xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Function.cpp (revision a521f2116473fbd8c09db395518f060a27d02334)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsAArch64.h"
36 #include "llvm/IR/IntrinsicsAMDGPU.h"
37 #include "llvm/IR/IntrinsicsARM.h"
38 #include "llvm/IR/IntrinsicsBPF.h"
39 #include "llvm/IR/IntrinsicsHexagon.h"
40 #include "llvm/IR/IntrinsicsMips.h"
41 #include "llvm/IR/IntrinsicsNVPTX.h"
42 #include "llvm/IR/IntrinsicsPowerPC.h"
43 #include "llvm/IR/IntrinsicsR600.h"
44 #include "llvm/IR/IntrinsicsRISCV.h"
45 #include "llvm/IR/IntrinsicsS390.h"
46 #include "llvm/IR/IntrinsicsWebAssembly.h"
47 #include "llvm/IR/IntrinsicsX86.h"
48 #include "llvm/IR/IntrinsicsXCore.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/SymbolTableListTraits.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Use.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstddef>
65 #include <cstdint>
66 #include <cstring>
67 #include <string>
68 
69 using namespace llvm;
70 using ProfileCount = Function::ProfileCount;
71 
72 // Explicit instantiations of SymbolTableListTraits since some of the methods
73 // are not in the public header file...
74 template class llvm::SymbolTableListTraits<BasicBlock>;
75 
76 //===----------------------------------------------------------------------===//
77 // Argument Implementation
78 //===----------------------------------------------------------------------===//
79 
80 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
81     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
82   setName(Name);
83 }
84 
85 void Argument::setParent(Function *parent) {
86   Parent = parent;
87 }
88 
89 bool Argument::hasNonNullAttr() const {
90   if (!getType()->isPointerTy()) return false;
91   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
92     return true;
93   else if (getDereferenceableBytes() > 0 &&
94            !NullPointerIsDefined(getParent(),
95                                  getType()->getPointerAddressSpace()))
96     return true;
97   return false;
98 }
99 
100 bool Argument::hasByValAttr() const {
101   if (!getType()->isPointerTy()) return false;
102   return hasAttribute(Attribute::ByVal);
103 }
104 
105 bool Argument::hasSwiftSelfAttr() const {
106   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
107 }
108 
109 bool Argument::hasSwiftErrorAttr() const {
110   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
111 }
112 
113 bool Argument::hasInAllocaAttr() const {
114   if (!getType()->isPointerTy()) return false;
115   return hasAttribute(Attribute::InAlloca);
116 }
117 
118 bool Argument::hasPreallocatedAttr() const {
119   if (!getType()->isPointerTy())
120     return false;
121   return hasAttribute(Attribute::Preallocated);
122 }
123 
124 bool Argument::hasPassPointeeByValueAttr() const {
125   if (!getType()->isPointerTy()) return false;
126   AttributeList Attrs = getParent()->getAttributes();
127   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
128          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
129          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated);
130 }
131 
132 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
133   AttributeSet ParamAttrs
134     = getParent()->getAttributes().getParamAttributes(getArgNo());
135 
136   // FIXME: All the type carrying attributes are mutually exclusive, so there
137   // should be a single query to get the stored type that handles any of them.
138   if (Type *ByValTy = ParamAttrs.getByValType())
139     return DL.getTypeAllocSize(ByValTy);
140   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
141     return DL.getTypeAllocSize(PreAllocTy);
142 
143   // FIXME: inalloca always depends on pointee element type. It's also possible
144   // for byval to miss it.
145   if (ParamAttrs.hasAttribute(Attribute::InAlloca) ||
146       ParamAttrs.hasAttribute(Attribute::ByVal) ||
147       ParamAttrs.hasAttribute(Attribute::Preallocated))
148     return DL.getTypeAllocSize(cast<PointerType>(getType())->getElementType());
149 
150   return 0;
151 }
152 
153 unsigned Argument::getParamAlignment() const {
154   assert(getType()->isPointerTy() && "Only pointers have alignments");
155   return getParent()->getParamAlignment(getArgNo());
156 }
157 
158 MaybeAlign Argument::getParamAlign() const {
159   assert(getType()->isPointerTy() && "Only pointers have alignments");
160   return getParent()->getParamAlign(getArgNo());
161 }
162 
163 Type *Argument::getParamByValType() const {
164   assert(getType()->isPointerTy() && "Only pointers have byval types");
165   return getParent()->getParamByValType(getArgNo());
166 }
167 
168 uint64_t Argument::getDereferenceableBytes() const {
169   assert(getType()->isPointerTy() &&
170          "Only pointers have dereferenceable bytes");
171   return getParent()->getParamDereferenceableBytes(getArgNo());
172 }
173 
174 uint64_t Argument::getDereferenceableOrNullBytes() const {
175   assert(getType()->isPointerTy() &&
176          "Only pointers have dereferenceable bytes");
177   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
178 }
179 
180 bool Argument::hasNestAttr() const {
181   if (!getType()->isPointerTy()) return false;
182   return hasAttribute(Attribute::Nest);
183 }
184 
185 bool Argument::hasNoAliasAttr() const {
186   if (!getType()->isPointerTy()) return false;
187   return hasAttribute(Attribute::NoAlias);
188 }
189 
190 bool Argument::hasNoCaptureAttr() const {
191   if (!getType()->isPointerTy()) return false;
192   return hasAttribute(Attribute::NoCapture);
193 }
194 
195 bool Argument::hasStructRetAttr() const {
196   if (!getType()->isPointerTy()) return false;
197   return hasAttribute(Attribute::StructRet);
198 }
199 
200 bool Argument::hasInRegAttr() const {
201   return hasAttribute(Attribute::InReg);
202 }
203 
204 bool Argument::hasReturnedAttr() const {
205   return hasAttribute(Attribute::Returned);
206 }
207 
208 bool Argument::hasZExtAttr() const {
209   return hasAttribute(Attribute::ZExt);
210 }
211 
212 bool Argument::hasSExtAttr() const {
213   return hasAttribute(Attribute::SExt);
214 }
215 
216 bool Argument::onlyReadsMemory() const {
217   AttributeList Attrs = getParent()->getAttributes();
218   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
219          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
220 }
221 
222 void Argument::addAttrs(AttrBuilder &B) {
223   AttributeList AL = getParent()->getAttributes();
224   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
225   getParent()->setAttributes(AL);
226 }
227 
228 void Argument::addAttr(Attribute::AttrKind Kind) {
229   getParent()->addParamAttr(getArgNo(), Kind);
230 }
231 
232 void Argument::addAttr(Attribute Attr) {
233   getParent()->addParamAttr(getArgNo(), Attr);
234 }
235 
236 void Argument::removeAttr(Attribute::AttrKind Kind) {
237   getParent()->removeParamAttr(getArgNo(), Kind);
238 }
239 
240 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
241   return getParent()->hasParamAttribute(getArgNo(), Kind);
242 }
243 
244 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
245   return getParent()->getParamAttribute(getArgNo(), Kind);
246 }
247 
248 //===----------------------------------------------------------------------===//
249 // Helper Methods in Function
250 //===----------------------------------------------------------------------===//
251 
252 LLVMContext &Function::getContext() const {
253   return getType()->getContext();
254 }
255 
256 unsigned Function::getInstructionCount() const {
257   unsigned NumInstrs = 0;
258   for (const BasicBlock &BB : BasicBlocks)
259     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
260                                BB.instructionsWithoutDebug().end());
261   return NumInstrs;
262 }
263 
264 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
265                            const Twine &N, Module &M) {
266   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
267 }
268 
269 void Function::removeFromParent() {
270   getParent()->getFunctionList().remove(getIterator());
271 }
272 
273 void Function::eraseFromParent() {
274   getParent()->getFunctionList().erase(getIterator());
275 }
276 
277 //===----------------------------------------------------------------------===//
278 // Function Implementation
279 //===----------------------------------------------------------------------===//
280 
281 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
282   // If AS == -1 and we are passed a valid module pointer we place the function
283   // in the program address space. Otherwise we default to AS0.
