1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/IR/AbstractCallSite.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalValue.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/IntrinsicsAArch64.h" 36 #include "llvm/IR/IntrinsicsAMDGPU.h" 37 #include "llvm/IR/IntrinsicsARM.h" 38 #include "llvm/IR/IntrinsicsBPF.h" 39 #include "llvm/IR/IntrinsicsDirectX.h" 40 #include "llvm/IR/IntrinsicsHexagon.h" 41 #include "llvm/IR/IntrinsicsLoongArch.h" 42 #include "llvm/IR/IntrinsicsMips.h" 43 #include "llvm/IR/IntrinsicsNVPTX.h" 44 #include "llvm/IR/IntrinsicsPowerPC.h" 45 #include "llvm/IR/IntrinsicsR600.h" 46 #include "llvm/IR/IntrinsicsRISCV.h" 47 #include "llvm/IR/IntrinsicsS390.h" 48 #include "llvm/IR/IntrinsicsSPIRV.h" 49 #include "llvm/IR/IntrinsicsVE.h" 50 #include "llvm/IR/IntrinsicsWebAssembly.h" 51 #include "llvm/IR/IntrinsicsX86.h" 52 #include "llvm/IR/IntrinsicsXCore.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/SymbolTableListTraits.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Use.h" 61 #include "llvm/IR/User.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/IR/ValueSymbolTable.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ModRef.h" 69 #include <cassert> 70 #include <cstddef> 71 #include <cstdint> 72 #include <cstring> 73 #include <string> 74 75 using namespace llvm; 76 using ProfileCount = Function::ProfileCount; 77 78 // Explicit instantiations of SymbolTableListTraits since some of the methods 79 // are not in the public header file... 80 template class llvm::SymbolTableListTraits<BasicBlock>; 81 82 static cl::opt<int> NonGlobalValueMaxNameSize( 83 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 84 cl::desc("Maximum size for the name of non-global values.")); 85 86 extern cl::opt<bool> UseNewDbgInfoFormat; 87 88 void Function::convertToNewDbgValues() { 89 IsNewDbgInfoFormat = true; 90 for (auto &BB : *this) { 91 BB.convertToNewDbgValues(); 92 } 93 } 94 95 void Function::convertFromNewDbgValues() { 96 IsNewDbgInfoFormat = false; 97 for (auto &BB : *this) { 98 BB.convertFromNewDbgValues(); 99 } 100 } 101 102 void Function::setIsNewDbgInfoFormat(bool NewFlag) { 103 if (NewFlag && !IsNewDbgInfoFormat) 104 convertToNewDbgValues(); 105 else if (!NewFlag && IsNewDbgInfoFormat) 106 convertFromNewDbgValues(); 107 } 108 void Function::setNewDbgInfoFormatFlag(bool NewFlag) { 109 for (auto &BB : *this) { 110 BB.setNewDbgInfoFormatFlag(NewFlag); 111 } 112 IsNewDbgInfoFormat = NewFlag; 113 } 114 115 //===----------------------------------------------------------------------===// 116 // Argument Implementation 117 //===----------------------------------------------------------------------===// 118 119 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 120 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 121 setName(Name); 122 } 123 124 void Argument::setParent(Function *parent) { 125 Parent = parent; 126 } 127 128 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 129 if (!getType()->isPointerTy()) return false; 130 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 131 (AllowUndefOrPoison || 132 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 133 return true; 134 else if (getDereferenceableBytes() > 0 && 135 !NullPointerIsDefined(getParent(), 136 getType()->getPointerAddressSpace())) 137 return true; 138 return false; 139 } 140 141 bool Argument::hasByValAttr() const { 142 if (!getType()->isPointerTy()) return false; 143 return hasAttribute(Attribute::ByVal); 144 } 145 146 bool Argument::hasByRefAttr() const { 147 if (!getType()->isPointerTy()) 148 return false; 149 return hasAttribute(Attribute::ByRef); 150 } 151 152 bool Argument::hasSwiftSelfAttr() const { 153 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 154 } 155 156 bool Argument::hasSwiftErrorAttr() const { 157 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 158 } 159 160 bool Argument::hasInAllocaAttr() const { 161 if (!getType()->isPointerTy()) return false; 162 return hasAttribute(Attribute::InAlloca); 163 } 164 165 bool Argument::hasPreallocatedAttr() const { 166 if (!getType()->isPointerTy()) 167 return false; 168 return hasAttribute(Attribute::Preallocated); 169 } 170 171 bool Argument::hasPassPointeeByValueCopyAttr() const { 172 if (!getType()->isPointerTy()) return false; 173 AttributeList Attrs = getParent()->getAttributes(); 174 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 175 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 176 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated); 177 } 178 179 bool Argument::hasPointeeInMemoryValueAttr() const { 180 if (!getType()->isPointerTy()) 181 return false; 182 AttributeList Attrs = getParent()->getAttributes(); 183 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 184 Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) || 185 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 186 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) || 187 Attrs.hasParamAttr(getArgNo(), Attribute::ByRef); 188 } 189 190 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 191 /// parameter type. 192 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) { 193 // FIXME: All the type carrying attributes are mutually exclusive, so there 194 // should be a single query to get the stored type that handles any of them. 195 if (Type *ByValTy = ParamAttrs.getByValType()) 196 return ByValTy; 197 if (Type *ByRefTy = ParamAttrs.getByRefType()) 198 return ByRefTy; 199 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 200 return PreAllocTy; 201 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 202 return InAllocaTy; 203 if (Type *SRetTy = ParamAttrs.getStructRetType()) 204 return SRetTy; 205 206 return nullptr; 207 } 208 209 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 210 AttributeSet ParamAttrs = 211 getParent()->getAttributes().getParamAttrs(getArgNo()); 212 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs)) 213 return DL.getTypeAllocSize(MemTy); 214 return 0; 215 } 216 217 Type *Argument::getPointeeInMemoryValueType() const { 218 AttributeSet ParamAttrs = 219 getParent()->getAttributes().getParamAttrs(getArgNo()); 220 return getMemoryParamAllocType(ParamAttrs); 221 } 222 223 MaybeAlign Argument::getParamAlign() const { 224 assert(getType()->isPointerTy() && "Only pointers have alignments"); 225 return getParent()->getParamAlign(getArgNo()); 226 } 227 228 MaybeAlign Argument::getParamStackAlign() const { 229 return getParent()->getParamStackAlign(getArgNo()); 230 } 231 232 Type *Argument::getParamByValType() const { 233 assert(getType()->isPointerTy() && "Only pointers have byval types"); 234 return getParent()->getParamByValType(getArgNo()); 235 } 236 237 Type *Argument::getParamStructRetType() const { 238 assert(getType()->isPointerTy() && "Only pointers have sret types"); 239 return getParent()->getParamStructRetType(getArgNo()); 240 } 241 242 Type *Argument::getParamByRefType() const { 243 assert(getType()->isPointerTy() && "Only pointers have byref types"); 244 return getParent()->getParamByRefType(getArgNo()); 245 } 246 247 Type *Argument::getParamInAllocaType() const { 248 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 249 return getParent()->getParamInAllocaType(getArgNo()); 250 } 251 252 uint64_t Argument::getDereferenceableBytes() const { 253 assert(getType()->isPointerTy() && 254 "Only pointers have dereferenceable bytes"); 255 return getParent()->getParamDereferenceableBytes(getArgNo()); 256 } 257 258 uint64_t Argument::getDereferenceableOrNullBytes() const { 259 assert(getType()->isPointerTy() && 260 "Only pointers have dereferenceable bytes"); 261 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 262 } 263 264 FPClassTest Argument::getNoFPClass() const { 265 return getParent()->getParamNoFPClass(getArgNo()); 266 } 267 268 std::optional<ConstantRange> Argument::getRange() const { 269 const Attribute RangeAttr = getAttribute(llvm::Attribute::Range); 270 if (RangeAttr.isValid()) 271 return RangeAttr.getRange(); 272 return std::nullopt; 273 } 274 275 bool Argument::hasNestAttr() const { 276 if (!getType()->isPointerTy()) return false; 277 return hasAttribute(Attribute::Nest); 278 } 279 280 bool Argument::hasNoAliasAttr() const { 281 if (!getType()->isPointerTy()) return false; 282 return hasAttribute(Attribute::NoAlias); 283 } 284 285 bool Argument::hasNoCaptureAttr() const { 286 if (!getType()->isPointerTy()) return false; 287 return hasAttribute(Attribute::NoCapture); 288 } 289 290 bool Argument::hasNoFreeAttr() const { 291 if (!getType()->isPointerTy()) return false; 292 return hasAttribute(Attribute::NoFree); 293 } 294 295 bool Argument::hasStructRetAttr() const { 296 if (!getType()->isPointerTy()) return false; 297 return hasAttribute(Attribute::StructRet); 298 } 299 300 bool Argument::hasInRegAttr() const { 301 return hasAttribute(Attribute::InReg); 302 } 303 304 bool Argument::hasReturnedAttr() const { 305 return hasAttribute(Attribute::Returned); 306 } 307 308 bool Argument::hasZExtAttr() const { 309 return hasAttribute(Attribute::ZExt); 