xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Function.cpp (revision 069ac18495ad8fde2748bc94b0f80a50250bb01d)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/IR/AbstractCallSite.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/IntrinsicsAArch64.h"
35 #include "llvm/IR/IntrinsicsAMDGPU.h"
36 #include "llvm/IR/IntrinsicsARM.h"
37 #include "llvm/IR/IntrinsicsBPF.h"
38 #include "llvm/IR/IntrinsicsDirectX.h"
39 #include "llvm/IR/IntrinsicsHexagon.h"
40 #include "llvm/IR/IntrinsicsMips.h"
41 #include "llvm/IR/IntrinsicsNVPTX.h"
42 #include "llvm/IR/IntrinsicsPowerPC.h"
43 #include "llvm/IR/IntrinsicsR600.h"
44 #include "llvm/IR/IntrinsicsRISCV.h"
45 #include "llvm/IR/IntrinsicsS390.h"
46 #include "llvm/IR/IntrinsicsVE.h"
47 #include "llvm/IR/IntrinsicsWebAssembly.h"
48 #include "llvm/IR/IntrinsicsX86.h"
49 #include "llvm/IR/IntrinsicsXCore.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/SymbolTableListTraits.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Use.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/IR/ValueSymbolTable.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/ModRef.h"
66 #include <cassert>
67 #include <cstddef>
68 #include <cstdint>
69 #include <cstring>
70 #include <string>
71 
72 using namespace llvm;
73 using ProfileCount = Function::ProfileCount;
74 
75 // Explicit instantiations of SymbolTableListTraits since some of the methods
76 // are not in the public header file...
77 template class llvm::SymbolTableListTraits<BasicBlock>;
78 
79 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
80     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
81     cl::desc("Maximum size for the name of non-global values."));
82 
83 //===----------------------------------------------------------------------===//
84 // Argument Implementation
85 //===----------------------------------------------------------------------===//
86 
87 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
88     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
89   setName(Name);
90 }
91 
92 void Argument::setParent(Function *parent) {
93   Parent = parent;
94 }
95 
96 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
97   if (!getType()->isPointerTy()) return false;
98   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
99       (AllowUndefOrPoison ||
100        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
101     return true;
102   else if (getDereferenceableBytes() > 0 &&
103            !NullPointerIsDefined(getParent(),
104                                  getType()->getPointerAddressSpace()))
105     return true;
106   return false;
107 }
108 
109 bool Argument::hasByValAttr() const {
110   if (!getType()->isPointerTy()) return false;
111   return hasAttribute(Attribute::ByVal);
112 }
113 
114 bool Argument::hasByRefAttr() const {
115   if (!getType()->isPointerTy())
116     return false;
117   return hasAttribute(Attribute::ByRef);
118 }
119 
120 bool Argument::hasSwiftSelfAttr() const {
121   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
122 }
123 
124 bool Argument::hasSwiftErrorAttr() const {
125   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
126 }
127 
128 bool Argument::hasInAllocaAttr() const {
129   if (!getType()->isPointerTy()) return false;
130   return hasAttribute(Attribute::InAlloca);
131 }
132 
133 bool Argument::hasPreallocatedAttr() const {
134   if (!getType()->isPointerTy())
135     return false;
136   return hasAttribute(Attribute::Preallocated);
137 }
138 
139 bool Argument::hasPassPointeeByValueCopyAttr() const {
140   if (!getType()->isPointerTy()) return false;
141   AttributeList Attrs = getParent()->getAttributes();
142   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
143          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
144          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
145 }
146 
147 bool Argument::hasPointeeInMemoryValueAttr() const {
148   if (!getType()->isPointerTy())
149     return false;
150   AttributeList Attrs = getParent()->getAttributes();
151   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
152          Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
153          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
154          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
155          Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
156 }
157 
158 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
159 /// parameter type.
160 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
161   // FIXME: All the type carrying attributes are mutually exclusive, so there
162   // should be a single query to get the stored type that handles any of them.
163   if (Type *ByValTy = ParamAttrs.getByValType())
164     return ByValTy;
165   if (Type *ByRefTy = ParamAttrs.getByRefType())
166     return ByRefTy;
167   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
168     return PreAllocTy;
169   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
170     return InAllocaTy;
171   if (Type *SRetTy = ParamAttrs.getStructRetType())
172     return SRetTy;
173 
174   return nullptr;
175 }
176 
177 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
178   AttributeSet ParamAttrs =
179       getParent()->getAttributes().getParamAttrs(getArgNo());
180   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
181     return DL.getTypeAllocSize(MemTy);
182   return 0;
183 }
184 
185 Type *Argument::getPointeeInMemoryValueType() const {
186   AttributeSet ParamAttrs =
187       getParent()->getAttributes().getParamAttrs(getArgNo());
188   return getMemoryParamAllocType(ParamAttrs);
189 }
190 
191 MaybeAlign Argument::getParamAlign() const {
192   assert(getType()->isPointerTy() && "Only pointers have alignments");
193   return getParent()->getParamAlign(getArgNo());
194 }
195 
196 MaybeAlign Argument::getParamStackAlign() const {
197   return getParent()->getParamStackAlign(getArgNo());
198 }
199 
200 Type *Argument::getParamByValType() const {
201   assert(getType()->isPointerTy() && "Only pointers have byval types");
202   return getParent()->getParamByValType(getArgNo());
203 }
204 
205 Type *Argument::getParamStructRetType() const {
206   assert(getType()->isPointerTy() && "Only pointers have sret types");
207   return getParent()->getParamStructRetType(getArgNo());
208 }
209 
210 Type *Argument::getParamByRefType() const {
211   assert(getType()->isPointerTy() && "Only pointers have byref types");
212   return getParent()->getParamByRefType(getArgNo());
213 }
214 
215 Type *Argument::getParamInAllocaType() const {
216   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
217   return getParent()->getParamInAllocaType(getArgNo());
218 }
219 
220 uint64_t Argument::getDereferenceableBytes() const {
221   assert(getType()->isPointerTy() &&
222          "Only pointers have dereferenceable bytes");
223   return getParent()->getParamDereferenceableBytes(getArgNo());
224 }
225 
226 uint64_t Argument::getDereferenceableOrNullBytes() const {
227   assert(getType()->isPointerTy() &&
228          "Only pointers have dereferenceable bytes");
229   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
230 }
231 
232 FPClassTest Argument::getNoFPClass() const {
233   return getParent()->getParamNoFPClass(getArgNo());
234 }
235 
236 bool Argument::hasNestAttr() const {
237   if (!getType()->isPointerTy()) return false;
238   return hasAttribute(Attribute::Nest);
239 }
240 
241 bool Argument::hasNoAliasAttr() const {
242   if (!getType()->isPointerTy()) return false;
243   return hasAttribute(Attribute::NoAlias);
244 }
245 
246 bool Argument::hasNoCaptureAttr() const {
247   if (!getType()->isPointerTy()) return false;
248   return hasAttribute(Attribute::NoCapture);
249 }
250 
251 bool Argument::hasNoFreeAttr() const {
252   if (!getType()->isPointerTy()) return false;
253   return hasAttribute(Attribute::NoFree);
254 }
255 
256 bool Argument::hasStructRetAttr() const {
257   if (!getType()->isPointerTy()) return false;
258   return hasAttribute(Attribute::StructRet);
259 }
260 
261 bool Argument::hasInRegAttr() const {
262   return hasAttribute(Attribute::InReg);
263 }
264 
265 bool Argument::hasReturnedAttr() const {
266   return hasAttribute(Attribute::Returned);
267 }
268 
269 bool Argument::hasZExtAttr() const {
270   return hasAttribute(Attribute::ZExt);
271 }
272 
273 bool Argument::hasSExtAttr() const {
274   return hasAttribute(Attribute::SExt);
275 }
276 
277 bool Argument::onlyReadsMemory() const {
278   AttributeList Attrs = getParent()->getAttributes();
279   return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
280          Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
281 }
282 
283 void Argument::addAttrs(AttrBuilder &B) {
284   AttributeList AL = getParent()->getAttributes();
285   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
286   getParent()->setAttributes(AL);
287 }
288 
289 void Argument::addAttr(Attribute::AttrKind Kind) {
290   getParent()->addParamAttr(getArgNo(), Kind);
291 }
292 
293 void Argument::addAttr(Attribute Attr) {
294   getParent()->addParamAttr(getArgNo(), Attr);
295 }
296 
297 void Argument::removeAttr(Attribute::AttrKind Kind) {
298   getParent()->removeParamAttr(getArgNo(), Kind);
299 }
300 
301 void Argument::removeAttrs(const AttributeMask &AM) {
302   AttributeList AL = getParent()->getAttributes();
303   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
304   getParent()->setAttributes(AL);
305 }
306 
307 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
308   return getParent()->hasParamAttribute(getArgNo(), Kind);
309 }
310 
311 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
312   return getParent()->getParamAttribute(getArgNo(), Kind);
313 }
314 
315 //===----------------------------------------------------------------------===//
316 // Helper Methods in Function
317 //===----------------------------------------------------------------------===//
318 
319 LLVMContext &Function::getContext() const {
320   return getType()->getContext();
321 }
322 
323 unsigned Function::getInstructionCount() const {
324   unsigned NumInstrs = 0;
325   for (const BasicBlock &BB : BasicBlocks)
326     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
327                                BB.instructionsWithoutDebug().end());
328   return NumInstrs;
329 }
330 
331 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
332                            const Twine &N, Module &M) {
333   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
334 }
335 
336 Function *Function::createWithDefaultAttr(FunctionType *Ty,
337                                           LinkageTypes Linkage,
338                                           unsigned AddrSpace, const Twine &N,
339                                           Module *M) {
340   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
341   AttrBuilder B(F->getContext());
342   UWTableKind UWTable = M->getUwtable();
343   if (UWTable != UWTableKind::None)
344     B.addUWTableAttr(UWTable);
345   switch (M->getFramePointer()) {
346   case FramePointerKind::None:
347     // 0 ("none") is the default.