284   if (AddrSpace == static_cast<unsigned>(-1))
285     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
286   return AddrSpace;
287 }
288 
289 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
290                    const Twine &name, Module *ParentModule)
291     : GlobalObject(Ty, Value::FunctionVal,
292                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
293                    computeAddrSpace(AddrSpace, ParentModule)),
294       NumArgs(Ty->getNumParams()) {
295   assert(FunctionType::isValidReturnType(getReturnType()) &&
296          "invalid return type");
297   setGlobalObjectSubClassData(0);
298 
299   // We only need a symbol table for a function if the context keeps value names
300   if (!getContext().shouldDiscardValueNames())
301     SymTab = std::make_unique<ValueSymbolTable>();
302 
303   // If the function has arguments, mark them as lazily built.
304   if (Ty->getNumParams())
305     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
306 
307   if (ParentModule)
308     ParentModule->getFunctionList().push_back(this);
309 
310   HasLLVMReservedName = getName().startswith("llvm.");
311   // Ensure intrinsics have the right parameter attributes.
312   // Note, the IntID field will have been set in Value::setName if this function
313   // name is a valid intrinsic ID.
314   if (IntID)
315     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
316 }
317 
318 Function::~Function() {
319   dropAllReferences();    // After this it is safe to delete instructions.
320 
321   // Delete all of the method arguments and unlink from symbol table...
322   if (Arguments)
323     clearArguments();
324 
325   // Remove the function from the on-the-side GC table.
326   clearGC();
327 }
328 
329 void Function::BuildLazyArguments() const {
330   // Create the arguments vector, all arguments start out unnamed.
331   auto *FT = getFunctionType();
332   if (NumArgs > 0) {
333     Arguments = std::allocator<Argument>().allocate(NumArgs);
334     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
335       Type *ArgTy = FT->getParamType(i);
336       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
337       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
338     }
339   }
340 
341   // Clear the lazy arguments bit.
342   unsigned SDC = getSubclassDataFromValue();
343   SDC &= ~(1 << 0);
344   const_cast<Function*>(this)->setValueSubclassData(SDC);
345   assert(!hasLazyArguments());
346 }
347 
348 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
349   return MutableArrayRef<Argument>(Args, Count);
350 }
351 
352 bool Function::isConstrainedFPIntrinsic() const {
353   switch (getIntrinsicID()) {
354 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
355   case Intrinsic::INTRINSIC:
356 #include "llvm/IR/ConstrainedOps.def"
357     return true;
358 #undef INSTRUCTION
359   default:
360     return false;
361   }
362 }
363 
364 void Function::clearArguments() {
365   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
366     A.setName("");
367     A.~Argument();
368   }
369   std::allocator<Argument>().deallocate(Arguments, NumArgs);
370   Arguments = nullptr;
371 }
372 
373 void Function::stealArgumentListFrom(Function &Src) {
374   assert(isDeclaration() && "Expected no references to current arguments");
375 
376   // Drop the current arguments, if any, and set the lazy argument bit.
377   if (!hasLazyArguments()) {
378     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
379                         [](const Argument &A) { return A.use_empty(); }) &&
380            "Expected arguments to be unused in declaration");
381     clearArguments();
382     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
383   }
384 
385   // Nothing to steal if Src has lazy arguments.
386   if (Src.hasLazyArguments())
387     return;
388 
389   // Steal arguments from Src, and fix the lazy argument bits.
390   assert(arg_size() == Src.arg_size());
391   Arguments = Src.Arguments;
392   Src.Arguments = nullptr;
393   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
394     // FIXME: This does the work of transferNodesFromList inefficiently.
395     SmallString<128> Name;
396     if (A.hasName())
397       Name = A.getName();
398     if (!Name.empty())
399       A.setName("");
400     A.setParent(this);
401     if (!Name.empty())
402       A.setName(Name);
403   }
404 
405   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
406   assert(!hasLazyArguments());
407   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
408 }
409 
410 // dropAllReferences() - This function causes all the subinstructions to "let
411 // go" of all references that they are maintaining.  This allows one to
412 // 'delete' a whole class at a time, even though there may be circular
413 // references... first all references are dropped, and all use counts go to
414 // zero.  Then everything is deleted for real.  Note that no operations are
415 // valid on an object that has "dropped all references", except operator
416 // delete.
417 //
418 void Function::dropAllReferences() {
419   setIsMaterializable(false);
420 
421   for (BasicBlock &BB : *this)
422     BB.dropAllReferences();
423 
424   // Delete all basic blocks. They are now unused, except possibly by
425   // blockaddresses, but BasicBlock's destructor takes care of those.
426   while (!BasicBlocks.empty())
427     BasicBlocks.begin()->eraseFromParent();
428 
429   // Drop uses of any optional data (real or placeholder).
430   if (getNumOperands()) {
431     User::dropAllReferences();
432     setNumHungOffUseOperands(0);
433     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
434   }
435 
436   // Metadata is stored in a side-table.
