1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsAArch64.h" 35 #include "llvm/IR/IntrinsicsAMDGPU.h" 36 #include "llvm/IR/IntrinsicsARM.h" 37 #include "llvm/IR/IntrinsicsBPF.h" 38 #include "llvm/IR/IntrinsicsHexagon.h" 39 #include "llvm/IR/IntrinsicsMips.h" 40 #include "llvm/IR/IntrinsicsNVPTX.h" 41 #include "llvm/IR/IntrinsicsPowerPC.h" 42 #include "llvm/IR/IntrinsicsR600.h" 43 #include "llvm/IR/IntrinsicsRISCV.h" 44 #include "llvm/IR/IntrinsicsS390.h" 45 #include "llvm/IR/IntrinsicsWebAssembly.h" 46 #include "llvm/IR/IntrinsicsX86.h" 47 #include "llvm/IR/IntrinsicsXCore.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/SymbolTableListTraits.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Use.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/IR/ValueSymbolTable.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/Compiler.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstddef> 64 #include <cstdint> 65 #include <cstring> 66 #include <string> 67 68 using namespace llvm; 69 using ProfileCount = Function::ProfileCount; 70 71 // Explicit instantiations of SymbolTableListTraits since some of the methods 72 // are not in the public header file... 73 template class llvm::SymbolTableListTraits<BasicBlock>; 74 75 //===----------------------------------------------------------------------===// 76 // Argument Implementation 77 //===----------------------------------------------------------------------===// 78 79 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 80 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 81 setName(Name); 82 } 83 84 void Argument::setParent(Function *parent) { 85 Parent = parent; 86 } 87 88 bool Argument::hasNonNullAttr() const { 89 if (!getType()->isPointerTy()) return false; 90 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull)) 91 return true; 92 else if (getDereferenceableBytes() > 0 && 93 !NullPointerIsDefined(getParent(), 94 getType()->getPointerAddressSpace())) 95 return true; 96 return false; 97 } 98 99 bool Argument::hasByValAttr() const { 100 if (!getType()->isPointerTy()) return false; 101 return hasAttribute(Attribute::ByVal); 102 } 103 104 bool Argument::hasSwiftSelfAttr() const { 105 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 106 } 107 108 bool Argument::hasSwiftErrorAttr() const { 109 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 110 } 111 112 bool Argument::hasInAllocaAttr() const { 113 if (!getType()->isPointerTy()) return false; 114 return hasAttribute(Attribute::InAlloca); 115 } 116 117 bool Argument::hasByValOrInAllocaAttr() const { 118 if (!getType()->isPointerTy()) return false; 119 AttributeList Attrs = getParent()->getAttributes(); 120 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 121 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca); 122 } 123 124 unsigned Argument::getParamAlignment() const { 125 assert(getType()->isPointerTy() && "Only pointers have alignments"); 126 return getParent()->getParamAlignment(getArgNo()); 127 } 128 129 MaybeAlign Argument::getParamAlign() const { 130 assert(getType()->isPointerTy() && "Only pointers have alignments"); 131 return getParent()->getParamAlign(getArgNo()); 132 } 133 134 Type *Argument::getParamByValType() const { 135 assert(getType()->isPointerTy() && "Only pointers have byval types"); 136 return getParent()->getParamByValType(getArgNo()); 137 } 138 139 uint64_t Argument::getDereferenceableBytes() const { 140 assert(getType()->isPointerTy() && 141 "Only pointers have dereferenceable bytes"); 142 return getParent()->getParamDereferenceableBytes(getArgNo()); 143 } 144 145 uint64_t Argument::getDereferenceableOrNullBytes() const { 146 assert(getType()->isPointerTy() && 147 "Only pointers have dereferenceable bytes"); 148 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 149 } 150 151 bool Argument::hasNestAttr() const { 152 if (!getType()->isPointerTy()) return false; 153 return hasAttribute(Attribute::Nest); 154 } 155 156 bool Argument::hasNoAliasAttr() const { 157 if (!getType()->isPointerTy()) return false; 158 return hasAttribute(Attribute::NoAlias); 159 } 160 161 bool Argument::hasNoCaptureAttr() const { 162 if (!getType()->isPointerTy()) return false; 163 return hasAttribute(Attribute::NoCapture); 164 } 165 166 bool Argument::hasStructRetAttr() const { 167 if (!getType()->isPointerTy()) return false; 168 return hasAttribute(Attribute::StructRet); 169 } 170 171 bool Argument::hasInRegAttr() const { 172 return hasAttribute(Attribute::InReg); 173 } 174 175 bool Argument::hasReturnedAttr() const { 176 return hasAttribute(Attribute::Returned); 177 } 178 179 bool Argument::hasZExtAttr() const { 180 return hasAttribute(Attribute::ZExt); 181 } 182 183 bool Argument::hasSExtAttr() const { 184 return hasAttribute(Attribute::SExt); 185 } 186 187 bool Argument::onlyReadsMemory() const { 188 AttributeList Attrs = getParent()->getAttributes(); 189 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 190 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 191 } 192 193 void Argument::addAttrs(AttrBuilder &B) { 194 AttributeList AL = getParent()->getAttributes(); 195 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 196 getParent()->setAttributes(AL); 197 } 198 199 void Argument::addAttr(Attribute::AttrKind Kind) { 200 getParent()->addParamAttr(getArgNo(), Kind); 201 } 202 203 void Argument::addAttr(Attribute Attr) { 204 getParent()->addParamAttr(getArgNo(), Attr); 205 } 206 207 void Argument::removeAttr(Attribute::AttrKind Kind) { 208 getParent()->removeParamAttr(getArgNo(), Kind); 209 } 210 211 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 212 return getParent()->hasParamAttribute(getArgNo(), Kind); 213 } 214 215 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 216 return getParent()->getParamAttribute(getArgNo(), Kind); 217 } 218 219 //===----------------------------------------------------------------------===// 220 // Helper Methods in Function 221 //===----------------------------------------------------------------------===// 222 223 LLVMContext &Function::getContext() const { 224 return getType()->getContext(); 225 } 226 227 unsigned Function::getInstructionCount() const { 228 unsigned NumInstrs = 0; 229 for (const BasicBlock &BB : BasicBlocks) 230 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 231 BB.instructionsWithoutDebug().end()); 232 return NumInstrs; 233 } 234 235 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 236 const Twine &N, Module &M) { 237 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 238 } 239 240 void Function::removeFromParent() { 241 getParent()->getFunctionList().remove(getIterator()); 242 } 243 244 void Function::eraseFromParent() { 245 getParent()->getFunctionList().erase(getIterator()); 246 } 247 248 //===----------------------------------------------------------------------===// 249 // Function Implementation 250 //===----------------------------------------------------------------------===// 251 252 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 253 // If AS == -1 and we are passed a valid module pointer we place the function 254 // in the program address space. Otherwise we default to AS0. 