348     break;
349   case FramePointerKind::NonLeaf:
350     B.addAttribute("frame-pointer", "non-leaf");
351     break;
352   case FramePointerKind::All:
353     B.addAttribute("frame-pointer", "all");
354     break;
355   }
356   if (M->getModuleFlag("function_return_thunk_extern"))
357     B.addAttribute(Attribute::FnRetThunkExtern);
358   F->addFnAttrs(B);
359   return F;
360 }
361 
362 void Function::removeFromParent() {
363   getParent()->getFunctionList().remove(getIterator());
364 }
365 
366 void Function::eraseFromParent() {
367   getParent()->getFunctionList().erase(getIterator());
368 }
369 
370 void Function::splice(Function::iterator ToIt, Function *FromF,
371                       Function::iterator FromBeginIt,
372                       Function::iterator FromEndIt) {
373 #ifdef EXPENSIVE_CHECKS
374   // Check that FromBeginIt is before FromEndIt.
375   auto FromFEnd = FromF->end();
376   for (auto It = FromBeginIt; It != FromEndIt; ++It)
377     assert(It != FromFEnd && "FromBeginIt not before FromEndIt!");
378 #endif // EXPENSIVE_CHECKS
379   BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt);
380 }
381 
382 Function::iterator Function::erase(Function::iterator FromIt,
383                                    Function::iterator ToIt) {
384   return BasicBlocks.erase(FromIt, ToIt);
385 }
386 
387 //===----------------------------------------------------------------------===//
388 // Function Implementation
389 //===----------------------------------------------------------------------===//
390 
391 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
392   // If AS == -1 and we are passed a valid module pointer we place the function
393   // in the program address space. Otherwise we default to AS0.
394   if (AddrSpace == static_cast<unsigned>(-1))
395     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
396   return AddrSpace;
397 }
398 
399 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
400                    const Twine &name, Module *ParentModule)
401     : GlobalObject(Ty, Value::FunctionVal,
402                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
403                    computeAddrSpace(AddrSpace, ParentModule)),
404       NumArgs(Ty->getNumParams()) {
405   assert(FunctionType::isValidReturnType(getReturnType()) &&
406          "invalid return type");
407   setGlobalObjectSubClassData(0);
408 
409   // We only need a symbol table for a function if the context keeps value names
410   if (!getContext().shouldDiscardValueNames())
411     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
412 
413   // If the function has arguments, mark them as lazily built.
414   if (Ty->getNumParams())
415     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
416 
417   if (ParentModule)
418     ParentModule->getFunctionList().push_back(this);
419 
420   HasLLVMReservedName = getName().startswith("llvm.");
421   // Ensure intrinsics have the right parameter attributes.
422   // Note, the IntID field will have been set in Value::setName if this function
423   // name is a valid intrinsic ID.
424   if (IntID)
425     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
426 }
427 
428 Function::~Function() {
429   dropAllReferences();    // After this it is safe to delete instructions.
430 
431   // Delete all of the method arguments and unlink from symbol table...
432   if (Arguments)
433     clearArguments();
434 
435   // Remove the function from the on-the-side GC table.
436   clearGC();
437 }
438 
439 void Function::BuildLazyArguments() const {
440   // Create the arguments vector, all arguments start out unnamed.
441   auto *FT = getFunctionType();
442   if (NumArgs > 0) {
443     Arguments = std::allocator<Argument>().allocate(NumArgs);
444     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
445       Type *ArgTy = FT->getParamType(i);
446       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
447       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
448     }
449   }
450 
451   // Clear the lazy arguments bit.
452   unsigned SDC = getSubclassDataFromValue();
453   SDC &= ~(1 << 0);
454   const_cast<Function*>(this)->setValueSubclassData(SDC);
455   assert(!hasLazyArguments());
456 }
457 
458 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
459   return MutableArrayRef<Argument>(Args, Count);
460 }
461 
462 bool Function::isConstrainedFPIntrinsic() const {
463   switch (getIntrinsicID()) {
464 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
465   case Intrinsic::INTRINSIC:
466 #include "llvm/IR/ConstrainedOps.def"
467     return true;
468 #undef INSTRUCTION
469   default:
470     return false;
471   }
472 }
473 
474 void Function::clearArguments() {
475   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
476     A.setName("");
477     A.~Argument();
478   }
479   std::allocator<Argument>().deallocate(Arguments, NumArgs);
480   Arguments = nullptr;
481 }
482 
483 void Function::stealArgumentListFrom(Function &Src) {
484   assert(isDeclaration() && "Expected no references to current arguments");
485 
486   // Drop the current arguments, if any, and set the lazy argument bit.
487   if (!hasLazyArguments()) {
488     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
489                         [](const Argument &A) { return A.use_empty(); }) &&
490            "Expected arguments to be unused in declaration");
491     clearArguments();
492     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
493   }
494 
495   // Nothing to steal if Src has lazy arguments.
496   if (Src.hasLazyArguments())
497     return;
498 
499   // Steal arguments from Src, and fix the lazy argument bits.
500   assert(arg_size() == Src.arg_size());
501   Arguments = Src.Arguments;
502   Src.Arguments = nullptr;
503   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
504     // FIXME: This does the work of transferNodesFromList inefficiently.
505     SmallString<128> Name;
506     if (A.hasName())
507       Name = A.getName();
508     if (!Name.empty())
509       A.setName("");
510     A.setParent(this);
511     if (!Name.empty())
512       A.setName(Name);
513   }
514 
515   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
516   assert(!hasLazyArguments());
517   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
518 }
519 
520 // dropAllReferences() - This function causes all the subinstructions to "let
521 // go" of all references that they are maintaining.  This allows one to
522 // 'delete' a whole class at a time, even though there may be circular
523 // references... first all references are dropped, and all use counts go to
524 // zero.  Then everything is deleted for real.  Note that no operations are
525 // valid on an object that has "dropped all references", except operator
526 // delete.