437   clearMetadata();
438 }
439 
440 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
441   AttributeList PAL = getAttributes();
442   PAL = PAL.addAttribute(getContext(), i, Kind);
443   setAttributes(PAL);
444 }
445 
446 void Function::addAttribute(unsigned i, Attribute Attr) {
447   AttributeList PAL = getAttributes();
448   PAL = PAL.addAttribute(getContext(), i, Attr);
449   setAttributes(PAL);
450 }
451 
452 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
453   AttributeList PAL = getAttributes();
454   PAL = PAL.addAttributes(getContext(), i, Attrs);
455   setAttributes(PAL);
456 }
457 
458 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
459   AttributeList PAL = getAttributes();
460   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
461   setAttributes(PAL);
462 }
463 
464 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
465   AttributeList PAL = getAttributes();
466   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
467   setAttributes(PAL);
468 }
469 
470 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
471   AttributeList PAL = getAttributes();
472   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
473   setAttributes(PAL);
474 }
475 
476 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
477   AttributeList PAL = getAttributes();
478   PAL = PAL.removeAttribute(getContext(), i, Kind);
479   setAttributes(PAL);
480 }
481 
482 void Function::removeAttribute(unsigned i, StringRef Kind) {
483   AttributeList PAL = getAttributes();
484   PAL = PAL.removeAttribute(getContext(), i, Kind);
485   setAttributes(PAL);
486 }
487 
488 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
489   AttributeList PAL = getAttributes();
490   PAL = PAL.removeAttributes(getContext(), i, Attrs);
491   setAttributes(PAL);
492 }
493 
494 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
495   AttributeList PAL = getAttributes();
496   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
497   setAttributes(PAL);
498 }
499 
500 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
501   AttributeList PAL = getAttributes();
502   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
503   setAttributes(PAL);
504 }
505 
506 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
507   AttributeList PAL = getAttributes();
508   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
509   setAttributes(PAL);
510 }
511 
512 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
513   AttributeList PAL = getAttributes();
514   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
515   setAttributes(PAL);
516 }
517 
518 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
519   AttributeList PAL = getAttributes();
520   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
521   setAttributes(PAL);
522 }
523 
524 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
525   AttributeList PAL = getAttributes();
526   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
527   setAttributes(PAL);
528 }
529 
530 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
531                                                  uint64_t Bytes) {
532   AttributeList PAL = getAttributes();
533   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
534   setAttributes(PAL);
535 }
536 
537 const std::string &Function::getGC() const {
538   assert(hasGC() && "Function has no collector");
539   return getContext().getGC(*this);
540 }
541 
542 void Function::setGC(std::string Str) {
543   setValueSubclassDataBit(14, !Str.empty());
544   getContext().setGC(*this, std::move(Str));
545 }
546 
547 void Function::clearGC() {
548   if (!hasGC())
549     return;
550   getContext().deleteGC(*this);
551   setValueSubclassDataBit(14, false);
552 }
553 
554 /// Copy all additional attributes (those not needed to create a Function) from
555 /// the Function Src to this one.
556 void Function::copyAttributesFrom(const Function *Src) {
557   GlobalObject::copyAttributesFrom(Src);
558   setCallingConv(Src->getCallingConv());
559   setAttributes(Src->getAttributes());
560   if (Src->hasGC())
561     setGC(Src->getGC());
562   else
563     clearGC();
564   if (Src->hasPersonalityFn())
565     setPersonalityFn(Src->getPersonalityFn());
566   if (Src->hasPrefixData())
567     setPrefixData(Src->getPrefixData());
568   if (Src->hasPrologueData())
569     setPrologueData(Src->getPrologueData());
570 }
571 
572 /// Table of string intrinsic names indexed by enum value.
573 static const char * const IntrinsicNameTable[] = {
574   "not_intrinsic",
575 #define GET_INTRINSIC_NAME_TABLE
576 #include "llvm/IR/IntrinsicImpl.inc"
577 #undef GET_INTRINSIC_NAME_TABLE
578 };
579 
580 /// Table of per-target intrinsic name tables.
581 #define GET_INTRINSIC_TARGET_DATA
582 #include "llvm/IR/IntrinsicImpl.inc"
583 #undef GET_INTRINSIC_TARGET_DATA
584 
585 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
586 /// target as \c Name, or the generic table if \c Name is not target specific.
587 ///
588 /// Returns the relevant slice of \c IntrinsicNameTable
589 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
590   assert(Name.startswith("llvm."));
591 
592   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
593   // Drop "llvm." and take the first dotted component. That will be the target
594   // if this is target specific.
595   StringRef Target = Name.drop_front(5).split('.').first;
596   auto It = partition_point(
597       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
598   // We've either found the target or just fall back to the generic set, which
599   // is always first.
600   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
601   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
602 }
603 
604 /// This does the actual lookup of an intrinsic ID which
605 /// matches the given function name.
606 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
607   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
608   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
609   if (Idx == -1)
610     return Intrinsic::not_intrinsic;
611 
612   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
613   // an index into a sub-table.
614   int Adjust = NameTable.data() - IntrinsicNameTable;
615   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
616 
617   // If the intrinsic is not overloaded, require an exact match. If it is
618   // overloaded, require either exact or prefix match.
619   const auto MatchSize = strlen(NameTable[Idx]);
620   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
621   bool IsExactMatch = Name.size() == MatchSize;
622   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
623                                                      : Intrinsic::not_intrinsic;
624 }
625 
626 void Function::recalculateIntrinsicID() {
627   StringRef Name = getName();
628   if (!Name.startswith("llvm.")) {
629     HasLLVMReservedName = false;
630     IntID = Intrinsic::not_intrinsic;
631     return;
632   }
633   HasLLVMReservedName = true;
634   IntID = lookupIntrinsicID(Name);
635 }
636 
637 /// Returns a stable mangling for the type specified for use in the name
638 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
639 /// of named types is simply their name.  Manglings for unnamed types consist
640 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
641 /// combined with the mangling of their component types.  A vararg function
642 /// type will have a suffix of 'vararg'.  Since function types can contain
643 /// other function types, we close a function type mangling with suffix 'f'
644 /// which can't be confused with it's prefix.  This ensures we don't have
645 /// collisions between two unrelated function types. Otherwise, you might
646 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
647 ///
648 static std::string getMangledTypeStr(Type* Ty) {
649   std::string Result;
650   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
651     Result += "p" + utostr(PTyp->getAddressSpace()) +
652       getMangledTypeStr(PTyp->getElementType());
653   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
654     Result += "a" + utostr(ATyp->getNumElements()) +
655       getMangledTypeStr(ATyp->getElementType());
656   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
657     if (!STyp->isLiteral()) {
658       Result += "s_";
659       Result += STyp->getName();
660     } else {
661       Result += "sl_";
662       for (auto Elem : STyp->elements())
663         Result += getMangledTypeStr(Elem);
664     }
665     // Ensure nested structs are distinguishable.
