xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Function.cpp (revision e32fecd0c2c3ee37c47ee100f169e7eb0282a873)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsAArch64.h"
36 #include "llvm/IR/IntrinsicsAMDGPU.h"
37 #include "llvm/IR/IntrinsicsARM.h"
38 #include "llvm/IR/IntrinsicsBPF.h"
39 #include "llvm/IR/IntrinsicsDirectX.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsVE.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/IntrinsicsXCore.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/SymbolTableListTraits.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include <cassert>
67 #include <cstddef>
68 #include <cstdint>
69 #include <cstring>
70 #include <string>
71 
72 using namespace llvm;
73 using ProfileCount = Function::ProfileCount;
74 
75 // Explicit instantiations of SymbolTableListTraits since some of the methods
76 // are not in the public header file...
77 template class llvm::SymbolTableListTraits<BasicBlock>;
78 
79 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
80     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
81     cl::desc("Maximum size for the name of non-global values."));
82 
83 //===----------------------------------------------------------------------===//
84 // Argument Implementation
85 //===----------------------------------------------------------------------===//
86 
87 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
88     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
89   setName(Name);
90 }
91 
92 void Argument::setParent(Function *parent) {
93   Parent = parent;
94 }
95 
96 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
97   if (!getType()->isPointerTy()) return false;
98   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
99       (AllowUndefOrPoison ||
100        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
101     return true;
102   else if (getDereferenceableBytes() > 0 &&
103            !NullPointerIsDefined(getParent(),
104                                  getType()->getPointerAddressSpace()))
105     return true;
106   return false;
107 }
108 
109 bool Argument::hasByValAttr() const {
110   if (!getType()->isPointerTy()) return false;
111   return hasAttribute(Attribute::ByVal);
112 }
113 
114 bool Argument::hasByRefAttr() const {
115   if (!getType()->isPointerTy())
116     return false;
117   return hasAttribute(Attribute::ByRef);
118 }
119 
120 bool Argument::hasSwiftSelfAttr() const {
121   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
122 }
123 
124 bool Argument::hasSwiftErrorAttr() const {
125   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
126 }
127 
128 bool Argument::hasInAllocaAttr() const {
129   if (!getType()->isPointerTy()) return false;
130   return hasAttribute(Attribute::InAlloca);
131 }
132 
133 bool Argument::hasPreallocatedAttr() const {
134   if (!getType()->isPointerTy())
135     return false;
136   return hasAttribute(Attribute::Preallocated);
137 }
138 
139 bool Argument::hasPassPointeeByValueCopyAttr() const {
140   if (!getType()->isPointerTy()) return false;
141   AttributeList Attrs = getParent()->getAttributes();
142   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
143          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
144          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
145 }
146 
147 bool Argument::hasPointeeInMemoryValueAttr() const {
148   if (!getType()->isPointerTy())
149     return false;
150   AttributeList Attrs = getParent()->getAttributes();
151   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
152          Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
153          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
154          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
155          Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
156 }
157 
158 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
159 /// parameter type.
160 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
161   // FIXME: All the type carrying attributes are mutually exclusive, so there
162   // should be a single query to get the stored type that handles any of them.
163   if (Type *ByValTy = ParamAttrs.getByValType())
164     return ByValTy;
165   if (Type *ByRefTy = ParamAttrs.getByRefType())
166     return ByRefTy;
167   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
168     return PreAllocTy;
169   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
170     return InAllocaTy;
171   if (Type *SRetTy = ParamAttrs.getStructRetType())
172     return SRetTy;
173 
174   return nullptr;
175 }
176 
177 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
178   AttributeSet ParamAttrs =
179       getParent()->getAttributes().getParamAttrs(getArgNo());
180   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
181     return DL.getTypeAllocSize(MemTy);
182   return 0;
183 }
184 
185 Type *Argument::getPointeeInMemoryValueType() const {
186   AttributeSet ParamAttrs =
187       getParent()->getAttributes().getParamAttrs(getArgNo());
188   return getMemoryParamAllocType(ParamAttrs);
189 }
190 
191 uint64_t Argument::getParamAlignment() const {
192   assert(getType()->isPointerTy() && "Only pointers have alignments");
193   return getParent()->getParamAlignment(getArgNo());
194 }
195 
196 MaybeAlign Argument::getParamAlign() const {
197   assert(getType()->isPointerTy() && "Only pointers have alignments");
198   return getParent()->getParamAlign(getArgNo());
199 }
200 
201 MaybeAlign Argument::getParamStackAlign() const {
202   return getParent()->getParamStackAlign(getArgNo());
203 }
204 
205 Type *Argument::getParamByValType() const {
206   assert(getType()->isPointerTy() && "Only pointers have byval types");
207   return getParent()->getParamByValType(getArgNo());
208 }
209 
210 Type *Argument::getParamStructRetType() const {
211   assert(getType()->isPointerTy() && "Only pointers have sret types");
212   return getParent()->getParamStructRetType(getArgNo());
213 }
214 
215 Type *Argument::getParamByRefType() const {
216   assert(getType()->isPointerTy() && "Only pointers have byref types");
217   return getParent()->getParamByRefType(getArgNo());
218 }
219 
220 Type *Argument::getParamInAllocaType() const {
221   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
222   return getParent()->getParamInAllocaType(getArgNo());
223 }
224 
225 uint64_t Argument::getDereferenceableBytes() const {
226   assert(getType()->isPointerTy() &&
227          "Only pointers have dereferenceable bytes");
228   return getParent()->getParamDereferenceableBytes(getArgNo());
229 }
230 
231 uint64_t Argument::getDereferenceableOrNullBytes() const {
232   assert(getType()->isPointerTy() &&
233          "Only pointers have dereferenceable bytes");
234   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
235 }
236 
237 bool Argument::hasNestAttr() const {
238   if (!getType()->isPointerTy()) return false;
239   return hasAttribute(Attribute::Nest);
240 }
241 
242 bool Argument::hasNoAliasAttr() const {
243   if (!getType()->isPointerTy()) return false;
244   return hasAttribute(Attribute::NoAlias);
245 }
246 
247 bool Argument::hasNoCaptureAttr() const {
248   if (!getType()->isPointerTy()) return false;
249   return hasAttribute(Attribute::NoCapture);
250 }
251 
252 bool Argument::hasNoFreeAttr() const {
253   if (!getType()->isPointerTy()) return false;
254   return hasAttribute(Attribute::NoFree);
255 }
256 
257 bool Argument::hasStructRetAttr() const {
258   if (!getType()->isPointerTy()) return false;
259   return hasAttribute(Attribute::StructRet);
260 }
261 
262 bool Argument::hasInRegAttr() const {
263   return hasAttribute(Attribute::InReg);
264 }
265 
266 bool Argument::hasReturnedAttr() const {
267   return hasAttribute(Attribute::Returned);
268 }
269 
270 bool Argument::hasZExtAttr() const {
271   return hasAttribute(Attribute::ZExt);
272 }
273 
274 bool Argument::hasSExtAttr() const {
275   return hasAttribute(Attribute::SExt);
276 }
277 
278 bool Argument::onlyReadsMemory() const {
279   AttributeList Attrs = getParent()->getAttributes();
280   return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
281          Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
282 }
283 
284 void Argument::addAttrs(AttrBuilder &B) {
285   AttributeList AL = getParent()->getAttributes();
286   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
287   getParent()->setAttributes(AL);
288 }
289 
290 void Argument::addAttr(Attribute::AttrKind Kind) {
291   getParent()->addParamAttr(getArgNo(), Kind);
292 }
293 
294 void Argument::addAttr(Attribute Attr) {
295   getParent()->addParamAttr(getArgNo(), Attr);
296 }
297 
298 void Argument::removeAttr(Attribute::AttrKind Kind) {
299   getParent()->removeParamAttr(getArgNo(), Kind);
300 }
301 
302 void Argument::removeAttrs(const AttributeMask &AM) {
303   AttributeList AL = getParent()->getAttributes();
304   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
305   getParent()->setAttributes(AL);
306 }
307 
308 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
309   return getParent()->hasParamAttribute(getArgNo(), Kind);
310 }
311 
312 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
313   return getParent()->getParamAttribute(getArgNo(), Kind);
314 }
315 
316 //===----------------------------------------------------------------------===//
317 // Helper Methods in Function
318 //===----------------------------------------------------------------------===//
319 
320 LLVMContext &Function::getContext() const {
321   return getType()->getContext();
322 }
323 
324 unsigned Function::getInstructionCount() const {
325   unsigned NumInstrs = 0;
326   for (const BasicBlock &BB : BasicBlocks)
327     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
328                                BB.instructionsWithoutDebug().end());
329   return NumInstrs;
330 }
331 
332 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
333                            const Twine &N, Module &M) {
334   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
335 }
336 
337 Function *Function::createWithDefaultAttr(FunctionType *Ty,
338                                           LinkageTypes Linkage,
339                                           unsigned AddrSpace, const Twine &N,
340                                           Module *M) {
341   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
342   AttrBuilder B(F->getContext());
343   UWTableKind UWTable = M->getUwtable();
344   if (UWTable != UWTableKind::None)
345     B.addUWTableAttr(UWTable);
346   switch (M->getFramePointer()) {
347   case FramePointerKind::None:
348     // 0 ("none") is the default.
