1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/AbstractCallSite.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constant.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalValue.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/IntrinsicsAArch64.h" 37 #include "llvm/IR/IntrinsicsAMDGPU.h" 38 #include "llvm/IR/IntrinsicsARM.h" 39 #include "llvm/IR/IntrinsicsBPF.h" 40 #include "llvm/IR/IntrinsicsHexagon.h" 41 #include "llvm/IR/IntrinsicsMips.h" 42 #include "llvm/IR/IntrinsicsNVPTX.h" 43 #include "llvm/IR/IntrinsicsPowerPC.h" 44 #include "llvm/IR/IntrinsicsR600.h" 45 #include "llvm/IR/IntrinsicsRISCV.h" 46 #include "llvm/IR/IntrinsicsS390.h" 47 #include "llvm/IR/IntrinsicsVE.h" 48 #include "llvm/IR/IntrinsicsWebAssembly.h" 49 #include "llvm/IR/IntrinsicsX86.h" 50 #include "llvm/IR/IntrinsicsXCore.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/SymbolTableListTraits.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/ValueSymbolTable.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstddef> 69 #include <cstdint> 70 #include <cstring> 71 #include <string> 72 73 using namespace llvm; 74 using ProfileCount = Function::ProfileCount; 75 76 // Explicit instantiations of SymbolTableListTraits since some of the methods 77 // are not in the public header file... 78 template class llvm::SymbolTableListTraits<BasicBlock>; 79 80 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 81 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 82 cl::desc("Maximum size for the name of non-global values.")); 83 84 //===----------------------------------------------------------------------===// 85 // Argument Implementation 86 //===----------------------------------------------------------------------===// 87 88 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 89 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 90 setName(Name); 91 } 92 93 void Argument::setParent(Function *parent) { 94 Parent = parent; 95 } 96 97 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 98 if (!getType()->isPointerTy()) return false; 99 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 100 (AllowUndefOrPoison || 101 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 102 return true; 103 else if (getDereferenceableBytes() > 0 && 104 !NullPointerIsDefined(getParent(), 105 getType()->getPointerAddressSpace())) 106 return true; 107 return false; 108 } 109 110 bool Argument::hasByValAttr() const { 111 if (!getType()->isPointerTy()) return false; 112 return hasAttribute(Attribute::ByVal); 113 } 114 115 bool Argument::hasByRefAttr() const { 116 if (!getType()->isPointerTy()) 117 return false; 118 return hasAttribute(Attribute::ByRef); 119 } 120 121 bool Argument::hasSwiftSelfAttr() const { 122 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 123 } 124 125 bool Argument::hasSwiftErrorAttr() const { 126 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 127 } 128 129 bool Argument::hasInAllocaAttr() const { 130 if (!getType()->isPointerTy()) return false; 131 return hasAttribute(Attribute::InAlloca); 132 } 133 134 bool Argument::hasPreallocatedAttr() const { 135 if (!getType()->isPointerTy()) 136 return false; 137 return hasAttribute(Attribute::Preallocated); 138 } 139 140 bool Argument::hasPassPointeeByValueCopyAttr() const { 141 if (!getType()->isPointerTy()) return false; 142 AttributeList Attrs = getParent()->getAttributes(); 143 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 144 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) || 145 Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated); 146 } 147 148 bool Argument::hasPointeeInMemoryValueAttr() const { 149 if (!getType()->isPointerTy()) 150 return false; 151 AttributeList Attrs = getParent()->getAttributes(); 152 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 153 Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) || 154 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) || 155 Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) || 156 Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef); 157 } 158 159 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 160 /// parameter type. 161 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) { 162 // FIXME: All the type carrying attributes are mutually exclusive, so there 163 // should be a single query to get the stored type that handles any of them. 164 if (Type *ByValTy = ParamAttrs.getByValType()) 165 return ByValTy; 166 if (Type *ByRefTy = ParamAttrs.getByRefType()) 167 return ByRefTy; 168 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 169 return PreAllocTy; 170 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 171 return InAllocaTy; 172 if (Type *SRetTy = ParamAttrs.getStructRetType()) 173 return SRetTy; 174 175 return nullptr; 176 } 177 178 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 179 AttributeSet ParamAttrs = 180 getParent()->getAttributes().getParamAttributes(getArgNo()); 181 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType())) 182 return DL.getTypeAllocSize(MemTy); 183 return 0; 184 } 185 186 Type *Argument::getPointeeInMemoryValueType() const { 187 AttributeSet ParamAttrs = 188 getParent()->getAttributes().getParamAttributes(getArgNo()); 189 return getMemoryParamAllocType(ParamAttrs, getType()); 190 } 191 192 unsigned Argument::getParamAlignment() const { 193 assert(getType()->isPointerTy() && "Only pointers have alignments"); 194 return getParent()->getParamAlignment(getArgNo()); 195 } 196 197 MaybeAlign Argument::getParamAlign() const { 198 assert(getType()->isPointerTy() && "Only pointers have alignments"); 199 return getParent()->getParamAlign(getArgNo()); 200 } 201 202 MaybeAlign Argument::getParamStackAlign() const { 203 return getParent()->getParamStackAlign(getArgNo()); 204 } 205 206 Type *Argument::getParamByValType() const { 207 assert(getType()->isPointerTy() && "Only pointers have byval types"); 208 return getParent()->getParamByValType(getArgNo()); 209 } 210 211 Type *Argument::getParamStructRetType() const { 212 assert(getType()->isPointerTy() && "Only pointers have sret types"); 213 return getParent()->getParamStructRetType(getArgNo()); 214 } 215 216 Type *Argument::getParamByRefType() const { 217 assert(getType()->isPointerTy() && "Only pointers have byref types"); 218 return getParent()->getParamByRefType(getArgNo()); 219 } 220 221 Type *Argument::getParamInAllocaType() const { 222 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 223 return getParent()->getParamInAllocaType(getArgNo()); 224 } 225 226 uint64_t Argument::getDereferenceableBytes() const { 227 assert(getType()->isPointerTy() && 228 "Only pointers have dereferenceable bytes"); 229 return getParent()->getParamDereferenceableBytes(getArgNo()); 230 } 231 232 uint64_t Argument::getDereferenceableOrNullBytes() const { 233 assert(getType()->isPointerTy() && 234 "Only pointers have dereferenceable bytes"); 235 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 236 } 237 238 bool Argument::hasNestAttr() const { 239 if (!getType()->isPointerTy()) return false; 240 return hasAttribute(Attribute::Nest); 241 } 242 243 bool Argument::hasNoAliasAttr() const { 244 if (!getType()->isPointerTy()) return false; 245 return hasAttribute(Attribute::NoAlias); 246 } 247 248 bool Argument::hasNoCaptureAttr() const { 249 if (!getType()->isPointerTy()) return false; 250 return hasAttribute(Attribute::NoCapture); 251 } 252 253 bool Argument::hasNoFreeAttr() const { 254 if (!getType()->isPointerTy()) return false; 255 return hasAttribute(Attribute::NoFree); 256 } 257 258 bool Argument::hasStructRetAttr() const { 259 if (!getType()->isPointerTy()) return false; 260 return hasAttribute(Attribute::StructRet); 261 } 262 263 bool Argument::hasInRegAttr() const { 264 return hasAttribute(Attribute::InReg); 265 } 266 267 bool Argument::hasReturnedAttr() const { 268 return hasAttribute(Attribute::Returned); 269 } 270 271 bool Argument::hasZExtAttr() const { 272 return hasAttribute(Attribute::ZExt); 273 } 274 275 bool Argument::hasSExtAttr() const { 276 return hasAttribute(Attribute::SExt); 277 } 278 279 bool Argument::onlyReadsMemory() const { 280 AttributeList Attrs = getParent()->getAttributes(); 281 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 