1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/IR/AbstractCallSite.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsAArch64.h" 35 #include "llvm/IR/IntrinsicsAMDGPU.h" 36 #include "llvm/IR/IntrinsicsARM.h" 37 #include "llvm/IR/IntrinsicsBPF.h" 38 #include "llvm/IR/IntrinsicsDirectX.h" 39 #include "llvm/IR/IntrinsicsHexagon.h" 40 #include "llvm/IR/IntrinsicsLoongArch.h" 41 #include "llvm/IR/IntrinsicsMips.h" 42 #include "llvm/IR/IntrinsicsNVPTX.h" 43 #include "llvm/IR/IntrinsicsPowerPC.h" 44 #include "llvm/IR/IntrinsicsR600.h" 45 #include "llvm/IR/IntrinsicsRISCV.h" 46 #include "llvm/IR/IntrinsicsS390.h" 47 #include "llvm/IR/IntrinsicsVE.h" 48 #include "llvm/IR/IntrinsicsWebAssembly.h" 49 #include "llvm/IR/IntrinsicsX86.h" 50 #include "llvm/IR/IntrinsicsXCore.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/SymbolTableListTraits.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/ValueSymbolTable.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/ModRef.h" 67 #include <cassert> 68 #include <cstddef> 69 #include <cstdint> 70 #include <cstring> 71 #include <string> 72 73 using namespace llvm; 74 using ProfileCount = Function::ProfileCount; 75 76 // Explicit instantiations of SymbolTableListTraits since some of the methods 77 // are not in the public header file... 78 template class llvm::SymbolTableListTraits<BasicBlock>; 79 80 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 81 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 82 cl::desc("Maximum size for the name of non-global values.")); 83 84 void Function::convertToNewDbgValues() { 85 IsNewDbgInfoFormat = true; 86 for (auto &BB : *this) { 87 BB.convertToNewDbgValues(); 88 } 89 } 90 91 void Function::convertFromNewDbgValues() { 92 IsNewDbgInfoFormat = false; 93 for (auto &BB : *this) { 94 BB.convertFromNewDbgValues(); 95 } 96 } 97 98 void Function::setIsNewDbgInfoFormat(bool NewFlag) { 99 if (NewFlag && !IsNewDbgInfoFormat) 100 convertToNewDbgValues(); 101 else if (!NewFlag && IsNewDbgInfoFormat) 102 convertFromNewDbgValues(); 103 } 104 105 //===----------------------------------------------------------------------===// 106 // Argument Implementation 107 //===----------------------------------------------------------------------===// 108 109 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 110 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 111 setName(Name); 112 } 113 114 void Argument::setParent(Function *parent) { 115 Parent = parent; 116 } 117 118 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 119 if (!getType()->isPointerTy()) return false; 120 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 121 (AllowUndefOrPoison || 122 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 123 return true; 124 else if (getDereferenceableBytes() > 0 && 125 !NullPointerIsDefined(getParent(), 126 getType()->getPointerAddressSpace())) 127 return true; 128 return false; 129 } 130 131 bool Argument::hasByValAttr() const { 132 if (!getType()->isPointerTy()) return false; 133 return hasAttribute(Attribute::ByVal); 134 } 135 136 bool Argument::hasByRefAttr() const { 137 if (!getType()->isPointerTy()) 138 return false; 139 return hasAttribute(Attribute::ByRef); 140 } 141 142 bool Argument::hasSwiftSelfAttr() const { 143 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 144 } 145 146 bool Argument::hasSwiftErrorAttr() const { 147 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 148 } 149 150 bool Argument::hasInAllocaAttr() const { 151 if (!getType()->isPointerTy()) return false; 152 return hasAttribute(Attribute::InAlloca); 153 } 154 155 bool Argument::hasPreallocatedAttr() const { 156 if (!getType()->isPointerTy()) 157 return false; 158 return hasAttribute(Attribute::Preallocated); 159 } 160 161 bool Argument::hasPassPointeeByValueCopyAttr() const { 162 if (!getType()->isPointerTy()) return false; 163 AttributeList Attrs = getParent()->getAttributes(); 164 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 165 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 166 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated); 167 } 168 169 bool Argument::hasPointeeInMemoryValueAttr() const { 170 if (!getType()->isPointerTy()) 171 return false; 172 AttributeList Attrs = getParent()->getAttributes(); 173 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 174 Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) || 175 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 176 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) || 177 Attrs.hasParamAttr(getArgNo(), Attribute::ByRef); 178 } 179 180 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 181 /// parameter type. 182 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) { 183 // FIXME: All the type carrying attributes are mutually exclusive, so there 184 // should be a single query to get the stored type that handles any of them. 185 if (Type *ByValTy = ParamAttrs.getByValType()) 186 return ByValTy; 187 if (Type *ByRefTy = ParamAttrs.getByRefType()) 188 return ByRefTy; 189 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 190 return PreAllocTy; 191 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 192 return InAllocaTy; 193 if (Type *SRetTy = ParamAttrs.getStructRetType()) 194 return SRetTy; 195 196 return nullptr; 197 } 198 199 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 200 AttributeSet ParamAttrs = 201 getParent()->getAttributes().getParamAttrs(getArgNo()); 202 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs)) 203 return DL.getTypeAllocSize(MemTy); 204 return 0; 205 } 206 207 Type *Argument::getPointeeInMemoryValueType() const { 208 AttributeSet ParamAttrs = 209 getParent()->getAttributes().getParamAttrs(getArgNo()); 210 return getMemoryParamAllocType(ParamAttrs); 211 } 212 213 MaybeAlign Argument::getParamAlign() const { 214 assert(getType()->isPointerTy() && "Only pointers have alignments"); 215 return getParent()->getParamAlign(getArgNo()); 216 } 217 218 MaybeAlign Argument::getParamStackAlign() const { 219 return getParent()->getParamStackAlign(getArgNo()); 220 } 221 222 Type *Argument::getParamByValType() const { 223 assert(getType()->isPointerTy() && "Only pointers have byval types"); 224 return getParent()->getParamByValType(getArgNo()); 225 } 226 227 Type *Argument::getParamStructRetType() const { 228 assert(getType()->isPointerTy() && "Only pointers have sret types"); 229 return getParent()->getParamStructRetType(getArgNo()); 230 } 231 232 Type *Argument::getParamByRefType() const { 233 assert(getType()->isPointerTy() && "Only pointers have byref types"); 234 return getParent()->getParamByRefType(getArgNo()); 235 } 236 237 Type *Argument::getParamInAllocaType() const { 238 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 239 return getParent()->getParamInAllocaType(getArgNo()); 240 } 241 242 uint64_t Argument::getDereferenceableBytes() const { 243 assert(getType()->isPointerTy() && 244 "Only pointers have dereferenceable bytes"); 245 return getParent()->getParamDereferenceableBytes(getArgNo()); 246 } 247 248 uint64_t Argument::getDereferenceableOrNullBytes() const { 249 assert(getType()->isPointerTy() && 250 "Only pointers have dereferenceable bytes"); 251 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 252 } 253 254 FPClassTest Argument::getNoFPClass() const { 255 return getParent()->getParamNoFPClass(getArgNo()); 256 } 257 258 bool Argument::hasNestAttr() const { 259 if (!getType()->isPointerTy()) return false; 260 return hasAttribute(Attribute::Nest); 261 } 262 263 bool Argument::hasNoAliasAttr() const { 264 if (!getType()->isPointerTy()) return false; 265 return hasAttribute(Attribute::NoAlias); 266 } 267 268 bool Argument::hasNoCaptureAttr() const { 269 if (!getType()->isPointerTy()) return false; 270 return hasAttribute(Attribute::NoCapture); 271 } 272 273 bool Argument::hasNoFreeAttr() const { 274 if (!getType()->isPointerTy()) return false; 275 return hasAttribute(Attribute::NoFree); 276 } 277 278 bool Argument::hasStructRetAttr() const { 279 if (!getType()->isPointerTy()) return false; 280 return hasAttribute(Attribute::StructRet); 281 } 282 283 bool Argument::hasInRegAttr() const { 284 return hasAttribute(Attribute::InReg); 285 } 286 287 bool Argument::hasReturnedAttr() const { 288 return hasAttribute(Attribute::Returned); 289 } 290 291 bool Argument::hasZExtAttr() const { 292 return hasAttribute(Attribute::ZExt); 293 } 294 295 bool Argument::hasSExtAttr() const { 296 return hasAttribute(Attribute::SExt); 297 } 298 299 bool Argument::onlyReadsMemory() const { 300 AttributeList Attrs = getParent()->getAttributes(); 301 