349     break;
350   case FramePointerKind::NonLeaf:
351     B.addAttribute("frame-pointer", "non-leaf");
352     break;
353   case FramePointerKind::All:
354     B.addAttribute("frame-pointer", "all");
355     break;
356   }
357   if (M->getModuleFlag("function_return_thunk_extern"))
358     B.addAttribute(Attribute::FnRetThunkExtern);
359   F->addFnAttrs(B);
360   return F;
361 }
362 
363 void Function::removeFromParent() {
364   getParent()->getFunctionList().remove(getIterator());
365 }
366 
367 void Function::eraseFromParent() {
368   getParent()->getFunctionList().erase(getIterator());
369 }
370 
371 //===----------------------------------------------------------------------===//
372 // Function Implementation
373 //===----------------------------------------------------------------------===//
374 
375 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
376   // If AS == -1 and we are passed a valid module pointer we place the function
377   // in the program address space. Otherwise we default to AS0.
378   if (AddrSpace == static_cast<unsigned>(-1))
379     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
380   return AddrSpace;
381 }
382 
383 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
384                    const Twine &name, Module *ParentModule)
385     : GlobalObject(Ty, Value::FunctionVal,
386                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
387                    computeAddrSpace(AddrSpace, ParentModule)),
388       NumArgs(Ty->getNumParams()) {
389   assert(FunctionType::isValidReturnType(getReturnType()) &&
390          "invalid return type");
391   setGlobalObjectSubClassData(0);
392 
393   // We only need a symbol table for a function if the context keeps value names
394   if (!getContext().shouldDiscardValueNames())
395     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
396 
397   // If the function has arguments, mark them as lazily built.
398   if (Ty->getNumParams())
399     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
400 
401   if (ParentModule)
402     ParentModule->getFunctionList().push_back(this);
403 
404   HasLLVMReservedName = getName().startswith("llvm.");
405   // Ensure intrinsics have the right parameter attributes.
406   // Note, the IntID field will have been set in Value::setName if this function
407   // name is a valid intrinsic ID.
408   if (IntID)
409     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
410 }
411 
412 Function::~Function() {
413   dropAllReferences();    // After this it is safe to delete instructions.
414 
415   // Delete all of the method arguments and unlink from symbol table...
416   if (Arguments)
417     clearArguments();
418 
419   // Remove the function from the on-the-side GC table.
420   clearGC();
421 }
422 
423 void Function::BuildLazyArguments() const {
424   // Create the arguments vector, all arguments start out unnamed.
425   auto *FT = getFunctionType();
426   if (NumArgs > 0) {
427     Arguments = std::allocator<Argument>().allocate(NumArgs);
428     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
429       Type *ArgTy = FT->getParamType(i);
430       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
431       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
432     }
433   }
434 
435   // Clear the lazy arguments bit.
436   unsigned SDC = getSubclassDataFromValue();
437   SDC &= ~(1 << 0);
438   const_cast<Function*>(this)->setValueSubclassData(SDC);
439   assert(!hasLazyArguments());
440 }
441 
442 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
443   return MutableArrayRef<Argument>(Args, Count);
444 }
445 
446 bool Function::isConstrainedFPIntrinsic() const {
447   switch (getIntrinsicID()) {
448 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
449   case Intrinsic::INTRINSIC:
450 #include "llvm/IR/ConstrainedOps.def"
451     return true;
452 #undef INSTRUCTION
453   default:
454     return false;
455   }
456 }
457 
458 void Function::clearArguments() {
459   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
460     A.setName("");
461     A.~Argument();
462   }
463   std::allocator<Argument>().deallocate(Arguments, NumArgs);
464   Arguments = nullptr;
465 }
466 
467 void Function::stealArgumentListFrom(Function &Src) {
468   assert(isDeclaration() && "Expected no references to current arguments");
469 
470   // Drop the current arguments, if any, and set the lazy argument bit.
471   if (!hasLazyArguments()) {
472     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
473                         [](const Argument &A) { return A.use_empty(); }) &&
474            "Expected arguments to be unused in declaration");
475     clearArguments();
476     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
477   }
478 
479   // Nothing to steal if Src has lazy arguments.
480   if (Src.hasLazyArguments())
481     return;
482 
483   // Steal arguments from Src, and fix the lazy argument bits.
484   assert(arg_size() == Src.arg_size());
485   Arguments = Src.Arguments;
486   Src.Arguments = nullptr;
487   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
488     // FIXME: This does the work of transferNodesFromList inefficiently.
489     SmallString<128> Name;
490     if (A.hasName())
491       Name = A.getName();
492     if (!Name.empty())
493       A.setName("");
494     A.setParent(this);
495     if (!Name.empty())
496       A.setName(Name);
497   }
498 
499   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
500   assert(!hasLazyArguments());
501   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
502 }
503 
504 // dropAllReferences() - This function causes all the subinstructions to "let
505 // go" of all references that they are maintaining.  This allows one to
506 // 'delete' a whole class at a time, even though there may be circular
507 // references... first all references are dropped, and all use counts go to
508 // zero.  Then everything is deleted for real.  Note that no operations are
509 // valid on an object that has "dropped all references", except operator
510 // delete.
511 //
512 void Function::dropAllReferences() {
513   setIsMaterializable(false);
514 
515   for (BasicBlock &BB : *this)
516     BB.dropAllReferences();
517 
518   // Delete all basic blocks. They are now unused, except possibly by
519   // blockaddresses, but BasicBlock's destructor takes care of those.
520   while (!BasicBlocks.empty())
521     BasicBlocks.begin()->eraseFromParent();
522 
523   // Drop uses of any optional data (real or placeholder).
524   if (getNumOperands()) {
525     User::dropAllReferences();
526     setNumHungOffUseOperands(0);
527     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
528   }
529 
530   // Metadata is stored in a side-table.