255 if (AddrSpace == static_cast<unsigned>(-1)) 256 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 257 return AddrSpace; 258 } 259 260 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 261 const Twine &name, Module *ParentModule) 262 : GlobalObject(Ty, Value::FunctionVal, 263 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 264 computeAddrSpace(AddrSpace, ParentModule)), 265 NumArgs(Ty->getNumParams()) { 266 assert(FunctionType::isValidReturnType(getReturnType()) && 267 "invalid return type"); 268 setGlobalObjectSubClassData(0); 269 270 // We only need a symbol table for a function if the context keeps value names 271 if (!getContext().shouldDiscardValueNames()) 272 SymTab = std::make_unique<ValueSymbolTable>(); 273 274 // If the function has arguments, mark them as lazily built. 275 if (Ty->getNumParams()) 276 setValueSubclassData(1); // Set the "has lazy arguments" bit. 277 278 if (ParentModule) 279 ParentModule->getFunctionList().push_back(this); 280 281 HasLLVMReservedName = getName().startswith("llvm."); 282 // Ensure intrinsics have the right parameter attributes. 283 // Note, the IntID field will have been set in Value::setName if this function 284 // name is a valid intrinsic ID. 285 if (IntID) 286 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 287 } 288 289 Function::~Function() { 290 dropAllReferences(); // After this it is safe to delete instructions. 291 292 // Delete all of the method arguments and unlink from symbol table... 293 if (Arguments) 294 clearArguments(); 295 296 // Remove the function from the on-the-side GC table. 297 clearGC(); 298 } 299 300 void Function::BuildLazyArguments() const { 301 // Create the arguments vector, all arguments start out unnamed. 302 auto *FT = getFunctionType(); 303 if (NumArgs > 0) { 304 Arguments = std::allocator<Argument>().allocate(NumArgs); 305 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 306 Type *ArgTy = FT->getParamType(i); 307 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 308 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 309 } 310 } 311 312 // Clear the lazy arguments bit. 313 unsigned SDC = getSubclassDataFromValue(); 314 SDC &= ~(1 << 0); 315 const_cast<Function*>(this)->setValueSubclassData(SDC); 316 assert(!hasLazyArguments()); 317 } 318 319 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 320 return MutableArrayRef<Argument>(Args, Count); 321 } 322 323 void Function::clearArguments() { 324 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 325 A.setName(""); 326 A.~Argument(); 327 } 328 std::allocator<Argument>().deallocate(Arguments, NumArgs); 329 Arguments = nullptr; 330 } 331 332 void Function::stealArgumentListFrom(Function &Src) { 333 assert(isDeclaration() && "Expected no references to current arguments"); 334 335 // Drop the current arguments, if any, and set the lazy argument bit. 336 if (!hasLazyArguments()) { 337 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 338 [](const Argument &A) { return A.use_empty(); }) && 339 "Expected arguments to be unused in declaration"); 340 clearArguments(); 341 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 342 } 343 344 // Nothing to steal if Src has lazy arguments. 345 if (Src.hasLazyArguments()) 346 return; 347 348 // Steal arguments from Src, and fix the lazy argument bits. 349 assert(arg_size() == Src.arg_size()); 350 Arguments = Src.Arguments; 351 Src.Arguments = nullptr; 352 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 353 // FIXME: This does the work of transferNodesFromList inefficiently. 354 SmallString<128> Name; 355 if (A.hasName()) 356 Name = A.getName(); 357 if (!Name.empty()) 358 A.setName(""); 359 A.setParent(this); 360 if (!Name.empty()) 361 A.setName(Name); 362 } 363 364 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 365 assert(!hasLazyArguments()); 366 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 367 } 368 369 // dropAllReferences() - This function causes all the subinstructions to "let 370 // go" of all references that they are maintaining. This allows one to 371 // 'delete' a whole class at a time, even though there may be circular 372 // references... first all references are dropped, and all use counts go to 373 // zero. Then everything is deleted for real. Note that no operations are 374 // valid on an object that has "dropped all references", except operator 375 // delete. 376 // 377 void Function::dropAllReferences() { 378 setIsMaterializable(false); 379 380 for (BasicBlock &BB : *this) 381 BB.dropAllReferences(); 382 383 // Delete all basic blocks. They are now unused, except possibly by 384 // blockaddresses, but BasicBlock's destructor takes care of those. 385 while (!BasicBlocks.empty()) 386 BasicBlocks.begin()->eraseFromParent(); 387 388 // Drop uses of any optional data (real or placeholder). 389 if (getNumOperands()) { 390 User::dropAllReferences(); 391 setNumHungOffUseOperands(0); 392 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 393 } 394 395 // Metadata is stored in a side-table. 396 clearMetadata(); 397 } 398 399 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 400 AttributeList PAL = getAttributes(); 401 PAL = PAL.addAttribute(getContext(), i, Kind); 402 setAttributes(PAL); 403 } 404 405 void Function::addAttribute(unsigned i, Attribute Attr) { 406 AttributeList PAL = getAttributes(); 407 PAL = PAL.addAttribute(getContext(), i, Attr); 408 setAttributes(PAL); 409 } 410 411 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 412 AttributeList PAL = getAttributes(); 413 PAL = PAL.addAttributes(getContext(), i, Attrs); 414 setAttributes(PAL); 415 } 416 417 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 418 AttributeList PAL = getAttributes(); 419 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); 420 setAttributes(PAL); 421 } 422 423 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 424 AttributeList PAL = getAttributes(); 425 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); 426 setAttributes(PAL); 427 } 428 429 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 430 AttributeList PAL = getAttributes(); 431 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); 432 setAttributes(PAL); 433 } 434 435 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 436 AttributeList PAL = getAttributes(); 437 PAL = PAL.removeAttribute(getContext(), i, Kind); 438 setAttributes(PAL); 439 } 440 441 void Function::removeAttribute(unsigned i, StringRef Kind) { 442 AttributeList PAL = getAttributes(); 443 PAL = PAL.removeAttribute(getContext(), i, Kind); 444 setAttributes(PAL); 445 } 446 447 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 