1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/IR/AbstractCallSite.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsAArch64.h" 35 #include "llvm/IR/IntrinsicsAMDGPU.h" 36 #include "llvm/IR/IntrinsicsARM.h" 37 #include "llvm/IR/IntrinsicsBPF.h" 38 #include "llvm/IR/IntrinsicsDirectX.h" 39 #include "llvm/IR/IntrinsicsHexagon.h" 40 #include "llvm/IR/IntrinsicsMips.h" 41 #include "llvm/IR/IntrinsicsNVPTX.h" 42 #include "llvm/IR/IntrinsicsPowerPC.h" 43 #include "llvm/IR/IntrinsicsR600.h" 44 #include "llvm/IR/IntrinsicsRISCV.h" 45 #include "llvm/IR/IntrinsicsS390.h" 46 #include "llvm/IR/IntrinsicsVE.h" 47 #include "llvm/IR/IntrinsicsWebAssembly.h" 48 #include "llvm/IR/IntrinsicsX86.h" 49 #include "llvm/IR/IntrinsicsXCore.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/SymbolTableListTraits.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Use.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/ValueSymbolTable.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/ModRef.h" 66 #include <cassert> 67 #include <cstddef> 68 #include <cstdint> 69 #include <cstring> 70 #include <string> 71 72 using namespace llvm; 73 using ProfileCount = Function::ProfileCount; 74 75 // Explicit instantiations of SymbolTableListTraits since some of the methods 76 // are not in the public header file... 77 template class llvm::SymbolTableListTraits<BasicBlock>; 78 79 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 80 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 81 cl::desc("Maximum size for the name of non-global values.")); 82 83 //===----------------------------------------------------------------------===// 84 // Argument Implementation 85 //===----------------------------------------------------------------------===// 86 87 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 88 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 89 setName(Name); 90 } 91 92 void Argument::setParent(Function *parent) { 93 Parent = parent; 94 } 95 96 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 97 if (!getType()->isPointerTy()) return false; 98 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 99 (AllowUndefOrPoison || 100 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 101 return true; 102 else if (getDereferenceableBytes() > 0 && 103 !NullPointerIsDefined(getParent(), 104 getType()->getPointerAddressSpace())) 105 return true; 106 return false; 107 } 108 109 bool Argument::hasByValAttr() const { 110 if (!getType()->isPointerTy()) return false; 111 return hasAttribute(Attribute::ByVal); 112 } 113 114 bool Argument::hasByRefAttr() const { 115 if (!getType()->isPointerTy()) 116 return false; 117 return hasAttribute(Attribute::ByRef); 118 } 119 120 bool Argument::hasSwiftSelfAttr() const { 121 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 122 } 123 124 bool Argument::hasSwiftErrorAttr() const { 125 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 126 } 127 128 bool Argument::hasInAllocaAttr() const { 129 if (!getType()->isPointerTy()) return false; 130 return hasAttribute(Attribute::InAlloca); 131 } 132 133 bool Argument::hasPreallocatedAttr() const { 134 if (!getType()->isPointerTy()) 135 return false; 136 return hasAttribute(Attribute::Preallocated); 137 } 138 139 bool Argument::hasPassPointeeByValueCopyAttr() const { 140 if (!getType()->isPointerTy()) return false; 141 AttributeList Attrs = getParent()->getAttributes(); 142 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 143 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 144 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated); 145 } 146 147 bool Argument::hasPointeeInMemoryValueAttr() const { 148 if (!getType()->isPointerTy()) 149 return false; 150 AttributeList Attrs = getParent()->getAttributes(); 151 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 152 Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) || 153 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 154 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) || 155 Attrs.hasParamAttr(getArgNo(), Attribute::ByRef); 156 } 157 158 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 159 /// parameter type. 160 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) { 161 // FIXME: All the type carrying attributes are mutually exclusive, so there 162 // should be a single query to get the stored type that handles any of them. 163 if (Type *ByValTy = ParamAttrs.getByValType()) 164 return ByValTy; 165 if (Type *ByRefTy = ParamAttrs.getByRefType()) 166 return ByRefTy; 167 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 168 return PreAllocTy; 169 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 170 return InAllocaTy; 171 if (Type *SRetTy = ParamAttrs.getStructRetType()) 172 return SRetTy; 173 174 return nullptr; 175 } 176 177 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 178 AttributeSet ParamAttrs = 179 getParent()->getAttributes().getParamAttrs(getArgNo()); 180 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs)) 181 return DL.getTypeAllocSize(MemTy); 182 return 0; 183 } 184 185 Type *Argument::getPointeeInMemoryValueType() const { 186 AttributeSet ParamAttrs = 187 getParent()->getAttributes().getParamAttrs(getArgNo()); 188 return getMemoryParamAllocType(ParamAttrs); 189 } 190 191 MaybeAlign Argument::getParamAlign() const { 192 assert(getType()->isPointerTy() && "Only pointers have alignments"); 193 return getParent()->getParamAlign(getArgNo()); 194 } 195 196 MaybeAlign Argument::getParamStackAlign() const { 197 return getParent()->getParamStackAlign(getArgNo()); 198 } 199 200 Type *Argument::getParamByValType() const { 201 assert(getType()->isPointerTy() && "Only pointers have byval types"); 202 return getParent()->getParamByValType(getArgNo()); 203 } 204 205 Type *Argument::getParamStructRetType() const { 206 assert(getType()->isPointerTy() && "Only pointers have sret types"); 207 return getParent()->getParamStructRetType(getArgNo()); 208 } 209 210 Type *Argument::getParamByRefType() const { 211 assert(getType()->isPointerTy() && "Only pointers have byref types"); 212 return getParent()->getParamByRefType(getArgNo()); 213 } 214 215 Type *Argument::getParamInAllocaType() const { 216 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 217 return getParent()->getParamInAllocaType(getArgNo()); 218 } 219 220 uint64_t Argument::getDereferenceableBytes() const { 221 assert(getType()->isPointerTy() && 222 "Only pointers have dereferenceable bytes"); 223 return getParent()->getParamDereferenceableBytes(getArgNo()); 224 } 225 226 uint64_t Argument::getDereferenceableOrNullBytes() const { 227 assert(getType()->isPointerTy() && 228 "Only pointers have dereferenceable bytes"); 229 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 230 } 231 232 bool Argument::hasNestAttr() const { 233 if (!getType()->isPointerTy()) return false; 234 return hasAttribute(Attribute::Nest); 235 } 236 237 bool Argument::hasNoAliasAttr() const { 238 if (!getType()->isPointerTy()) return false; 239 return hasAttribute(Attribute::NoAlias); 240 } 241 242 bool Argument::hasNoCaptureAttr() const { 243 if (!getType()->isPointerTy()) return false; 244 return hasAttribute(Attribute::NoCapture); 245 } 246 247 bool Argument::hasNoFreeAttr() const { 248 if (!getType()->isPointerTy()) return false; 249 return hasAttribute(Attribute::NoFree); 250 } 251 252 bool Argument::hasStructRetAttr() const { 253 if (!getType()->isPointerTy()) return false; 254 return hasAttribute(Attribute::StructRet); 255 } 256 257 bool Argument::hasInRegAttr() const { 258 return hasAttribute(Attribute::InReg); 259 } 260 261 bool Argument::hasReturnedAttr() const { 262 return hasAttribute(Attribute::Returned); 263 } 264 265 bool Argument::hasZExtAttr() const { 266 return hasAttribute(Attribute::ZExt); 267 } 268 269 bool Argument::hasSExtAttr() const { 270 return hasAttribute(Attribute::SExt); 271 } 272 273 bool Argument::onlyReadsMemory() const { 274 AttributeList Attrs = getParent()->getAttributes(); 275 return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) || 276 Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone); 277 } 278 279 void Argument::addAttrs(AttrBuilder &B) { 280 AttributeList AL = getParent()->getAttributes(); 281 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 282 getParent()->setAttributes(AL); 283 } 284 285 void Argument::addAttr(Attribute::AttrKind Kind) { 286 getParent()->addParamAttr(getArgNo(), Kind); 287 } 288 289 void Argument::addAttr(Attribute Attr) { 290 getParent()->addParamAttr(getArgNo(), Attr); 291 } 292 293 void Argument::removeAttr(Attribute::AttrKind Kind) { 294 getParent()->removeParamAttr(getArgNo(), Kind); 295 } 296 297 void Argument::removeAttrs(const AttributeMask &AM) { 298 AttributeList AL = getParent()->getAttributes(); 299 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM); 300 getParent()->setAttributes(AL); 301 } 302 303 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 304 return getParent()->hasParamAttribute(getArgNo(), Kind); 305 } 306 307 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 308 return getParent()->getParamAttribute(getArgNo(), Kind); 309 } 310 311 //===----------------------------------------------------------------------===// 312 // Helper Methods in Function 313 //===----------------------------------------------------------------------===// 314 315 LLVMContext &Function::getContext() const { 316 return getType()->getContext(); 317 } 318 319 unsigned Function::getInstructionCount() const { 320 unsigned NumInstrs = 0; 321 for (const BasicBlock &BB : BasicBlocks) 322 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 323 BB.instructionsWithoutDebug().end()); 324 return NumInstrs; 325 } 326 327 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 328 const Twine &N, Module &M) { 329 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 330 } 331 332 Function *Function::createWithDefaultAttr(FunctionType *Ty, 333 LinkageTypes Linkage, 334 unsigned AddrSpace, const Twine &N, 335 Module *M) { 336 auto *F = new Function(Ty, Linkage, AddrSpace, N, M); 337 AttrBuilder B(F->getContext()); 338 UWTableKind UWTable = M->getUwtable(); 339 if (UWTable != UWTableKind::None) 340 B.addUWTableAttr(UWTable); 341 switch (M->getFramePointer()) { 342 case FramePointerKind::None: 343 // 0 ("none") is the default. 