666     Result += "s";
667   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
668     Result += "f_" + getMangledTypeStr(FT->getReturnType());
669     for (size_t i = 0; i < FT->getNumParams(); i++)
670       Result += getMangledTypeStr(FT->getParamType(i));
671     if (FT->isVarArg())
672       Result += "vararg";
673     // Ensure nested function types are distinguishable.
674     Result += "f";
675   } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
676     ElementCount EC = VTy->getElementCount();
677     if (EC.Scalable)
678       Result += "nx";
679     Result += "v" + utostr(EC.Min) + getMangledTypeStr(VTy->getElementType());
680   } else if (Ty) {
681     switch (Ty->getTypeID()) {
682     default: llvm_unreachable("Unhandled type");
683     case Type::VoidTyID:      Result += "isVoid";   break;
684     case Type::MetadataTyID:  Result += "Metadata"; break;
685     case Type::HalfTyID:      Result += "f16";      break;
686     case Type::BFloatTyID:    Result += "bf16";     break;
687     case Type::FloatTyID:     Result += "f32";      break;
688     case Type::DoubleTyID:    Result += "f64";      break;
689     case Type::X86_FP80TyID:  Result += "f80";      break;
690     case Type::FP128TyID:     Result += "f128";     break;
691     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
692     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
693     case Type::IntegerTyID:
694       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
695       break;
696     }
697   }
698   return Result;
699 }
700 
701 StringRef Intrinsic::getName(ID id) {
702   assert(id < num_intrinsics && "Invalid intrinsic ID!");
703   assert(!Intrinsic::isOverloaded(id) &&
704          "This version of getName does not support overloading");
705   return IntrinsicNameTable[id];
706 }
707 
708 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
709   assert(id < num_intrinsics && "Invalid intrinsic ID!");
710   std::string Result(IntrinsicNameTable[id]);
711   for (Type *Ty : Tys) {
712     Result += "." + getMangledTypeStr(Ty);
713   }
714   return Result;
715 }
716 
717 /// IIT_Info - These are enumerators that describe the entries returned by the
718 /// getIntrinsicInfoTableEntries function.
719 ///
720 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
721 enum IIT_Info {
722   // Common values should be encoded with 0-15.
723   IIT_Done = 0,
724   IIT_I1   = 1,
725   IIT_I8   = 2,
726   IIT_I16  = 3,
727   IIT_I32  = 4,
728   IIT_I64  = 5,
729   IIT_F16  = 6,
730   IIT_F32  = 7,
731   IIT_F64  = 8,
732   IIT_V2   = 9,
733   IIT_V4   = 10,
734   IIT_V8   = 11,
735   IIT_V16  = 12,
736   IIT_V32  = 13,
737   IIT_PTR  = 14,
738   IIT_ARG  = 15,
739 
740   // Values from 16+ are only encodable with the inefficient encoding.
741   IIT_V64  = 16,
742   IIT_MMX  = 17,
743   IIT_TOKEN = 18,
744   IIT_METADATA = 19,
745   IIT_EMPTYSTRUCT = 20,
746   IIT_STRUCT2 = 21,
747   IIT_STRUCT3 = 22,
748   IIT_STRUCT4 = 23,
749   IIT_STRUCT5 = 24,
750   IIT_EXTEND_ARG = 25,
751   IIT_TRUNC_ARG = 26,
752   IIT_ANYPTR = 27,
753   IIT_V1   = 28,
754   IIT_VARARG = 29,
755   IIT_HALF_VEC_ARG = 30,
756   IIT_SAME_VEC_WIDTH_ARG = 31,
757   IIT_PTR_TO_ARG = 32,
758   IIT_PTR_TO_ELT = 33,
759   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
760   IIT_I128 = 35,
761   IIT_V512 = 36,
762   IIT_V1024 = 37,
763   IIT_STRUCT6 = 38,
764   IIT_STRUCT7 = 39,
765   IIT_STRUCT8 = 40,
766   IIT_F128 = 41,
767   IIT_VEC_ELEMENT = 42,
768   IIT_SCALABLE_VEC = 43,
769   IIT_SUBDIVIDE2_ARG = 44,
770   IIT_SUBDIVIDE4_ARG = 45,
771   IIT_VEC_OF_BITCASTS_TO_INT = 46,
772   IIT_V128 = 47,
773   IIT_BF16 = 48
774 };
775 
776 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
777                       IIT_Info LastInfo,
778                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
779   using namespace Intrinsic;
780 
781   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
782 
783   IIT_Info Info = IIT_Info(Infos[NextElt++]);
784   unsigned StructElts = 2;
785 
786   switch (Info) {
787   case IIT_Done:
788     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
789     return;
790   case IIT_VARARG:
791     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
792     return;
793   case IIT_MMX:
794     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
795     return;
796   case IIT_TOKEN:
797     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
798     return;
799   case IIT_METADATA:
800     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
801     return;
802   case IIT_F16:
803     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
804     return;
805   case IIT_BF16:
806     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
807     return;
808   case IIT_F32:
809     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
810     return;
811   case IIT_F64:
812     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
813     return;
814   case IIT_F128:
815     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
816     return;
817   case IIT_I1:
818     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
819     return;
820   case IIT_I8:
821     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
822     return;
823   case IIT_I16:
824     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
825     return;
826   case IIT_I32:
827     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
828     return;
829   case IIT_I64:
830     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
831     return;
832   case IIT_I128:
833     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
834     return;
835   case IIT_V1:
836     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
837     DecodeIITType(NextElt, Infos, Info, OutputTable);
838     return;
839   case IIT_V2:
840     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
841     DecodeIITType(NextElt, Infos, Info, OutputTable);
842     return;
843   case IIT_V4:
844     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
845     DecodeIITType(NextElt, Infos, Info, OutputTable);
846     return;
847   case IIT_V8:
848     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
849     DecodeIITType(NextElt, Infos, Info, OutputTable);
850     return;
851   case IIT_V16:
852     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
853     DecodeIITType(NextElt, Infos, Info, OutputTable);
854     return;
855   case IIT_V32:
856     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
857     DecodeIITType(NextElt, Infos, Info, OutputTable);
858     return;
859   case IIT_V64:
860     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
861     DecodeIITType(NextElt, Infos, Info, OutputTable);
862     return;
863   case IIT_V128:
864     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
865     DecodeIITType(NextElt, Infos, Info, OutputTable);
866     return;
867   case IIT_V512:
868     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
869     DecodeIITType(NextElt, Infos, Info, OutputTable);
870     return;
871   case IIT_V1024:
872     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
873     DecodeIITType(NextElt, Infos, Info, OutputTable);
874     return;
875   case IIT_PTR:
876     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
877     DecodeIITType(NextElt, Infos, Info, OutputTable);
878     return;
879   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
880     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
881                                              Infos[NextElt++]));
882     DecodeIITType(NextElt, Infos, Info, OutputTable);
883     return;
884   }
885   case IIT_ARG: {
886     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
887     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
888     return;
889   }
890   case IIT_EXTEND_ARG: {
891     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
892     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
893                                              ArgInfo));
894     return;
