1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/AbstractCallSite.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constant.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalValue.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/IntrinsicsAArch64.h" 36 #include "llvm/IR/IntrinsicsAMDGPU.h" 37 #include "llvm/IR/IntrinsicsARM.h" 38 #include "llvm/IR/IntrinsicsBPF.h" 39 #include "llvm/IR/IntrinsicsHexagon.h" 40 #include "llvm/IR/IntrinsicsMips.h" 41 #include "llvm/IR/IntrinsicsNVPTX.h" 42 #include "llvm/IR/IntrinsicsPowerPC.h" 43 #include "llvm/IR/IntrinsicsR600.h" 44 #include "llvm/IR/IntrinsicsRISCV.h" 45 #include "llvm/IR/IntrinsicsS390.h" 46 #include "llvm/IR/IntrinsicsVE.h" 47 #include "llvm/IR/IntrinsicsWebAssembly.h" 48 #include "llvm/IR/IntrinsicsX86.h" 49 #include "llvm/IR/IntrinsicsXCore.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/SymbolTableListTraits.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/Use.h" 57 #include "llvm/IR/User.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include <algorithm> 64 #include <cassert> 65 #include <cstddef> 66 #include <cstdint> 67 #include <cstring> 68 #include <string> 69 70 using namespace llvm; 71 using ProfileCount = Function::ProfileCount; 72 73 // Explicit instantiations of SymbolTableListTraits since some of the methods 74 // are not in the public header file... 75 template class llvm::SymbolTableListTraits<BasicBlock>; 76 77 //===----------------------------------------------------------------------===// 78 // Argument Implementation 79 //===----------------------------------------------------------------------===// 80 81 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 82 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 83 setName(Name); 84 } 85 86 void Argument::setParent(Function *parent) { 87 Parent = parent; 88 } 89 90 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 91 if (!getType()->isPointerTy()) return false; 92 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 93 (AllowUndefOrPoison || 94 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 95 return true; 96 else if (getDereferenceableBytes() > 0 && 97 !NullPointerIsDefined(getParent(), 98 getType()->getPointerAddressSpace())) 99 return true; 100 return false; 101 } 102 103 bool Argument::hasByValAttr() const { 104 if (!getType()->isPointerTy()) return false; 105 return hasAttribute(Attribute::ByVal); 106 } 107 108 bool Argument::hasByRefAttr() const { 109 if (!getType()->isPointerTy()) 110 return false; 111 return hasAttribute(Attribute::ByRef); 112 } 113 114 bool Argument::hasSwiftSelfAttr() const { 115 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 116 } 117 118 bool Argument::hasSwiftErrorAttr() const { 119 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 120 } 121 122 bool Argument::hasInAllocaAttr() const { 123 if (!getType()->isPointerTy()) return false; 124 return hasAttribute(Attribute::InAlloca); 125 } 126 127 bool Argument::hasPreallocatedAttr() const { 128 if (!getType()->isPointerTy()) 129 return false; 130 return hasAttribute(Attribute::Preallocated); 131 } 132 133 bool Argument::hasPassPointeeByValueCopyAttr() const { 134 if (!getType()->isPointerTy()) return false; 135 AttributeList Attrs = getParent()->getAttributes(); 136 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 137 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) || 138 Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated); 139 } 140 141 bool Argument::hasPointeeInMemoryValueAttr() const { 142 if (!getType()->isPointerTy()) 143 return false; 144 AttributeList Attrs = getParent()->getAttributes(); 145 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 146 Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) || 147 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) || 148 Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) || 149 Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef); 150 } 151 152 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 153 /// parameter type. 154 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) { 155 // FIXME: All the type carrying attributes are mutually exclusive, so there 156 // should be a single query to get the stored type that handles any of them. 157 if (Type *ByValTy = ParamAttrs.getByValType()) 158 return ByValTy; 159 if (Type *ByRefTy = ParamAttrs.getByRefType()) 160 return ByRefTy; 161 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 162 return PreAllocTy; 163 164 // FIXME: sret and inalloca always depends on pointee element type. It's also 165 // possible for byval to miss it. 166 if (ParamAttrs.hasAttribute(Attribute::InAlloca) || 167 ParamAttrs.hasAttribute(Attribute::ByVal) || 168 ParamAttrs.hasAttribute(Attribute::StructRet) || 169 ParamAttrs.hasAttribute(Attribute::Preallocated)) 170 return cast<PointerType>(ArgTy)->getElementType(); 171 172 return nullptr; 173 } 174 175 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 176 AttributeSet ParamAttrs = 177 getParent()->getAttributes().getParamAttributes(getArgNo()); 178 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType())) 179 return DL.getTypeAllocSize(MemTy); 180 return 0; 181 } 182 183 Type *Argument::getPointeeInMemoryValueType() const { 184 AttributeSet ParamAttrs = 185 getParent()->getAttributes().getParamAttributes(getArgNo()); 186 return getMemoryParamAllocType(ParamAttrs, getType()); 187 } 188 189 unsigned Argument::getParamAlignment() const { 190 assert(getType()->isPointerTy() && "Only pointers have alignments"); 191 return getParent()->getParamAlignment(getArgNo()); 192 } 193 194 MaybeAlign Argument::getParamAlign() const { 195 assert(getType()->isPointerTy() && "Only pointers have alignments"); 196 return getParent()->getParamAlign(getArgNo()); 197 } 198 199 Type *Argument::getParamByValType() const { 200 assert(getType()->isPointerTy() && "Only pointers have byval types"); 201 return getParent()->getParamByValType(getArgNo()); 202 } 203 204 Type *Argument::getParamStructRetType() const { 205 assert(getType()->isPointerTy() && "Only pointers have sret types"); 206 return getParent()->getParamStructRetType(getArgNo()); 207 } 208 209 Type *Argument::getParamByRefType() const { 210 assert(getType()->isPointerTy() && "Only pointers have byval types"); 211 return getParent()->getParamByRefType(getArgNo()); 212 } 213 214 uint64_t Argument::getDereferenceableBytes() const { 215 assert(getType()->isPointerTy() && 216 "Only pointers have dereferenceable bytes"); 217 return getParent()->getParamDereferenceableBytes(getArgNo()); 218 } 219 220 uint64_t Argument::getDereferenceableOrNullBytes() const { 221 assert(getType()->isPointerTy() && 222 "Only pointers have dereferenceable bytes"); 223 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 224 } 225 226 bool Argument::hasNestAttr() const { 227 if (!getType()->isPointerTy()) return false; 228 return hasAttribute(Attribute::Nest); 229 } 230 231 bool Argument::hasNoAliasAttr() const { 232 if (!getType()->isPointerTy()) return false; 233 return hasAttribute(Attribute::NoAlias); 234 } 235 236 bool Argument::hasNoCaptureAttr() const { 237 if (!getType()->isPointerTy()) return false; 238 return hasAttribute(Attribute::NoCapture); 239 } 240 241 bool Argument::hasStructRetAttr() const { 242 if (!getType()->isPointerTy()) return false; 243 return hasAttribute(Attribute::StructRet); 244 } 245 246 bool Argument::hasInRegAttr() const { 247 return hasAttribute(Attribute::InReg); 248 } 249 250 bool Argument::hasReturnedAttr() const { 251 return hasAttribute(Attribute::Returned); 