531   clearMetadata();
532 }
533 
534 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
535   AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
536 }
537 
538 void Function::addFnAttr(Attribute::AttrKind Kind) {
539   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
540 }
541 
542 void Function::addFnAttr(StringRef Kind, StringRef Val) {
543   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
544 }
545 
546 void Function::addFnAttr(Attribute Attr) {
547   AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
548 }
549 
550 void Function::addFnAttrs(const AttrBuilder &Attrs) {
551   AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
552 }
553 
554 void Function::addRetAttr(Attribute::AttrKind Kind) {
555   AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
556 }
557 
558 void Function::addRetAttr(Attribute Attr) {
559   AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
560 }
561 
562 void Function::addRetAttrs(const AttrBuilder &Attrs) {
563   AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
564 }
565 
566 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
567   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
568 }
569 
570 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
571   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
572 }
573 
574 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
575   AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
576 }
577 
578 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
579   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
580 }
581 
582 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
583   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
584 }
585 
586 void Function::removeFnAttr(Attribute::AttrKind Kind) {
587   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
588 }
589 
590 void Function::removeFnAttr(StringRef Kind) {
591   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
592 }
593 
594 void Function::removeFnAttrs(const AttributeMask &AM) {
595   AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
596 }
597 
598 void Function::removeRetAttr(Attribute::AttrKind Kind) {
599   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
600 }
601 
602 void Function::removeRetAttr(StringRef Kind) {
603   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
604 }
605 
606 void Function::removeRetAttrs(const AttributeMask &Attrs) {
607   AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
608 }
609 
610 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
611   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
612 }
613 
614 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
615   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
616 }
617 
618 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
619   AttributeSets =
620       AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
621 }
622 
623 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
624   AttributeSets =
625       AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
626 }
627 
628 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
629   return AttributeSets.hasFnAttr(Kind);
630 }
631 
632 bool Function::hasFnAttribute(StringRef Kind) const {
633   return AttributeSets.hasFnAttr(Kind);
634 }
635 
636 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
637   return AttributeSets.hasRetAttr(Kind);
638 }
639 
640 bool Function::hasParamAttribute(unsigned ArgNo,
641                                  Attribute::AttrKind Kind) const {
642   return AttributeSets.hasParamAttr(ArgNo, Kind);
643 }
644 
645 Attribute Function::getAttributeAtIndex(unsigned i,
646                                         Attribute::AttrKind Kind) const {
647   return AttributeSets.getAttributeAtIndex(i, Kind);
648 }
649 
650 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
651   return AttributeSets.getAttributeAtIndex(i, Kind);
652 }
653 
654 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
655   return AttributeSets.getFnAttr(Kind);
656 }
657 
658 Attribute Function::getFnAttribute(StringRef Kind) const {
659   return AttributeSets.getFnAttr(Kind);
660 }
661 
662 /// gets the specified attribute from the list of attributes.
663 Attribute Function::getParamAttribute(unsigned ArgNo,
664                                       Attribute::AttrKind Kind) const {
665   return AttributeSets.getParamAttr(ArgNo, Kind);
666 }
667 
668 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
669                                                  uint64_t Bytes) {
670   AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
671                                                                   ArgNo, Bytes);
672 }
673 
674 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
675   if (&FPType == &APFloat::IEEEsingle()) {
676     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
677     StringRef Val = Attr.getValueAsString();
678     if (!Val.empty())
679       return parseDenormalFPAttribute(Val);
680 
681     // If the f32 variant of the attribute isn't specified, try to use the
682     // generic one.
683   }
684 
685   Attribute Attr = getFnAttribute("denormal-fp-math");
686   return parseDenormalFPAttribute(Attr.getValueAsString());
687 }
688 
689 const std::string &Function::getGC() const {
690   assert(hasGC() && "Function has no collector");
691   return getContext().getGC(*this);
692 }
693 
694 void Function::setGC(std::string Str) {
695   setValueSubclassDataBit(14, !Str.empty());
696   getContext().setGC(*this, std::move(Str));
697 }
698 
699 void Function::clearGC() {
700   if (!hasGC())
701     return;
702   getContext().deleteGC(*this);
703   setValueSubclassDataBit(14, false);
704 }
705 
706 bool Function::hasStackProtectorFnAttr() const {
707   return hasFnAttribute(Attribute::StackProtect) ||
708          hasFnAttribute(Attribute::StackProtectStrong) ||
709          hasFnAttribute(Attribute::StackProtectReq);
710 }
711 
712 /// Copy all additional attributes (those not needed to create a Function) from
713 /// the Function Src to this one.
714 void Function::copyAttributesFrom(const Function *Src) {
715   GlobalObject::copyAttributesFrom(Src);
716   setCallingConv(Src->getCallingConv());
717   setAttributes(Src->getAttributes());
718   if (Src->hasGC())
719     setGC(Src->getGC());
720   else
721     clearGC();
722   if (Src->hasPersonalityFn())
723     setPersonalityFn(Src->getPersonalityFn());
724   if (Src->hasPrefixData())
725     setPrefixData(Src->getPrefixData());
726   if (Src->hasPrologueData())
727     setPrologueData(Src->getPrologueData());
728 }
729 
730 /// Table of string intrinsic names indexed by enum value.
731 static const char * const IntrinsicNameTable[] = {
732   "not_intrinsic",
733 #define GET_INTRINSIC_NAME_TABLE
734 #include "llvm/IR/IntrinsicImpl.inc"
735 #undef GET_INTRINSIC_NAME_TABLE
736 };
737 
738 /// Table of per-target intrinsic name tables.
739 #define GET_INTRINSIC_TARGET_DATA
740 #include "llvm/IR/IntrinsicImpl.inc"
741 #undef GET_INTRINSIC_TARGET_DATA
742 
743 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
744   return IID > TargetInfos[0].Count;
745 }
746 
747 bool Function::isTargetIntrinsic() const {
748   return isTargetIntrinsic(IntID);
749 }
750 
751 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
752 /// target as \c Name, or the generic table if \c Name is not target specific.
753 ///
754 /// Returns the relevant slice of \c IntrinsicNameTable
755 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
756   assert(Name.startswith("llvm."));
757 
758   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
759   // Drop "llvm." and take the first dotted component. That will be the target
760   // if this is target specific.
761   StringRef Target = Name.drop_front(5).split('.').first;
762   auto It = partition_point(
763       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
764   // We've either found the target or just fall back to the generic set, which
765   // is always first.
766   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
767   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
768 }
769 
770 /// This does the actual lookup of an intrinsic ID which
771 /// matches the given function name.
772 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
773   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
774   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
775   if (Idx == -1)
776     return Intrinsic::not_intrinsic;
777 
778   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
779   // an index into a sub-table.
780   int Adjust = NameTable.data() - IntrinsicNameTable;
781   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
782 
783   // If the intrinsic is not overloaded, require an exact match. If it is
784   // overloaded, require either exact or prefix match.
785   const auto MatchSize = strlen(NameTable[Idx]);
786   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
787   bool IsExactMatch = Name.size() == MatchSize;
788   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
789                                                      : Intrinsic::not_intrinsic;
790 }
791 
792 void Function::recalculateIntrinsicID() {
793   StringRef Name = getName();
794   if (!Name.startswith("llvm.")) {
795     HasLLVMReservedName = false;
796     IntID = Intrinsic::not_intrinsic;
797     return;
798   }
799   HasLLVMReservedName = true;
800   IntID = lookupIntrinsicID(Name);
801 }
802 
803 /// Returns a stable mangling for the type specified for use in the name
804 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
805 /// of named types is simply their name.  Manglings for unnamed types consist
806 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
807 /// combined with the mangling of their component types.  A vararg function
808 /// type will have a suffix of 'vararg'.  Since function types can contain
809 /// other function types, we close a function type mangling with suffix 'f'
810 /// which can't be confused with it's prefix.  This ensures we don't have
811 /// collisions between two unrelated function types. Otherwise, you might
812 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
813 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
814 /// indicating that extra care must be taken to ensure a unique name.
815 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
816   std::string Result;
817   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
818     Result += "p" + utostr(PTyp->getAddressSpace());
819     // Opaque pointer doesn't have pointee type information, so we just mangle
820     // address space for opaque pointer.
821     if (!PTyp->isOpaque())
822       Result += getMangledTypeStr(PTyp->getNonOpaquePointerElementType(),
823                                   HasUnnamedType);
824   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
825     Result += "a" + utostr(ATyp->getNumElements()) +
826               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
827   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
828     if (!STyp->isLiteral()) {
829       Result += "s_";
830       if (STyp->hasName())
831         Result += STyp->getName();
832       else
833         HasUnnamedType = true;
834     } else {
835       Result += "sl_";
836       for (auto Elem : STyp->elements())
837         Result += getMangledTypeStr(Elem, HasUnnamedType);
838     }
839     // Ensure nested structs are distinguishable.