344 break; 345 case FramePointerKind::NonLeaf: 346 B.addAttribute("frame-pointer", "non-leaf"); 347 break; 348 case FramePointerKind::All: 349 B.addAttribute("frame-pointer", "all"); 350 break; 351 } 352 if (M->getModuleFlag("function_return_thunk_extern")) 353 B.addAttribute(Attribute::FnRetThunkExtern); 354 F->addFnAttrs(B); 355 return F; 356 } 357 358 void Function::removeFromParent() { 359 getParent()->getFunctionList().remove(getIterator()); 360 } 361 362 void Function::eraseFromParent() { 363 getParent()->getFunctionList().erase(getIterator()); 364 } 365 366 void Function::splice(Function::iterator ToIt, Function *FromF, 367 Function::iterator FromBeginIt, 368 Function::iterator FromEndIt) { 369 #ifdef EXPENSIVE_CHECKS 370 // Check that FromBeginIt is before FromEndIt. 371 auto FromFEnd = FromF->end(); 372 for (auto It = FromBeginIt; It != FromEndIt; ++It) 373 assert(It != FromFEnd && "FromBeginIt not before FromEndIt!"); 374 #endif // EXPENSIVE_CHECKS 375 BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt); 376 } 377 378 Function::iterator Function::erase(Function::iterator FromIt, 379 Function::iterator ToIt) { 380 return BasicBlocks.erase(FromIt, ToIt); 381 } 382 383 //===----------------------------------------------------------------------===// 384 // Function Implementation 385 //===----------------------------------------------------------------------===// 386 387 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 388 // If AS == -1 and we are passed a valid module pointer we place the function 389 // in the program address space. Otherwise we default to AS0. 390 if (AddrSpace == static_cast<unsigned>(-1)) 391 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 392 return AddrSpace; 393 } 394 395 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 396 const Twine &name, Module *ParentModule) 397 : GlobalObject(Ty, Value::FunctionVal, 398 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 399 computeAddrSpace(AddrSpace, ParentModule)), 400 NumArgs(Ty->getNumParams()) { 401 assert(FunctionType::isValidReturnType(getReturnType()) && 402 "invalid return type"); 403 setGlobalObjectSubClassData(0); 404 405 // We only need a symbol table for a function if the context keeps value names 406 if (!getContext().shouldDiscardValueNames()) 407 SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize); 408 409 // If the function has arguments, mark them as lazily built. 410 if (Ty->getNumParams()) 411 setValueSubclassData(1); // Set the "has lazy arguments" bit. 412 413 if (ParentModule) 414 ParentModule->getFunctionList().push_back(this); 415 416 HasLLVMReservedName = getName().startswith("llvm."); 417 // Ensure intrinsics have the right parameter attributes. 418 // Note, the IntID field will have been set in Value::setName if this function 419 // name is a valid intrinsic ID. 420 if (IntID) 421 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 422 } 423 424 Function::~Function() { 425 dropAllReferences(); // After this it is safe to delete instructions. 426 427 // Delete all of the method arguments and unlink from symbol table... 428 if (Arguments) 429 clearArguments(); 430 431 // Remove the function from the on-the-side GC table. 432 clearGC(); 433 } 434 435 void Function::BuildLazyArguments() const { 436 // Create the arguments vector, all arguments start out unnamed. 437 auto *FT = getFunctionType(); 438 if (NumArgs > 0) { 439 Arguments = std::allocator<Argument>().allocate(NumArgs); 440 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 441 Type *ArgTy = FT->getParamType(i); 442 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 443 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 444 } 445 } 446 447 // Clear the lazy arguments bit. 448 unsigned SDC = getSubclassDataFromValue(); 449 SDC &= ~(1 << 0); 450 const_cast<Function*>(this)->setValueSubclassData(SDC); 451 assert(!hasLazyArguments()); 452 } 453 454 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 455 return MutableArrayRef<Argument>(Args, Count); 456 } 457 458 bool Function::isConstrainedFPIntrinsic() const { 459 switch (getIntrinsicID()) { 460 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 461 case Intrinsic::INTRINSIC: 462 #include "llvm/IR/ConstrainedOps.def" 463 return true; 464 #undef INSTRUCTION 465 default: 466 return false; 467 } 468 } 469 470 void Function::clearArguments() { 471 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 472 A.setName(""); 473 A.~Argument(); 474 } 475 std::allocator<Argument>().deallocate(Arguments, NumArgs); 476 Arguments = nullptr; 477 } 478 479 void Function::stealArgumentListFrom(Function &Src) { 480 assert(isDeclaration() && "Expected no references to current arguments"); 481 482 // Drop the current arguments, if any, and set the lazy argument bit. 483 if (!hasLazyArguments()) { 484 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 485 [](const Argument &A) { return A.use_empty(); }) && 486 "Expected arguments to be unused in declaration"); 487 clearArguments(); 488 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 489 } 490 491 // Nothing to steal if Src has lazy arguments. 492 if (Src.hasLazyArguments()) 493 return; 494 495 // Steal arguments from Src, and fix the lazy argument bits. 496 assert(arg_size() == Src.arg_size()); 497 Arguments = Src.Arguments; 498 Src.Arguments = nullptr; 499 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 500 // FIXME: This does the work of transferNodesFromList inefficiently. 501 SmallString<128> Name; 502 if (A.hasName()) 503 Name = A.getName(); 504 if (!Name.empty()) 505 A.setName(""); 506 A.setParent(this); 507 if (!Name.empty()) 508 A.setName(Name); 509 } 510 511 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 512 assert(!hasLazyArguments()); 513 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 514 } 515 516 // dropAllReferences() - This function causes all the subinstructions to "let 517 // go" of all references that they are maintaining. This allows one to 518 // 'delete' a whole class at a time, even though there may be circular 519 // references... first all references are dropped, and all use counts go to 520 // zero. Then everything is deleted for real. Note that no operations are 521 // valid on an object that has "dropped all references", except operator 522 // delete. 523 // 524 void Function::dropAllReferences() { 525 setIsMaterializable(false); 526 527 for (BasicBlock &BB : *this) 528 BB.dropAllReferences(); 529 530 // Delete all basic blocks. They are now unused, except possibly by 531 // blockaddresses, but BasicBlock's destructor takes care of those. 532 while (!BasicBlocks.empty()) 533 BasicBlocks.begin()->eraseFromParent(); 534 535 // Drop uses of any optional data (real or placeholder). 536 if (getNumOperands()) { 537 User::dropAllReferences(); 538 setNumHungOffUseOperands(0); 539 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 540 } 541 542 // Metadata is stored in a side-table. 