252 } 253 254 bool Argument::hasZExtAttr() const { 255 return hasAttribute(Attribute::ZExt); 256 } 257 258 bool Argument::hasSExtAttr() const { 259 return hasAttribute(Attribute::SExt); 260 } 261 262 bool Argument::onlyReadsMemory() const { 263 AttributeList Attrs = getParent()->getAttributes(); 264 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 265 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 266 } 267 268 void Argument::addAttrs(AttrBuilder &B) { 269 AttributeList AL = getParent()->getAttributes(); 270 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 271 getParent()->setAttributes(AL); 272 } 273 274 void Argument::addAttr(Attribute::AttrKind Kind) { 275 getParent()->addParamAttr(getArgNo(), Kind); 276 } 277 278 void Argument::addAttr(Attribute Attr) { 279 getParent()->addParamAttr(getArgNo(), Attr); 280 } 281 282 void Argument::removeAttr(Attribute::AttrKind Kind) { 283 getParent()->removeParamAttr(getArgNo(), Kind); 284 } 285 286 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 287 return getParent()->hasParamAttribute(getArgNo(), Kind); 288 } 289 290 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 291 return getParent()->getParamAttribute(getArgNo(), Kind); 292 } 293 294 //===----------------------------------------------------------------------===// 295 // Helper Methods in Function 296 //===----------------------------------------------------------------------===// 297 298 LLVMContext &Function::getContext() const { 299 return getType()->getContext(); 300 } 301 302 unsigned Function::getInstructionCount() const { 303 unsigned NumInstrs = 0; 304 for (const BasicBlock &BB : BasicBlocks) 305 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 306 BB.instructionsWithoutDebug().end()); 307 return NumInstrs; 308 } 309 310 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 311 const Twine &N, Module &M) { 312 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 313 } 314 315 void Function::removeFromParent() { 316 getParent()->getFunctionList().remove(getIterator()); 317 } 318 319 void Function::eraseFromParent() { 320 getParent()->getFunctionList().erase(getIterator()); 321 } 322 323 //===----------------------------------------------------------------------===// 324 // Function Implementation 325 //===----------------------------------------------------------------------===// 326 327 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 328 // If AS == -1 and we are passed a valid module pointer we place the function 329 // in the program address space. Otherwise we default to AS0. 330 if (AddrSpace == static_cast<unsigned>(-1)) 331 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 332 return AddrSpace; 333 } 334 335 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 336 const Twine &name, Module *ParentModule) 337 : GlobalObject(Ty, Value::FunctionVal, 338 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 339 computeAddrSpace(AddrSpace, ParentModule)), 340 NumArgs(Ty->getNumParams()) { 341 assert(FunctionType::isValidReturnType(getReturnType()) && 342 "invalid return type"); 343 setGlobalObjectSubClassData(0); 344 345 // We only need a symbol table for a function if the context keeps value names 346 if (!getContext().shouldDiscardValueNames()) 347 SymTab = std::make_unique<ValueSymbolTable>(); 348 349 // If the function has arguments, mark them as lazily built. 350 if (Ty->getNumParams()) 351 setValueSubclassData(1); // Set the "has lazy arguments" bit. 352 353 if (ParentModule) 354 ParentModule->getFunctionList().push_back(this); 355 356 HasLLVMReservedName = getName().startswith("llvm."); 357 // Ensure intrinsics have the right parameter attributes. 358 // Note, the IntID field will have been set in Value::setName if this function 359 // name is a valid intrinsic ID. 360 if (IntID) 361 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 362 } 363 364 Function::~Function() { 365 dropAllReferences(); // After this it is safe to delete instructions. 366 367 // Delete all of the method arguments and unlink from symbol table... 368 if (Arguments) 369 clearArguments(); 370 371 // Remove the function from the on-the-side GC table. 372 clearGC(); 373 } 374 375 void Function::BuildLazyArguments() const { 376 // Create the arguments vector, all arguments start out unnamed. 377 auto *FT = getFunctionType(); 378 if (NumArgs > 0) { 379 Arguments = std::allocator<Argument>().allocate(NumArgs); 380 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 381 Type *ArgTy = FT->getParamType(i); 382 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 383 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 384 } 385 } 386 387 // Clear the lazy arguments bit. 388 unsigned SDC = getSubclassDataFromValue(); 389 SDC &= ~(1 << 0); 390 const_cast<Function*>(this)->setValueSubclassData(SDC); 391 assert(!hasLazyArguments()); 392 } 393 394 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 395 return MutableArrayRef<Argument>(Args, Count); 396 } 397 398 bool Function::isConstrainedFPIntrinsic() const { 399 switch (getIntrinsicID()) { 400 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 401 case Intrinsic::INTRINSIC: 402 #include "llvm/IR/ConstrainedOps.def" 403 return true; 404 #undef INSTRUCTION 405 default: 406 return false; 407 } 408 } 409 410 void Function::clearArguments() { 411 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 412 A.setName(""); 413 A.~Argument(); 414 } 415 std::allocator<Argument>().deallocate(Arguments, NumArgs); 416 Arguments = nullptr; 417 } 418 419 void Function::stealArgumentListFrom(Function &Src) { 420 assert(isDeclaration() && "Expected no references to current arguments"); 421 422 // Drop the current arguments, if any, and set the lazy argument bit. 423 if (!hasLazyArguments()) { 424 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 425 [](const Argument &A) { return A.use_empty(); }) && 426 "Expected arguments to be unused in declaration"); 427 clearArguments(); 428 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 429 } 430 431 // Nothing to steal if Src has lazy arguments. 432 if (Src.hasLazyArguments()) 433 return; 434 435 // Steal arguments from Src, and fix the lazy argument bits. 436 assert(arg_size() == Src.arg_size()); 437 Arguments = Src.Arguments; 438 Src.Arguments = nullptr; 439 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 440 // FIXME: This does the work of transferNodesFromList inefficiently. 441 SmallString<128> Name; 442 if (A.hasName()) 443 Name = A.getName(); 444 if (!Name.empty()) 445 A.setName(""); 446 A.setParent(this); 447 if (!Name.empty()) 448 A.setName(Name); 449 } 450 451 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 452 assert(!hasLazyArguments()); 453 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 454 } 455 456 // dropAllReferences() - This function causes all the subinstructions to "let 457 // go" of all references that they are maintaining. This allows one to 458 // 'delete' a whole class at a time, even though there may be circular 459 // references... first all references are dropped, and all use counts go to 460 // zero. Then everything is deleted for real. Note that no operations are 461 // valid on an object that has "dropped all references", except operator 462 // delete. 463 // 464 void Function::dropAllReferences() { 465 setIsMaterializable(false); 466 467 for (BasicBlock &BB : *this) 468 BB.dropAllReferences(); 469 470 // Delete all basic blocks. They are now unused, except possibly by 471 // blockaddresses, but BasicBlock's destructor takes care of those. 