310 } 311 312 bool Argument::hasSExtAttr() const { 313 return hasAttribute(Attribute::SExt); 314 } 315 316 bool Argument::onlyReadsMemory() const { 317 AttributeList Attrs = getParent()->getAttributes(); 318 return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) || 319 Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone); 320 } 321 322 void Argument::addAttrs(AttrBuilder &B) { 323 AttributeList AL = getParent()->getAttributes(); 324 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 325 getParent()->setAttributes(AL); 326 } 327 328 void Argument::addAttr(Attribute::AttrKind Kind) { 329 getParent()->addParamAttr(getArgNo(), Kind); 330 } 331 332 void Argument::addAttr(Attribute Attr) { 333 getParent()->addParamAttr(getArgNo(), Attr); 334 } 335 336 void Argument::removeAttr(Attribute::AttrKind Kind) { 337 getParent()->removeParamAttr(getArgNo(), Kind); 338 } 339 340 void Argument::removeAttrs(const AttributeMask &AM) { 341 AttributeList AL = getParent()->getAttributes(); 342 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM); 343 getParent()->setAttributes(AL); 344 } 345 346 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 347 return getParent()->hasParamAttribute(getArgNo(), Kind); 348 } 349 350 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 351 return getParent()->getParamAttribute(getArgNo(), Kind); 352 } 353 354 //===----------------------------------------------------------------------===// 355 // Helper Methods in Function 356 //===----------------------------------------------------------------------===// 357 358 LLVMContext &Function::getContext() const { 359 return getType()->getContext(); 360 } 361 362 const DataLayout &Function::getDataLayout() const { 363 return getParent()->getDataLayout(); 364 } 365 366 unsigned Function::getInstructionCount() const { 367 unsigned NumInstrs = 0; 368 for (const BasicBlock &BB : BasicBlocks) 369 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 370 BB.instructionsWithoutDebug().end()); 371 return NumInstrs; 372 } 373 374 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 375 const Twine &N, Module &M) { 376 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 377 } 378 379 Function *Function::createWithDefaultAttr(FunctionType *Ty, 380 LinkageTypes Linkage, 381 unsigned AddrSpace, const Twine &N, 382 Module *M) { 383 auto *F = new Function(Ty, Linkage, AddrSpace, N, M); 384 AttrBuilder B(F->getContext()); 385 UWTableKind UWTable = M->getUwtable(); 386 if (UWTable != UWTableKind::None) 387 B.addUWTableAttr(UWTable); 388 switch (M->getFramePointer()) { 389 case FramePointerKind::None: 390 // 0 ("none") is the default. 391 break; 392 case FramePointerKind::Reserved: 393 B.addAttribute("frame-pointer", "reserved"); 394 break; 395 case FramePointerKind::NonLeaf: 396 B.addAttribute("frame-pointer", "non-leaf"); 397 break; 398 case FramePointerKind::All: 399 B.addAttribute("frame-pointer", "all"); 400 break; 401 } 402 if (M->getModuleFlag("function_return_thunk_extern")) 403 B.addAttribute(Attribute::FnRetThunkExtern); 404 StringRef DefaultCPU = F->getContext().getDefaultTargetCPU(); 405 if (!DefaultCPU.empty()) 406 B.addAttribute("target-cpu", DefaultCPU); 407 StringRef DefaultFeatures = F->getContext().getDefaultTargetFeatures(); 408 if (!DefaultFeatures.empty()) 409 B.addAttribute("target-features", DefaultFeatures); 410 411 // Check if the module attribute is present and not zero. 412 auto isModuleAttributeSet = [&](const StringRef &ModAttr) -> bool { 413 const auto *Attr = 414 mdconst::extract_or_null<ConstantInt>(M->getModuleFlag(ModAttr)); 415 return Attr && !Attr->isZero(); 416 }; 417 418 auto AddAttributeIfSet = [&](const StringRef &ModAttr) { 419 if (isModuleAttributeSet(ModAttr)) 420 B.addAttribute(ModAttr); 421 }; 422 423 StringRef SignType = "none"; 424 if (isModuleAttributeSet("sign-return-address")) 425 SignType = "non-leaf"; 426 if (isModuleAttributeSet("sign-return-address-all")) 427 SignType = "all"; 428 if (SignType != "none") { 429 B.addAttribute("sign-return-address", SignType); 430 B.addAttribute("sign-return-address-key", 431 isModuleAttributeSet("sign-return-address-with-bkey") 432 ? "b_key" 433 : "a_key"); 434 } 435 AddAttributeIfSet("branch-target-enforcement"); 436 AddAttributeIfSet("branch-protection-pauth-lr"); 437 AddAttributeIfSet("guarded-control-stack"); 438 439 F->addFnAttrs(B); 440 return F; 441 } 442 443 void Function::removeFromParent() { 444 getParent()->getFunctionList().remove(getIterator()); 445 } 446 447 void Function::eraseFromParent() { 448 getParent()->getFunctionList().erase(getIterator()); 449 } 450 451 void Function::splice(Function::iterator ToIt, Function *FromF, 452 Function::iterator FromBeginIt, 453 Function::iterator FromEndIt) { 454 #ifdef EXPENSIVE_CHECKS 455 // Check that FromBeginIt is before FromEndIt. 456 auto FromFEnd = FromF->end(); 457 for (auto It = FromBeginIt; It != FromEndIt; ++It) 458 assert(It != FromFEnd && "FromBeginIt not before FromEndIt!"); 459 #endif // EXPENSIVE_CHECKS 460 BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt); 461 } 462 463 Function::iterator Function::erase(Function::iterator FromIt, 464 Function::iterator ToIt) { 465 return BasicBlocks.erase(FromIt, ToIt); 466 } 467 468 //===----------------------------------------------------------------------===// 469 // Function Implementation 470 //===----------------------------------------------------------------------===// 471 472 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 473 // If AS == -1 and we are passed a valid module pointer we place the function 474 // in the program address space. Otherwise we default to AS0. 475 if (AddrSpace == static_cast<unsigned>(-1)) 476 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 477 return AddrSpace; 478 } 479 480 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 481 const Twine &name, Module *ParentModule) 482 : GlobalObject(Ty, Value::FunctionVal, 483 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 484 computeAddrSpace(AddrSpace, ParentModule)), 485 NumArgs(Ty->getNumParams()), IsNewDbgInfoFormat(UseNewDbgInfoFormat) { 486 assert(FunctionType::isValidReturnType(getReturnType()) && 487 "invalid return type"); 488 setGlobalObjectSubClassData(0); 489 490 // We only need a symbol table for a function if the context keeps value names 491 if (!getContext().shouldDiscardValueNames()) 492 SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize); 493 494 // If the function has arguments, mark them as lazily built. 495 if (Ty->getNumParams()) 496 setValueSubclassData(1); // Set the "has lazy arguments" bit. 497 498 if (ParentModule) { 499 ParentModule->getFunctionList().push_back(this); 500 IsNewDbgInfoFormat = ParentModule->IsNewDbgInfoFormat; 501 } 502 503 HasLLVMReservedName = getName().starts_with("llvm."); 504 // Ensure intrinsics have the right parameter attributes. 505 // Note, the IntID field will have been set in Value::setName if this function 506 // name is a valid intrinsic ID. 507 if (IntID) 508 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 509 } 510 511 Function::~Function() { 512 dropAllReferences(); // After this it is safe to delete instructions. 513 514 // Delete all of the method arguments and unlink from symbol table... 515 if (Arguments) 516 clearArguments(); 517 518 // Remove the function from the on-the-side GC table. 519 clearGC(); 520 } 521 522 void Function::BuildLazyArguments() const { 523 // Create the arguments vector, all arguments start out unnamed. 524 auto *FT = getFunctionType(); 525 if (NumArgs > 0) { 526 Arguments = std::allocator<Argument>().allocate(NumArgs); 527 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 528 Type *ArgTy = FT->getParamType(i); 529 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 530 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 531 } 532 } 533 534 // Clear the lazy arguments bit. 535 unsigned SDC = getSubclassDataFromValue(); 536 SDC &= ~(1 << 0); 537 const_cast<Function*>(this)->setValueSubclassData(SDC); 538 assert(!hasLazyArguments()); 539 } 540 541 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 542 return MutableArrayRef<Argument>(Args, Count); 543 } 544 545 bool Function::isConstrainedFPIntrinsic() const { 546 return Intrinsic::isConstrainedFPIntrinsic(getIntrinsicID()); 547 } 548 549 void Function::clearArguments() { 550 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 551 A.setName(""); 552 A.~Argument(); 553 } 554 std::allocator<Argument>().deallocate(Arguments, NumArgs); 555 Arguments = nullptr; 556 } 557 558 void Function::stealArgumentListFrom(Function &Src) { 559 assert(isDeclaration() && "Expected no references to current arguments"); 560 561 // Drop the current arguments, if any, and set the lazy argument bit. 562 if (!hasLazyArguments()) { 563 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 564 [](const Argument &A) { return A.use_empty(); }) && 565 "Expected arguments to be unused in declaration"); 566 clearArguments(); 567 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 568 } 569 570 // Nothing to steal if Src has lazy arguments. 