pointer.
817     if (!PTyp->isOpaque())
818       Result += getMangledTypeStr(PTyp->getNonOpaquePointerElementType(),
819                                   HasUnnamedType);
820   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
821     Result += "a" + utostr(ATyp->getNumElements()) +
822               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
823   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
824     if (!STyp->isLiteral()) {
825       Result += "s_";
826       if (STyp->hasName())
827         Result += STyp->getName();
828       else
829         HasUnnamedType = true;
830     } else {
831       Result += "sl_";
832       for (auto Elem : STyp->elements())
833         Result += getMangledTypeStr(Elem, HasUnnamedType);
834     }
835     // Ensure nested structs are distinguishable.
836     Result += "s";
837   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
838     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
839     for (size_t i = 0; i < FT->getNumParams(); i++)
840       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
841     if (FT->isVarArg())
842       Result += "vararg";
843     // Ensure nested function types are distinguishable.
844     Result += "f";
845   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
846     ElementCount EC = VTy->getElementCount();
847     if (EC.isScalable())
848       Result += "nx";
849     Result += "v" + utostr(EC.getKnownMinValue()) +
850               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
851   } else if (Ty) {
852     switch (Ty->getTypeID()) {
853     default: llvm_unreachable("Unhandled type");
854     case Type::VoidTyID:      Result += "isVoid";   break;
855     case Type::MetadataTyID:  Result += "Metadata"; break;
856     case Type::HalfTyID:      Result += "f16";      break;
857     case Type::BFloatTyID:    Result += "bf16";     break;
858     case Type::FloatTyID:     Result += "f32";      break;
859     case Type::DoubleTyID:    Result += "f64";      break;
860     case Type::X86_FP80TyID:  Result += "f80";      break;
861     case Type::FP128TyID:     Result += "f128";     break;
862     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
863     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
864     case Type::X86_AMXTyID:   Result += "x86amx";   break;
865     case Type::IntegerTyID:
866       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
867       break;
868     }
869   }
870   return Result;
871 }
872 
873 StringRef Intrinsic::getBaseName(ID id) {
874   assert(id < num_intrinsics && "Invalid intrinsic ID!");
875   return IntrinsicNameTable[id];
876 }
877 
878 StringRef Intrinsic::getName(ID id) {
879   assert(id < num_intrinsics && "Invalid intrinsic ID!");
880   assert(!Intrinsic::isOverloaded(id) &&
881          "This version of getName does not support overloading");
882   return getBaseName(id);
883 }
884 
885 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
886                                         Module *M, FunctionType *FT,
887                                         bool EarlyModuleCheck) {
888 
889   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
890   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
891          "This version of getName is for overloaded intrinsics only");
892   (void)EarlyModuleCheck;
893   assert((!EarlyModuleCheck || M ||
894           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
895          "Intrinsic overloading on pointer types need to provide a Module");
896   bool HasUnnamedType = false;
897   std::string Result(Intrinsic::getBaseName(Id));
898   for (Type *Ty : Tys)
899     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
900   if (HasUnnamedType) {
901     assert(M && "unnamed types need a module");
902     if (!FT)
903       FT = Intrinsic::getType(M->getContext(), Id, Tys);
904     else
905       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
906              "Provided FunctionType must match arguments");
907     return M->getUniqueIntrinsicName(Result, Id, FT);
908   }
909   return Result;
910 }
911 
912 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
913                                FunctionType *FT) {
914   assert(M && "We need to have a Module");
915   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
916 }
917 
918 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
919   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
920 }
921 
922 /// IIT_Info - These are enumerators that describe the entries returned by the
923 /// getIntrinsicInfoTableEntries function.
924 ///
925 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
926 enum IIT_Info {
927   // Common values should be encoded with 0-15.
928   IIT_Done = 0,
929   IIT_I1   = 1,
930   IIT_I8   = 2,
931   IIT_I16  = 3,
932   IIT_I32  = 4,
933   IIT_I64  = 5,
934   IIT_F16  = 6,
935   IIT_F32  = 7,
936   IIT_F64  = 8,
937   IIT_V2   = 9,
938   IIT_V4   = 10,
939   IIT_V8   = 11,
940   IIT_V16  = 12,
941   IIT_V32  = 13,
942   IIT_PTR  = 14,
943   IIT_ARG  = 15,
944 
945   // Values from 16+ are only encodable with the inefficient encoding.