472 while (!BasicBlocks.empty()) 473 BasicBlocks.begin()->eraseFromParent(); 474 475 // Drop uses of any optional data (real or placeholder). 476 if (getNumOperands()) { 477 User::dropAllReferences(); 478 setNumHungOffUseOperands(0); 479 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 480 } 481 482 // Metadata is stored in a side-table. 483 clearMetadata(); 484 } 485 486 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 487 AttributeList PAL = getAttributes(); 488 PAL = PAL.addAttribute(getContext(), i, Kind); 489 setAttributes(PAL); 490 } 491 492 void Function::addAttribute(unsigned i, Attribute Attr) { 493 AttributeList PAL = getAttributes(); 494 PAL = PAL.addAttribute(getContext(), i, Attr); 495 setAttributes(PAL); 496 } 497 498 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 499 AttributeList PAL = getAttributes(); 500 PAL = PAL.addAttributes(getContext(), i, Attrs); 501 setAttributes(PAL); 502 } 503 504 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 505 AttributeList PAL = getAttributes(); 506 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); 507 setAttributes(PAL); 508 } 509 510 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 511 AttributeList PAL = getAttributes(); 512 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); 513 setAttributes(PAL); 514 } 515 516 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 517 AttributeList PAL = getAttributes(); 518 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); 519 setAttributes(PAL); 520 } 521 522 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 523 AttributeList PAL = getAttributes(); 524 PAL = PAL.removeAttribute(getContext(), i, Kind); 525 setAttributes(PAL); 526 } 527 528 void Function::removeAttribute(unsigned i, StringRef Kind) { 529 AttributeList PAL = getAttributes(); 530 PAL = PAL.removeAttribute(getContext(), i, Kind); 531 setAttributes(PAL); 532 } 533 534 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 535 AttributeList PAL = getAttributes(); 536 PAL = PAL.removeAttributes(getContext(), i, Attrs); 537 setAttributes(PAL); 538 } 539 540 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 541 AttributeList PAL = getAttributes(); 542 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 543 setAttributes(PAL); 544 } 545 546 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 547 AttributeList PAL = getAttributes(); 548 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 549 setAttributes(PAL); 550 } 551 552 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 553 AttributeList PAL = getAttributes(); 554 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); 555 setAttributes(PAL); 556 } 557 558 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 559 AttributeList PAL = getAttributes(); 560 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 561 setAttributes(PAL); 562 } 563 564 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 565 AttributeList PAL = getAttributes(); 566 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 567 setAttributes(PAL); 568 } 569 570 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 571 AttributeList PAL = getAttributes(); 572 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 573 setAttributes(PAL); 574 } 575 576 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 577 uint64_t Bytes) { 578 AttributeList PAL = getAttributes(); 579 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); 580 setAttributes(PAL); 581 } 582 583 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 584 if (&FPType == &APFloat::IEEEsingle()) { 585 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 586 StringRef Val = Attr.getValueAsString(); 587 if (!Val.empty()) 588 return parseDenormalFPAttribute(Val); 589 590 // If the f32 variant of the attribute isn't specified, try to use the 591 // generic one. 592 } 593 594 Attribute Attr = getFnAttribute("denormal-fp-math"); 595 return parseDenormalFPAttribute(Attr.getValueAsString()); 596 } 597 598 const std::string &Function::getGC() const { 599 assert(hasGC() && "Function has no collector"); 600 return getContext().getGC(*this); 601 } 602 603 void Function::setGC(std::string Str) { 604 setValueSubclassDataBit(14, !Str.empty()); 605 getContext().setGC(*this, std::move(Str)); 606 } 607 608 void Function::clearGC() { 609 if (!hasGC()) 610 return; 611 getContext().deleteGC(*this); 612 setValueSubclassDataBit(14, false); 613 } 614 615 bool Function::hasStackProtectorFnAttr() const { 616 return hasFnAttribute(Attribute::StackProtect) || 617 hasFnAttribute(Attribute::StackProtectStrong) || 618 hasFnAttribute(Attribute::StackProtectReq); 619 } 620 621 /// Copy all additional attributes (those not needed to create a Function) from 622 /// the Function Src to this one. 623 void Function::copyAttributesFrom(const Function *Src) { 624 GlobalObject::copyAttributesFrom(Src); 625 setCallingConv(Src->getCallingConv()); 626 setAttributes(Src->getAttributes()); 627 if (Src->hasGC()) 628 setGC(Src->getGC()); 629 else 630 clearGC(); 631 if (Src->hasPersonalityFn()) 632 setPersonalityFn(Src->getPersonalityFn()); 633 if (Src->hasPrefixData()) 634 setPrefixData(Src->getPrefixData()); 635 if (Src->hasPrologueData()) 636 setPrologueData(Src->getPrologueData()); 637 } 638 639 /// Table of string intrinsic names indexed by enum value. 640 static const char * const IntrinsicNameTable[] = { 641 "not_intrinsic", 642 #define GET_INTRINSIC_NAME_TABLE 643 #include "llvm/IR/IntrinsicImpl.inc" 644 #undef GET_INTRINSIC_NAME_TABLE 645 }; 646 647 /// Table of per-target intrinsic name tables. 648 #define GET_INTRINSIC_TARGET_DATA 649 #include "llvm/IR/IntrinsicImpl.inc" 650 #undef GET_INTRINSIC_TARGET_DATA 651 652 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 653 return IID > TargetInfos[0].Count; 654 } 655 656 bool Function::isTargetIntrinsic() const { 657 return isTargetIntrinsic(IntID); 658 } 659 660 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 661 /// target as \c Name, or the generic table if \c Name is not target specific. 662 /// 663 /// Returns the relevant slice of \c IntrinsicNameTable 664 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 665 assert(Name.startswith("llvm.")); 666 667 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 668 // Drop "llvm." and take the first dotted component. That will be the target 669 // if this is target specific. 670 StringRef Target = Name.drop_front(5).split('.').first; 671 auto It = partition_point( 672 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 673 // We've either found the target or just fall back to the generic set, which 674 // is always first. 675 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 676 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 677 } 678 679 /// This does the actual lookup of an intrinsic ID which 680 /// matches the given function name. 681 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 682 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 683 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 684 if (Idx == -1) 685 return Intrinsic::not_intrinsic; 686 687 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 688 // an index into a sub-table. 689 int Adjust = NameTable.data() - IntrinsicNameTable; 690 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 691 692 // If the intrinsic is not overloaded, require an exact match. If it is 693 // overloaded, require either exact or prefix match. 