448 AttributeList PAL = getAttributes(); 449 PAL = PAL.removeAttributes(getContext(), i, Attrs); 450 setAttributes(PAL); 451 } 452 453 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 454 AttributeList PAL = getAttributes(); 455 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 456 setAttributes(PAL); 457 } 458 459 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 460 AttributeList PAL = getAttributes(); 461 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 462 setAttributes(PAL); 463 } 464 465 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 466 AttributeList PAL = getAttributes(); 467 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); 468 setAttributes(PAL); 469 } 470 471 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 472 AttributeList PAL = getAttributes(); 473 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 474 setAttributes(PAL); 475 } 476 477 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 478 AttributeList PAL = getAttributes(); 479 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 480 setAttributes(PAL); 481 } 482 483 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 484 AttributeList PAL = getAttributes(); 485 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 486 setAttributes(PAL); 487 } 488 489 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 490 uint64_t Bytes) { 491 AttributeList PAL = getAttributes(); 492 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); 493 setAttributes(PAL); 494 } 495 496 const std::string &Function::getGC() const { 497 assert(hasGC() && "Function has no collector"); 498 return getContext().getGC(*this); 499 } 500 501 void Function::setGC(std::string Str) { 502 setValueSubclassDataBit(14, !Str.empty()); 503 getContext().setGC(*this, std::move(Str)); 504 } 505 506 void Function::clearGC() { 507 if (!hasGC()) 508 return; 509 getContext().deleteGC(*this); 510 setValueSubclassDataBit(14, false); 511 } 512 513 /// Copy all additional attributes (those not needed to create a Function) from 514 /// the Function Src to this one. 515 void Function::copyAttributesFrom(const Function *Src) { 516 GlobalObject::copyAttributesFrom(Src); 517 setCallingConv(Src->getCallingConv()); 518 setAttributes(Src->getAttributes()); 519 if (Src->hasGC()) 520 setGC(Src->getGC()); 521 else 522 clearGC(); 523 if (Src->hasPersonalityFn()) 524 setPersonalityFn(Src->getPersonalityFn()); 525 if (Src->hasPrefixData()) 526 setPrefixData(Src->getPrefixData()); 527 if (Src->hasPrologueData()) 528 setPrologueData(Src->getPrologueData()); 529 } 530 531 /// Table of string intrinsic names indexed by enum value. 532 static const char * const IntrinsicNameTable[] = { 533 "not_intrinsic", 534 #define GET_INTRINSIC_NAME_TABLE 535 #include "llvm/IR/IntrinsicImpl.inc" 536 #undef GET_INTRINSIC_NAME_TABLE 537 }; 538 539 /// Table of per-target intrinsic name tables. 540 #define GET_INTRINSIC_TARGET_DATA 541 #include "llvm/IR/IntrinsicImpl.inc" 542 #undef GET_INTRINSIC_TARGET_DATA 543 544 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 545 /// target as \c Name, or the generic table if \c Name is not target specific. 546 /// 547 /// Returns the relevant slice of \c IntrinsicNameTable 548 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 549 assert(Name.startswith("llvm.")); 550 551 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 552 // Drop "llvm." and take the first dotted component. That will be the target 553 // if this is target specific. 554 StringRef Target = Name.drop_front(5).split('.').first; 555 auto It = partition_point( 556 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 557 // We've either found the target or just fall back to the generic set, which 558 // is always first. 559 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 560 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 561 } 562 563 /// This does the actual lookup of an intrinsic ID which 564 /// matches the given function name. 565 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 566 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 567 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 568 if (Idx == -1) 569 return Intrinsic::not_intrinsic; 570 571 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 572 // an index into a sub-table. 573 int Adjust = NameTable.data() - IntrinsicNameTable; 574 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 575 576 // If the intrinsic is not overloaded, require an exact match. If it is 577 // overloaded, require either exact or prefix match. 578 const auto MatchSize = strlen(NameTable[Idx]); 579 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 580 bool IsExactMatch = Name.size() == MatchSize; 581 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 582 : Intrinsic::not_intrinsic; 583 } 584 585 void Function::recalculateIntrinsicID() { 586 StringRef Name = getName(); 587 if (!Name.startswith("llvm.")) { 588 HasLLVMReservedName = false; 589 IntID = Intrinsic::not_intrinsic; 590 return; 591 } 592 HasLLVMReservedName = true; 593 IntID = lookupIntrinsicID(Name); 594 } 595 596 /// Returns a stable mangling for the type specified for use in the name 597 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 598 /// of named types is simply their name. Manglings for unnamed types consist 599 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 600 /// combined with the mangling of their component types. A vararg function 601 /// type will have a suffix of 'vararg'. Since function types can contain 602 /// other function types, we close a function type mangling with suffix 'f' 603 /// which can't be confused with it's prefix. This ensures we don't have 604 /// collisions between two unrelated function types. Otherwise, you might 605 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 606 /// 607 static std::string getMangledTypeStr(Type* Ty) { 608 std::string Result; 609 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 610 Result += "p" + utostr(PTyp->getAddressSpace()) + 611 getMangledTypeStr(PTyp->getElementType()); 612 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 613 Result += "a" + utostr(ATyp->getNumElements()) + 614 getMangledTypeStr(ATyp->getElementType()); 615 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 616 if (!STyp->isLiteral()) { 617 Result += "s_"; 618 Result += STyp->getName(); 619 } else { 620 Result += "sl_"; 621 for (auto Elem : STyp->elements()) 622 Result += getMangledTypeStr(Elem); 623 } 624 // Ensure nested structs are distinguishable. 625 Result += "s"; 626 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 627 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 628 for (size_t i = 0; i < FT->getNumParams(); i++) 629 Result += getMangledTypeStr(FT->getParamType(i)); 630 if (FT->isVarArg()) 631 Result += "vararg"; 632 // Ensure nested function types are distinguishable. 