282 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 283 } 284 285 void Argument::addAttrs(AttrBuilder &B) { 286 AttributeList AL = getParent()->getAttributes(); 287 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 288 getParent()->setAttributes(AL); 289 } 290 291 void Argument::addAttr(Attribute::AttrKind Kind) { 292 getParent()->addParamAttr(getArgNo(), Kind); 293 } 294 295 void Argument::addAttr(Attribute Attr) { 296 getParent()->addParamAttr(getArgNo(), Attr); 297 } 298 299 void Argument::removeAttr(Attribute::AttrKind Kind) { 300 getParent()->removeParamAttr(getArgNo(), Kind); 301 } 302 303 void Argument::removeAttrs(const AttrBuilder &B) { 304 AttributeList AL = getParent()->getAttributes(); 305 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), B); 306 getParent()->setAttributes(AL); 307 } 308 309 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 310 return getParent()->hasParamAttribute(getArgNo(), Kind); 311 } 312 313 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 314 return getParent()->getParamAttribute(getArgNo(), Kind); 315 } 316 317 //===----------------------------------------------------------------------===// 318 // Helper Methods in Function 319 //===----------------------------------------------------------------------===// 320 321 LLVMContext &Function::getContext() const { 322 return getType()->getContext(); 323 } 324 325 unsigned Function::getInstructionCount() const { 326 unsigned NumInstrs = 0; 327 for (const BasicBlock &BB : BasicBlocks) 328 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 329 BB.instructionsWithoutDebug().end()); 330 return NumInstrs; 331 } 332 333 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 334 const Twine &N, Module &M) { 335 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 336 } 337 338 Function *Function::createWithDefaultAttr(FunctionType *Ty, 339 LinkageTypes Linkage, 340 unsigned AddrSpace, const Twine &N, 341 Module *M) { 342 auto *F = new Function(Ty, Linkage, AddrSpace, N, M); 343 AttrBuilder B; 344 if (M->getUwtable()) 345 B.addAttribute(Attribute::UWTable); 346 switch (M->getFramePointer()) { 347 case FramePointerKind::None: 348 // 0 ("none") is the default. 349 break; 350 case FramePointerKind::NonLeaf: 351 B.addAttribute("frame-pointer", "non-leaf"); 352 break; 353 case FramePointerKind::All: 354 B.addAttribute("frame-pointer", "all"); 355 break; 356 } 357 F->addAttributes(AttributeList::FunctionIndex, B); 358 return F; 359 } 360 361 void Function::removeFromParent() { 362 getParent()->getFunctionList().remove(getIterator()); 363 } 364 365 void Function::eraseFromParent() { 366 getParent()->getFunctionList().erase(getIterator()); 367 } 368 369 //===----------------------------------------------------------------------===// 370 // Function Implementation 371 //===----------------------------------------------------------------------===// 372 373 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 374 // If AS == -1 and we are passed a valid module pointer we place the function 375 // in the program address space. Otherwise we default to AS0. 376 if (AddrSpace == static_cast<unsigned>(-1)) 377 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 378 return AddrSpace; 379 } 380 381 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 382 const Twine &name, Module *ParentModule) 383 : GlobalObject(Ty, Value::FunctionVal, 384 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 385 computeAddrSpace(AddrSpace, ParentModule)), 386 NumArgs(Ty->getNumParams()) { 387 assert(FunctionType::isValidReturnType(getReturnType()) && 388 "invalid return type"); 389 setGlobalObjectSubClassData(0); 390 391 // We only need a symbol table for a function if the context keeps value names 392 if (!getContext().shouldDiscardValueNames()) 393 SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize); 394 395 // If the function has arguments, mark them as lazily built. 396 if (Ty->getNumParams()) 397 setValueSubclassData(1); // Set the "has lazy arguments" bit. 398 399 if (ParentModule) 400 ParentModule->getFunctionList().push_back(this); 401 402 HasLLVMReservedName = getName().startswith("llvm."); 403 // Ensure intrinsics have the right parameter attributes. 404 // Note, the IntID field will have been set in Value::setName if this function 405 // name is a valid intrinsic ID. 406 if (IntID) 407 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 408 } 409 410 Function::~Function() { 411 dropAllReferences(); // After this it is safe to delete instructions. 412 413 // Delete all of the method arguments and unlink from symbol table... 414 if (Arguments) 415 clearArguments(); 416 417 // Remove the function from the on-the-side GC table. 418 clearGC(); 419 } 420 421 void Function::BuildLazyArguments() const { 422 // Create the arguments vector, all arguments start out unnamed. 423 auto *FT = getFunctionType(); 424 if (NumArgs > 0) { 425 Arguments = std::allocator<Argument>().allocate(NumArgs); 426 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 427 Type *ArgTy = FT->getParamType(i); 428 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 429 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 430 } 431 } 432 433 // Clear the lazy arguments bit. 434 unsigned SDC = getSubclassDataFromValue(); 435 SDC &= ~(1 << 0); 436 const_cast<Function*>(this)->setValueSubclassData(SDC); 437 assert(!hasLazyArguments()); 438 } 439 440 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 441 return MutableArrayRef<Argument>(Args, Count); 442 } 443 444 bool Function::isConstrainedFPIntrinsic() const { 445 switch (getIntrinsicID()) { 446 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 447 case Intrinsic::INTRINSIC: 448 #include "llvm/IR/ConstrainedOps.def" 449 return true; 450 #undef INSTRUCTION 451 default: 452 return false; 453 } 454 } 455 456 void Function::clearArguments() { 457 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 458 A.setName(""); 459 A.~Argument(); 460 } 461 std::allocator<Argument>().deallocate(Arguments, NumArgs); 462 Arguments = nullptr; 463 } 464 465 void Function::stealArgumentListFrom(Function &Src) { 466 assert(isDeclaration() && "Expected no references to current arguments"); 467 468 // Drop the current arguments, if any, and set the lazy argument bit. 469 if (!hasLazyArguments()) { 470 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 471 [](const Argument &A) { return A.use_empty(); }) && 472 "Expected arguments to be unused in declaration"); 473 clearArguments(); 474 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 475 } 476 477 // Nothing to steal if Src has lazy arguments. 478 if (Src.hasLazyArguments()) 479 return; 480 481 // Steal arguments from Src, and fix the lazy argument bits. 482 assert(arg_size() == Src.arg_size()); 483 Arguments = Src.Arguments; 484 Src.Arguments = nullptr; 485 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 486 // FIXME: This does the work of transferNodesFromList inefficiently. 487 SmallString<128> Name; 488 if (A.hasName()) 489 Name = A.getName(); 490 if (!Name.empty()) 491 A.setName(""); 492 A.setParent(this); 493 if (!Name.empty()) 494 A.setName(Name); 495 } 496 497 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 498 assert(!hasLazyArguments()); 499 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 500 } 501 502 // dropAllReferences() - This function causes all the subinstructions to "let 503 // go" of all references that they are maintaining. This allows one to 504 // 'delete' a whole class at a time, even though there may be circular 505 // references... first all references are dropped, and all use counts go to 506 // zero. Then everything is deleted for real. Note that no operations are 507 // valid on an object that has "dropped all references", except operator 508 // delete. 509 // 510 void Function::dropAllReferences() { 511 setIsMaterializable(false); 512 513 for (BasicBlock &BB : *this) 514 BB.dropAllReferences(); 515 516 // Delete all basic blocks. They are now unused, except possibly by 517 // blockaddresses, but BasicBlock's destructor takes care of those. 518 while (!BasicBlocks.empty()) 519 BasicBlocks.begin()->eraseFromParent(); 520 521 // Drop uses of any optional data (real or placeholder). 