543 clearMetadata(); 544 } 545 546 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) { 547 AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr); 548 } 549 550 void Function::addFnAttr(Attribute::AttrKind Kind) { 551 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind); 552 } 553 554 void Function::addFnAttr(StringRef Kind, StringRef Val) { 555 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val); 556 } 557 558 void Function::addFnAttr(Attribute Attr) { 559 AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr); 560 } 561 562 void Function::addFnAttrs(const AttrBuilder &Attrs) { 563 AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs); 564 } 565 566 void Function::addRetAttr(Attribute::AttrKind Kind) { 567 AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind); 568 } 569 570 void Function::addRetAttr(Attribute Attr) { 571 AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr); 572 } 573 574 void Function::addRetAttrs(const AttrBuilder &Attrs) { 575 AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs); 576 } 577 578 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 579 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind); 580 } 581 582 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 583 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr); 584 } 585 586 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 587 AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs); 588 } 589 590 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) { 591 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 592 } 593 594 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) { 595 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 596 } 597 598 void Function::removeFnAttr(Attribute::AttrKind Kind) { 599 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 600 } 601 602 void Function::removeFnAttr(StringRef Kind) { 603 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 604 } 605 606 void Function::removeFnAttrs(const AttributeMask &AM) { 607 AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM); 608 } 609 610 void Function::removeRetAttr(Attribute::AttrKind Kind) { 611 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 612 } 613 614 void Function::removeRetAttr(StringRef Kind) { 615 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 616 } 617 618 void Function::removeRetAttrs(const AttributeMask &Attrs) { 619 AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs); 620 } 621 622 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 623 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 624 } 625 626 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 627 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 628 } 629 630 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) { 631 AttributeSets = 632 AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs); 633 } 634 635 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 636 AttributeSets = 637 AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 638 } 639 640 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const { 641 return AttributeSets.hasFnAttr(Kind); 642 } 643 644 bool Function::hasFnAttribute(StringRef Kind) const { 645 return AttributeSets.hasFnAttr(Kind); 646 } 647 648 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const { 649 return AttributeSets.hasRetAttr(Kind); 650 } 651 652 bool Function::hasParamAttribute(unsigned ArgNo, 653 Attribute::AttrKind Kind) const { 654 return AttributeSets.hasParamAttr(ArgNo, Kind); 655 } 656 657 Attribute Function::getAttributeAtIndex(unsigned i, 658 Attribute::AttrKind Kind) const { 659 return AttributeSets.getAttributeAtIndex(i, Kind); 660 } 661 662 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const { 663 return AttributeSets.getAttributeAtIndex(i, Kind); 664 } 665 666 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const { 667 return AttributeSets.getFnAttr(Kind); 668 } 669 670 Attribute Function::getFnAttribute(StringRef Kind) const { 671 return AttributeSets.getFnAttr(Kind); 672 } 673 674 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name, 675 uint64_t Default) const { 676 Attribute A = getFnAttribute(Name); 677 uint64_t Result = Default; 678 if (A.isStringAttribute()) { 679 StringRef Str = A.getValueAsString(); 680 if (Str.getAsInteger(0, Result)) 681 getContext().emitError("cannot parse integer attribute " + Name); 682 } 683 684 return Result; 685 } 686 687 /// gets the specified attribute from the list of attributes. 688 Attribute Function::getParamAttribute(unsigned ArgNo, 689 Attribute::AttrKind Kind) const { 690 return AttributeSets.getParamAttr(ArgNo, Kind); 691 } 692 693 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 694 uint64_t Bytes) { 695 AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(), 696 ArgNo, Bytes); 697 } 698 699 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 700 if (&FPType == &APFloat::IEEEsingle()) { 701 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 702 StringRef Val = Attr.getValueAsString(); 703 if (!Val.empty()) 704 return parseDenormalFPAttribute(Val); 705 706 // If the f32 variant of the attribute isn't specified, try to use the 707 // generic one. 708 } 709 710 Attribute Attr = getFnAttribute("denormal-fp-math"); 711 return parseDenormalFPAttribute(Attr.getValueAsString()); 712 } 713 714 const std::string &Function::getGC() const { 715 assert(hasGC() && "Function has no collector"); 716 return getContext().getGC(*this); 717 } 718 719 void Function::setGC(std::string Str) { 720 setValueSubclassDataBit(14, !Str.empty()); 721 getContext().setGC(*this, std::move(Str)); 722 } 723 724 void Function::clearGC() { 725 if (!hasGC()) 726 return; 727 getContext().deleteGC(*this); 728 setValueSubclassDataBit(14, false); 729 } 730 731 bool Function::hasStackProtectorFnAttr() const { 732 return hasFnAttribute(Attribute::StackProtect) || 733 hasFnAttribute(Attribute::StackProtectStrong) || 734 hasFnAttribute(Attribute::StackProtectReq); 735 } 736 737 /// Copy all additional attributes (those not needed to create a Function) from 738 /// the Function Src to this one. 739 void Function::copyAttributesFrom(const Function *Src) { 740 GlobalObject::copyAttributesFrom(Src); 741 setCallingConv(Src->getCallingConv()); 742 setAttributes(Src->getAttributes()); 743 if (Src->hasGC()) 744 setGC(Src->getGC()); 745 else 746 clearGC(); 747 if (Src->hasPersonalityFn()) 748 setPersonalityFn(Src->getPersonalityFn()); 749 if (Src->hasPrefixData()) 750 setPrefixData(Src->getPrefixData()); 751 if (Src->hasPrologueData()) 752 setPrologueData(Src->getPrologueData()); 753 } 754 755 MemoryEffects Function::getMemoryEffects() const { 756 return getAttributes().getMemoryEffects(); 757 } 758 void Function::setMemoryEffects(MemoryEffects ME) { 759 addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME)); 760 } 761 762 /// Determine if the function does not access memory. 763 bool Function::doesNotAccessMemory() const { 764 return getMemoryEffects().doesNotAccessMemory(); 765 } 766 void Function::setDoesNotAccessMemory() { 767 setMemoryEffects(MemoryEffects::none()); 768 } 769 770 /// Determine if the function does not access or only reads memory. 771 bool Function::onlyReadsMemory() const { 772 return getMemoryEffects().onlyReadsMemory(); 773 } 774 void Function::setOnlyReadsMemory() { 775 setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly()); 776 } 777 778 /// Determine if the function does not access or only writes memory. 779 bool Function::onlyWritesMemory() const { 780 return getMemoryEffects().onlyWritesMemory(); 781 } 782 void Function::setOnlyWritesMemory() { 783 setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly()); 784 } 785 786 /// Determine if the call can access memmory only using pointers based 787 /// on its arguments. 788 bool Function::onlyAccessesArgMemory() const { 789 return getMemoryEffects().onlyAccessesArgPointees(); 790 } 791 void Function::setOnlyAccessesArgMemory() { 792 setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly()); 793 } 794 795 /// Determine if the function may only access memory that is 796 /// inaccessible from the IR. 797 bool Function::onlyAccessesInaccessibleMemory() const { 798 return getMemoryEffects().onlyAccessesInaccessibleMem(); 799 } 800 void Function::setOnlyAccessesInaccessibleMemory() { 801 setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly()); 802 } 803 804 /// Determine if the function may only access memory that is 805 /// either inaccessible from the IR or pointed to by its arguments. 806 bool Function::onlyAccessesInaccessibleMemOrArgMem() const { 807 return getMemoryEffects().onlyAccessesInaccessibleOrArgMem(); 808 } 809 void Function::setOnlyAccessesInaccessibleMemOrArgMem() { 810 setMemoryEffects(getMemoryEffects() & 811 MemoryEffects::inaccessibleOrArgMemOnly()); 812 } 813 814 /// Table of string intrinsic names indexed by enum value. 815 static const char * const IntrinsicNameTable[] = { 816 "not_intrinsic", 817 #define GET_INTRINSIC_NAME_TABLE 818 #include "llvm/IR/IntrinsicImpl.inc" 819 #undef GET_INTRINSIC_NAME_TABLE 820 }; 821 822 /// Table of per-target intrinsic name tables. 823 #define GET_INTRINSIC_TARGET_DATA 824 #include "llvm/IR/IntrinsicImpl.inc" 825 #undef GET_INTRINSIC_TARGET_DATA 826 827 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 828 return IID > TargetInfos[0].Count; 829 } 830 831 bool Function::isTargetIntrinsic() const { 832 return isTargetIntrinsic(IntID); 833 } 834 835 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 836 /// target as \c Name, or the generic table if \c Name is not target specific. 837 /// 838 /// Returns the relevant slice of \c IntrinsicNameTable 839 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 840 assert(Name.startswith("llvm.")); 841 842 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 843 // Drop "llvm." and take the first dotted component. That will be the target 844 // if this is target specific. 845 StringRef Target = Name.drop_front(5).split('.').first; 846 auto It = partition_point( 847 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 848 // We've either found the target or just fall back to the generic set, which 849 // is always first. 