694 const auto MatchSize = strlen(NameTable[Idx]); 695 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 696 bool IsExactMatch = Name.size() == MatchSize; 697 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 698 : Intrinsic::not_intrinsic; 699 } 700 701 void Function::recalculateIntrinsicID() { 702 StringRef Name = getName(); 703 if (!Name.startswith("llvm.")) { 704 HasLLVMReservedName = false; 705 IntID = Intrinsic::not_intrinsic; 706 return; 707 } 708 HasLLVMReservedName = true; 709 IntID = lookupIntrinsicID(Name); 710 } 711 712 /// Returns a stable mangling for the type specified for use in the name 713 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 714 /// of named types is simply their name. Manglings for unnamed types consist 715 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 716 /// combined with the mangling of their component types. A vararg function 717 /// type will have a suffix of 'vararg'. Since function types can contain 718 /// other function types, we close a function type mangling with suffix 'f' 719 /// which can't be confused with it's prefix. This ensures we don't have 720 /// collisions between two unrelated function types. Otherwise, you might 721 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 722 /// 723 static std::string getMangledTypeStr(Type* Ty) { 724 std::string Result; 725 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 726 Result += "p" + utostr(PTyp->getAddressSpace()) + 727 getMangledTypeStr(PTyp->getElementType()); 728 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 729 Result += "a" + utostr(ATyp->getNumElements()) + 730 getMangledTypeStr(ATyp->getElementType()); 731 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 732 if (!STyp->isLiteral()) { 733 Result += "s_"; 734 Result += STyp->getName(); 735 } else { 736 Result += "sl_"; 737 for (auto Elem : STyp->elements()) 738 Result += getMangledTypeStr(Elem); 739 } 740 // Ensure nested structs are distinguishable. 741 Result += "s"; 742 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 743 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 744 for (size_t i = 0; i < FT->getNumParams(); i++) 745 Result += getMangledTypeStr(FT->getParamType(i)); 746 if (FT->isVarArg()) 747 Result += "vararg"; 748 // Ensure nested function types are distinguishable. 749 Result += "f"; 750 } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) { 751 ElementCount EC = VTy->getElementCount(); 752 if (EC.isScalable()) 753 Result += "nx"; 754 Result += "v" + utostr(EC.getKnownMinValue()) + 755 getMangledTypeStr(VTy->getElementType()); 756 } else if (Ty) { 757 switch (Ty->getTypeID()) { 758 default: llvm_unreachable("Unhandled type"); 759 case Type::VoidTyID: Result += "isVoid"; break; 760 case Type::MetadataTyID: Result += "Metadata"; break; 761 case Type::HalfTyID: Result += "f16"; break; 762 case Type::BFloatTyID: Result += "bf16"; break; 763 case Type::FloatTyID: Result += "f32"; break; 764 case Type::DoubleTyID: Result += "f64"; break; 765 case Type::X86_FP80TyID: Result += "f80"; break; 766 case Type::FP128TyID: Result += "f128"; break; 767 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 768 case Type::X86_MMXTyID: Result += "x86mmx"; break; 769 case Type::X86_AMXTyID: Result += "x86amx"; break; 770 case Type::IntegerTyID: 771 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 772 break; 773 } 774 } 775 return Result; 776 } 777 778 StringRef Intrinsic::getName(ID id) { 779 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 780 assert(!Intrinsic::isOverloaded(id) && 781 "This version of getName does not support overloading"); 782 return IntrinsicNameTable[id]; 783 } 784 785 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 786 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 787 assert((Tys.empty() || Intrinsic::isOverloaded(id)) && 788 "This version of getName is for overloaded intrinsics only"); 789 std::string Result(IntrinsicNameTable[id]); 790 for (Type *Ty : Tys) { 791 Result += "." + getMangledTypeStr(Ty); 792 } 793 return Result; 794 } 795 796 /// IIT_Info - These are enumerators that describe the entries returned by the 797 /// getIntrinsicInfoTableEntries function. 798 /// 799 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 800 enum IIT_Info { 801 // Common values should be encoded with 0-15. 802 IIT_Done = 0, 803 IIT_I1 = 1, 804 IIT_I8 = 2, 805 IIT_I16 = 3, 806 IIT_I32 = 4, 807 IIT_I64 = 5, 808 IIT_F16 = 6, 809 IIT_F32 = 7, 810 IIT_F64 = 8, 811 IIT_V2 = 9, 812 IIT_V4 = 10, 813 IIT_V8 = 11, 814 IIT_V16 = 12, 815 IIT_V32 = 13, 816 IIT_PTR = 14, 817 IIT_ARG = 15, 818 819 // Values from 16+ are only encodable with the inefficient encoding. 820 IIT_V64 = 16, 821 IIT_MMX = 17, 822 IIT_TOKEN = 18, 823 IIT_METADATA = 19, 824 IIT_EMPTYSTRUCT = 20, 825 IIT_STRUCT2 = 21, 826 IIT_STRUCT3 = 22, 827 IIT_STRUCT4 = 23, 828 IIT_STRUCT5 = 24, 829 IIT_EXTEND_ARG = 25, 830 IIT_TRUNC_ARG = 26, 831 IIT_ANYPTR = 27, 832 IIT_V1 = 28, 833 IIT_VARARG = 29, 834 IIT_HALF_VEC_ARG = 30, 835 IIT_SAME_VEC_WIDTH_ARG = 31, 836 IIT_PTR_TO_ARG = 32, 837 IIT_PTR_TO_ELT = 33, 838 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 839 IIT_I128 = 35, 840 IIT_V512 = 36, 841 IIT_V1024 = 37, 842 IIT_STRUCT6 = 38, 843 IIT_STRUCT7 = 39, 844 IIT_STRUCT8 = 40, 845 IIT_F128 = 41, 846 IIT_VEC_ELEMENT = 42, 847 IIT_SCALABLE_VEC = 43, 848 IIT_SUBDIVIDE2_ARG = 44, 849 IIT_SUBDIVIDE4_ARG = 45, 850 IIT_VEC_OF_BITCASTS_TO_INT = 46, 851 IIT_V128 = 47, 852 IIT_BF16 = 48, 853 IIT_STRUCT9 = 49, 854 IIT_V256 = 50, 855 IIT_AMX = 51 856 }; 857 858 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 859 IIT_Info LastInfo, 860 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 861 using namespace Intrinsic; 862 863 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 864 865 IIT_Info Info = IIT_Info(Infos[NextElt++]); 866 unsigned StructElts = 2; 867 868 switch (Info) { 869 case IIT_Done: 870 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 871 return; 872 case IIT_VARARG: 873 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 874 return; 875 case IIT_MMX: 876 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 877 return; 878 case IIT_AMX: 879 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 880 return; 881 case IIT_TOKEN: 882 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 883 return; 884 case IIT_METADATA: 885 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 886 return; 887 case IIT_F16: 888 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 889 return; 890 case IIT_BF16: 891 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 892 return; 893 case IIT_F32: 894 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 895 return; 896 case IIT_F64: 897 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 898 return; 899 case IIT_F128: 900 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 901 return; 902 case IIT_I1: 903 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 904 return; 905 case IIT_I8: 906 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 907 return; 908 case IIT_I16: 909 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 910 return; 911 case IIT_I32: 912 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 913 return; 914 case IIT_I64: 915 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 916 return; 917 case IIT_I128: 918 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 919 return; 920 case IIT_V1: 921 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 922 DecodeIITType(NextElt, Infos, Info, OutputTable); 923 return; 924 case IIT_V2: 925 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 926 DecodeIITType(NextElt, Infos, Info, OutputTable); 927 return; 928 case IIT_V4: 929 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 930 