522 if (getNumOperands()) { 523 User::dropAllReferences(); 524 setNumHungOffUseOperands(0); 525 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 526 } 527 528 // Metadata is stored in a side-table. 529 clearMetadata(); 530 } 531 532 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 533 AttributeList PAL = getAttributes(); 534 PAL = PAL.addAttribute(getContext(), i, Kind); 535 setAttributes(PAL); 536 } 537 538 void Function::addAttribute(unsigned i, Attribute Attr) { 539 AttributeList PAL = getAttributes(); 540 PAL = PAL.addAttribute(getContext(), i, Attr); 541 setAttributes(PAL); 542 } 543 544 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 545 AttributeList PAL = getAttributes(); 546 PAL = PAL.addAttributes(getContext(), i, Attrs); 547 setAttributes(PAL); 548 } 549 550 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 551 AttributeList PAL = getAttributes(); 552 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); 553 setAttributes(PAL); 554 } 555 556 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 557 AttributeList PAL = getAttributes(); 558 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); 559 setAttributes(PAL); 560 } 561 562 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 563 AttributeList PAL = getAttributes(); 564 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); 565 setAttributes(PAL); 566 } 567 568 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 569 AttributeList PAL = getAttributes(); 570 PAL = PAL.removeAttribute(getContext(), i, Kind); 571 setAttributes(PAL); 572 } 573 574 void Function::removeAttribute(unsigned i, StringRef Kind) { 575 AttributeList PAL = getAttributes(); 576 PAL = PAL.removeAttribute(getContext(), i, Kind); 577 setAttributes(PAL); 578 } 579 580 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 581 AttributeList PAL = getAttributes(); 582 PAL = PAL.removeAttributes(getContext(), i, Attrs); 583 setAttributes(PAL); 584 } 585 586 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 587 AttributeList PAL = getAttributes(); 588 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 589 setAttributes(PAL); 590 } 591 592 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 593 AttributeList PAL = getAttributes(); 594 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 595 setAttributes(PAL); 596 } 597 598 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 599 AttributeList PAL = getAttributes(); 600 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); 601 setAttributes(PAL); 602 } 603 604 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 605 AttributeList PAL = getAttributes(); 606 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 607 setAttributes(PAL); 608 } 609 610 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 611 AttributeList PAL = getAttributes(); 612 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 613 setAttributes(PAL); 614 } 615 616 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 617 AttributeList PAL = getAttributes(); 618 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 619 setAttributes(PAL); 620 } 621 622 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 623 uint64_t Bytes) { 624 AttributeList PAL = getAttributes(); 625 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); 626 setAttributes(PAL); 627 } 628 629 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 630 if (&FPType == &APFloat::IEEEsingle()) { 631 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 632 StringRef Val = Attr.getValueAsString(); 633 if (!Val.empty()) 634 return parseDenormalFPAttribute(Val); 635 636 // If the f32 variant of the attribute isn't specified, try to use the 637 // generic one. 638 } 639 640 Attribute Attr = getFnAttribute("denormal-fp-math"); 641 return parseDenormalFPAttribute(Attr.getValueAsString()); 642 } 643 644 const std::string &Function::getGC() const { 645 assert(hasGC() && "Function has no collector"); 646 return getContext().getGC(*this); 647 } 648 649 void Function::setGC(std::string Str) { 650 setValueSubclassDataBit(14, !Str.empty()); 651 getContext().setGC(*this, std::move(Str)); 652 } 653 654 void Function::clearGC() { 655 if (!hasGC()) 656 return; 657 getContext().deleteGC(*this); 658 setValueSubclassDataBit(14, false); 659 } 660 661 bool Function::hasStackProtectorFnAttr() const { 662 return hasFnAttribute(Attribute::StackProtect) || 663 hasFnAttribute(Attribute::StackProtectStrong) || 664 hasFnAttribute(Attribute::StackProtectReq); 665 } 666 667 /// Copy all additional attributes (those not needed to create a Function) from 668 /// the Function Src to this one. 669 void Function::copyAttributesFrom(const Function *Src) { 670 GlobalObject::copyAttributesFrom(Src); 671 setCallingConv(Src->getCallingConv()); 672 setAttributes(Src->getAttributes()); 673 if (Src->hasGC()) 674 setGC(Src->getGC()); 675 else 676 clearGC(); 677 if (Src->hasPersonalityFn()) 678 setPersonalityFn(Src->getPersonalityFn()); 679 if (Src->hasPrefixData()) 680 setPrefixData(Src->getPrefixData()); 681 if (Src->hasPrologueData()) 682 setPrologueData(Src->getPrologueData()); 683 } 684 685 /// Table of string intrinsic names indexed by enum value. 686 static const char * const IntrinsicNameTable[] = { 687 "not_intrinsic", 688 #define GET_INTRINSIC_NAME_TABLE 689 #include "llvm/IR/IntrinsicImpl.inc" 690 #undef GET_INTRINSIC_NAME_TABLE 691 }; 692 693 /// Table of per-target intrinsic name tables. 694 #define GET_INTRINSIC_TARGET_DATA 695 #include "llvm/IR/IntrinsicImpl.inc" 696 #undef GET_INTRINSIC_TARGET_DATA 697 698 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 699 return IID > TargetInfos[0].Count; 700 } 701 702 bool Function::isTargetIntrinsic() const { 703 return isTargetIntrinsic(IntID); 704 } 705 706 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 707 /// target as \c Name, or the generic table if \c Name is not target specific. 708 /// 709 /// Returns the relevant slice of \c IntrinsicNameTable 710 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 711 assert(Name.startswith("llvm.")); 712 713 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 714 // Drop "llvm." and take the first dotted component. That will be the target 715 // if this is target specific. 716 StringRef Target = Name.drop_front(5).split('.').first; 717 auto It = partition_point( 718 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 719 // We've either found the target or just fall back to the generic set, which 720 // is always first. 721 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 722 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 723 } 724 725 /// This does the actual lookup of an intrinsic ID which 726 /// matches the given function name. 727 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 728 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 729 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 730 if (Idx == -1) 731 return Intrinsic::not_intrinsic; 732 733 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 734 // an index into a sub-table. 735 int Adjust = NameTable.data() - IntrinsicNameTable; 736 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 737 738 // If the intrinsic is not overloaded, require an exact match. If it is 739 // overloaded, require either exact or prefix match. 740 const auto MatchSize = strlen(NameTable[Idx]); 741 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 742 bool IsExactMatch = Name.size() == MatchSize; 743 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 744 : Intrinsic::not_intrinsic; 745 } 746 747 void Function::recalculateIntrinsicID() { 748 StringRef Name = getName(); 749 if (!Name.startswith("llvm.")) { 750 HasLLVMReservedName = false; 751 IntID = Intrinsic::not_intrinsic; 752 return; 753 } 754 HasLLVMReservedName = true; 755 IntID = lookupIntrinsicID(Name); 756 } 757 758 /// Returns a stable mangling for the type specified for use in the name 759 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 760 /// of named types is simply their name. Manglings for unnamed types consist 761 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 762 /// combined with the mangling of their component types. A vararg function 763 /// type will have a suffix of 'vararg'. Since function types can contain 764 /// other function types, we close a function type mangling with suffix 'f' 765 /// which can't be confused with it's prefix. This ensures we don't have 766 /// collisions between two unrelated function types. Otherwise, you might 767 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 768 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 769 /// indicating that extra care must be taken to ensure a unique name. 770 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 771 std::string Result; 772 if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) { 773 Result += "p" + utostr(PTyp->getAddressSpace()); 774 // Opaque pointer doesn't have pointee type information, so we just mangle 775 // address space for opaque pointer. 