xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Function.cpp (revision a3c35da61bb201168575f1d18f4ca3e96937d35c)
1  //===- Function.cpp - Implement the Global object classes -----------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file implements the Function class for the IR library.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "llvm/IR/Function.h"
14  #include "SymbolTableListTraitsImpl.h"
15  #include "llvm/ADT/ArrayRef.h"
16  #include "llvm/ADT/DenseSet.h"
17  #include "llvm/ADT/None.h"
18  #include "llvm/ADT/STLExtras.h"
19  #include "llvm/ADT/SmallString.h"
20  #include "llvm/ADT/SmallVector.h"
21  #include "llvm/ADT/StringExtras.h"
22  #include "llvm/ADT/StringRef.h"
23  #include "llvm/IR/Argument.h"
24  #include "llvm/IR/Attributes.h"
25  #include "llvm/IR/BasicBlock.h"
26  #include "llvm/IR/Constant.h"
27  #include "llvm/IR/Constants.h"
28  #include "llvm/IR/DerivedTypes.h"
29  #include "llvm/IR/GlobalValue.h"
30  #include "llvm/IR/InstIterator.h"
31  #include "llvm/IR/Instruction.h"
32  #include "llvm/IR/Instructions.h"
33  #include "llvm/IR/IntrinsicInst.h"
34  #include "llvm/IR/Intrinsics.h"
35  #include "llvm/IR/LLVMContext.h"
36  #include "llvm/IR/MDBuilder.h"
37  #include "llvm/IR/Metadata.h"
38  #include "llvm/IR/Module.h"
39  #include "llvm/IR/SymbolTableListTraits.h"
40  #include "llvm/IR/Type.h"
41  #include "llvm/IR/Use.h"
42  #include "llvm/IR/User.h"
43  #include "llvm/IR/Value.h"
44  #include "llvm/IR/ValueSymbolTable.h"
45  #include "llvm/Support/Casting.h"
46  #include "llvm/Support/Compiler.h"
47  #include "llvm/Support/ErrorHandling.h"
48  #include <algorithm>
49  #include <cassert>
50  #include <cstddef>
51  #include <cstdint>
52  #include <cstring>
53  #include <string>
54  
55  using namespace llvm;
56  using ProfileCount = Function::ProfileCount;
57  
58  // Explicit instantiations of SymbolTableListTraits since some of the methods
59  // are not in the public header file...
60  template class llvm::SymbolTableListTraits<BasicBlock>;
61  
62  //===----------------------------------------------------------------------===//
63  // Argument Implementation
64  //===----------------------------------------------------------------------===//
65  
66  Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
67      : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
68    setName(Name);
69  }
70  
71  void Argument::setParent(Function *parent) {
72    Parent = parent;
73  }
74  
75  bool Argument::hasNonNullAttr() const {
76    if (!getType()->isPointerTy()) return false;
77    if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
78      return true;
79    else if (getDereferenceableBytes() > 0 &&
80             !NullPointerIsDefined(getParent(),
81                                   getType()->getPointerAddressSpace()))
82      return true;
83    return false;
84  }
85  
86  bool Argument::hasByValAttr() const {
87    if (!getType()->isPointerTy()) return false;
88    return hasAttribute(Attribute::ByVal);
89  }
90  
91  bool Argument::hasSwiftSelfAttr() const {
92    return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
93  }
94  
95  bool Argument::hasSwiftErrorAttr() const {
96    return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
97  }
98  
99  bool Argument::hasInAllocaAttr() const {
100    if (!getType()->isPointerTy()) return false;
101    return hasAttribute(Attribute::InAlloca);
102  }
103  
104  bool Argument::hasByValOrInAllocaAttr() const {
105    if (!getType()->isPointerTy()) return false;
106    AttributeList Attrs = getParent()->getAttributes();
107    return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
108           Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca);
109  }
110  
111  unsigned Argument::getParamAlignment() const {
112    assert(getType()->isPointerTy() && "Only pointers have alignments");
113    return getParent()->getParamAlignment(getArgNo());
114  }
115  
116  Type *Argument::getParamByValType() const {
117    assert(getType()->isPointerTy() && "Only pointers have byval types");
118    return getParent()->getParamByValType(getArgNo());
119  }
120  
121  uint64_t Argument::getDereferenceableBytes() const {
122    assert(getType()->isPointerTy() &&
123           "Only pointers have dereferenceable bytes");
124    return getParent()->getParamDereferenceableBytes(getArgNo());
125  }
126  
127  uint64_t Argument::getDereferenceableOrNullBytes() const {
128    assert(getType()->isPointerTy() &&
129           "Only pointers have dereferenceable bytes");
130    return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
131  }
132  
133  bool Argument::hasNestAttr() const {
134    if (!getType()->isPointerTy()) return false;
135    return hasAttribute(Attribute::Nest);
136  }
137  
138  bool Argument::hasNoAliasAttr() const {
139    if (!getType()->isPointerTy()) return false;
140    return hasAttribute(Attribute::NoAlias);
141  }
142  
143  bool Argument::hasNoCaptureAttr() const {
144    if (!getType()->isPointerTy()) return false;
145    return hasAttribute(Attribute::NoCapture);
146  }
147  
148  bool Argument::hasStructRetAttr() const {
149    if (!getType()->isPointerTy()) return false;
150    return hasAttribute(Attribute::StructRet);
151  }
152  
153  bool Argument::hasInRegAttr() const {
154    return hasAttribute(Attribute::InReg);
155  }
156  
157  bool Argument::hasReturnedAttr() const {
158    return hasAttribute(Attribute::Returned);
159  }
160  
161  bool Argument::hasZExtAttr() const {
162    return hasAttribute(Attribute::ZExt);
163  }
164  
165  bool Argument::hasSExtAttr() const {
166    return hasAttribute(Attribute::SExt);
167  }
168  
169  bool Argument::onlyReadsMemory() const {
170    AttributeList Attrs = getParent()->getAttributes();
171    return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
172           Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
173  }
174  
175  void Argument::addAttrs(AttrBuilder &B) {
176    AttributeList AL = getParent()->getAttributes();
177    AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
178    getParent()->setAttributes(AL);
179  }
180  
181  void Argument::addAttr(Attribute::AttrKind Kind) {
182    getParent()->addParamAttr(getArgNo(), Kind);
183  }
184  
185  void Argument::addAttr(Attribute Attr) {
186    getParent()->addParamAttr(getArgNo(), Attr);
187  }
188  
189  void Argument::removeAttr(Attribute::AttrKind Kind) {
190    getParent()->removeParamAttr(getArgNo(), Kind);
191  }
192  
193  bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
194    return getParent()->hasParamAttribute(getArgNo(), Kind);
195  }
196  
197  Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
198    return getParent()->getParamAttribute(getArgNo(), Kind);
199  }
200  
201  //===----------------------------------------------------------------------===//
202  // Helper Methods in Function
203  //===----------------------------------------------------------------------===//
204  
205  LLVMContext &Function::getContext() const {
206    return getType()->getContext();
207  }
208  
209  unsigned Function::getInstructionCount() const {
210    unsigned NumInstrs = 0;
211    for (const BasicBlock &BB : BasicBlocks)
212      NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
213                                 BB.instructionsWithoutDebug().end());
214    return NumInstrs;
215  }
216  
217  Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
218                             const Twine &N, Module &M) {
219    return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
220  }
221  
222  void Function::removeFromParent() {
223    getParent()->getFunctionList().remove(getIterator());
224  }
225  
226  void Function::eraseFromParent() {
227    getParent()->getFunctionList().erase(getIterator());
228  }
229  
230  //===----------------------------------------------------------------------===//
231  // Function Implementation
232  //===----------------------------------------------------------------------===//
233  
234  static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
235    // If AS == -1 and we are passed a valid module pointer we place the function
236    // in the program address space. Otherwise we default to AS0.