946   IIT_V64  = 16,
947   IIT_MMX  = 17,
948   IIT_TOKEN = 18,
949   IIT_METADATA = 19,
950   IIT_EMPTYSTRUCT = 20,
951   IIT_STRUCT2 = 21,
952   IIT_STRUCT3 = 22,
953   IIT_STRUCT4 = 23,
954   IIT_STRUCT5 = 24,
955   IIT_EXTEND_ARG = 25,
956   IIT_TRUNC_ARG = 26,
957   IIT_ANYPTR = 27,
958   IIT_V1   = 28,
959   IIT_VARARG = 29,
960   IIT_HALF_VEC_ARG = 30,
961   IIT_SAME_VEC_WIDTH_ARG = 31,
962   IIT_PTR_TO_ARG = 32,
963   IIT_PTR_TO_ELT = 33,
964   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
965   IIT_I128 = 35,
966   IIT_V512 = 36,
967   IIT_V1024 = 37,
968   IIT_STRUCT6 = 38,
969   IIT_STRUCT7 = 39,
970   IIT_STRUCT8 = 40,
971   IIT_F128 = 41,
972   IIT_VEC_ELEMENT = 42,
973   IIT_SCALABLE_VEC = 43,
974   IIT_SUBDIVIDE2_ARG = 44,
975   IIT_SUBDIVIDE4_ARG = 45,
976   IIT_VEC_OF_BITCASTS_TO_INT = 46,
977   IIT_V128 = 47,
978   IIT_BF16 = 48,
979   IIT_STRUCT9 = 49,
980   IIT_V256 = 50,
981   IIT_AMX  = 51,
982   IIT_PPCF128 = 52,
983   IIT_V3 = 53,
984   IIT_EXTERNREF = 54,
985   IIT_FUNCREF = 55
986 };
987 
988 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
989                       IIT_Info LastInfo,
990                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
991   using namespace Intrinsic;
992 
993   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
994 
995   IIT_Info Info = IIT_Info(Infos[NextElt++]);
996   unsigned StructElts = 2;
997 
998   switch (Info) {
999   case IIT_Done:
1000     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
1001     return;
1002   case IIT_VARARG:
1003     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
1004     return;
1005   case IIT_MMX:
1006     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
1007     return;
1008   case IIT_AMX:
1009     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
1010     return;
1011   case IIT_TOKEN:
1012     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1013     return;
1014   case IIT_METADATA:
1015     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1016     return;
1017   case IIT_F16:
1018     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1019     return;
1020   case IIT_BF16:
1021     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1022     return;
1023   case IIT_F32:
1024     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1025     return;
1026   case IIT_F64:
1027     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1028     return;
1029   case IIT_F128:
1030     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1031     return;
1032   case IIT_PPCF128:
1033     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
1034     return;
1035   case IIT_I1:
1036     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1037     return;
1038   case IIT_I8:
1039     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1040     return;
1041   case IIT_I16:
1042     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1043     return;
1044   case IIT_I32:
1045     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1046     return;
1047   case IIT_I64:
1048     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1049     return;
1050   case IIT_I128:
1051     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1052     return;
1053   case IIT_V1:
1054     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1055     DecodeIITType(NextElt, Infos, Info, OutputTable);
1056     return;
1057   case IIT_V2:
1058     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1059     DecodeIITType(NextElt, Infos, Info, OutputTable);
1060     return;
1061   case IIT_V3:
1062     OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
1063     DecodeIITType(NextElt, Infos, Info, OutputTable);
1064     return;
1065   case IIT_V4:
1066     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1067     DecodeIITType(NextElt, Infos, Info, OutputTable);
1068     return;
1069   case IIT_V8:
1070     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1071     DecodeIITType(NextElt, Infos, Info, OutputTable);
1072     return;
1073   case IIT_V16:
1074     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1075     DecodeIITType(NextElt, Infos, Info, OutputTable);
1076     return;
1077   case IIT_V32:
1078     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1079     DecodeIITType(NextElt, Infos, Info, OutputTable);
1080     return;
1081   case IIT_V64:
1082     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1083     DecodeIITType(NextElt, Infos, Info, OutputTable);
1084     return;
1085   case IIT_V128:
1086     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1087     DecodeIITType(NextElt, Infos, Info, OutputTable);
1088     return;
1089   case IIT_V256:
1090     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1091     DecodeIITType(NextElt, Infos, Info, OutputTable);
1092     return;
1093   case IIT_V512:
1094     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1095     DecodeIITType(NextElt, Infos, Info, OutputTable);
1096     return;
1097   case IIT_V1024:
1098     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1099     DecodeIITType(NextElt, Infos, Info, OutputTable);
1100     return;
1101   case IIT_EXTERNREF:
1102     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
1103     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1104     return;
1105   case IIT_FUNCREF:
1106     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
1107     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1108     return;
1109   case IIT_PTR:
1110     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1111     DecodeIITType(NextElt, Infos, Info, OutputTable);
1112     return;
1113   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
1114     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1115                                              Infos[NextElt++]));