633 Result += "f"; 634 } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) { 635 if (VTy->isScalable()) 636 Result += "nx"; 637 Result += "v" + utostr(VTy->getVectorNumElements()) + 638 getMangledTypeStr(VTy->getVectorElementType()); 639 } else if (Ty) { 640 switch (Ty->getTypeID()) { 641 default: llvm_unreachable("Unhandled type"); 642 case Type::VoidTyID: Result += "isVoid"; break; 643 case Type::MetadataTyID: Result += "Metadata"; break; 644 case Type::HalfTyID: Result += "f16"; break; 645 case Type::FloatTyID: Result += "f32"; break; 646 case Type::DoubleTyID: Result += "f64"; break; 647 case Type::X86_FP80TyID: Result += "f80"; break; 648 case Type::FP128TyID: Result += "f128"; break; 649 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 650 case Type::X86_MMXTyID: Result += "x86mmx"; break; 651 case Type::IntegerTyID: 652 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 653 break; 654 } 655 } 656 return Result; 657 } 658 659 StringRef Intrinsic::getName(ID id) { 660 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 661 assert(!Intrinsic::isOverloaded(id) && 662 "This version of getName does not support overloading"); 663 return IntrinsicNameTable[id]; 664 } 665 666 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 667 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 668 std::string Result(IntrinsicNameTable[id]); 669 for (Type *Ty : Tys) { 670 Result += "." + getMangledTypeStr(Ty); 671 } 672 return Result; 673 } 674 675 /// IIT_Info - These are enumerators that describe the entries returned by the 676 /// getIntrinsicInfoTableEntries function. 677 /// 678 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 679 enum IIT_Info { 680 // Common values should be encoded with 0-15. 681 IIT_Done = 0, 682 IIT_I1 = 1, 683 IIT_I8 = 2, 684 IIT_I16 = 3, 685 IIT_I32 = 4, 686 IIT_I64 = 5, 687 IIT_F16 = 6, 688 IIT_F32 = 7, 689 IIT_F64 = 8, 690 IIT_V2 = 9, 691 IIT_V4 = 10, 692 IIT_V8 = 11, 693 IIT_V16 = 12, 694 IIT_V32 = 13, 695 IIT_PTR = 14, 696 IIT_ARG = 15, 697 698 // Values from 16+ are only encodable with the inefficient encoding. 699 IIT_V64 = 16, 700 IIT_MMX = 17, 701 IIT_TOKEN = 18, 702 IIT_METADATA = 19, 703 IIT_EMPTYSTRUCT = 20, 704 IIT_STRUCT2 = 21, 705 IIT_STRUCT3 = 22, 706 IIT_STRUCT4 = 23, 707 IIT_STRUCT5 = 24, 708 IIT_EXTEND_ARG = 25, 709 IIT_TRUNC_ARG = 26, 710 IIT_ANYPTR = 27, 711 IIT_V1 = 28, 712 IIT_VARARG = 29, 713 IIT_HALF_VEC_ARG = 30, 714 IIT_SAME_VEC_WIDTH_ARG = 31, 715 IIT_PTR_TO_ARG = 32, 716 IIT_PTR_TO_ELT = 33, 717 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 718 IIT_I128 = 35, 719 IIT_V512 = 36, 720 IIT_V1024 = 37, 721 IIT_STRUCT6 = 38, 722 IIT_STRUCT7 = 39, 723 IIT_STRUCT8 = 40, 724 IIT_F128 = 41, 725 IIT_VEC_ELEMENT = 42, 726 IIT_SCALABLE_VEC = 43, 727 IIT_SUBDIVIDE2_ARG = 44, 728 IIT_SUBDIVIDE4_ARG = 45, 729 IIT_VEC_OF_BITCASTS_TO_INT = 46 730 }; 731 732 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 733 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 734 using namespace Intrinsic; 735 736 IIT_Info Info = IIT_Info(Infos[NextElt++]); 737 unsigned StructElts = 2; 738 739 switch (Info) { 740 case IIT_Done: 741 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 742 return; 743 case IIT_VARARG: 744 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 745 return; 746 case IIT_MMX: 747 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 748 return; 749 case IIT_TOKEN: 750 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 751 return; 752 case IIT_METADATA: 753 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 754 return; 755 case IIT_F16: 756 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 757 return; 758 case IIT_F32: 759 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 760 return; 761 case IIT_F64: 762 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 763 return; 764 case IIT_F128: 765 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 766 return; 767 case IIT_I1: 768 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 769 return; 770 case IIT_I8: 771 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 772 return; 773 case IIT_I16: 774 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 775 return; 776 case IIT_I32: 777 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 778 return; 779 case IIT_I64: 780 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 781 return; 782 case IIT_I128: 783 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 784 return; 785 case IIT_V1: 786 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 787 DecodeIITType(NextElt, Infos, OutputTable); 788 return; 789 case IIT_V2: 790 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 791 DecodeIITType(NextElt, Infos, OutputTable); 792 return; 793 case IIT_V4: 794 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 795 DecodeIITType(NextElt, Infos, OutputTable); 796 return; 797 case IIT_V8: 798 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 799 DecodeIITType(NextElt, Infos, OutputTable); 800 return; 801 case IIT_V16: 802 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 803 DecodeIITType(NextElt, Infos, OutputTable); 804 return; 805 case IIT_V32: 806 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 807 DecodeIITType(NextElt, Infos, OutputTable); 808 return; 809 case IIT_V64: 810 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 811 DecodeIITType(NextElt, Infos, OutputTable); 812 return; 813 case IIT_V512: 814 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 815 DecodeIITType(NextElt, Infos, OutputTable); 816 return; 817 case IIT_V1024: 818 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 819 DecodeIITType(NextElt, Infos, OutputTable); 820 return; 821 case IIT_PTR: 822 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 823 DecodeIITType(NextElt, Infos, OutputTable); 824 return; 825 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 826 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 827 Infos[NextElt++])); 828 DecodeIITType(NextElt, Infos, OutputTable); 829 return; 830 } 831 case IIT_ARG: { 832 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 833 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 834 return; 835 } 836 case IIT_EXTEND_ARG: { 837 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 838 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 839 ArgInfo)); 840 return; 841 } 842 case IIT_TRUNC_ARG: { 843 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 844 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 845 ArgInfo)); 846 return; 847 } 848 case IIT_HALF_VEC_ARG: { 849 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 850 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 851 ArgInfo)); 852 return; 853 } 854 case IIT_SAME_VEC_WIDTH_ARG: { 855 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 856 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 857 ArgInfo)); 858 return; 859 } 860 case IIT_PTR_TO_ARG: { 861 