237    if (AddrSpace == static_cast<unsigned>(-1))
238      return M ? M->getDataLayout().getProgramAddressSpace() : 0;
239    return AddrSpace;
240  }
241  
242  Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
243                     const Twine &name, Module *ParentModule)
244      : GlobalObject(Ty, Value::FunctionVal,
245                     OperandTraits<Function>::op_begin(this), 0, Linkage, name,
246                     computeAddrSpace(AddrSpace, ParentModule)),
247        NumArgs(Ty->getNumParams()) {
248    assert(FunctionType::isValidReturnType(getReturnType()) &&
249           "invalid return type");
250    setGlobalObjectSubClassData(0);
251  
252    // We only need a symbol table for a function if the context keeps value names
253    if (!getContext().shouldDiscardValueNames())
254      SymTab = make_unique<ValueSymbolTable>();
255  
256    // If the function has arguments, mark them as lazily built.
257    if (Ty->getNumParams())
258      setValueSubclassData(1);   // Set the "has lazy arguments" bit.
259  
260    if (ParentModule)
261      ParentModule->getFunctionList().push_back(this);
262  
263    HasLLVMReservedName = getName().startswith("llvm.");
264    // Ensure intrinsics have the right parameter attributes.
265    // Note, the IntID field will have been set in Value::setName if this function
266    // name is a valid intrinsic ID.
267    if (IntID)
268      setAttributes(Intrinsic::getAttributes(getContext(), IntID));
269  }
270  
271  Function::~Function() {
272    dropAllReferences();    // After this it is safe to delete instructions.
273  
274    // Delete all of the method arguments and unlink from symbol table...
275    if (Arguments)
276      clearArguments();
277  
278    // Remove the function from the on-the-side GC table.
279    clearGC();
280  }
281  
282  void Function::BuildLazyArguments() const {
283    // Create the arguments vector, all arguments start out unnamed.
284    auto *FT = getFunctionType();
285    if (NumArgs > 0) {
286      Arguments = std::allocator<Argument>().allocate(NumArgs);
287      for (unsigned i = 0, e = NumArgs; i != e; ++i) {
288        Type *ArgTy = FT->getParamType(i);
289        assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
290        new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
291      }
292    }
293  
294    // Clear the lazy arguments bit.
295    unsigned SDC = getSubclassDataFromValue();
296    const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
297    assert(!hasLazyArguments());
298  }
299  
300  static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
301    return MutableArrayRef<Argument>(Args, Count);
302  }
303  
304  void Function::clearArguments() {
305    for (Argument &A : makeArgArray(Arguments, NumArgs)) {
306      A.setName("");
307      A.~Argument();
308    }
309    std::allocator<Argument>().deallocate(Arguments, NumArgs);
310    Arguments = nullptr;
311  }
312  
313  void Function::stealArgumentListFrom(Function &Src) {
314    assert(isDeclaration() && "Expected no references to current arguments");
315  
316    // Drop the current arguments, if any, and set the lazy argument bit.
317    if (!hasLazyArguments()) {
318      assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
319                          [](const Argument &A) { return A.use_empty(); }) &&
320             "Expected arguments to be unused in declaration");
321      clearArguments();
322      setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
323    }
324  
325    // Nothing to steal if Src has lazy arguments.
326    if (Src.hasLazyArguments())
327      return;
328  
329    // Steal arguments from Src, and fix the lazy argument bits.
330    assert(arg_size() == Src.arg_size());
331    Arguments = Src.Arguments;
332    Src.Arguments = nullptr;
333    for (Argument &A : makeArgArray(Arguments, NumArgs)) {
334      // FIXME: This does the work of transferNodesFromList inefficiently.
335      SmallString<128> Name;
336      if (A.hasName())
337        Name = A.getName();
338      if (!Name.empty())
339        A.setName("");
340      A.setParent(this);
341      if (!Name.empty())
342        A.setName(Name);
343    }
344  
345    setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
346    assert(!hasLazyArguments());
347    Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
348  }
349  
350  // dropAllReferences() - This function causes all the subinstructions to "let
351  // go" of all references that they are maintaining.  This allows one to
352  // 'delete' a whole class at a time, even though there may be circular
353  // references... first all references are dropped, and all use counts go to
354  // zero.  Then everything is deleted for real.  Note that no operations are
355  // valid on an object that has "dropped all references", except operator
356  // delete.
357  //
358  void Function::dropAllReferences() {
359    setIsMaterializable(false);
360  
361    for (BasicBlock &BB : *this)
362      BB.dropAllReferences();
363  
364    // Delete all basic blocks. They are now unused, except possibly by
365    // blockaddresses, but BasicBlock's destructor takes care of those.
366    while (!BasicBlocks.empty())
367      BasicBlocks.begin()->eraseFromParent();
368  
369    // Drop uses of any optional data (real or placeholder).
370    if (getNumOperands()) {
371      User::dropAllReferences();
372      setNumHungOffUseOperands(0);
373      setValueSubclassData(getSubclassDataFromValue() & ~0xe);
374    }
375  
376    // Metadata is stored in a side-table.