1116     DecodeIITType(NextElt, Infos, Info, OutputTable);
1117     return;
1118   }
1119   case IIT_ARG: {
1120     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1121     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1122     return;
1123   }
1124   case IIT_EXTEND_ARG: {
1125     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1126     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1127                                              ArgInfo));
1128     return;
1129   }
1130   case IIT_TRUNC_ARG: {
1131     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1132     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1133                                              ArgInfo));
1134     return;
1135   }
1136   case IIT_HALF_VEC_ARG: {
1137     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1138     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1139                                              ArgInfo));
1140     return;
1141   }
1142   case IIT_SAME_VEC_WIDTH_ARG: {
1143     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1144     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1145                                              ArgInfo));
1146     return;
1147   }
1148   case IIT_PTR_TO_ARG: {
1149     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1150     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1151                                              ArgInfo));
1152     return;
1153   }
1154   case IIT_PTR_TO_ELT: {
1155     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1156     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1157     return;
1158   }
1159   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1160     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1161     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1162     OutputTable.push_back(
1163         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1164     return;
1165   }
1166   case IIT_EMPTYSTRUCT:
1167     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1168     return;
1169   case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1170   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1171   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1172   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1173   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1174   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1175   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1176   case IIT_STRUCT2: {
1177     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1178 
1179     for (unsigned i = 0; i != StructElts; ++i)
1180       DecodeIITType(NextElt, Infos, Info, OutputTable);
1181     return;
1182   }
1183   case IIT_SUBDIVIDE2_ARG: {
1184     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1185     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1186                                              ArgInfo));
1187     return;
1188   }
1189   case IIT_SUBDIVIDE4_ARG: {
1190     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1191     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1192                                              ArgInfo));
1193     return;
1194   }
1195   case IIT_VEC_ELEMENT: {
1196     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1197     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1198                                              ArgInfo));
1199     return;
1200   }
1201   case IIT_SCALABLE_VEC: {
1202     DecodeIITType(NextElt, Infos, Info, OutputTable);
1203     return;
1204   }
1205   case IIT_VEC_OF_BITCASTS_TO_INT: {
1206     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1207     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1208                                              ArgInfo));
1209     return;
1210   }
1211   }
1212   llvm_unreachable("unhandled");
1213 }
1214 
1215 #define GET_INTRINSIC_GENERATOR_GLOBAL
1216 #include "llvm/IR/IntrinsicImpl.inc"
1217 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1218 
1219 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1220                                              SmallVectorImpl<IITDescriptor> &T){
1221   // Check to see if the intrinsic's type was expressible by the table.
1222   unsigned TableVal = IIT_Table[id-1];
1223 
1224   // Decode the TableVal into an array of IITValues.
1225   SmallVector<unsigned char, 8> IITValues;
1226   ArrayRef<unsigned char> IITEntries;
1227   unsigned NextElt = 0;
1228   if ((TableVal >> 31) != 0) {
1229     // This is an offset into the IIT_LongEncodingTable.
1230     IITEntries = IIT_LongEncodingTable;
1231 
1232     // Strip sentinel bit.
1233     NextElt = (TableVal << 1) >> 1;
1234   } else {
1235     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1236     // into a single word in the table itself, decode it now.
1237     do {
1238       IITValues.push_back(TableVal & 0xF);
1239       TableVal >>= 4;
1240     } while (TableVal);
1241 
1242     IITEntries = IITValues;
1243     NextElt = 0;
1244   }
1245 
1246   // Okay, decode the table into the output vector of IITDescriptors.
1247   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1248   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1249     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1250 }
1251 
1252 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1253                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1254   using namespace Intrinsic;
1255 
1256   IITDescriptor D = Infos.front();
1257   Infos = Infos.slice(1);
1258 
1259   switch (D.Kind) {
1260   case IITDescriptor::Void: return Type::getVoidTy(Context);
1261   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1262   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1263   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1264   case IITDescriptor::Token: return Type::getTokenTy(Context);
