xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Function.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsAArch64.h"
37 #include "llvm/IR/IntrinsicsAMDGPU.h"
38 #include "llvm/IR/IntrinsicsARM.h"
39 #include "llvm/IR/IntrinsicsBPF.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsVE.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/IntrinsicsXCore.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/SymbolTableListTraits.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstddef>
69 #include <cstdint>
70 #include <cstring>
71 #include <string>
72 
73 using namespace llvm;
74 using ProfileCount = Function::ProfileCount;
75 
76 // Explicit instantiations of SymbolTableListTraits since some of the methods
77 // are not in the public header file...
78 template class llvm::SymbolTableListTraits<BasicBlock>;
79 
80 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
81     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
82     cl::desc("Maximum size for the name of non-global values."));
83 
84 //===----------------------------------------------------------------------===//
85 // Argument Implementation
86 //===----------------------------------------------------------------------===//
87 
88 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
89     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
90   setName(Name);
91 }
92 
93 void Argument::setParent(Function *parent) {
94   Parent = parent;
95 }
96 
97 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
98   if (!getType()->isPointerTy()) return false;
99   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
100       (AllowUndefOrPoison ||
101        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
102     return true;
103   else if (getDereferenceableBytes() > 0 &&
104            !NullPointerIsDefined(getParent(),
105                                  getType()->getPointerAddressSpace()))
106     return true;
107   return false;
108 }
109 
110 bool Argument::hasByValAttr() const {
111   if (!getType()->isPointerTy()) return false;
112   return hasAttribute(Attribute::ByVal);
113 }
114 
115 bool Argument::hasByRefAttr() const {
116   if (!getType()->isPointerTy())
117     return false;
118   return hasAttribute(Attribute::ByRef);
119 }
120 
121 bool Argument::hasSwiftSelfAttr() const {
122   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
123 }
124 
125 bool Argument::hasSwiftErrorAttr() const {
126   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
127 }
128 
129 bool Argument::hasInAllocaAttr() const {
130   if (!getType()->isPointerTy()) return false;
131   return hasAttribute(Attribute::InAlloca);
132 }
133 
134 bool Argument::hasPreallocatedAttr() const {
135   if (!getType()->isPointerTy())
136     return false;
137   return hasAttribute(Attribute::Preallocated);
138 }
139 
140 bool Argument::hasPassPointeeByValueCopyAttr() const {
141   if (!getType()->isPointerTy()) return false;
142   AttributeList Attrs = getParent()->getAttributes();
143   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
144          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
145          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated);
146 }
147 
148 bool Argument::hasPointeeInMemoryValueAttr() const {
149   if (!getType()->isPointerTy())
150     return false;
151   AttributeList Attrs = getParent()->getAttributes();
152   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
153          Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) ||
154          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
155          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) ||
156          Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef);
157 }
158 
159 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
160 /// parameter type.
161 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) {
162   // FIXME: All the type carrying attributes are mutually exclusive, so there
163   // should be a single query to get the stored type that handles any of them.
164   if (Type *ByValTy = ParamAttrs.getByValType())
165     return ByValTy;
166   if (Type *ByRefTy = ParamAttrs.getByRefType())
167     return ByRefTy;
168   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
169     return PreAllocTy;
170   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
171     return InAllocaTy;
172   if (Type *SRetTy = ParamAttrs.getStructRetType())
173     return SRetTy;
174 
175   return nullptr;
176 }
177 
178 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
179   AttributeSet ParamAttrs =
180       getParent()->getAttributes().getParamAttributes(getArgNo());
181   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType()))
182     return DL.getTypeAllocSize(MemTy);
183   return 0;
184 }
185 
186 Type *Argument::getPointeeInMemoryValueType() const {
187   AttributeSet ParamAttrs =
188       getParent()->getAttributes().getParamAttributes(getArgNo());
189   return getMemoryParamAllocType(ParamAttrs, getType());
190 }
191 
192 unsigned Argument::getParamAlignment() const {
193   assert(getType()->isPointerTy() && "Only pointers have alignments");
194   return getParent()->getParamAlignment(getArgNo());
195 }
196 
197 MaybeAlign Argument::getParamAlign() const {
198   assert(getType()->isPointerTy() && "Only pointers have alignments");
199   return getParent()->getParamAlign(getArgNo());
200 }
201 
202 MaybeAlign Argument::getParamStackAlign() const {
203   return getParent()->getParamStackAlign(getArgNo());
204 }
205 
206 Type *Argument::getParamByValType() const {
207   assert(getType()->isPointerTy() && "Only pointers have byval types");
208   return getParent()->getParamByValType(getArgNo());
209 }
210 
211 Type *Argument::getParamStructRetType() const {
212   assert(getType()->isPointerTy() && "Only pointers have sret types");
213   return getParent()->getParamStructRetType(getArgNo());
214 }
215 
216 Type *Argument::getParamByRefType() const {
217   assert(getType()->isPointerTy() && "Only pointers have byref types");
218   return getParent()->getParamByRefType(getArgNo());
219 }
220 
221 Type *Argument::getParamInAllocaType() const {
222   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
223   return getParent()->getParamInAllocaType(getArgNo());
224 }
225 
226 uint64_t Argument::getDereferenceableBytes() const {
227   assert(getType()->isPointerTy() &&
228          "Only pointers have dereferenceable bytes");
229   return getParent()->getParamDereferenceableBytes(getArgNo());
230 }
231 
232 uint64_t Argument::getDereferenceableOrNullBytes() const {
233   assert(getType()->isPointerTy() &&
234          "Only pointers have dereferenceable bytes");
235   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
236 }
237 
238 bool Argument::hasNestAttr() const {
239   if (!getType()->isPointerTy()) return false;
240   return hasAttribute(Attribute::Nest);
241 }
242 
243 bool Argument::hasNoAliasAttr() const {
244   if (!getType()->isPointerTy()) return false;
245   return hasAttribute(Attribute::NoAlias);
246 }
247 
248 bool Argument::hasNoCaptureAttr() const {
249   if (!getType()->isPointerTy()) return false;
250   return hasAttribute(Attribute::NoCapture);
251 }
252 
253 bool Argument::hasNoFreeAttr() const {
254   if (!getType()->isPointerTy()) return false;
255   return hasAttribute(Attribute::NoFree);
256 }
257 
258 bool Argument::hasStructRetAttr() const {
259   if (!getType()->isPointerTy()) return false;
260   return hasAttribute(Attribute::StructRet);
261 }
262 
263 bool Argument::hasInRegAttr() const {
264   return hasAttribute(Attribute::InReg);
265 }
266 
267 bool Argument::hasReturnedAttr() const {
268   return hasAttribute(Attribute::Returned);
269 }
270 
271 bool Argument::hasZExtAttr() const {
272   return hasAttribute(Attribute::ZExt);
273 }
274 
275 bool Argument::hasSExtAttr() const {
276   return hasAttribute(Attribute::SExt);
277 }
278 
279 bool Argument::onlyReadsMemory() const {
280   AttributeList Attrs = getParent()->getAttributes();
281   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
282          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
283 }
284 
285 void Argument::addAttrs(AttrBuilder &B) {
286   AttributeList AL = getParent()->getAttributes();
287   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
288   getParent()->setAttributes(AL);
289 }
290 
291 void Argument::addAttr(Attribute::AttrKind Kind) {
292   getParent()->addParamAttr(getArgNo(), Kind);
293 }
294 
295 void Argument::addAttr(Attribute Attr) {
296   getParent()->addParamAttr(getArgNo(), Attr);
297 }
298 
299 void Argument::removeAttr(Attribute::AttrKind Kind) {
300   getParent()->removeParamAttr(getArgNo(), Kind);
301 }
302 
303 void Argument::removeAttrs(const AttrBuilder &B) {
304   AttributeList AL = getParent()->getAttributes();
305   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), B);
306   getParent()->setAttributes(AL);
307 }
308 
309 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
310   return getParent()->hasParamAttribute(getArgNo(), Kind);
311 }
312 
313 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
314   return getParent()->getParamAttribute(getArgNo(), Kind);
315 }
316 
317 //===----------------------------------------------------------------------===//
318 // Helper Methods in Function
319 //===----------------------------------------------------------------------===//
320 
321 LLVMContext &Function::getContext() const {
322   return getType()->getContext();
323 }
324 
325 unsigned Function::getInstructionCount() const {
326   unsigned NumInstrs = 0;
327   for (const BasicBlock &BB : BasicBlocks)
328     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
329                                BB.instructionsWithoutDebug().end());
330   return NumInstrs;
331 }
332 
333 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
334                            const Twine &N, Module &M) {
335   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
336 }
337 
338 Function *Function::createWithDefaultAttr(FunctionType *Ty,
339                                           LinkageTypes Linkage,
340                                           unsigned AddrSpace, const Twine &N,
341                                           Module *M) {
342   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
343   AttrBuilder B;
344   if (M->getUwtable())
345     B.addAttribute(Attribute::UWTable);
346   switch (M->getFramePointer()) {
347   case FramePointerKind::None:
348     // 0 ("none") is the default.