850 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 851 return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 852 } 853 854 /// This does the actual lookup of an intrinsic ID which 855 /// matches the given function name. 856 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 857 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 858 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 859 if (Idx == -1) 860 return Intrinsic::not_intrinsic; 861 862 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 863 // an index into a sub-table. 864 int Adjust = NameTable.data() - IntrinsicNameTable; 865 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 866 867 // If the intrinsic is not overloaded, require an exact match. If it is 868 // overloaded, require either exact or prefix match. 869 const auto MatchSize = strlen(NameTable[Idx]); 870 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 871 bool IsExactMatch = Name.size() == MatchSize; 872 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 873 : Intrinsic::not_intrinsic; 874 } 875 876 void Function::recalculateIntrinsicID() { 877 StringRef Name = getName(); 878 if (!Name.startswith("llvm.")) { 879 HasLLVMReservedName = false; 880 IntID = Intrinsic::not_intrinsic; 881 return; 882 } 883 HasLLVMReservedName = true; 884 IntID = lookupIntrinsicID(Name); 885 } 886 887 /// Returns a stable mangling for the type specified for use in the name 888 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 889 /// of named types is simply their name. Manglings for unnamed types consist 890 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 891 /// combined with the mangling of their component types. A vararg function 892 /// type will have a suffix of 'vararg'. Since function types can contain 893 /// other function types, we close a function type mangling with suffix 'f' 894 /// which can't be confused with it's prefix. This ensures we don't have 895 /// collisions between two unrelated function types. Otherwise, you might 896 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 897 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 898 /// indicating that extra care must be taken to ensure a unique name. 899 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 900 std::string Result; 901 if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) { 902 Result += "p" + utostr(PTyp->getAddressSpace()); 903 // Opaque pointer doesn't have pointee type information, so we just mangle 904 // address space for opaque pointer. 905 if (!PTyp->isOpaque()) 906 Result += getMangledTypeStr(PTyp->getNonOpaquePointerElementType(), 907 HasUnnamedType); 908 } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) { 909 Result += "a" + utostr(ATyp->getNumElements()) + 910 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 911 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 912 if (!STyp->isLiteral()) { 913 Result += "s_"; 914 if (STyp->hasName()) 915 Result += STyp->getName(); 916 else 917 HasUnnamedType = true; 918 } else { 919 Result += "sl_"; 920 for (auto *Elem : STyp->elements()) 921 Result += getMangledTypeStr(Elem, HasUnnamedType); 922 } 923 // Ensure nested structs are distinguishable. 924 Result += "s"; 925 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 926 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 927 for (size_t i = 0; i < FT->getNumParams(); i++) 928 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 929 if (FT->isVarArg()) 930 Result += "vararg"; 931 // Ensure nested function types are distinguishable. 932 Result += "f"; 933 } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 934 ElementCount EC = VTy->getElementCount(); 935 if (EC.isScalable()) 936 Result += "nx"; 937 Result += "v" + utostr(EC.getKnownMinValue()) + 938 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 939 } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) { 940 Result += "t"; 941 Result += TETy->getName(); 942 for (Type *ParamTy : TETy->type_params()) 943 Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType); 944 for (unsigned IntParam : TETy->int_params()) 945 Result += "_" + utostr(IntParam); 946 // Ensure nested target extension types are distinguishable. 947 Result += "t"; 948 } else if (Ty) { 949 switch (Ty->getTypeID()) { 950 default: llvm_unreachable("Unhandled type"); 951 case Type::VoidTyID: Result += "isVoid"; break; 952 case Type::MetadataTyID: Result += "Metadata"; break; 953 case Type::HalfTyID: Result += "f16"; break; 954 case Type::BFloatTyID: Result += "bf16"; break; 955 case Type::FloatTyID: Result += "f32"; break; 956 case Type::DoubleTyID: Result += "f64"; break; 957 case Type::X86_FP80TyID: Result += "f80"; break; 958 case Type::FP128TyID: Result += "f128"; break; 959 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 960 case Type::X86_MMXTyID: Result += "x86mmx"; break; 961 case Type::X86_AMXTyID: Result += "x86amx"; break; 962 case Type::IntegerTyID: 963 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 964 break; 965 } 966 } 967 return Result; 968 } 969 970 StringRef Intrinsic::getBaseName(ID id) { 971 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 972 return IntrinsicNameTable[id]; 973 } 974 975 StringRef Intrinsic::getName(ID id) { 976 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 977 assert(!Intrinsic::isOverloaded(id) && 978 "This version of getName does not support overloading"); 979 return getBaseName(id); 980 } 981 982 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys, 983 Module *M, FunctionType *FT, 984 bool EarlyModuleCheck) { 985 986 assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!"); 987 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 988 "This version of getName is for overloaded intrinsics only"); 989 (void)EarlyModuleCheck; 990 assert((!EarlyModuleCheck || M || 991 !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) && 992 "Intrinsic overloading on pointer types need to provide a Module"); 993 bool HasUnnamedType = false; 994 std::string Result(Intrinsic::getBaseName(Id)); 995 for (Type *Ty : Tys) 996 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 997 if (HasUnnamedType) { 998 assert(M && "unnamed types need a module"); 999 if (!FT) 1000 FT = Intrinsic::getType(M->getContext(), Id, Tys); 1001 else 1002 assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) && 1003 "Provided FunctionType must match arguments"); 1004 return M->getUniqueIntrinsicName(Result, Id, FT); 1005 } 1006 return Result; 1007 } 1008 1009 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 1010 FunctionType *FT) { 1011 assert(M && "We need to have a Module"); 1012 return getIntrinsicNameImpl(Id, Tys, M, FT, true); 1013 } 1014 1015 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) { 1016 return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false); 1017 } 1018 1019 /// IIT_Info - These are enumerators that describe the entries returned by the 1020 /// getIntrinsicInfoTableEntries function. 1021 /// 1022 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 1023 enum IIT_Info { 1024 // Common values should be encoded with 0-15. 1025 IIT_Done = 0, 1026 IIT_I1 = 1, 1027 IIT_I8 = 2, 1028 IIT_I16 = 3, 1029 IIT_I32 = 4, 1030 IIT_I64 = 5, 1031 IIT_F16 = 6, 1032 IIT_F32 = 7, 1033 IIT_F64 = 8, 1034 IIT_V2 = 9, 1035 IIT_V4 = 10, 1036 IIT_V8 = 11, 1037 IIT_V16 = 12, 1038 IIT_V32 = 13, 1039 IIT_PTR = 14, 1040 IIT_ARG = 15, 1041 1042 // Values from 16+ are only encodable with the inefficient encoding. 1043 IIT_V64 = 16, 1044 IIT_MMX = 17, 1045 IIT_TOKEN = 18, 1046 IIT_METADATA = 19, 1047 IIT_EMPTYSTRUCT = 20, 1048 IIT_STRUCT2 = 21, 1049 IIT_STRUCT3 = 22, 1050 IIT_STRUCT4 = 23, 1051 IIT_STRUCT5 = 24, 1052 IIT_EXTEND_ARG = 25, 1053 IIT_TRUNC_ARG = 26, 1054 IIT_ANYPTR = 27, 1055 IIT_V1 = 28, 1056 IIT_VARARG = 29, 1057 IIT_HALF_VEC_ARG = 30, 1058 IIT_SAME_VEC_WIDTH_ARG = 31, 1059 IIT_PTR_TO_ARG = 32, 1060 IIT_PTR_TO_ELT = 33, 1061 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 1062 IIT_I128 = 35, 1063 IIT_V512 = 36, 1064 IIT_V1024 = 37, 1065 IIT_STRUCT6 = 38, 1066 IIT_STRUCT7 = 39, 1067 IIT_STRUCT8 = 40, 1068 IIT_F128 = 41, 1069 IIT_VEC_ELEMENT = 42, 1070 IIT_SCALABLE_VEC = 43, 1071 IIT_SUBDIVIDE2_ARG = 44, 1072 IIT_SUBDIVIDE4_ARG = 45, 1073 IIT_VEC_OF_BITCASTS_TO_INT = 46, 1074 IIT_V128 = 47, 1075 IIT_BF16 = 48, 1076 IIT_STRUCT9 = 49, 1077 IIT_V256 = 50, 1078 IIT_AMX = 51, 1079 IIT_PPCF128 = 52, 1080 IIT_V3 = 53, 1081 IIT_EXTERNREF = 54, 1082 IIT_FUNCREF = 55, 1083 IIT_ANYPTR_TO_ELT = 56, 1084 IIT_I2 = 57, 1085 IIT_I4 = 58, 1086 }; 1087 1088 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 1089 IIT_Info LastInfo, 1090 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 1091 using namespace Intrinsic; 1092 1093 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 1094 1095 IIT_Info Info = IIT_Info(Infos[NextElt++]); 1096 unsigned StructElts = 2; 1097 1098 switch (Info) { 1099 case IIT_Done: 1100 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 1101 return; 1102 case IIT_VARARG: 1103 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 1104 return; 1105 case IIT_MMX: 1106 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 1107 return; 1108 case IIT_AMX: 1109 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 1110 return; 1111 case IIT_TOKEN: 1112 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 1113 return; 1114 case IIT_METADATA: 1115 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 