1265   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1266   case IITDescriptor::Half: return Type::getHalfTy(Context);
1267   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1268   case IITDescriptor::Float: return Type::getFloatTy(Context);
1269   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1270   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1271   case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
1272 
1273   case IITDescriptor::Integer:
1274     return IntegerType::get(Context, D.Integer_Width);
1275   case IITDescriptor::Vector:
1276     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1277                            D.Vector_Width);
1278   case IITDescriptor::Pointer:
1279     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1280                             D.Pointer_AddressSpace);
1281   case IITDescriptor::Struct: {
1282     SmallVector<Type *, 8> Elts;
1283     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1284       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1285     return StructType::get(Context, Elts);
1286   }
1287   case IITDescriptor::Argument:
1288     return Tys[D.getArgumentNumber()];
1289   case IITDescriptor::ExtendArgument: {
1290     Type *Ty = Tys[D.getArgumentNumber()];
1291     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1292       return VectorType::getExtendedElementVectorType(VTy);
1293 
1294     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1295   }
1296   case IITDescriptor::TruncArgument: {
1297     Type *Ty = Tys[D.getArgumentNumber()];
1298     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1299       return VectorType::getTruncatedElementVectorType(VTy);
1300 
1301     IntegerType *ITy = cast<IntegerType>(Ty);
1302     assert(ITy->getBitWidth() % 2 == 0);
1303     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1304   }
1305   case IITDescriptor::Subdivide2Argument:
1306   case IITDescriptor::Subdivide4Argument: {
1307     Type *Ty = Tys[D.getArgumentNumber()];
1308     VectorType *VTy = dyn_cast<VectorType>(Ty);
1309     assert(VTy && "Expected an argument of Vector Type");
1310     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1311     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1312   }
1313   case IITDescriptor::HalfVecArgument:
1314     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1315                                                   Tys[D.getArgumentNumber()]));
1316   case IITDescriptor::SameVecWidthArgument: {
1317     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1318     Type *Ty = Tys[D.getArgumentNumber()];
1319     if (auto *VTy = dyn_cast<VectorType>(Ty))
1320       return VectorType::get(EltTy, VTy->getElementCount());
1321     return EltTy;
1322   }
1323   case IITDescriptor::PtrToArgument: {
1324     Type *Ty = Tys[D.getArgumentNumber()];
1325     return PointerType::getUnqual(Ty);
1326   }
1327   case IITDescriptor::PtrToElt: {
1328     Type *Ty = Tys[D.getArgumentNumber()];
1329     VectorType *VTy = dyn_cast<VectorType>(Ty);
1330     if (!VTy)
1331       llvm_unreachable("Expected an argument of Vector Type");
1332     Type *EltTy = VTy->getElementType();
1333     return PointerType::getUnqual(EltTy);
1334   }
1335   case IITDescriptor::VecElementArgument: {
1336     Type *Ty = Tys[D.getArgumentNumber()];
1337     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1338       return VTy->getElementType();
1339     llvm_unreachable("Expected an argument of Vector Type");
1340   }
1341   case IITDescriptor::VecOfBitcastsToInt: {
1342     Type *Ty = Tys[D.getArgumentNumber()];
1343     VectorType *VTy = dyn_cast<VectorType>(Ty);
1344     assert(VTy && "Expected an argument of Vector Type");
1345     return VectorType::getInteger(VTy);
1346   }
1347   case IITDescriptor::VecOfAnyPtrsToElt:
1348     // Return the overloaded type (which determines the pointers address space)
1349     return Tys[D.getOverloadArgNumber()];
1350   }
1351   llvm_unreachable("unhandled");
1352 }
1353 
1354 FunctionType *Intrinsic::getType(LLVMContext &Context,
1355                                  ID id, ArrayRef<Type*> Tys) {
1356   SmallVector<IITDescriptor, 8> Table;
1357   getIntrinsicInfoTableEntries(id, Table);
1358 
1359   ArrayRef<IITDescriptor> TableRef = Table;
1360   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1361 
1362   SmallVector<Type*, 8> ArgTys;
1363   while (!TableRef.empty())
1364     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1365 
1366   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1367   // If we see void type as the type of the last argument, it is vararg intrinsic
1368   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1369     ArgTys.pop_back();
1370     return FunctionType::get(ResultTy, ArgTys, true);
1371   }
1372   return FunctionType::get(ResultTy, ArgTys, false);
1373 }
1374 
1375 bool Intrinsic::isOverloaded(ID id) {
1376 #define GET_INTRINSIC_OVERLOAD_TABLE
1377 #include "llvm/IR/IntrinsicImpl.inc"
1378 #undef GET_INTRINSIC_OVERLOAD_TABLE
1379 }
1380 
1381 bool Intrinsic::isLeaf(ID id) {
1382   switch (id) {
1383   default:
1384     return true;
1385 
1386   case Intrinsic::experimental_gc_statepoint:
1387   case Intrinsic::experimental_patchpoint_void:
1388   case Intrinsic::experimental_patchpoint_i64:
1389     return false;
1390   }
1391 }
1392 
1393 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1394 #define GET_INTRINSIC_ATTRIBUTES
1395 #include "llvm/IR/IntrinsicImpl.inc"
1396 #undef GET_INTRINSIC_ATTRIBUTES
1397 
1398 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1399   // There can never be multiple globals with the same name of different types,
1400   // because intrinsics must be a specific type.