377    clearMetadata();
378  }
379  
380  void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
381    AttributeList PAL = getAttributes();
382    PAL = PAL.addAttribute(getContext(), i, Kind);
383    setAttributes(PAL);
384  }
385  
386  void Function::addAttribute(unsigned i, Attribute Attr) {
387    AttributeList PAL = getAttributes();
388    PAL = PAL.addAttribute(getContext(), i, Attr);
389    setAttributes(PAL);
390  }
391  
392  void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
393    AttributeList PAL = getAttributes();
394    PAL = PAL.addAttributes(getContext(), i, Attrs);
395    setAttributes(PAL);
396  }
397  
398  void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
399    AttributeList PAL = getAttributes();
400    PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
401    setAttributes(PAL);
402  }
403  
404  void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
405    AttributeList PAL = getAttributes();
406    PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
407    setAttributes(PAL);
408  }
409  
410  void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
411    AttributeList PAL = getAttributes();
412    PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
413    setAttributes(PAL);
414  }
415  
416  void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
417    AttributeList PAL = getAttributes();
418    PAL = PAL.removeAttribute(getContext(), i, Kind);
419    setAttributes(PAL);
420  }
421  
422  void Function::removeAttribute(unsigned i, StringRef Kind) {
423    AttributeList PAL = getAttributes();
424    PAL = PAL.removeAttribute(getContext(), i, Kind);
425    setAttributes(PAL);
426  }
427  
428  void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
429    AttributeList PAL = getAttributes();
430    PAL = PAL.removeAttributes(getContext(), i, Attrs);
431    setAttributes(PAL);
432  }
433  
434  void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
435    AttributeList PAL = getAttributes();
436    PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
437    setAttributes(PAL);
438  }
439  
440  void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
441    AttributeList PAL = getAttributes();
442    PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
443    setAttributes(PAL);
444  }
445  
446  void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
447    AttributeList PAL = getAttributes();
448    PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
449    setAttributes(PAL);
450  }
451  
452  void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
453    AttributeList PAL = getAttributes();
454    PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
455    setAttributes(PAL);
456  }
457  
458  void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
459    AttributeList PAL = getAttributes();
460    PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
461    setAttributes(PAL);
462  }
463  
464  void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
465    AttributeList PAL = getAttributes();
466    PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
467    setAttributes(PAL);
468  }
469  
470  void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
471                                                   uint64_t Bytes) {
472    AttributeList PAL = getAttributes();
473    PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
474    setAttributes(PAL);
475  }
476  
477  const std::string &Function::getGC() const {
478    assert(hasGC() && "Function has no collector");
479    return getContext().getGC(*this);
480  }
481  
482  void Function::setGC(std::string Str) {
483    setValueSubclassDataBit(14, !Str.empty());
484    getContext().setGC(*this, std::move(Str));
485  }
486  
487  void Function::clearGC() {
488    if (!hasGC())
489      return;
490    getContext().deleteGC(*this);
491    setValueSubclassDataBit(14, false);
492  }
493  
494  /// Copy all additional attributes (those not needed to create a Function) from
495  /// the Function Src to this one.
496  void Function::copyAttributesFrom(const Function *Src) {
497    GlobalObject::copyAttributesFrom(Src);
498    setCallingConv(Src->getCallingConv());
499    setAttributes(Src->getAttributes());
500    if (Src->hasGC())
501      setGC(Src->getGC());
502    else
503      clearGC();
504    if (Src->hasPersonalityFn())
505      setPersonalityFn(Src->getPersonalityFn());
506    if (Src->hasPrefixData())
507      setPrefixData(Src->getPrefixData());
508    if (Src->hasPrologueData())
509      setPrologueData(Src->getPrologueData());
510  }
511  
512  /// Table of string intrinsic names indexed by enum value.
513  static const char * const IntrinsicNameTable[] = {
514    "not_intrinsic",
515  #define GET_INTRINSIC_NAME_TABLE
516  #include "llvm/IR/IntrinsicImpl.inc"
517  #undef GET_INTRINSIC_NAME_TABLE
518  };
519  
520  /// Table of per-target intrinsic name tables.
521  #define GET_INTRINSIC_TARGET_DATA
522  #include "llvm/IR/IntrinsicImpl.inc"
523  #undef GET_INTRINSIC_TARGET_DATA
524  
525  /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
526  /// target as \c Name, or the generic table if \c Name is not target specific.
527  ///
528  /// Returns the relevant slice of \c IntrinsicNameTable
529  static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
530    assert(Name.startswith("llvm."));
531  
532    ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
533    // Drop "llvm." and take the first dotted component. That will be the target
534    // if this is target specific.
535    StringRef Target = Name.drop_front(5).split('.').first;
536    auto It = partition_point(
537        Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
538    // We've either found the target or just fall back to the generic set, which
539    // is always first.
540    const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
541    return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
542  }
543  
544  /// This does the actual lookup of an intrinsic ID which
545  /// matches the given function name.
546  Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
547    ArrayRef<const char *> NameTable = findTargetSubtable(Name);
548    int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
549    if (Idx == -1)
550      return Intrinsic::not_intrinsic;
551  
552    // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
553    // an index into a sub-table.
554    int Adjust = NameTable.data() - IntrinsicNameTable;
555    Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
556  
557    // If the intrinsic is not overloaded, require an exact match. If it is
558    // overloaded, require either exact or prefix match.
559    const auto MatchSize = strlen(NameTable[Idx]);
560    assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
561    bool IsExactMatch = Name.size() == MatchSize;
562    return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
563  }
564  
565  void Function::recalculateIntrinsicID() {
566    StringRef Name = getName();
567    if (!Name.startswith("llvm.")) {
568      HasLLVMReservedName = false;
569      IntID = Intrinsic::not_intrinsic;
570      return;
571    }
572    HasLLVMReservedName = true;
573    IntID = lookupIntrinsicID(Name);
574  }
575  
576  /// Returns a stable mangling for the type specified for use in the name
577  /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
578  /// of named types is simply their name.  Manglings for unnamed types consist
579  /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
580  /// combined with the mangling of their component types.  A vararg function
581  /// type will have a suffix of 'vararg'.  Since function types can contain
582  /// other function types, we close a function type mangling with suffix 'f'
583  /// which can't be confused with it's prefix.  This ensures we don't have
584  /// collisions between two unrelated function types. Otherwise, you might
585  /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
586  ///
587  static std::string getMangledTypeStr(Type* Ty) {
588    std::string Result;
589    if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
590      Result += "p" + utostr(PTyp->getAddressSpace()) +
591        getMangledTypeStr(PTyp->getElementType());
592    } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
593      Result += "a" + utostr(ATyp->getNumElements()) +
594        getMangledTypeStr(ATyp->getElementType());
595    } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
596      if (!STyp->isLiteral()) {
597        Result += "s_";
598        Result += STyp->getName();
599      } else {
600        Result += "sl_";
601        for (auto Elem : STyp->elements())
602          Result += getMangledTypeStr(Elem);
603      }
604      // Ensure nested structs are distinguishable.