571 if (Src.hasLazyArguments()) 572 return; 573 574 // Steal arguments from Src, and fix the lazy argument bits. 575 assert(arg_size() == Src.arg_size()); 576 Arguments = Src.Arguments; 577 Src.Arguments = nullptr; 578 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 579 // FIXME: This does the work of transferNodesFromList inefficiently. 580 SmallString<128> Name; 581 if (A.hasName()) 582 Name = A.getName(); 583 if (!Name.empty()) 584 A.setName(""); 585 A.setParent(this); 586 if (!Name.empty()) 587 A.setName(Name); 588 } 589 590 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 591 assert(!hasLazyArguments()); 592 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 593 } 594 595 void Function::deleteBodyImpl(bool ShouldDrop) { 596 setIsMaterializable(false); 597 598 for (BasicBlock &BB : *this) 599 BB.dropAllReferences(); 600 601 // Delete all basic blocks. They are now unused, except possibly by 602 // blockaddresses, but BasicBlock's destructor takes care of those. 603 while (!BasicBlocks.empty()) 604 BasicBlocks.begin()->eraseFromParent(); 605 606 if (getNumOperands()) { 607 if (ShouldDrop) { 608 // Drop uses of any optional data (real or placeholder). 609 User::dropAllReferences(); 610 setNumHungOffUseOperands(0); 611 } else { 612 // The code needs to match Function::allocHungoffUselist(). 613 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0)); 614 Op<0>().set(CPN); 615 Op<1>().set(CPN); 616 Op<2>().set(CPN); 617 } 618 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 619 } 620 621 // Metadata is stored in a side-table. 622 clearMetadata(); 623 } 624 625 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) { 626 AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr); 627 } 628 629 void Function::addFnAttr(Attribute::AttrKind Kind) { 630 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind); 631 } 632 633 void Function::addFnAttr(StringRef Kind, StringRef Val) { 634 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val); 635 } 636 637 void Function::addFnAttr(Attribute Attr) { 638 AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr); 639 } 640 641 void Function::addFnAttrs(const AttrBuilder &Attrs) { 642 AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs); 643 } 644 645 void Function::addRetAttr(Attribute::AttrKind Kind) { 646 AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind); 647 } 648 649 void Function::addRetAttr(Attribute Attr) { 650 AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr); 651 } 652 653 void Function::addRetAttrs(const AttrBuilder &Attrs) { 654 AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs); 655 } 656 657 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 658 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind); 659 } 660 661 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 662 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr); 663 } 664 665 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 666 AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs); 667 } 668 669 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) { 670 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 671 } 672 673 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) { 674 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 675 } 676 677 void Function::removeFnAttr(Attribute::AttrKind Kind) { 678 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 679 } 680 681 void Function::removeFnAttr(StringRef Kind) { 682 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 683 } 684 685 void Function::removeFnAttrs(const AttributeMask &AM) { 686 AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM); 687 } 688 689 void Function::removeRetAttr(Attribute::AttrKind Kind) { 690 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 691 } 692 693 void Function::removeRetAttr(StringRef Kind) { 694 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 695 } 696 697 void Function::removeRetAttrs(const AttributeMask &Attrs) { 698 AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs); 699 } 700 701 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 702 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 703 } 704 705 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 706 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 707 } 708 709 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) { 710 AttributeSets = 711 AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs); 712 } 713 714 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 715 AttributeSets = 716 AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 717 } 718 719 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const { 720 return AttributeSets.hasFnAttr(Kind); 721 } 722 723 bool Function::hasFnAttribute(StringRef Kind) const { 724 return AttributeSets.hasFnAttr(Kind); 725 } 726 727 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const { 728 return AttributeSets.hasRetAttr(Kind); 729 } 730 731 bool Function::hasParamAttribute(unsigned ArgNo, 732 Attribute::AttrKind Kind) const { 733 return AttributeSets.hasParamAttr(ArgNo, Kind); 734 } 735 736 Attribute Function::getAttributeAtIndex(unsigned i, 737 Attribute::AttrKind Kind) const { 738 return AttributeSets.getAttributeAtIndex(i, Kind); 739 } 740 741 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const { 742 return AttributeSets.getAttributeAtIndex(i, Kind); 743 } 744 745 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const { 746 return AttributeSets.getFnAttr(Kind); 747 } 748 749 Attribute Function::getFnAttribute(StringRef Kind) const { 750 return AttributeSets.getFnAttr(Kind); 751 } 752 753 Attribute Function::getRetAttribute(Attribute::AttrKind Kind) const { 754 return AttributeSets.getRetAttr(Kind); 755 } 756 757 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name, 758 uint64_t Default) const { 759 Attribute A = getFnAttribute(Name); 760 uint64_t Result = Default; 761 if (A.isStringAttribute()) { 762 StringRef Str = A.getValueAsString(); 763 if (Str.getAsInteger(0, Result)) 764 getContext().emitError("cannot parse integer attribute " + Name); 765 } 766 767 return Result; 768 } 769 770 /// gets the specified attribute from the list of attributes. 771 Attribute Function::getParamAttribute(unsigned ArgNo, 772 Attribute::AttrKind Kind) const { 773 return AttributeSets.getParamAttr(ArgNo, Kind); 774 } 775 776 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 777 uint64_t Bytes) { 778 AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(), 779 ArgNo, Bytes); 780 } 781 782 void Function::addRangeRetAttr(const ConstantRange &CR) { 783 AttributeSets = AttributeSets.addRangeRetAttr(getContext(), CR); 784 } 785 786 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 787 if (&FPType == &APFloat::IEEEsingle()) { 788 DenormalMode Mode = getDenormalModeF32Raw(); 789 // If the f32 variant of the attribute isn't specified, try to use the 790 // generic one. 791 if (Mode.isValid()) 792 return Mode; 793 } 794 795 return getDenormalModeRaw(); 796 } 797 798 DenormalMode Function::getDenormalModeRaw() const { 799 Attribute Attr = getFnAttribute("denormal-fp-math"); 800 StringRef Val = Attr.getValueAsString(); 801 return parseDenormalFPAttribute(Val); 802 } 803 804 DenormalMode Function::getDenormalModeF32Raw() const { 805 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 806 if (Attr.isValid()) { 807 StringRef Val = Attr.getValueAsString(); 808 return parseDenormalFPAttribute(Val); 809 } 810 811 return DenormalMode::getInvalid(); 812 } 813 814 const std::string &Function::getGC() const { 815 assert(hasGC() && "Function has no collector"); 816 return getContext().getGC(*this); 817 } 818 819 void Function::setGC(std::string Str) { 820 setValueSubclassDataBit(14, !Str.empty()); 821 getContext().setGC(*this, std::move(Str)); 822 } 823 824 void Function::clearGC() { 825 if (!hasGC()) 826 return; 827 getContext().deleteGC(*this); 828 setValueSubclassDataBit(14, false); 829 } 830 831 bool Function::hasStackProtectorFnAttr() const { 832 return hasFnAttribute(Attribute::StackProtect) || 833 hasFnAttribute(Attribute::StackProtectStrong) || 834 hasFnAttribute(Attribute::StackProtectReq); 835 } 836 837 /// Copy all additional attributes (those not needed to create a Function) from 838 /// the Function Src to this one. 839 void Function::copyAttributesFrom(const Function *Src) { 840 GlobalObject::copyAttributesFrom(Src); 841 setCallingConv(Src->getCallingConv()); 842 setAttributes(Src->getAttributes()); 843 if (Src->hasGC()) 844 setGC(Src->getGC()); 845 else 846 clearGC(); 847 if (Src->hasPersonalityFn()) 848 setPersonalityFn(Src->getPersonalityFn()); 849 if (Src->hasPrefixData()) 850 setPrefixData(Src->getPrefixData()); 851 if (Src->hasPrologueData()) 852 setPrologueData(Src->getPrologueData()); 853 } 854 855 MemoryEffects Function::getMemoryEffects() const { 856 return getAttributes().getMemoryEffects(); 857 } 858 void Function::setMemoryEffects(MemoryEffects ME) { 859 addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME)); 860 } 861 862 /// Determine if the function does not access memory. 