776 if (!PTyp->isOpaque()) 777 Result += getMangledTypeStr(PTyp->getElementType(), HasUnnamedType); 778 } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) { 779 Result += "a" + utostr(ATyp->getNumElements()) + 780 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 781 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 782 if (!STyp->isLiteral()) { 783 Result += "s_"; 784 if (STyp->hasName()) 785 Result += STyp->getName(); 786 else 787 HasUnnamedType = true; 788 } else { 789 Result += "sl_"; 790 for (auto Elem : STyp->elements()) 791 Result += getMangledTypeStr(Elem, HasUnnamedType); 792 } 793 // Ensure nested structs are distinguishable. 794 Result += "s"; 795 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 796 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 797 for (size_t i = 0; i < FT->getNumParams(); i++) 798 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 799 if (FT->isVarArg()) 800 Result += "vararg"; 801 // Ensure nested function types are distinguishable. 802 Result += "f"; 803 } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 804 ElementCount EC = VTy->getElementCount(); 805 if (EC.isScalable()) 806 Result += "nx"; 807 Result += "v" + utostr(EC.getKnownMinValue()) + 808 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 809 } else if (Ty) { 810 switch (Ty->getTypeID()) { 811 default: llvm_unreachable("Unhandled type"); 812 case Type::VoidTyID: Result += "isVoid"; break; 813 case Type::MetadataTyID: Result += "Metadata"; break; 814 case Type::HalfTyID: Result += "f16"; break; 815 case Type::BFloatTyID: Result += "bf16"; break; 816 case Type::FloatTyID: Result += "f32"; break; 817 case Type::DoubleTyID: Result += "f64"; break; 818 case Type::X86_FP80TyID: Result += "f80"; break; 819 case Type::FP128TyID: Result += "f128"; break; 820 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 821 case Type::X86_MMXTyID: Result += "x86mmx"; break; 822 case Type::X86_AMXTyID: Result += "x86amx"; break; 823 case Type::IntegerTyID: 824 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 825 break; 826 } 827 } 828 return Result; 829 } 830 831 StringRef Intrinsic::getBaseName(ID id) { 832 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 833 return IntrinsicNameTable[id]; 834 } 835 836 StringRef Intrinsic::getName(ID id) { 837 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 838 assert(!Intrinsic::isOverloaded(id) && 839 "This version of getName does not support overloading"); 840 return getBaseName(id); 841 } 842 843 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys, 844 Module *M, FunctionType *FT, 845 bool EarlyModuleCheck) { 846 847 assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!"); 848 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 849 "This version of getName is for overloaded intrinsics only"); 850 (void)EarlyModuleCheck; 851 assert((!EarlyModuleCheck || M || 852 !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) && 853 "Intrinsic overloading on pointer types need to provide a Module"); 854 bool HasUnnamedType = false; 855 std::string Result(Intrinsic::getBaseName(Id)); 856 for (Type *Ty : Tys) 857 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 858 if (HasUnnamedType) { 859 assert(M && "unnamed types need a module"); 860 if (!FT) 861 FT = Intrinsic::getType(M->getContext(), Id, Tys); 862 else 863 assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) && 864 "Provided FunctionType must match arguments"); 865 return M->getUniqueIntrinsicName(Result, Id, FT); 866 } 867 return Result; 868 } 869 870 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 871 FunctionType *FT) { 872 assert(M && "We need to have a Module"); 873 return getIntrinsicNameImpl(Id, Tys, M, FT, true); 874 } 875 876 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) { 877 return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false); 878 } 879 880 /// IIT_Info - These are enumerators that describe the entries returned by the 881 /// getIntrinsicInfoTableEntries function. 882 /// 883 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 884 enum IIT_Info { 885 // Common values should be encoded with 0-15. 886 IIT_Done = 0, 887 IIT_I1 = 1, 888 IIT_I8 = 2, 889 IIT_I16 = 3, 890 IIT_I32 = 4, 891 IIT_I64 = 5, 892 IIT_F16 = 6, 893 IIT_F32 = 7, 894 IIT_F64 = 8, 895 IIT_V2 = 9, 896 IIT_V4 = 10, 897 IIT_V8 = 11, 898 IIT_V16 = 12, 899 IIT_V32 = 13, 900 IIT_PTR = 14, 901 IIT_ARG = 15, 902 903 // Values from 16+ are only encodable with the inefficient encoding. 904 IIT_V64 = 16, 905 IIT_MMX = 17, 906 IIT_TOKEN = 18, 907 IIT_METADATA = 19, 908 IIT_EMPTYSTRUCT = 20, 909 IIT_STRUCT2 = 21, 910 IIT_STRUCT3 = 22, 911 IIT_STRUCT4 = 23, 912 IIT_STRUCT5 = 24, 913 IIT_EXTEND_ARG = 25, 914 IIT_TRUNC_ARG = 26, 915 IIT_ANYPTR = 27, 916 IIT_V1 = 28, 917 IIT_VARARG = 29, 918 IIT_HALF_VEC_ARG = 30, 919 IIT_SAME_VEC_WIDTH_ARG = 31, 920 IIT_PTR_TO_ARG = 32, 921 IIT_PTR_TO_ELT = 33, 922 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 923 IIT_I128 = 35, 924 IIT_V512 = 36, 925 IIT_V1024 = 37, 926 IIT_STRUCT6 = 38, 927 IIT_STRUCT7 = 39, 928 IIT_STRUCT8 = 40, 929 IIT_F128 = 41, 930 IIT_VEC_ELEMENT = 42, 931 IIT_SCALABLE_VEC = 43, 932 IIT_SUBDIVIDE2_ARG = 44, 933 IIT_SUBDIVIDE4_ARG = 45, 934 IIT_VEC_OF_BITCASTS_TO_INT = 46, 935 IIT_V128 = 47, 936 IIT_BF16 = 48, 937 IIT_STRUCT9 = 49, 938 IIT_V256 = 50, 939 IIT_AMX = 51 940 }; 941 942 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 943 IIT_Info LastInfo, 944 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 945 using namespace Intrinsic; 946 947 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 948 949 IIT_Info Info = IIT_Info(Infos[NextElt++]); 950 unsigned StructElts = 2; 951 952 switch (Info) { 953 case IIT_Done: 954 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 955 return; 956 case IIT_VARARG: 957 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 958 return; 959 case IIT_MMX: 960 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 961 return; 962 case IIT_AMX: 963 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 964 return; 965 case IIT_TOKEN: 966 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 967 return; 968 case IIT_METADATA: 969 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 970 return; 971 case IIT_F16: 972 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 973 return; 974 case IIT_BF16: 975 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 976 return; 977 case IIT_F32: 978 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 979 return; 980 case IIT_F64: 981 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 982 return; 983 case IIT_F128: 984 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 985 return; 986 case IIT_I1: 987 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 988 return; 989 case IIT_I8: 990 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 991 return; 992 case IIT_I16: 993 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 994 return; 995 case IIT_I32: 996 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 997 return; 998 case IIT_I64: 999 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 1000 return; 1001 case IIT_I128: 1002 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 1003 return; 1004 case IIT_V1: 1005 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 1006 DecodeIITType(NextElt, Infos, Info, OutputTable); 1007 return; 1008 case IIT_V2: 1009 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 1010 DecodeIITType(NextElt, Infos, Info, OutputTable); 