527 //
528 void Function::dropAllReferences() {
529   setIsMaterializable(false);
530 
531   for (BasicBlock &BB : *this)
532     BB.dropAllReferences();
533 
534   // Delete all basic blocks. They are now unused, except possibly by
535   // blockaddresses, but BasicBlock's destructor takes care of those.
536   while (!BasicBlocks.empty())
537     BasicBlocks.begin()->eraseFromParent();
538 
539   // Drop uses of any optional data (real or placeholder).
540   if (getNumOperands()) {
541     User::dropAllReferences();
542     setNumHungOffUseOperands(0);
543     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
544   }
545 
546   // Metadata is stored in a side-table.
547   clearMetadata();
548 }
549 
550 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
551   AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
552 }
553 
554 void Function::addFnAttr(Attribute::AttrKind Kind) {
555   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
556 }
557 
558 void Function::addFnAttr(StringRef Kind, StringRef Val) {
559   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
560 }
561 
562 void Function::addFnAttr(Attribute Attr) {
563   AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
564 }
565 
566 void Function::addFnAttrs(const AttrBuilder &Attrs) {
567   AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
568 }
569 
570 void Function::addRetAttr(Attribute::AttrKind Kind) {
571   AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
572 }
573 
574 void Function::addRetAttr(Attribute Attr) {
575   AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
576 }
577 
578 void Function::addRetAttrs(const AttrBuilder &Attrs) {
579   AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
580 }
581 
582 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
583   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
584 }
585 
586 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
587   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
588 }
589 
590 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
591   AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
592 }
593 
594 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
595   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
596 }
597 
598 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
599   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
600 }
601 
602 void Function::removeFnAttr(Attribute::AttrKind Kind) {
603   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
604 }
605 
606 void Function::removeFnAttr(StringRef Kind) {
607   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
608 }
609 
610 void Function::removeFnAttrs(const AttributeMask &AM) {
611   AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
612 }
613 
614 void Function::removeRetAttr(Attribute::AttrKind Kind) {
615   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
616 }
617 
618 void Function::removeRetAttr(StringRef Kind) {
619   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
620 }
621 
622 void Function::removeRetAttrs(const AttributeMask &Attrs) {
623   AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
624 }
625 
626 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
627   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
628 }
629 
630 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
631   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
632 }
633 
634 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
635   AttributeSets =
636       AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
637 }
638 
639 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
640   AttributeSets =
641       AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
642 }
643 
644 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
645   return AttributeSets.hasFnAttr(Kind);
646 }
647 
648 bool Function::hasFnAttribute(StringRef Kind) const {
649   return AttributeSets.hasFnAttr(Kind);
650 }
651 
652 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
653   return AttributeSets.hasRetAttr(Kind);
654 }
655 
656 bool Function::hasParamAttribute(unsigned ArgNo,
657                                  Attribute::AttrKind Kind) const {
658   return AttributeSets.hasParamAttr(ArgNo, Kind);
659 }
660 
661 Attribute Function::getAttributeAtIndex(unsigned i,
662                                         Attribute::AttrKind Kind) const {
663   return AttributeSets.getAttributeAtIndex(i, Kind);
664 }
665 
666 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
667   return AttributeSets.getAttributeAtIndex(i, Kind);
668 }
669 
670 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
671   return AttributeSets.getFnAttr(Kind);
672 }
673 
674 Attribute Function::getFnAttribute(StringRef Kind) const {
675   return AttributeSets.getFnAttr(Kind);
676 }
677 
678 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name,
679                                                  uint64_t Default) const {
680   Attribute A = getFnAttribute(Name);
681   uint64_t Result = Default;
682   if (A.isStringAttribute()) {
683     StringRef Str = A.getValueAsString();
684     if (Str.getAsInteger(0, Result))
685       getContext().emitError("cannot parse integer attribute " + Name);
686   }
687 
688   return Result;
689 }
690 
691 /// gets the specified attribute from the list of attributes.
692 Attribute Function::getParamAttribute(unsigned ArgNo,
693                                       Attribute::AttrKind Kind) const {
694   return AttributeSets.getParamAttr(ArgNo, Kind);
695 }
696 
697 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
698                                                  uint64_t Bytes) {
699   AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
700                                                                   ArgNo, Bytes);
701 }
702 
703 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
704   if (&FPType == &APFloat::IEEEsingle()) {
705     DenormalMode Mode = getDenormalModeF32Raw();
706     // If the f32 variant of the attribute isn't specified, try to use the
707     // generic one.
708     if (Mode.isValid())
709       return Mode;
710   }
711 
712   return getDenormalModeRaw();
713 }
714 
715 DenormalMode Function::getDenormalModeRaw() const {
716   Attribute Attr = getFnAttribute("denormal-fp-math");
717   StringRef Val = Attr.getValueAsString();
718   return parseDenormalFPAttribute(Val);
719 }
720 
721 DenormalMode Function::getDenormalModeF32Raw() const {
722   Attribute Attr = getFnAttribute("denormal-fp-math-f32");
723   if (Attr.isValid()) {
724     StringRef Val = Attr.getValueAsString();
725     return parseDenormalFPAttribute(Val);
726   }
727 
728   return DenormalMode::getInvalid();
729 }
730 
731 const std::string &Function::getGC() const {
732   assert(hasGC() && "Function has no collector");
733   return getContext().getGC(*this);
734 }
735 
736 void Function::setGC(std::string Str) {
737   setValueSubclassDataBit(14, !Str.empty());
738   getContext().setGC(*this, std::move(Str));
739 }
740 
741 void Function::clearGC() {
742   if (!hasGC())
743     return;
744   getContext().deleteGC(*this);
745   setValueSubclassDataBit(14, false);
746 }
747 
748 bool Function::hasStackProtectorFnAttr() const {
749   return hasFnAttribute(Attribute::StackProtect) ||
750          hasFnAttribute(Attribute::StackProtectStrong) ||
751          hasFnAttribute(Attribute::StackProtectReq);
752 }
753 
754 /// Copy all additional attributes (those not needed to create a Function) from
755 /// the Function Src to this one.
756 void Function::copyAttributesFrom(const Function *Src) {
757   GlobalObject::copyAttributesFrom(Src);
758   setCallingConv(Src->getCallingConv());
759   setAttributes(Src->getAttributes());
760   if (Src->hasGC())
761     setGC(Src->getGC());
762   else
763     clearGC();
764   if (Src->hasPersonalityFn())
765     setPersonalityFn(Src->getPersonalityFn());
766   if (Src->hasPrefixData())
767     setPrefixData(Src->getPrefixData());
768   if (Src->hasPrologueData())
769     setPrologueData(Src->getPrologueData());
770 }
771 
772 MemoryEffects Function::getMemoryEffects() const {
773   return getAttributes().getMemoryEffects();
774 }
775 void Function::setMemoryEffects(MemoryEffects ME) {
776   addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME));
777 }
778 
779 /// Determine if the function does not access memory.
780 bool Function::doesNotAccessMemory() const {
781   return getMemoryEffects().doesNotAccessMemory();
782 }
783 void Function::setDoesNotAccessMemory() {
784   setMemoryEffects(MemoryEffects::none());
785 }
786 
787 /// Determine if the function does not access or only reads memory.
788 bool Function::onlyReadsMemory() const {
789   return getMemoryEffects().onlyReadsMemory();
790 }
791 void Function::setOnlyReadsMemory() {
792   setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly());
793 }
794 
795 /// Determine if the function does not access or only writes memory.