863 bool Function::doesNotAccessMemory() const { 864 return getMemoryEffects().doesNotAccessMemory(); 865 } 866 void Function::setDoesNotAccessMemory() { 867 setMemoryEffects(MemoryEffects::none()); 868 } 869 870 /// Determine if the function does not access or only reads memory. 871 bool Function::onlyReadsMemory() const { 872 return getMemoryEffects().onlyReadsMemory(); 873 } 874 void Function::setOnlyReadsMemory() { 875 setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly()); 876 } 877 878 /// Determine if the function does not access or only writes memory. 879 bool Function::onlyWritesMemory() const { 880 return getMemoryEffects().onlyWritesMemory(); 881 } 882 void Function::setOnlyWritesMemory() { 883 setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly()); 884 } 885 886 /// Determine if the call can access memmory only using pointers based 887 /// on its arguments. 888 bool Function::onlyAccessesArgMemory() const { 889 return getMemoryEffects().onlyAccessesArgPointees(); 890 } 891 void Function::setOnlyAccessesArgMemory() { 892 setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly()); 893 } 894 895 /// Determine if the function may only access memory that is 896 /// inaccessible from the IR. 897 bool Function::onlyAccessesInaccessibleMemory() const { 898 return getMemoryEffects().onlyAccessesInaccessibleMem(); 899 } 900 void Function::setOnlyAccessesInaccessibleMemory() { 901 setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly()); 902 } 903 904 /// Determine if the function may only access memory that is 905 /// either inaccessible from the IR or pointed to by its arguments. 906 bool Function::onlyAccessesInaccessibleMemOrArgMem() const { 907 return getMemoryEffects().onlyAccessesInaccessibleOrArgMem(); 908 } 909 void Function::setOnlyAccessesInaccessibleMemOrArgMem() { 910 setMemoryEffects(getMemoryEffects() & 911 MemoryEffects::inaccessibleOrArgMemOnly()); 912 } 913 914 /// Table of string intrinsic names indexed by enum value. 915 static const char * const IntrinsicNameTable[] = { 916 "not_intrinsic", 917 #define GET_INTRINSIC_NAME_TABLE 918 #include "llvm/IR/IntrinsicImpl.inc" 919 #undef GET_INTRINSIC_NAME_TABLE 920 }; 921 922 /// Table of per-target intrinsic name tables. 923 #define GET_INTRINSIC_TARGET_DATA 924 #include "llvm/IR/IntrinsicImpl.inc" 925 #undef GET_INTRINSIC_TARGET_DATA 926 927 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 928 return IID > TargetInfos[0].Count; 929 } 930 931 bool Function::isTargetIntrinsic() const { 932 return isTargetIntrinsic(IntID); 933 } 934 935 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 936 /// target as \c Name, or the generic table if \c Name is not target specific. 937 /// 938 /// Returns the relevant slice of \c IntrinsicNameTable 939 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 940 assert(Name.starts_with("llvm.")); 941 942 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 943 // Drop "llvm." and take the first dotted component. That will be the target 944 // if this is target specific. 945 StringRef Target = Name.drop_front(5).split('.').first; 946 auto It = partition_point( 947 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 948 // We've either found the target or just fall back to the generic set, which 949 // is always first. 950 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 951 return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 952 } 953 954 /// This does the actual lookup of an intrinsic ID which 955 /// matches the given function name. 956 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 957 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 958 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 959 if (Idx == -1) 960 return Intrinsic::not_intrinsic; 961 962 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 963 // an index into a sub-table. 964 int Adjust = NameTable.data() - IntrinsicNameTable; 965 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 966 967 // If the intrinsic is not overloaded, require an exact match. If it is 968 // overloaded, require either exact or prefix match. 969 const auto MatchSize = strlen(NameTable[Idx]); 970 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 971 bool IsExactMatch = Name.size() == MatchSize; 972 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 973 : Intrinsic::not_intrinsic; 974 } 975 976 void Function::updateAfterNameChange() { 977 LibFuncCache = UnknownLibFunc; 978 StringRef Name = getName(); 979 if (!Name.starts_with("llvm.")) { 980 HasLLVMReservedName = false; 981 IntID = Intrinsic::not_intrinsic; 982 return; 983 } 984 HasLLVMReservedName = true; 985 IntID = lookupIntrinsicID(Name); 986 } 987 988 /// Returns a stable mangling for the type specified for use in the name 989 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 990 /// of named types is simply their name. Manglings for unnamed types consist 991 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 992 /// combined with the mangling of their component types. A vararg function 993 /// type will have a suffix of 'vararg'. Since function types can contain 994 /// other function types, we close a function type mangling with suffix 'f' 995 /// which can't be confused with it's prefix. This ensures we don't have 996 /// collisions between two unrelated function types. Otherwise, you might 997 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 998 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 999 /// indicating that extra care must be taken to ensure a unique name. 1000 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 1001 std::string Result; 1002 if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) { 1003 Result += "p" + utostr(PTyp->getAddressSpace()); 1004 } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) { 1005 Result += "a" + utostr(ATyp->getNumElements()) + 1006 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 1007 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 1008 if (!STyp->isLiteral()) { 1009 Result += "s_"; 1010 if (STyp->hasName()) 1011 Result += STyp->getName(); 1012 else 1013 HasUnnamedType = true; 1014 } else { 1015 Result += "sl_"; 1016 for (auto *Elem : STyp->elements()) 1017 Result += getMangledTypeStr(Elem, HasUnnamedType); 1018 } 1019 // Ensure nested structs are distinguishable. 1020 Result += "s"; 1021 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 1022 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 1023 for (size_t i = 0; i < FT->getNumParams(); i++) 1024 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 1025 if (FT->isVarArg()) 1026 Result += "vararg"; 1027 // Ensure nested function types are distinguishable. 1028 Result += "f"; 1029 } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1030 ElementCount EC = VTy->getElementCount(); 1031 if (EC.isScalable()) 1032 Result += "nx"; 1033 Result += "v" + utostr(EC.getKnownMinValue()) + 1034 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 1035 } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) { 1036 Result += "t"; 1037 Result += TETy->getName(); 1038 for (Type *ParamTy : TETy->type_params()) 1039 Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType); 1040 for (unsigned IntParam : TETy->int_params()) 1041 Result += "_" + utostr(IntParam); 1042 // Ensure nested target extension types are distinguishable. 1043 Result += "t"; 1044 } else if (Ty) { 1045 switch (Ty->getTypeID()) { 1046 default: llvm_unreachable("Unhandled type"); 1047 case Type::VoidTyID: Result += "isVoid"; break; 1048 case Type::MetadataTyID: Result += "Metadata"; break; 1049 case Type::HalfTyID: Result += "f16"; break; 1050 case Type::BFloatTyID: Result += "bf16"; break; 1051 case Type::FloatTyID: Result += "f32"; break; 1052 case Type::DoubleTyID: Result += "f64"; break; 1053 case Type::X86_FP80TyID: Result += "f80"; break; 1054 case Type::FP128TyID: Result += "f128"; break; 1055 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 1056 case Type::X86_MMXTyID: Result += "x86mmx"; break; 1057 case Type::X86_AMXTyID: Result += "x86amx"; break; 1058 case Type::IntegerTyID: 1059 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 1060 break; 1061 } 1062 } 1063 return Result; 1064 } 1065 1066 StringRef Intrinsic::getBaseName(ID id) { 1067 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 1068 return IntrinsicNameTable[id]; 1069 } 1070 1071 StringRef Intrinsic::getName(ID id) { 1072 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 1073 assert(!Intrinsic::isOverloaded(id) && 1074 "This version of getName does not support overloading"); 1075 return getBaseName(id); 1076 } 1077 1078 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys, 1079 Module *M, FunctionType *FT, 1080 bool EarlyModuleCheck) { 1081 1082 assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!"); 1083 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 1084 "This version of getName is for overloaded intrinsics only"); 1085 (void)EarlyModuleCheck; 1086 assert((!EarlyModuleCheck || M || 1087 !