1401   auto *FT = getType(M->getContext(), id, Tys);
1402   return cast<Function>(
1403       M->getOrInsertFunction(Tys.empty() ? getName(id)
1404                                          : getName(id, Tys, M, FT),
1405                              getType(M->getContext(), id, Tys))
1406           .getCallee());
1407 }
1408 
1409 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1410 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1411 #include "llvm/IR/IntrinsicImpl.inc"
1412 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1413 
1414 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1415 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1416 #include "llvm/IR/IntrinsicImpl.inc"
1417 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1418 
1419 using DeferredIntrinsicMatchPair =
1420     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1421 
1422 static bool matchIntrinsicType(
1423     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1424     SmallVectorImpl<Type *> &ArgTys,
1425     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1426     bool IsDeferredCheck) {
1427   using namespace Intrinsic;
1428 
1429   // If we ran out of descriptors, there are too many arguments.
1430   if (Infos.empty()) return true;
1431 
1432   // Do this before slicing off the 'front' part
1433   auto InfosRef = Infos;
1434   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1435     DeferredChecks.emplace_back(T, InfosRef);
1436     return false;
1437   };
1438 
1439   IITDescriptor D = Infos.front();
1440   Infos = Infos.slice(1);
1441 
1442   switch (D.Kind) {
1443     case IITDescriptor::Void: return !Ty->isVoidTy();
1444     case IITDescriptor::VarArg: return true;
1445     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1446     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1447     case IITDescriptor::Token: return !Ty->isTokenTy();
1448     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1449     case IITDescriptor::Half: return !Ty->isHalfTy();
1450     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1451     case IITDescriptor::Float: return !Ty->isFloatTy();
1452     case IITDescriptor::Double: return !Ty->isDoubleTy();
1453     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1454     case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
1455     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1456     case IITDescriptor::Vector: {
1457       VectorType *VT = dyn_cast<VectorType>(Ty);
1458       return !VT || VT->getElementCount() != D.Vector_Width ||
1459              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1460                                 DeferredChecks, IsDeferredCheck);
1461     }
1462     case IITDescriptor::Pointer: {
1463       PointerType *PT = dyn_cast<PointerType>(Ty);
1464       if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace)
1465         return true;
1466       if (!PT->isOpaque())
1467         return matchIntrinsicType(PT->getNonOpaquePointerElementType(), Infos,
1468                                   ArgTys, DeferredChecks, IsDeferredCheck);
1469       // Consume IIT descriptors relating to the pointer element type.
1470       while (Infos.front().Kind == IITDescriptor::Pointer)
1471         Infos = Infos.slice(1);
1472       Infos = Infos.slice(1);
1473       return false;
1474     }
1475 
1476     case IITDescriptor::Struct: {
1477       StructType *ST = dyn_cast<StructType>(Ty);
1478       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1479         return true;
1480 
1481       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1482         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1483                                DeferredChecks, IsDeferredCheck))
1484           return true;
1485       return false;
1486     }
1487 
1488     case IITDescriptor::Argument:
1489       // If this is the second occurrence of an argument,
1490       // verify that the later instance matches the previous instance.
1491       if (D.getArgumentNumber() < ArgTys.size())
1492         return Ty != ArgTys[D.getArgumentNumber()];
1493 
1494       if (D.getArgumentNumber() > ArgTys.size() ||
1495           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1496         return IsDeferredCheck || DeferCheck(Ty);
1497 
1498       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1499              "Table consistency error");
1500       ArgTys.push_back(Ty);
1501 
1502       switch (D.getArgumentKind()) {
1503         case IITDescriptor::AK_Any:        return false; // Success
1504         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1505         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1506         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1507         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1508         default:                           break;
1509       }
1510       llvm_unreachable("all argument kinds not covered");
1511 
1512     case IITDescriptor::ExtendArgument: {
1513       // If this is a forward reference, defer the check for later.
1514       if (D.getArgumentNumber() >= ArgTys.size())
1515         return IsDeferredCheck || DeferCheck(Ty);
1516 
1517       Type *NewTy = ArgTys[D.getArgumentNumber()];
1518       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1519         NewTy = VectorType::getExtendedElementVectorType(VTy);
1520       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1521         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1522       else
1523         return true;
1524 
1525       return Ty != NewTy;
1526     }
1527     case IITDescriptor::TruncArgument: {
1528       // If this is a forward reference, defer the check for later.
1529       if (D.getArgumentNumber() >= ArgTys.size())
1530         return IsDeferredCheck || DeferCheck(Ty);
1531 
1532       Type *NewTy = ArgTys[D.getArgumentNumber()];
1533       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1534         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1535       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1536         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1537       else
1538         return true;
1539 
1540       return Ty != NewTy;
1541     }
1542     case IITDescriptor::HalfVecArgument:
1543       // If this is a forward reference, defer the check for later.
1544       if (D.getArgumentNumber() >= ArgTys.size())
1545         return IsDeferredCheck || DeferCheck(Ty);
1546       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1547              VectorType::getHalfElementsVectorType(
1548                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1549     case IITDescriptor::SameVecWidthArgument: {
1550       if (D.getArgumentNumber() >= ArgTys.size()) {
1551         // Defer check and subsequent check for the vector element type.