840     Result += "s";
841   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
842     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
843     for (size_t i = 0; i < FT->getNumParams(); i++)
844       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
845     if (FT->isVarArg())
846       Result += "vararg";
847     // Ensure nested function types are distinguishable.
848     Result += "f";
849   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
850     ElementCount EC = VTy->getElementCount();
851     if (EC.isScalable())
852       Result += "nx";
853     Result += "v" + utostr(EC.getKnownMinValue()) +
854               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
855   } else if (Ty) {
856     switch (Ty->getTypeID()) {
857     default: llvm_unreachable("Unhandled type");
858     case Type::VoidTyID:      Result += "isVoid";   break;
859     case Type::MetadataTyID:  Result += "Metadata"; break;
860     case Type::HalfTyID:      Result += "f16";      break;
861     case Type::BFloatTyID:    Result += "bf16";     break;
862     case Type::FloatTyID:     Result += "f32";      break;
863     case Type::DoubleTyID:    Result += "f64";      break;
864     case Type::X86_FP80TyID:  Result += "f80";      break;
865     case Type::FP128TyID:     Result += "f128";     break;
866     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
867     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
868     case Type::X86_AMXTyID:   Result += "x86amx";   break;
869     case Type::IntegerTyID:
870       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
871       break;
872     }
873   }
874   return Result;
875 }
876 
877 StringRef Intrinsic::getBaseName(ID id) {
878   assert(id < num_intrinsics && "Invalid intrinsic ID!");
879   return IntrinsicNameTable[id];
880 }
881 
882 StringRef Intrinsic::getName(ID id) {
883   assert(id < num_intrinsics && "Invalid intrinsic ID!");
884   assert(!Intrinsic::isOverloaded(id) &&
885          "This version of getName does not support overloading");
886   return getBaseName(id);
887 }
888 
889 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
890                                         Module *M, FunctionType *FT,
891                                         bool EarlyModuleCheck) {
892 
893   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
894   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
895          "This version of getName is for overloaded intrinsics only");
896   (void)EarlyModuleCheck;
897   assert((!EarlyModuleCheck || M ||
898           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
899          "Intrinsic overloading on pointer types need to provide a Module");
900   bool HasUnnamedType = false;
901   std::string Result(Intrinsic::getBaseName(Id));
902   for (Type *Ty : Tys)
903     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
904   if (HasUnnamedType) {
905     assert(M && "unnamed types need a module");
906     if (!FT)
907       FT = Intrinsic::getType(M->getContext(), Id, Tys);
908     else
909       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
910              "Provided FunctionType must match arguments");
911     return M->getUniqueIntrinsicName(Result, Id, FT);
912   }
913   return Result;
914 }
915 
916 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
917                                FunctionType *FT) {
918   assert(M && "We need to have a Module");
919   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
920 }
921 
922 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
923   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
924 }
925 
926 /// IIT_Info - These are enumerators that describe the entries returned by the
927 /// getIntrinsicInfoTableEntries function.
928 ///
929 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
930 enum IIT_Info {
931   // Common values should be encoded with 0-15.
932   IIT_Done = 0,
933   IIT_I1 = 1,
934   IIT_I8 = 2,
935   IIT_I16 = 3,
936   IIT_I32 = 4,
937   IIT_I64 = 5,
938   IIT_F16 = 6,
939   IIT_F32 = 7,
940   IIT_F64 = 8,
941   IIT_V2 = 9,
942   IIT_V4 = 10,
943   IIT_V8 = 11,
944   IIT_V16 = 12,
945   IIT_V32 = 13,
946   IIT_PTR = 14,
947   IIT_ARG = 15,
948 
949   // Values from 16+ are only encodable with the inefficient encoding.
950   IIT_V64 = 16,
951   IIT_MMX = 17,
952   IIT_TOKEN = 18,
953   IIT_METADATA = 19,
954   IIT_EMPTYSTRUCT = 20,
955   IIT_STRUCT2 = 21,
956   IIT_STRUCT3 = 22,
957   IIT_STRUCT4 = 23,
958   IIT_STRUCT5 = 24,
959   IIT_EXTEND_ARG = 25,
960   IIT_TRUNC_ARG = 26,
961   IIT_ANYPTR = 27,
962   IIT_V1 = 28,
963   IIT_VARARG = 29,
964   IIT_HALF_VEC_ARG = 30,
965   IIT_SAME_VEC_WIDTH_ARG = 31,
966   IIT_PTR_TO_ARG = 32,
967   IIT_PTR_TO_ELT = 33,
968   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
969   IIT_I128 = 35,
970   IIT_V512 = 36,
971   IIT_V1024 = 37,
972   IIT_STRUCT6 = 38,
973   IIT_STRUCT7 = 39,
974   IIT_STRUCT8 = 40,
975   IIT_F128 = 41,
976   IIT_VEC_ELEMENT = 42,
977   IIT_SCALABLE_VEC = 43,
978   IIT_SUBDIVIDE2_ARG = 44,
979   IIT_SUBDIVIDE4_ARG = 45,
980   IIT_VEC_OF_BITCASTS_TO_INT = 46,
981   IIT_V128 = 47,
982   IIT_BF16 = 48,
983   IIT_STRUCT9 = 49,
984   IIT_V256 = 50,
985   IIT_AMX = 51,
986   IIT_PPCF128 = 52,
987   IIT_V3 = 53,
988   IIT_EXTERNREF = 54,
989   IIT_FUNCREF = 55,
990   IIT_ANYPTR_TO_ELT = 56,
991   IIT_I2 = 57,
992   IIT_I4 = 58,
993 };
994 
995 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
996                       IIT_Info LastInfo,
997                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
998   using namespace Intrinsic;
999 
1000   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
1001 
1002   IIT_Info Info = IIT_Info(Infos[NextElt++]);
1003   unsigned StructElts = 2;
1004 
1005   switch (Info) {
1006   case IIT_Done:
1007     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
1008     return;
1009   case IIT_VARARG:
1010     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
1011     return;
1012   case IIT_MMX:
1013     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
1014     return;
1015   case IIT_AMX:
1016     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
1017     return;
1018   case IIT_TOKEN:
1019     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1020     return;
1021   case IIT_METADATA:
1022     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1023     return;
1024   case IIT_F16:
1025     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1026     return;
1027   case IIT_BF16:
1028     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1029     return;
1030   case IIT_F32:
1031     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1032     return;
1033   case IIT_F64:
1034     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1035     return;
1036   case IIT_F128:
1037     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1038     return;
1039   case IIT_PPCF128:
1040     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
1041     return;
1042   case IIT_I1:
1043     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1044     return;
1045   case IIT_I2:
1046     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2));
1047     return;
1048   case IIT_I4:
1049     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4));
1050     return;
1051   case IIT_I8:
1052     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1053     return;
1054   case IIT_I16:
1055     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1056     return;
1057   case IIT_I32:
1058     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1059     return;
1060   case IIT_I64:
1061     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1062     return;
1063   case IIT_I128:
1064     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1065     return;
1066   case IIT_V1:
1067     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1068     DecodeIITType(NextElt, Infos, Info, OutputTable);
1069     return;
1070   case IIT_V2:
1071     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1072     DecodeIITType(NextElt, Infos, Info, OutputTable);
1073     return;
1074   case IIT_V3:
1075     OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
1076     DecodeIITType(NextElt, Infos, Info, OutputTable);
1077     return;
1078   case IIT_V4:
1079     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1080     DecodeIITType(NextElt, Infos, Info, OutputTable);
1081     return;
1082   case IIT_V8:
1083     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1084     DecodeIITType(NextElt, Infos, Info, OutputTable);
1085     return;
1086   case IIT_V16:
1087     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1088     DecodeIITType(NextElt, Infos, Info, OutputTable);
1089     return;
1090   case IIT_V32:
1091     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1092     DecodeIITType(NextElt, Infos, Info, OutputTable);
1093     return;
1094   case IIT_V64:
1095     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1096     DecodeIITType(NextElt, Infos, Info, OutputTable);
1097     return;
1098   case IIT_V128:
1099     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1100     DecodeIITType(NextElt, Infos, Info, OutputTable);
1101     return;
1102   case IIT_V256:
1103     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1104     DecodeIITType(NextElt, Infos, Info, OutputTable);
1105     return;
1106   case IIT_V512:
1107     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1108     DecodeIITType(NextElt, Infos, Info, OutputTable);
1109     return;
1110   case IIT_V1024:
1111     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1112     DecodeIITType(NextElt, Infos, Info, OutputTable);
1113     return;
1114   case IIT_EXTERNREF:
1115     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
1116     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1117     return;
1118   case IIT_FUNCREF:
1119     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
1120     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1121     return;
1122   case IIT_PTR:
1123     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1124     DecodeIITType(NextElt, Infos, Info, OutputTable);
1125     return;
1126   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
1127     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1128                                              Infos[NextElt++]));
1129     DecodeIITType(NextElt, Infos, Info, OutputTable);
1130     return;
1131   }
1132   case IIT_ARG: {
1133     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1134     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1135     return;
1136   }
1137   case IIT_EXTEND_ARG: {
1138     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1139     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1140                                              ArgInfo));
1141     return;
1142   }
1143   case IIT_TRUNC_ARG: {
1144     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1145     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1146                                              ArgInfo));
1147     return;
1148   }
1149   case IIT_HALF_VEC_ARG: {
1150     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1151     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1152                                              ArgInfo));
1153     return;
1154   }
1155   case IIT_SAME_VEC_WIDTH_ARG: {
1156     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1157     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1158                                              ArgInfo));
1159     return;
1160   }
1161   case IIT_PTR_TO_ARG: {
1162     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1163     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1164                                              ArgInfo));
1165     return;
1166   }
1167   case IIT_PTR_TO_ELT: {
1168     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1169     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1170     return;
1171   }
1172   case IIT_ANYPTR_TO_ELT: {
1173     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1174     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1175     OutputTable.push_back(
1176         IITDescriptor::get(IITDescriptor::AnyPtrToElt, ArgNo, RefNo));
1177     return;
1178   }
1179   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1180     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1181     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1182     OutputTable.push_back(
1183         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1184     return;
1185   }
1186   case IIT_EMPTYSTRUCT:
1187     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1188     return;
1189   case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1190   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1191   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1192   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1193   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1194   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1195   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1196   case IIT_STRUCT2: {
1197     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1198 
1199     for (unsigned i = 0; i != StructElts; ++i)
1200       DecodeIITType(NextElt, Infos, Info, OutputTable);
1201     return;
1202   }
1203   case IIT_SUBDIVIDE2_ARG: {
1204     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1205     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1206                                              ArgInfo));
1207     return;
1208   }
1209   case IIT_SUBDIVIDE4_ARG: {
1210     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1211     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1212                                              ArgInfo));
1213     return;
1214   }
1215   case IIT_VEC_ELEMENT: {
1216     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1217     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1218                                              ArgInfo));
1219     return;
1220   }
1221   case IIT_SCALABLE_VEC: {
1222     DecodeIITType(NextElt, Infos, Info, OutputTable);
1223     return;
1224   }
1225   case IIT_VEC_OF_BITCASTS_TO_INT: {
1226     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1227     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1228                                              ArgInfo));
1229     return;
1230   }
1231   }
1232   llvm_unreachable("unhandled");
1233 }
1234 
1235 #define GET_INTRINSIC_GENERATOR_GLOBAL
1236 #include "llvm/IR/IntrinsicImpl.inc"
1237 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1238 
1239 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1240                                              SmallVectorImpl<IITDescriptor> &T){
1241   // Check to see if the intrinsic's type was expressible by the table.
1242   unsigned TableVal = IIT_Table[id-1];
1243 
1244   // Decode the TableVal into an array of IITValues.
1245   SmallVector<unsigned char, 8> IITValues;
1246   ArrayRef<unsigned char> IITEntries;
1247   unsigned NextElt = 0;
1248   if ((TableVal >> 31) != 0) {
1249     // This is an offset into the IIT_LongEncodingTable.
1250     IITEntries = IIT_LongEncodingTable;
1251 
1252     // Strip sentinel bit.
1253     NextElt = (TableVal << 1) >> 1;
1254   } else {
1255     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1256     // into a single word in the table itself, decode it now.
1257     do {
1258       IITValues.push_back(TableVal & 0xF);
1259       TableVal >>= 4;
1260     } while (TableVal);
1261 
1262     IITEntries = IITValues;
1263     NextElt = 0;
1264   }
1265 
1266   // Okay, decode the table into the output vector of IITDescriptors.
1267   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1268   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1269     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1270 }
1271 
1272 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1273                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1274   using namespace Intrinsic;
1275 
1276   IITDescriptor D = Infos.front();
1277   Infos = Infos.slice(1);
1278 
1279   switch (D.Kind) {
1280   case IITDescriptor::Void: return Type::getVoidTy(Context);
1281   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1282   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1283   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1284   case IITDescriptor::Token: return Type::getTokenTy(Context);
1285   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1286   case IITDescriptor::Half: return Type::getHalfTy(Context);
1287   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1288   case IITDescriptor::Float: return Type::getFloatTy(Context);
1289   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1290   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1291   case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
1292 
1293   case IITDescriptor::Integer:
1294     return IntegerType::get(Context, D.Integer_Width);
1295   case IITDescriptor::Vector:
1296     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1297                            D.Vector_Width);
1298   case IITDescriptor::Pointer:
1299     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1300                             D.Pointer_AddressSpace);
1301   case IITDescriptor::Struct: {
1302     SmallVector<Type *, 8> Elts;
1303     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1304       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1305     return StructType::get(Context, Elts);
1306   }
1307   case IITDescriptor::Argument:
1308     return Tys[D.getArgumentNumber()];
1309   case IITDescriptor::ExtendArgument: {
1310     Type *Ty = Tys[D.getArgumentNumber()];
1311     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1312       return VectorType::getExtendedElementVectorType(VTy);
1313 
1314     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1315   }
1316   case IITDescriptor::TruncArgument: {
1317     Type *Ty = Tys[D.getArgumentNumber()];
1318     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1319       return VectorType::getTruncatedElementVectorType(VTy);
1320 
1321     IntegerType *ITy = cast<IntegerType>(Ty);
1322     assert(ITy->getBitWidth() % 2 == 0);
1323     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1324   }
1325   case IITDescriptor::Subdivide2Argument:
1326   case IITDescriptor::Subdivide4Argument: {
1327     Type *Ty = Tys[D.getArgumentNumber()];
1328     VectorType *VTy = dyn_cast<VectorType>(Ty);
1329     assert(VTy && "Expected an argument of Vector Type");
1330     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1331     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1332   }
1333   case IITDescriptor::HalfVecArgument:
1334     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1335                                                   Tys[D.getArgumentNumber()]));
1336   case IITDescriptor::SameVecWidthArgument: {
1337     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1338     Type *Ty = Tys[D.getArgumentNumber()];
1339     if (auto *VTy = dyn_cast<VectorType>(Ty))
1340       return VectorType::get(EltTy, VTy->getElementCount());
1341     return EltTy;
1342   }
1343   case IITDescriptor::PtrToArgument: {
1344     Type *Ty = Tys[D.getArgumentNumber()];
1345     return PointerType::getUnqual(Ty);
1346   }
1347   case IITDescriptor::PtrToElt: {