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) && 1088 "Intrinsic overloading on pointer types need to provide a Module"); 1089 bool HasUnnamedType = false; 1090 std::string Result(Intrinsic::getBaseName(Id)); 1091 for (Type *Ty : Tys) 1092 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 1093 if (HasUnnamedType) { 1094 assert(M && "unnamed types need a module"); 1095 if (!FT) 1096 FT = Intrinsic::getType(M->getContext(), Id, Tys); 1097 else 1098 assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) && 1099 "Provided FunctionType must match arguments"); 1100 return M->getUniqueIntrinsicName(Result, Id, FT); 1101 } 1102 return Result; 1103 } 1104 1105 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 1106 FunctionType *FT) { 1107 assert(M && "We need to have a Module"); 1108 return getIntrinsicNameImpl(Id, Tys, M, FT, true); 1109 } 1110 1111 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) { 1112 return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false); 1113 } 1114 1115 /// IIT_Info - These are enumerators that describe the entries returned by the 1116 /// getIntrinsicInfoTableEntries function. 1117 /// 1118 /// Defined in Intrinsics.td. 1119 enum IIT_Info { 1120 #define GET_INTRINSIC_IITINFO 1121 #include "llvm/IR/IntrinsicImpl.inc" 1122 #undef GET_INTRINSIC_IITINFO 1123 }; 1124 1125 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 1126 IIT_Info LastInfo, 1127 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 1128 using namespace Intrinsic; 1129 1130 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 1131 1132 IIT_Info Info = IIT_Info(Infos[NextElt++]); 1133 unsigned StructElts = 2; 1134 1135 switch (Info) { 1136 case IIT_Done: 1137 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 1138 return; 1139 case IIT_VARARG: 1140 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 1141 return; 1142 case IIT_MMX: 1143 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 1144 return; 1145 case IIT_AMX: 1146 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 1147 return; 1148 case IIT_TOKEN: 1149 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 1150 return; 1151 case IIT_METADATA: 1152 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 1153 return; 1154 case IIT_F16: 1155 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 1156 return; 1157 case IIT_BF16: 1158 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 1159 return; 1160 case IIT_F32: 1161 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 1162 return; 1163 case IIT_F64: 1164 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 1165 return; 1166 case IIT_F128: 1167 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 1168 return; 1169 case IIT_PPCF128: 1170 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0)); 1171 return; 1172 case IIT_I1: 1173 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 1174 return; 1175 case IIT_I2: 1176 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2)); 1177 return; 1178 case IIT_I4: 1179 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4)); 1180 return; 1181 case IIT_AARCH64_SVCOUNT: 1182 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0)); 1183 return; 1184 case IIT_I8: 1185 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 1186 return; 1187 case IIT_I16: 1188 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 1189 return; 1190 case IIT_I32: 1191 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 1192 return; 1193 case IIT_I64: 1194 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 1195 return; 1196 case IIT_I128: 1197 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 1198 return; 1199 case IIT_V1: 1200 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 1201 DecodeIITType(NextElt, Infos, Info, OutputTable); 1202 return; 1203 case IIT_V2: 1204 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 1205 DecodeIITType(NextElt, Infos, Info, OutputTable); 1206 return; 1207 case IIT_V3: 1208 OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector)); 1209 DecodeIITType(NextElt, Infos, Info, OutputTable); 1210 return; 1211 case IIT_V4: 1212 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 1213 DecodeIITType(NextElt, Infos, Info, OutputTable); 1214 return; 1215 case IIT_V6: 1216 OutputTable.push_back(IITDescriptor::getVector(6, IsScalableVector)); 1217 DecodeIITType(NextElt, Infos, Info, OutputTable); 1218 return; 1219 case IIT_V8: 1220 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 1221 DecodeIITType(NextElt, Infos, Info, OutputTable); 1222 return; 1223 case IIT_V10: 1224 OutputTable.push_back(IITDescriptor::getVector(10, IsScalableVector)); 1225 DecodeIITType(NextElt, Infos, Info, OutputTable); 1226 return; 1227 case IIT_V16: 1228 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 1229 DecodeIITType(NextElt, Infos, Info, OutputTable); 1230 return; 1231 case IIT_V32: 1232 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 1233 DecodeIITType(NextElt, Infos, Info, OutputTable); 1234 return; 1235 case IIT_V64: 1236 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 1237 DecodeIITType(NextElt, Infos, Info, OutputTable); 1238 return; 1239 case IIT_V128: 1240 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 1241 DecodeIITType(NextElt, Infos, Info, OutputTable); 1242 return; 1243 case IIT_V256: 1244 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 1245 DecodeIITType(NextElt, Infos, Info, OutputTable); 1246 return; 1247 case IIT_V512: 1248 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 1249 DecodeIITType(NextElt, Infos, Info, OutputTable); 1250 return; 1251 case IIT_V1024: 1252 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1253 DecodeIITType(NextElt, Infos, Info, OutputTable); 1254 return; 1255 case IIT_EXTERNREF: 1256 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10)); 1257 return; 1258 case IIT_FUNCREF: 1259 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20)); 1260 return; 1261 case IIT_PTR: 1262 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1263 return; 1264 case IIT_ANYPTR: // [ANYPTR addrspace] 1265 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1266 Infos[NextElt++])); 1267 return; 1268 case IIT_ARG: { 1269 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1270 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1271 return; 1272 } 1273 case IIT_EXTEND_ARG: { 1274 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1275 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1276 ArgInfo)); 1277 return; 1278 } 1279 case IIT_TRUNC_ARG: { 1280 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1281 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1282 ArgInfo)); 1283 return; 1284 } 1285 case IIT_HALF_VEC_ARG: { 1286 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1287 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1288 ArgInfo)); 1289 return; 1290 } 1291 case IIT_SAME_VEC_WIDTH_ARG: { 1292 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1293 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1294 ArgInfo)); 1295 return; 1296 } 1297 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1298 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1299 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1300 OutputTable.push_back( 1301 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1302 return; 1303 } 1304 case IIT_EMPTYSTRUCT: 1305 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1306 return; 1307 case IIT_STRUCT9: ++StructElts; [[fallthrough]]; 1308 case IIT_STRUCT8: ++StructElts; [[fallthrough]]; 1309 case IIT_STRUCT7: ++StructElts; [[fallthrough]]; 1310 case IIT_STRUCT6: ++StructElts; [[fallthrough]]; 1311 case IIT_STRUCT5: ++StructElts; [[fallthrough]]; 1312 case IIT_STRUCT4: ++StructElts; [[fallthrough]]; 1313 case IIT_STRUCT3: ++StructElts; [[fallthrough]]; 1314 case IIT_STRUCT2: { 1315 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1316 1317 for (unsigned i = 0; i != StructElts; ++i) 1318 DecodeIITType(NextElt, Infos, Info, OutputTable); 1319 return; 1320 } 1321 case IIT_SUBDIVIDE2_ARG: { 1322 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1323 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1324 ArgInfo)); 1325 return; 1326 } 1327 case IIT_SUBDIVIDE4_ARG: { 1328 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1329 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1330 ArgInfo)); 1331 return; 1332 } 1333 case IIT_VEC_ELEMENT: { 1334 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1335 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1336 ArgInfo)); 1337 return; 1338 } 1339 case IIT_SCALABLE_VEC: { 1340 DecodeIITType(NextElt, Infos, Info, OutputTable); 1341 return; 1342 } 1343 case IIT_VEC_OF_BITCASTS_TO_INT: { 1344 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1345 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1346 ArgInfo)); 1347 return; 1348 } 1349 } 1350 llvm_unreachable("unhandled"); 1351 } 1352 1353 #define GET_INTRINSIC_GENERATOR_GLOBAL 1354 #include "llvm/IR/IntrinsicImpl.inc" 1355 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1356 1357 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1358 SmallVectorImpl<IITDescriptor> &T){ 1359 // Check to see if the intrinsic's type was expressible by the table. 