DecodeIITType(NextElt, Infos, Info, OutputTable); 931 return; 932 case IIT_V8: 933 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 934 DecodeIITType(NextElt, Infos, Info, OutputTable); 935 return; 936 case IIT_V16: 937 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 938 DecodeIITType(NextElt, Infos, Info, OutputTable); 939 return; 940 case IIT_V32: 941 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 942 DecodeIITType(NextElt, Infos, Info, OutputTable); 943 return; 944 case IIT_V64: 945 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 946 DecodeIITType(NextElt, Infos, Info, OutputTable); 947 return; 948 case IIT_V128: 949 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 950 DecodeIITType(NextElt, Infos, Info, OutputTable); 951 return; 952 case IIT_V256: 953 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 954 DecodeIITType(NextElt, Infos, Info, OutputTable); 955 return; 956 case IIT_V512: 957 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 958 DecodeIITType(NextElt, Infos, Info, OutputTable); 959 return; 960 case IIT_V1024: 961 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 962 DecodeIITType(NextElt, Infos, Info, OutputTable); 963 return; 964 case IIT_PTR: 965 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 966 DecodeIITType(NextElt, Infos, Info, OutputTable); 967 return; 968 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 969 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 970 Infos[NextElt++])); 971 DecodeIITType(NextElt, Infos, Info, OutputTable); 972 return; 973 } 974 case IIT_ARG: { 975 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 976 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 977 return; 978 } 979 case IIT_EXTEND_ARG: { 980 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 981 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 982 ArgInfo)); 983 return; 984 } 985 case IIT_TRUNC_ARG: { 986 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 987 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 988 ArgInfo)); 989 return; 990 } 991 case IIT_HALF_VEC_ARG: { 992 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 993 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 994 ArgInfo)); 995 return; 996 } 997 case IIT_SAME_VEC_WIDTH_ARG: { 998 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 999 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1000 ArgInfo)); 1001 return; 1002 } 1003 case IIT_PTR_TO_ARG: { 1004 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1005 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 1006 ArgInfo)); 1007 return; 1008 } 1009 case IIT_PTR_TO_ELT: { 1010 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1011 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 1012 return; 1013 } 1014 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1015 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1016 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1017 OutputTable.push_back( 1018 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1019 return; 1020 } 1021 case IIT_EMPTYSTRUCT: 1022 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1023 return; 1024 case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH; 1025 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 1026 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 1027 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 1028 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 1029 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 1030 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 1031 case IIT_STRUCT2: { 1032 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1033 1034 for (unsigned i = 0; i != StructElts; ++i) 1035 DecodeIITType(NextElt, Infos, Info, OutputTable); 1036 return; 1037 } 1038 case IIT_SUBDIVIDE2_ARG: { 1039 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1040 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1041 ArgInfo)); 1042 return; 1043 } 1044 case IIT_SUBDIVIDE4_ARG: { 1045 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1046 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1047 ArgInfo)); 1048 return; 1049 } 1050 case IIT_VEC_ELEMENT: { 1051 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1052 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1053 ArgInfo)); 1054 return; 1055 } 1056 case IIT_SCALABLE_VEC: { 1057 DecodeIITType(NextElt, Infos, Info, OutputTable); 1058 return; 1059 } 1060 case IIT_VEC_OF_BITCASTS_TO_INT: { 1061 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1062 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1063 ArgInfo)); 1064 return; 1065 } 1066 } 1067 llvm_unreachable("unhandled"); 1068 } 1069 1070 #define GET_INTRINSIC_GENERATOR_GLOBAL 1071 #include "llvm/IR/IntrinsicImpl.inc" 1072 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1073 1074 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1075 SmallVectorImpl<IITDescriptor> &T){ 1076 // Check to see if the intrinsic's type was expressible by the table. 1077 unsigned TableVal = IIT_Table[id-1]; 1078 1079 // Decode the TableVal into an array of IITValues. 1080 SmallVector<unsigned char, 8> IITValues; 1081 ArrayRef<unsigned char> IITEntries; 1082 unsigned NextElt = 0; 1083 if ((TableVal >> 31) != 0) { 1084 // This is an offset into the IIT_LongEncodingTable. 1085 IITEntries = IIT_LongEncodingTable; 1086 1087 // Strip sentinel bit. 1088 NextElt = (TableVal << 1) >> 1; 1089 } else { 1090 // Decode the TableVal into an array of IITValues. If the entry was encoded 1091 // into a single word in the table itself, decode it now. 1092 do { 1093 IITValues.push_back(TableVal & 0xF); 1094 TableVal >>= 4; 1095 } while (TableVal); 1096 1097 IITEntries = IITValues; 1098 NextElt = 0; 1099 } 1100 1101 // Okay, decode the table into the output vector of IITDescriptors. 1102 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1103 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1104 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1105 } 1106 1107 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1108 ArrayRef<Type*> Tys, LLVMContext &Context) { 1109 using namespace Intrinsic; 1110 1111 IITDescriptor D = Infos.front(); 1112 Infos = Infos.slice(1); 1113 1114 switch (D.Kind) { 1115 case IITDescriptor::Void: return Type::getVoidTy(Context); 1116 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1117 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1118 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1119 case IITDescriptor::Token: return Type::getTokenTy(Context); 1120 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1121 case IITDescriptor::Half: return Type::getHalfTy(Context); 1122 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1123 case IITDescriptor::Float: return Type::getFloatTy(Context); 1124 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1125 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1126 1127 case IITDescriptor::Integer: 1128 return IntegerType::get(Context, D.Integer_Width); 1129 case IITDescriptor::Vector: 1130 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1131 D.Vector_Width); 1132 case IITDescriptor::Pointer: 1133 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 1134 D.Pointer_AddressSpace); 1135 case IITDescriptor::Struct: { 1136 SmallVector<Type *, 8> Elts; 1137 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1138 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1139 return StructType::get(Context, Elts); 1140 } 1141 case IITDescriptor::Argument: 1142 return Tys[D.getArgumentNumber()]; 1143 case IITDescriptor::ExtendArgument: { 1144 Type *Ty = Tys[D.getArgumentNumber()]; 1145 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1146 return VectorType::getExtendedElementVectorType(VTy); 1147 1148 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1149 } 1150 case IITDescriptor::TruncArgument: { 1151 Type *Ty = Tys[D.getArgumentNumber()]; 1152 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1153 return VectorType::getTruncatedElementVectorType(VTy); 1154 1155 IntegerType *ITy = cast<IntegerType>(Ty); 1156 assert(ITy->getBitWidth() % 2 == 0); 1157 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1158 } 1159 case IITDescriptor::Subdivide2Argument: 1160 case IITDescriptor::Subdivide4Argument: { 1161 Type *Ty = Tys[D.getArgumentNumber()]; 1162 VectorType *VTy = dyn_cast<VectorType>(Ty); 1163 assert(VTy && "Expected an argument of Vector Type"); 1164 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1165 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1166 } 1167 case IITDescriptor::HalfVecArgument: 1168 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1169 Tys[D.getArgumentNumber()])); 1170 case IITDescriptor::SameVecWidthArgument: { 1171 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1172 Type *Ty = Tys[D.getArgumentNumber()]; 1173 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1174 return VectorType::get(EltTy, VTy->getElementCount()); 1175 return EltTy; 1176 } 1177 case IITDescriptor::PtrToArgument: { 1178 Type *Ty = Tys[D.getArgumentNumber()]; 1179 return PointerType::getUnqual(Ty); 1180 } 1181 case IITDescriptor::PtrToElt: { 1182 Type *Ty = Tys[D.getArgumentNumber()]; 1183 VectorType *VTy = dyn_cast<VectorType>(Ty); 1184 if (!VTy) 1185 llvm_unreachable("Expected an argument of Vector Type"); 1186 Type *EltTy = VTy->getElementType(); 1187 return PointerType::getUnqual(EltTy); 1188 } 1189 case IITDescriptor::VecElementArgument: { 1190 Type *Ty = Tys[D.getArgumentNumber()]; 1191 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1192 return VTy->getElementType(); 1193 llvm_unreachable("Expected an argument of Vector Type"); 1194 } 1195 case IITDescriptor::VecOfBitcastsToInt: { 1196 Type *Ty = Tys[D.getArgumentNumber()]; 1197 VectorType *VTy = dyn_cast<VectorType>(Ty); 1198 assert(VTy && "Expected an argument of Vector Type"); 1199 return VectorType::getInteger(VTy); 1200 } 1201 case IITDescriptor::VecOfAnyPtrsToElt: 1202 // Return the overloaded type (which determines the pointers address space) 1203 return Tys[D.getOverloadArgNumber()]; 1204 } 1205 llvm_unreachable("unhandled"); 1206 } 1207 1208 FunctionType *Intrinsic::getType(LLVMContext &Context, 1209 ID id, ArrayRef<Type*> Tys) { 1210 SmallVector<IITDescriptor, 8> Table; 1211 getIntrinsicInfoTableEntries(id, Table); 1212 1213 ArrayRef<IITDescriptor> TableRef = Table; 1214 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1215 1216 SmallVector<Type*, 8> ArgTys; 1217 while (!TableRef.empty()) 1218 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1219 1220 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1221 // If we see void type as the type of the last argument, it is vararg intrinsic 1222 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1223 ArgTys.pop_back(); 1224 return FunctionType::get(ResultTy, ArgTys, true); 1225 } 1226 return FunctionType::get(ResultTy, ArgTys, false); 1227 } 1228 1229 bool Intrinsic::isOverloaded(ID id) { 1230 #define GET_INTRINSIC_OVERLOAD_TABLE 1231 #include "llvm/IR/IntrinsicImpl.inc" 1232 #undef GET_INTRINSIC_OVERLOAD_TABLE 1233 } 1234 1235 bool Intrinsic::isLeaf(ID id) { 1236 switch (id) { 1237 default: 1238 return true; 1239 1240 case Intrinsic::experimental_gc_statepoint: 1241 case Intrinsic::experimental_patchpoint_void: 1242 case Intrinsic::experimental_patchpoint_i64: 1243 return false; 1244 } 1245 } 1246 1247 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1248 #define GET_INTRINSIC_ATTRIBUTES 1249 #include "llvm/IR/IntrinsicImpl.inc" 1250 #undef GET_INTRINSIC_ATTRIBUTES 1251 1252 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1253 // There can never be multiple globals with the same name of different types, 1254 // because intrinsics must be a specific type. 1255 return cast<Function>( 1256 M->getOrInsertFunction(Tys.empty() ? getName(id) : getName(id, Tys), 1257 getType(M->getContext(), id, Tys)) 1258 .getCallee()); 1259 } 1260 1261 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 1262 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1263 #include "llvm/IR/IntrinsicImpl.inc" 1264 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1265 1266 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1267 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1268 #include "llvm/IR/IntrinsicImpl.inc" 1269 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1270 1271 using DeferredIntrinsicMatchPair = 1272 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1273 1274 static bool matchIntrinsicType( 1275 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1276 SmallVectorImpl<Type *> &ArgTys, 1277 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1278 bool IsDeferredCheck) { 1279 using namespace Intrinsic; 1280 1281 // If we ran out of descriptors, there are too many arguments. 1282 if (Infos.empty()) return true; 1283 1284 // Do this before slicing off the 'front' part 1285 auto InfosRef = Infos; 1286 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1287 DeferredChecks.emplace_back(T, InfosRef); 1288 return false; 1289 }; 1290 1291 IITDescriptor D = Infos.front(); 1292 Infos = Infos.slice(1); 1293 1294 switch (D.Kind) { 1295 case IITDescriptor::Void: return !Ty->isVoidTy(); 1296 case IITDescriptor::VarArg: return true; 1297 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1298 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1299 case IITDescriptor::Token: return !Ty->isTokenTy(); 1300 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1301 case IITDescriptor::Half: return !Ty->isHalfTy(); 1302 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1303 case IITDescriptor::Float: return !Ty->isFloatTy(); 1304 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1305 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1306 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1307 case IITDescriptor::Vector: { 1308 VectorType *VT = dyn_cast<VectorType>(Ty); 1309 return !VT || VT->getElementCount() != D.Vector_Width || 1310 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1311 DeferredChecks, IsDeferredCheck); 1312 } 1313 case IITDescriptor::Pointer: { 1314 PointerType *PT = dyn_cast<PointerType>(Ty); 1315 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 1316 matchIntrinsicType(PT->getElementType(), Infos, ArgTys, 1317 DeferredChecks, IsDeferredCheck); 1318 } 1319 1320 case IITDescriptor::Struct: { 1321 StructType *ST = dyn_cast<StructType>(Ty); 1322 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1323 return true; 1324 1325 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1326 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1327 DeferredChecks, IsDeferredCheck)) 1328 return true; 1329 return false; 1330 } 1331 1332 case IITDescriptor::Argument: 1333 // If this is the second occurrence of an argument, 1334 // verify that the later instance matches the previous instance. 