1348     Type *Ty = Tys[D.getArgumentNumber()];
1349     VectorType *VTy = dyn_cast<VectorType>(Ty);
1350     if (!VTy)
1351       llvm_unreachable("Expected an argument of Vector Type");
1352     Type *EltTy = VTy->getElementType();
1353     return PointerType::getUnqual(EltTy);
1354   }
1355   case IITDescriptor::VecElementArgument: {
1356     Type *Ty = Tys[D.getArgumentNumber()];
1357     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1358       return VTy->getElementType();
1359     llvm_unreachable("Expected an argument of Vector Type");
1360   }
1361   case IITDescriptor::VecOfBitcastsToInt: {
1362     Type *Ty = Tys[D.getArgumentNumber()];
1363     VectorType *VTy = dyn_cast<VectorType>(Ty);
1364     assert(VTy && "Expected an argument of Vector Type");
1365     return VectorType::getInteger(VTy);
1366   }
1367   case IITDescriptor::VecOfAnyPtrsToElt:
1368     // Return the overloaded type (which determines the pointers address space)
1369     return Tys[D.getOverloadArgNumber()];
1370   case IITDescriptor::AnyPtrToElt:
1371     // Return the overloaded type (which determines the pointers address space)
1372     return Tys[D.getOverloadArgNumber()];
1373   }
1374   llvm_unreachable("unhandled");
1375 }
1376 
1377 FunctionType *Intrinsic::getType(LLVMContext &Context,
1378                                  ID id, ArrayRef<Type*> Tys) {
1379   SmallVector<IITDescriptor, 8> Table;
1380   getIntrinsicInfoTableEntries(id, Table);
1381 
1382   ArrayRef<IITDescriptor> TableRef = Table;
1383   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1384 
1385   SmallVector<Type*, 8> ArgTys;
1386   while (!TableRef.empty())
1387     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1388 
1389   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1390   // If we see void type as the type of the last argument, it is vararg intrinsic
1391   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1392     ArgTys.pop_back();
1393     return FunctionType::get(ResultTy, ArgTys, true);
1394   }
1395   return FunctionType::get(ResultTy, ArgTys, false);
1396 }
1397 
1398 bool Intrinsic::isOverloaded(ID id) {
1399 #define GET_INTRINSIC_OVERLOAD_TABLE
1400 #include "llvm/IR/IntrinsicImpl.inc"
1401 #undef GET_INTRINSIC_OVERLOAD_TABLE
1402 }
1403 
1404 bool Intrinsic::isLeaf(ID id) {
1405   switch (id) {
1406   default:
1407     return true;
1408 
1409   case Intrinsic::experimental_gc_statepoint:
1410   case Intrinsic::experimental_patchpoint_void:
1411   case Intrinsic::experimental_patchpoint_i64:
1412     return false;
1413   }
1414 }
1415 
1416 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1417 #define GET_INTRINSIC_ATTRIBUTES
1418 #include "llvm/IR/IntrinsicImpl.inc"
1419 #undef GET_INTRINSIC_ATTRIBUTES
1420 
1421 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1422   // There can never be multiple globals with the same name of different types,
1423   // because intrinsics must be a specific type.
1424   auto *FT = getType(M->getContext(), id, Tys);
1425   return cast<Function>(
1426       M->getOrInsertFunction(Tys.empty() ? getName(id)
1427                                          : getName(id, Tys, M, FT),
1428                              getType(M->getContext(), id, Tys))
1429           .getCallee());
1430 }
1431 
1432 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
1433 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1434 #include "llvm/IR/IntrinsicImpl.inc"
1435 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1436 
1437 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1438 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1439 #include "llvm/IR/IntrinsicImpl.inc"
1440 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1441 
1442 using DeferredIntrinsicMatchPair =
1443     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1444 
1445 static bool matchIntrinsicType(
1446     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1447     SmallVectorImpl<Type *> &ArgTys,
1448     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1449     bool IsDeferredCheck) {
1450   using namespace Intrinsic;
1451 
1452   // If we ran out of descriptors, there are too many arguments.
1453   if (Infos.empty()) return true;
1454 
1455   // Do this before slicing off the 'front' part
1456   auto InfosRef = Infos;
1457   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1458     DeferredChecks.emplace_back(T, InfosRef);
1459     return false;
1460   };
1461 
1462   IITDescriptor D = Infos.front();
1463   Infos = Infos.slice(1);
1464 
1465   switch (D.Kind) {
1466     case IITDescriptor::Void: return !Ty->isVoidTy();
1467     case IITDescriptor::VarArg: return true;
1468     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1469     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1470     case IITDescriptor::Token: return !Ty->isTokenTy();
1471     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1472     case IITDescriptor::Half: return !Ty->isHalfTy();
1473     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1474     case IITDescriptor::Float: return !Ty->isFloatTy();
1475     case IITDescriptor::Double: return !Ty->isDoubleTy();
1476     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1477     case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
1478     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1479     case IITDescriptor::Vector: {
1480       VectorType *VT = dyn_cast<VectorType>(Ty);
1481       return !VT || VT->getElementCount() != D.Vector_Width ||
1482              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1483                                 DeferredChecks, IsDeferredCheck);
1484     }
1485     case IITDescriptor::Pointer: {
1486       PointerType *PT = dyn_cast<PointerType>(Ty);
1487       if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace)
1488         return true;
1489       if (!PT->isOpaque()) {
1490         /* Manually consume a pointer to empty struct descriptor, which is
1491          * used for externref. We don't want to enforce that the struct is
1492          * anonymous in this case. (This renders externref intrinsics
1493          * non-unique, but this will go away with opaque pointers anyway.) */
1494         if (Infos.front().Kind == IITDescriptor::Struct &&
1495             Infos.front().Struct_NumElements == 0) {
1496           Infos = Infos.slice(1);
1497           return false;
1498         }
1499         return matchIntrinsicType(PT->getNonOpaquePointerElementType(), Infos,
1500                                   ArgTys, DeferredChecks, IsDeferredCheck);
1501       }
1502       // Consume IIT descriptors relating to the pointer element type.
1503       // FIXME: Intrinsic type matching of nested single value types or even
1504       // aggregates doesn't work properly with opaque pointers but hopefully
1505       // doesn't happen in practice.
1506       while (Infos.front().Kind == IITDescriptor::Pointer ||
1507              Infos.front().Kind == IITDescriptor::Vector)
1508         Infos = Infos.slice(1);
1509       assert((Infos.front().Kind != IITDescriptor::Argument ||
1510               Infos.front().getArgumentKind() == IITDescriptor::AK_MatchType) &&
1511              "Unsupported polymorphic pointer type with opaque pointer");
1512       Infos = Infos.slice(1);
1513       return false;
1514     }
1515 
1516     case IITDescriptor::Struct: {
1517       StructType *ST = dyn_cast<StructType>(Ty);
1518       if (!ST || !ST->isLiteral() || ST->isPacked() ||
1519           ST->getNumElements() != D.Struct_NumElements)
1520         return true;
1521 
1522       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1523         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1524                                DeferredChecks, IsDeferredCheck))
1525           return true;
1526       return false;
1527     }
1528 
1529     case IITDescriptor::Argument:
1530       // If this is the second occurrence of an argument,
1531       // verify that the later instance matches the previous instance.
1532       if (D.getArgumentNumber() < ArgTys.size())
1533         return Ty != ArgTys[D.getArgumentNumber()];
1534 
1535       if (D.getArgumentNumber() > ArgTys.size() ||
1536           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1537         return IsDeferredCheck || DeferCheck(Ty);
1538 
1539       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1540              "Table consistency error");
1541       ArgTys.push_back(Ty);
1542 
1543       switch (D.getArgumentKind()) {
1544         case IITDescriptor::AK_Any:        return false; // Success
1545         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1546         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1547         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1548         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1549         default:                           break;
1550       }
1551       llvm_unreachable("all argument kinds not covered");
1552 
1553     case IITDescriptor::ExtendArgument: {
1554       // If this is a forward reference, defer the check for later.
1555       if (D.getArgumentNumber() >= ArgTys.size())
1556         return IsDeferredCheck || DeferCheck(Ty);
1557 
1558       Type *NewTy = ArgTys[D.getArgumentNumber()];
1559       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1560         NewTy = VectorType::getExtendedElementVectorType(VTy);
1561       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1562         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1563       else
1564         return true;
1565 
1566       return Ty != NewTy;
1567     }
1568     case IITDescriptor::TruncArgument: {
1569       // If this is a forward reference, defer the check for later.