796 bool Function::onlyWritesMemory() const {
797   return getMemoryEffects().onlyWritesMemory();
798 }
799 void Function::setOnlyWritesMemory() {
800   setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly());
801 }
802 
803 /// Determine if the call can access memmory only using pointers based
804 /// on its arguments.
805 bool Function::onlyAccessesArgMemory() const {
806   return getMemoryEffects().onlyAccessesArgPointees();
807 }
808 void Function::setOnlyAccessesArgMemory() {
809   setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly());
810 }
811 
812 /// Determine if the function may only access memory that is
813 ///  inaccessible from the IR.
814 bool Function::onlyAccessesInaccessibleMemory() const {
815   return getMemoryEffects().onlyAccessesInaccessibleMem();
816 }
817 void Function::setOnlyAccessesInaccessibleMemory() {
818   setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly());
819 }
820 
821 /// Determine if the function may only access memory that is
822 ///  either inaccessible from the IR or pointed to by its arguments.
823 bool Function::onlyAccessesInaccessibleMemOrArgMem() const {
824   return getMemoryEffects().onlyAccessesInaccessibleOrArgMem();
825 }
826 void Function::setOnlyAccessesInaccessibleMemOrArgMem() {
827   setMemoryEffects(getMemoryEffects() &
828                    MemoryEffects::inaccessibleOrArgMemOnly());
829 }
830 
831 /// Table of string intrinsic names indexed by enum value.
832 static const char * const IntrinsicNameTable[] = {
833   "not_intrinsic",
834 #define GET_INTRINSIC_NAME_TABLE
835 #include "llvm/IR/IntrinsicImpl.inc"
836 #undef GET_INTRINSIC_NAME_TABLE
837 };
838 
839 /// Table of per-target intrinsic name tables.
840 #define GET_INTRINSIC_TARGET_DATA
841 #include "llvm/IR/IntrinsicImpl.inc"
842 #undef GET_INTRINSIC_TARGET_DATA
843 
844 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
845   return IID > TargetInfos[0].Count;
846 }
847 
848 bool Function::isTargetIntrinsic() const {
849   return isTargetIntrinsic(IntID);
850 }
851 
852 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
853 /// target as \c Name, or the generic table if \c Name is not target specific.
854 ///
855 /// Returns the relevant slice of \c IntrinsicNameTable
856 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
857   assert(Name.startswith("llvm."));
858 
859   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
860   // Drop "llvm." and take the first dotted component. That will be the target
861   // if this is target specific.
862   StringRef Target = Name.drop_front(5).split('.').first;
863   auto It = partition_point(
864       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
865   // We've either found the target or just fall back to the generic set, which
866   // is always first.
867   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
868   return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
869 }
870 
871 /// This does the actual lookup of an intrinsic ID which
872 /// matches the given function name.
873 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
874   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
875   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
876   if (Idx == -1)
877     return Intrinsic::not_intrinsic;
878 
879   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
880   // an index into a sub-table.
881   int Adjust = NameTable.data() - IntrinsicNameTable;
882   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
883 
884   // If the intrinsic is not overloaded, require an exact match. If it is
885   // overloaded, require either exact or prefix match.
886   const auto MatchSize = strlen(NameTable[Idx]);
887   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
888   bool IsExactMatch = Name.size() == MatchSize;
889   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
890                                                      : Intrinsic::not_intrinsic;
891 }
892 
893 void Function::recalculateIntrinsicID() {
894   StringRef Name = getName();
895   if (!Name.startswith("llvm.")) {
896     HasLLVMReservedName = false;
897     IntID = Intrinsic::not_intrinsic;
898     return;
899   }
900   HasLLVMReservedName = true;
901   IntID = lookupIntrinsicID(Name);
902 }
903 
904 /// Returns a stable mangling for the type specified for use in the name
905 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
906 /// of named types is simply their name.  Manglings for unnamed types consist
907 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
908 /// combined with the mangling of their component types.  A vararg function
909 /// type will have a suffix of 'vararg'.  Since function types can contain
910 /// other function types, we close a function type mangling with suffix 'f'
911 /// which can't be confused with it's prefix.  This ensures we don't have
912 /// collisions between two unrelated function types. Otherwise, you might
913 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
914 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
915 /// indicating that extra care must be taken to ensure a unique name.
916 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
917   std::string Result;
918   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
919     Result += "p" + utostr(PTyp->getAddressSpace());
920   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
921     Result += "a" + utostr(ATyp->getNumElements()) +
922               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
923   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
924     if (!STyp->isLiteral()) {
925       Result += "s_";
926       if (STyp->hasName())
927         Result += STyp->getName();
928       else
929         HasUnnamedType = true;
930     } else {
931       Result += "sl_";
932       for (auto *Elem : STyp->elements())
933         Result += getMangledTypeStr(Elem, HasUnnamedType);
934     }
935     // Ensure nested structs are distinguishable.
936     Result += "s";
937   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
938     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
939     for (size_t i = 0; i < FT->getNumParams(); i++)
940       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
941     if (FT->isVarArg())
942       Result += "vararg";
943     // Ensure nested function types are distinguishable.
944     Result += "f";
945   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
946     ElementCount EC = VTy->getElementCount();
947     if (EC.isScalable())
948       Result += "nx";
949     Result += "v" + utostr(EC.getKnownMinValue()) +
950               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
951   } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) {
952     Result += "t";
953     Result += TETy->getName();
954     for (Type *ParamTy : TETy->type_params())
955       Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType);
956     for (unsigned IntParam : TETy->int_params())
957       Result += "_" + utostr(IntParam);
958     // Ensure nested target extension types are distinguishable.
959     Result += "t";
960   } else if (Ty) {
961     switch (Ty->getTypeID()) {
962     default: llvm_unreachable("Unhandled type");
963     case Type::VoidTyID:      Result += "isVoid";   break;
964     case Type::MetadataTyID:  Result += "Metadata"; break;
965     case Type::HalfTyID:      Result += "f16";      break;
966     case Type::BFloatTyID:    Result += "bf16";     break;
967     case Type::FloatTyID:     Result += "f32";      break;
968     case Type::DoubleTyID:    Result += "f64";      break;
969     case Type::X86_FP80TyID:  Result += "f80";      break;
970     case Type::FP128TyID:     Result += "f128";     break;
971     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
972     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
973     case Type::X86_AMXTyID:   Result += "x86amx";   break;
974     case Type::IntegerTyID:
975       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
976       break;
977     }
978   }
979   return Result;
980 }
981 
982 StringRef Intrinsic::getBaseName(ID id) {
983   assert(id < num_intrinsics && "Invalid intrinsic ID!");
984   return IntrinsicNameTable[id];
985 }
986 
987 StringRef Intrinsic::getName(ID id) {
988   assert(id < num_intrinsics && "Invalid intrinsic ID!");
989   assert(!Intrinsic::isOverloaded(id) &&
990          "This version of getName does not support overloading");
991   return getBaseName(id);
992 }
993 
994 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
995                                         Module *M, FunctionType *FT,
996                                         bool EarlyModuleCheck) {
997 
998   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
999   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
1000          "This version of getName is for overloaded intrinsics only");
1001   (void)EarlyModuleCheck;
1002   assert((!EarlyModuleCheck || M ||
1003           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
1004          "Intrinsic overloading on pointer types need to provide a Module");
1005   bool HasUnnamedType = false;
1006   std::string Result(Intrinsic::getBaseName(Id));
1007   for (Type *Ty : Tys)
1008     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
1009   if (HasUnnamedType) {
1010     assert(M && "unnamed types need a module");
1011     if (!FT)
1012       FT = Intrinsic::getType(M->getContext(), Id, Tys);
1013     else
1014       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
1015              "Provided FunctionType must match arguments");
1016     return M->getUniqueIntrinsicName(Result, Id, FT);
1017   }
1018   return Result;
1019 }
1020 
1021 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
1022                                FunctionType *FT) {
1023   assert(M && "We need to have a Module");
1024   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
1025 }
1026 
1027 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
1028   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
1029 }
1030 
1031 /// IIT_Info - These are enumerators that describe the entries returned by the
1032 /// getIntrinsicInfoTableEntries function.