895   }
896   case IIT_TRUNC_ARG: {
897     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
898     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
899                                              ArgInfo));
900     return;
901   }
902   case IIT_HALF_VEC_ARG: {
903     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
904     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
905                                              ArgInfo));
906     return;
907   }
908   case IIT_SAME_VEC_WIDTH_ARG: {
909     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
910     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
911                                              ArgInfo));
912     return;
913   }
914   case IIT_PTR_TO_ARG: {
915     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
916     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
917                                              ArgInfo));
918     return;
919   }
920   case IIT_PTR_TO_ELT: {
921     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
922     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
923     return;
924   }
925   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
926     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
927     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
928     OutputTable.push_back(
929         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
930     return;
931   }
932   case IIT_EMPTYSTRUCT:
933     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
934     return;
935   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
936   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
937   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
938   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
939   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
940   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
941   case IIT_STRUCT2: {
942     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
943 
944     for (unsigned i = 0; i != StructElts; ++i)
945       DecodeIITType(NextElt, Infos, Info, OutputTable);
946     return;
947   }
948   case IIT_SUBDIVIDE2_ARG: {
949     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
950     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
951                                              ArgInfo));
952     return;
953   }
954   case IIT_SUBDIVIDE4_ARG: {
955     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
956     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
957                                              ArgInfo));
958     return;
959   }
960   case IIT_VEC_ELEMENT: {
961     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
962     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
963                                              ArgInfo));
964     return;
965   }
966   case IIT_SCALABLE_VEC: {
967     DecodeIITType(NextElt, Infos, Info, OutputTable);
968     return;
969   }
970   case IIT_VEC_OF_BITCASTS_TO_INT: {
971     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
972     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
973                                              ArgInfo));
974     return;
975   }
976   }
977   llvm_unreachable("unhandled");
978 }
979 
980 #define GET_INTRINSIC_GENERATOR_GLOBAL
981 #include "llvm/IR/IntrinsicImpl.inc"
982 #undef GET_INTRINSIC_GENERATOR_GLOBAL
983 
984 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
985                                              SmallVectorImpl<IITDescriptor> &T){
986   // Check to see if the intrinsic's type was expressible by the table.
987   unsigned TableVal = IIT_Table[id-1];
988 
989   // Decode the TableVal into an array of IITValues.
990   SmallVector<unsigned char, 8> IITValues;
991   ArrayRef<unsigned char> IITEntries;
992   unsigned NextElt = 0;
993   if ((TableVal >> 31) != 0) {
994     // This is an offset into the IIT_LongEncodingTable.
995     IITEntries = IIT_LongEncodingTable;
996 
997     // Strip sentinel bit.
998     NextElt = (TableVal << 1) >> 1;
999   } else {
1000     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1001     // into a single word in the table itself, decode it now.
1002     do {
1003       IITValues.push_back(TableVal & 0xF);
1004       TableVal >>= 4;
1005     } while (TableVal);
1006 
1007     IITEntries = IITValues;
1008     NextElt = 0;
1009   }
1010 
1011   // Okay, decode the table into the output vector of IITDescriptors.
1012   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1013   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1014     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1015 }
1016 
1017 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1018                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1019   using namespace Intrinsic;
1020 
1021   IITDescriptor D = Infos.front();
1022   Infos = Infos.slice(1);
1023 
1024   switch (D.Kind) {
1025   case IITDescriptor::Void: return Type::getVoidTy(Context);
1026   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1027   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1028   case IITDescriptor::Token: return Type::getTokenTy(Context);
1029   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1030   case IITDescriptor::Half: return Type::getHalfTy(Context);
1031   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1032   case IITDescriptor::Float: return Type::getFloatTy(Context);
1033   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1034   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1035 
1036   case IITDescriptor::Integer:
1037     return IntegerType::get(Context, D.Integer_Width);
1038   case IITDescriptor::Vector:
1039     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1040                            D.Vector_Width);
1041   case IITDescriptor::Pointer:
1042     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1043                             D.Pointer_AddressSpace);
1044   case IITDescriptor::Struct: {
1045     SmallVector<Type *, 8> Elts;
1046     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1047       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1048     return StructType::get(Context, Elts);
1049   }
1050   case IITDescriptor::Argument:
1051     return Tys[D.getArgumentNumber()];
1052   case IITDescriptor::ExtendArgument: {
1053     Type *Ty = Tys[D.getArgumentNumber()];
1054     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1055       return VectorType::getExtendedElementVectorType(VTy);
1056 
1057     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1058   }
1059   case IITDescriptor::TruncArgument: {
1060     Type *Ty = Tys[D.getArgumentNumber()];
1061     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1062       return VectorType::getTruncatedElementVectorType(VTy);
1063 
1064     IntegerType *ITy = cast<IntegerType>(Ty);
1065     assert(ITy->getBitWidth() % 2 == 0);
1066     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1067   }
1068   case IITDescriptor::Subdivide2Argument:
1069   case IITDescriptor::Subdivide4Argument: {
1070     Type *Ty = Tys[D.getArgumentNumber()];
1071     VectorType *VTy = dyn_cast<VectorType>(Ty);
1072     assert(VTy && "Expected an argument of Vector Type");
1073     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1074     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1075   }
1076   case IITDescriptor::HalfVecArgument:
1077     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1078                                                   Tys[D.getArgumentNumber()]));
1079   case IITDescriptor::SameVecWidthArgument: {
1080     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1081     Type *Ty = Tys[D.getArgumentNumber()];
1082     if (auto *VTy = dyn_cast<VectorType>(Ty))
1083       return VectorType::get(EltTy, VTy->getElementCount());
1084     return EltTy;
1085   }
1086   case IITDescriptor::PtrToArgument: {
1087     Type *Ty = Tys[D.getArgumentNumber()];