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 862 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 863 ArgInfo)); 864 return; 865 } 866 case IIT_PTR_TO_ELT: { 867 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 868 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 869 return; 870 } 871 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 872 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 873 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 874 OutputTable.push_back( 875 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 876 return; 877 } 878 case IIT_EMPTYSTRUCT: 879 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 880 return; 881 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 882 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 883 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 884 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 885 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 886 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 887 case IIT_STRUCT2: { 888 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 889 890 for (unsigned i = 0; i != StructElts; ++i) 891 DecodeIITType(NextElt, Infos, OutputTable); 892 return; 893 } 894 case IIT_SUBDIVIDE2_ARG: { 895 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 896 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 897 ArgInfo)); 898 return; 899 } 900 case IIT_SUBDIVIDE4_ARG: { 901 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 902 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 903 ArgInfo)); 904 return; 905 } 906 case IIT_VEC_ELEMENT: { 907 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 908 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 909 ArgInfo)); 910 return; 911 } 912 case IIT_SCALABLE_VEC: { 913 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ScalableVecArgument, 914 0)); 915 DecodeIITType(NextElt, Infos, OutputTable); 916 return; 917 } 918 case IIT_VEC_OF_BITCASTS_TO_INT: { 919 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 920 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 921 ArgInfo)); 922 return; 923 } 924 } 925 llvm_unreachable("unhandled"); 926 } 927 928 #define GET_INTRINSIC_GENERATOR_GLOBAL 929 #include "llvm/IR/IntrinsicImpl.inc" 930 #undef GET_INTRINSIC_GENERATOR_GLOBAL 931 932 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 933 SmallVectorImpl<IITDescriptor> &T){ 934 // Check to see if the intrinsic's type was expressible by the table. 935 unsigned TableVal = IIT_Table[id-1]; 936 937 // Decode the TableVal into an array of IITValues. 938 SmallVector<unsigned char, 8> IITValues; 939 ArrayRef<unsigned char> IITEntries; 940 unsigned NextElt = 0; 941 if ((TableVal >> 31) != 0) { 942 // This is an offset into the IIT_LongEncodingTable. 943 IITEntries = IIT_LongEncodingTable; 944 945 // Strip sentinel bit. 946 NextElt = (TableVal << 1) >> 1; 947 } else { 948 // Decode the TableVal into an array of IITValues. If the entry was encoded 949 // into a single word in the table itself, decode it now. 950 do { 951 IITValues.push_back(TableVal & 0xF); 952 TableVal >>= 4; 953 } while (TableVal); 954 955 IITEntries = IITValues; 956 NextElt = 0; 957 } 958 959 // Okay, decode the table into the output vector of IITDescriptors. 960 DecodeIITType(NextElt, IITEntries, T); 961 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 962 DecodeIITType(NextElt, IITEntries, T); 963 } 964 965 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 966 ArrayRef<Type*> Tys, LLVMContext &Context) { 967 using namespace Intrinsic; 968 969 IITDescriptor D = Infos.front(); 970 Infos = Infos.slice(1); 971 972 switch (D.Kind) { 973 case IITDescriptor::Void: return Type::getVoidTy(Context); 974 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 975 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 976 case IITDescriptor::Token: return Type::getTokenTy(Context); 977 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 978 case IITDescriptor::Half: return Type::getHalfTy(Context); 979 case IITDescriptor::Float: return Type::getFloatTy(Context); 980 case IITDescriptor::Double: return Type::getDoubleTy(Context); 981 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 982 983 case IITDescriptor::Integer: 984 return IntegerType::get(Context, D.Integer_Width); 985 case IITDescriptor::Vector: 986 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 987 case IITDescriptor::Pointer: 988 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 989 D.Pointer_AddressSpace); 990 case IITDescriptor::Struct: { 991 SmallVector<Type *, 8> Elts; 992 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 993 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 994 return StructType::get(Context, Elts); 995 } 996 case IITDescriptor::Argument: 997 return Tys[D.getArgumentNumber()]; 998 case IITDescriptor::ExtendArgument: { 999 Type *Ty = Tys[D.getArgumentNumber()]; 1000 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1001 return VectorType::getExtendedElementVectorType(VTy); 1002 1003 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1004 } 1005 case IITDescriptor::TruncArgument: { 1006 Type *Ty = Tys[D.getArgumentNumber()]; 1007 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1008 return VectorType::getTruncatedElementVectorType(VTy); 1009 1010 IntegerType *ITy = cast<IntegerType>(Ty); 1011 assert(ITy->getBitWidth() % 2 == 0); 1012 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1013 } 1014 case IITDescriptor::Subdivide2Argument: 1015 case IITDescriptor::Subdivide4Argument: { 1016 Type *Ty = Tys[D.getArgumentNumber()]; 1017 VectorType *VTy = dyn_cast<VectorType>(Ty); 1018 assert(VTy && "Expected an argument of Vector Type"); 1019 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1020 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1021 } 1022 case IITDescriptor::HalfVecArgument: 1023 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1024 Tys[D.getArgumentNumber()])); 1025 case IITDescriptor::SameVecWidthArgument: { 1026 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1027 Type *Ty = Tys[D.getArgumentNumber()]; 1028 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1029 return VectorType::get(EltTy, VTy->getElementCount()); 1030 return EltTy; 1031 } 1032 case IITDescriptor::PtrToArgument: { 1033 Type *Ty = Tys[D.getArgumentNumber()]; 1034 return PointerType::getUnqual(Ty); 1035 } 1036 case IITDescriptor::PtrToElt: { 1037 Type *Ty = Tys[D.getArgumentNumber()]; 1038 VectorType *VTy = dyn_cast<VectorType>(Ty); 1039 if (!VTy) 1040 llvm_unreachable("Expected an argument of Vector Type"); 1041 Type *EltTy = VTy->getVectorElementType(); 1042 return PointerType::getUnqual(EltTy); 1043 } 1044 case IITDescriptor::VecElementArgument: { 1045 Type *Ty = Tys[D.getArgumentNumber()]; 1046 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1047 return VTy->getElementType(); 1048 