1335 if (D.getArgumentNumber() < ArgTys.size()) 1336 return Ty != ArgTys[D.getArgumentNumber()]; 1337 1338 if (D.getArgumentNumber() > ArgTys.size() || 1339 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1340 return IsDeferredCheck || DeferCheck(Ty); 1341 1342 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1343 "Table consistency error"); 1344 ArgTys.push_back(Ty); 1345 1346 switch (D.getArgumentKind()) { 1347 case IITDescriptor::AK_Any: return false; // Success 1348 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1349 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1350 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1351 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1352 default: break; 1353 } 1354 llvm_unreachable("all argument kinds not covered"); 1355 1356 case IITDescriptor::ExtendArgument: { 1357 // If this is a forward reference, defer the check for later. 1358 if (D.getArgumentNumber() >= ArgTys.size()) 1359 return IsDeferredCheck || DeferCheck(Ty); 1360 1361 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1362 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1363 NewTy = VectorType::getExtendedElementVectorType(VTy); 1364 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1365 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1366 else 1367 return true; 1368 1369 return Ty != NewTy; 1370 } 1371 case IITDescriptor::TruncArgument: { 1372 // If this is a forward reference, defer the check for later. 1373 if (D.getArgumentNumber() >= ArgTys.size()) 1374 return IsDeferredCheck || DeferCheck(Ty); 1375 1376 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1377 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1378 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1379 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1380 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1381 else 1382 return true; 1383 1384 return Ty != NewTy; 1385 } 1386 case IITDescriptor::HalfVecArgument: 1387 // If this is a forward reference, defer the check for later. 1388 if (D.getArgumentNumber() >= ArgTys.size()) 1389 return IsDeferredCheck || DeferCheck(Ty); 1390 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1391 VectorType::getHalfElementsVectorType( 1392 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1393 case IITDescriptor::SameVecWidthArgument: { 1394 if (D.getArgumentNumber() >= ArgTys.size()) { 1395 // Defer check and subsequent check for the vector element type. 1396 Infos = Infos.slice(1); 1397 return IsDeferredCheck || DeferCheck(Ty); 1398 } 1399 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1400 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1401 // Both must be vectors of the same number of elements or neither. 1402 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1403 return true; 1404 Type *EltTy = Ty; 1405 if (ThisArgType) { 1406 if (ReferenceType->getElementCount() != 1407 ThisArgType->getElementCount()) 1408 return true; 1409 EltTy = ThisArgType->getElementType(); 1410 } 1411 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1412 IsDeferredCheck); 1413 } 1414 case IITDescriptor::PtrToArgument: { 1415 if (D.getArgumentNumber() >= ArgTys.size()) 1416 return IsDeferredCheck || DeferCheck(Ty); 1417 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1418 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1419 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1420 } 1421 case IITDescriptor::PtrToElt: { 1422 if (D.getArgumentNumber() >= ArgTys.size()) 1423 return IsDeferredCheck || DeferCheck(Ty); 1424 VectorType * ReferenceType = 1425 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1426 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1427 1428 return (!ThisArgType || !ReferenceType || 1429 ThisArgType->getElementType() != ReferenceType->getElementType()); 1430 } 1431 case IITDescriptor::VecOfAnyPtrsToElt: { 1432 unsigned RefArgNumber = D.getRefArgNumber(); 1433 if (RefArgNumber >= ArgTys.size()) { 1434 if (IsDeferredCheck) 1435 return true; 1436 // If forward referencing, already add the pointer-vector type and 1437 // defer the checks for later. 1438 ArgTys.push_back(Ty); 1439 return DeferCheck(Ty); 1440 } 1441 1442 if (!IsDeferredCheck){ 1443 assert(D.getOverloadArgNumber() == ArgTys.size() && 1444 "Table consistency error"); 1445 ArgTys.push_back(Ty); 1446 } 1447 1448 // Verify the overloaded type "matches" the Ref type. 1449 // i.e. Ty is a vector with the same width as Ref. 1450 // Composed of pointers to the same element type as Ref. 1451 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1452 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1453 if (!ThisArgVecTy || !ReferenceType || 1454 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1455 return true; 1456 PointerType *ThisArgEltTy = 1457 dyn_cast<PointerType>(ThisArgVecTy->getElementType()); 1458 if (!ThisArgEltTy) 1459 return true; 1460 return ThisArgEltTy->getElementType() != ReferenceType->getElementType(); 1461 } 1462 case IITDescriptor::VecElementArgument: { 1463 if (D.getArgumentNumber() >= ArgTys.size()) 1464 return IsDeferredCheck ? true : DeferCheck(Ty); 1465 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1466 return !ReferenceType || Ty != ReferenceType->getElementType(); 1467 } 1468 case IITDescriptor::Subdivide2Argument: 1469 case IITDescriptor::Subdivide4Argument: { 1470 // If this is a forward reference, defer the check for later. 1471 if (D.getArgumentNumber() >= ArgTys.size()) 1472 return IsDeferredCheck || DeferCheck(Ty); 1473 1474 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1475 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1476 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1477 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1478 return Ty != NewTy; 1479 } 1480 return true; 1481 } 1482 case IITDescriptor::VecOfBitcastsToInt: { 1483 if (D.getArgumentNumber() >= ArgTys.size()) 1484 return IsDeferredCheck || DeferCheck(Ty); 1485 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1486 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1487 if (!ThisArgVecTy || !ReferenceType) 1488 return true; 1489 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1490 } 1491 } 1492 llvm_unreachable("unhandled"); 1493 } 1494 1495 Intrinsic::MatchIntrinsicTypesResult 1496 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1497 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1498 SmallVectorImpl<Type *> &ArgTys) { 1499 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1500 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1501 false)) 1502 return MatchIntrinsicTypes_NoMatchRet; 1503 1504 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1505 1506 for (auto Ty : FTy->params()) 1507 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1508 return MatchIntrinsicTypes_NoMatchArg; 1509 1510 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1511 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1512 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1513 true)) 1514 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1515 : MatchIntrinsicTypes_NoMatchArg; 1516 } 1517 1518 return MatchIntrinsicTypes_Match; 1519 } 1520 1521 bool 1522 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1523 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1524 // If there are no descriptors left, then it can't be a vararg. 1525 if (Infos.empty()) 1526 return isVarArg; 1527 1528 // There should be only one descriptor remaining at this point. 1529 if (Infos.size() != 1) 1530 return true; 1531 1532 // Check and verify the descriptor. 