return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) || 302 Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone); 303 } 304 305 void Argument::addAttrs(AttrBuilder &B) { 306 AttributeList AL = getParent()->getAttributes(); 307 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 308 getParent()->setAttributes(AL); 309 } 310 311 void Argument::addAttr(Attribute::AttrKind Kind) { 312 getParent()->addParamAttr(getArgNo(), Kind); 313 } 314 315 void Argument::addAttr(Attribute Attr) { 316 getParent()->addParamAttr(getArgNo(), Attr); 317 } 318 319 void Argument::removeAttr(Attribute::AttrKind Kind) { 320 getParent()->removeParamAttr(getArgNo(), Kind); 321 } 322 323 void Argument::removeAttrs(const AttributeMask &AM) { 324 AttributeList AL = getParent()->getAttributes(); 325 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM); 326 getParent()->setAttributes(AL); 327 } 328 329 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 330 return getParent()->hasParamAttribute(getArgNo(), Kind); 331 } 332 333 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 334 return getParent()->getParamAttribute(getArgNo(), Kind); 335 } 336 337 //===----------------------------------------------------------------------===// 338 // Helper Methods in Function 339 //===----------------------------------------------------------------------===// 340 341 LLVMContext &Function::getContext() const { 342 return getType()->getContext(); 343 } 344 345 unsigned Function::getInstructionCount() const { 346 unsigned NumInstrs = 0; 347 for (const BasicBlock &BB : BasicBlocks) 348 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 349 BB.instructionsWithoutDebug().end()); 350 return NumInstrs; 351 } 352 353 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 354 const Twine &N, Module &M) { 355 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 356 } 357 358 Function *Function::createWithDefaultAttr(FunctionType *Ty, 359 LinkageTypes Linkage, 360 unsigned AddrSpace, const Twine &N, 361 Module *M) { 362 auto *F = new Function(Ty, Linkage, AddrSpace, N, M); 363 AttrBuilder B(F->getContext()); 364 UWTableKind UWTable = M->getUwtable(); 365 if (UWTable != UWTableKind::None) 366 B.addUWTableAttr(UWTable); 367 switch (M->getFramePointer()) { 368 case FramePointerKind::None: 369 // 0 ("none") is the default. 370 break; 371 case FramePointerKind::NonLeaf: 372 B.addAttribute("frame-pointer", "non-leaf"); 373 break; 374 case FramePointerKind::All: 375 B.addAttribute("frame-pointer", "all"); 376 break; 377 } 378 if (M->getModuleFlag("function_return_thunk_extern")) 379 B.addAttribute(Attribute::FnRetThunkExtern); 380 F->addFnAttrs(B); 381 return F; 382 } 383 384 void Function::removeFromParent() { 385 getParent()->getFunctionList().remove(getIterator()); 386 } 387 388 void Function::eraseFromParent() { 389 getParent()->getFunctionList().erase(getIterator()); 390 } 391 392 void Function::splice(Function::iterator ToIt, Function *FromF, 393 Function::iterator FromBeginIt, 394 Function::iterator FromEndIt) { 395 #ifdef EXPENSIVE_CHECKS 396 // Check that FromBeginIt is before FromEndIt. 397 auto FromFEnd = FromF->end(); 398 for (auto It = FromBeginIt; It != FromEndIt; ++It) 399 assert(It != FromFEnd && "FromBeginIt not before FromEndIt!"); 400 #endif // EXPENSIVE_CHECKS 401 BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt); 402 } 403 404 Function::iterator Function::erase(Function::iterator FromIt, 405 Function::iterator ToIt) { 406 return BasicBlocks.erase(FromIt, ToIt); 407 } 408 409 //===----------------------------------------------------------------------===// 410 // Function Implementation 411 //===----------------------------------------------------------------------===// 412 413 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 414 // If AS == -1 and we are passed a valid module pointer we place the function 415 // in the program address space. Otherwise we default to AS0. 416 if (AddrSpace == static_cast<unsigned>(-1)) 417 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 418 return AddrSpace; 419 } 420 421 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 422 const Twine &name, Module *ParentModule) 423 : GlobalObject(Ty, Value::FunctionVal, 424 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 425 computeAddrSpace(AddrSpace, ParentModule)), 426 NumArgs(Ty->getNumParams()), IsNewDbgInfoFormat(false) { 427 assert(FunctionType::isValidReturnType(getReturnType()) && 428 "invalid return type"); 429 setGlobalObjectSubClassData(0); 430 431 // We only need a symbol table for a function if the context keeps value names 432 if (!getContext().shouldDiscardValueNames()) 433 SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize); 434 435 // If the function has arguments, mark them as lazily built. 436 if (Ty->getNumParams()) 437 setValueSubclassData(1); // Set the "has lazy arguments" bit. 438 439 if (ParentModule) 440 ParentModule->getFunctionList().push_back(this); 441 442 HasLLVMReservedName = getName().starts_with("llvm."); 443 // Ensure intrinsics have the right parameter attributes. 444 // Note, the IntID field will have been set in Value::setName if this function 445 // name is a valid intrinsic ID. 446 if (IntID) 447 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 448 } 449 450 Function::~Function() { 451 dropAllReferences(); // After this it is safe to delete instructions. 452 453 // Delete all of the method arguments and unlink from symbol table... 454 if (Arguments) 455 clearArguments(); 456 457 // Remove the function from the on-the-side GC table. 458 clearGC(); 459 } 460 461 void Function::BuildLazyArguments() const { 462 // Create the arguments vector, all arguments start out unnamed. 463 auto *FT = getFunctionType(); 464 if (NumArgs > 0) { 465 Arguments = std::allocator<Argument>().allocate(NumArgs); 466 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 467 Type *ArgTy = FT->getParamType(i); 468 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 469 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 470 } 471 } 472 473 // Clear the lazy arguments bit. 474 unsigned SDC = getSubclassDataFromValue(); 475 SDC &= ~(1 << 0); 476 const_cast<Function*>(this)->setValueSubclassData(SDC); 477 assert(!hasLazyArguments()); 478 } 479 480 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 481 return MutableArrayRef<Argument>(Args, Count); 482 } 483 484 bool Function::isConstrainedFPIntrinsic() const { 485 switch (getIntrinsicID()) { 486 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 487 case Intrinsic::INTRINSIC: 488 #include "llvm/IR/ConstrainedOps.def" 489 return true; 490 #undef INSTRUCTION 491 default: 492 return false; 493 } 494 } 495 496 void Function::clearArguments() { 497 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 498 A.setName(""); 499 A.~Argument(); 500 } 501 std::allocator<Argument>().deallocate(Arguments, NumArgs); 502 Arguments = nullptr; 503 } 504 505 void Function::stealArgumentListFrom(Function &Src) { 506 assert(isDeclaration() && "Expected no references to current arguments"); 507 508 // Drop the current arguments, if any, and set the lazy argument bit. 509 if (!hasLazyArguments()) { 510 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 511 [](const Argument &A) { return A.use_empty(); }) && 512 "Expected arguments to be unused in declaration"); 513 clearArguments(); 514 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 515 } 516 517 // Nothing to steal if Src has lazy arguments. 518 if (Src.hasLazyArguments()) 519 return; 520 521 // Steal arguments from Src, and fix the lazy argument bits. 522 assert(arg_size() == Src.arg_size()); 523 Arguments = Src.Arguments; 524 Src.Arguments = nullptr; 525 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 526 // FIXME: This does the work of transferNodesFromList inefficiently. 527 SmallString<128> Name; 528 if (A.hasName()) 529 Name = A.getName(); 530 if (!Name.empty()) 531 A.setName(""); 532 A.setParent(this); 533 if (!Name.empty()) 534 A.setName(Name); 535 } 536 537 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 538 assert(!hasLazyArguments()); 539 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 540 } 541 542 void Function::deleteBodyImpl(bool ShouldDrop) { 543 setIsMaterializable(false); 544 545 for (BasicBlock &BB : *this) 546 BB.dropAllReferences(); 547 548 // Delete all basic blocks. They are now unused, except possibly by 549 // blockaddresses, but BasicBlock's destructor takes care of those. 550 while (!BasicBlocks.empty()) 551 BasicBlocks.begin()->eraseFromParent(); 552 553 if (getNumOperands()) { 554 if (ShouldDrop) { 555 // Drop uses of any optional data (real or placeholder). 