349     break;
350   case FramePointerKind::NonLeaf:
351     B.addAttribute("frame-pointer", "non-leaf");
352     break;
353   case FramePointerKind::All:
354     B.addAttribute("frame-pointer", "all");
355     break;
356   }
357   F->addAttributes(AttributeList::FunctionIndex, B);
358   return F;
359 }
360 
361 void Function::removeFromParent() {
362   getParent()->getFunctionList().remove(getIterator());
363 }
364 
365 void Function::eraseFromParent() {
366   getParent()->getFunctionList().erase(getIterator());
367 }
368 
369 //===----------------------------------------------------------------------===//
370 // Function Implementation
371 //===----------------------------------------------------------------------===//
372 
373 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
374   // If AS == -1 and we are passed a valid module pointer we place the function
375   // in the program address space. Otherwise we default to AS0.
376   if (AddrSpace == static_cast<unsigned>(-1))
377     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
378   return AddrSpace;
379 }
380 
381 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
382                    const Twine &name, Module *ParentModule)
383     : GlobalObject(Ty, Value::FunctionVal,
384                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
385                    computeAddrSpace(AddrSpace, ParentModule)),
386       NumArgs(Ty->getNumParams()) {
387   assert(FunctionType::isValidReturnType(getReturnType()) &&
388          "invalid return type");
389   setGlobalObjectSubClassData(0);
390 
391   // We only need a symbol table for a function if the context keeps value names
392   if (!getContext().shouldDiscardValueNames())
393     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
394 
395   // If the function has arguments, mark them as lazily built.
396   if (Ty->getNumParams())
397     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
398 
399   if (ParentModule)
400     ParentModule->getFunctionList().push_back(this);
401 
402   HasLLVMReservedName = getName().startswith("llvm.");
403   // Ensure intrinsics have the right parameter attributes.
404   // Note, the IntID field will have been set in Value::setName if this function
405   // name is a valid intrinsic ID.
406   if (IntID)
407     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
408 }
409 
410 Function::~Function() {
411   dropAllReferences();    // After this it is safe to delete instructions.
412 
413   // Delete all of the method arguments and unlink from symbol table...
414   if (Arguments)
415     clearArguments();
416 
417   // Remove the function from the on-the-side GC table.
418   clearGC();
419 }
420 
421 void Function::BuildLazyArguments() const {
422   // Create the arguments vector, all arguments start out unnamed.
423   auto *FT = getFunctionType();
424   if (NumArgs > 0) {
425     Arguments = std::allocator<Argument>().allocate(NumArgs);
426     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
427       Type *ArgTy = FT->getParamType(i);
428       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
429       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
430     }
431   }
432 
433   // Clear the lazy arguments bit.
434   unsigned SDC = getSubclassDataFromValue();
435   SDC &= ~(1 << 0);
436   const_cast<Function*>(this)->setValueSubclassData(SDC);
437   assert(!hasLazyArguments());
438 }
439 
440 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
441   return MutableArrayRef<Argument>(Args, Count);
442 }
443 
444 bool Function::isConstrainedFPIntrinsic() const {
445   switch (getIntrinsicID()) {
446 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
447   case Intrinsic::INTRINSIC:
448 #include "llvm/IR/ConstrainedOps.def"
449     return true;
450 #undef INSTRUCTION
451   default:
452     return false;
453   }
454 }
455 
456 void Function::clearArguments() {
457   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
458     A.setName("");
459     A.~Argument();
460   }
461   std::allocator<Argument>().deallocate(Arguments, NumArgs);
462   Arguments = nullptr;
463 }
464 
465 void Function::stealArgumentListFrom(Function &Src) {
466   assert(isDeclaration() && "Expected no references to current arguments");
467 
468   // Drop the current arguments, if any, and set the lazy argument bit.
469   if (!hasLazyArguments()) {
470     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
471                         [](const Argument &A) { return A.use_empty(); }) &&
472            "Expected arguments to be unused in declaration");
473     clearArguments();
474     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
475   }
476 
477   // Nothing to steal if Src has lazy arguments.
478   if (Src.hasLazyArguments())
479     return;
480 
481   // Steal arguments from Src, and fix the lazy argument bits.
482   assert(arg_size() == Src.arg_size());
483   Arguments = Src.Arguments;
484   Src.Arguments = nullptr;
485   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
486     // FIXME: This does the work of transferNodesFromList inefficiently.
487     SmallString<128> Name;
488     if (A.hasName())
489       Name = A.getName();
490     if (!Name.empty())
491       A.setName("");
492     A.setParent(this);
493     if (!Name.empty())
494       A.setName(Name);
495   }
496 
497   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
498   assert(!hasLazyArguments());
499   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
500 }
501 
502 // dropAllReferences() - This function causes all the subinstructions to "let
503 // go" of all references that they are maintaining.  This allows one to
504 // 'delete' a whole class at a time, even though there may be circular
505 // references... first all references are dropped, and all use counts go to
506 // zero.  Then everything is deleted for real.  Note that no operations are
507 // valid on an object that has "dropped all references", except operator
508 // delete.
509 //
510 void Function::dropAllReferences() {
511   setIsMaterializable(false);
512 
513   for (BasicBlock &BB : *this)
514     BB.dropAllReferences();
515 
516   // Delete all basic blocks. They are now unused, except possibly by
517   // blockaddresses, but BasicBlock's destructor takes care of those.
518   while (!BasicBlocks.empty())
519     BasicBlocks.begin()->eraseFromParent();
520 
521   // Drop uses of any optional data (real or placeholder).
522   if (getNumOperands()) {
523     User::dropAllReferences();
524     setNumHungOffUseOperands(0);
525     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
526   }
527 
528   // Metadata is stored in a side-table.