1360 unsigned TableVal = IIT_Table[id-1]; 1361 1362 // Decode the TableVal into an array of IITValues. 1363 SmallVector<unsigned char, 8> IITValues; 1364 ArrayRef<unsigned char> IITEntries; 1365 unsigned NextElt = 0; 1366 if ((TableVal >> 31) != 0) { 1367 // This is an offset into the IIT_LongEncodingTable. 1368 IITEntries = IIT_LongEncodingTable; 1369 1370 // Strip sentinel bit. 1371 NextElt = (TableVal << 1) >> 1; 1372 } else { 1373 // Decode the TableVal into an array of IITValues. If the entry was encoded 1374 // into a single word in the table itself, decode it now. 1375 do { 1376 IITValues.push_back(TableVal & 0xF); 1377 TableVal >>= 4; 1378 } while (TableVal); 1379 1380 IITEntries = IITValues; 1381 NextElt = 0; 1382 } 1383 1384 // Okay, decode the table into the output vector of IITDescriptors. 1385 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1386 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1387 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1388 } 1389 1390 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1391 ArrayRef<Type*> Tys, LLVMContext &Context) { 1392 using namespace Intrinsic; 1393 1394 IITDescriptor D = Infos.front(); 1395 Infos = Infos.slice(1); 1396 1397 switch (D.Kind) { 1398 case IITDescriptor::Void: return Type::getVoidTy(Context); 1399 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1400 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1401 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1402 case IITDescriptor::Token: return Type::getTokenTy(Context); 1403 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1404 case IITDescriptor::Half: return Type::getHalfTy(Context); 1405 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1406 case IITDescriptor::Float: return Type::getFloatTy(Context); 1407 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1408 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1409 case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context); 1410 case IITDescriptor::AArch64Svcount: 1411 return TargetExtType::get(Context, "aarch64.svcount"); 1412 1413 case IITDescriptor::Integer: 1414 return IntegerType::get(Context, D.Integer_Width); 1415 case IITDescriptor::Vector: 1416 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1417 D.Vector_Width); 1418 case IITDescriptor::Pointer: 1419 return PointerType::get(Context, D.Pointer_AddressSpace); 1420 case IITDescriptor::Struct: { 1421 SmallVector<Type *, 8> Elts; 1422 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1423 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1424 return StructType::get(Context, Elts); 1425 } 1426 case IITDescriptor::Argument: 1427 return Tys[D.getArgumentNumber()]; 1428 case IITDescriptor::ExtendArgument: { 1429 Type *Ty = Tys[D.getArgumentNumber()]; 1430 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1431 return VectorType::getExtendedElementVectorType(VTy); 1432 1433 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1434 } 1435 case IITDescriptor::TruncArgument: { 1436 Type *Ty = Tys[D.getArgumentNumber()]; 1437 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1438 return VectorType::getTruncatedElementVectorType(VTy); 1439 1440 IntegerType *ITy = cast<IntegerType>(Ty); 1441 assert(ITy->getBitWidth() % 2 == 0); 1442 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1443 } 1444 case IITDescriptor::Subdivide2Argument: 1445 case IITDescriptor::Subdivide4Argument: { 1446 Type *Ty = Tys[D.getArgumentNumber()]; 1447 VectorType *VTy = dyn_cast<VectorType>(Ty); 1448 assert(VTy && "Expected an argument of Vector Type"); 1449 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1450 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1451 } 1452 case IITDescriptor::HalfVecArgument: 1453 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1454 Tys[D.getArgumentNumber()])); 1455 case IITDescriptor::SameVecWidthArgument: { 1456 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1457 Type *Ty = Tys[D.getArgumentNumber()]; 1458 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1459 return VectorType::get(EltTy, VTy->getElementCount()); 1460 return EltTy; 1461 } 1462 case IITDescriptor::VecElementArgument: { 1463 Type *Ty = Tys[D.getArgumentNumber()]; 1464 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1465 return VTy->getElementType(); 1466 llvm_unreachable("Expected an argument of Vector Type"); 1467 } 1468 case IITDescriptor::VecOfBitcastsToInt: { 1469 Type *Ty = Tys[D.getArgumentNumber()]; 1470 VectorType *VTy = dyn_cast<VectorType>(Ty); 1471 assert(VTy && "Expected an argument of Vector Type"); 1472 return VectorType::getInteger(VTy); 1473 } 1474 case IITDescriptor::VecOfAnyPtrsToElt: 1475 // Return the overloaded type (which determines the pointers address space) 1476 return Tys[D.getOverloadArgNumber()]; 1477 } 1478 llvm_unreachable("unhandled"); 1479 } 1480 1481 FunctionType *Intrinsic::getType(LLVMContext &Context, 1482 ID id, ArrayRef<Type*> Tys) { 1483 SmallVector<IITDescriptor, 8> Table; 1484 getIntrinsicInfoTableEntries(id, Table); 1485 1486 ArrayRef<IITDescriptor> TableRef = Table; 1487 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1488 1489 SmallVector<Type*, 8> ArgTys; 1490 while (!TableRef.empty()) 1491 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1492 1493 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1494 // If we see void type as the type of the last argument, it is vararg intrinsic 1495 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1496 ArgTys.pop_back(); 1497 return FunctionType::get(ResultTy, ArgTys, true); 1498 } 1499 return FunctionType::get(ResultTy, ArgTys, false); 1500 } 1501 1502 bool Intrinsic::isOverloaded(ID id) { 1503 #define GET_INTRINSIC_OVERLOAD_TABLE 1504 #include "llvm/IR/IntrinsicImpl.inc" 1505 #undef GET_INTRINSIC_OVERLOAD_TABLE 1506 } 1507 1508 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1509 #define GET_INTRINSIC_ATTRIBUTES 1510 #include "llvm/IR/IntrinsicImpl.inc" 1511 #undef GET_INTRINSIC_ATTRIBUTES 1512 1513 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1514 // There can never be multiple globals with the same name of different types, 1515 // because intrinsics must be a specific type. 1516 auto *FT = getType(M->getContext(), id, Tys); 1517 return cast<Function>( 1518 M->getOrInsertFunction( 1519 Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT) 1520 .getCallee()); 1521 } 1522 1523 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method. 1524 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1525 #include "llvm/IR/IntrinsicImpl.inc" 1526 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1527 1528 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1529 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1530 #include "llvm/IR/IntrinsicImpl.inc" 1531 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1532 1533 bool Intrinsic::isConstrainedFPIntrinsic(ID QID) { 1534 switch (QID) { 1535 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 1536 case Intrinsic::INTRINSIC: 1537 #include "llvm/IR/ConstrainedOps.def" 1538 #undef INSTRUCTION 1539 return true; 1540 default: 1541 return false; 1542 } 1543 } 1544 1545 bool Intrinsic::hasConstrainedFPRoundingModeOperand(Intrinsic::ID QID) { 1546 switch (QID) { 1547 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 1548 case Intrinsic::INTRINSIC: \ 1549 return ROUND_MODE == 1; 1550 #include "llvm/IR/ConstrainedOps.def" 1551 #undef INSTRUCTION 1552 default: 1553 return false; 1554 } 1555 } 1556 1557 using DeferredIntrinsicMatchPair = 1558 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1559 1560 static bool matchIntrinsicType( 1561 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1562 SmallVectorImpl<Type *> &ArgTys, 1563 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1564 bool IsDeferredCheck) { 1565 using namespace Intrinsic; 1566 1567 // If we ran out of descriptors, there are too many arguments. 