1552         Infos = Infos.slice(1);
1553         return IsDeferredCheck || DeferCheck(Ty);
1554       }
1555       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1556       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1557       // Both must be vectors of the same number of elements or neither.
1558       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1559         return true;
1560       Type *EltTy = Ty;
1561       if (ThisArgType) {
1562         if (ReferenceType->getElementCount() !=
1563             ThisArgType->getElementCount())
1564           return true;
1565         EltTy = ThisArgType->getElementType();
1566       }
1567       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1568                                 IsDeferredCheck);
1569     }
1570     case IITDescriptor::PtrToArgument: {
1571       if (D.getArgumentNumber() >= ArgTys.size())
1572         return IsDeferredCheck || DeferCheck(Ty);
1573       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1574       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1575       return (!ThisArgType ||
1576               !ThisArgType->isOpaqueOrPointeeTypeMatches(ReferenceType));
1577     }
1578     case IITDescriptor::PtrToElt: {
1579       if (D.getArgumentNumber() >= ArgTys.size())
1580         return IsDeferredCheck || DeferCheck(Ty);
1581       VectorType * ReferenceType =
1582         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1583       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1584 
1585       if (!ThisArgType || !ReferenceType)
1586         return true;
1587       return !ThisArgType->isOpaqueOrPointeeTypeMatches(
1588           ReferenceType->getElementType());
1589     }
1590     case IITDescriptor::VecOfAnyPtrsToElt: {
1591       unsigned RefArgNumber = D.getRefArgNumber();
1592       if (RefArgNumber >= ArgTys.size()) {
1593         if (IsDeferredCheck)
1594           return true;
1595         // If forward referencing, already add the pointer-vector type and
1596         // defer the checks for later.
1597         ArgTys.push_back(Ty);
1598         return DeferCheck(Ty);
1599       }
1600 
1601       if (!IsDeferredCheck){
1602         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1603                "Table consistency error");
1604         ArgTys.push_back(Ty);
1605       }
1606 
1607       // Verify the overloaded type "matches" the Ref type.
1608       // i.e. Ty is a vector with the same width as Ref.
1609       // Composed of pointers to the same element type as Ref.
1610       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1611       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1612       if (!ThisArgVecTy || !ReferenceType ||
1613           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1614         return true;
1615       PointerType *ThisArgEltTy =
1616           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1617       if (!ThisArgEltTy)
1618         return true;
1619       return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches(
1620           ReferenceType->getElementType());
1621     }
1622     case IITDescriptor::VecElementArgument: {
1623       if (D.getArgumentNumber() >= ArgTys.size())
1624         return IsDeferredCheck ? true : DeferCheck(Ty);
1625       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1626       return !ReferenceType || Ty != ReferenceType->getElementType();
1627     }
1628     case IITDescriptor::Subdivide2Argument:
1629     case IITDescriptor::Subdivide4Argument: {
1630       // If this is a forward reference, defer the check for later.
1631       if (D.getArgumentNumber() >= ArgTys.size())
1632         return IsDeferredCheck || DeferCheck(Ty);
1633 
1634       Type *NewTy = ArgTys[D.getArgumentNumber()];
1635       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1636         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1637         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1638         return Ty != NewTy;
1639       }
1640       return true;
1641     }
1642     case IITDescriptor::VecOfBitcastsToInt: {
1643       if (D.getArgumentNumber() >= ArgTys.size())
1644         return IsDeferredCheck || DeferCheck(Ty);
1645       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1646       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1647       if (!ThisArgVecTy || !ReferenceType)
1648         return true;
1649       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1650     }
1651   }
1652   llvm_unreachable("unhandled");
1653 }
1654 
1655 Intrinsic::MatchIntrinsicTypesResult
1656 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1657                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1658                                    SmallVectorImpl<Type *> &ArgTys) {
1659   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1660   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1661                          false))
1662     return MatchIntrinsicTypes_NoMatchRet;
1663 
1664   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1665 
1666   for (auto Ty : FTy->params())
1667     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1668       return MatchIntrinsicTypes_NoMatchArg;
1669 
1670   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1671     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1672     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1673                            true))
1674       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1675                                          : MatchIntrinsicTypes_NoMatchArg;
1676   }
1677 
1678   return MatchIntrinsicTypes_Match;
1679 }
1680 
1681 bool
1682 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1683                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1684   // If there are no descriptors left, then it can't be a vararg.
1685   if (Infos.empty())
1686     return isVarArg;
1687 
1688   // There should be only one descriptor remaining at this point.
1689   if (Infos.size() != 1)
1690     return true;
1691 
1692   // Check and verify the descriptor.