1033 ///
1034 /// Defined in Intrinsics.td.
1035 enum IIT_Info {
1036 #define GET_INTRINSIC_IITINFO
1037 #include "llvm/IR/IntrinsicImpl.inc"
1038 #undef GET_INTRINSIC_IITINFO
1039 };
1040 
1041 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
1042                       IIT_Info LastInfo,
1043                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
1044   using namespace Intrinsic;
1045 
1046   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
1047 
1048   IIT_Info Info = IIT_Info(Infos[NextElt++]);
1049   unsigned StructElts = 2;
1050 
1051   switch (Info) {
1052   case IIT_Done:
1053     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
1054     return;
1055   case IIT_VARARG:
1056     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
1057     return;
1058   case IIT_MMX:
1059     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
1060     return;
1061   case IIT_AMX:
1062     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
1063     return;
1064   case IIT_TOKEN:
1065     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1066     return;
1067   case IIT_METADATA:
1068     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1069     return;
1070   case IIT_F16:
1071     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1072     return;
1073   case IIT_BF16:
1074     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1075     return;
1076   case IIT_F32:
1077     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1078     return;
1079   case IIT_F64:
1080     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1081     return;
1082   case IIT_F128:
1083     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1084     return;
1085   case IIT_PPCF128:
1086     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
1087     return;
1088   case IIT_I1:
1089     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1090     return;
1091   case IIT_I2:
1092     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2));
1093     return;
1094   case IIT_I4:
1095     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4));
1096     return;
1097   case IIT_AARCH64_SVCOUNT:
1098     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0));
1099     return;
1100   case IIT_I8:
1101     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1102     return;
1103   case IIT_I16:
1104     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1105     return;
1106   case IIT_I32:
1107     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1108     return;
1109   case IIT_I64:
1110     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1111     return;
1112   case IIT_I128:
1113     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1114     return;
1115   case IIT_V1:
1116     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1117     DecodeIITType(NextElt, Infos, Info, OutputTable);
1118     return;
1119   case IIT_V2:
1120     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1121     DecodeIITType(NextElt, Infos, Info, OutputTable);
1122     return;
1123   case IIT_V3:
1124     OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
1125     DecodeIITType(NextElt, Infos, Info, OutputTable);
1126     return;
1127   case IIT_V4:
1128     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1129     DecodeIITType(NextElt, Infos, Info, OutputTable);
1130     return;
1131   case IIT_V8:
1132     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1133     DecodeIITType(NextElt, Infos, Info, OutputTable);
1134     return;
1135   case IIT_V16:
1136     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1137     DecodeIITType(NextElt, Infos, Info, OutputTable);
1138     return;
1139   case IIT_V32:
1140     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1141     DecodeIITType(NextElt, Infos, Info, OutputTable);
1142     return;
1143   case IIT_V64:
1144     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1145     DecodeIITType(NextElt, Infos, Info, OutputTable);
1146     return;
1147   case IIT_V128:
1148     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1149     DecodeIITType(NextElt, Infos, Info, OutputTable);
1150     return;
1151   case IIT_V256:
1152     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1153     DecodeIITType(NextElt, Infos, Info, OutputTable);
1154     return;
1155   case IIT_V512:
1156     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1157     DecodeIITType(NextElt, Infos, Info, OutputTable);
1158     return;
1159   case IIT_V1024:
1160     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1161     DecodeIITType(NextElt, Infos, Info, OutputTable);
1162     return;
1163   case IIT_EXTERNREF:
1164     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
1165     return;
1166   case IIT_FUNCREF:
1167     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
1168     return;
1169   case IIT_PTR:
1170     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1171     return;
1172   case IIT_ANYPTR: // [ANYPTR addrspace]
1173     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1174                                              Infos[NextElt++]));
1175     return;
1176   case IIT_ARG: {
1177     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1178     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1179     return;
1180   }
1181   case IIT_EXTEND_ARG: {
1182     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1183     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1184                                              ArgInfo));
1185     return;
1186   }
1187   case IIT_TRUNC_ARG: {
1188     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1189     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1190                                              ArgInfo));
1191     return;
1192   }
1193   case IIT_HALF_VEC_ARG: {
1194     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1195     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1196                                              ArgInfo));
1197     return;
1198   }
1199   case IIT_SAME_VEC_WIDTH_ARG: {
1200     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1201     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1202                                              ArgInfo));
1203     return;
1204   }
1205   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1206     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1207     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1208     OutputTable.push_back(
1209         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1210     return;
1211   }
1212   case IIT_EMPTYSTRUCT:
1213     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1214     return;
1215   case IIT_STRUCT9: ++StructElts; [[fallthrough]];
1216   case IIT_STRUCT8: ++StructElts; [[fallthrough]];
1217   case IIT_STRUCT7: ++StructElts; [[fallthrough]];
1218   case IIT_STRUCT6: ++StructElts; [[fallthrough]];
1219   case IIT_STRUCT5: ++StructElts; [[fallthrough]];
1220   case IIT_STRUCT4: ++StructElts; [[fallthrough]];
1221   case IIT_STRUCT3: ++StructElts; [[fallthrough]];
1222   case IIT_STRUCT2: {
1223     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1224 
1225     for (unsigned i = 0; i != StructElts; ++i)
1226       DecodeIITType(NextElt, Infos, Info, OutputTable);
1227     return;
1228   }
1229   case IIT_SUBDIVIDE2_ARG: {
1230     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1231     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1232                                              ArgInfo));
1233     return;
1234   }
1235   case IIT_SUBDIVIDE4_ARG: {
1236     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1237     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1238                                              ArgInfo));
1239     return;
1240   }
1241   case IIT_VEC_ELEMENT: {
1242     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1243     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1244                                              ArgInfo));
1245     return;
1246   }
1247   case IIT_SCALABLE_VEC: {
1248     DecodeIITType(NextElt, Infos, Info, OutputTable);
1249     return;
1250   }
1251   case IIT_VEC_OF_BITCASTS_TO_INT: {
1252     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1253     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1254                                              ArgInfo));
1255     return;
1256   }
1257   }
1258   llvm_unreachable("unhandled");
1259 }
1260 
1261 #define GET_INTRINSIC_GENERATOR_GLOBAL
1262 #include "llvm/IR/IntrinsicImpl.inc"
1263 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1264 
1265 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1266                                              SmallVectorImpl<IITDescriptor> &T){
1267   // Check to see if the intrinsic's type was expressible by the table.
1268   unsigned TableVal = IIT_Table[id-1];
1269 
1270   // Decode the TableVal into an array of IITValues.
1271   SmallVector<unsigned char, 8> IITValues;
1272   ArrayRef<unsigned char> IITEntries;
1273   unsigned NextElt = 0;
1274   if ((TableVal >> 31) != 0) {
1275     // This is an offset into the IIT_LongEncodingTable.
1276     IITEntries = IIT_LongEncodingTable;
1277 
1278     // Strip sentinel bit.
1279     NextElt = (TableVal << 1) >> 1;
1280   } else {
1281     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1282     // into a single word in the table itself, decode it now.
1283     do {
1284       IITValues.push_back(TableVal & 0xF);
1285       TableVal >>= 4;
1286     } while (TableVal);
1287 
1288     IITEntries = IITValues;
1289     NextElt = 0;
1290   }
1291 
1292   // Okay, decode the table into the output vector of IITDescriptors.