1568 if (Infos.empty()) return true; 1569 1570 // Do this before slicing off the 'front' part 1571 auto InfosRef = Infos; 1572 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1573 DeferredChecks.emplace_back(T, InfosRef); 1574 return false; 1575 }; 1576 1577 IITDescriptor D = Infos.front(); 1578 Infos = Infos.slice(1); 1579 1580 switch (D.Kind) { 1581 case IITDescriptor::Void: return !Ty->isVoidTy(); 1582 case IITDescriptor::VarArg: return true; 1583 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1584 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1585 case IITDescriptor::Token: return !Ty->isTokenTy(); 1586 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1587 case IITDescriptor::Half: return !Ty->isHalfTy(); 1588 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1589 case IITDescriptor::Float: return !Ty->isFloatTy(); 1590 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1591 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1592 case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty(); 1593 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1594 case IITDescriptor::AArch64Svcount: 1595 return !isa<TargetExtType>(Ty) || 1596 cast<TargetExtType>(Ty)->getName() != "aarch64.svcount"; 1597 case IITDescriptor::Vector: { 1598 VectorType *VT = dyn_cast<VectorType>(Ty); 1599 return !VT || VT->getElementCount() != D.Vector_Width || 1600 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1601 DeferredChecks, IsDeferredCheck); 1602 } 1603 case IITDescriptor::Pointer: { 1604 PointerType *PT = dyn_cast<PointerType>(Ty); 1605 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace; 1606 } 1607 1608 case IITDescriptor::Struct: { 1609 StructType *ST = dyn_cast<StructType>(Ty); 1610 if (!ST || !ST->isLiteral() || ST->isPacked() || 1611 ST->getNumElements() != D.Struct_NumElements) 1612 return true; 1613 1614 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1615 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1616 DeferredChecks, IsDeferredCheck)) 1617 return true; 1618 return false; 1619 } 1620 1621 case IITDescriptor::Argument: 1622 // If this is the second occurrence of an argument, 1623 // verify that the later instance matches the previous instance. 1624 if (D.getArgumentNumber() < ArgTys.size()) 1625 return Ty != ArgTys[D.getArgumentNumber()]; 1626 1627 if (D.getArgumentNumber() > ArgTys.size() || 1628 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1629 return IsDeferredCheck || DeferCheck(Ty); 1630 1631 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1632 "Table consistency error"); 1633 ArgTys.push_back(Ty); 1634 1635 switch (D.getArgumentKind()) { 1636 case IITDescriptor::AK_Any: return false; // Success 1637 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1638 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1639 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1640 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1641 default: break; 1642 } 1643 llvm_unreachable("all argument kinds not covered"); 1644 1645 case IITDescriptor::ExtendArgument: { 1646 // If this is a forward reference, defer the check for later. 1647 if (D.getArgumentNumber() >= ArgTys.size()) 1648 return IsDeferredCheck || DeferCheck(Ty); 1649 1650 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1651 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1652 NewTy = VectorType::getExtendedElementVectorType(VTy); 1653 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1654 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1655 else 1656 return true; 1657 1658 return Ty != NewTy; 1659 } 1660 case IITDescriptor::TruncArgument: { 1661 // If this is a forward reference, defer the check for later. 1662 if (D.getArgumentNumber() >= ArgTys.size()) 1663 return IsDeferredCheck || DeferCheck(Ty); 1664 1665 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1666 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1667 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1668 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1669 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1670 else 1671 return true; 1672 1673 return Ty != NewTy; 1674 } 1675 case IITDescriptor::HalfVecArgument: 1676 // If this is a forward reference, defer the check for later. 1677 if (D.getArgumentNumber() >= ArgTys.size()) 1678 return IsDeferredCheck || DeferCheck(Ty); 1679 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1680 VectorType::getHalfElementsVectorType( 1681 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1682 case IITDescriptor::SameVecWidthArgument: { 1683 if (D.getArgumentNumber() >= ArgTys.size()) { 1684 // Defer check and subsequent check for the vector element type. 1685 Infos = Infos.slice(1); 1686 return IsDeferredCheck || DeferCheck(Ty); 1687 } 1688 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1689 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1690 // Both must be vectors of the same number of elements or neither. 1691 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1692 return true; 1693 Type *EltTy = Ty; 1694 if (ThisArgType) { 1695 if (ReferenceType->getElementCount() != 1696 ThisArgType->getElementCount()) 1697 return true; 1698 EltTy = ThisArgType->getElementType(); 1699 } 1700 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1701 IsDeferredCheck); 1702 } 1703 case IITDescriptor::VecOfAnyPtrsToElt: { 1704 unsigned RefArgNumber = D.getRefArgNumber(); 1705 if (RefArgNumber >= ArgTys.size()) { 1706 if (IsDeferredCheck) 1707 return true; 1708 // If forward referencing, already add the pointer-vector type and 1709 // defer the checks for later. 1710 ArgTys.push_back(Ty); 1711 return DeferCheck(Ty); 1712 } 1713 1714 if (!IsDeferredCheck){ 1715 assert(D.getOverloadArgNumber() == ArgTys.size() && 1716 "Table consistency error"); 1717 ArgTys.push_back(Ty); 1718 } 1719 1720 // Verify the overloaded type "matches" the Ref type. 1721 // i.e. Ty is a vector with the same width as Ref. 1722 // Composed of pointers to the same element type as Ref. 1723 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1724 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1725 if (!ThisArgVecTy || !ReferenceType || 1726 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1727 return true; 1728 return !ThisArgVecTy->getElementType()->isPointerTy(); 1729 } 1730 case IITDescriptor::VecElementArgument: { 1731 if (D.getArgumentNumber() >= ArgTys.size()) 1732 return IsDeferredCheck ? true : DeferCheck(Ty); 1733 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1734 return !ReferenceType || Ty != ReferenceType->getElementType(); 1735 } 1736 case IITDescriptor::Subdivide2Argument: 1737 case IITDescriptor::Subdivide4Argument: { 1738 // If this is a forward reference, defer the check for later. 1739 if (D.getArgumentNumber() >= ArgTys.size()) 1740 return IsDeferredCheck || DeferCheck(Ty); 1741 1742 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1743 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1744 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1745 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1746 return Ty != NewTy; 1747 } 1748 return true; 1749 } 1750 case IITDescriptor::VecOfBitcastsToInt: { 1751 if (D.getArgumentNumber() >= ArgTys.size()) 1752 return IsDeferredCheck || DeferCheck(Ty); 1753 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1754 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1755 if (!ThisArgVecTy || !ReferenceType) 1756 return true; 1757 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1758 } 1759 } 1760 llvm_unreachable("unhandled"); 1761 } 1762 1763 Intrinsic::MatchIntrinsicTypesResult 1764 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1765 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1766 SmallVectorImpl<Type *> &ArgTys) { 1767 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1768 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1769 false)) 1770 return MatchIntrinsicTypes_NoMatchRet; 1771 1772 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1773 1774 for (auto *Ty : FTy->params()) 1775 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1776 return MatchIntrinsicTypes_NoMatchArg; 1777 1778 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1779 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1780 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1781 true)) 1782 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1783 : MatchIntrinsicTypes_NoMatchArg; 1784 } 1785 1786 return MatchIntrinsicTypes_Match; 1787 } 1788 1789 bool 1790 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1791 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1792 // If there are no descriptors left, then it can't be a vararg. 1793 if (Infos.empty()) 1794 return isVarArg; 1795 1796 // There should be only one descriptor remaining at this point. 1797 if (Infos.size() != 1) 1798 return true; 1799 1800 // Check and verify the descriptor. 1801 IITDescriptor D = Infos.front(); 1802 Infos = Infos.slice(1); 1803 if (D.Kind == IITDescriptor::VarArg) 1804 return !isVarArg; 1805 1806 return true; 1807 } 1808 1809 bool Intrinsic::getIntrinsicSignature(Intrinsic::ID ID, FunctionType *FT, 1810 SmallVectorImpl<Type *> &ArgTys) { 1811 if (!ID) 1812 return false; 1813 1814 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1815 getIntrinsicInfoTableEntries(ID, Table); 1816 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1817 1818 if (Intrinsic::matchIntrinsicSignature(FT, TableRef, ArgTys) != 1819 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1820 return false; 1821 } 1822 if (Intrinsic::matchIntrinsicVarArg(FT->isVarArg(), TableRef)) 1823 return false; 1824 return true; 1825 } 1826 1827 bool Intrinsic::getIntrinsicSignature(Function *F, 1828 SmallVectorImpl<Type *> &ArgTys) { 1829 return getIntrinsicSignature(F->getIntrinsicID(), F->getFunctionType(), 1830 ArgTys); 1831 } 1832 1833 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1834 SmallVector<Type *, 4> ArgTys; 1835 if (!getIntrinsicSignature(F, ArgTys)) 1836 return std::nullopt; 1837 1838 Intrinsic::ID ID = F->getIntrinsicID(); 1839 StringRef Name = F->getName(); 1840 std::string WantedName = 1841 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()); 1842 if (Name == WantedName) 1843 return std::nullopt; 1844 1845 Function *NewDecl = [&] { 1846 if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) { 1847 if (auto *ExistingF = dyn_cast<Function>(ExistingGV)) 1848 if (ExistingF->getFunctionType() == F->getFunctionType()) 1849 return ExistingF; 1850 1851 // The name already exists, but is not a function or has the wrong 1852 // prototype. Make place for the new one by renaming the old version. 