556 User::dropAllReferences(); 557 setNumHungOffUseOperands(0); 558 } else { 559 // The code needs to match Function::allocHungoffUselist(). 560 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0)); 561 Op<0>().set(CPN); 562 Op<1>().set(CPN); 563 Op<2>().set(CPN); 564 } 565 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 566 } 567 568 // Metadata is stored in a side-table. 569 clearMetadata(); 570 } 571 572 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) { 573 AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr); 574 } 575 576 void Function::addFnAttr(Attribute::AttrKind Kind) { 577 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind); 578 } 579 580 void Function::addFnAttr(StringRef Kind, StringRef Val) { 581 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val); 582 } 583 584 void Function::addFnAttr(Attribute Attr) { 585 AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr); 586 } 587 588 void Function::addFnAttrs(const AttrBuilder &Attrs) { 589 AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs); 590 } 591 592 void Function::addRetAttr(Attribute::AttrKind Kind) { 593 AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind); 594 } 595 596 void Function::addRetAttr(Attribute Attr) { 597 AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr); 598 } 599 600 void Function::addRetAttrs(const AttrBuilder &Attrs) { 601 AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs); 602 } 603 604 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 605 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind); 606 } 607 608 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 609 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr); 610 } 611 612 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 613 AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs); 614 } 615 616 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) { 617 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 618 } 619 620 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) { 621 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 622 } 623 624 void Function::removeFnAttr(Attribute::AttrKind Kind) { 625 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 626 } 627 628 void Function::removeFnAttr(StringRef Kind) { 629 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 630 } 631 632 void Function::removeFnAttrs(const AttributeMask &AM) { 633 AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM); 634 } 635 636 void Function::removeRetAttr(Attribute::AttrKind Kind) { 637 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 638 } 639 640 void Function::removeRetAttr(StringRef Kind) { 641 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 642 } 643 644 void Function::removeRetAttrs(const AttributeMask &Attrs) { 645 AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs); 646 } 647 648 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 649 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 650 } 651 652 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 653 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 654 } 655 656 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) { 657 AttributeSets = 658 AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs); 659 } 660 661 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 662 AttributeSets = 663 AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 664 } 665 666 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const { 667 return AttributeSets.hasFnAttr(Kind); 668 } 669 670 bool Function::hasFnAttribute(StringRef Kind) const { 671 return AttributeSets.hasFnAttr(Kind); 672 } 673 674 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const { 675 return AttributeSets.hasRetAttr(Kind); 676 } 677 678 bool Function::hasParamAttribute(unsigned ArgNo, 679 Attribute::AttrKind Kind) const { 680 return AttributeSets.hasParamAttr(ArgNo, Kind); 681 } 682 683 Attribute Function::getAttributeAtIndex(unsigned i, 684 Attribute::AttrKind Kind) const { 685 return AttributeSets.getAttributeAtIndex(i, Kind); 686 } 687 688 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const { 689 return AttributeSets.getAttributeAtIndex(i, Kind); 690 } 691 692 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const { 693 return AttributeSets.getFnAttr(Kind); 694 } 695 696 Attribute Function::getFnAttribute(StringRef Kind) const { 697 return AttributeSets.getFnAttr(Kind); 698 } 699 700 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name, 701 uint64_t Default) const { 702 Attribute A = getFnAttribute(Name); 703 uint64_t Result = Default; 704 if (A.isStringAttribute()) { 705 StringRef Str = A.getValueAsString(); 706 if (Str.getAsInteger(0, Result)) 707 getContext().emitError("cannot parse integer attribute " + Name); 708 } 709 710 return Result; 711 } 712 713 /// gets the specified attribute from the list of attributes. 714 Attribute Function::getParamAttribute(unsigned ArgNo, 715 Attribute::AttrKind Kind) const { 716 return AttributeSets.getParamAttr(ArgNo, Kind); 717 } 718 719 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 720 uint64_t Bytes) { 721 AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(), 722 ArgNo, Bytes); 723 } 724 725 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 726 if (&FPType == &APFloat::IEEEsingle()) { 727 DenormalMode Mode = getDenormalModeF32Raw(); 728 // If the f32 variant of the attribute isn't specified, try to use the 729 // generic one. 730 if (Mode.isValid()) 731 return Mode; 732 } 733 734 return getDenormalModeRaw(); 735 } 736 737 DenormalMode Function::getDenormalModeRaw() const { 738 Attribute Attr = getFnAttribute("denormal-fp-math"); 739 StringRef Val = Attr.getValueAsString(); 740 return parseDenormalFPAttribute(Val); 741 } 742 743 DenormalMode Function::getDenormalModeF32Raw() const { 744 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 745 if (Attr.isValid()) { 746 StringRef Val = Attr.getValueAsString(); 747 return parseDenormalFPAttribute(Val); 748 } 749 750 return DenormalMode::getInvalid(); 751 } 752 753 const std::string &Function::getGC() const { 754 assert(hasGC() && "Function has no collector"); 755 return getContext().getGC(*this); 756 } 757 758 void Function::setGC(std::string Str) { 759 setValueSubclassDataBit(14, !Str.empty()); 760 getContext().setGC(*this, std::move(Str)); 761 } 762 763 void Function::clearGC() { 764 if (!hasGC()) 765 return; 766 getContext().deleteGC(*this); 767 setValueSubclassDataBit(14, false); 768 } 769 770 bool Function::hasStackProtectorFnAttr() const { 771 return hasFnAttribute(Attribute::StackProtect) || 772 hasFnAttribute(Attribute::StackProtectStrong) || 773 hasFnAttribute(Attribute::StackProtectReq); 774 } 775 776 /// Copy all additional attributes (those not needed to create a Function) from 777 /// the Function Src to this one. 778 void Function::copyAttributesFrom(const Function *Src) { 779 GlobalObject::copyAttributesFrom(Src); 780 setCallingConv(Src->getCallingConv()); 781 setAttributes(Src->getAttributes()); 782 if (Src->hasGC()) 783 setGC(Src->getGC()); 784 else 785 clearGC(); 786 if (Src->hasPersonalityFn()) 787 setPersonalityFn(Src->getPersonalityFn()); 788 if (Src->hasPrefixData()) 789 setPrefixData(Src->getPrefixData()); 790 if (Src->hasPrologueData()) 791 setPrologueData(Src->getPrologueData()); 792 } 793 794 MemoryEffects Function::getMemoryEffects() const { 795 return getAttributes().getMemoryEffects(); 796 } 797 void Function::setMemoryEffects(MemoryEffects ME) { 798 addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME)); 799 } 800 801 /// Determine if the function does not access memory. 802 bool Function::doesNotAccessMemory() const { 803 return getMemoryEffects().doesNotAccessMemory(); 804 } 805 void Function::setDoesNotAccessMemory() { 806 setMemoryEffects(MemoryEffects::none()); 807 } 808 809 /// Determine if the function does not access or only reads memory. 810 bool Function::onlyReadsMemory() const { 811 return getMemoryEffects().onlyReadsMemory(); 812 } 813 void Function::setOnlyReadsMemory() { 814 setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly()); 815 } 816 817 /// Determine if the function does not access or only writes memory. 818 bool Function::onlyWritesMemory() const { 819 return getMemoryEffects().onlyWritesMemory(); 820 } 821 void Function::setOnlyWritesMemory() { 822 setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly()); 823 } 824 825 /// Determine if the call can access memmory only using pointers based 826 /// on its arguments. 