529   clearMetadata();
530 }
531 
532 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
533   AttributeList PAL = getAttributes();
534   PAL = PAL.addAttribute(getContext(), i, Kind);
535   setAttributes(PAL);
536 }
537 
538 void Function::addAttribute(unsigned i, Attribute Attr) {
539   AttributeList PAL = getAttributes();
540   PAL = PAL.addAttribute(getContext(), i, Attr);
541   setAttributes(PAL);
542 }
543 
544 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
545   AttributeList PAL = getAttributes();
546   PAL = PAL.addAttributes(getContext(), i, Attrs);
547   setAttributes(PAL);
548 }
549 
550 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
551   AttributeList PAL = getAttributes();
552   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
553   setAttributes(PAL);
554 }
555 
556 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
557   AttributeList PAL = getAttributes();
558   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
559   setAttributes(PAL);
560 }
561 
562 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
563   AttributeList PAL = getAttributes();
564   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
565   setAttributes(PAL);
566 }
567 
568 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
569   AttributeList PAL = getAttributes();
570   PAL = PAL.removeAttribute(getContext(), i, Kind);
571   setAttributes(PAL);
572 }
573 
574 void Function::removeAttribute(unsigned i, StringRef Kind) {
575   AttributeList PAL = getAttributes();
576   PAL = PAL.removeAttribute(getContext(), i, Kind);
577   setAttributes(PAL);
578 }
579 
580 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
581   AttributeList PAL = getAttributes();
582   PAL = PAL.removeAttributes(getContext(), i, Attrs);
583   setAttributes(PAL);
584 }
585 
586 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
587   AttributeList PAL = getAttributes();
588   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
589   setAttributes(PAL);
590 }
591 
592 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
593   AttributeList PAL = getAttributes();
594   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
595   setAttributes(PAL);
596 }
597 
598 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
599   AttributeList PAL = getAttributes();
600   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
601   setAttributes(PAL);
602 }
603 
604 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
605   AttributeList PAL = getAttributes();
606   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
607   setAttributes(PAL);
608 }
609 
610 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
611   AttributeList PAL = getAttributes();
612   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
613   setAttributes(PAL);
614 }
615 
616 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
617   AttributeList PAL = getAttributes();
618   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
619   setAttributes(PAL);
620 }
621 
622 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
623                                                  uint64_t Bytes) {
624   AttributeList PAL = getAttributes();
625   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
626   setAttributes(PAL);
627 }
628 
629 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
630   if (&FPType == &APFloat::IEEEsingle()) {
631     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
632     StringRef Val = Attr.getValueAsString();
633     if (!Val.empty())
634       return parseDenormalFPAttribute(Val);
635 
636     // If the f32 variant of the attribute isn't specified, try to use the
637     // generic one.
638   }
639 
640   Attribute Attr = getFnAttribute("denormal-fp-math");
641   return parseDenormalFPAttribute(Attr.getValueAsString());
642 }
643 
644 const std::string &Function::getGC() const {
645   assert(hasGC() && "Function has no collector");
646   return getContext().getGC(*this);
647 }
648 
649 void Function::setGC(std::string Str) {
650   setValueSubclassDataBit(14, !Str.empty());
651   getContext().setGC(*this, std::move(Str));
652 }
653 
654 void Function::clearGC() {
655   if (!hasGC())
656     return;
657   getContext().deleteGC(*this);
658   setValueSubclassDataBit(14, false);
659 }
660 
661 bool Function::hasStackProtectorFnAttr() const {
662   return hasFnAttribute(Attribute::StackProtect) ||
663          hasFnAttribute(Attribute::StackProtectStrong) ||
664          hasFnAttribute(Attribute::StackProtectReq);
665 }
666 
667 /// Copy all additional attributes (those not needed to create a Function) from
668 /// the Function Src to this one.
669 void Function::copyAttributesFrom(const Function *Src) {
670   GlobalObject::copyAttributesFrom(Src);
671   setCallingConv(Src->getCallingConv());
672   setAttributes(Src->getAttributes());
673   if (Src->hasGC())
674     setGC(Src->getGC());
675   else
676     clearGC();
677   if (Src->hasPersonalityFn())
678     setPersonalityFn(Src->getPersonalityFn());
679   if (Src->hasPrefixData())
680     setPrefixData(Src->getPrefixData());
681   if (Src->hasPrologueData())
682     setPrologueData(Src->getPrologueData());
683 }
684 
685 /// Table of string intrinsic names indexed by enum value.
686 static const char * const IntrinsicNameTable[] = {
687   "not_intrinsic",
688 #define GET_INTRINSIC_NAME_TABLE
689 #include "llvm/IR/IntrinsicImpl.inc"
690 #undef GET_INTRINSIC_NAME_TABLE
691 };
692 
693 /// Table of per-target intrinsic name tables.
694 #define GET_INTRINSIC_TARGET_DATA
695 #include "llvm/IR/IntrinsicImpl.inc"
696 #undef GET_INTRINSIC_TARGET_DATA
697 
698 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
699   return IID > TargetInfos[0].Count;
700 }
701 
702 bool Function::isTargetIntrinsic() const {
703   return isTargetIntrinsic(IntID);
704 }
705 
706 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
707 /// target as \c Name, or the generic table if \c Name is not target specific.
708 ///
709 /// Returns the relevant slice of \c IntrinsicNameTable
710 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
711   assert(Name.startswith("llvm."));
712 
713   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
714   // Drop "llvm." and take the first dotted component. That will be the target
715   // if this is target specific.
716   StringRef Target = Name.drop_front(5).split('.').first;
717   auto It = partition_point(
718       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
719   // We've either found the target or just fall back to the generic set, which
720   // is always first.
721   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
722   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
723 }
724 
725 /// This does the actual lookup of an intrinsic ID which
726 /// matches the given function name.
727 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
728   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
729   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
730   if (Idx == -1)
731     return Intrinsic::not_intrinsic;
732 
733   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
734   // an index into a sub-table.
735   int Adjust = NameTable.data() - IntrinsicNameTable;
736   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
737 
738   // If the intrinsic is not overloaded, require an exact match. If it is
739   // overloaded, require either exact or prefix match.
740   const auto MatchSize = strlen(NameTable[Idx]);
741   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
742   bool IsExactMatch = Name.size() == MatchSize;
743   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
744                                                      : Intrinsic::not_intrinsic;
745 }
746 
747 void Function::recalculateIntrinsicID() {
748   StringRef Name = getName();
749   if (!Name.startswith("llvm.")) {
750     HasLLVMReservedName = false;
751     IntID = Intrinsic::not_intrinsic;
752     return;
753   }
754   HasLLVMReservedName = true;
755   IntID = lookupIntrinsicID(Name);
756 }
757 
758 /// Returns a stable mangling for the type specified for use in the name
759 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
760 /// of named types is simply their name.  Manglings for unnamed types consist
761 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
762 /// combined with the mangling of their component types.  A vararg function
763 /// type will have a suffix of 'vararg'.  Since function types can contain
764 /// other function types, we close a function type mangling with suffix 'f'
765 /// which can't be confused with it's prefix.  This ensures we don't have
766 /// collisions between two unrelated function types. Otherwise, you might
767 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
768 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
769 /// indicating that extra care must be taken to ensure a unique name.
770 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
771   std::string Result;
772   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
773     Result += "p" + utostr(PTyp->getAddressSpace());
774     // Opaque pointer doesn't have pointee type information, so we just mangle
775     // address space for opaque pointer.