605      Result += "s";
606    } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
607      Result += "f_" + getMangledTypeStr(FT->getReturnType());
608      for (size_t i = 0; i < FT->getNumParams(); i++)
609        Result += getMangledTypeStr(FT->getParamType(i));
610      if (FT->isVarArg())
611        Result += "vararg";
612      // Ensure nested function types are distinguishable.
613      Result += "f";
614    } else if (isa<VectorType>(Ty)) {
615      Result += "v" + utostr(Ty->getVectorNumElements()) +
616        getMangledTypeStr(Ty->getVectorElementType());
617    } else if (Ty) {
618      switch (Ty->getTypeID()) {
619      default: llvm_unreachable("Unhandled type");
620      case Type::VoidTyID:      Result += "isVoid";   break;
621      case Type::MetadataTyID:  Result += "Metadata"; break;
622      case Type::HalfTyID:      Result += "f16";      break;
623      case Type::FloatTyID:     Result += "f32";      break;
624      case Type::DoubleTyID:    Result += "f64";      break;
625      case Type::X86_FP80TyID:  Result += "f80";      break;
626      case Type::FP128TyID:     Result += "f128";     break;
627      case Type::PPC_FP128TyID: Result += "ppcf128";  break;
628      case Type::X86_MMXTyID:   Result += "x86mmx";   break;
629      case Type::IntegerTyID:
630        Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
631        break;
632      }
633    }
634    return Result;
635  }
636  
637  StringRef Intrinsic::getName(ID id) {
638    assert(id < num_intrinsics && "Invalid intrinsic ID!");
639    assert(!isOverloaded(id) &&
640           "This version of getName does not support overloading");
641    return IntrinsicNameTable[id];
642  }
643  
644  std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
645    assert(id < num_intrinsics && "Invalid intrinsic ID!");
646    std::string Result(IntrinsicNameTable[id]);
647    for (Type *Ty : Tys) {
648      Result += "." + getMangledTypeStr(Ty);
649    }
650    return Result;
651  }
652  
653  /// IIT_Info - These are enumerators that describe the entries returned by the
654  /// getIntrinsicInfoTableEntries function.
655  ///
656  /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
657  enum IIT_Info {
658    // Common values should be encoded with 0-15.
659    IIT_Done = 0,
660    IIT_I1   = 1,
661    IIT_I8   = 2,
662    IIT_I16  = 3,
663    IIT_I32  = 4,
664    IIT_I64  = 5,
665    IIT_F16  = 6,
666    IIT_F32  = 7,
667    IIT_F64  = 8,
668    IIT_V2   = 9,
669    IIT_V4   = 10,
670    IIT_V8   = 11,
671    IIT_V16  = 12,
672    IIT_V32  = 13,
673    IIT_PTR  = 14,
674    IIT_ARG  = 15,
675  
676    // Values from 16+ are only encodable with the inefficient encoding.
677    IIT_V64  = 16,
678    IIT_MMX  = 17,
679    IIT_TOKEN = 18,
680    IIT_METADATA = 19,
681    IIT_EMPTYSTRUCT = 20,
682    IIT_STRUCT2 = 21,
683    IIT_STRUCT3 = 22,
684    IIT_STRUCT4 = 23,
685    IIT_STRUCT5 = 24,
686    IIT_EXTEND_ARG = 25,
687    IIT_TRUNC_ARG = 26,
688    IIT_ANYPTR = 27,
689    IIT_V1   = 28,
690    IIT_VARARG = 29,
691    IIT_HALF_VEC_ARG = 30,
692    IIT_SAME_VEC_WIDTH_ARG = 31,
693    IIT_PTR_TO_ARG = 32,
694    IIT_PTR_TO_ELT = 33,
695    IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
696    IIT_I128 = 35,
697    IIT_V512 = 36,
698    IIT_V1024 = 37,
699    IIT_STRUCT6 = 38,
700    IIT_STRUCT7 = 39,
701    IIT_STRUCT8 = 40,
702    IIT_F128 = 41,
703    IIT_VEC_ELEMENT = 42
704  };
705  
706  static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
707                        SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
708    using namespace Intrinsic;
709  
710    IIT_Info Info = IIT_Info(Infos[NextElt++]);
711    unsigned StructElts = 2;
712  
713    switch (Info) {
714    case IIT_Done:
715      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
716      return;
717    case IIT_VARARG:
718      OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
719      return;
720    case IIT_MMX:
721      OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
722      return;
723    case IIT_TOKEN:
724      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
725      return;
726    case IIT_METADATA:
727      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
728      return;
729    case IIT_F16:
730      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
731      return;
732    case IIT_F32:
733      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
734      return;
735    case IIT_F64:
736      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
737      return;
738    case IIT_F128:
739      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
740      return;
741    case IIT_I1:
742      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
743      return;
744    case IIT_I8:
745      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
746      return;
747    case IIT_I16:
748      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
749      return;
750    case IIT_I32:
751      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
752      return;
753    case IIT_I64:
754      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
755      return;
756    case IIT_I128:
757      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
758      return;
759    case IIT_V1:
760      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
761      DecodeIITType(NextElt, Infos, OutputTable);
762      return;
763    case IIT_V2:
764      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
765      DecodeIITType(NextElt, Infos, OutputTable);
766      return;
767    case IIT_V4:
768      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
769      DecodeIITType(NextElt, Infos, OutputTable);
770      return;
771    case IIT_V8:
772      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
773      DecodeIITType(NextElt, Infos, OutputTable);
774      return;
775    case IIT_V16:
776      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
777      DecodeIITType(NextElt, Infos, OutputTable);
778      return;
779    case IIT_V32:
780      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
781      DecodeIITType(NextElt, Infos, OutputTable);
782      return;
783    case IIT_V64:
784      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
785      DecodeIITType(NextElt, Infos, OutputTable);
786      return;
787    case IIT_V512:
788      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
789      DecodeIITType(NextElt, Infos, OutputTable);
790      return;
791    case IIT_V1024:
792      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
793      DecodeIITType(NextElt, Infos, OutputTable);
794      return;
795    case IIT_PTR:
796      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
797      DecodeIITType(NextElt, Infos, OutputTable);
798      return;
799    case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
800      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
801                                               Infos[NextElt++]));
802      DecodeIITType(NextElt, Infos, OutputTable);
803      return;
804    }
805    case IIT_ARG: {
806      unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