827 bool Function::onlyAccessesArgMemory() const { 828 return getMemoryEffects().onlyAccessesArgPointees(); 829 } 830 void Function::setOnlyAccessesArgMemory() { 831 setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly()); 832 } 833 834 /// Determine if the function may only access memory that is 835 /// inaccessible from the IR. 836 bool Function::onlyAccessesInaccessibleMemory() const { 837 return getMemoryEffects().onlyAccessesInaccessibleMem(); 838 } 839 void Function::setOnlyAccessesInaccessibleMemory() { 840 setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly()); 841 } 842 843 /// Determine if the function may only access memory that is 844 /// either inaccessible from the IR or pointed to by its arguments. 845 bool Function::onlyAccessesInaccessibleMemOrArgMem() const { 846 return getMemoryEffects().onlyAccessesInaccessibleOrArgMem(); 847 } 848 void Function::setOnlyAccessesInaccessibleMemOrArgMem() { 849 setMemoryEffects(getMemoryEffects() & 850 MemoryEffects::inaccessibleOrArgMemOnly()); 851 } 852 853 /// Table of string intrinsic names indexed by enum value. 854 static const char * const IntrinsicNameTable[] = { 855 "not_intrinsic", 856 #define GET_INTRINSIC_NAME_TABLE 857 #include "llvm/IR/IntrinsicImpl.inc" 858 #undef GET_INTRINSIC_NAME_TABLE 859 }; 860 861 /// Table of per-target intrinsic name tables. 862 #define GET_INTRINSIC_TARGET_DATA 863 #include "llvm/IR/IntrinsicImpl.inc" 864 #undef GET_INTRINSIC_TARGET_DATA 865 866 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 867 return IID > TargetInfos[0].Count; 868 } 869 870 bool Function::isTargetIntrinsic() const { 871 return isTargetIntrinsic(IntID); 872 } 873 874 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 875 /// target as \c Name, or the generic table if \c Name is not target specific. 876 /// 877 /// Returns the relevant slice of \c IntrinsicNameTable 878 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 879 assert(Name.starts_with("llvm.")); 880 881 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 882 // Drop "llvm." and take the first dotted component. That will be the target 883 // if this is target specific. 884 StringRef Target = Name.drop_front(5).split('.').first; 885 auto It = partition_point( 886 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 887 // We've either found the target or just fall back to the generic set, which 888 // is always first. 889 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 890 return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 891 } 892 893 /// This does the actual lookup of an intrinsic ID which 894 /// matches the given function name. 895 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 896 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 897 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 898 if (Idx == -1) 899 return Intrinsic::not_intrinsic; 900 901 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 902 // an index into a sub-table. 903 int Adjust = NameTable.data() - IntrinsicNameTable; 904 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 905 906 // If the intrinsic is not overloaded, require an exact match. If it is 907 // overloaded, require either exact or prefix match. 908 const auto MatchSize = strlen(NameTable[Idx]); 909 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 910 bool IsExactMatch = Name.size() == MatchSize; 911 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 912 : Intrinsic::not_intrinsic; 913 } 914 915 void Function::updateAfterNameChange() { 916 LibFuncCache = UnknownLibFunc; 917 StringRef Name = getName(); 918 if (!Name.starts_with("llvm.")) { 919 HasLLVMReservedName = false; 920 IntID = Intrinsic::not_intrinsic; 921 return; 922 } 923 HasLLVMReservedName = true; 924 IntID = lookupIntrinsicID(Name); 925 } 926 927 /// Returns a stable mangling for the type specified for use in the name 928 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 929 /// of named types is simply their name. Manglings for unnamed types consist 930 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 931 /// combined with the mangling of their component types. A vararg function 932 /// type will have a suffix of 'vararg'. Since function types can contain 933 /// other function types, we close a function type mangling with suffix 'f' 934 /// which can't be confused with it's prefix. This ensures we don't have 935 /// collisions between two unrelated function types. Otherwise, you might 936 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 937 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 938 /// indicating that extra care must be taken to ensure a unique name. 939 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 940 std::string Result; 941 if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) { 942 Result += "p" + utostr(PTyp->getAddressSpace()); 943 } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) { 944 Result += "a" + utostr(ATyp->getNumElements()) + 945 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 946 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 947 if (!STyp->isLiteral()) { 948 Result += "s_"; 949 if (STyp->hasName()) 950 Result += STyp->getName(); 951 else 952 HasUnnamedType = true; 953 } else { 954 Result += "sl_"; 955 for (auto *Elem : STyp->elements()) 956 Result += getMangledTypeStr(Elem, HasUnnamedType); 957 } 958 // Ensure nested structs are distinguishable. 959 Result += "s"; 960 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 961 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 962 for (size_t i = 0; i < FT->getNumParams(); i++) 963 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 964 if (FT->isVarArg()) 965 Result += "vararg"; 966 // Ensure nested function types are distinguishable. 967 Result += "f"; 968 } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 969 ElementCount EC = VTy->getElementCount(); 970 if (EC.isScalable()) 971 Result += "nx"; 972 Result += "v" + utostr(EC.getKnownMinValue()) + 973 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 974 } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) { 975 Result += "t"; 976 Result += TETy->getName(); 977 for (Type *ParamTy : TETy->type_params()) 978 Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType); 979 for (unsigned IntParam : TETy->int_params()) 980 Result += "_" + utostr(IntParam); 981 // Ensure nested target extension types are distinguishable. 982 Result += "t"; 983 } else if (Ty) { 984 switch (Ty->getTypeID()) { 985 default: llvm_unreachable("Unhandled type"); 986 case Type::VoidTyID: Result += "isVoid"; break; 987 case Type::MetadataTyID: Result += "Metadata"; break; 988 case Type::HalfTyID: Result += "f16"; break; 989 case Type::BFloatTyID: Result += "bf16"; break; 990 case Type::FloatTyID: Result += "f32"; break; 991 case Type::DoubleTyID: Result += "f64"; break; 992 case Type::X86_FP80TyID: Result += "f80"; break; 993 case Type::FP128TyID: Result += "f128"; break; 994 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 995 case Type::X86_MMXTyID: Result += "x86mmx"; break; 996 case Type::X86_AMXTyID: Result += "x86amx"; break; 997 case Type::IntegerTyID: 998 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 999 break; 1000 } 1001 } 1002 return Result; 1003 } 1004 1005 StringRef Intrinsic::getBaseName(ID id) { 1006 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 1007 return IntrinsicNameTable[id]; 1008 } 1009 1010 StringRef Intrinsic::getName(ID id) { 1011 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 1012 assert(!Intrinsic::isOverloaded(id) && 1013 "This version of getName does not support overloading"); 1014 return getBaseName(id); 1015 } 1016 1017 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys, 1018 Module *M, FunctionType *FT, 1019 bool EarlyModuleCheck) { 1020 1021 assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!"); 1022 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 1023 "This version of getName is for overloaded intrinsics only"); 1024 (void)EarlyModuleCheck; 1025 assert((!EarlyModuleCheck || M || 1026 !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) && 1027 "Intrinsic overloading on pointer types need to provide a Module"); 1028 bool HasUnnamedType = false; 1029 std::string Result(Intrinsic::getBaseName(Id)); 1030 for (Type *Ty : Tys) 1031 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 1032 if (HasUnnamedType) { 1033 assert(M && "unnamed types need a module"); 1034 if (!FT) 1035 FT = Intrinsic::getType(M->getContext(), Id, Tys); 1036 else 1037 assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) && 1038 "Provided FunctionType must match arguments"); 1039 return M->getUniqueIntrinsicName(Result, Id, FT); 1040 } 1041 return Result; 1042 } 1043 1044 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 1045 FunctionType *FT) { 1046 assert(M && "We need to have a Module"); 1047 return getIntrinsicNameImpl(Id, Tys, M, FT, true); 1048 } 1049 1050 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) { 1051 return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false); 1052 } 1053 1054 /// IIT_Info - These are enumerators that describe the entries returned by the 1055 /// getIntrinsicInfoTableEntries function. 