1693   IITDescriptor D = Infos.front();
1694   Infos = Infos.slice(1);
1695   if (D.Kind == IITDescriptor::VarArg)
1696     return !isVarArg;
1697 
1698   return true;
1699 }
1700 
1701 bool Intrinsic::getIntrinsicSignature(Function *F,
1702                                       SmallVectorImpl<Type *> &ArgTys) {
1703   Intrinsic::ID ID = F->getIntrinsicID();
1704   if (!ID)
1705     return false;
1706 
1707   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1708   getIntrinsicInfoTableEntries(ID, Table);
1709   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1710 
1711   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1712                                          ArgTys) !=
1713       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1714     return false;
1715   }
1716   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1717                                       TableRef))
1718     return false;
1719   return true;
1720 }
1721 
1722 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1723   SmallVector<Type *, 4> ArgTys;
1724   if (!getIntrinsicSignature(F, ArgTys))
1725     return None;
1726 
1727   Intrinsic::ID ID = F->getIntrinsicID();
1728   StringRef Name = F->getName();
1729   std::string WantedName =
1730       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1731   if (Name == WantedName)
1732     return None;
1733 
1734   Function *NewDecl = [&] {
1735     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1736       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1737         if (ExistingF->getFunctionType() == F->getFunctionType())
1738           return ExistingF;
1739 
1740       // The name already exists, but is not a function or has the wrong
1741       // prototype. Make place for the new one by renaming the old version.
1742       // Either this old version will be removed later on or the module is
1743       // invalid and we'll get an error.
1744       ExistingGV->setName(WantedName + ".renamed");
1745     }
1746     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1747   }();
1748 
1749   NewDecl->setCallingConv(F->getCallingConv());
1750   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1751          "Shouldn't change the signature");
1752   return NewDecl;
1753 }
1754 
1755 /// hasAddressTaken - returns true if there are any uses of this function
1756 /// other than direct calls or invokes to it. Optionally ignores callback
1757 /// uses, assume like pointer annotation calls, and references in llvm.used
1758 /// and llvm.compiler.used variables.
1759 bool Function::hasAddressTaken(const User **PutOffender,
1760                                bool IgnoreCallbackUses,
1761                                bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1762                                bool IgnoreARCAttachedCall) const {
1763   for (const Use &U : uses()) {
1764     const User *FU = U.getUser();
1765     if (isa<BlockAddress>(FU))
1766       continue;
1767 
1768     if (IgnoreCallbackUses) {
1769       AbstractCallSite ACS(&U);
1770       if (ACS && ACS.isCallbackCall())
1771         continue;
1772     }
1773 
1774     const auto *Call = dyn_cast<CallBase>(FU);
1775     if (!Call) {
1776       if (IgnoreAssumeLikeCalls) {
1777         if (const auto *FI = dyn_cast<Instruction>(FU)) {
1778           if (FI->isCast() && !FI->user_empty() &&
1779               llvm::all_of(FU->users(), [](const User *U) {
1780                 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1781                   return I->isAssumeLikeIntrinsic();
1782                 return false;
1783               }))
1784             continue;
1785         }
1786       }
1787       if (IgnoreLLVMUsed && !FU->user_empty()) {
1788         const User *FUU = FU;
1789         if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
1790             !FU->user_begin()->user_empty())
1791           FUU = *FU->user_begin();
1792         if (llvm::all_of(FUU->users(), [](const User *U) {
1793               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1794                 return GV->hasName() &&
1795                        (GV->getName().equals("llvm.compiler.used") ||
1796                         GV->getName().equals("llvm.used"));
1797               return false;
1798             }))
1799           continue;
1800       }
1801       if (PutOffender)
1802         *PutOffender = FU;
1803       return true;
1804     }
1805     if (!Call->isCallee(&U)) {
1806       if (IgnoreARCAttachedCall &&
1807           Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
1808                                       U.getOperandNo()))
1809         continue;
1810 
1811       if (PutOffender)
1812         *PutOffender = FU;
1813       return true;
1814     }
1815   }
1816   return false;
1817 }
1818 
1819 bool Function::isDefTriviallyDead() const {
1820   // Check the linkage
1821   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1822       !hasAvailableExternallyLinkage())
1823     return false;
1824 
1825   // Check if the function is used by anything other than a blockaddress.
1826   for (const User *U : users())
1827     if (!isa<BlockAddress>(U))
1828       return false;
1829 
1830   return true;
1831 }
1832 
1833 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1834 /// setjmp or other function that gcc recognizes as "returning twice".