807      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
808      return;
809    }
810    case IIT_EXTEND_ARG: {
811      unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
812      OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
813                                               ArgInfo));
814      return;
815    }
816    case IIT_TRUNC_ARG: {
817      unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
818      OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
819                                               ArgInfo));
820      return;
821    }
822    case IIT_HALF_VEC_ARG: {
823      unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
824      OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
825                                               ArgInfo));
826      return;
827    }
828    case IIT_SAME_VEC_WIDTH_ARG: {
829      unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
830      OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
831                                               ArgInfo));
832      return;
833    }
834    case IIT_PTR_TO_ARG: {
835      unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
836      OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
837                                               ArgInfo));
838      return;
839    }
840    case IIT_PTR_TO_ELT: {
841      unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
842      OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
843      return;
844    }
845    case IIT_VEC_OF_ANYPTRS_TO_ELT: {
846      unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
847      unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
848      OutputTable.push_back(
849          IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
850      return;
851    }
852    case IIT_EMPTYSTRUCT:
853      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
854      return;
855    case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
856    case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
857    case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
858    case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
859    case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
860    case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
861    case IIT_STRUCT2: {
862      OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
863  
864      for (unsigned i = 0; i != StructElts; ++i)
865        DecodeIITType(NextElt, Infos, OutputTable);
866      return;
867    }
868    case IIT_VEC_ELEMENT: {
869      unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
870      OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
871                                               ArgInfo));
872      return;
873    }
874    }
875    llvm_unreachable("unhandled");
876  }
877  
878  #define GET_INTRINSIC_GENERATOR_GLOBAL
879  #include "llvm/IR/IntrinsicImpl.inc"
880  #undef GET_INTRINSIC_GENERATOR_GLOBAL
881  
882  void Intrinsic::getIntrinsicInfoTableEntries(ID id,
883                                               SmallVectorImpl<IITDescriptor> &T){
884    // Check to see if the intrinsic's type was expressible by the table.
885    unsigned TableVal = IIT_Table[id-1];
886  
887    // Decode the TableVal into an array of IITValues.
888    SmallVector<unsigned char, 8> IITValues;
889    ArrayRef<unsigned char> IITEntries;
890    unsigned NextElt = 0;
891    if ((TableVal >> 31) != 0) {
892      // This is an offset into the IIT_LongEncodingTable.
893      IITEntries = IIT_LongEncodingTable;
894  
895      // Strip sentinel bit.
896      NextElt = (TableVal << 1) >> 1;
897    } else {
898      // Decode the TableVal into an array of IITValues.  If the entry was encoded
899      // into a single word in the table itself, decode it now.
900      do {
901        IITValues.push_back(TableVal & 0xF);
902        TableVal >>= 4;
903      } while (TableVal);
904  
905      IITEntries = IITValues;
906      NextElt = 0;
907    }
908  
909    // Okay, decode the table into the output vector of IITDescriptors.
910    DecodeIITType(NextElt, IITEntries, T);
911    while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
912      DecodeIITType(NextElt, IITEntries, T);
913  }
914  
915  static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
916                               ArrayRef<Type*> Tys, LLVMContext &Context) {
917    using namespace Intrinsic;
918  
919    IITDescriptor D = Infos.front();
920    Infos = Infos.slice(1);
921  
922    switch (D.Kind) {
923    case IITDescriptor::Void: return Type::getVoidTy(Context);
924    case IITDescriptor::VarArg: return Type::getVoidTy(Context);
925    case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
926    case IITDescriptor::Token: return Type::getTokenTy(Context);
927    case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
928    case IITDescriptor::Half: return Type::getHalfTy(Context);
929    case IITDescriptor::Float: return Type::getFloatTy(Context);
930    case IITDescriptor::Double: return Type::getDoubleTy(Context);
931    case IITDescriptor::Quad: return Type::getFP128Ty(Context);
932  
933    case IITDescriptor::Integer:
934      return IntegerType::get(Context, D.Integer_Width);
935    case IITDescriptor::Vector:
936      return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
937    case IITDescriptor::Pointer:
938      return PointerType::get(DecodeFixedType(Infos, Tys, Context),
939                              D.Pointer_AddressSpace);
940    case IITDescriptor::Struct: {
941      SmallVector<Type *, 8> Elts;
942      for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
943        Elts.push_back(DecodeFixedType(Infos, Tys, Context));
944      return StructType::get(Context, Elts);
945    }
946    case IITDescriptor::Argument:
947      return Tys[D.getArgumentNumber()];
948    case IITDescriptor::ExtendArgument: {
949      Type *Ty = Tys[D.getArgumentNumber()];
950      if (VectorType *VTy = dyn_cast<VectorType>(Ty))
951        return VectorType::getExtendedElementVectorType(VTy);
952  
953      return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
954    }
955    case IITDescriptor::TruncArgument: {
956      Type *Ty = Tys[D.getArgumentNumber()];
957      if (VectorType *VTy = dyn_cast<VectorType>(Ty))
958        return VectorType::getTruncatedElementVectorType(VTy);
959  
960      IntegerType *ITy = cast<IntegerType>(Ty);
961      assert(ITy->getBitWidth() % 2 == 0);
962      return IntegerType::get(Context, ITy->getBitWidth() / 2);
963    }
964    case IITDescriptor::HalfVecArgument:
965      return VectorType::getHalfElementsVectorType(cast<VectorType>(
966                                                    Tys[D.getArgumentNumber()]));
967    case IITDescriptor::SameVecWidthArgument: {
968      Type *EltTy = DecodeFixedType(Infos, Tys, Context);
969      Type *Ty = Tys[D.getArgumentNumber()];
970      if (auto *VTy = dyn_cast<VectorType>(Ty))
971        return VectorType::get(EltTy, VTy->getNumElements());
972      return EltTy;
973    }
974    case IITDescriptor::PtrToArgument: {
975      Type *Ty = Tys[D.getArgumentNumber()];
976      return PointerType::getUnqual(Ty);
977    }