1056 /// 1057 /// Defined in Intrinsics.td. 1058 enum IIT_Info { 1059 #define GET_INTRINSIC_IITINFO 1060 #include "llvm/IR/IntrinsicImpl.inc" 1061 #undef GET_INTRINSIC_IITINFO 1062 }; 1063 1064 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 1065 IIT_Info LastInfo, 1066 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 1067 using namespace Intrinsic; 1068 1069 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 1070 1071 IIT_Info Info = IIT_Info(Infos[NextElt++]); 1072 unsigned StructElts = 2; 1073 1074 switch (Info) { 1075 case IIT_Done: 1076 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 1077 return; 1078 case IIT_VARARG: 1079 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 1080 return; 1081 case IIT_MMX: 1082 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 1083 return; 1084 case IIT_AMX: 1085 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 1086 return; 1087 case IIT_TOKEN: 1088 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 1089 return; 1090 case IIT_METADATA: 1091 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 1092 return; 1093 case IIT_F16: 1094 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 1095 return; 1096 case IIT_BF16: 1097 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 1098 return; 1099 case IIT_F32: 1100 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 1101 return; 1102 case IIT_F64: 1103 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 1104 return; 1105 case IIT_F128: 1106 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 1107 return; 1108 case IIT_PPCF128: 1109 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0)); 1110 return; 1111 case IIT_I1: 1112 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 1113 return; 1114 case IIT_I2: 1115 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2)); 1116 return; 1117 case IIT_I4: 1118 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4)); 1119 return; 1120 case IIT_AARCH64_SVCOUNT: 1121 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0)); 1122 return; 1123 case IIT_I8: 1124 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 1125 return; 1126 case IIT_I16: 1127 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 1128 return; 1129 case IIT_I32: 1130 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 1131 return; 1132 case IIT_I64: 1133 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 1134 return; 1135 case IIT_I128: 1136 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 1137 return; 1138 case IIT_V1: 1139 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 1140 DecodeIITType(NextElt, Infos, Info, OutputTable); 1141 return; 1142 case IIT_V2: 1143 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 1144 DecodeIITType(NextElt, Infos, Info, OutputTable); 1145 return; 1146 case IIT_V3: 1147 OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector)); 1148 DecodeIITType(NextElt, Infos, Info, OutputTable); 1149 return; 1150 case IIT_V4: 1151 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 1152 DecodeIITType(NextElt, Infos, Info, OutputTable); 1153 return; 1154 case IIT_V8: 1155 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 1156 DecodeIITType(NextElt, Infos, Info, OutputTable); 1157 return; 1158 case IIT_V16: 1159 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 1160 DecodeIITType(NextElt, Infos, Info, OutputTable); 1161 return; 1162 case IIT_V32: 1163 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 1164 DecodeIITType(NextElt, Infos, Info, OutputTable); 1165 return; 1166 case IIT_V64: 1167 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 1168 DecodeIITType(NextElt, Infos, Info, OutputTable); 1169 return; 1170 case IIT_V128: 1171 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 1172 DecodeIITType(NextElt, Infos, Info, OutputTable); 1173 return; 1174 case IIT_V256: 1175 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 1176 DecodeIITType(NextElt, Infos, Info, OutputTable); 1177 return; 1178 case IIT_V512: 1179 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 1180 DecodeIITType(NextElt, Infos, Info, OutputTable); 1181 return; 1182 case IIT_V1024: 1183 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1184 DecodeIITType(NextElt, Infos, Info, OutputTable); 1185 return; 1186 case IIT_EXTERNREF: 1187 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10)); 1188 return; 1189 case IIT_FUNCREF: 1190 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20)); 1191 return; 1192 case IIT_PTR: 1193 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1194 return; 1195 case IIT_ANYPTR: // [ANYPTR addrspace] 1196 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1197 Infos[NextElt++])); 1198 return; 1199 case IIT_ARG: { 1200 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1201 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1202 return; 1203 } 1204 case IIT_EXTEND_ARG: { 1205 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1206 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1207 ArgInfo)); 1208 return; 1209 } 1210 case IIT_TRUNC_ARG: { 1211 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1212 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1213 ArgInfo)); 1214 return; 1215 } 1216 case IIT_HALF_VEC_ARG: { 1217 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1218 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1219 ArgInfo)); 1220 return; 1221 } 1222 case IIT_SAME_VEC_WIDTH_ARG: { 1223 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1224 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1225 ArgInfo)); 1226 return; 1227 } 1228 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1229 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1230 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1231 OutputTable.push_back( 1232 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1233 return; 1234 } 1235 case IIT_EMPTYSTRUCT: 1236 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1237 return; 1238 case IIT_STRUCT9: ++StructElts; [[fallthrough]]; 1239 case IIT_STRUCT8: ++StructElts; [[fallthrough]]; 1240 case IIT_STRUCT7: ++StructElts; [[fallthrough]]; 1241 case IIT_STRUCT6: ++StructElts; [[fallthrough]]; 1242 case IIT_STRUCT5: ++StructElts; [[fallthrough]]; 1243 case IIT_STRUCT4: ++StructElts; [[fallthrough]]; 1244 case IIT_STRUCT3: ++StructElts; [[fallthrough]]; 1245 case IIT_STRUCT2: { 1246 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1247 1248 for (unsigned i = 0; i != StructElts; ++i) 1249 DecodeIITType(NextElt, Infos, Info, OutputTable); 1250 return; 1251 } 1252 case IIT_SUBDIVIDE2_ARG: { 1253 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1254 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1255 ArgInfo)); 1256 return; 1257 } 1258 case IIT_SUBDIVIDE4_ARG: { 1259 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1260 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1261 ArgInfo)); 1262 return; 1263 } 1264 case IIT_VEC_ELEMENT: { 1265 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1266 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1267 ArgInfo)); 1268 return; 1269 } 1270 case IIT_SCALABLE_VEC: { 1271 DecodeIITType(NextElt, Infos, Info, OutputTable); 1272 return; 1273 } 1274 case IIT_VEC_OF_BITCASTS_TO_INT: { 1275 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1276 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1277 ArgInfo)); 1278 return; 1279 } 1280 } 1281 llvm_unreachable("unhandled"); 1282 } 1283 1284 #define GET_INTRINSIC_GENERATOR_GLOBAL 1285 #include "llvm/IR/IntrinsicImpl.inc" 1286 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1287 1288 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1289 SmallVectorImpl<IITDescriptor> &T){ 1290 // Check to see if the intrinsic's type was expressible by the table. 1291 unsigned TableVal = IIT_Table[id-1]; 1292 1293 // Decode the TableVal into an array of IITValues. 1294 SmallVector<unsigned char, 8> IITValues; 1295 ArrayRef<unsigned char> IITEntries; 1296 unsigned NextElt = 0; 1297 if ((TableVal >> 31) != 0) { 1298 // This is an offset into the IIT_LongEncodingTable. 