776     if (!PTyp->isOpaque())
777       Result += getMangledTypeStr(PTyp->getElementType(), HasUnnamedType);
778   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
779     Result += "a" + utostr(ATyp->getNumElements()) +
780               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
781   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
782     if (!STyp->isLiteral()) {
783       Result += "s_";
784       if (STyp->hasName())
785         Result += STyp->getName();
786       else
787         HasUnnamedType = true;
788     } else {
789       Result += "sl_";
790       for (auto Elem : STyp->elements())
791         Result += getMangledTypeStr(Elem, HasUnnamedType);
792     }
793     // Ensure nested structs are distinguishable.
794     Result += "s";
795   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
796     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
797     for (size_t i = 0; i < FT->getNumParams(); i++)
798       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
799     if (FT->isVarArg())
800       Result += "vararg";
801     // Ensure nested function types are distinguishable.
802     Result += "f";
803   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
804     ElementCount EC = VTy->getElementCount();
805     if (EC.isScalable())
806       Result += "nx";
807     Result += "v" + utostr(EC.getKnownMinValue()) +
808               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
809   } else if (Ty) {
810     switch (Ty->getTypeID()) {
811     default: llvm_unreachable("Unhandled type");
812     case Type::VoidTyID:      Result += "isVoid";   break;
813     case Type::MetadataTyID:  Result += "Metadata"; break;
814     case Type::HalfTyID:      Result += "f16";      break;
815     case Type::BFloatTyID:    Result += "bf16";     break;
816     case Type::FloatTyID:     Result += "f32";      break;
817     case Type::DoubleTyID:    Result += "f64";      break;
818     case Type::X86_FP80TyID:  Result += "f80";      break;
819     case Type::FP128TyID:     Result += "f128";     break;
820     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
821     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
822     case Type::X86_AMXTyID:   Result += "x86amx";   break;
823     case Type::IntegerTyID:
824       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
825       break;
826     }
827   }
828   return Result;
829 }
830 
831 StringRef Intrinsic::getBaseName(ID id) {
832   assert(id < num_intrinsics && "Invalid intrinsic ID!");
833   return IntrinsicNameTable[id];
834 }
835 
836 StringRef Intrinsic::getName(ID id) {
837   assert(id < num_intrinsics && "Invalid intrinsic ID!");
838   assert(!Intrinsic::isOverloaded(id) &&
839          "This version of getName does not support overloading");
840   return getBaseName(id);
841 }
842 
843 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
844                                         Module *M, FunctionType *FT,
845                                         bool EarlyModuleCheck) {
846 
847   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
848   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
849          "This version of getName is for overloaded intrinsics only");
850   (void)EarlyModuleCheck;
851   assert((!EarlyModuleCheck || M ||
852           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
853          "Intrinsic overloading on pointer types need to provide a Module");
854   bool HasUnnamedType = false;
855   std::string Result(Intrinsic::getBaseName(Id));
856   for (Type *Ty : Tys)
857     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
858   if (HasUnnamedType) {
859     assert(M && "unnamed types need a module");
860     if (!FT)
861       FT = Intrinsic::getType(M->getContext(), Id, Tys);
862     else
863       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
864              "Provided FunctionType must match arguments");
865     return M->getUniqueIntrinsicName(Result, Id, FT);
866   }
867   return Result;
868 }
869 
870 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
871                                FunctionType *FT) {
872   assert(M && "We need to have a Module");
873   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
874 }
875 
876 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
877   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
878 }
879 
880 /// IIT_Info - These are enumerators that describe the entries returned by the
881 /// getIntrinsicInfoTableEntries function.
882 ///
883 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
884 enum IIT_Info {
885   // Common values should be encoded with 0-15.
886   IIT_Done = 0,
887   IIT_I1   = 1,
888   IIT_I8   = 2,
889   IIT_I16  = 3,
890   IIT_I32  = 4,
891   IIT_I64  = 5,
892   IIT_F16  = 6,
893   IIT_F32  = 7,
894   IIT_F64  = 8,
895   IIT_V2   = 9,
896   IIT_V4   = 10,
897   IIT_V8   = 11,
898   IIT_V16  = 12,
899   IIT_V32  = 13,
900   IIT_PTR  = 14,
901   IIT_ARG  = 15,
902 
903   // Values from 16+ are only encodable with the inefficient encoding.
904   IIT_V64  = 16,
905   IIT_MMX  = 17,
906   IIT_TOKEN = 18,
907   IIT_METADATA = 19,
908   IIT_EMPTYSTRUCT = 20,
909   IIT_STRUCT2 = 21,
910   IIT_STRUCT3 = 22,
911   IIT_STRUCT4 = 23,
912   IIT_STRUCT5 = 24,
913   IIT_EXTEND_ARG = 25,
914   IIT_TRUNC_ARG = 26,
915   IIT_ANYPTR = 27,
916   IIT_V1   = 28,
917   IIT_VARARG = 29,
918   IIT_HALF_VEC_ARG = 30,
919   IIT_SAME_VEC_WIDTH_ARG = 31,
920   IIT_PTR_TO_ARG = 32,
921   IIT_PTR_TO_ELT = 33,
922   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
923   IIT_I128 = 35,
924   IIT_V512 = 36,
925   IIT_V1024 = 37,
926   IIT_STRUCT6 = 38,
927   IIT_STRUCT7 = 39,
928   IIT_STRUCT8 = 40,
929   IIT_F128 = 41,
930   IIT_VEC_ELEMENT = 42,
931   IIT_SCALABLE_VEC = 43,
932   IIT_SUBDIVIDE2_ARG = 44,
933   IIT_SUBDIVIDE4_ARG = 45,
934   IIT_VEC_OF_BITCASTS_TO_INT = 46,
935   IIT_V128 = 47,
936   IIT_BF16 = 48,
937   IIT_STRUCT9 = 49,
938   IIT_V256 = 50,
939   IIT_AMX  = 51
940 };
941 
942 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
943                       IIT_Info LastInfo,
944                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
945   using namespace Intrinsic;
946 
947   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
948 
949   IIT_Info Info = IIT_Info(Infos[NextElt++]);
950   unsigned StructElts = 2;
951 
952   switch (Info) {
953   case IIT_Done:
954     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
955     return;
956   case IIT_VARARG:
957     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
958     return;
959   case IIT_MMX:
960     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
961     return;
962   case IIT_AMX:
963     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
964     return;
965   case IIT_TOKEN:
966     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
967     return;
968   case IIT_METADATA:
969     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
970     return;
971   case IIT_F16:
972     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
973     return;
974   case IIT_BF16:
975     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
976     return;
977   case IIT_F32:
978     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
979     return;
980   case IIT_F64:
981     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
982     return;
983   case IIT_F128:
984     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
985     return;
986   case IIT_I1:
987     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
988     return;
989   case IIT_I8:
990     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
991     return;
992   case IIT_I16:
993     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
994     return;
995   case IIT_I32:
996     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
997     return;
998   case IIT_I64:
999     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1000     return;
1001   case IIT_I128:
1002     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1003     return;
1004   case IIT_V1:
1005     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1006     DecodeIITType(NextElt, Infos, Info, OutputTable);
1007     return;
1008   case IIT_V2:
1009     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1010     DecodeIITType(NextElt, Infos, Info, OutputTable);
1011     return;
1012   case IIT_V4:
1013     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1014     DecodeIITType(NextElt, Infos, Info, OutputTable);
1015     return;
1016   case IIT_V8:
1017     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1018     DecodeIITType(NextElt, Infos, Info, OutputTable);
1019     return;
1020   case IIT_V16:
1021     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1022     DecodeIITType(NextElt, Infos, Info, OutputTable);
1023     return;
1024   case IIT_V32:
1025     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1026     DecodeIITType(NextElt, Infos, Info, OutputTable);
1027     return;
1028   case IIT_V64:
1029     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1030     DecodeIITType(NextElt, Infos, Info, OutputTable);
1031     return;
1032   case IIT_V128:
1033     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1034     DecodeIITType(NextElt, Infos, Info, OutputTable);
1035     return;
1036   case IIT_V256:
1037     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1038     DecodeIITType(NextElt, Infos, Info, OutputTable);
1039     return;
1040   case IIT_V512:
1041     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1042     DecodeIITType(NextElt, Infos, Info, OutputTable);
1043     return;
1044   case IIT_V1024:
1045     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1046     DecodeIITType(NextElt, Infos, Info, OutputTable);
1047     return;
1048   case IIT_PTR:
1049     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1050     DecodeIITType(NextElt, Infos, Info, OutputTable);
1051     return;
1052   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
1053     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1054                                              Infos[NextElt++]));
1055     DecodeIITType(NextElt, Infos, Info, OutputTable);
1056     return;
1057   }
1058   case IIT_ARG: {
1059     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1060     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1061     return;
1062   }
1063   case IIT_EXTEND_ARG: {
1064     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1065     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1066                                              ArgInfo));
1067     return;
1068   }
1069   case IIT_TRUNC_ARG: {
1070     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1071     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1072                                              ArgInfo));
1073     return;
1074   }
1075   case IIT_HALF_VEC_ARG: {
1076     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1077     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1078                                              ArgInfo));
1079     return;
1080   }
1081   case IIT_SAME_VEC_WIDTH_ARG: {
1082     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1083     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1084                                              ArgInfo));
1085     return;
1086   }
1087   case IIT_PTR_TO_ARG: {
1088     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1089     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1090                                              ArgInfo));
1091     return;
1092   }
1093   case IIT_PTR_TO_ELT: {
1094     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1095     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1096     return;
1097   }
1098   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1099     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1100     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1101     OutputTable.push_back(
1102         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1103     return;
1104   }
1105   case IIT_EMPTYSTRUCT:
1106     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1107     return;
1108   case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1109   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1110   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1111   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1112   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1113   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1114   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1115   case IIT_STRUCT2: {
1116     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1117 
1118     for (unsigned i = 0; i != StructElts; ++i)
1119       DecodeIITType(NextElt, Infos, Info, OutputTable);
1120     return;
1121   }
1122   case IIT_SUBDIVIDE2_ARG: {
1123     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1124     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1125                                              ArgInfo));
1126     return;
1127   }
1128   case IIT_SUBDIVIDE4_ARG: {
1129     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1130     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1131                                              ArgInfo));
1132     return;
1133   }
1134   case IIT_VEC_ELEMENT: {
1135     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1136     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1137                                              ArgInfo));
1138     return;
1139   }
1140   case IIT_SCALABLE_VEC: {
1141     DecodeIITType(NextElt, Infos, Info, OutputTable);
1142     return;
1143   }
1144   case IIT_VEC_OF_BITCASTS_TO_INT: {
1145     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1146     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1147                                              ArgInfo));
1148     return;
1149   }
1150   }
1151   llvm_unreachable("unhandled");
1152 }
1153 
1154 #define GET_INTRINSIC_GENERATOR_GLOBAL
1155 #include "llvm/IR/IntrinsicImpl.inc"
1156 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1157 
1158 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1159                                              SmallVectorImpl<IITDescriptor> &T){
1160   // Check to see if the intrinsic's type was expressible by the table.
1161   unsigned TableVal = IIT_Table[id-1];
1162 
1163   // Decode the TableVal into an array of IITValues.
1164   SmallVector<unsigned char, 8> IITValues;
1165   ArrayRef<unsigned char> IITEntries;
1166   unsigned NextElt = 0;
1167   if ((TableVal >> 31) != 0) {
1168     // This is an offset into the IIT_LongEncodingTable.
1169     IITEntries = IIT_LongEncodingTable;
1170 
1171     // Strip sentinel bit.
1172     NextElt = (TableVal << 1) >> 1;
1173   } else {
1174     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1175     // into a single word in the table itself, decode it now.
1176     do {
1177       IITValues.push_back(TableVal & 0xF);
1178       TableVal >>= 4;
1179     } while (TableVal);
1180 
1181     IITEntries = IITValues;
1182     NextElt = 0;
1183   }
1184 
1185   // Okay, decode the table into the output vector of IITDescriptors.
1186   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1187   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1188     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1189 }
1190 
1191 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1192                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1193   using namespace Intrinsic;
1194 
1195   IITDescriptor D = Infos.front();
1196   Infos = Infos.slice(1);
1197 
1198   switch (D.Kind) {
1199   case IITDescriptor::Void: return Type::getVoidTy(Context);
1200   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1201   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1202   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1203   case IITDescriptor::Token: return Type::getTokenTy(Context);
1204   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1205   case IITDescriptor::Half: return Type::getHalfTy(Context);
1206   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1207   case IITDescriptor::Float: return Type::getFloatTy(Context);
1208   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1209   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1210 
1211   case IITDescriptor::Integer:
1212     return IntegerType::get(Context, D.Integer_Width);
1213   case IITDescriptor::Vector:
1214     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1215                            D.Vector_Width);
1216   case IITDescriptor::Pointer:
1217     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1218                             D.Pointer_AddressSpace);
1219   case IITDescriptor::Struct: {
1220     SmallVector<Type *, 8> Elts;
1221     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1222       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1223     return StructType::get(Context, Elts);
1224   }
1225   case IITDescriptor::Argument:
1226     return Tys[D.getArgumentNumber()];
1227   case IITDescriptor::ExtendArgument: {
1228     Type *Ty = Tys[D.getArgumentNumber()];
1229     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1230       return VectorType::getExtendedElementVectorType(VTy);
1231 
1232     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1233   }
1234   case IITDescriptor::TruncArgument: {
1235     Type *Ty = Tys[D.getArgumentNumber()];
1236     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1237       return VectorType::getTruncatedElementVectorType(VTy);
1238 
1239     IntegerType *ITy = cast<IntegerType>(Ty);
1240     assert(ITy->getBitWidth() % 2 == 0);
1241     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1242   }
1243   case IITDescriptor::Subdivide2Argument:
1244   case IITDescriptor::Subdivide4Argument: {
1245     Type *Ty = Tys[D.getArgumentNumber()];
1246     VectorType *VTy = dyn_cast<VectorType>(Ty);
1247     assert(VTy && "Expected an argument of Vector Type");
1248     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1249     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1250   }
1251   case IITDescriptor::HalfVecArgument:
1252     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1253                                                   Tys[D.getArgumentNumber()]));