978    case IITDescriptor::PtrToElt: {
979      Type *Ty = Tys[D.getArgumentNumber()];
980      VectorType *VTy = dyn_cast<VectorType>(Ty);
981      if (!VTy)
982        llvm_unreachable("Expected an argument of Vector Type");
983      Type *EltTy = VTy->getVectorElementType();
984      return PointerType::getUnqual(EltTy);
985    }
986    case IITDescriptor::VecElementArgument: {
987      Type *Ty = Tys[D.getArgumentNumber()];
988      if (VectorType *VTy = dyn_cast<VectorType>(Ty))
989        return VTy->getElementType();
990      llvm_unreachable("Expected an argument of Vector Type");
991    }
992    case IITDescriptor::VecOfAnyPtrsToElt:
993      // Return the overloaded type (which determines the pointers address space)
994      return Tys[D.getOverloadArgNumber()];
995    }
996    llvm_unreachable("unhandled");
997  }
998  
999  FunctionType *Intrinsic::getType(LLVMContext &Context,
1000                                   ID id, ArrayRef<Type*> Tys) {
1001    SmallVector<IITDescriptor, 8> Table;
1002    getIntrinsicInfoTableEntries(id, Table);
1003  
1004    ArrayRef<IITDescriptor> TableRef = Table;
1005    Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1006  
1007    SmallVector<Type*, 8> ArgTys;
1008    while (!TableRef.empty())
1009      ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1010  
1011    // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1012    // If we see void type as the type of the last argument, it is vararg intrinsic
1013    if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1014      ArgTys.pop_back();
1015      return FunctionType::get(ResultTy, ArgTys, true);
1016    }
1017    return FunctionType::get(ResultTy, ArgTys, false);
1018  }
1019  
1020  bool Intrinsic::isOverloaded(ID id) {
1021  #define GET_INTRINSIC_OVERLOAD_TABLE
1022  #include "llvm/IR/IntrinsicImpl.inc"
1023  #undef GET_INTRINSIC_OVERLOAD_TABLE
1024  }
1025  
1026  bool Intrinsic::isLeaf(ID id) {
1027    switch (id) {
1028    default:
1029      return true;
1030  
1031    case Intrinsic::experimental_gc_statepoint:
1032    case Intrinsic::experimental_patchpoint_void:
1033    case Intrinsic::experimental_patchpoint_i64:
1034      return false;
1035    }
1036  }
1037  
1038  /// This defines the "Intrinsic::getAttributes(ID id)" method.
1039  #define GET_INTRINSIC_ATTRIBUTES
1040  #include "llvm/IR/IntrinsicImpl.inc"
1041  #undef GET_INTRINSIC_ATTRIBUTES
1042  
1043  Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1044    // There can never be multiple globals with the same name of different types,
1045    // because intrinsics must be a specific type.
1046    return cast<Function>(
1047        M->getOrInsertFunction(getName(id, Tys),
1048                               getType(M->getContext(), id, Tys))
1049            .getCallee());
1050  }
1051  
1052  // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1053  #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1054  #include "llvm/IR/IntrinsicImpl.inc"
1055  #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1056  
1057  // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1058  #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1059  #include "llvm/IR/IntrinsicImpl.inc"
1060  #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1061  
1062  using DeferredIntrinsicMatchPair =
1063      std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1064  
1065  static bool matchIntrinsicType(
1066      Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1067      SmallVectorImpl<Type *> &ArgTys,
1068      SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1069      bool IsDeferredCheck) {
1070    using namespace Intrinsic;
1071  
1072    // If we ran out of descriptors, there are too many arguments.
1073    if (Infos.empty()) return true;
1074  
1075    // Do this before slicing off the 'front' part
1076    auto InfosRef = Infos;
1077    auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1078      DeferredChecks.emplace_back(T, InfosRef);
1079      return false;
1080    };
1081  
1082    IITDescriptor D = Infos.front();
1083    Infos = Infos.slice(1);
1084  
1085    switch (D.Kind) {
1086      case IITDescriptor::Void: return !Ty->isVoidTy();
1087      case IITDescriptor::VarArg: return true;
1088      case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1089      case IITDescriptor::Token: return !Ty->isTokenTy();
1090      case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1091      case IITDescriptor::Half: return !Ty->isHalfTy();
1092      case IITDescriptor::Float: return !Ty->isFloatTy();
1093      case IITDescriptor::Double: return !Ty->isDoubleTy();
1094      case IITDescriptor::Quad: return !Ty->isFP128Ty();
1095      case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1096      case IITDescriptor::Vector: {
1097        VectorType *VT = dyn_cast<VectorType>(Ty);
1098        return !VT || VT->getNumElements() != D.Vector_Width ||
1099               matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1100                                  DeferredChecks, IsDeferredCheck);
1101      }
1102      case IITDescriptor::Pointer: {
1103        PointerType *PT = dyn_cast<PointerType>(Ty);
1104        return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1105               matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1106                                  DeferredChecks, IsDeferredCheck);
1107      }
1108  
1109      case IITDescriptor::Struct: {
1110        StructType *ST = dyn_cast<StructType>(Ty);
1111        if (!ST || ST->getNumElements() != D.Struct_NumElements)
1112          return true;
1113  
1114        for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1115          if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1116                                 DeferredChecks, IsDeferredCheck))
1117            return true;
1118        return false;
1119      }
1120  
1121      case IITDescriptor::Argument:
1122        // If this is the second occurrence of an argument,
1123        // verify that the later instance matches the previous instance.
1124        if (D.getArgumentNumber() < ArgTys.size())
1125          return Ty != ArgTys[D.getArgumentNumber()];
1126  
1127        if (D.getArgumentNumber() > ArgTys.size() ||
1128            D.getArgumentKind() == IITDescriptor::AK_MatchType)
1129          return IsDeferredCheck || DeferCheck(Ty);
1130  
1131        assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1132               "Table consistency error");
1133        ArgTys.push_back(Ty);
1134  
1135        switch (D.getArgumentKind()) {
1136          case IITDescriptor::AK_Any:        return false; // Success
1137          case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1138          case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1139          case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1140          case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1141          default:                           break;
1142        }
1143        llvm_unreachable("all argument kinds not covered");
1144  
1145      case IITDescriptor::ExtendArgument: {
1146        // If this is a forward reference, defer the check for later.