1299 IITEntries = IIT_LongEncodingTable; 1300 1301 // Strip sentinel bit. 1302 NextElt = (TableVal << 1) >> 1; 1303 } else { 1304 // Decode the TableVal into an array of IITValues. If the entry was encoded 1305 // into a single word in the table itself, decode it now. 1306 do { 1307 IITValues.push_back(TableVal & 0xF); 1308 TableVal >>= 4; 1309 } while (TableVal); 1310 1311 IITEntries = IITValues; 1312 NextElt = 0; 1313 } 1314 1315 // Okay, decode the table into the output vector of IITDescriptors. 1316 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1317 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1318 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1319 } 1320 1321 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1322 ArrayRef<Type*> Tys, LLVMContext &Context) { 1323 using namespace Intrinsic; 1324 1325 IITDescriptor D = Infos.front(); 1326 Infos = Infos.slice(1); 1327 1328 switch (D.Kind) { 1329 case IITDescriptor::Void: return Type::getVoidTy(Context); 1330 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1331 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1332 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1333 case IITDescriptor::Token: return Type::getTokenTy(Context); 1334 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1335 case IITDescriptor::Half: return Type::getHalfTy(Context); 1336 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1337 case IITDescriptor::Float: return Type::getFloatTy(Context); 1338 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1339 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1340 case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context); 1341 case IITDescriptor::AArch64Svcount: 1342 return TargetExtType::get(Context, "aarch64.svcount"); 1343 1344 case IITDescriptor::Integer: 1345 return IntegerType::get(Context, D.Integer_Width); 1346 case IITDescriptor::Vector: 1347 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1348 D.Vector_Width); 1349 case IITDescriptor::Pointer: 1350 return PointerType::get(Context, D.Pointer_AddressSpace); 1351 case IITDescriptor::Struct: { 1352 SmallVector<Type *, 8> Elts; 1353 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1354 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1355 return StructType::get(Context, Elts); 1356 } 1357 case IITDescriptor::Argument: 1358 return Tys[D.getArgumentNumber()]; 1359 case IITDescriptor::ExtendArgument: { 1360 Type *Ty = Tys[D.getArgumentNumber()]; 1361 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1362 return VectorType::getExtendedElementVectorType(VTy); 1363 1364 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1365 } 1366 case IITDescriptor::TruncArgument: { 1367 Type *Ty = Tys[D.getArgumentNumber()]; 1368 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1369 return VectorType::getTruncatedElementVectorType(VTy); 1370 1371 IntegerType *ITy = cast<IntegerType>(Ty); 1372 assert(ITy->getBitWidth() % 2 == 0); 1373 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1374 } 1375 case IITDescriptor::Subdivide2Argument: 1376 case IITDescriptor::Subdivide4Argument: { 1377 Type *Ty = Tys[D.getArgumentNumber()]; 1378 VectorType *VTy = dyn_cast<VectorType>(Ty); 1379 assert(VTy && "Expected an argument of Vector Type"); 1380 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1381 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1382 } 1383 case IITDescriptor::HalfVecArgument: 1384 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1385 Tys[D.getArgumentNumber()])); 1386 case IITDescriptor::SameVecWidthArgument: { 1387 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1388 Type *Ty = Tys[D.getArgumentNumber()]; 1389 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1390 return VectorType::get(EltTy, VTy->getElementCount()); 1391 return EltTy; 1392 } 1393 case IITDescriptor::VecElementArgument: { 1394 Type *Ty = Tys[D.getArgumentNumber()]; 1395 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1396 return VTy->getElementType(); 1397 llvm_unreachable("Expected an argument of Vector Type"); 1398 } 1399 case IITDescriptor::VecOfBitcastsToInt: { 1400 Type *Ty = Tys[D.getArgumentNumber()]; 1401 VectorType *VTy = dyn_cast<VectorType>(Ty); 1402 assert(VTy && "Expected an argument of Vector Type"); 1403 return VectorType::getInteger(VTy); 1404 } 1405 case IITDescriptor::VecOfAnyPtrsToElt: 1406 // Return the overloaded type (which determines the pointers address space) 1407 return Tys[D.getOverloadArgNumber()]; 1408 } 1409 llvm_unreachable("unhandled"); 1410 } 1411 1412 FunctionType *Intrinsic::getType(LLVMContext &Context, 1413 ID id, ArrayRef<Type*> Tys) { 1414 SmallVector<IITDescriptor, 8> Table; 1415 getIntrinsicInfoTableEntries(id, Table); 1416 1417 ArrayRef<IITDescriptor> TableRef = Table; 1418 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1419 1420 SmallVector<Type*, 8> ArgTys; 1421 while (!TableRef.empty()) 1422 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1423 1424 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1425 // If we see void type as the type of the last argument, it is vararg intrinsic 1426 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1427 ArgTys.pop_back(); 1428 return FunctionType::get(ResultTy, ArgTys, true); 1429 } 1430 return FunctionType::get(ResultTy, ArgTys, false); 1431 } 1432 1433 bool Intrinsic::isOverloaded(ID id) { 1434 #define GET_INTRINSIC_OVERLOAD_TABLE 1435 #include "llvm/IR/IntrinsicImpl.inc" 1436 #undef GET_INTRINSIC_OVERLOAD_TABLE 1437 } 1438 1439 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1440 #define GET_INTRINSIC_ATTRIBUTES 1441 #include "llvm/IR/IntrinsicImpl.inc" 1442 #undef GET_INTRINSIC_ATTRIBUTES 1443 1444 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1445 // There can never be multiple globals with the same name of different types, 1446 // because intrinsics must be a specific type. 1447 auto *FT = getType(M->getContext(), id, Tys); 1448 return cast<Function>( 1449 M->getOrInsertFunction( 1450 Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT) 1451 .getCallee()); 1452 } 1453 1454 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method. 1455 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1456 #include "llvm/IR/IntrinsicImpl.inc" 1457 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1458 1459 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1460 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1461 #include "llvm/IR/IntrinsicImpl.inc" 1462 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1463 1464 using DeferredIntrinsicMatchPair = 1465 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1466 1467 static bool matchIntrinsicType( 1468 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1469 SmallVectorImpl<Type *> &ArgTys, 1470 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1471 bool IsDeferredCheck) { 1472 using namespace Intrinsic; 1473 1474 // If we ran out of descriptors, there are too many arguments. 1475 if (Infos.empty()) return true; 1476 1477 // Do this before slicing off the 'front' part 1478 auto InfosRef = Infos; 1479 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1480 DeferredChecks.emplace_back(T, InfosRef); 1481 return false; 1482 }; 1483 1484 IITDescriptor D = Infos.front(); 1485 Infos = Infos.slice(1); 1486 1487 switch (D.Kind) { 1488 case IITDescriptor::Void: return !Ty->isVoidTy(); 1489 case IITDescriptor::VarArg: return true; 1490 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1491 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1492 case IITDescriptor::Token: return !Ty->isTokenTy(); 1493 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1494 case IITDescriptor::Half: return !Ty->isHalfTy(); 1495 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1496 case IITDescriptor::Float: return !Ty->isFloatTy(); 1497 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1498 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1499 case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty(); 1500 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1501 case IITDescriptor::AArch64Svcount: 1502 return !isa<TargetExtType>(Ty) || 1503 cast<TargetExtType>(Ty)->getName() != "aarch64.svcount"; 1504 case IITDescriptor::Vector: { 1505 VectorType *VT = dyn_cast<VectorType>(Ty); 1506 return !VT || VT->getElementCount() != D.Vector_Width || 1507 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1508 DeferredChecks, IsDeferredCheck); 1509 } 1510 case IITDescriptor::Pointer: { 1511 PointerType *PT = dyn_cast<PointerType>(Ty); 1512 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace; 1513 } 1514 1515 case IITDescriptor::Struct: { 1516 StructType *ST = dyn_cast<StructType>(Ty); 1517 if (!ST || !ST->isLiteral() || ST->isPacked() || 1518 ST->getNumElements() != D.Struct_NumElements) 1519 return true; 1520 1521 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1522 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1523 DeferredChecks, IsDeferredCheck)) 1524 return true; 1525 return false; 1526 } 1527 1528 case IITDescriptor::Argument: 1529 // If this is the second occurrence of an argument, 1530 // verify that the later instance matches the previous instance. 