llvm_unreachable("Expected an argument of Vector Type"); 1049 } 1050 case IITDescriptor::VecOfBitcastsToInt: { 1051 Type *Ty = Tys[D.getArgumentNumber()]; 1052 VectorType *VTy = dyn_cast<VectorType>(Ty); 1053 assert(VTy && "Expected an argument of Vector Type"); 1054 return VectorType::getInteger(VTy); 1055 } 1056 case IITDescriptor::VecOfAnyPtrsToElt: 1057 // Return the overloaded type (which determines the pointers address space) 1058 return Tys[D.getOverloadArgNumber()]; 1059 case IITDescriptor::ScalableVecArgument: { 1060 Type *Ty = DecodeFixedType(Infos, Tys, Context); 1061 return VectorType::get(Ty->getVectorElementType(), 1062 { Ty->getVectorNumElements(), true }); 1063 } 1064 } 1065 llvm_unreachable("unhandled"); 1066 } 1067 1068 FunctionType *Intrinsic::getType(LLVMContext &Context, 1069 ID id, ArrayRef<Type*> Tys) { 1070 SmallVector<IITDescriptor, 8> Table; 1071 getIntrinsicInfoTableEntries(id, Table); 1072 1073 ArrayRef<IITDescriptor> TableRef = Table; 1074 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1075 1076 SmallVector<Type*, 8> ArgTys; 1077 while (!TableRef.empty()) 1078 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1079 1080 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1081 // If we see void type as the type of the last argument, it is vararg intrinsic 1082 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1083 ArgTys.pop_back(); 1084 return FunctionType::get(ResultTy, ArgTys, true); 1085 } 1086 return FunctionType::get(ResultTy, ArgTys, false); 1087 } 1088 1089 bool Intrinsic::isOverloaded(ID id) { 1090 #define GET_INTRINSIC_OVERLOAD_TABLE 1091 #include "llvm/IR/IntrinsicImpl.inc" 1092 #undef GET_INTRINSIC_OVERLOAD_TABLE 1093 } 1094 1095 bool Intrinsic::isLeaf(ID id) { 1096 switch (id) { 1097 default: 1098 return true; 1099 1100 case Intrinsic::experimental_gc_statepoint: 1101 case Intrinsic::experimental_patchpoint_void: 1102 case Intrinsic::experimental_patchpoint_i64: 1103 return false; 1104 } 1105 } 1106 1107 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1108 #define GET_INTRINSIC_ATTRIBUTES 1109 #include "llvm/IR/IntrinsicImpl.inc" 1110 #undef GET_INTRINSIC_ATTRIBUTES 1111 1112 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1113 // There can never be multiple globals with the same name of different types, 1114 // because intrinsics must be a specific type. 1115 return cast<Function>( 1116 M->getOrInsertFunction(getName(id, Tys), 1117 getType(M->getContext(), id, Tys)) 1118 .getCallee()); 1119 } 1120 1121 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 1122 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1123 #include "llvm/IR/IntrinsicImpl.inc" 1124 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1125 1126 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1127 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1128 #include "llvm/IR/IntrinsicImpl.inc" 1129 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1130 1131 using DeferredIntrinsicMatchPair = 1132 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1133 1134 static bool matchIntrinsicType( 1135 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1136 SmallVectorImpl<Type *> &ArgTys, 1137 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1138 bool IsDeferredCheck) { 1139 using namespace Intrinsic; 1140 1141 // If we ran out of descriptors, there are too many arguments. 1142 if (Infos.empty()) return true; 1143 1144 // Do this before slicing off the 'front' part 1145 auto InfosRef = Infos; 1146 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1147 DeferredChecks.emplace_back(T, InfosRef); 1148 return false; 1149 }; 1150 1151 IITDescriptor D = Infos.front(); 1152 Infos = Infos.slice(1); 1153 1154 switch (D.Kind) { 1155 case IITDescriptor::Void: return !Ty->isVoidTy(); 1156 case IITDescriptor::VarArg: return true; 1157 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1158 case IITDescriptor::Token: return !Ty->isTokenTy(); 1159 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1160 case IITDescriptor::Half: return !Ty->isHalfTy(); 1161 case IITDescriptor::Float: return !Ty->isFloatTy(); 1162 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1163 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1164 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1165 case IITDescriptor::Vector: { 1166 VectorType *VT = dyn_cast<VectorType>(Ty); 1167 return !VT || VT->getNumElements() != D.Vector_Width || 1168 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1169 DeferredChecks, IsDeferredCheck); 1170 } 1171 case IITDescriptor::Pointer: { 1172 PointerType *PT = dyn_cast<PointerType>(Ty); 1173 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 1174 matchIntrinsicType(PT->getElementType(), Infos, ArgTys, 1175 DeferredChecks, IsDeferredCheck); 1176 } 1177 1178 case IITDescriptor::Struct: { 1179 StructType *ST = dyn_cast<StructType>(Ty); 1180 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1181 return true; 1182 1183 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1184 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1185 DeferredChecks, IsDeferredCheck)) 1186 return true; 1187 return false; 1188 } 1189 1190 case IITDescriptor::Argument: 1191 // If this is the second occurrence of an argument, 1192 // verify that the later instance matches the previous instance. 1193 if (D.getArgumentNumber() < ArgTys.size()) 1194 return Ty != ArgTys[D.getArgumentNumber()]; 1195 1196 if (D.getArgumentNumber() > ArgTys.size() || 1197 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1198 return IsDeferredCheck || DeferCheck(Ty); 1199 1200 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1201 "Table consistency error"); 1202 ArgTys.push_back(Ty); 1203 1204 switch (D.getArgumentKind()) { 1205 case IITDescriptor::AK_Any: return false; // Success 1206 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1207 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1208 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1209 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1210 default: break; 1211 } 1212 llvm_unreachable("all argument kinds not covered"); 1213 1214 case IITDescriptor::ExtendArgument: { 1215 // If this is a forward reference, defer the check for later. 1216 if (D.getArgumentNumber() >= ArgTys.size()) 1217 return IsDeferredCheck || DeferCheck(Ty); 1218 1219 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1220 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1221 NewTy = VectorType::getExtendedElementVectorType(VTy); 1222 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1223 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1224 else 1225 return true; 1226 1227 return Ty != NewTy; 1228 } 1229 case IITDescriptor::TruncArgument: { 1230 // If this is a forward reference, defer the check for later. 