1147        if (D.getArgumentNumber() >= ArgTys.size())
1148          return IsDeferredCheck || DeferCheck(Ty);
1149  
1150        Type *NewTy = ArgTys[D.getArgumentNumber()];
1151        if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1152          NewTy = VectorType::getExtendedElementVectorType(VTy);
1153        else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1154          NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1155        else
1156          return true;
1157  
1158        return Ty != NewTy;
1159      }
1160      case IITDescriptor::TruncArgument: {
1161        // If this is a forward reference, defer the check for later.
1162        if (D.getArgumentNumber() >= ArgTys.size())
1163          return IsDeferredCheck || DeferCheck(Ty);
1164  
1165        Type *NewTy = ArgTys[D.getArgumentNumber()];
1166        if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1167          NewTy = VectorType::getTruncatedElementVectorType(VTy);
1168        else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1169          NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1170        else
1171          return true;
1172  
1173        return Ty != NewTy;
1174      }
1175      case IITDescriptor::HalfVecArgument:
1176        // If this is a forward reference, defer the check for later.
1177        return D.getArgumentNumber() >= ArgTys.size() ||
1178               !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1179               VectorType::getHalfElementsVectorType(
1180                       cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1181      case IITDescriptor::SameVecWidthArgument: {
1182        if (D.getArgumentNumber() >= ArgTys.size()) {
1183          // Defer check and subsequent check for the vector element type.
1184          Infos = Infos.slice(1);
1185          return IsDeferredCheck || DeferCheck(Ty);
1186        }
1187        auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1188        auto *ThisArgType = dyn_cast<VectorType>(Ty);
1189        // Both must be vectors of the same number of elements or neither.
1190        if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1191          return true;
1192        Type *EltTy = Ty;
1193        if (ThisArgType) {
1194          if (ReferenceType->getVectorNumElements() !=
1195              ThisArgType->getVectorNumElements())
1196            return true;
1197          EltTy = ThisArgType->getVectorElementType();
1198        }
1199        return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1200                                  IsDeferredCheck);
1201      }
1202      case IITDescriptor::PtrToArgument: {
1203        if (D.getArgumentNumber() >= ArgTys.size())
1204          return IsDeferredCheck || DeferCheck(Ty);
1205        Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1206        PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1207        return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1208      }
1209      case IITDescriptor::PtrToElt: {
1210        if (D.getArgumentNumber() >= ArgTys.size())
1211          return IsDeferredCheck || DeferCheck(Ty);
1212        VectorType * ReferenceType =
1213          dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1214        PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1215  
1216        return (!ThisArgType || !ReferenceType ||
1217                ThisArgType->getElementType() != ReferenceType->getElementType());
1218      }
1219      case IITDescriptor::VecOfAnyPtrsToElt: {
1220        unsigned RefArgNumber = D.getRefArgNumber();
1221        if (RefArgNumber >= ArgTys.size()) {
1222          if (IsDeferredCheck)
1223            return true;
1224          // If forward referencing, already add the pointer-vector type and
1225          // defer the checks for later.
1226          ArgTys.push_back(Ty);
1227          return DeferCheck(Ty);
1228        }
1229  
1230        if (!IsDeferredCheck){
1231          assert(D.getOverloadArgNumber() == ArgTys.size() &&
1232                 "Table consistency error");
1233          ArgTys.push_back(Ty);
1234        }
1235  
1236        // Verify the overloaded type "matches" the Ref type.
1237        // i.e. Ty is a vector with the same width as Ref.
1238        // Composed of pointers to the same element type as Ref.
1239        VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1240        VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1241        if (!ThisArgVecTy || !ReferenceType ||
1242            (ReferenceType->getVectorNumElements() !=
1243             ThisArgVecTy->getVectorNumElements()))
1244          return true;
1245        PointerType *ThisArgEltTy =
1246                dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1247        if (!ThisArgEltTy)
1248          return true;
1249        return ThisArgEltTy->getElementType() !=
1250               ReferenceType->getVectorElementType();
1251      }
1252      case IITDescriptor::VecElementArgument: {
1253        if (D.getArgumentNumber() >= ArgTys.size())
1254          return IsDeferredCheck ? true : DeferCheck(Ty);
1255        auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1256        return !ReferenceType || Ty != ReferenceType->getElementType();
1257      }
1258    }
1259    llvm_unreachable("unhandled");
1260  }
1261  
1262  Intrinsic::MatchIntrinsicTypesResult
1263  Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1264                                     ArrayRef<Intrinsic::IITDescriptor> &Infos,
1265                                     SmallVectorImpl<Type *> &ArgTys) {
1266    SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1267    if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1268                           false))
1269      return MatchIntrinsicTypes_NoMatchRet;
1270  
1271    unsigned NumDeferredReturnChecks = DeferredChecks.size();
1272  
1273    for (auto Ty : FTy->params())
1274      if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1275        return MatchIntrinsicTypes_NoMatchArg;
1276  
1277    for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1278      DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1279      if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1280                             true))
1281        return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1282                                           : MatchIntrinsicTypes_NoMatchArg;
1283    }
1284  
1285    return MatchIntrinsicTypes_Match;
1286  }
1287  
1288  bool
1289  Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1290                                  ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1291    // If there are no descriptors left, then it can't be a vararg.
1292    if (Infos.empty())
1293      return isVarArg;
1294  
1295    // There should be only one descriptor remaining at this point.
1296    if (Infos.size() != 1)
1297      return true;
1298  
1299    // Check and verify the descriptor.
1300    IITDescriptor D = Infos.front();
1301    Infos = Infos.slice(1);
1302    if (D.Kind == IITDescriptor::VarArg)
1303      return !isVarArg;
1304  
1305    return true;
1306  }
1307  
1308  Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1309    Intrinsic::ID ID = F->getIntrinsicID();
1310    if (!ID)
1311      return None;
1312  
1313    FunctionType *FTy = F->getFunctionType();
1314    // Accumulate an array of overloaded types for the given intrinsic
1315    SmallVector<Type *, 4> ArgTys;
1316    {
1317      SmallVector<Intrinsic::IITDescriptor, 8> Table;
1318      getIntrinsicInfoTableEntries(ID, Table);
1319      ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1320  
1321      if (Intrinsic::matchIntrinsicSignature(FTy, TableRef, ArgTys))
1322        return None;
1323      if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1324        return None;
1325    }
1326  
1327    StringRef Name = F->getName();
1328    if (Name == Intrinsic::getName(ID, ArgTys))
1329      return None;
1330  
1331    auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1332    NewDecl->setCallingConv(F->getCallingConv());
1333    assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1334    return NewDecl;
1335  }
1336  
1337  /// hasAddressTaken - returns true if there are any uses of this function
1338  /// other than direct calls or invokes to it.