1116 return; 1117 case IIT_F16: 1118 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 1119 return; 1120 case IIT_BF16: 1121 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 1122 return; 1123 case IIT_F32: 1124 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 1125 return; 1126 case IIT_F64: 1127 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 1128 return; 1129 case IIT_F128: 1130 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 1131 return; 1132 case IIT_PPCF128: 1133 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0)); 1134 return; 1135 case IIT_I1: 1136 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 1137 return; 1138 case IIT_I2: 1139 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2)); 1140 return; 1141 case IIT_I4: 1142 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4)); 1143 return; 1144 case IIT_I8: 1145 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 1146 return; 1147 case IIT_I16: 1148 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 1149 return; 1150 case IIT_I32: 1151 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 1152 return; 1153 case IIT_I64: 1154 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 1155 return; 1156 case IIT_I128: 1157 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 1158 return; 1159 case IIT_V1: 1160 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 1161 DecodeIITType(NextElt, Infos, Info, OutputTable); 1162 return; 1163 case IIT_V2: 1164 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 1165 DecodeIITType(NextElt, Infos, Info, OutputTable); 1166 return; 1167 case IIT_V3: 1168 OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector)); 1169 DecodeIITType(NextElt, Infos, Info, OutputTable); 1170 return; 1171 case IIT_V4: 1172 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 1173 DecodeIITType(NextElt, Infos, Info, OutputTable); 1174 return; 1175 case IIT_V8: 1176 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 1177 DecodeIITType(NextElt, Infos, Info, OutputTable); 1178 return; 1179 case IIT_V16: 1180 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 1181 DecodeIITType(NextElt, Infos, Info, OutputTable); 1182 return; 1183 case IIT_V32: 1184 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 1185 DecodeIITType(NextElt, Infos, Info, OutputTable); 1186 return; 1187 case IIT_V64: 1188 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 1189 DecodeIITType(NextElt, Infos, Info, OutputTable); 1190 return; 1191 case IIT_V128: 1192 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 1193 DecodeIITType(NextElt, Infos, Info, OutputTable); 1194 return; 1195 case IIT_V256: 1196 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 1197 DecodeIITType(NextElt, Infos, Info, OutputTable); 1198 return; 1199 case IIT_V512: 1200 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 1201 DecodeIITType(NextElt, Infos, Info, OutputTable); 1202 return; 1203 case IIT_V1024: 1204 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1205 DecodeIITType(NextElt, Infos, Info, OutputTable); 1206 return; 1207 case IIT_EXTERNREF: 1208 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10)); 1209 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1210 return; 1211 case IIT_FUNCREF: 1212 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20)); 1213 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 1214 return; 1215 case IIT_PTR: 1216 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1217 DecodeIITType(NextElt, Infos, Info, OutputTable); 1218 return; 1219 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 1220 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1221 Infos[NextElt++])); 1222 DecodeIITType(NextElt, Infos, Info, OutputTable); 1223 return; 1224 } 1225 case IIT_ARG: { 1226 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1227 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1228 return; 1229 } 1230 case IIT_EXTEND_ARG: { 1231 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1232 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1233 ArgInfo)); 1234 return; 1235 } 1236 case IIT_TRUNC_ARG: { 1237 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1238 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1239 ArgInfo)); 1240 return; 1241 } 1242 case IIT_HALF_VEC_ARG: { 1243 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1244 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1245 ArgInfo)); 1246 return; 1247 } 1248 case IIT_SAME_VEC_WIDTH_ARG: { 1249 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1250 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1251 ArgInfo)); 1252 return; 1253 } 1254 case IIT_PTR_TO_ARG: { 1255 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1256 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 1257 ArgInfo)); 1258 return; 1259 } 1260 case IIT_PTR_TO_ELT: { 1261 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1262 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 1263 return; 1264 } 1265 case IIT_ANYPTR_TO_ELT: { 1266 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1267 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1268 OutputTable.push_back( 1269 IITDescriptor::get(IITDescriptor::AnyPtrToElt, ArgNo, RefNo)); 1270 return; 1271 } 1272 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1273 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1274 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1275 OutputTable.push_back( 1276 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1277 return; 1278 } 1279 case IIT_EMPTYSTRUCT: 1280 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1281 return; 1282 case IIT_STRUCT9: ++StructElts; [[fallthrough]]; 1283 case IIT_STRUCT8: ++StructElts; [[fallthrough]]; 1284 case IIT_STRUCT7: ++StructElts; [[fallthrough]]; 1285 case IIT_STRUCT6: ++StructElts; [[fallthrough]]; 1286 case IIT_STRUCT5: ++StructElts; [[fallthrough]]; 1287 case IIT_STRUCT4: ++StructElts; [[fallthrough]]; 1288 case IIT_STRUCT3: ++StructElts; [[fallthrough]]; 1289 case IIT_STRUCT2: { 1290 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1291 1292 for (unsigned i = 0; i != StructElts; ++i) 1293 DecodeIITType(NextElt, Infos, Info, OutputTable); 1294 return; 1295 } 1296 case IIT_SUBDIVIDE2_ARG: { 1297 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1298 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1299 ArgInfo)); 1300 return; 1301 } 1302 case IIT_SUBDIVIDE4_ARG: { 1303 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1304 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1305 ArgInfo)); 1306 return; 1307 } 1308 case IIT_VEC_ELEMENT: { 1309 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1310 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1311 ArgInfo)); 1312 return; 1313 } 1314 case IIT_SCALABLE_VEC: { 1315 DecodeIITType(NextElt, Infos, Info, OutputTable); 1316 return; 1317 } 1318 case IIT_VEC_OF_BITCASTS_TO_INT: { 1319 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1320 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1321 ArgInfo)); 1322 return; 1323 } 1324 } 1325 llvm_unreachable("unhandled"); 1326 } 1327 1328 #define GET_INTRINSIC_GENERATOR_GLOBAL 1329 #include "llvm/IR/IntrinsicImpl.inc" 1330 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1331 1332 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1333 SmallVectorImpl<IITDescriptor> &T){ 1334 // Check to see if the intrinsic's type was expressible by the table. 1335 unsigned TableVal = IIT_Table[id-1]; 1336 1337 // Decode the TableVal into an array of IITValues. 1338 SmallVector<unsigned char, 8> IITValues; 1339 ArrayRef<unsigned char> IITEntries; 1340 unsigned NextElt = 0; 1341 if ((TableVal >> 31) != 0) { 1342 // This is an offset into the IIT_LongEncodingTable. 1343 IITEntries = IIT_LongEncodingTable; 1344 1345 // Strip sentinel bit. 1346 NextElt = (TableVal << 1) >> 1; 1347 } else { 1348 // Decode the TableVal into an array of IITValues. If the entry was encoded 1349 // into a single word in the table itself, decode it now. 1350 do { 1351 IITValues.push_back(TableVal & 0xF); 1352 TableVal >>= 4; 1353 } while (TableVal); 1354 1355 IITEntries = IITValues; 1356 NextElt = 0; 1357 } 1358 1359 // Okay, decode the table into the output vector of IITDescriptors. 