1231 if (D.getArgumentNumber() >= ArgTys.size()) 1232 return IsDeferredCheck || DeferCheck(Ty); 1233 1234 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1235 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1236 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1237 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1238 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1239 else 1240 return true; 1241 1242 return Ty != NewTy; 1243 } 1244 case IITDescriptor::HalfVecArgument: 1245 // If this is a forward reference, defer the check for later. 1246 if (D.getArgumentNumber() >= ArgTys.size()) 1247 return IsDeferredCheck || DeferCheck(Ty); 1248 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1249 VectorType::getHalfElementsVectorType( 1250 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1251 case IITDescriptor::SameVecWidthArgument: { 1252 if (D.getArgumentNumber() >= ArgTys.size()) { 1253 // Defer check and subsequent check for the vector element type. 1254 Infos = Infos.slice(1); 1255 return IsDeferredCheck || DeferCheck(Ty); 1256 } 1257 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1258 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1259 // Both must be vectors of the same number of elements or neither. 1260 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1261 return true; 1262 Type *EltTy = Ty; 1263 if (ThisArgType) { 1264 if (ReferenceType->getElementCount() != 1265 ThisArgType->getElementCount()) 1266 return true; 1267 EltTy = ThisArgType->getVectorElementType(); 1268 } 1269 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1270 IsDeferredCheck); 1271 } 1272 case IITDescriptor::PtrToArgument: { 1273 if (D.getArgumentNumber() >= ArgTys.size()) 1274 return IsDeferredCheck || DeferCheck(Ty); 1275 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1276 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1277 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1278 } 1279 case IITDescriptor::PtrToElt: { 1280 if (D.getArgumentNumber() >= ArgTys.size()) 1281 return IsDeferredCheck || DeferCheck(Ty); 1282 VectorType * ReferenceType = 1283 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1284 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1285 1286 return (!ThisArgType || !ReferenceType || 1287 ThisArgType->getElementType() != ReferenceType->getElementType()); 1288 } 1289 case IITDescriptor::VecOfAnyPtrsToElt: { 1290 unsigned RefArgNumber = D.getRefArgNumber(); 1291 if (RefArgNumber >= ArgTys.size()) { 1292 if (IsDeferredCheck) 1293 return true; 1294 // If forward referencing, already add the pointer-vector type and 1295 // defer the checks for later. 1296 ArgTys.push_back(Ty); 1297 return DeferCheck(Ty); 1298 } 1299 1300 if (!IsDeferredCheck){ 1301 assert(D.getOverloadArgNumber() == ArgTys.size() && 1302 "Table consistency error"); 1303 ArgTys.push_back(Ty); 1304 } 1305 1306 // Verify the overloaded type "matches" the Ref type. 1307 // i.e. Ty is a vector with the same width as Ref. 1308 // Composed of pointers to the same element type as Ref. 1309 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1310 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1311 if (!ThisArgVecTy || !ReferenceType || 1312 (ReferenceType->getVectorNumElements() != 1313 ThisArgVecTy->getVectorNumElements())) 1314 return true; 1315 PointerType *ThisArgEltTy = 1316 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1317 if (!ThisArgEltTy) 1318 return true; 1319 return ThisArgEltTy->getElementType() != 1320 ReferenceType->getVectorElementType(); 1321 } 1322 case IITDescriptor::VecElementArgument: { 1323 if (D.getArgumentNumber() >= ArgTys.size()) 1324 return IsDeferredCheck ? true : DeferCheck(Ty); 1325 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1326 return !ReferenceType || Ty != ReferenceType->getElementType(); 1327 } 1328 case IITDescriptor::Subdivide2Argument: 1329 case IITDescriptor::Subdivide4Argument: { 1330 // If this is a forward reference, defer the check for later. 1331 if (D.getArgumentNumber() >= ArgTys.size()) 1332 return IsDeferredCheck || DeferCheck(Ty); 1333 1334 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1335 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1336 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1337 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1338 return Ty != NewTy; 1339 } 1340 return true; 1341 } 1342 case IITDescriptor::ScalableVecArgument: { 1343 VectorType *VTy = dyn_cast<VectorType>(Ty); 1344 if (!VTy || !VTy->isScalable()) 1345 return true; 1346 return matchIntrinsicType(VTy, Infos, ArgTys, DeferredChecks, 1347 IsDeferredCheck); 1348 } 1349 case IITDescriptor::VecOfBitcastsToInt: { 1350 if (D.getArgumentNumber() >= ArgTys.size()) 1351 return IsDeferredCheck || DeferCheck(Ty); 1352 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1353 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1354 if (!ThisArgVecTy || !ReferenceType) 1355 return true; 1356 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1357 } 1358 } 1359 llvm_unreachable("unhandled"); 1360 } 1361 1362 Intrinsic::MatchIntrinsicTypesResult 1363 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1364 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1365 SmallVectorImpl<Type *> &ArgTys) { 1366 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1367 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1368 false)) 1369 return MatchIntrinsicTypes_NoMatchRet; 1370 1371 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1372 1373 for (auto Ty : FTy->params()) 1374 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1375 return MatchIntrinsicTypes_NoMatchArg; 1376 1377 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1378 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1379 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1380 true)) 1381 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1382 : MatchIntrinsicTypes_NoMatchArg; 1383 } 1384 1385 return MatchIntrinsicTypes_Match; 1386 } 1387 1388 bool 1389 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1390 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1391 // If there are no descriptors left, then it can't be a vararg. 1392 if (Infos.empty()) 1393 return isVarArg; 1394 1395 // There should be only one descriptor remaining at this point. 1396 if (Infos.size() != 1) 1397 return true; 1398 1399 // Check and verify the descriptor. 