1570       if (D.getArgumentNumber() >= ArgTys.size())
1571         return IsDeferredCheck || DeferCheck(Ty);
1572 
1573       Type *NewTy = ArgTys[D.getArgumentNumber()];
1574       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1575         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1576       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1577         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1578       else
1579         return true;
1580 
1581       return Ty != NewTy;
1582     }
1583     case IITDescriptor::HalfVecArgument:
1584       // If this is a forward reference, defer the check for later.
1585       if (D.getArgumentNumber() >= ArgTys.size())
1586         return IsDeferredCheck || DeferCheck(Ty);
1587       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1588              VectorType::getHalfElementsVectorType(
1589                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1590     case IITDescriptor::SameVecWidthArgument: {
1591       if (D.getArgumentNumber() >= ArgTys.size()) {
1592         // Defer check and subsequent check for the vector element type.
1593         Infos = Infos.slice(1);
1594         return IsDeferredCheck || DeferCheck(Ty);
1595       }
1596       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1597       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1598       // Both must be vectors of the same number of elements or neither.
1599       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1600         return true;
1601       Type *EltTy = Ty;
1602       if (ThisArgType) {
1603         if (ReferenceType->getElementCount() !=
1604             ThisArgType->getElementCount())
1605           return true;
1606         EltTy = ThisArgType->getElementType();
1607       }
1608       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1609                                 IsDeferredCheck);
1610     }
1611     case IITDescriptor::PtrToArgument: {
1612       if (D.getArgumentNumber() >= ArgTys.size())
1613         return IsDeferredCheck || DeferCheck(Ty);
1614       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1615       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1616       return (!ThisArgType ||
1617               !ThisArgType->isOpaqueOrPointeeTypeMatches(ReferenceType));
1618     }
1619     case IITDescriptor::PtrToElt: {
1620       if (D.getArgumentNumber() >= ArgTys.size())
1621         return IsDeferredCheck || DeferCheck(Ty);
1622       VectorType * ReferenceType =
1623         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1624       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1625 
1626       if (!ThisArgType || !ReferenceType)
1627         return true;
1628       return !ThisArgType->isOpaqueOrPointeeTypeMatches(
1629           ReferenceType->getElementType());
1630     }
1631     case IITDescriptor::AnyPtrToElt: {
1632       unsigned RefArgNumber = D.getRefArgNumber();
1633       if (RefArgNumber >= ArgTys.size()) {
1634         if (IsDeferredCheck)
1635           return true;
1636         // If forward referencing, already add the pointer type and
1637         // defer the checks for later.
1638         ArgTys.push_back(Ty);
1639         return DeferCheck(Ty);
1640       }
1641 
1642       if (!IsDeferredCheck) {
1643         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1644                "Table consistency error");
1645         ArgTys.push_back(Ty);
1646       }
1647 
1648       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1649       auto *ThisArgType = dyn_cast<PointerType>(Ty);
1650       if (!ThisArgType || !ReferenceType)
1651         return true;
1652       return !ThisArgType->isOpaqueOrPointeeTypeMatches(
1653           ReferenceType->getElementType());
1654     }
1655     case IITDescriptor::VecOfAnyPtrsToElt: {
1656       unsigned RefArgNumber = D.getRefArgNumber();
1657       if (RefArgNumber >= ArgTys.size()) {
1658         if (IsDeferredCheck)
1659           return true;
1660         // If forward referencing, already add the pointer-vector type and
1661         // defer the checks for later.
1662         ArgTys.push_back(Ty);
1663         return DeferCheck(Ty);
1664       }
1665 
1666       if (!IsDeferredCheck){
1667         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1668                "Table consistency error");
1669         ArgTys.push_back(Ty);
1670       }
1671 
1672       // Verify the overloaded type "matches" the Ref type.
1673       // i.e. Ty is a vector with the same width as Ref.
1674       // Composed of pointers to the same element type as Ref.
1675       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1676       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1677       if (!ThisArgVecTy || !ReferenceType ||
1678           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1679         return true;
1680       PointerType *ThisArgEltTy =
1681           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1682       if (!ThisArgEltTy)
1683         return true;
1684       return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches(
1685           ReferenceType->getElementType());
1686     }
1687     case IITDescriptor::VecElementArgument: {
1688       if (D.getArgumentNumber() >= ArgTys.size())
1689         return IsDeferredCheck ? true : DeferCheck(Ty);
1690       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1691       return !ReferenceType || Ty != ReferenceType->getElementType();
1692     }
1693     case IITDescriptor::Subdivide2Argument:
1694     case IITDescriptor::Subdivide4Argument: {
1695       // If this is a forward reference, defer the check for later.
1696       if (D.getArgumentNumber() >= ArgTys.size())
1697         return IsDeferredCheck || DeferCheck(Ty);
1698 
1699       Type *NewTy = ArgTys[D.getArgumentNumber()];
1700       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1701         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1702         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1703         return Ty != NewTy;
1704       }
1705       return true;
1706     }
1707     case IITDescriptor::VecOfBitcastsToInt: {
1708       if (D.getArgumentNumber() >= ArgTys.size())
1709         return IsDeferredCheck || DeferCheck(Ty);
1710       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1711       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1712       if (!ThisArgVecTy || !ReferenceType)
1713         return true;
1714       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1715     }
1716   }
1717   llvm_unreachable("unhandled");
1718 }
1719 
1720 Intrinsic::MatchIntrinsicTypesResult
1721 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1722                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1723                                    SmallVectorImpl<Type *> &ArgTys) {
1724   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1725   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1726                          false))
1727     return MatchIntrinsicTypes_NoMatchRet;
1728 
1729   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1730 
1731   for (auto Ty : FTy->params())
1732     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1733       return MatchIntrinsicTypes_NoMatchArg;
1734 
1735   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1736     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1737     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1738                            true))
1739       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1740                                          : MatchIntrinsicTypes_NoMatchArg;
1741   }
1742 
1743   return MatchIntrinsicTypes_Match;
1744 }
1745 
1746 bool
1747 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1748                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1749   // If there are no descriptors left, then it can't be a vararg.
1750   if (Infos.empty())
1751     return isVarArg;
1752 
1753   // There should be only one descriptor remaining at this point.
1754   if (Infos.size() != 1)
1755     return true;
1756 
1757   // Check and verify the descriptor.
1758   IITDescriptor D = Infos.front();
1759   Infos = Infos.slice(1);
1760   if (D.Kind == IITDescriptor::VarArg)
1761     return !isVarArg;
1762 
1763   return true;
1764 }
1765 
1766 bool Intrinsic::getIntrinsicSignature(Function *F,
1767                                       SmallVectorImpl<Type *> &ArgTys) {
1768   Intrinsic::ID ID = F->getIntrinsicID();
1769   if (!ID)
1770     return false;
1771 
1772   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1773   getIntrinsicInfoTableEntries(ID, Table);
1774   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1775 
1776   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1777                                          ArgTys) !=
1778       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1779     return false;
1780   }
1781   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1782                                       TableRef))
1783     return false;
1784   return true;
1785 }
1786 
1787 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1788   SmallVector<Type *, 4> ArgTys;
1789   if (!getIntrinsicSignature(F, ArgTys))
1790     return None;
1791 
1792   Intrinsic::ID ID = F->getIntrinsicID();
1793   StringRef Name = F->getName();
1794   std::string WantedName =
1795       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1796   if (Name == WantedName)
1797     return None;
1798 
1799   Function *NewDecl = [&] {
1800     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1801       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1802         if (ExistingF->getFunctionType() == F->getFunctionType())
1803           return ExistingF;
1804 
1805       // The name already exists, but is not a function or has the wrong
1806       // prototype. Make place for the new one by renaming the old version.
1807       // Either this old version will be removed later on or the module is
1808       // invalid and we'll get an error.
1809       ExistingGV->setName(WantedName + ".renamed");
1810     }
1811     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1812   }();
1813 
1814   NewDecl->setCallingConv(F->getCallingConv());
1815   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1816          "Shouldn't change the signature");
1817   return NewDecl;
1818 }
1819 
1820 /// hasAddressTaken - returns true if there are any uses of this function
1821 /// other than direct calls or invokes to it. Optionally ignores callback
1822 /// uses, assume like pointer annotation calls, and references in llvm.used
1823 /// and llvm.compiler.used variables.