1088     return PointerType::getUnqual(Ty);
1089   }
1090   case IITDescriptor::PtrToElt: {
1091     Type *Ty = Tys[D.getArgumentNumber()];
1092     VectorType *VTy = dyn_cast<VectorType>(Ty);
1093     if (!VTy)
1094       llvm_unreachable("Expected an argument of Vector Type");
1095     Type *EltTy = VTy->getElementType();
1096     return PointerType::getUnqual(EltTy);
1097   }
1098   case IITDescriptor::VecElementArgument: {
1099     Type *Ty = Tys[D.getArgumentNumber()];
1100     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1101       return VTy->getElementType();
1102     llvm_unreachable("Expected an argument of Vector Type");
1103   }
1104   case IITDescriptor::VecOfBitcastsToInt: {
1105     Type *Ty = Tys[D.getArgumentNumber()];
1106     VectorType *VTy = dyn_cast<VectorType>(Ty);
1107     assert(VTy && "Expected an argument of Vector Type");
1108     return VectorType::getInteger(VTy);
1109   }
1110   case IITDescriptor::VecOfAnyPtrsToElt:
1111     // Return the overloaded type (which determines the pointers address space)
1112     return Tys[D.getOverloadArgNumber()];
1113   }
1114   llvm_unreachable("unhandled");
1115 }
1116 
1117 FunctionType *Intrinsic::getType(LLVMContext &Context,
1118                                  ID id, ArrayRef<Type*> Tys) {
1119   SmallVector<IITDescriptor, 8> Table;
1120   getIntrinsicInfoTableEntries(id, Table);
1121 
1122   ArrayRef<IITDescriptor> TableRef = Table;
1123   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1124 
1125   SmallVector<Type*, 8> ArgTys;
1126   while (!TableRef.empty())
1127     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1128 
1129   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1130   // If we see void type as the type of the last argument, it is vararg intrinsic
1131   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1132     ArgTys.pop_back();
1133     return FunctionType::get(ResultTy, ArgTys, true);
1134   }
1135   return FunctionType::get(ResultTy, ArgTys, false);
1136 }
1137 
1138 bool Intrinsic::isOverloaded(ID id) {
1139 #define GET_INTRINSIC_OVERLOAD_TABLE
1140 #include "llvm/IR/IntrinsicImpl.inc"
1141 #undef GET_INTRINSIC_OVERLOAD_TABLE
1142 }
1143 
1144 bool Intrinsic::isLeaf(ID id) {
1145   switch (id) {
1146   default:
1147     return true;
1148 
1149   case Intrinsic::experimental_gc_statepoint:
1150   case Intrinsic::experimental_patchpoint_void:
1151   case Intrinsic::experimental_patchpoint_i64:
1152     return false;
1153   }
1154 }
1155 
1156 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1157 #define GET_INTRINSIC_ATTRIBUTES
1158 #include "llvm/IR/IntrinsicImpl.inc"
1159 #undef GET_INTRINSIC_ATTRIBUTES
1160 
1161 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1162   // There can never be multiple globals with the same name of different types,
1163   // because intrinsics must be a specific type.
1164   return cast<Function>(
1165       M->getOrInsertFunction(getName(id, Tys),
1166                              getType(M->getContext(), id, Tys))
1167           .getCallee());
1168 }
1169 
1170 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1171 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1172 #include "llvm/IR/IntrinsicImpl.inc"
1173 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1174 
1175 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1176 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1177 #include "llvm/IR/IntrinsicImpl.inc"
1178 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1179 
1180 using DeferredIntrinsicMatchPair =
1181     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1182 
1183 static bool matchIntrinsicType(
1184     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1185     SmallVectorImpl<Type *> &ArgTys,
1186     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1187     bool IsDeferredCheck) {
1188   using namespace Intrinsic;
1189 
1190   // If we ran out of descriptors, there are too many arguments.
1191   if (Infos.empty()) return true;
1192 
1193   // Do this before slicing off the 'front' part
1194   auto InfosRef = Infos;
1195   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1196     DeferredChecks.emplace_back(T, InfosRef);
1197     return false;
1198   };
1199 
1200   IITDescriptor D = Infos.front();
1201   Infos = Infos.slice(1);
1202 
1203   switch (D.Kind) {
1204     case IITDescriptor::Void: return !Ty->isVoidTy();
1205     case IITDescriptor::VarArg: return true;
1206     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1207     case IITDescriptor::Token: return !Ty->isTokenTy();
1208     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1209     case IITDescriptor::Half: return !Ty->isHalfTy();
1210     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1211     case IITDescriptor::Float: return !Ty->isFloatTy();
1212     case IITDescriptor::Double: return !Ty->isDoubleTy();
1213     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1214     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1215     case IITDescriptor::Vector: {
1216       VectorType *VT = dyn_cast<VectorType>(Ty);
1217       return !VT || VT->getElementCount() != D.Vector_Width ||
1218              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1219                                 DeferredChecks, IsDeferredCheck);
1220     }
1221     case IITDescriptor::Pointer: {
1222       PointerType *PT = dyn_cast<PointerType>(Ty);
1223       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1224              matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1225                                 DeferredChecks, IsDeferredCheck);
1226     }
1227 
1228     case IITDescriptor::Struct: {
1229       StructType *ST = dyn_cast<StructType>(Ty);
1230       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1231         return true;
1232 
1233       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1234         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1235                                DeferredChecks, IsDeferredCheck))
1236           return true;
1237       return false;
1238     }
1239 
1240     case IITDescriptor::Argument:
1241       // If this is the second occurrence of an argument,
1242       // verify that the later instance matches the previous instance.
1243       if (D.getArgumentNumber() < ArgTys.size())
1244         return Ty != ArgTys[D.getArgumentNumber()];
1245 
1246       if (D.getArgumentNumber() > ArgTys.size() ||
1247           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1248         return IsDeferredCheck || DeferCheck(Ty);
1249 
1250       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1251              "Table consistency error");
1252       ArgTys.push_back(Ty);
1253 
1254       switch (D.getArgumentKind()) {
1255         case IITDescriptor::AK_Any:        return false; // Success
1256         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1257         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1258         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1259         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1260         default:                           break;
1261       }
1262       llvm_unreachable("all argument kinds not covered");
1263 
1264     case IITDescriptor::ExtendArgument: {
1265       // If this is a forward reference, defer the check for later.
1266       if (D.getArgumentNumber() >= ArgTys.size())
1267         return IsDeferredCheck || DeferCheck(Ty);
1268 
1269       Type *NewTy = ArgTys[D.getArgumentNumber()];
1270       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1271         NewTy = VectorType::getExtendedElementVectorType(VTy);
1272       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1273         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1274       else
1275         return true;
1276 
1277       return Ty != NewTy;
1278     }
1279     case IITDescriptor::TruncArgument: {
1280       // If this is a forward reference, defer the check for later.