1835 bool Function::callsFunctionThatReturnsTwice() const {
1836   for (const Instruction &I : instructions(this))
1837     if (const auto *Call = dyn_cast<CallBase>(&I))
1838       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1839         return true;
1840 
1841   return false;
1842 }
1843 
1844 Constant *Function::getPersonalityFn() const {
1845   assert(hasPersonalityFn() && getNumOperands());
1846   return cast<Constant>(Op<0>());
1847 }
1848 
1849 void Function::setPersonalityFn(Constant *Fn) {
1850   setHungoffOperand<0>(Fn);
1851   setValueSubclassDataBit(3, Fn != nullptr);
1852 }
1853 
1854 Constant *Function::getPrefixData() const {
1855   assert(hasPrefixData() && getNumOperands());
1856   return cast<Constant>(Op<1>());
1857 }
1858 
1859 void Function::setPrefixData(Constant *PrefixData) {
1860   setHungoffOperand<1>(PrefixData);
1861   setValueSubclassDataBit(1, PrefixData != nullptr);
1862 }
1863 
1864 Constant *Function::getPrologueData() const {
1865   assert(hasPrologueData() && getNumOperands());
1866   return cast<Constant>(Op<2>());
1867 }
1868 
1869 void Function::setPrologueData(Constant *PrologueData) {
1870   setHungoffOperand<2>(PrologueData);
1871   setValueSubclassDataBit(2, PrologueData != nullptr);
1872 }
1873 
1874 void Function::allocHungoffUselist() {
1875   // If we've already allocated a uselist, stop here.
1876   if (getNumOperands())
1877     return;
1878 
1879   allocHungoffUses(3, /*IsPhi=*/ false);
1880   setNumHungOffUseOperands(3);
1881 
1882   // Initialize the uselist with placeholder operands to allow traversal.
1883   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1884   Op<0>().set(CPN);
1885   Op<1>().set(CPN);
1886   Op<2>().set(CPN);
1887 }
1888 
1889 template <int Idx>
1890 void Function::setHungoffOperand(Constant *C) {
1891   if (C) {
1892     allocHungoffUselist();
1893     Op<Idx>().set(C);
1894   } else if (getNumOperands()) {
1895     Op<Idx>().set(
1896         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1897   }
1898 }
1899 
1900 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1901   assert(Bit < 16 && "SubclassData contains only 16 bits");
1902   if (On)
1903     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1904   else
1905     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1906 }
1907 
1908 void Function::setEntryCount(ProfileCount Count,
1909                              const DenseSet<GlobalValue::GUID> *S) {
1910 #if !defined(NDEBUG)
1911   auto PrevCount = getEntryCount();
1912   assert(!PrevCount.hasValue() || PrevCount->getType() == Count.getType());
1913 #endif
1914 
1915   auto ImportGUIDs = getImportGUIDs();
1916   if (S == nullptr && ImportGUIDs.size())
1917     S = &ImportGUIDs;
1918 
1919   MDBuilder MDB(getContext());
1920   setMetadata(
1921       LLVMContext::MD_prof,
1922       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1923 }
1924 
1925 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1926                              const DenseSet<GlobalValue::GUID> *Imports) {
1927   setEntryCount(ProfileCount(Count, Type), Imports);
1928 }
1929 
1930 Optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
1931   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1932   if (MD && MD->getOperand(0))
1933     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1934       if (MDS->getString().equals("function_entry_count")) {
1935         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1936         uint64_t Count = CI->getValue().getZExtValue();
1937         // A value of -1 is used for SamplePGO when there were no samples.
1938         // Treat this the same as unknown.
1939         if (Count == (uint64_t)-1)
1940           return None;
1941         return ProfileCount(Count, PCT_Real);
1942       } else if (AllowSynthetic &&
1943                  MDS->getString().equals("synthetic_function_entry_count")) {
1944         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1945         uint64_t Count = CI->getValue().getZExtValue();
1946         return ProfileCount(Count, PCT_Synthetic);
1947       }
1948     }
1949   return None;
1950 }
1951 
1952 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1953   DenseSet<GlobalValue::GUID> R;
1954   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1955     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1956       if (MDS->getString().equals("function_entry_count"))
1957         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1958           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1959                        ->getValue()
1960                        .getZExtValue());
1961   return R;
1962 }
1963 
1964 void Function::setSectionPrefix(StringRef Prefix) {
1965   MDBuilder MDB(getContext());
1966   setMetadata(LLVMContext::MD_section_prefix,
1967               MDB.createFunctionSectionPrefix(Prefix));
1968 }
1969 
1970 Optional<StringRef> Function::getSectionPrefix() const {
1971   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1972     assert(cast<MDString>(MD->getOperand(0))
1973                ->getString()
1974                .equals("function_section_prefix") &&
1975            "Metadata not match");
1976     return cast<MDString>(MD->getOperand(1))->getString();
1977   }
1978   return None;
1979 }
1980 
1981 bool Function::nullPointerIsDefined() const {
1982   return hasFnAttribute(Attribute::NullPointerIsValid);
1983 }
1984 
1985 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1986   if (F && F->nullPointerIsDefined())
1987     return true;
1988 
1989   if (AS != 0)
1990     return true;
1991 
1992   return false;
1993 }
1994