1254   case IITDescriptor::SameVecWidthArgument: {
1255     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1256     Type *Ty = Tys[D.getArgumentNumber()];
1257     if (auto *VTy = dyn_cast<VectorType>(Ty))
1258       return VectorType::get(EltTy, VTy->getElementCount());
1259     return EltTy;
1260   }
1261   case IITDescriptor::PtrToArgument: {
1262     Type *Ty = Tys[D.getArgumentNumber()];
1263     return PointerType::getUnqual(Ty);
1264   }
1265   case IITDescriptor::PtrToElt: {
1266     Type *Ty = Tys[D.getArgumentNumber()];
1267     VectorType *VTy = dyn_cast<VectorType>(Ty);
1268     if (!VTy)
1269       llvm_unreachable("Expected an argument of Vector Type");
1270     Type *EltTy = VTy->getElementType();
1271     return PointerType::getUnqual(EltTy);
1272   }
1273   case IITDescriptor::VecElementArgument: {
1274     Type *Ty = Tys[D.getArgumentNumber()];
1275     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1276       return VTy->getElementType();
1277     llvm_unreachable("Expected an argument of Vector Type");
1278   }
1279   case IITDescriptor::VecOfBitcastsToInt: {
1280     Type *Ty = Tys[D.getArgumentNumber()];
1281     VectorType *VTy = dyn_cast<VectorType>(Ty);
1282     assert(VTy && "Expected an argument of Vector Type");
1283     return VectorType::getInteger(VTy);
1284   }
1285   case IITDescriptor::VecOfAnyPtrsToElt:
1286     // Return the overloaded type (which determines the pointers address space)
1287     return Tys[D.getOverloadArgNumber()];
1288   }
1289   llvm_unreachable("unhandled");
1290 }
1291 
1292 FunctionType *Intrinsic::getType(LLVMContext &Context,
1293                                  ID id, ArrayRef<Type*> Tys) {
1294   SmallVector<IITDescriptor, 8> Table;
1295   getIntrinsicInfoTableEntries(id, Table);
1296 
1297   ArrayRef<IITDescriptor> TableRef = Table;
1298   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1299 
1300   SmallVector<Type*, 8> ArgTys;
1301   while (!TableRef.empty())
1302     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1303 
1304   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1305   // If we see void type as the type of the last argument, it is vararg intrinsic
1306   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1307     ArgTys.pop_back();
1308     return FunctionType::get(ResultTy, ArgTys, true);
1309   }
1310   return FunctionType::get(ResultTy, ArgTys, false);
1311 }
1312 
1313 bool Intrinsic::isOverloaded(ID id) {
1314 #define GET_INTRINSIC_OVERLOAD_TABLE
1315 #include "llvm/IR/IntrinsicImpl.inc"
1316 #undef GET_INTRINSIC_OVERLOAD_TABLE
1317 }
1318 
1319 bool Intrinsic::isLeaf(ID id) {
1320   switch (id) {
1321   default:
1322     return true;
1323 
1324   case Intrinsic::experimental_gc_statepoint:
1325   case Intrinsic::experimental_patchpoint_void:
1326   case Intrinsic::experimental_patchpoint_i64:
1327     return false;
1328   }
1329 }
1330 
1331 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1332 #define GET_INTRINSIC_ATTRIBUTES
1333 #include "llvm/IR/IntrinsicImpl.inc"
1334 #undef GET_INTRINSIC_ATTRIBUTES
1335 
1336 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1337   // There can never be multiple globals with the same name of different types,
1338   // because intrinsics must be a specific type.
1339   auto *FT = getType(M->getContext(), id, Tys);
1340   return cast<Function>(
1341       M->getOrInsertFunction(Tys.empty() ? getName(id)
1342                                          : getName(id, Tys, M, FT),
1343                              getType(M->getContext(), id, Tys))
1344           .getCallee());
1345 }
1346 
1347 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1348 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1349 #include "llvm/IR/IntrinsicImpl.inc"
1350 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1351 
1352 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1353 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1354 #include "llvm/IR/IntrinsicImpl.inc"
1355 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1356 
1357 using DeferredIntrinsicMatchPair =
1358     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1359 
1360 static bool matchIntrinsicType(
1361     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1362     SmallVectorImpl<Type *> &ArgTys,
1363     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1364     bool IsDeferredCheck) {
1365   using namespace Intrinsic;
1366 
1367   // If we ran out of descriptors, there are too many arguments.
1368   if (Infos.empty()) return true;
1369 
1370   // Do this before slicing off the 'front' part
1371   auto InfosRef = Infos;
1372   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1373     DeferredChecks.emplace_back(T, InfosRef);
1374     return false;
1375   };
1376 
1377   IITDescriptor D = Infos.front();
1378   Infos = Infos.slice(1);
1379 
1380   switch (D.Kind) {
1381     case IITDescriptor::Void: return !Ty->isVoidTy();
1382     case IITDescriptor::VarArg: return true;
1383     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1384     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1385     case IITDescriptor::Token: return !Ty->isTokenTy();
1386     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1387     case IITDescriptor::Half: return !Ty->isHalfTy();
1388     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1389     case IITDescriptor::Float: return !Ty->isFloatTy();
1390     case IITDescriptor::Double: return !Ty->isDoubleTy();
1391     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1392     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1393     case IITDescriptor::Vector: {
1394       VectorType *VT = dyn_cast<VectorType>(Ty);
1395       return !VT || VT->getElementCount() != D.Vector_Width ||
1396              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1397                                 DeferredChecks, IsDeferredCheck);
1398     }
1399     case IITDescriptor::Pointer: {
1400       PointerType *PT = dyn_cast<PointerType>(Ty);
1401       if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace)
1402         return true;
1403       if (!PT->isOpaque())
1404         return matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1405                                   DeferredChecks, IsDeferredCheck);
1406       // If typed pointers are supported, do not allow using opaque pointer in
1407       // place of fixed pointer type. This would make the intrinsic signature
1408       // non-unique.
1409       if (Ty->getContext().supportsTypedPointers())
1410         return true;
1411       // Consume IIT descriptors relating to the pointer element type.
1412       while (Infos.front().Kind == IITDescriptor::Pointer)
1413         Infos = Infos.slice(1);
1414       Infos = Infos.slice(1);
1415       return false;
1416     }
1417 
1418     case IITDescriptor::Struct: {
1419       StructType *ST = dyn_cast<StructType>(Ty);
1420       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1421         return true;
1422 
1423       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1424         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1425                                DeferredChecks, IsDeferredCheck))
1426           return true;
1427       return false;
1428     }
1429 
1430     case IITDescriptor::Argument:
1431       // If this is the second occurrence of an argument,
1432       // verify that the later instance matches the previous instance.
1433       if (D.getArgumentNumber() < ArgTys.size())
1434         return Ty != ArgTys[D.getArgumentNumber()];
1435 
1436       if (D.getArgumentNumber() > ArgTys.size() ||
1437           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1438         return IsDeferredCheck || DeferCheck(Ty);
1439 
1440       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1441              "Table consistency error");
1442       ArgTys.push_back(Ty);
1443 
1444       switch (D.getArgumentKind()) {
1445         case IITDescriptor::AK_Any:        return false; // Success
1446         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1447         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1448         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1449         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1450         default:                           break;
1451       }
1452       llvm_unreachable("all argument kinds not covered");
1453 
1454     case IITDescriptor::ExtendArgument: {
1455       // If this is a forward reference, defer the check for later.
1456       if (D.getArgumentNumber() >= ArgTys.size())
1457         return IsDeferredCheck || DeferCheck(Ty);
1458 
1459       Type *NewTy = ArgTys[D.getArgumentNumber()];
1460       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1461         NewTy = VectorType::getExtendedElementVectorType(VTy);
1462       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1463         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1464       else
1465         return true;
1466 
1467       return Ty != NewTy;
1468     }
1469     case IITDescriptor::TruncArgument: {
1470       // If this is a forward reference, defer the check for later.