1281       if (D.getArgumentNumber() >= ArgTys.size())
1282         return IsDeferredCheck || DeferCheck(Ty);
1283 
1284       Type *NewTy = ArgTys[D.getArgumentNumber()];
1285       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1286         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1287       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1288         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1289       else
1290         return true;
1291 
1292       return Ty != NewTy;
1293     }
1294     case IITDescriptor::HalfVecArgument:
1295       // If this is a forward reference, defer the check for later.
1296       if (D.getArgumentNumber() >= ArgTys.size())
1297         return IsDeferredCheck || DeferCheck(Ty);
1298       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1299              VectorType::getHalfElementsVectorType(
1300                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1301     case IITDescriptor::SameVecWidthArgument: {
1302       if (D.getArgumentNumber() >= ArgTys.size()) {
1303         // Defer check and subsequent check for the vector element type.
1304         Infos = Infos.slice(1);
1305         return IsDeferredCheck || DeferCheck(Ty);
1306       }
1307       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1308       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1309       // Both must be vectors of the same number of elements or neither.
1310       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1311         return true;
1312       Type *EltTy = Ty;
1313       if (ThisArgType) {
1314         if (ReferenceType->getElementCount() !=
1315             ThisArgType->getElementCount())
1316           return true;
1317         EltTy = ThisArgType->getElementType();
1318       }
1319       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1320                                 IsDeferredCheck);
1321     }
1322     case IITDescriptor::PtrToArgument: {
1323       if (D.getArgumentNumber() >= ArgTys.size())
1324         return IsDeferredCheck || DeferCheck(Ty);
1325       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1326       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1327       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1328     }
1329     case IITDescriptor::PtrToElt: {
1330       if (D.getArgumentNumber() >= ArgTys.size())
1331         return IsDeferredCheck || DeferCheck(Ty);
1332       VectorType * ReferenceType =
1333         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1334       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1335 
1336       return (!ThisArgType || !ReferenceType ||
1337               ThisArgType->getElementType() != ReferenceType->getElementType());
1338     }
1339     case IITDescriptor::VecOfAnyPtrsToElt: {
1340       unsigned RefArgNumber = D.getRefArgNumber();
1341       if (RefArgNumber >= ArgTys.size()) {
1342         if (IsDeferredCheck)
1343           return true;
1344         // If forward referencing, already add the pointer-vector type and
1345         // defer the checks for later.
1346         ArgTys.push_back(Ty);
1347         return DeferCheck(Ty);
1348       }
1349 
1350       if (!IsDeferredCheck){
1351         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1352                "Table consistency error");
1353         ArgTys.push_back(Ty);
1354       }
1355 
1356       // Verify the overloaded type "matches" the Ref type.
1357       // i.e. Ty is a vector with the same width as Ref.
1358       // Composed of pointers to the same element type as Ref.
1359       VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1360       VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1361       if (!ThisArgVecTy || !ReferenceType ||
1362           (ReferenceType->getNumElements() != ThisArgVecTy->getNumElements()))
1363         return true;
1364       PointerType *ThisArgEltTy =
1365           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1366       if (!ThisArgEltTy)
1367         return true;
1368       return ThisArgEltTy->getElementType() != ReferenceType->getElementType();
1369     }
1370     case IITDescriptor::VecElementArgument: {
1371       if (D.getArgumentNumber() >= ArgTys.size())
1372         return IsDeferredCheck ? true : DeferCheck(Ty);
1373       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1374       return !ReferenceType || Ty != ReferenceType->getElementType();
1375     }
1376     case IITDescriptor::Subdivide2Argument:
1377     case IITDescriptor::Subdivide4Argument: {
1378       // If this is a forward reference, defer the check for later.
1379       if (D.getArgumentNumber() >= ArgTys.size())
1380         return IsDeferredCheck || DeferCheck(Ty);
1381 
1382       Type *NewTy = ArgTys[D.getArgumentNumber()];
1383       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1384         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1385         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1386         return Ty != NewTy;
1387       }
1388       return true;
1389     }
1390     case IITDescriptor::VecOfBitcastsToInt: {
1391       if (D.getArgumentNumber() >= ArgTys.size())
1392         return IsDeferredCheck || DeferCheck(Ty);
1393       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1394       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1395       if (!ThisArgVecTy || !ReferenceType)
1396         return true;
1397       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1398     }
1399   }
1400   llvm_unreachable("unhandled");
1401 }
1402 
1403 Intrinsic::MatchIntrinsicTypesResult
1404 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1405                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1406                                    SmallVectorImpl<Type *> &ArgTys) {
1407   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1408   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1409                          false))
1410     return MatchIntrinsicTypes_NoMatchRet;
1411 
1412   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1413 
1414   for (auto Ty : FTy->params())
1415     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1416       return MatchIntrinsicTypes_NoMatchArg;
1417 
1418   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1419     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1420     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1421                            true))
1422       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1423                                          : MatchIntrinsicTypes_NoMatchArg;
1424   }
1425 
1426   return MatchIntrinsicTypes_Match;
1427 }
1428 
1429 bool
1430 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1431                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1432   // If there are no descriptors left, then it can't be a vararg.
1433   if (Infos.empty())
1434     return isVarArg;
1435 
1436   // There should be only one descriptor remaining at this point.
1437   if (Infos.size() != 1)
1438     return true;
1439 
1440   // Check and verify the descriptor.
1441   IITDescriptor D = Infos.front();
1442   Infos = Infos.slice(1);
1443   if (D.Kind == IITDescriptor::VarArg)
1444     return !isVarArg;
1445 
1446   return true;
1447 }
1448 
1449 bool Intrinsic::getIntrinsicSignature(Function *F,
1450                                       SmallVectorImpl<Type *> &ArgTys) {
1451   Intrinsic::ID ID = F->getIntrinsicID();
1452   if (!ID)
1453     return false;
1454 
1455   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1456   getIntrinsicInfoTableEntries(ID, Table);
1457   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1458 
1459   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1460                                          ArgTys) !=
1461       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1462     return false;
1463   }
1464   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1465                                       TableRef))
1466     return false;
1467   return true;
1468 }
1469 
1470 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1471   SmallVector<Type *, 4> ArgTys;
1472   if (!getIntrinsicSignature(F, ArgTys))
1473     return None;
1474 
1475   Intrinsic::ID ID = F->getIntrinsicID();
1476   StringRef Name = F->getName();
1477   if (Name == Intrinsic::getName(ID, ArgTys))
1478     return None;
1479 
1480   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1481   NewDecl->setCallingConv(F->getCallingConv());
1482   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1483          "Shouldn't change the signature");
1484   return NewDecl;
1485 }
1486 
1487 /// hasAddressTaken - returns true if there are any uses of this function
1488 /// other than direct calls or invokes to it. Optionally ignores callback
1489 /// uses.