1293   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1294   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1295     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1296 }
1297 
1298 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1299                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1300   using namespace Intrinsic;
1301 
1302   IITDescriptor D = Infos.front();
1303   Infos = Infos.slice(1);
1304 
1305   switch (D.Kind) {
1306   case IITDescriptor::Void: return Type::getVoidTy(Context);
1307   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1308   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1309   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1310   case IITDescriptor::Token: return Type::getTokenTy(Context);
1311   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1312   case IITDescriptor::Half: return Type::getHalfTy(Context);
1313   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1314   case IITDescriptor::Float: return Type::getFloatTy(Context);
1315   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1316   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1317   case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
1318   case IITDescriptor::AArch64Svcount:
1319     return TargetExtType::get(Context, "aarch64.svcount");
1320 
1321   case IITDescriptor::Integer:
1322     return IntegerType::get(Context, D.Integer_Width);
1323   case IITDescriptor::Vector:
1324     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1325                            D.Vector_Width);
1326   case IITDescriptor::Pointer:
1327     return PointerType::get(Context, D.Pointer_AddressSpace);
1328   case IITDescriptor::Struct: {
1329     SmallVector<Type *, 8> Elts;
1330     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1331       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1332     return StructType::get(Context, Elts);
1333   }
1334   case IITDescriptor::Argument:
1335     return Tys[D.getArgumentNumber()];
1336   case IITDescriptor::ExtendArgument: {
1337     Type *Ty = Tys[D.getArgumentNumber()];
1338     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1339       return VectorType::getExtendedElementVectorType(VTy);
1340 
1341     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1342   }
1343   case IITDescriptor::TruncArgument: {
1344     Type *Ty = Tys[D.getArgumentNumber()];
1345     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1346       return VectorType::getTruncatedElementVectorType(VTy);
1347 
1348     IntegerType *ITy = cast<IntegerType>(Ty);
1349     assert(ITy->getBitWidth() % 2 == 0);
1350     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1351   }
1352   case IITDescriptor::Subdivide2Argument:
1353   case IITDescriptor::Subdivide4Argument: {
1354     Type *Ty = Tys[D.getArgumentNumber()];
1355     VectorType *VTy = dyn_cast<VectorType>(Ty);
1356     assert(VTy && "Expected an argument of Vector Type");
1357     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1358     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1359   }
1360   case IITDescriptor::HalfVecArgument:
1361     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1362                                                   Tys[D.getArgumentNumber()]));
1363   case IITDescriptor::SameVecWidthArgument: {
1364     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1365     Type *Ty = Tys[D.getArgumentNumber()];
1366     if (auto *VTy = dyn_cast<VectorType>(Ty))
1367       return VectorType::get(EltTy, VTy->getElementCount());
1368     return EltTy;
1369   }
1370   case IITDescriptor::VecElementArgument: {
1371     Type *Ty = Tys[D.getArgumentNumber()];
1372     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1373       return VTy->getElementType();
1374     llvm_unreachable("Expected an argument of Vector Type");
1375   }
1376   case IITDescriptor::VecOfBitcastsToInt: {
1377     Type *Ty = Tys[D.getArgumentNumber()];
1378     VectorType *VTy = dyn_cast<VectorType>(Ty);
1379     assert(VTy && "Expected an argument of Vector Type");
1380     return VectorType::getInteger(VTy);
1381   }
1382   case IITDescriptor::VecOfAnyPtrsToElt:
1383     // Return the overloaded type (which determines the pointers address space)
1384     return Tys[D.getOverloadArgNumber()];
1385   }
1386   llvm_unreachable("unhandled");
1387 }
1388 
1389 FunctionType *Intrinsic::getType(LLVMContext &Context,
1390                                  ID id, ArrayRef<Type*> Tys) {
1391   SmallVector<IITDescriptor, 8> Table;
1392   getIntrinsicInfoTableEntries(id, Table);
1393 
1394   ArrayRef<IITDescriptor> TableRef = Table;
1395   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1396 
1397   SmallVector<Type*, 8> ArgTys;
1398   while (!TableRef.empty())
1399     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1400 
1401   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1402   // If we see void type as the type of the last argument, it is vararg intrinsic
1403   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1404     ArgTys.pop_back();
1405     return FunctionType::get(ResultTy, ArgTys, true);
1406   }
1407   return FunctionType::get(ResultTy, ArgTys, false);
1408 }
1409 
1410 bool Intrinsic::isOverloaded(ID id) {
1411 #define GET_INTRINSIC_OVERLOAD_TABLE
1412 #include "llvm/IR/IntrinsicImpl.inc"
1413 #undef GET_INTRINSIC_OVERLOAD_TABLE
1414 }
1415 
1416 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1417 #define GET_INTRINSIC_ATTRIBUTES
1418 #include "llvm/IR/IntrinsicImpl.inc"
1419 #undef GET_INTRINSIC_ATTRIBUTES
1420 
1421 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1422   // There can never be multiple globals with the same name of different types,
1423   // because intrinsics must be a specific type.
1424   auto *FT = getType(M->getContext(), id, Tys);
1425   return cast<Function>(
1426       M->getOrInsertFunction(
1427            Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT)
1428           .getCallee());
1429 }
1430 
1431 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
1432 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1433 #include "llvm/IR/IntrinsicImpl.inc"
1434 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1435 
1436 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1437 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1438 #include "llvm/IR/IntrinsicImpl.inc"
1439 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1440 
1441 using DeferredIntrinsicMatchPair =
1442     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1443 
1444 static bool matchIntrinsicType(
1445     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1446     SmallVectorImpl<Type *> &ArgTys,
1447     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1448     bool IsDeferredCheck) {
1449   using namespace Intrinsic;
1450 
1451   // If we ran out of descriptors, there are too many arguments.
1452   if (Infos.empty()) return true;
1453 
1454   // Do this before slicing off the 'front' part
1455   auto InfosRef = Infos;
1456   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1457     DeferredChecks.emplace_back(T, InfosRef);
1458     return false;
1459   };
1460 
1461   IITDescriptor D = Infos.front();
1462   Infos = Infos.slice(1);
1463 
1464   switch (D.Kind) {
1465     case IITDescriptor::Void: return !Ty->isVoidTy();
1466     case IITDescriptor::VarArg: return true;
1467     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1468     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1469     case IITDescriptor::Token: return !Ty->isTokenTy();
1470     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1471     case IITDescriptor::Half: return !Ty->isHalfTy();
1472     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1473     case IITDescriptor::Float: return !Ty->isFloatTy();
1474     case IITDescriptor::Double: return !Ty->isDoubleTy();
1475     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1476     case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
1477     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1478     case IITDescriptor::AArch64Svcount:
1479       return !isa<TargetExtType>(Ty) ||
1480              cast<TargetExtType>(Ty)->getName() != "aarch64.svcount";
1481     case IITDescriptor::Vector: {
1482       VectorType *VT = dyn_cast<VectorType>(Ty);
1483       return !VT || VT->getElementCount() != D.Vector_Width ||
1484              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1485                                 DeferredChecks, IsDeferredCheck);
1486     }
1487     case IITDescriptor::Pointer: {
1488       PointerType *PT = dyn_cast<PointerType>(Ty);
1489       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace;
1490     }
1491 
1492     case IITDescriptor::Struct: {
1493       StructType *ST = dyn_cast<StructType>(Ty);
1494       if (!ST || !ST->isLiteral() || ST->isPacked() ||
1495           ST->getNumElements() != D.Struct_NumElements)
1496         return true;
1497 
1498       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1499         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1500                                DeferredChecks, IsDeferredCheck))
1501           return true;
1502       return false;
1503     }
1504 
1505     case IITDescriptor::Argument:
1506       // If this is the second occurrence of an argument,
1507       // verify that the later instance matches the previous instance.