1360 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1361 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1362 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1363 } 1364 1365 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1366 ArrayRef<Type*> Tys, LLVMContext &Context) { 1367 using namespace Intrinsic; 1368 1369 IITDescriptor D = Infos.front(); 1370 Infos = Infos.slice(1); 1371 1372 switch (D.Kind) { 1373 case IITDescriptor::Void: return Type::getVoidTy(Context); 1374 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1375 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1376 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1377 case IITDescriptor::Token: return Type::getTokenTy(Context); 1378 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1379 case IITDescriptor::Half: return Type::getHalfTy(Context); 1380 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1381 case IITDescriptor::Float: return Type::getFloatTy(Context); 1382 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1383 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1384 case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context); 1385 1386 case IITDescriptor::Integer: 1387 return IntegerType::get(Context, D.Integer_Width); 1388 case IITDescriptor::Vector: 1389 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1390 D.Vector_Width); 1391 case IITDescriptor::Pointer: 1392 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 1393 D.Pointer_AddressSpace); 1394 case IITDescriptor::Struct: { 1395 SmallVector<Type *, 8> Elts; 1396 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1397 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1398 return StructType::get(Context, Elts); 1399 } 1400 case IITDescriptor::Argument: 1401 return Tys[D.getArgumentNumber()]; 1402 case IITDescriptor::ExtendArgument: { 1403 Type *Ty = Tys[D.getArgumentNumber()]; 1404 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1405 return VectorType::getExtendedElementVectorType(VTy); 1406 1407 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1408 } 1409 case IITDescriptor::TruncArgument: { 1410 Type *Ty = Tys[D.getArgumentNumber()]; 1411 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1412 return VectorType::getTruncatedElementVectorType(VTy); 1413 1414 IntegerType *ITy = cast<IntegerType>(Ty); 1415 assert(ITy->getBitWidth() % 2 == 0); 1416 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1417 } 1418 case IITDescriptor::Subdivide2Argument: 1419 case IITDescriptor::Subdivide4Argument: { 1420 Type *Ty = Tys[D.getArgumentNumber()]; 1421 VectorType *VTy = dyn_cast<VectorType>(Ty); 1422 assert(VTy && "Expected an argument of Vector Type"); 1423 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1424 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1425 } 1426 case IITDescriptor::HalfVecArgument: 1427 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1428 Tys[D.getArgumentNumber()])); 1429 case IITDescriptor::SameVecWidthArgument: { 1430 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1431 Type *Ty = Tys[D.getArgumentNumber()]; 1432 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1433 return VectorType::get(EltTy, VTy->getElementCount()); 1434 return EltTy; 1435 } 1436 case IITDescriptor::PtrToArgument: { 1437 Type *Ty = Tys[D.getArgumentNumber()]; 1438 return PointerType::getUnqual(Ty); 1439 } 1440 case IITDescriptor::PtrToElt: { 1441 Type *Ty = Tys[D.getArgumentNumber()]; 1442 VectorType *VTy = dyn_cast<VectorType>(Ty); 1443 if (!VTy) 1444 llvm_unreachable("Expected an argument of Vector Type"); 1445 Type *EltTy = VTy->getElementType(); 1446 return PointerType::getUnqual(EltTy); 1447 } 1448 case IITDescriptor::VecElementArgument: { 1449 Type *Ty = Tys[D.getArgumentNumber()]; 1450 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1451 return VTy->getElementType(); 1452 llvm_unreachable("Expected an argument of Vector Type"); 1453 } 1454 case IITDescriptor::VecOfBitcastsToInt: { 1455 Type *Ty = Tys[D.getArgumentNumber()]; 1456 VectorType *VTy = dyn_cast<VectorType>(Ty); 1457 assert(VTy && "Expected an argument of Vector Type"); 1458 return VectorType::getInteger(VTy); 1459 } 1460 case IITDescriptor::VecOfAnyPtrsToElt: 1461 // Return the overloaded type (which determines the pointers address space) 1462 return Tys[D.getOverloadArgNumber()]; 1463 case IITDescriptor::AnyPtrToElt: 1464 // Return the overloaded type (which determines the pointers address space) 1465 return Tys[D.getOverloadArgNumber()]; 1466 } 1467 llvm_unreachable("unhandled"); 1468 } 1469 1470 FunctionType *Intrinsic::getType(LLVMContext &Context, 1471 ID id, ArrayRef<Type*> Tys) { 1472 SmallVector<IITDescriptor, 8> Table; 1473 getIntrinsicInfoTableEntries(id, Table); 1474 1475 ArrayRef<IITDescriptor> TableRef = Table; 1476 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1477 1478 SmallVector<Type*, 8> ArgTys; 1479 while (!TableRef.empty()) 1480 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1481 1482 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1483 // If we see void type as the type of the last argument, it is vararg intrinsic 1484 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1485 ArgTys.pop_back(); 1486 return FunctionType::get(ResultTy, ArgTys, true); 1487 } 1488 return FunctionType::get(ResultTy, ArgTys, false); 1489 } 1490 1491 bool Intrinsic::isOverloaded(ID id) { 1492 #define GET_INTRINSIC_OVERLOAD_TABLE 1493 #include "llvm/IR/IntrinsicImpl.inc" 1494 #undef GET_INTRINSIC_OVERLOAD_TABLE 1495 } 1496 1497 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1498 #define GET_INTRINSIC_ATTRIBUTES 1499 #include "llvm/IR/IntrinsicImpl.inc" 1500 #undef GET_INTRINSIC_ATTRIBUTES 1501 1502 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1503 // There can never be multiple globals with the same name of different types, 1504 // because intrinsics must be a specific type. 1505 auto *FT = getType(M->getContext(), id, Tys); 1506 return cast<Function>( 1507 M->getOrInsertFunction( 1508 Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT) 1509 .getCallee()); 1510 } 1511 1512 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method. 1513 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1514 #include "llvm/IR/IntrinsicImpl.inc" 1515 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1516 1517 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1518 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1519 #include "llvm/IR/IntrinsicImpl.inc" 1520 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1521 1522 using DeferredIntrinsicMatchPair = 1523 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1524 1525 static bool matchIntrinsicType( 1526 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1527 SmallVectorImpl<Type *> &ArgTys, 1528 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1529 bool IsDeferredCheck) { 1530 using namespace Intrinsic; 1531 1532 // If we ran out of descriptors, there are too many arguments. 1533 if (Infos.empty()) return true; 1534 1535 // Do this before slicing off the 'front' part 1536 auto InfosRef = Infos; 1537 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1538 DeferredChecks.emplace_back(T, InfosRef); 1539 return false; 1540 }; 1541 1542 IITDescriptor D = Infos.front(); 1543 Infos = Infos.slice(1); 1544 1545 switch (D.Kind) { 1546 case IITDescriptor::Void: return !Ty->isVoidTy(); 1547 case IITDescriptor::VarArg: return true; 1548 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1549 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1550 case IITDescriptor::Token: return !Ty->isTokenTy(); 1551 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1552 case IITDescriptor::Half: return !Ty->isHalfTy(); 1553 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1554 case IITDescriptor::Float: return !Ty->isFloatTy(); 1555 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1556 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1557 case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty(); 1558 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1559 case IITDescriptor::Vector: { 1560 VectorType *VT = dyn_cast<VectorType>(Ty); 1561 return !VT || VT->getElementCount() != D.Vector_Width || 1562 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1563 DeferredChecks, IsDeferredCheck); 1564 } 1565 case IITDescriptor::Pointer: { 1566 PointerType *PT = dyn_cast<PointerType>(Ty); 1567 if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace) 1568 return true; 1569 if (!PT->isOpaque()) { 1570 /* Manually consume a pointer to empty struct descriptor, which is 1571 * used for externref. We don't want to enforce that the struct is 1572 * anonymous in this case. (This renders externref intrinsics 1573 * non-unique, but this will go away with opaque pointers anyway.) */ 1574 if (Infos.front().Kind == IITDescriptor::Struct && 1575 Infos.front().Struct_NumElements == 0) { 1576 Infos = Infos.slice(1); 1577 return false; 1578 } 1579 return matchIntrinsicType(PT->getNonOpaquePointerElementType(), Infos, 1580 ArgTys, DeferredChecks, IsDeferredCheck); 1581 } 1582 // Consume IIT descriptors relating to the pointer element type. 1583 // FIXME: Intrinsic type matching of nested single value types or even 1584 // aggregates doesn't work properly with opaque pointers but hopefully 1585 // doesn't happen in practice. 1586 while (Infos.front().Kind == IITDescriptor::Pointer || 1587 Infos.front().Kind == IITDescriptor::Vector) 1588 Infos = Infos.slice(1); 1589 assert((Infos.front().Kind != IITDescriptor::Argument || 1590 Infos.front().getArgumentKind() == IITDescriptor::AK_MatchType) && 1591 "Unsupported polymorphic pointer type with opaque pointer"); 1592 Infos = Infos.slice(1); 1593 return false; 1594 } 1595 1596 case IITDescriptor::Struct: { 1597 StructType *ST = dyn_cast<StructType>(Ty); 1598 if (!ST || !ST->isLiteral() || ST->isPacked() || 1599 ST->getNumElements() != D.Struct_NumElements) 1600 return true; 1601 1602 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1603 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1604 DeferredChecks, IsDeferredCheck)) 1605 return true; 1606 return false; 1607 } 1608 1609 case IITDescriptor::Argument: 1610 // If this is the second occurrence of an argument, 1611 // verify that the later instance matches the previous instance. 