1853 // Either this old version will be removed later on or the module is 1854 // invalid and we'll get an error. 1855 ExistingGV->setName(WantedName + ".renamed"); 1856 } 1857 return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1858 }(); 1859 1860 NewDecl->setCallingConv(F->getCallingConv()); 1861 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1862 "Shouldn't change the signature"); 1863 return NewDecl; 1864 } 1865 1866 /// hasAddressTaken - returns true if there are any uses of this function 1867 /// other than direct calls or invokes to it. Optionally ignores callback 1868 /// uses, assume like pointer annotation calls, and references in llvm.used 1869 /// and llvm.compiler.used variables. 1870 bool Function::hasAddressTaken(const User **PutOffender, 1871 bool IgnoreCallbackUses, 1872 bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed, 1873 bool IgnoreARCAttachedCall, 1874 bool IgnoreCastedDirectCall) const { 1875 for (const Use &U : uses()) { 1876 const User *FU = U.getUser(); 1877 if (isa<BlockAddress>(FU)) 1878 continue; 1879 1880 if (IgnoreCallbackUses) { 1881 AbstractCallSite ACS(&U); 1882 if (ACS && ACS.isCallbackCall()) 1883 continue; 1884 } 1885 1886 const auto *Call = dyn_cast<CallBase>(FU); 1887 if (!Call) { 1888 if (IgnoreAssumeLikeCalls && 1889 isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1890 all_of(FU->users(), [](const User *U) { 1891 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1892 return I->isAssumeLikeIntrinsic(); 1893 return false; 1894 })) { 1895 continue; 1896 } 1897 1898 if (IgnoreLLVMUsed && !FU->user_empty()) { 1899 const User *FUU = FU; 1900 if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1901 FU->hasOneUse() && !FU->user_begin()->user_empty()) 1902 FUU = *FU->user_begin(); 1903 if (llvm::all_of(FUU->users(), [](const User *U) { 1904 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1905 return GV->hasName() && 1906 (GV->getName() == "llvm.compiler.used" || 1907 GV->getName() == "llvm.used"); 1908 return false; 1909 })) 1910 continue; 1911 } 1912 if (PutOffender) 1913 *PutOffender = FU; 1914 return true; 1915 } 1916 1917 if (IgnoreAssumeLikeCalls) { 1918 if (const auto *I = dyn_cast<IntrinsicInst>(Call)) 1919 if (I->isAssumeLikeIntrinsic()) 1920 continue; 1921 } 1922 1923 if (!Call->isCallee(&U) || (!IgnoreCastedDirectCall && 1924 Call->getFunctionType() != getFunctionType())) { 1925 if (IgnoreARCAttachedCall && 1926 Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall, 1927 U.getOperandNo())) 1928 continue; 1929 1930 if (PutOffender) 1931 *PutOffender = FU; 1932 return true; 1933 } 1934 } 1935 return false; 1936 } 1937 1938 bool Function::isDefTriviallyDead() const { 1939 // Check the linkage 1940 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1941 !hasAvailableExternallyLinkage()) 1942 return false; 1943 1944 // Check if the function is used by anything other than a blockaddress. 1945 for (const User *U : users()) 1946 if (!isa<BlockAddress>(U)) 1947 return false; 1948 1949 return true; 1950 } 1951 1952 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1953 /// setjmp or other function that gcc recognizes as "returning twice". 1954 bool Function::callsFunctionThatReturnsTwice() const { 1955 for (const Instruction &I : instructions(this)) 1956 if (const auto *Call = dyn_cast<CallBase>(&I)) 1957 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1958 return true; 1959 1960 return false; 1961 } 1962 1963 Constant *Function::getPersonalityFn() const { 1964 assert(hasPersonalityFn() && getNumOperands()); 1965 return cast<Constant>(Op<0>()); 1966 } 1967 1968 void Function::setPersonalityFn(Constant *Fn) { 1969 setHungoffOperand<0>(Fn); 1970 setValueSubclassDataBit(3, Fn != nullptr); 1971 } 1972 1973 Constant *Function::getPrefixData() const { 1974 assert(hasPrefixData() && getNumOperands()); 1975 return cast<Constant>(Op<1>()); 1976 } 1977 1978 void Function::setPrefixData(Constant *PrefixData) { 1979 setHungoffOperand<1>(PrefixData); 1980 setValueSubclassDataBit(1, PrefixData != nullptr); 1981 } 1982 1983 Constant *Function::getPrologueData() const { 1984 assert(hasPrologueData() && getNumOperands()); 1985 return cast<Constant>(Op<2>()); 1986 } 1987 1988 void Function::setPrologueData(Constant *PrologueData) { 1989 setHungoffOperand<2>(PrologueData); 1990 setValueSubclassDataBit(2, PrologueData != nullptr); 1991 } 1992 1993 void Function::allocHungoffUselist() { 1994 // If we've already allocated a uselist, stop here. 1995 if (getNumOperands()) 1996 return; 1997 1998 allocHungoffUses(3, /*IsPhi=*/ false); 1999 setNumHungOffUseOperands(3); 2000 2001 // Initialize the uselist with placeholder operands to allow traversal. 2002 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0)); 2003 Op<0>().set(CPN); 2004 Op<1>().set(CPN); 2005 Op<2>().set(CPN); 2006 } 2007 2008 template <int Idx> 2009 void Function::setHungoffOperand(Constant *C) { 2010 if (C) { 2011 allocHungoffUselist(); 2012 Op<Idx>().set(C); 2013 } else if (getNumOperands()) { 2014 Op<Idx>().set(ConstantPointerNull::get(PointerType::get(getContext(), 0))); 2015 } 2016 } 2017 2018 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 2019 assert(Bit < 16 && "SubclassData contains only 16 bits"); 2020 if (On) 2021 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 2022 else 2023 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 2024 } 2025 2026 void Function::setEntryCount(ProfileCount Count, 2027 const DenseSet<GlobalValue::GUID> *S) { 2028 #if !defined(NDEBUG) 2029 auto PrevCount = getEntryCount(); 2030 assert(!PrevCount || PrevCount->getType() == Count.getType()); 2031 #endif 2032 2033 auto ImportGUIDs = getImportGUIDs(); 2034 if (S == nullptr && ImportGUIDs.size()) 2035 S = &ImportGUIDs; 2036 2037 MDBuilder MDB(getContext()); 2038 setMetadata( 2039 LLVMContext::MD_prof, 2040 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 2041 } 2042 2043 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 2044 const DenseSet<GlobalValue::GUID> *Imports) { 2045 setEntryCount(ProfileCount(Count, Type), Imports); 2046 } 2047 2048 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const { 2049 MDNode *MD = getMetadata(LLVMContext::MD_prof); 2050 if (MD && MD->getOperand(0)) 2051 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 2052 if (MDS->getString() == "function_entry_count") { 2053 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 2054 uint64_t Count = CI->getValue().getZExtValue(); 2055 // A value of -1 is used for SamplePGO when there were no samples. 2056 // Treat this the same as unknown. 2057 if (Count == (uint64_t)-1) 2058 return std::nullopt; 2059 return ProfileCount(Count, PCT_Real); 2060 } else if (AllowSynthetic && 2061 MDS->getString() == "synthetic_function_entry_count") { 2062 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 2063 uint64_t Count = CI->getValue().getZExtValue(); 2064 return ProfileCount(Count, PCT_Synthetic); 2065 } 2066 } 2067 return std::nullopt; 2068 } 2069 2070 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 2071 DenseSet<GlobalValue::GUID> R; 2072 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 2073 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 2074 if (MDS->getString() == "function_entry_count") 2075 for (unsigned i = 2; i < MD->getNumOperands(); i++) 2076 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 2077 ->getValue() 2078 .getZExtValue()); 2079 return R; 2080 } 2081 2082 void Function::setSectionPrefix(StringRef Prefix) { 2083 MDBuilder MDB(getContext()); 2084 setMetadata(LLVMContext::MD_section_prefix, 2085 MDB.createFunctionSectionPrefix(Prefix)); 2086 } 2087 2088 std::optional<StringRef> Function::getSectionPrefix() const { 2089 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 2090 assert(cast<MDString>(MD->getOperand(0))->getString() == 2091 "function_section_prefix" && 2092 "Metadata not match"); 2093 return cast<MDString>(MD->getOperand(1))->getString(); 2094 } 2095 return std::nullopt; 2096 } 2097 2098 bool Function::nullPointerIsDefined() const { 2099 return hasFnAttribute(Attribute::NullPointerIsValid); 2100 } 2101 2102 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 2103 if (F && F->nullPointerIsDefined()) 2104 return true; 2105 2106 if (AS != 0) 2107 return true; 2108 2109 return false; 2110 } 2111