1508       if (D.getArgumentNumber() < ArgTys.size())
1509         return Ty != ArgTys[D.getArgumentNumber()];
1510 
1511       if (D.getArgumentNumber() > ArgTys.size() ||
1512           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1513         return IsDeferredCheck || DeferCheck(Ty);
1514 
1515       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1516              "Table consistency error");
1517       ArgTys.push_back(Ty);
1518 
1519       switch (D.getArgumentKind()) {
1520         case IITDescriptor::AK_Any:        return false; // Success
1521         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1522         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1523         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1524         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1525         default:                           break;
1526       }
1527       llvm_unreachable("all argument kinds not covered");
1528 
1529     case IITDescriptor::ExtendArgument: {
1530       // If this is a forward reference, defer the check for later.
1531       if (D.getArgumentNumber() >= ArgTys.size())
1532         return IsDeferredCheck || DeferCheck(Ty);
1533 
1534       Type *NewTy = ArgTys[D.getArgumentNumber()];
1535       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1536         NewTy = VectorType::getExtendedElementVectorType(VTy);
1537       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1538         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1539       else
1540         return true;
1541 
1542       return Ty != NewTy;
1543     }
1544     case IITDescriptor::TruncArgument: {
1545       // If this is a forward reference, defer the check for later.
1546       if (D.getArgumentNumber() >= ArgTys.size())
1547         return IsDeferredCheck || DeferCheck(Ty);
1548 
1549       Type *NewTy = ArgTys[D.getArgumentNumber()];
1550       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1551         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1552       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1553         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1554       else
1555         return true;
1556 
1557       return Ty != NewTy;
1558     }
1559     case IITDescriptor::HalfVecArgument:
1560       // If this is a forward reference, defer the check for later.
1561       if (D.getArgumentNumber() >= ArgTys.size())
1562         return IsDeferredCheck || DeferCheck(Ty);
1563       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1564              VectorType::getHalfElementsVectorType(
1565                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1566     case IITDescriptor::SameVecWidthArgument: {
1567       if (D.getArgumentNumber() >= ArgTys.size()) {
1568         // Defer check and subsequent check for the vector element type.
1569         Infos = Infos.slice(1);
1570         return IsDeferredCheck || DeferCheck(Ty);
1571       }
1572       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1573       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1574       // Both must be vectors of the same number of elements or neither.
1575       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1576         return true;
1577       Type *EltTy = Ty;
1578       if (ThisArgType) {
1579         if (ReferenceType->getElementCount() !=
1580             ThisArgType->getElementCount())
1581           return true;
1582         EltTy = ThisArgType->getElementType();
1583       }
1584       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1585                                 IsDeferredCheck);
1586     }
1587     case IITDescriptor::VecOfAnyPtrsToElt: {
1588       unsigned RefArgNumber = D.getRefArgNumber();
1589       if (RefArgNumber >= ArgTys.size()) {
1590         if (IsDeferredCheck)
1591           return true;
1592         // If forward referencing, already add the pointer-vector type and
1593         // defer the checks for later.
1594         ArgTys.push_back(Ty);
1595         return DeferCheck(Ty);
1596       }
1597 
1598       if (!IsDeferredCheck){
1599         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1600                "Table consistency error");
1601         ArgTys.push_back(Ty);
1602       }
1603 
1604       // Verify the overloaded type "matches" the Ref type.
1605       // i.e. Ty is a vector with the same width as Ref.
1606       // Composed of pointers to the same element type as Ref.
1607       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1608       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1609       if (!ThisArgVecTy || !ReferenceType ||
1610           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1611         return true;
1612       return !ThisArgVecTy->getElementType()->isPointerTy();
1613     }
1614     case IITDescriptor::VecElementArgument: {
1615       if (D.getArgumentNumber() >= ArgTys.size())
1616         return IsDeferredCheck ? true : DeferCheck(Ty);
1617       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1618       return !ReferenceType || Ty != ReferenceType->getElementType();
1619     }
1620     case IITDescriptor::Subdivide2Argument:
1621     case IITDescriptor::Subdivide4Argument: {
1622       // If this is a forward reference, defer the check for later.
1623       if (D.getArgumentNumber() >= ArgTys.size())
1624         return IsDeferredCheck || DeferCheck(Ty);
1625 
1626       Type *NewTy = ArgTys[D.getArgumentNumber()];
1627       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1628         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1629         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1630         return Ty != NewTy;
1631       }
1632       return true;
1633     }
1634     case IITDescriptor::VecOfBitcastsToInt: {
1635       if (D.getArgumentNumber() >= ArgTys.size())
1636         return IsDeferredCheck || DeferCheck(Ty);
1637       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1638       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1639       if (!ThisArgVecTy || !ReferenceType)
1640         return true;
1641       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1642     }
1643   }
1644   llvm_unreachable("unhandled");
1645 }
1646 
1647 Intrinsic::MatchIntrinsicTypesResult
1648 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1649                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1650                                    SmallVectorImpl<Type *> &ArgTys) {
1651   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1652   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1653                          false))
1654     return MatchIntrinsicTypes_NoMatchRet;
1655 
1656   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1657 
1658   for (auto *Ty : FTy->params())
1659     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1660       return MatchIntrinsicTypes_NoMatchArg;
1661 
1662   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1663     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1664     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1665                            true))
1666       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1667                                          : MatchIntrinsicTypes_NoMatchArg;
1668   }
1669 
1670   return MatchIntrinsicTypes_Match;
1671 }
1672 
1673 bool
1674 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1675                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1676   // If there are no descriptors left, then it can't be a vararg.
1677   if (Infos.empty())
1678     return isVarArg;
1679 
1680   // There should be only one descriptor remaining at this point.
1681   if (Infos.size() != 1)
1682     return true;
1683 
1684   // Check and verify the descriptor.
1685   IITDescriptor D = Infos.front();
1686   Infos = Infos.slice(1);
1687   if (D.Kind == IITDescriptor::VarArg)
1688     return !isVarArg;
1689 
1690   return true;
1691 }
1692 
1693 bool Intrinsic::getIntrinsicSignature(Function *F,
1694                                       SmallVectorImpl<Type *> &ArgTys) {
1695   Intrinsic::ID ID = F->getIntrinsicID();
1696   if (!ID)
1697     return false;
1698 
1699   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1700   getIntrinsicInfoTableEntries(ID, Table);
1701   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1702 
1703   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1704                                          ArgTys) !=
1705       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1706     return false;
1707   }
1708   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1709                                       TableRef))
1710     return false;
1711   return true;
1712 }
1713 
1714 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1715   SmallVector<Type *, 4> ArgTys;
1716   if (!getIntrinsicSignature(F, ArgTys))
1717     return std::nullopt;
1718 
1719   Intrinsic::ID ID = F->getIntrinsicID();
1720   StringRef Name = F->getName();
1721   std::string WantedName =
1722       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1723   if (Name == WantedName)
1724     return std::nullopt;
1725 
1726   Function *NewDecl = [&] {
1727     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1728       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1729         if (ExistingF->getFunctionType() == F->getFunctionType())
1730           return ExistingF;
1731 
1732       // The name already exists, but is not a function or has the wrong
1733       // prototype. Make place for the new one by renaming the old version.
1734       // Either this old version will be removed later on or the module is
1735       // invalid and we'll get an error.
1736       ExistingGV->setName(WantedName + ".renamed");
1737     }
1738     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1739   }();
1740 
1741   NewDecl->setCallingConv(F->getCallingConv());
1742   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1743          "Shouldn't change the signature");
1744   return NewDecl;
1745 }
1746 
1747 /// hasAddressTaken - returns true if there are any uses of this function
1748 /// other than direct calls or invokes to it. Optionally ignores callback
1749 /// uses, assume like pointer annotation calls, and references in llvm.used
1750 /// and llvm.compiler.used variables.