1612 if (D.getArgumentNumber() < ArgTys.size()) 1613 return Ty != ArgTys[D.getArgumentNumber()]; 1614 1615 if (D.getArgumentNumber() > ArgTys.size() || 1616 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1617 return IsDeferredCheck || DeferCheck(Ty); 1618 1619 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1620 "Table consistency error"); 1621 ArgTys.push_back(Ty); 1622 1623 switch (D.getArgumentKind()) { 1624 case IITDescriptor::AK_Any: return false; // Success 1625 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1626 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1627 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1628 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1629 default: break; 1630 } 1631 llvm_unreachable("all argument kinds not covered"); 1632 1633 case IITDescriptor::ExtendArgument: { 1634 // If this is a forward reference, defer the check for later. 1635 if (D.getArgumentNumber() >= ArgTys.size()) 1636 return IsDeferredCheck || DeferCheck(Ty); 1637 1638 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1639 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1640 NewTy = VectorType::getExtendedElementVectorType(VTy); 1641 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1642 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1643 else 1644 return true; 1645 1646 return Ty != NewTy; 1647 } 1648 case IITDescriptor::TruncArgument: { 1649 // If this is a forward reference, defer the check for later. 1650 if (D.getArgumentNumber() >= ArgTys.size()) 1651 return IsDeferredCheck || DeferCheck(Ty); 1652 1653 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1654 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1655 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1656 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1657 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1658 else 1659 return true; 1660 1661 return Ty != NewTy; 1662 } 1663 case IITDescriptor::HalfVecArgument: 1664 // If this is a forward reference, defer the check for later. 1665 if (D.getArgumentNumber() >= ArgTys.size()) 1666 return IsDeferredCheck || DeferCheck(Ty); 1667 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1668 VectorType::getHalfElementsVectorType( 1669 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1670 case IITDescriptor::SameVecWidthArgument: { 1671 if (D.getArgumentNumber() >= ArgTys.size()) { 1672 // Defer check and subsequent check for the vector element type. 1673 Infos = Infos.slice(1); 1674 return IsDeferredCheck || DeferCheck(Ty); 1675 } 1676 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1677 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1678 // Both must be vectors of the same number of elements or neither. 1679 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1680 return true; 1681 Type *EltTy = Ty; 1682 if (ThisArgType) { 1683 if (ReferenceType->getElementCount() != 1684 ThisArgType->getElementCount()) 1685 return true; 1686 EltTy = ThisArgType->getElementType(); 1687 } 1688 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1689 IsDeferredCheck); 1690 } 1691 case IITDescriptor::PtrToArgument: { 1692 if (D.getArgumentNumber() >= ArgTys.size()) 1693 return IsDeferredCheck || DeferCheck(Ty); 1694 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1695 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1696 return (!ThisArgType || 1697 !ThisArgType->isOpaqueOrPointeeTypeMatches(ReferenceType)); 1698 } 1699 case IITDescriptor::PtrToElt: { 1700 if (D.getArgumentNumber() >= ArgTys.size()) 1701 return IsDeferredCheck || DeferCheck(Ty); 1702 VectorType * ReferenceType = 1703 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1704 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1705 1706 if (!ThisArgType || !ReferenceType) 1707 return true; 1708 return !ThisArgType->isOpaqueOrPointeeTypeMatches( 1709 ReferenceType->getElementType()); 1710 } 1711 case IITDescriptor::AnyPtrToElt: { 1712 unsigned RefArgNumber = D.getRefArgNumber(); 1713 if (RefArgNumber >= ArgTys.size()) { 1714 if (IsDeferredCheck) 1715 return true; 1716 // If forward referencing, already add the pointer type and 1717 // defer the checks for later. 1718 ArgTys.push_back(Ty); 1719 return DeferCheck(Ty); 1720 } 1721 1722 if (!IsDeferredCheck) { 1723 assert(D.getOverloadArgNumber() == ArgTys.size() && 1724 "Table consistency error"); 1725 ArgTys.push_back(Ty); 1726 } 1727 1728 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1729 auto *ThisArgType = dyn_cast<PointerType>(Ty); 1730 if (!ThisArgType || !ReferenceType) 1731 return true; 1732 return !ThisArgType->isOpaqueOrPointeeTypeMatches( 1733 ReferenceType->getElementType()); 1734 } 1735 case IITDescriptor::VecOfAnyPtrsToElt: { 1736 unsigned RefArgNumber = D.getRefArgNumber(); 1737 if (RefArgNumber >= ArgTys.size()) { 1738 if (IsDeferredCheck) 1739 return true; 1740 // If forward referencing, already add the pointer-vector type and 1741 // defer the checks for later. 1742 ArgTys.push_back(Ty); 1743 return DeferCheck(Ty); 1744 } 1745 1746 if (!IsDeferredCheck){ 1747 assert(D.getOverloadArgNumber() == ArgTys.size() && 1748 "Table consistency error"); 1749 ArgTys.push_back(Ty); 1750 } 1751 1752 // Verify the overloaded type "matches" the Ref type. 1753 // i.e. Ty is a vector with the same width as Ref. 1754 // Composed of pointers to the same element type as Ref. 1755 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1756 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1757 if (!ThisArgVecTy || !ReferenceType || 1758 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1759 return true; 1760 PointerType *ThisArgEltTy = 1761 dyn_cast<PointerType>(ThisArgVecTy->getElementType()); 1762 if (!ThisArgEltTy) 1763 return true; 1764 return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches( 1765 ReferenceType->getElementType()); 1766 } 1767 case IITDescriptor::VecElementArgument: { 1768 if (D.getArgumentNumber() >= ArgTys.size()) 1769 return IsDeferredCheck ? true : DeferCheck(Ty); 1770 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1771 return !ReferenceType || Ty != ReferenceType->getElementType(); 1772 } 1773 case IITDescriptor::Subdivide2Argument: 1774 case IITDescriptor::Subdivide4Argument: { 1775 // If this is a forward reference, defer the check for later. 1776 if (D.getArgumentNumber() >= ArgTys.size()) 1777 return IsDeferredCheck || DeferCheck(Ty); 1778 1779 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1780 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1781 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1782 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1783 return Ty != NewTy; 1784 } 1785 return true; 1786 } 1787 case IITDescriptor::VecOfBitcastsToInt: { 1788 if (D.getArgumentNumber() >= ArgTys.size()) 1789 return IsDeferredCheck || DeferCheck(Ty); 1790 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1791 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1792 if (!ThisArgVecTy || !ReferenceType) 1793 return true; 1794 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1795 } 1796 } 1797 llvm_unreachable("unhandled"); 1798 } 1799 1800 Intrinsic::MatchIntrinsicTypesResult 1801 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1802 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1803 SmallVectorImpl<Type *> &ArgTys) { 1804 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1805 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1806 false)) 1807 return MatchIntrinsicTypes_NoMatchRet; 1808 1809 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1810 1811 for (auto *Ty : FTy->params()) 1812 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1813 return MatchIntrinsicTypes_NoMatchArg; 1814 1815 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1816 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1817 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1818 true)) 1819 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1820 : MatchIntrinsicTypes_NoMatchArg; 1821 } 1822 1823 return MatchIntrinsicTypes_Match; 1824 } 1825 1826 bool 1827 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1828 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1829 // If there are no descriptors left, then it can't be a vararg. 1830 if (Infos.empty()) 1831 return isVarArg; 1832 1833 // There should be only one descriptor remaining at this point. 1834 if (Infos.size() != 1) 1835 return true; 1836 1837 // Check and verify the descriptor. 