1471       if (D.getArgumentNumber() >= ArgTys.size())
1472         return IsDeferredCheck || DeferCheck(Ty);
1473 
1474       Type *NewTy = ArgTys[D.getArgumentNumber()];
1475       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1476         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1477       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1478         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1479       else
1480         return true;
1481 
1482       return Ty != NewTy;
1483     }
1484     case IITDescriptor::HalfVecArgument:
1485       // If this is a forward reference, defer the check for later.
1486       if (D.getArgumentNumber() >= ArgTys.size())
1487         return IsDeferredCheck || DeferCheck(Ty);
1488       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1489              VectorType::getHalfElementsVectorType(
1490                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1491     case IITDescriptor::SameVecWidthArgument: {
1492       if (D.getArgumentNumber() >= ArgTys.size()) {
1493         // Defer check and subsequent check for the vector element type.
1494         Infos = Infos.slice(1);
1495         return IsDeferredCheck || DeferCheck(Ty);
1496       }
1497       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1498       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1499       // Both must be vectors of the same number of elements or neither.
1500       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1501         return true;
1502       Type *EltTy = Ty;
1503       if (ThisArgType) {
1504         if (ReferenceType->getElementCount() !=
1505             ThisArgType->getElementCount())
1506           return true;
1507         EltTy = ThisArgType->getElementType();
1508       }
1509       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1510                                 IsDeferredCheck);
1511     }
1512     case IITDescriptor::PtrToArgument: {
1513       if (D.getArgumentNumber() >= ArgTys.size())
1514         return IsDeferredCheck || DeferCheck(Ty);
1515       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1516       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1517       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1518     }
1519     case IITDescriptor::PtrToElt: {
1520       if (D.getArgumentNumber() >= ArgTys.size())
1521         return IsDeferredCheck || DeferCheck(Ty);
1522       VectorType * ReferenceType =
1523         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1524       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1525 
1526       if (!ThisArgType || !ReferenceType)
1527         return true;
1528       if (!ThisArgType->isOpaque())
1529         return ThisArgType->getElementType() != ReferenceType->getElementType();
1530       // If typed pointers are supported, do not allow opaque pointer to ensure
1531       // uniqueness.
1532       return Ty->getContext().supportsTypedPointers();
1533     }
1534     case IITDescriptor::VecOfAnyPtrsToElt: {
1535       unsigned RefArgNumber = D.getRefArgNumber();
1536       if (RefArgNumber >= ArgTys.size()) {
1537         if (IsDeferredCheck)
1538           return true;
1539         // If forward referencing, already add the pointer-vector type and
1540         // defer the checks for later.
1541         ArgTys.push_back(Ty);
1542         return DeferCheck(Ty);
1543       }
1544 
1545       if (!IsDeferredCheck){
1546         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1547                "Table consistency error");
1548         ArgTys.push_back(Ty);
1549       }
1550 
1551       // Verify the overloaded type "matches" the Ref type.
1552       // i.e. Ty is a vector with the same width as Ref.
1553       // Composed of pointers to the same element type as Ref.
1554       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1555       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1556       if (!ThisArgVecTy || !ReferenceType ||
1557           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1558         return true;
1559       PointerType *ThisArgEltTy =
1560           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1561       if (!ThisArgEltTy)
1562         return true;
1563       return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches(
1564           ReferenceType->getElementType());
1565     }
1566     case IITDescriptor::VecElementArgument: {
1567       if (D.getArgumentNumber() >= ArgTys.size())
1568         return IsDeferredCheck ? true : DeferCheck(Ty);
1569       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1570       return !ReferenceType || Ty != ReferenceType->getElementType();
1571     }
1572     case IITDescriptor::Subdivide2Argument:
1573     case IITDescriptor::Subdivide4Argument: {
1574       // If this is a forward reference, defer the check for later.
1575       if (D.getArgumentNumber() >= ArgTys.size())
1576         return IsDeferredCheck || DeferCheck(Ty);
1577 
1578       Type *NewTy = ArgTys[D.getArgumentNumber()];
1579       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1580         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1581         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1582         return Ty != NewTy;
1583       }
1584       return true;
1585     }
1586     case IITDescriptor::VecOfBitcastsToInt: {
1587       if (D.getArgumentNumber() >= ArgTys.size())
1588         return IsDeferredCheck || DeferCheck(Ty);
1589       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1590       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1591       if (!ThisArgVecTy || !ReferenceType)
1592         return true;
1593       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1594     }
1595   }
1596   llvm_unreachable("unhandled");
1597 }
1598 
1599 Intrinsic::MatchIntrinsicTypesResult
1600 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1601                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1602                                    SmallVectorImpl<Type *> &ArgTys) {
1603   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1604   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1605                          false))
1606     return MatchIntrinsicTypes_NoMatchRet;
1607 
1608   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1609 
1610   for (auto Ty : FTy->params())
1611     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1612       return MatchIntrinsicTypes_NoMatchArg;
1613 
1614   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1615     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1616     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1617                            true))
1618       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1619                                          : MatchIntrinsicTypes_NoMatchArg;
1620   }
1621 
1622   return MatchIntrinsicTypes_Match;
1623 }
1624 
1625 bool
1626 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1627                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1628   // If there are no descriptors left, then it can't be a vararg.
1629   if (Infos.empty())
1630     return isVarArg;
1631 
1632   // There should be only one descriptor remaining at this point.
1633   if (Infos.size() != 1)
1634     return true;
1635 
1636   // Check and verify the descriptor.
1637   IITDescriptor D = Infos.front();
1638   Infos = Infos.slice(1);
1639   if (D.Kind == IITDescriptor::VarArg)
1640     return !isVarArg;
1641 
1642   return true;
1643 }
1644 
1645 bool Intrinsic::getIntrinsicSignature(Function *F,
1646                                       SmallVectorImpl<Type *> &ArgTys) {
1647   Intrinsic::ID ID = F->getIntrinsicID();
1648   if (!ID)
1649     return false;
1650 
1651   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1652   getIntrinsicInfoTableEntries(ID, Table);
1653   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1654 
1655   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1656                                          ArgTys) !=
1657       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1658     return false;
1659   }
1660   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1661                                       TableRef))
1662     return false;
1663   return true;
1664 }
1665 
1666 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1667   SmallVector<Type *, 4> ArgTys;
1668   if (!getIntrinsicSignature(F, ArgTys))
1669     return None;
1670 
1671   Intrinsic::ID ID = F->getIntrinsicID();
1672   StringRef Name = F->getName();
1673   std::string WantedName =
1674       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1675   if (Name == WantedName)
1676     return None;
1677 
1678   Function *NewDecl = [&] {
1679     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1680       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1681         if (ExistingF->getFunctionType() == F->getFunctionType())
1682           return ExistingF;
1683 
1684       // The name already exists, but is not a function or has the wrong
1685       // prototype. Make place for the new one by renaming the old version.
1686       // Either this old version will be removed later on or the module is
1687       // invalid and we'll get an error.
1688       ExistingGV->setName(WantedName + ".renamed");
1689     }
1690     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1691   }();
1692 
1693   NewDecl->setCallingConv(F->getCallingConv());
1694   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1695          "Shouldn't change the signature");
1696   return NewDecl;
1697 }
1698 
1699 /// hasAddressTaken - returns true if there are any uses of this function
1700 /// other than direct calls or invokes to it. Optionally ignores callback
1701 /// uses, assume like pointer annotation calls, and references in llvm.used
1702 /// and llvm.compiler.used variables.