1339  bool Function::hasAddressTaken(const User* *PutOffender) const {
1340    for (const Use &U : uses()) {
1341      const User *FU = U.getUser();
1342      if (isa<BlockAddress>(FU))
1343        continue;
1344      const auto *Call = dyn_cast<CallBase>(FU);
1345      if (!Call) {
1346        if (PutOffender)
1347          *PutOffender = FU;
1348        return true;
1349      }
1350      if (!Call->isCallee(&U)) {
1351        if (PutOffender)
1352          *PutOffender = FU;
1353        return true;
1354      }
1355    }
1356    return false;
1357  }
1358  
1359  bool Function::isDefTriviallyDead() const {
1360    // Check the linkage
1361    if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1362        !hasAvailableExternallyLinkage())
1363      return false;
1364  
1365    // Check if the function is used by anything other than a blockaddress.
1366    for (const User *U : users())
1367      if (!isa<BlockAddress>(U))
1368        return false;
1369  
1370    return true;
1371  }
1372  
1373  /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1374  /// setjmp or other function that gcc recognizes as "returning twice".
1375  bool Function::callsFunctionThatReturnsTwice() const {
1376    for (const Instruction &I : instructions(this))
1377      if (const auto *Call = dyn_cast<CallBase>(&I))
1378        if (Call->hasFnAttr(Attribute::ReturnsTwice))
1379          return true;
1380  
1381    return false;
1382  }
1383  
1384  Constant *Function::getPersonalityFn() const {
1385    assert(hasPersonalityFn() && getNumOperands());
1386    return cast<Constant>(Op<0>());
1387  }
1388  
1389  void Function::setPersonalityFn(Constant *Fn) {
1390    setHungoffOperand<0>(Fn);
1391    setValueSubclassDataBit(3, Fn != nullptr);
1392  }
1393  
1394  Constant *Function::getPrefixData() const {
1395    assert(hasPrefixData() && getNumOperands());
1396    return cast<Constant>(Op<1>());
1397  }
1398  
1399  void Function::setPrefixData(Constant *PrefixData) {
1400    setHungoffOperand<1>(PrefixData);
1401    setValueSubclassDataBit(1, PrefixData != nullptr);
1402  }
1403  
1404  Constant *Function::getPrologueData() const {
1405    assert(hasPrologueData() && getNumOperands());
1406    return cast<Constant>(Op<2>());
1407  }
1408  
1409  void Function::setPrologueData(Constant *PrologueData) {
1410    setHungoffOperand<2>(PrologueData);
1411    setValueSubclassDataBit(2, PrologueData != nullptr);
1412  }
1413  
1414  void Function::allocHungoffUselist() {
1415    // If we've already allocated a uselist, stop here.
1416    if (getNumOperands())
1417      return;
1418  
1419    allocHungoffUses(3, /*IsPhi=*/ false);
1420    setNumHungOffUseOperands(3);
1421  
1422    // Initialize the uselist with placeholder operands to allow traversal.
1423    auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1424    Op<0>().set(CPN);
1425    Op<1>().set(CPN);
1426    Op<2>().set(CPN);
1427  }
1428  
1429  template <int Idx>
1430  void Function::setHungoffOperand(Constant *C) {
1431    if (C) {
1432      allocHungoffUselist();
1433      Op<Idx>().set(C);
1434    } else if (getNumOperands()) {
1435      Op<Idx>().set(
1436          ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1437    }
1438  }
1439  
1440  void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1441    assert(Bit < 16 && "SubclassData contains only 16 bits");
1442    if (On)
1443      setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1444    else
1445      setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1446  }
1447  
1448  void Function::setEntryCount(ProfileCount Count,
1449                               const DenseSet<GlobalValue::GUID> *S) {
1450    assert(Count.hasValue());
1451  #if !defined(NDEBUG)
1452    auto PrevCount = getEntryCount();
1453    assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1454  #endif
1455    MDBuilder MDB(getContext());
1456    setMetadata(
1457        LLVMContext::MD_prof,
1458        MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1459  }
1460  
1461  void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1462                               const DenseSet<GlobalValue::GUID> *Imports) {
1463    setEntryCount(ProfileCount(Count, Type), Imports);
1464  }
1465  
1466  ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1467    MDNode *MD = getMetadata(LLVMContext::MD_prof);
1468    if (MD && MD->getOperand(0))
1469      if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1470        if (MDS->getString().equals("function_entry_count")) {
1471          ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1472          uint64_t Count = CI->getValue().getZExtValue();
1473          // A value of -1 is used for SamplePGO when there were no samples.
1474          // Treat this the same as unknown.
1475          if (Count == (uint64_t)-1)
1476            return ProfileCount::getInvalid();
1477          return ProfileCount(Count, PCT_Real);
1478        } else if (AllowSynthetic &&
1479                   MDS->getString().equals("synthetic_function_entry_count")) {
1480          ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1481          uint64_t Count = CI->getValue().getZExtValue();
1482          return ProfileCount(Count, PCT_Synthetic);
1483        }
1484      }
1485    return ProfileCount::getInvalid();
1486  }
1487  
1488  DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1489    DenseSet<GlobalValue::GUID> R;
1490    if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1491      if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1492        if (MDS->getString().equals("function_entry_count"))
1493          for (unsigned i = 2; i < MD->getNumOperands(); i++)
1494            R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1495                         ->getValue()
1496                         .getZExtValue());
1497    return R;
1498  }
1499  
1500  void Function::setSectionPrefix(StringRef Prefix) {
1501    MDBuilder MDB(getContext());
1502    setMetadata(LLVMContext::MD_section_prefix,
1503                MDB.createFunctionSectionPrefix(Prefix));
1504  }
1505  
1506  Optional<StringRef> Function::getSectionPrefix() const {
1507    if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1508      assert(cast<MDString>(MD->getOperand(0))
1509                 ->getString()
1510                 .equals("function_section_prefix") &&
1511             "Metadata not match");
1512      return cast<MDString>(MD->getOperand(1))->getString();
1513    }
1514    return None;
1515  }
1516  
1517  bool Function::nullPointerIsDefined() const {
1518    return getFnAttribute("null-pointer-is-valid")
1519            .getValueAsString()
1520            .equals("true");
1521  }
1522  
1523  bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1524    if (F && F->nullPointerIsDefined())
1525      return true;
1526  
1527    if (AS != 0)
1528      return true;
1529  
1530    return false;
1531  }
1532