1838 IITDescriptor D = Infos.front(); 1839 Infos = Infos.slice(1); 1840 if (D.Kind == IITDescriptor::VarArg) 1841 return !isVarArg; 1842 1843 return true; 1844 } 1845 1846 bool Intrinsic::getIntrinsicSignature(Function *F, 1847 SmallVectorImpl<Type *> &ArgTys) { 1848 Intrinsic::ID ID = F->getIntrinsicID(); 1849 if (!ID) 1850 return false; 1851 1852 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1853 getIntrinsicInfoTableEntries(ID, Table); 1854 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1855 1856 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1857 ArgTys) != 1858 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1859 return false; 1860 } 1861 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1862 TableRef)) 1863 return false; 1864 return true; 1865 } 1866 1867 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1868 SmallVector<Type *, 4> ArgTys; 1869 if (!getIntrinsicSignature(F, ArgTys)) 1870 return std::nullopt; 1871 1872 Intrinsic::ID ID = F->getIntrinsicID(); 1873 StringRef Name = F->getName(); 1874 std::string WantedName = 1875 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()); 1876 if (Name == WantedName) 1877 return std::nullopt; 1878 1879 Function *NewDecl = [&] { 1880 if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) { 1881 if (auto *ExistingF = dyn_cast<Function>(ExistingGV)) 1882 if (ExistingF->getFunctionType() == F->getFunctionType()) 1883 return ExistingF; 1884 1885 // The name already exists, but is not a function or has the wrong 1886 // prototype. Make place for the new one by renaming the old version. 1887 // Either this old version will be removed later on or the module is 1888 // invalid and we'll get an error. 1889 ExistingGV->setName(WantedName + ".renamed"); 1890 } 1891 return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1892 }(); 1893 1894 NewDecl->setCallingConv(F->getCallingConv()); 1895 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1896 "Shouldn't change the signature"); 1897 return NewDecl; 1898 } 1899 1900 /// hasAddressTaken - returns true if there are any uses of this function 1901 /// other than direct calls or invokes to it. Optionally ignores callback 1902 /// uses, assume like pointer annotation calls, and references in llvm.used 1903 /// and llvm.compiler.used variables. 1904 bool Function::hasAddressTaken(const User **PutOffender, 1905 bool IgnoreCallbackUses, 1906 bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed, 1907 bool IgnoreARCAttachedCall) const { 1908 for (const Use &U : uses()) { 1909 const User *FU = U.getUser(); 1910 if (isa<BlockAddress>(FU)) 1911 continue; 1912 1913 if (IgnoreCallbackUses) { 1914 AbstractCallSite ACS(&U); 1915 if (ACS && ACS.isCallbackCall()) 1916 continue; 1917 } 1918 1919 const auto *Call = dyn_cast<CallBase>(FU); 1920 if (!Call) { 1921 if (IgnoreAssumeLikeCalls && 1922 isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1923 all_of(FU->users(), [](const User *U) { 1924 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1925 return I->isAssumeLikeIntrinsic(); 1926 return false; 1927 })) { 1928 continue; 1929 } 1930 1931 if (IgnoreLLVMUsed && !FU->user_empty()) { 1932 const User *FUU = FU; 1933 if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1934 FU->hasOneUse() && !FU->user_begin()->user_empty()) 1935 FUU = *FU->user_begin(); 1936 if (llvm::all_of(FUU->users(), [](const User *U) { 1937 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1938 return GV->hasName() && 1939 (GV->getName().equals("llvm.compiler.used") || 1940 GV->getName().equals("llvm.used")); 1941 return false; 1942 })) 1943 continue; 1944 } 1945 if (PutOffender) 1946 *PutOffender = FU; 1947 return true; 1948 } 1949 1950 if (IgnoreAssumeLikeCalls) { 1951 if (const auto *I = dyn_cast<IntrinsicInst>(Call)) 1952 if (I->isAssumeLikeIntrinsic()) 1953 continue; 1954 } 1955 1956 if (!Call->isCallee(&U) || Call->getFunctionType() != getFunctionType()) { 1957 if (IgnoreARCAttachedCall && 1958 Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall, 1959 U.getOperandNo())) 1960 continue; 1961 1962 if (PutOffender) 1963 *PutOffender = FU; 1964 return true; 1965 } 1966 } 1967 return false; 1968 } 1969 1970 bool Function::isDefTriviallyDead() const { 1971 // Check the linkage 1972 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1973 !hasAvailableExternallyLinkage()) 1974 return false; 1975 1976 // Check if the function is used by anything other than a blockaddress. 1977 for (const User *U : users()) 1978 if (!isa<BlockAddress>(U)) 1979 return false; 1980 1981 return true; 1982 } 1983 1984 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1985 /// setjmp or other function that gcc recognizes as "returning twice". 1986 bool Function::callsFunctionThatReturnsTwice() const { 1987 for (const Instruction &I : instructions(this)) 1988 if (const auto *Call = dyn_cast<CallBase>(&I)) 1989 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1990 return true; 1991 1992 return false; 1993 } 1994 1995 Constant *Function::getPersonalityFn() const { 1996 assert(hasPersonalityFn() && getNumOperands()); 1997 return cast<Constant>(Op<0>()); 1998 } 1999 2000 void Function::setPersonalityFn(Constant *Fn) { 2001 setHungoffOperand<0>(Fn); 2002 setValueSubclassDataBit(3, Fn != nullptr); 2003 } 2004 2005 Constant *Function::getPrefixData() const { 2006 assert(hasPrefixData() && getNumOperands()); 2007 return cast<Constant>(Op<1>()); 2008 } 2009 2010 void Function::setPrefixData(Constant *PrefixData) { 2011 setHungoffOperand<1>(PrefixData); 2012 setValueSubclassDataBit(1, PrefixData != nullptr); 2013 } 2014 2015 Constant *Function::getPrologueData() const { 2016 assert(hasPrologueData() && getNumOperands()); 2017 return cast<Constant>(Op<2>()); 2018 } 2019 2020 void Function::setPrologueData(Constant *PrologueData) { 2021 setHungoffOperand<2>(PrologueData); 2022 setValueSubclassDataBit(2, PrologueData != nullptr); 2023 } 2024 2025 void Function::allocHungoffUselist() { 2026 // If we've already allocated a uselist, stop here. 2027 if (getNumOperands()) 2028 return; 2029 2030 allocHungoffUses(3, /*IsPhi=*/ false); 2031 setNumHungOffUseOperands(3); 2032 2033 // Initialize the uselist with placeholder operands to allow traversal. 2034 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 2035 Op<0>().set(CPN); 2036 Op<1>().set(CPN); 2037 Op<2>().set(CPN); 2038 } 2039 2040 template <int Idx> 2041 void Function::setHungoffOperand(Constant *C) { 2042 if (C) { 2043 allocHungoffUselist(); 2044 Op<Idx>().set(C); 2045 } else if (getNumOperands()) { 2046 Op<Idx>().set( 2047 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 2048 } 2049 } 2050 2051 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 2052 assert(Bit < 16 && "SubclassData contains only 16 bits"); 2053 if (On) 2054 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 2055 else 2056 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 2057 } 2058 2059 void Function::setEntryCount(ProfileCount Count, 2060 const DenseSet<GlobalValue::GUID> *S) { 2061 #if !defined(NDEBUG) 2062 auto PrevCount = getEntryCount(); 2063 assert(!PrevCount || PrevCount->getType() == Count.getType()); 2064 #endif 2065 2066 auto ImportGUIDs = getImportGUIDs(); 2067 if (S == nullptr && ImportGUIDs.size()) 2068 S = &ImportGUIDs; 2069 2070 MDBuilder MDB(getContext()); 2071 setMetadata( 2072 LLVMContext::MD_prof, 2073 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 2074 } 2075 2076 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 2077 const DenseSet<GlobalValue::GUID> *Imports) { 2078 setEntryCount(ProfileCount(Count, Type), Imports); 2079 } 2080 2081 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const { 2082 MDNode *MD = getMetadata(LLVMContext::MD_prof); 2083 if (MD && MD->getOperand(0)) 2084 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 2085 if (MDS->getString().equals("function_entry_count")) { 2086 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 2087 uint64_t Count = CI->getValue().getZExtValue(); 2088 // A value of -1 is used for SamplePGO when there were no samples. 2089 // Treat this the same as unknown. 2090 if (Count == (uint64_t)-1) 2091 return std::nullopt; 2092 return ProfileCount(Count, PCT_Real); 2093 } else if (AllowSynthetic && 2094 MDS->getString().equals("synthetic_function_entry_count")) { 2095 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 2096 uint64_t Count = CI->getValue().getZExtValue(); 2097 return ProfileCount(Count, PCT_Synthetic); 2098 } 2099 } 2100 return std::nullopt; 2101 } 2102 2103 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 2104 DenseSet<GlobalValue::GUID> R; 2105 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 2106 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 2107 if (MDS->getString().equals("function_entry_count")) 2108 for (unsigned i = 2; i < MD->getNumOperands(); i++) 2109 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 2110 ->getValue() 2111 .getZExtValue()); 2112 return R; 2113 } 2114 2115 void Function::setSectionPrefix(StringRef Prefix) { 2116 MDBuilder MDB(getContext()); 2117 setMetadata(LLVMContext::MD_section_prefix, 2118 MDB.createFunctionSectionPrefix(Prefix)); 2119 } 2120 2121 std::optional<StringRef> Function::getSectionPrefix() const { 2122 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 2123 assert(cast<MDString>(MD->getOperand(0)) 2124 ->getString() 2125 .equals("function_section_prefix") && 2126 "Metadata not match"); 2127 return cast<MDString>(MD->getOperand(1))->getString(); 2128 } 2129 return std::nullopt; 2130 } 2131 2132 bool Function::nullPointerIsDefined() const { 2133 return hasFnAttribute(Attribute::NullPointerIsValid); 2134 } 2135 2136 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 2137 if (F && F->nullPointerIsDefined()) 2138 return true; 2139 2140 if (AS != 0) 2141 return true; 2142 2143 return false; 2144 } 2145