1533 IITDescriptor D = Infos.front(); 1534 Infos = Infos.slice(1); 1535 if (D.Kind == IITDescriptor::VarArg) 1536 return !isVarArg; 1537 1538 return true; 1539 } 1540 1541 bool Intrinsic::getIntrinsicSignature(Function *F, 1542 SmallVectorImpl<Type *> &ArgTys) { 1543 Intrinsic::ID ID = F->getIntrinsicID(); 1544 if (!ID) 1545 return false; 1546 1547 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1548 getIntrinsicInfoTableEntries(ID, Table); 1549 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1550 1551 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1552 ArgTys) != 1553 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1554 return false; 1555 } 1556 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1557 TableRef)) 1558 return false; 1559 return true; 1560 } 1561 1562 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1563 SmallVector<Type *, 4> ArgTys; 1564 if (!getIntrinsicSignature(F, ArgTys)) 1565 return None; 1566 1567 Intrinsic::ID ID = F->getIntrinsicID(); 1568 StringRef Name = F->getName(); 1569 if (Name == Intrinsic::getName(ID, ArgTys)) 1570 return None; 1571 1572 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1573 NewDecl->setCallingConv(F->getCallingConv()); 1574 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1575 "Shouldn't change the signature"); 1576 return NewDecl; 1577 } 1578 1579 /// hasAddressTaken - returns true if there are any uses of this function 1580 /// other than direct calls or invokes to it. Optionally ignores callback 1581 /// uses. 1582 bool Function::hasAddressTaken(const User **PutOffender, 1583 bool IgnoreCallbackUses) const { 1584 for (const Use &U : uses()) { 1585 const User *FU = U.getUser(); 1586 if (isa<BlockAddress>(FU)) 1587 continue; 1588 1589 if (IgnoreCallbackUses) { 1590 AbstractCallSite ACS(&U); 1591 if (ACS && ACS.isCallbackCall()) 1592 continue; 1593 } 1594 1595 const auto *Call = dyn_cast<CallBase>(FU); 1596 if (!Call) { 1597 if (PutOffender) 1598 *PutOffender = FU; 1599 return true; 1600 } 1601 if (!Call->isCallee(&U)) { 1602 if (PutOffender) 1603 *PutOffender = FU; 1604 return true; 1605 } 1606 } 1607 return false; 1608 } 1609 1610 bool Function::isDefTriviallyDead() const { 1611 // Check the linkage 1612 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1613 !hasAvailableExternallyLinkage()) 1614 return false; 1615 1616 // Check if the function is used by anything other than a blockaddress. 1617 for (const User *U : users()) 1618 if (!isa<BlockAddress>(U)) 1619 return false; 1620 1621 return true; 1622 } 1623 1624 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1625 /// setjmp or other function that gcc recognizes as "returning twice". 1626 bool Function::callsFunctionThatReturnsTwice() const { 1627 for (const Instruction &I : instructions(this)) 1628 if (const auto *Call = dyn_cast<CallBase>(&I)) 1629 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1630 return true; 1631 1632 return false; 1633 } 1634 1635 Constant *Function::getPersonalityFn() const { 1636 assert(hasPersonalityFn() && getNumOperands()); 1637 return cast<Constant>(Op<0>()); 1638 } 1639 1640 void Function::setPersonalityFn(Constant *Fn) { 1641 setHungoffOperand<0>(Fn); 1642 setValueSubclassDataBit(3, Fn != nullptr); 1643 } 1644 1645 Constant *Function::getPrefixData() const { 1646 assert(hasPrefixData() && getNumOperands()); 1647 return cast<Constant>(Op<1>()); 1648 } 1649 1650 void Function::setPrefixData(Constant *PrefixData) { 1651 setHungoffOperand<1>(PrefixData); 1652 setValueSubclassDataBit(1, PrefixData != nullptr); 1653 } 1654 1655 Constant *Function::getPrologueData() const { 1656 assert(hasPrologueData() && getNumOperands()); 1657 return cast<Constant>(Op<2>()); 1658 } 1659 1660 void Function::setPrologueData(Constant *PrologueData) { 1661 setHungoffOperand<2>(PrologueData); 1662 setValueSubclassDataBit(2, PrologueData != nullptr); 1663 } 1664 1665 void Function::allocHungoffUselist() { 1666 // If we've already allocated a uselist, stop here. 1667 if (getNumOperands()) 1668 return; 1669 1670 allocHungoffUses(3, /*IsPhi=*/ false); 1671 setNumHungOffUseOperands(3); 1672 1673 // Initialize the uselist with placeholder operands to allow traversal. 1674 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1675 Op<0>().set(CPN); 1676 Op<1>().set(CPN); 1677 Op<2>().set(CPN); 1678 } 1679 1680 template <int Idx> 1681 void Function::setHungoffOperand(Constant *C) { 1682 if (C) { 1683 allocHungoffUselist(); 1684 Op<Idx>().set(C); 1685 } else if (getNumOperands()) { 1686 Op<Idx>().set( 1687 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1688 } 1689 } 1690 1691 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1692 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1693 if (On) 1694 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1695 else 1696 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1697 } 1698 1699 void Function::setEntryCount(ProfileCount Count, 1700 const DenseSet<GlobalValue::GUID> *S) { 1701 assert(Count.hasValue()); 1702 #if !defined(NDEBUG) 1703 auto PrevCount = getEntryCount(); 1704 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); 1705 #endif 1706 1707 auto ImportGUIDs = getImportGUIDs(); 1708 if (S == nullptr && ImportGUIDs.size()) 1709 S = &ImportGUIDs; 1710 1711 MDBuilder MDB(getContext()); 1712 setMetadata( 1713 LLVMContext::MD_prof, 1714 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1715 } 1716 1717 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1718 const DenseSet<GlobalValue::GUID> *Imports) { 1719 setEntryCount(ProfileCount(Count, Type), Imports); 1720 } 1721 1722 ProfileCount Function::getEntryCount(bool AllowSynthetic) const { 1723 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1724 if (MD && MD->getOperand(0)) 1725 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1726 if (MDS->getString().equals("function_entry_count")) { 1727 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1728 uint64_t Count = CI->getValue().getZExtValue(); 1729 // A value of -1 is used for SamplePGO when there were no samples. 1730 // Treat this the same as unknown. 1731 if (Count == (uint64_t)-1) 1732 return ProfileCount::getInvalid(); 1733 return ProfileCount(Count, PCT_Real); 1734 } else if (AllowSynthetic && 1735 MDS->getString().equals("synthetic_function_entry_count")) { 1736 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1737 uint64_t Count = CI->getValue().getZExtValue(); 1738 return ProfileCount(Count, PCT_Synthetic); 1739 } 1740 } 1741 return ProfileCount::getInvalid(); 1742 } 1743 1744 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1745 DenseSet<GlobalValue::GUID> R; 1746 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1747 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1748 if (MDS->getString().equals("function_entry_count")) 1749 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1750 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1751 ->getValue() 1752 .getZExtValue()); 1753 return R; 1754 } 1755 1756 void Function::setSectionPrefix(StringRef Prefix) { 1757 MDBuilder MDB(getContext()); 1758 setMetadata(LLVMContext::MD_section_prefix, 1759 MDB.createFunctionSectionPrefix(Prefix)); 1760 } 1761 1762 Optional<StringRef> Function::getSectionPrefix() const { 1763 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1764 assert(cast<MDString>(MD->getOperand(0)) 1765 ->getString() 1766 .equals("function_section_prefix") && 1767 "Metadata not match"); 1768 return cast<MDString>(MD->getOperand(1))->getString(); 1769 } 1770 return None; 1771 } 1772 1773 bool Function::nullPointerIsDefined() const { 1774 return hasFnAttribute(Attribute::NullPointerIsValid); 1775 } 1776 1777 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1778 if (F && F->nullPointerIsDefined()) 1779 return true; 1780 1781 if (AS != 0) 1782 return true; 1783 1784 return false; 1785 } 1786