1490 bool Function::hasAddressTaken(const User **PutOffender,
1491                                bool IgnoreCallbackUses) const {
1492   for (const Use &U : uses()) {
1493     const User *FU = U.getUser();
1494     if (isa<BlockAddress>(FU))
1495       continue;
1496 
1497     if (IgnoreCallbackUses) {
1498       AbstractCallSite ACS(&U);
1499       if (ACS && ACS.isCallbackCall())
1500         continue;
1501     }
1502 
1503     const auto *Call = dyn_cast<CallBase>(FU);
1504     if (!Call) {
1505       if (PutOffender)
1506         *PutOffender = FU;
1507       return true;
1508     }
1509     if (!Call->isCallee(&U)) {
1510       if (PutOffender)
1511         *PutOffender = FU;
1512       return true;
1513     }
1514   }
1515   return false;
1516 }
1517 
1518 bool Function::isDefTriviallyDead() const {
1519   // Check the linkage
1520   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1521       !hasAvailableExternallyLinkage())
1522     return false;
1523 
1524   // Check if the function is used by anything other than a blockaddress.
1525   for (const User *U : users())
1526     if (!isa<BlockAddress>(U))
1527       return false;
1528 
1529   return true;
1530 }
1531 
1532 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1533 /// setjmp or other function that gcc recognizes as "returning twice".
1534 bool Function::callsFunctionThatReturnsTwice() const {
1535   for (const Instruction &I : instructions(this))
1536     if (const auto *Call = dyn_cast<CallBase>(&I))
1537       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1538         return true;
1539 
1540   return false;
1541 }
1542 
1543 Constant *Function::getPersonalityFn() const {
1544   assert(hasPersonalityFn() && getNumOperands());
1545   return cast<Constant>(Op<0>());
1546 }
1547 
1548 void Function::setPersonalityFn(Constant *Fn) {
1549   setHungoffOperand<0>(Fn);
1550   setValueSubclassDataBit(3, Fn != nullptr);
1551 }
1552 
1553 Constant *Function::getPrefixData() const {
1554   assert(hasPrefixData() && getNumOperands());
1555   return cast<Constant>(Op<1>());
1556 }
1557 
1558 void Function::setPrefixData(Constant *PrefixData) {
1559   setHungoffOperand<1>(PrefixData);
1560   setValueSubclassDataBit(1, PrefixData != nullptr);
1561 }
1562 
1563 Constant *Function::getPrologueData() const {
1564   assert(hasPrologueData() && getNumOperands());
1565   return cast<Constant>(Op<2>());
1566 }
1567 
1568 void Function::setPrologueData(Constant *PrologueData) {
1569   setHungoffOperand<2>(PrologueData);
1570   setValueSubclassDataBit(2, PrologueData != nullptr);
1571 }
1572 
1573 void Function::allocHungoffUselist() {
1574   // If we've already allocated a uselist, stop here.
1575   if (getNumOperands())
1576     return;
1577 
1578   allocHungoffUses(3, /*IsPhi=*/ false);
1579   setNumHungOffUseOperands(3);
1580 
1581   // Initialize the uselist with placeholder operands to allow traversal.
1582   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1583   Op<0>().set(CPN);
1584   Op<1>().set(CPN);
1585   Op<2>().set(CPN);
1586 }
1587 
1588 template <int Idx>
1589 void Function::setHungoffOperand(Constant *C) {
1590   if (C) {
1591     allocHungoffUselist();
1592     Op<Idx>().set(C);
1593   } else if (getNumOperands()) {
1594     Op<Idx>().set(
1595         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1596   }
1597 }
1598 
1599 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1600   assert(Bit < 16 && "SubclassData contains only 16 bits");
1601   if (On)
1602     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1603   else
1604     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1605 }
1606 
1607 void Function::setEntryCount(ProfileCount Count,
1608                              const DenseSet<GlobalValue::GUID> *S) {
1609   assert(Count.hasValue());
1610 #if !defined(NDEBUG)
1611   auto PrevCount = getEntryCount();
1612   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1613 #endif
1614 
1615   auto ImportGUIDs = getImportGUIDs();
1616   if (S == nullptr && ImportGUIDs.size())
1617     S = &ImportGUIDs;
1618 
1619   MDBuilder MDB(getContext());
1620   setMetadata(
1621       LLVMContext::MD_prof,
1622       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1623 }
1624 
1625 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1626                              const DenseSet<GlobalValue::GUID> *Imports) {
1627   setEntryCount(ProfileCount(Count, Type), Imports);
1628 }
1629 
1630 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1631   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1632   if (MD && MD->getOperand(0))
1633     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1634       if (MDS->getString().equals("function_entry_count")) {
1635         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1636         uint64_t Count = CI->getValue().getZExtValue();
1637         // A value of -1 is used for SamplePGO when there were no samples.
1638         // Treat this the same as unknown.
1639         if (Count == (uint64_t)-1)
1640           return ProfileCount::getInvalid();
1641         return ProfileCount(Count, PCT_Real);
1642       } else if (AllowSynthetic &&
1643                  MDS->getString().equals("synthetic_function_entry_count")) {
1644         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1645         uint64_t Count = CI->getValue().getZExtValue();
1646         return ProfileCount(Count, PCT_Synthetic);
1647       }
1648     }
1649   return ProfileCount::getInvalid();
1650 }
1651 
1652 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1653   DenseSet<GlobalValue::GUID> R;
1654   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1655     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1656       if (MDS->getString().equals("function_entry_count"))
1657         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1658           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1659                        ->getValue()
1660                        .getZExtValue());
1661   return R;
1662 }
1663 
1664 void Function::setSectionPrefix(StringRef Prefix) {
1665   MDBuilder MDB(getContext());
1666   setMetadata(LLVMContext::MD_section_prefix,
1667               MDB.createFunctionSectionPrefix(Prefix));
1668 }
1669 
1670 Optional<StringRef> Function::getSectionPrefix() const {
1671   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1672     assert(cast<MDString>(MD->getOperand(0))
1673                ->getString()
1674                .equals("function_section_prefix") &&
1675            "Metadata not match");
1676     return cast<MDString>(MD->getOperand(1))->getString();
1677   }
1678   return None;
1679 }
1680 
1681 bool Function::nullPointerIsDefined() const {
1682   return hasFnAttribute(Attribute::NullPointerIsValid);
1683 }
1684 
1685 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1686   if (F && F->nullPointerIsDefined())
1687     return true;
1688 
1689   if (AS != 0)
1690     return true;
1691 
1692   return false;
1693 }
1694