1824 bool Function::hasAddressTaken(const User **PutOffender,
1825                                bool IgnoreCallbackUses,
1826                                bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1827                                bool IgnoreARCAttachedCall) const {
1828   for (const Use &U : uses()) {
1829     const User *FU = U.getUser();
1830     if (isa<BlockAddress>(FU))
1831       continue;
1832 
1833     if (IgnoreCallbackUses) {
1834       AbstractCallSite ACS(&U);
1835       if (ACS && ACS.isCallbackCall())
1836         continue;
1837     }
1838 
1839     const auto *Call = dyn_cast<CallBase>(FU);
1840     if (!Call) {
1841       if (IgnoreAssumeLikeCalls) {
1842         if (const auto *FI = dyn_cast<Instruction>(FU)) {
1843           if (FI->isCast() && !FI->user_empty() &&
1844               llvm::all_of(FU->users(), [](const User *U) {
1845                 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1846                   return I->isAssumeLikeIntrinsic();
1847                 return false;
1848               }))
1849             continue;
1850         }
1851       }
1852       if (IgnoreLLVMUsed && !FU->user_empty()) {
1853         const User *FUU = FU;
1854         if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
1855             !FU->user_begin()->user_empty())
1856           FUU = *FU->user_begin();
1857         if (llvm::all_of(FUU->users(), [](const User *U) {
1858               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1859                 return GV->hasName() &&
1860                        (GV->getName().equals("llvm.compiler.used") ||
1861                         GV->getName().equals("llvm.used"));
1862               return false;
1863             }))
1864           continue;
1865       }
1866       if (PutOffender)
1867         *PutOffender = FU;
1868       return true;
1869     }
1870     if (!Call->isCallee(&U) || Call->getFunctionType() != getFunctionType()) {
1871       if (IgnoreARCAttachedCall &&
1872           Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
1873                                       U.getOperandNo()))
1874         continue;
1875 
1876       if (PutOffender)
1877         *PutOffender = FU;
1878       return true;
1879     }
1880   }
1881   return false;
1882 }
1883 
1884 bool Function::isDefTriviallyDead() const {
1885   // Check the linkage
1886   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1887       !hasAvailableExternallyLinkage())
1888     return false;
1889 
1890   // Check if the function is used by anything other than a blockaddress.
1891   for (const User *U : users())
1892     if (!isa<BlockAddress>(U))
1893       return false;
1894 
1895   return true;
1896 }
1897 
1898 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1899 /// setjmp or other function that gcc recognizes as "returning twice".
1900 bool Function::callsFunctionThatReturnsTwice() const {
1901   for (const Instruction &I : instructions(this))
1902     if (const auto *Call = dyn_cast<CallBase>(&I))
1903       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1904         return true;
1905 
1906   return false;
1907 }
1908 
1909 Constant *Function::getPersonalityFn() const {
1910   assert(hasPersonalityFn() && getNumOperands());
1911   return cast<Constant>(Op<0>());
1912 }
1913 
1914 void Function::setPersonalityFn(Constant *Fn) {
1915   setHungoffOperand<0>(Fn);
1916   setValueSubclassDataBit(3, Fn != nullptr);
1917 }
1918 
1919 Constant *Function::getPrefixData() const {
1920   assert(hasPrefixData() && getNumOperands());
1921   return cast<Constant>(Op<1>());
1922 }
1923 
1924 void Function::setPrefixData(Constant *PrefixData) {
1925   setHungoffOperand<1>(PrefixData);
1926   setValueSubclassDataBit(1, PrefixData != nullptr);
1927 }
1928 
1929 Constant *Function::getPrologueData() const {
1930   assert(hasPrologueData() && getNumOperands());
1931   return cast<Constant>(Op<2>());
1932 }
1933 
1934 void Function::setPrologueData(Constant *PrologueData) {
1935   setHungoffOperand<2>(PrologueData);
1936   setValueSubclassDataBit(2, PrologueData != nullptr);
1937 }
1938 
1939 void Function::allocHungoffUselist() {
1940   // If we've already allocated a uselist, stop here.
1941   if (getNumOperands())
1942     return;
1943 
1944   allocHungoffUses(3, /*IsPhi=*/ false);
1945   setNumHungOffUseOperands(3);
1946 
1947   // Initialize the uselist with placeholder operands to allow traversal.
1948   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1949   Op<0>().set(CPN);
1950   Op<1>().set(CPN);
1951   Op<2>().set(CPN);
1952 }
1953 
1954 template <int Idx>
1955 void Function::setHungoffOperand(Constant *C) {
1956   if (C) {
1957     allocHungoffUselist();
1958     Op<Idx>().set(C);
1959   } else if (getNumOperands()) {
1960     Op<Idx>().set(
1961         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1962   }
1963 }
1964 
1965 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1966   assert(Bit < 16 && "SubclassData contains only 16 bits");
1967   if (On)
1968     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1969   else
1970     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1971 }
1972 
1973 void Function::setEntryCount(ProfileCount Count,
1974                              const DenseSet<GlobalValue::GUID> *S) {
1975 #if !defined(NDEBUG)
1976   auto PrevCount = getEntryCount();
1977   assert(!PrevCount || PrevCount->getType() == Count.getType());
1978 #endif
1979 
1980   auto ImportGUIDs = getImportGUIDs();
1981   if (S == nullptr && ImportGUIDs.size())
1982     S = &ImportGUIDs;
1983 
1984   MDBuilder MDB(getContext());
1985   setMetadata(
1986       LLVMContext::MD_prof,
1987       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1988 }
1989 
1990 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1991                              const DenseSet<GlobalValue::GUID> *Imports) {
1992   setEntryCount(ProfileCount(Count, Type), Imports);
1993 }
1994 
1995 Optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
1996   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1997   if (MD && MD->getOperand(0))
1998     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1999       if (MDS->getString().equals("function_entry_count")) {
2000         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2001         uint64_t Count = CI->getValue().getZExtValue();
2002         // A value of -1 is used for SamplePGO when there were no samples.
2003         // Treat this the same as unknown.
2004         if (Count == (uint64_t)-1)
2005           return None;
2006         return ProfileCount(Count, PCT_Real);
2007       } else if (AllowSynthetic &&
2008                  MDS->getString().equals("synthetic_function_entry_count")) {
2009         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2010         uint64_t Count = CI->getValue().getZExtValue();
2011         return ProfileCount(Count, PCT_Synthetic);
2012       }
2013     }
2014   return None;
2015 }
2016 
2017 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
2018   DenseSet<GlobalValue::GUID> R;
2019   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
2020     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
2021       if (MDS->getString().equals("function_entry_count"))
2022         for (unsigned i = 2; i < MD->getNumOperands(); i++)
2023           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
2024                        ->getValue()
2025                        .getZExtValue());
2026   return R;
2027 }
2028 
2029 void Function::setSectionPrefix(StringRef Prefix) {
2030   MDBuilder MDB(getContext());
2031   setMetadata(LLVMContext::MD_section_prefix,
2032               MDB.createFunctionSectionPrefix(Prefix));
2033 }
2034 
2035 Optional<StringRef> Function::getSectionPrefix() const {
2036   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
2037     assert(cast<MDString>(MD->getOperand(0))
2038                ->getString()
2039                .equals("function_section_prefix") &&
2040            "Metadata not match");
2041     return cast<MDString>(MD->getOperand(1))->getString();
2042   }
2043   return None;
2044 }
2045 
2046 bool Function::nullPointerIsDefined() const {
2047   return hasFnAttribute(Attribute::NullPointerIsValid);
2048 }
2049 
2050 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
2051   if (F && F->nullPointerIsDefined())
2052     return true;
2053 
2054   if (AS != 0)
2055     return true;
2056 
2057   return false;
2058 }
2059