1531 if (D.getArgumentNumber() < ArgTys.size()) 1532 return Ty != ArgTys[D.getArgumentNumber()]; 1533 1534 if (D.getArgumentNumber() > ArgTys.size() || 1535 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1536 return IsDeferredCheck || DeferCheck(Ty); 1537 1538 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1539 "Table consistency error"); 1540 ArgTys.push_back(Ty); 1541 1542 switch (D.getArgumentKind()) { 1543 case IITDescriptor::AK_Any: return false; // Success 1544 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1545 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1546 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1547 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1548 default: break; 1549 } 1550 llvm_unreachable("all argument kinds not covered"); 1551 1552 case IITDescriptor::ExtendArgument: { 1553 // If this is a forward reference, defer the check for later. 1554 if (D.getArgumentNumber() >= ArgTys.size()) 1555 return IsDeferredCheck || DeferCheck(Ty); 1556 1557 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1558 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1559 NewTy = VectorType::getExtendedElementVectorType(VTy); 1560 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1561 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1562 else 1563 return true; 1564 1565 return Ty != NewTy; 1566 } 1567 case IITDescriptor::TruncArgument: { 1568 // If this is a forward reference, defer the check for later. 1569 if (D.getArgumentNumber() >= ArgTys.size()) 1570 return IsDeferredCheck || DeferCheck(Ty); 1571 1572 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1573 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1574 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1575 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1576 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1577 else 1578 return true; 1579 1580 return Ty != NewTy; 1581 } 1582 case IITDescriptor::HalfVecArgument: 1583 // If this is a forward reference, defer the check for later. 1584 if (D.getArgumentNumber() >= ArgTys.size()) 1585 return IsDeferredCheck || DeferCheck(Ty); 1586 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1587 VectorType::getHalfElementsVectorType( 1588 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1589 case IITDescriptor::SameVecWidthArgument: { 1590 if (D.getArgumentNumber() >= ArgTys.size()) { 1591 // Defer check and subsequent check for the vector element type. 1592 Infos = Infos.slice(1); 1593 return IsDeferredCheck || DeferCheck(Ty); 1594 } 1595 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1596 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1597 // Both must be vectors of the same number of elements or neither. 1598 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1599 return true; 1600 Type *EltTy = Ty; 1601 if (ThisArgType) { 1602 if (ReferenceType->getElementCount() != 1603 ThisArgType->getElementCount()) 1604 return true; 1605 EltTy = ThisArgType->getElementType(); 1606 } 1607 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1608 IsDeferredCheck); 1609 } 1610 case IITDescriptor::VecOfAnyPtrsToElt: { 1611 unsigned RefArgNumber = D.getRefArgNumber(); 1612 if (RefArgNumber >= ArgTys.size()) { 1613 if (IsDeferredCheck) 1614 return true; 1615 // If forward referencing, already add the pointer-vector type and 1616 // defer the checks for later. 1617 ArgTys.push_back(Ty); 1618 return DeferCheck(Ty); 1619 } 1620 1621 if (!IsDeferredCheck){ 1622 assert(D.getOverloadArgNumber() == ArgTys.size() && 1623 "Table consistency error"); 1624 ArgTys.push_back(Ty); 1625 } 1626 1627 // Verify the overloaded type "matches" the Ref type. 1628 // i.e. Ty is a vector with the same width as Ref. 1629 // Composed of pointers to the same element type as Ref. 1630 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1631 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1632 if (!ThisArgVecTy || !ReferenceType || 1633 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1634 return true; 1635 return !ThisArgVecTy->getElementType()->isPointerTy(); 1636 } 1637 case IITDescriptor::VecElementArgument: { 1638 if (D.getArgumentNumber() >= ArgTys.size()) 1639 return IsDeferredCheck ? true : DeferCheck(Ty); 1640 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1641 return !ReferenceType || Ty != ReferenceType->getElementType(); 1642 } 1643 case IITDescriptor::Subdivide2Argument: 1644 case IITDescriptor::Subdivide4Argument: { 1645 // If this is a forward reference, defer the check for later. 1646 if (D.getArgumentNumber() >= ArgTys.size()) 1647 return IsDeferredCheck || DeferCheck(Ty); 1648 1649 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1650 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1651 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1652 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1653 return Ty != NewTy; 1654 } 1655 return true; 1656 } 1657 case IITDescriptor::VecOfBitcastsToInt: { 1658 if (D.getArgumentNumber() >= ArgTys.size()) 1659 return IsDeferredCheck || DeferCheck(Ty); 1660 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1661 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1662 if (!ThisArgVecTy || !ReferenceType) 1663 return true; 1664 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1665 } 1666 } 1667 llvm_unreachable("unhandled"); 1668 } 1669 1670 Intrinsic::MatchIntrinsicTypesResult 1671 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1672 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1673 SmallVectorImpl<Type *> &ArgTys) { 1674 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1675 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1676 false)) 1677 return MatchIntrinsicTypes_NoMatchRet; 1678 1679 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1680 1681 for (auto *Ty : FTy->params()) 1682 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1683 return MatchIntrinsicTypes_NoMatchArg; 1684 1685 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1686 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1687 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1688 true)) 1689 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1690 : MatchIntrinsicTypes_NoMatchArg; 1691 } 1692 1693 return MatchIntrinsicTypes_Match; 1694 } 1695 1696 bool 1697 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1698 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1699 // If there are no descriptors left, then it can't be a vararg. 1700 if (Infos.empty()) 1701 return isVarArg; 1702 1703 // There should be only one descriptor remaining at this point. 1704 if (Infos.size() != 1) 1705 return true; 1706 1707 // Check and verify the descriptor. 1708 IITDescriptor D = Infos.front(); 1709 Infos = Infos.slice(1); 1710 if (D.Kind == IITDescriptor::VarArg) 1711 return !isVarArg; 1712 1713 return true; 1714 } 1715 1716 bool Intrinsic::getIntrinsicSignature(Function *F, 1717 SmallVectorImpl<Type *> &ArgTys) { 1718 Intrinsic::ID ID = F->getIntrinsicID(); 1719 if (!ID) 1720 return false; 1721 1722 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1723 getIntrinsicInfoTableEntries(ID, Table); 1724 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1725 1726 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1727 ArgTys) != 1728 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1729 return false; 1730 } 1731 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1732 TableRef)) 1733 return false; 1734 return true; 1735 } 1736 1737 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1738 SmallVector<Type *, 4> ArgTys; 1739 if (!getIntrinsicSignature(F, ArgTys)) 1740 return std::nullopt; 1741 1742 Intrinsic::ID ID = F->getIntrinsicID(); 1743 StringRef Name = F->getName(); 1744 std::string WantedName = 1745 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()); 1746 if (Name == WantedName) 1747 return std::nullopt; 1748 1749 Function *NewDecl = [&] { 1750 if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) { 1751 if (auto *ExistingF = dyn_cast<Function>(ExistingGV)) 1752 if (ExistingF->getFunctionType() == F->getFunctionType()) 1753 return ExistingF; 1754 1755 // The name already exists, but is not a function or has the wrong 1756 // prototype. Make place for the new one by renaming the old version. 