1011 return; 1012 case IIT_V4: 1013 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 1014 DecodeIITType(NextElt, Infos, Info, OutputTable); 1015 return; 1016 case IIT_V8: 1017 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 1018 DecodeIITType(NextElt, Infos, Info, OutputTable); 1019 return; 1020 case IIT_V16: 1021 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 1022 DecodeIITType(NextElt, Infos, Info, OutputTable); 1023 return; 1024 case IIT_V32: 1025 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 1026 DecodeIITType(NextElt, Infos, Info, OutputTable); 1027 return; 1028 case IIT_V64: 1029 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 1030 DecodeIITType(NextElt, Infos, Info, OutputTable); 1031 return; 1032 case IIT_V128: 1033 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 1034 DecodeIITType(NextElt, Infos, Info, OutputTable); 1035 return; 1036 case IIT_V256: 1037 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 1038 DecodeIITType(NextElt, Infos, Info, OutputTable); 1039 return; 1040 case IIT_V512: 1041 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 1042 DecodeIITType(NextElt, Infos, Info, OutputTable); 1043 return; 1044 case IIT_V1024: 1045 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1046 DecodeIITType(NextElt, Infos, Info, OutputTable); 1047 return; 1048 case IIT_PTR: 1049 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1050 DecodeIITType(NextElt, Infos, Info, OutputTable); 1051 return; 1052 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 1053 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1054 Infos[NextElt++])); 1055 DecodeIITType(NextElt, Infos, Info, OutputTable); 1056 return; 1057 } 1058 case IIT_ARG: { 1059 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1060 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1061 return; 1062 } 1063 case IIT_EXTEND_ARG: { 1064 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1065 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1066 ArgInfo)); 1067 return; 1068 } 1069 case IIT_TRUNC_ARG: { 1070 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1071 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1072 ArgInfo)); 1073 return; 1074 } 1075 case IIT_HALF_VEC_ARG: { 1076 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1077 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1078 ArgInfo)); 1079 return; 1080 } 1081 case IIT_SAME_VEC_WIDTH_ARG: { 1082 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1083 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1084 ArgInfo)); 1085 return; 1086 } 1087 case IIT_PTR_TO_ARG: { 1088 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1089 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 1090 ArgInfo)); 1091 return; 1092 } 1093 case IIT_PTR_TO_ELT: { 1094 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1095 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 1096 return; 1097 } 1098 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1099 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1100 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1101 OutputTable.push_back( 1102 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1103 return; 1104 } 1105 case IIT_EMPTYSTRUCT: 1106 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1107 return; 1108 case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH; 1109 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 1110 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 1111 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 1112 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 1113 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 1114 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 1115 case IIT_STRUCT2: { 1116 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1117 1118 for (unsigned i = 0; i != StructElts; ++i) 1119 DecodeIITType(NextElt, Infos, Info, OutputTable); 1120 return; 1121 } 1122 case IIT_SUBDIVIDE2_ARG: { 1123 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1124 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1125 ArgInfo)); 1126 return; 1127 } 1128 case IIT_SUBDIVIDE4_ARG: { 1129 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1130 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1131 ArgInfo)); 1132 return; 1133 } 1134 case IIT_VEC_ELEMENT: { 1135 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1136 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1137 ArgInfo)); 1138 return; 1139 } 1140 case IIT_SCALABLE_VEC: { 1141 DecodeIITType(NextElt, Infos, Info, OutputTable); 1142 return; 1143 } 1144 case IIT_VEC_OF_BITCASTS_TO_INT: { 1145 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1146 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1147 ArgInfo)); 1148 return; 1149 } 1150 } 1151 llvm_unreachable("unhandled"); 1152 } 1153 1154 #define GET_INTRINSIC_GENERATOR_GLOBAL 1155 #include "llvm/IR/IntrinsicImpl.inc" 1156 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1157 1158 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1159 SmallVectorImpl<IITDescriptor> &T){ 1160 // Check to see if the intrinsic's type was expressible by the table. 1161 unsigned TableVal = IIT_Table[id-1]; 1162 1163 // Decode the TableVal into an array of IITValues. 1164 SmallVector<unsigned char, 8> IITValues; 1165 ArrayRef<unsigned char> IITEntries; 1166 unsigned NextElt = 0; 1167 if ((TableVal >> 31) != 0) { 1168 // This is an offset into the IIT_LongEncodingTable. 1169 IITEntries = IIT_LongEncodingTable; 1170 1171 // Strip sentinel bit. 1172 NextElt = (TableVal << 1) >> 1; 1173 } else { 1174 // Decode the TableVal into an array of IITValues. If the entry was encoded 1175 // into a single word in the table itself, decode it now. 1176 do { 1177 IITValues.push_back(TableVal & 0xF); 1178 TableVal >>= 4; 1179 } while (TableVal); 1180 1181 IITEntries = IITValues; 1182 NextElt = 0; 1183 } 1184 1185 // Okay, decode the table into the output vector of IITDescriptors. 1186 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1187 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1188 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1189 } 1190 1191 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1192 ArrayRef<Type*> Tys, LLVMContext &Context) { 1193 using namespace Intrinsic; 1194 1195 IITDescriptor D = Infos.front(); 1196 Infos = Infos.slice(1); 1197 1198 switch (D.Kind) { 1199 case IITDescriptor::Void: return Type::getVoidTy(Context); 1200 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1201 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1202 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1203 case IITDescriptor::Token: return Type::getTokenTy(Context); 1204 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1205 case IITDescriptor::Half: return Type::getHalfTy(Context); 1206 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1207 case IITDescriptor::Float: return Type::getFloatTy(Context); 1208 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1209 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1210 1211 case IITDescriptor::Integer: 1212 return IntegerType::get(Context, D.Integer_Width); 1213 case IITDescriptor::Vector: 1214 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1215 D.Vector_Width); 1216 case IITDescriptor::Pointer: 1217 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 1218 D.Pointer_AddressSpace); 1219 case IITDescriptor::Struct: { 1220 SmallVector<Type *, 8> Elts; 1221 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1222 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1223 return StructType::get(Context, Elts); 1224 } 1225 case IITDescriptor::Argument: 1226 return Tys[D.getArgumentNumber()]; 1227 case IITDescriptor::ExtendArgument: { 1228 Type *Ty = Tys[D.getArgumentNumber()]; 1229 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1230 return VectorType::getExtendedElementVectorType(VTy); 1231 1232 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1233 } 1234 case IITDescriptor::TruncArgument: { 1235 Type *Ty = Tys[D.getArgumentNumber()]; 1236 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1237 return VectorType::getTruncatedElementVectorType(VTy); 1238 1239 IntegerType *ITy = cast<IntegerType>(Ty); 1240 assert(ITy->getBitWidth() % 2 == 0); 1241 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1242 } 1243 case IITDescriptor::Subdivide2Argument: 1244 case IITDescriptor::Subdivide4Argument: { 1245 Type *Ty = Tys[D.getArgumentNumber()]; 1246 VectorType *VTy = dyn_cast<VectorType>(Ty); 1247 assert(VTy && "Expected an argument of Vector Type"); 1248 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1249 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1250 } 1251 case IITDescriptor::HalfVecArgument: 1252 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1253 Tys[D.getArgumentNumber()])); 1254 case IITDescriptor::SameVecWidthArgument: { 1255 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1256 Type *Ty = Tys[D.getArgumentNumber()]; 1257 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1258 return VectorType::get(EltTy, VTy->getElementCount()); 1259 return EltTy; 1260 } 1261 case IITDescriptor::PtrToArgument: { 1262 Type *Ty = Tys[D.getArgumentNumber()]; 1263 return PointerType::getUnqual(Ty); 1264 } 1265 case IITDescriptor::PtrToElt: { 1266 Type *Ty = Tys[D.getArgumentNumber()]; 1267 VectorType *VTy = dyn_cast<VectorType>(Ty); 1268 if (!VTy) 1269 llvm_unreachable("Expected an argument of Vector Type"); 1270 Type *EltTy = VTy->getElementType(); 1271 return PointerType::getUnqual(EltTy); 1272 } 1273 case IITDescriptor::VecElementArgument: { 1274 Type *Ty = Tys[D.getArgumentNumber()]; 1275 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1276 return VTy->getElementType(); 1277 llvm_unreachable("Expected an argument of Vector Type"); 1278 } 1279 case IITDescriptor::VecOfBitcastsToInt: { 1280 Type *Ty = Tys[D.getArgumentNumber()]; 1281 VectorType *VTy = dyn_cast<VectorType>(Ty); 1282 assert(VTy && "Expected an argument of Vector Type"); 1283 return VectorType::getInteger(VTy); 1284 } 1285 case IITDescriptor::VecOfAnyPtrsToElt: 1286 // Return the overloaded type (which determines the pointers address space) 1287 return Tys[D.getOverloadArgNumber()]; 1288 } 1289 llvm_unreachable("unhandled"); 1290 } 1291 1292 FunctionType *Intrinsic::getType(LLVMContext &Context, 1293 ID id, ArrayRef<Type*> Tys) { 1294 SmallVector<IITDescriptor, 8> Table; 1295 getIntrinsicInfoTableEntries(id, Table); 1296 1297 ArrayRef<IITDescriptor> TableRef = Table; 1298 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1299 1300 SmallVector<Type*, 8> ArgTys; 1301 while (!TableRef.empty()) 1302 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1303 1304 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1305 // If we see void type as the type of the last argument, it is vararg intrinsic 1306 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1307 ArgTys.pop_back(); 1308 return FunctionType::get(ResultTy, ArgTys, true); 1309 } 1310 return FunctionType::get(ResultTy, ArgTys, false); 1311 } 1312 1313 bool Intrinsic::isOverloaded(ID id) { 1314 #define GET_INTRINSIC_OVERLOAD_TABLE 1315 #include "llvm/IR/IntrinsicImpl.inc" 1316 #undef GET_INTRINSIC_OVERLOAD_TABLE 1317 } 1318 1319 bool Intrinsic::isLeaf(ID id) { 1320 switch (id) { 1321 default: 1322 return true; 1323 1324 case Intrinsic::experimental_gc_statepoint: 1325 case Intrinsic::experimental_patchpoint_void: 1326 case Intrinsic::experimental_patchpoint_i64: 1327 return false; 1328 } 1329 } 1330 1331 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1332 #define GET_INTRINSIC_ATTRIBUTES 1333 #include "llvm/IR/IntrinsicImpl.inc" 1334 #undef GET_INTRINSIC_ATTRIBUTES 1335 1336 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1337 // There can never be multiple globals with the same name of different types, 1338 // because intrinsics must be a specific type. 1339 auto *FT = getType(M->getContext(), id, Tys); 1340 return cast<Function>( 1341 M->getOrInsertFunction(Tys.empty() ? getName(id) 1342 : getName(id, Tys, M, FT), 1343 getType(M->getContext(), id, Tys)) 1344 .getCallee()); 1345 } 1346 1347 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 1348 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1349 #include "llvm/IR/IntrinsicImpl.inc" 1350 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1351 1352 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1353 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1354 #include "llvm/IR/IntrinsicImpl.inc" 1355 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1356 1357 using DeferredIntrinsicMatchPair = 1358 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1359 1360 static bool matchIntrinsicType( 1361 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1362 SmallVectorImpl<Type *> &ArgTys, 1363 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1364 bool IsDeferredCheck) { 1365 using namespace Intrinsic; 1366 1367 // If we ran out of descriptors, there are too many arguments. 1368 if (Infos.empty()) return true; 1369 1370 // Do this before slicing off the 'front' part 1371 auto InfosRef = Infos; 1372 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1373 DeferredChecks.emplace_back(T, InfosRef); 1374 return false; 1375 }; 1376 1377 IITDescriptor D = Infos.front(); 1378 Infos = Infos.slice(1); 1379 1380 switch (D.Kind) { 1381 case IITDescriptor::Void: return !Ty->isVoidTy(); 1382 case IITDescriptor::VarArg: return true; 1383 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1384 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1385 case IITDescriptor::Token: return !Ty->isTokenTy(); 1386 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1387 case IITDescriptor::Half: return !Ty->isHalfTy(); 1388 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1389 case IITDescriptor::Float: return !Ty->isFloatTy(); 1390 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1391 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1392 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1393 case IITDescriptor::Vector: { 1394 VectorType *VT = dyn_cast<VectorType>(Ty); 1395 return !VT || VT->getElementCount() != D.Vector_Width || 1396 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1397 DeferredChecks, IsDeferredCheck); 1398 } 1399 case IITDescriptor::Pointer: { 1400 PointerType *PT = dyn_cast<PointerType>(Ty); 1401 if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace) 1402 return true; 1403 if (!PT->isOpaque()) 1404 return matchIntrinsicType(PT->getElementType(), Infos, ArgTys, 1405 DeferredChecks, IsDeferredCheck); 1406 // If typed pointers are supported, do not allow using opaque pointer in 1407 // place of fixed pointer type. This would make the intrinsic signature 1408 // non-unique. 1409 if (Ty->getContext().supportsTypedPointers()) 1410 return true; 1411 // Consume IIT descriptors relating to the pointer element type. 1412 while (Infos.front().Kind == IITDescriptor::Pointer) 1413 Infos = Infos.slice(1); 1414 Infos = Infos.slice(1); 1415 return false; 1416 } 1417 1418 case IITDescriptor::Struct: { 1419 StructType *ST = dyn_cast<StructType>(Ty); 1420 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1421 return true; 1422 1423 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1424 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1425 DeferredChecks, IsDeferredCheck)) 1426 return true; 1427 return false; 1428 } 1429 1430 case IITDescriptor::Argument: 1431 // If this is the second occurrence of an argument, 1432 // verify that the later instance matches the previous instance. 1433 if (D.getArgumentNumber() < ArgTys.size()) 1434 return Ty != ArgTys[D.getArgumentNumber()]; 1435 1436 if (D.getArgumentNumber() > ArgTys.size() || 1437 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1438 return IsDeferredCheck || DeferCheck(Ty); 1439 1440 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1441 "Table consistency error"); 1442 ArgTys.push_back(Ty); 1443 1444 switch (D.getArgumentKind()) { 1445 case IITDescriptor::AK_Any: return false; // Success 1446 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1447 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1448 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1449 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1450 default: break; 1451 } 1452 llvm_unreachable("all argument kinds not covered"); 1453 1454 case IITDescriptor::ExtendArgument: { 1455 // If this is a forward reference, defer the check for later. 