1400 IITDescriptor D = Infos.front(); 1401 Infos = Infos.slice(1); 1402 if (D.Kind == IITDescriptor::VarArg) 1403 return !isVarArg; 1404 1405 return true; 1406 } 1407 1408 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1409 Intrinsic::ID ID = F->getIntrinsicID(); 1410 if (!ID) 1411 return None; 1412 1413 FunctionType *FTy = F->getFunctionType(); 1414 // Accumulate an array of overloaded types for the given intrinsic 1415 SmallVector<Type *, 4> ArgTys; 1416 { 1417 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1418 getIntrinsicInfoTableEntries(ID, Table); 1419 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1420 1421 if (Intrinsic::matchIntrinsicSignature(FTy, TableRef, ArgTys)) 1422 return None; 1423 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1424 return None; 1425 } 1426 1427 StringRef Name = F->getName(); 1428 if (Name == Intrinsic::getName(ID, ArgTys)) 1429 return None; 1430 1431 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1432 NewDecl->setCallingConv(F->getCallingConv()); 1433 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1434 return NewDecl; 1435 } 1436 1437 /// hasAddressTaken - returns true if there are any uses of this function 1438 /// other than direct calls or invokes to it. 1439 bool Function::hasAddressTaken(const User* *PutOffender) const { 1440 for (const Use &U : uses()) { 1441 const User *FU = U.getUser(); 1442 if (isa<BlockAddress>(FU)) 1443 continue; 1444 const auto *Call = dyn_cast<CallBase>(FU); 1445 if (!Call) { 1446 if (PutOffender) 1447 *PutOffender = FU; 1448 return true; 1449 } 1450 if (!Call->isCallee(&U)) { 1451 if (PutOffender) 1452 *PutOffender = FU; 1453 return true; 1454 } 1455 } 1456 return false; 1457 } 1458 1459 bool Function::isDefTriviallyDead() const { 1460 // Check the linkage 1461 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1462 !hasAvailableExternallyLinkage()) 1463 return false; 1464 1465 // Check if the function is used by anything other than a blockaddress. 1466 for (const User *U : users()) 1467 if (!isa<BlockAddress>(U)) 1468 return false; 1469 1470 return true; 1471 } 1472 1473 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1474 /// setjmp or other function that gcc recognizes as "returning twice". 1475 bool Function::callsFunctionThatReturnsTwice() const { 1476 for (const Instruction &I : instructions(this)) 1477 if (const auto *Call = dyn_cast<CallBase>(&I)) 1478 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1479 return true; 1480 1481 return false; 1482 } 1483 1484 Constant *Function::getPersonalityFn() const { 1485 assert(hasPersonalityFn() && getNumOperands()); 1486 return cast<Constant>(Op<0>()); 1487 } 1488 1489 void Function::setPersonalityFn(Constant *Fn) { 1490 setHungoffOperand<0>(Fn); 1491 setValueSubclassDataBit(3, Fn != nullptr); 1492 } 1493 1494 Constant *Function::getPrefixData() const { 1495 assert(hasPrefixData() && getNumOperands()); 1496 return cast<Constant>(Op<1>()); 1497 } 1498 1499 void Function::setPrefixData(Constant *PrefixData) { 1500 setHungoffOperand<1>(PrefixData); 1501 setValueSubclassDataBit(1, PrefixData != nullptr); 1502 } 1503 1504 Constant *Function::getPrologueData() const { 1505 assert(hasPrologueData() && getNumOperands()); 1506 return cast<Constant>(Op<2>()); 1507 } 1508 1509 void Function::setPrologueData(Constant *PrologueData) { 1510 setHungoffOperand<2>(PrologueData); 1511 setValueSubclassDataBit(2, PrologueData != nullptr); 1512 } 1513 1514 void Function::allocHungoffUselist() { 1515 // If we've already allocated a uselist, stop here. 1516 if (getNumOperands()) 1517 return; 1518 1519 allocHungoffUses(3, /*IsPhi=*/ false); 1520 setNumHungOffUseOperands(3); 1521 1522 // Initialize the uselist with placeholder operands to allow traversal. 1523 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1524 Op<0>().set(CPN); 1525 Op<1>().set(CPN); 1526 Op<2>().set(CPN); 1527 } 1528 1529 template <int Idx> 1530 void Function::setHungoffOperand(Constant *C) { 1531 if (C) { 1532 allocHungoffUselist(); 1533 Op<Idx>().set(C); 1534 } else if (getNumOperands()) { 1535 Op<Idx>().set( 1536 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1537 } 1538 } 1539 1540 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1541 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1542 if (On) 1543 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1544 else 1545 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1546 } 1547 1548 void Function::setEntryCount(ProfileCount Count, 1549 const DenseSet<GlobalValue::GUID> *S) { 1550 assert(Count.hasValue()); 1551 #if !defined(NDEBUG) 1552 auto PrevCount = getEntryCount(); 1553 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); 1554 #endif 1555 1556 auto ImportGUIDs = getImportGUIDs(); 1557 if (S == nullptr && ImportGUIDs.size()) 1558 S = &ImportGUIDs; 1559 1560 MDBuilder MDB(getContext()); 1561 setMetadata( 1562 LLVMContext::MD_prof, 1563 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1564 } 1565 1566 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1567 const DenseSet<GlobalValue::GUID> *Imports) { 1568 setEntryCount(ProfileCount(Count, Type), Imports); 1569 } 1570 1571 ProfileCount Function::getEntryCount(bool AllowSynthetic) const { 1572 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1573 if (MD && MD->getOperand(0)) 1574 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1575 if (MDS->getString().equals("function_entry_count")) { 1576 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1577 uint64_t Count = CI->getValue().getZExtValue(); 1578 // A value of -1 is used for SamplePGO when there were no samples. 1579 // Treat this the same as unknown. 1580 if (Count == (uint64_t)-1) 1581 return ProfileCount::getInvalid(); 1582 return ProfileCount(Count, PCT_Real); 1583 } else if (AllowSynthetic && 1584 MDS->getString().equals("synthetic_function_entry_count")) { 1585 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1586 uint64_t Count = CI->getValue().getZExtValue(); 1587 return ProfileCount(Count, PCT_Synthetic); 1588 } 1589 } 1590 return ProfileCount::getInvalid(); 1591 } 1592 1593 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1594 DenseSet<GlobalValue::GUID> R; 1595 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1596 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1597 if (MDS->getString().equals("function_entry_count")) 1598 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1599 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1600 ->getValue() 1601 .getZExtValue()); 1602 return R; 1603 } 1604 1605 void Function::setSectionPrefix(StringRef Prefix) { 1606 MDBuilder MDB(getContext()); 1607 setMetadata(LLVMContext::MD_section_prefix, 1608 MDB.createFunctionSectionPrefix(Prefix)); 1609 } 1610 1611 Optional<StringRef> Function::getSectionPrefix() const { 1612 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1613 assert(cast<MDString>(MD->getOperand(0)) 1614 ->getString() 1615 .equals("function_section_prefix") && 1616 "Metadata not match"); 1617 return cast<MDString>(MD->getOperand(1))->getString(); 1618 } 1619 return None; 1620 } 1621 1622 bool Function::nullPointerIsDefined() const { 1623 return getFnAttribute("null-pointer-is-valid") 1624 .getValueAsString() 1625 .equals("true"); 1626 } 1627 1628 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1629 if (F && F->nullPointerIsDefined()) 1630 return true; 1631 1632 if (AS != 0) 1633 return true; 1634 1635 return false; 1636 } 1637