1757 // Either this old version will be removed later on or the module is 1758 // invalid and we'll get an error. 1759 ExistingGV->setName(WantedName + ".renamed"); 1760 } 1761 return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1762 }(); 1763 1764 NewDecl->setCallingConv(F->getCallingConv()); 1765 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1766 "Shouldn't change the signature"); 1767 return NewDecl; 1768 } 1769 1770 /// hasAddressTaken - returns true if there are any uses of this function 1771 /// other than direct calls or invokes to it. Optionally ignores callback 1772 /// uses, assume like pointer annotation calls, and references in llvm.used 1773 /// and llvm.compiler.used variables. 1774 bool Function::hasAddressTaken(const User **PutOffender, 1775 bool IgnoreCallbackUses, 1776 bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed, 1777 bool IgnoreARCAttachedCall, 1778 bool IgnoreCastedDirectCall) const { 1779 for (const Use &U : uses()) { 1780 const User *FU = U.getUser(); 1781 if (isa<BlockAddress>(FU)) 1782 continue; 1783 1784 if (IgnoreCallbackUses) { 1785 AbstractCallSite ACS(&U); 1786 if (ACS && ACS.isCallbackCall()) 1787 continue; 1788 } 1789 1790 const auto *Call = dyn_cast<CallBase>(FU); 1791 if (!Call) { 1792 if (IgnoreAssumeLikeCalls && 1793 isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1794 all_of(FU->users(), [](const User *U) { 1795 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1796 return I->isAssumeLikeIntrinsic(); 1797 return false; 1798 })) { 1799 continue; 1800 } 1801 1802 if (IgnoreLLVMUsed && !FU->user_empty()) { 1803 const User *FUU = FU; 1804 if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1805 FU->hasOneUse() && !FU->user_begin()->user_empty()) 1806 FUU = *FU->user_begin(); 1807 if (llvm::all_of(FUU->users(), [](const User *U) { 1808 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1809 return GV->hasName() && 1810 (GV->getName().equals("llvm.compiler.used") || 1811 GV->getName().equals("llvm.used")); 1812 return false; 1813 })) 1814 continue; 1815 } 1816 if (PutOffender) 1817 *PutOffender = FU; 1818 return true; 1819 } 1820 1821 if (IgnoreAssumeLikeCalls) { 1822 if (const auto *I = dyn_cast<IntrinsicInst>(Call)) 1823 if (I->isAssumeLikeIntrinsic()) 1824 continue; 1825 } 1826 1827 if (!Call->isCallee(&U) || (!IgnoreCastedDirectCall && 1828 Call->getFunctionType() != getFunctionType())) { 1829 if (IgnoreARCAttachedCall && 1830 Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall, 1831 U.getOperandNo())) 1832 continue; 1833 1834 if (PutOffender) 1835 *PutOffender = FU; 1836 return true; 1837 } 1838 } 1839 return false; 1840 } 1841 1842 bool Function::isDefTriviallyDead() const { 1843 // Check the linkage 1844 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1845 !hasAvailableExternallyLinkage()) 1846 return false; 1847 1848 // Check if the function is used by anything other than a blockaddress. 1849 for (const User *U : users()) 1850 if (!isa<BlockAddress>(U)) 1851 return false; 1852 1853 return true; 1854 } 1855 1856 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1857 /// setjmp or other function that gcc recognizes as "returning twice". 1858 bool Function::callsFunctionThatReturnsTwice() const { 1859 for (const Instruction &I : instructions(this)) 1860 if (const auto *Call = dyn_cast<CallBase>(&I)) 1861 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1862 return true; 1863 1864 return false; 1865 } 1866 1867 Constant *Function::getPersonalityFn() const { 1868 assert(hasPersonalityFn() && getNumOperands()); 1869 return cast<Constant>(Op<0>()); 1870 } 1871 1872 void Function::setPersonalityFn(Constant *Fn) { 1873 setHungoffOperand<0>(Fn); 1874 setValueSubclassDataBit(3, Fn != nullptr); 1875 } 1876 1877 Constant *Function::getPrefixData() const { 1878 assert(hasPrefixData() && getNumOperands()); 1879 return cast<Constant>(Op<1>()); 1880 } 1881 1882 void Function::setPrefixData(Constant *PrefixData) { 1883 setHungoffOperand<1>(PrefixData); 1884 setValueSubclassDataBit(1, PrefixData != nullptr); 1885 } 1886 1887 Constant *Function::getPrologueData() const { 1888 assert(hasPrologueData() && getNumOperands()); 1889 return cast<Constant>(Op<2>()); 1890 } 1891 1892 void Function::setPrologueData(Constant *PrologueData) { 1893 setHungoffOperand<2>(PrologueData); 1894 setValueSubclassDataBit(2, PrologueData != nullptr); 1895 } 1896 1897 void Function::allocHungoffUselist() { 1898 // If we've already allocated a uselist, stop here. 1899 if (getNumOperands()) 1900 return; 1901 1902 allocHungoffUses(3, /*IsPhi=*/ false); 1903 setNumHungOffUseOperands(3); 1904 1905 // Initialize the uselist with placeholder operands to allow traversal. 1906 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0)); 1907 Op<0>().set(CPN); 1908 Op<1>().set(CPN); 1909 Op<2>().set(CPN); 1910 } 1911 1912 template <int Idx> 1913 void Function::setHungoffOperand(Constant *C) { 1914 if (C) { 1915 allocHungoffUselist(); 1916 Op<Idx>().set(C); 1917 } else if (getNumOperands()) { 1918 Op<Idx>().set(ConstantPointerNull::get(PointerType::get(getContext(), 0))); 1919 } 1920 } 1921 1922 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1923 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1924 if (On) 1925 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1926 else 1927 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1928 } 1929 1930 void Function::setEntryCount(ProfileCount Count, 1931 const DenseSet<GlobalValue::GUID> *S) { 1932 #if !defined(NDEBUG) 1933 auto PrevCount = getEntryCount(); 1934 assert(!PrevCount || PrevCount->getType() == Count.getType()); 1935 #endif 1936 1937 auto ImportGUIDs = getImportGUIDs(); 1938 if (S == nullptr && ImportGUIDs.size()) 1939 S = &ImportGUIDs; 1940 1941 MDBuilder MDB(getContext()); 1942 setMetadata( 1943 LLVMContext::MD_prof, 1944 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1945 } 1946 1947 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1948 const DenseSet<GlobalValue::GUID> *Imports) { 1949 setEntryCount(ProfileCount(Count, Type), Imports); 1950 } 1951 1952 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const { 1953 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1954 if (MD && MD->getOperand(0)) 1955 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1956 if (MDS->getString().equals("function_entry_count")) { 1957 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1958 uint64_t Count = CI->getValue().getZExtValue(); 1959 // A value of -1 is used for SamplePGO when there were no samples. 1960 // Treat this the same as unknown. 1961 if (Count == (uint64_t)-1) 1962 return std::nullopt; 1963 return ProfileCount(Count, PCT_Real); 1964 } else if (AllowSynthetic && 1965 MDS->getString().equals("synthetic_function_entry_count")) { 1966 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1967 uint64_t Count = CI->getValue().getZExtValue(); 1968 return ProfileCount(Count, PCT_Synthetic); 1969 } 1970 } 1971 return std::nullopt; 1972 } 1973 1974 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1975 DenseSet<GlobalValue::GUID> R; 1976 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1977 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1978 if (MDS->getString().equals("function_entry_count")) 1979 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1980 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1981 ->getValue() 1982 .getZExtValue()); 1983 return R; 1984 } 1985 1986 void Function::setSectionPrefix(StringRef Prefix) { 1987 MDBuilder MDB(getContext()); 1988 setMetadata(LLVMContext::MD_section_prefix, 1989 MDB.createFunctionSectionPrefix(Prefix)); 1990 } 1991 1992 std::optional<StringRef> Function::getSectionPrefix() const { 1993 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1994 assert(cast<MDString>(MD->getOperand(0)) 1995 ->getString() 1996 .equals("function_section_prefix") && 1997 "Metadata not match"); 1998 return cast<MDString>(MD->getOperand(1))->getString(); 1999 } 2000 return std::nullopt; 2001 } 2002 2003 bool Function::nullPointerIsDefined() const { 2004 return hasFnAttribute(Attribute::NullPointerIsValid); 2005 } 2006 2007 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 2008 if (F && F->nullPointerIsDefined()) 2009 return true; 2010 2011 if (AS != 0) 2012 return true; 2013 2014 return false; 2015 } 2016