1456 if (D.getArgumentNumber() >= ArgTys.size()) 1457 return IsDeferredCheck || DeferCheck(Ty); 1458 1459 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1460 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1461 NewTy = VectorType::getExtendedElementVectorType(VTy); 1462 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1463 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1464 else 1465 return true; 1466 1467 return Ty != NewTy; 1468 } 1469 case IITDescriptor::TruncArgument: { 1470 // If this is a forward reference, defer the check for later. 1471 if (D.getArgumentNumber() >= ArgTys.size()) 1472 return IsDeferredCheck || DeferCheck(Ty); 1473 1474 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1475 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1476 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1477 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1478 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1479 else 1480 return true; 1481 1482 return Ty != NewTy; 1483 } 1484 case IITDescriptor::HalfVecArgument: 1485 // If this is a forward reference, defer the check for later. 1486 if (D.getArgumentNumber() >= ArgTys.size()) 1487 return IsDeferredCheck || DeferCheck(Ty); 1488 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1489 VectorType::getHalfElementsVectorType( 1490 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1491 case IITDescriptor::SameVecWidthArgument: { 1492 if (D.getArgumentNumber() >= ArgTys.size()) { 1493 // Defer check and subsequent check for the vector element type. 1494 Infos = Infos.slice(1); 1495 return IsDeferredCheck || DeferCheck(Ty); 1496 } 1497 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1498 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1499 // Both must be vectors of the same number of elements or neither. 1500 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1501 return true; 1502 Type *EltTy = Ty; 1503 if (ThisArgType) { 1504 if (ReferenceType->getElementCount() != 1505 ThisArgType->getElementCount()) 1506 return true; 1507 EltTy = ThisArgType->getElementType(); 1508 } 1509 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1510 IsDeferredCheck); 1511 } 1512 case IITDescriptor::PtrToArgument: { 1513 if (D.getArgumentNumber() >= ArgTys.size()) 1514 return IsDeferredCheck || DeferCheck(Ty); 1515 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1516 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1517 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1518 } 1519 case IITDescriptor::PtrToElt: { 1520 if (D.getArgumentNumber() >= ArgTys.size()) 1521 return IsDeferredCheck || DeferCheck(Ty); 1522 VectorType * ReferenceType = 1523 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1524 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1525 1526 if (!ThisArgType || !ReferenceType) 1527 return true; 1528 if (!ThisArgType->isOpaque()) 1529 return ThisArgType->getElementType() != ReferenceType->getElementType(); 1530 // If typed pointers are supported, do not allow opaque pointer to ensure 1531 // uniqueness. 1532 return Ty->getContext().supportsTypedPointers(); 1533 } 1534 case IITDescriptor::VecOfAnyPtrsToElt: { 1535 unsigned RefArgNumber = D.getRefArgNumber(); 1536 if (RefArgNumber >= ArgTys.size()) { 1537 if (IsDeferredCheck) 1538 return true; 1539 // If forward referencing, already add the pointer-vector type and 1540 // defer the checks for later. 1541 ArgTys.push_back(Ty); 1542 return DeferCheck(Ty); 1543 } 1544 1545 if (!IsDeferredCheck){ 1546 assert(D.getOverloadArgNumber() == ArgTys.size() && 1547 "Table consistency error"); 1548 ArgTys.push_back(Ty); 1549 } 1550 1551 // Verify the overloaded type "matches" the Ref type. 1552 // i.e. Ty is a vector with the same width as Ref. 1553 // Composed of pointers to the same element type as Ref. 1554 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1555 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1556 if (!ThisArgVecTy || !ReferenceType || 1557 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1558 return true; 1559 PointerType *ThisArgEltTy = 1560 dyn_cast<PointerType>(ThisArgVecTy->getElementType()); 1561 if (!ThisArgEltTy) 1562 return true; 1563 return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches( 1564 ReferenceType->getElementType()); 1565 } 1566 case IITDescriptor::VecElementArgument: { 1567 if (D.getArgumentNumber() >= ArgTys.size()) 1568 return IsDeferredCheck ? true : DeferCheck(Ty); 1569 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1570 return !ReferenceType || Ty != ReferenceType->getElementType(); 1571 } 1572 case IITDescriptor::Subdivide2Argument: 1573 case IITDescriptor::Subdivide4Argument: { 1574 // If this is a forward reference, defer the check for later. 1575 if (D.getArgumentNumber() >= ArgTys.size()) 1576 return IsDeferredCheck || DeferCheck(Ty); 1577 1578 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1579 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1580 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1581 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1582 return Ty != NewTy; 1583 } 1584 return true; 1585 } 1586 case IITDescriptor::VecOfBitcastsToInt: { 1587 if (D.getArgumentNumber() >= ArgTys.size()) 1588 return IsDeferredCheck || DeferCheck(Ty); 1589 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1590 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1591 if (!ThisArgVecTy || !ReferenceType) 1592 return true; 1593 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1594 } 1595 } 1596 llvm_unreachable("unhandled"); 1597 } 1598 1599 Intrinsic::MatchIntrinsicTypesResult 1600 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1601 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1602 SmallVectorImpl<Type *> &ArgTys) { 1603 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1604 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1605 false)) 1606 return MatchIntrinsicTypes_NoMatchRet; 1607 1608 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1609 1610 for (auto Ty : FTy->params()) 1611 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1612 return MatchIntrinsicTypes_NoMatchArg; 1613 1614 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1615 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1616 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1617 true)) 1618 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1619 : MatchIntrinsicTypes_NoMatchArg; 1620 } 1621 1622 return MatchIntrinsicTypes_Match; 1623 } 1624 1625 bool 1626 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1627 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1628 // If there are no descriptors left, then it can't be a vararg. 1629 if (Infos.empty()) 1630 return isVarArg; 1631 1632 // There should be only one descriptor remaining at this point. 1633 if (Infos.size() != 1) 1634 return true; 1635 1636 // Check and verify the descriptor. 1637 IITDescriptor D = Infos.front(); 1638 Infos = Infos.slice(1); 1639 if (D.Kind == IITDescriptor::VarArg) 1640 return !isVarArg; 1641 1642 return true; 1643 } 1644 1645 bool Intrinsic::getIntrinsicSignature(Function *F, 1646 SmallVectorImpl<Type *> &ArgTys) { 1647 Intrinsic::ID ID = F->getIntrinsicID(); 1648 if (!ID) 1649 return false; 1650 1651 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1652 getIntrinsicInfoTableEntries(ID, Table); 1653 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1654 1655 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1656 ArgTys) != 1657 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1658 return false; 1659 } 1660 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1661 TableRef)) 1662 return false; 1663 return true; 1664 } 1665 1666 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1667 SmallVector<Type *, 4> ArgTys; 1668 if (!getIntrinsicSignature(F, ArgTys)) 1669 return None; 1670 1671 Intrinsic::ID ID = F->getIntrinsicID(); 1672 StringRef Name = F->getName(); 1673 std::string WantedName = 1674 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()); 1675 if (Name == WantedName) 1676 return None; 1677 1678 Function *NewDecl = [&] { 1679 if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) { 1680 if (auto *ExistingF = dyn_cast<Function>(ExistingGV)) 1681 if (ExistingF->getFunctionType() == F->getFunctionType()) 1682 return ExistingF; 1683 1684 // The name already exists, but is not a function or has the wrong 1685 // prototype. Make place for the new one by renaming the old version. 