1751 bool Function::hasAddressTaken(const User **PutOffender,
1752                                bool IgnoreCallbackUses,
1753                                bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1754                                bool IgnoreARCAttachedCall) const {
1755   for (const Use &U : uses()) {
1756     const User *FU = U.getUser();
1757     if (isa<BlockAddress>(FU))
1758       continue;
1759 
1760     if (IgnoreCallbackUses) {
1761       AbstractCallSite ACS(&U);
1762       if (ACS && ACS.isCallbackCall())
1763         continue;
1764     }
1765 
1766     const auto *Call = dyn_cast<CallBase>(FU);
1767     if (!Call) {
1768       if (IgnoreAssumeLikeCalls &&
1769           isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1770           all_of(FU->users(), [](const User *U) {
1771             if (const auto *I = dyn_cast<IntrinsicInst>(U))
1772               return I->isAssumeLikeIntrinsic();
1773             return false;
1774           })) {
1775         continue;
1776       }
1777 
1778       if (IgnoreLLVMUsed && !FU->user_empty()) {
1779         const User *FUU = FU;
1780         if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1781             FU->hasOneUse() && !FU->user_begin()->user_empty())
1782           FUU = *FU->user_begin();
1783         if (llvm::all_of(FUU->users(), [](const User *U) {
1784               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1785                 return GV->hasName() &&
1786                        (GV->getName().equals("llvm.compiler.used") ||
1787                         GV->getName().equals("llvm.used"));
1788               return false;
1789             }))
1790           continue;
1791       }
1792       if (PutOffender)
1793         *PutOffender = FU;
1794       return true;
1795     }
1796 
1797     if (IgnoreAssumeLikeCalls) {
1798       if (const auto *I = dyn_cast<IntrinsicInst>(Call))
1799         if (I->isAssumeLikeIntrinsic())
1800           continue;
1801     }
1802 
1803     if (!Call->isCallee(&U) || Call->getFunctionType() != getFunctionType()) {
1804       if (IgnoreARCAttachedCall &&
1805           Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
1806                                       U.getOperandNo()))
1807         continue;
1808 
1809       if (PutOffender)
1810         *PutOffender = FU;
1811       return true;
1812     }
1813   }
1814   return false;
1815 }
1816 
1817 bool Function::isDefTriviallyDead() const {
1818   // Check the linkage
1819   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1820       !hasAvailableExternallyLinkage())
1821     return false;
1822 
1823   // Check if the function is used by anything other than a blockaddress.
1824   for (const User *U : users())
1825     if (!isa<BlockAddress>(U))
1826       return false;
1827 
1828   return true;
1829 }
1830 
1831 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1832 /// setjmp or other function that gcc recognizes as "returning twice".
1833 bool Function::callsFunctionThatReturnsTwice() const {
1834   for (const Instruction &I : instructions(this))
1835     if (const auto *Call = dyn_cast<CallBase>(&I))
1836       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1837         return true;
1838 
1839   return false;
1840 }
1841 
1842 Constant *Function::getPersonalityFn() const {
1843   assert(hasPersonalityFn() && getNumOperands());
1844   return cast<Constant>(Op<0>());
1845 }
1846 
1847 void Function::setPersonalityFn(Constant *Fn) {
1848   setHungoffOperand<0>(Fn);
1849   setValueSubclassDataBit(3, Fn != nullptr);
1850 }
1851 
1852 Constant *Function::getPrefixData() const {
1853   assert(hasPrefixData() && getNumOperands());
1854   return cast<Constant>(Op<1>());
1855 }
1856 
1857 void Function::setPrefixData(Constant *PrefixData) {
1858   setHungoffOperand<1>(PrefixData);
1859   setValueSubclassDataBit(1, PrefixData != nullptr);
1860 }
1861 
1862 Constant *Function::getPrologueData() const {
1863   assert(hasPrologueData() && getNumOperands());
1864   return cast<Constant>(Op<2>());
1865 }
1866 
1867 void Function::setPrologueData(Constant *PrologueData) {
1868   setHungoffOperand<2>(PrologueData);
1869   setValueSubclassDataBit(2, PrologueData != nullptr);
1870 }
1871 
1872 void Function::allocHungoffUselist() {
1873   // If we've already allocated a uselist, stop here.
1874   if (getNumOperands())
1875     return;
1876 
1877   allocHungoffUses(3, /*IsPhi=*/ false);
1878   setNumHungOffUseOperands(3);
1879 
1880   // Initialize the uselist with placeholder operands to allow traversal.
1881   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1882   Op<0>().set(CPN);
1883   Op<1>().set(CPN);
1884   Op<2>().set(CPN);
1885 }
1886 
1887 template <int Idx>
1888 void Function::setHungoffOperand(Constant *C) {
1889   if (C) {
1890     allocHungoffUselist();
1891     Op<Idx>().set(C);
1892   } else if (getNumOperands()) {
1893     Op<Idx>().set(
1894         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1895   }
1896 }
1897 
1898 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1899   assert(Bit < 16 && "SubclassData contains only 16 bits");
1900   if (On)
1901     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1902   else
1903     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1904 }
1905 
1906 void Function::setEntryCount(ProfileCount Count,
1907                              const DenseSet<GlobalValue::GUID> *S) {
1908 #if !defined(NDEBUG)
1909   auto PrevCount = getEntryCount();
1910   assert(!PrevCount || PrevCount->getType() == Count.getType());
1911 #endif
1912 
1913   auto ImportGUIDs = getImportGUIDs();
1914   if (S == nullptr && ImportGUIDs.size())
1915     S = &ImportGUIDs;
1916 
1917   MDBuilder MDB(getContext());
1918   setMetadata(
1919       LLVMContext::MD_prof,
1920       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1921 }
1922 
1923 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1924                              const DenseSet<GlobalValue::GUID> *Imports) {
1925   setEntryCount(ProfileCount(Count, Type), Imports);
1926 }
1927 
1928 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
1929   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1930   if (MD && MD->getOperand(0))
1931     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1932       if (MDS->getString().equals("function_entry_count")) {
1933         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1934         uint64_t Count = CI->getValue().getZExtValue();
1935         // A value of -1 is used for SamplePGO when there were no samples.
1936         // Treat this the same as unknown.
1937         if (Count == (uint64_t)-1)
1938           return std::nullopt;
1939         return ProfileCount(Count, PCT_Real);
1940       } else if (AllowSynthetic &&
1941                  MDS->getString().equals("synthetic_function_entry_count")) {
1942         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1943         uint64_t Count = CI->getValue().getZExtValue();
1944         return ProfileCount(Count, PCT_Synthetic);
1945       }
1946     }
1947   return std::nullopt;
1948 }
1949 
1950 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1951   DenseSet<GlobalValue::GUID> R;
1952   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1953     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1954       if (MDS->getString().equals("function_entry_count"))
1955         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1956           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1957                        ->getValue()
1958                        .getZExtValue());
1959   return R;
1960 }
1961 
1962 void Function::setSectionPrefix(StringRef Prefix) {
1963   MDBuilder MDB(getContext());
1964   setMetadata(LLVMContext::MD_section_prefix,
1965               MDB.createFunctionSectionPrefix(Prefix));
1966 }
1967 
1968 std::optional<StringRef> Function::getSectionPrefix() const {
1969   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1970     assert(cast<MDString>(MD->getOperand(0))
1971                ->getString()
1972                .equals("function_section_prefix") &&
1973            "Metadata not match");
1974     return cast<MDString>(MD->getOperand(1))->getString();
1975   }
1976   return std::nullopt;
1977 }
1978 
1979 bool Function::nullPointerIsDefined() const {
1980   return hasFnAttribute(Attribute::NullPointerIsValid);
1981 }
1982 
1983 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1984   if (F && F->nullPointerIsDefined())
1985     return true;
1986 
1987   if (AS != 0)
1988     return true;
1989 
1990   return false;
1991 }
1992