1703 bool Function::hasAddressTaken(const User **PutOffender,
1704                                bool IgnoreCallbackUses,
1705                                bool IgnoreAssumeLikeCalls,
1706                                bool IgnoreLLVMUsed) const {
1707   for (const Use &U : uses()) {
1708     const User *FU = U.getUser();
1709     if (isa<BlockAddress>(FU))
1710       continue;
1711 
1712     if (IgnoreCallbackUses) {
1713       AbstractCallSite ACS(&U);
1714       if (ACS && ACS.isCallbackCall())
1715         continue;
1716     }
1717 
1718     const auto *Call = dyn_cast<CallBase>(FU);
1719     if (!Call) {
1720       if (IgnoreAssumeLikeCalls) {
1721         if (const auto *FI = dyn_cast<Instruction>(FU)) {
1722           if (FI->isCast() && !FI->user_empty() &&
1723               llvm::all_of(FU->users(), [](const User *U) {
1724                 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1725                   return I->isAssumeLikeIntrinsic();
1726                 return false;
1727               }))
1728             continue;
1729         }
1730       }
1731       if (IgnoreLLVMUsed && !FU->user_empty()) {
1732         const User *FUU = FU;
1733         if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
1734             !FU->user_begin()->user_empty())
1735           FUU = *FU->user_begin();
1736         if (llvm::all_of(FUU->users(), [](const User *U) {
1737               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1738                 return GV->hasName() &&
1739                        (GV->getName().equals("llvm.compiler.used") ||
1740                         GV->getName().equals("llvm.used"));
1741               return false;
1742             }))
1743           continue;
1744       }
1745       if (PutOffender)
1746         *PutOffender = FU;
1747       return true;
1748     }
1749     if (!Call->isCallee(&U)) {
1750       if (PutOffender)
1751         *PutOffender = FU;
1752       return true;
1753     }
1754   }
1755   return false;
1756 }
1757 
1758 bool Function::isDefTriviallyDead() const {
1759   // Check the linkage
1760   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1761       !hasAvailableExternallyLinkage())
1762     return false;
1763 
1764   // Check if the function is used by anything other than a blockaddress.
1765   for (const User *U : users())
1766     if (!isa<BlockAddress>(U))
1767       return false;
1768 
1769   return true;
1770 }
1771 
1772 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1773 /// setjmp or other function that gcc recognizes as "returning twice".
1774 bool Function::callsFunctionThatReturnsTwice() const {
1775   for (const Instruction &I : instructions(this))
1776     if (const auto *Call = dyn_cast<CallBase>(&I))
1777       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1778         return true;
1779 
1780   return false;
1781 }
1782 
1783 Constant *Function::getPersonalityFn() const {
1784   assert(hasPersonalityFn() && getNumOperands());
1785   return cast<Constant>(Op<0>());
1786 }
1787 
1788 void Function::setPersonalityFn(Constant *Fn) {
1789   setHungoffOperand<0>(Fn);
1790   setValueSubclassDataBit(3, Fn != nullptr);
1791 }
1792 
1793 Constant *Function::getPrefixData() const {
1794   assert(hasPrefixData() && getNumOperands());
1795   return cast<Constant>(Op<1>());
1796 }
1797 
1798 void Function::setPrefixData(Constant *PrefixData) {
1799   setHungoffOperand<1>(PrefixData);
1800   setValueSubclassDataBit(1, PrefixData != nullptr);
1801 }
1802 
1803 Constant *Function::getPrologueData() const {
1804   assert(hasPrologueData() && getNumOperands());
1805   return cast<Constant>(Op<2>());
1806 }
1807 
1808 void Function::setPrologueData(Constant *PrologueData) {
1809   setHungoffOperand<2>(PrologueData);
1810   setValueSubclassDataBit(2, PrologueData != nullptr);
1811 }
1812 
1813 void Function::allocHungoffUselist() {
1814   // If we've already allocated a uselist, stop here.
1815   if (getNumOperands())
1816     return;
1817 
1818   allocHungoffUses(3, /*IsPhi=*/ false);
1819   setNumHungOffUseOperands(3);
1820 
1821   // Initialize the uselist with placeholder operands to allow traversal.
1822   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1823   Op<0>().set(CPN);
1824   Op<1>().set(CPN);
1825   Op<2>().set(CPN);
1826 }
1827 
1828 template <int Idx>
1829 void Function::setHungoffOperand(Constant *C) {
1830   if (C) {
1831     allocHungoffUselist();
1832     Op<Idx>().set(C);
1833   } else if (getNumOperands()) {
1834     Op<Idx>().set(
1835         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1836   }
1837 }
1838 
1839 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1840   assert(Bit < 16 && "SubclassData contains only 16 bits");
1841   if (On)
1842     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1843   else
1844     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1845 }
1846 
1847 void Function::setEntryCount(ProfileCount Count,
1848                              const DenseSet<GlobalValue::GUID> *S) {
1849   assert(Count.hasValue());
1850 #if !defined(NDEBUG)
1851   auto PrevCount = getEntryCount();
1852   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1853 #endif
1854 
1855   auto ImportGUIDs = getImportGUIDs();
1856   if (S == nullptr && ImportGUIDs.size())
1857     S = &ImportGUIDs;
1858 
1859   MDBuilder MDB(getContext());
1860   setMetadata(
1861       LLVMContext::MD_prof,
1862       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1863 }
1864 
1865 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1866                              const DenseSet<GlobalValue::GUID> *Imports) {
1867   setEntryCount(ProfileCount(Count, Type), Imports);
1868 }
1869 
1870 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1871   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1872   if (MD && MD->getOperand(0))
1873     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1874       if (MDS->getString().equals("function_entry_count")) {
1875         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1876         uint64_t Count = CI->getValue().getZExtValue();
1877         // A value of -1 is used for SamplePGO when there were no samples.
1878         // Treat this the same as unknown.
1879         if (Count == (uint64_t)-1)
1880           return ProfileCount::getInvalid();
1881         return ProfileCount(Count, PCT_Real);
1882       } else if (AllowSynthetic &&
1883                  MDS->getString().equals("synthetic_function_entry_count")) {
1884         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1885         uint64_t Count = CI->getValue().getZExtValue();
1886         return ProfileCount(Count, PCT_Synthetic);
1887       }
1888     }
1889   return ProfileCount::getInvalid();
1890 }
1891 
1892 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1893   DenseSet<GlobalValue::GUID> R;
1894   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1895     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1896       if (MDS->getString().equals("function_entry_count"))
1897         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1898           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1899                        ->getValue()
1900                        .getZExtValue());
1901   return R;
1902 }
1903 
1904 void Function::setSectionPrefix(StringRef Prefix) {
1905   MDBuilder MDB(getContext());
1906   setMetadata(LLVMContext::MD_section_prefix,
1907               MDB.createFunctionSectionPrefix(Prefix));
1908 }
1909 
1910 Optional<StringRef> Function::getSectionPrefix() const {
1911   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1912     assert(cast<MDString>(MD->getOperand(0))
1913                ->getString()
1914                .equals("function_section_prefix") &&
1915            "Metadata not match");
1916     return cast<MDString>(MD->getOperand(1))->getString();
1917   }
1918   return None;
1919 }
1920 
1921 bool Function::nullPointerIsDefined() const {
1922   return hasFnAttribute(Attribute::NullPointerIsValid);
1923 }
1924 
1925 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1926   if (F && F->nullPointerIsDefined())
1927     return true;
1928 
1929   if (AS != 0)
1930     return true;
1931 
1932   return false;
1933 }
1934