1686 // Either this old version will be removed later on or the module is 1687 // invalid and we'll get an error. 1688 ExistingGV->setName(WantedName + ".renamed"); 1689 } 1690 return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1691 }(); 1692 1693 NewDecl->setCallingConv(F->getCallingConv()); 1694 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1695 "Shouldn't change the signature"); 1696 return NewDecl; 1697 } 1698 1699 /// hasAddressTaken - returns true if there are any uses of this function 1700 /// other than direct calls or invokes to it. Optionally ignores callback 1701 /// uses, assume like pointer annotation calls, and references in llvm.used 1702 /// and llvm.compiler.used variables. 1703 bool Function::hasAddressTaken(const User **PutOffender, 1704 bool IgnoreCallbackUses, 1705 bool IgnoreAssumeLikeCalls, 1706 bool IgnoreLLVMUsed) const { 1707 for (const Use &U : uses()) { 1708 const User *FU = U.getUser(); 1709 if (isa<BlockAddress>(FU)) 1710 continue; 1711 1712 if (IgnoreCallbackUses) { 1713 AbstractCallSite ACS(&U); 1714 if (ACS && ACS.isCallbackCall()) 1715 continue; 1716 } 1717 1718 const auto *Call = dyn_cast<CallBase>(FU); 1719 if (!Call) { 1720 if (IgnoreAssumeLikeCalls) { 1721 if (const auto *FI = dyn_cast<Instruction>(FU)) { 1722 if (FI->isCast() && !FI->user_empty() && 1723 llvm::all_of(FU->users(), [](const User *U) { 1724 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1725 return I->isAssumeLikeIntrinsic(); 1726 return false; 1727 })) 1728 continue; 1729 } 1730 } 1731 if (IgnoreLLVMUsed && !FU->user_empty()) { 1732 const User *FUU = FU; 1733 if (isa<BitCastOperator>(FU) && FU->hasOneUse() && 1734 !FU->user_begin()->user_empty()) 1735 FUU = *FU->user_begin(); 1736 if (llvm::all_of(FUU->users(), [](const User *U) { 1737 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1738 return GV->hasName() && 1739 (GV->getName().equals("llvm.compiler.used") || 1740 GV->getName().equals("llvm.used")); 1741 return false; 1742 })) 1743 continue; 1744 } 1745 if (PutOffender) 1746 *PutOffender = FU; 1747 return true; 1748 } 1749 if (!Call->isCallee(&U)) { 1750 if (PutOffender) 1751 *PutOffender = FU; 1752 return true; 1753 } 1754 } 1755 return false; 1756 } 1757 1758 bool Function::isDefTriviallyDead() const { 1759 // Check the linkage 1760 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1761 !hasAvailableExternallyLinkage()) 1762 return false; 1763 1764 // Check if the function is used by anything other than a blockaddress. 1765 for (const User *U : users()) 1766 if (!isa<BlockAddress>(U)) 1767 return false; 1768 1769 return true; 1770 } 1771 1772 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1773 /// setjmp or other function that gcc recognizes as "returning twice". 1774 bool Function::callsFunctionThatReturnsTwice() const { 1775 for (const Instruction &I : instructions(this)) 1776 if (const auto *Call = dyn_cast<CallBase>(&I)) 1777 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1778 return true; 1779 1780 return false; 1781 } 1782 1783 Constant *Function::getPersonalityFn() const { 1784 assert(hasPersonalityFn() && getNumOperands()); 1785 return cast<Constant>(Op<0>()); 1786 } 1787 1788 void Function::setPersonalityFn(Constant *Fn) { 1789 setHungoffOperand<0>(Fn); 1790 setValueSubclassDataBit(3, Fn != nullptr); 1791 } 1792 1793 Constant *Function::getPrefixData() const { 1794 assert(hasPrefixData() && getNumOperands()); 1795 return cast<Constant>(Op<1>()); 1796 } 1797 1798 void Function::setPrefixData(Constant *PrefixData) { 1799 setHungoffOperand<1>(PrefixData); 1800 setValueSubclassDataBit(1, PrefixData != nullptr); 1801 } 1802 1803 Constant *Function::getPrologueData() const { 1804 assert(hasPrologueData() && getNumOperands()); 1805 return cast<Constant>(Op<2>()); 1806 } 1807 1808 void Function::setPrologueData(Constant *PrologueData) { 1809 setHungoffOperand<2>(PrologueData); 1810 setValueSubclassDataBit(2, PrologueData != nullptr); 1811 } 1812 1813 void Function::allocHungoffUselist() { 1814 // If we've already allocated a uselist, stop here. 1815 if (getNumOperands()) 1816 return; 1817 1818 allocHungoffUses(3, /*IsPhi=*/ false); 1819 setNumHungOffUseOperands(3); 1820 1821 // Initialize the uselist with placeholder operands to allow traversal. 1822 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1823 Op<0>().set(CPN); 1824 Op<1>().set(CPN); 1825 Op<2>().set(CPN); 1826 } 1827 1828 template <int Idx> 1829 void Function::setHungoffOperand(Constant *C) { 1830 if (C) { 1831 allocHungoffUselist(); 1832 Op<Idx>().set(C); 1833 } else if (getNumOperands()) { 1834 Op<Idx>().set( 1835 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1836 } 1837 } 1838 1839 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1840 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1841 if (On) 1842 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1843 else 1844 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1845 } 1846 1847 void Function::setEntryCount(ProfileCount Count, 1848 const DenseSet<GlobalValue::GUID> *S) { 1849 assert(Count.hasValue()); 1850 #if !defined(NDEBUG) 1851 auto PrevCount = getEntryCount(); 1852 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); 1853 #endif 1854 1855 auto ImportGUIDs = getImportGUIDs(); 1856 if (S == nullptr && ImportGUIDs.size()) 1857 S = &ImportGUIDs; 1858 1859 MDBuilder MDB(getContext()); 1860 setMetadata( 1861 LLVMContext::MD_prof, 1862 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1863 } 1864 1865 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1866 const DenseSet<GlobalValue::GUID> *Imports) { 1867 setEntryCount(ProfileCount(Count, Type), Imports); 1868 } 1869 1870 ProfileCount Function::getEntryCount(bool AllowSynthetic) const { 1871 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1872 if (MD && MD->getOperand(0)) 1873 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1874 if (MDS->getString().equals("function_entry_count")) { 1875 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1876 uint64_t Count = CI->getValue().getZExtValue(); 1877 // A value of -1 is used for SamplePGO when there were no samples. 1878 // Treat this the same as unknown. 1879 if (Count == (uint64_t)-1) 1880 return ProfileCount::getInvalid(); 1881 return ProfileCount(Count, PCT_Real); 1882 } else if (AllowSynthetic && 1883 MDS->getString().equals("synthetic_function_entry_count")) { 1884 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1885 uint64_t Count = CI->getValue().getZExtValue(); 1886 return ProfileCount(Count, PCT_Synthetic); 1887 } 1888 } 1889 return ProfileCount::getInvalid(); 1890 } 1891 1892 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1893 DenseSet<GlobalValue::GUID> R; 1894 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1895 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1896 if (MDS->getString().equals("function_entry_count")) 1897 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1898 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1899 ->getValue() 1900 .getZExtValue()); 1901 return R; 1902 } 1903 1904 void Function::setSectionPrefix(StringRef Prefix) { 1905 MDBuilder MDB(getContext()); 1906 setMetadata(LLVMContext::MD_section_prefix, 1907 MDB.createFunctionSectionPrefix(Prefix)); 1908 } 1909 1910 Optional<StringRef> Function::getSectionPrefix() const { 1911 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1912 assert(cast<MDString>(MD->getOperand(0)) 1913 ->getString() 1914 .equals("function_section_prefix") && 1915 "Metadata not match"); 1916 return cast<MDString>(MD->getOperand(1))->getString(); 1917 } 1918 return None; 1919 } 1920 1921 bool Function::nullPointerIsDefined() const { 1922 return hasFnAttribute(Attribute::NullPointerIsValid); 1923 } 1924 1925 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1926 if (F && F->nullPointerIsDefined()) 1927 return true; 1928 1929 if (AS != 0) 1930 return true; 1931 1932 return false; 1933 } 1934