xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Dominators.cpp (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements simple dominator construction algorithms for finding
10 // forward dominators.  Postdominators are available in libanalysis, but are not
11 // included in libvmcore, because it's not needed.  Forward dominators are
12 // needed to support the Verifier pass.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/IR/Dominators.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/Config/llvm-config.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/PassManager.h"
24 #include "llvm/InitializePasses.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/GenericDomTreeConstruction.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <algorithm>
30 using namespace llvm;
31 
32 bool llvm::VerifyDomInfo = false;
33 static cl::opt<bool, true>
34     VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), cl::Hidden,
35                    cl::desc("Verify dominator info (time consuming)"));
36 
37 #ifdef EXPENSIVE_CHECKS
38 static constexpr bool ExpensiveChecksEnabled = true;
39 #else
40 static constexpr bool ExpensiveChecksEnabled = false;
41 #endif
42 
43 bool BasicBlockEdge::isSingleEdge() const {
44   const Instruction *TI = Start->getTerminator();
45   unsigned NumEdgesToEnd = 0;
46   for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
47     if (TI->getSuccessor(i) == End)
48       ++NumEdgesToEnd;
49     if (NumEdgesToEnd >= 2)
50       return false;
51   }
52   assert(NumEdgesToEnd == 1);
53   return true;
54 }
55 
56 //===----------------------------------------------------------------------===//
57 //  DominatorTree Implementation
58 //===----------------------------------------------------------------------===//
59 //
60 // Provide public access to DominatorTree information.  Implementation details
61 // can be found in Dominators.h, GenericDomTree.h, and
62 // GenericDomTreeConstruction.h.
63 //
64 //===----------------------------------------------------------------------===//
65 
66 template class llvm::DomTreeNodeBase<BasicBlock>;
67 template class llvm::DominatorTreeBase<BasicBlock, false>; // DomTreeBase
68 template class llvm::DominatorTreeBase<BasicBlock, true>; // PostDomTreeBase
69 
70 template class llvm::cfg::Update<BasicBlock *>;
71 
72 template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBDomTree>(
73     DomTreeBuilder::BBDomTree &DT);
74 template void
75 llvm::DomTreeBuilder::CalculateWithUpdates<DomTreeBuilder::BBDomTree>(
76     DomTreeBuilder::BBDomTree &DT, BBUpdates U);
77 
78 template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBPostDomTree>(
79     DomTreeBuilder::BBPostDomTree &DT);
80 // No CalculateWithUpdates<PostDomTree> instantiation, unless a usecase arises.
81 
82 template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBDomTree>(
83     DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To);
84 template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBPostDomTree>(
85     DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To);
86 
87 template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBDomTree>(
88     DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To);
89 template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBPostDomTree>(
90     DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To);
91 
92 template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBDomTree>(
93     DomTreeBuilder::BBDomTree &DT, DomTreeBuilder::BBUpdates);
94 template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBPostDomTree>(
95     DomTreeBuilder::BBPostDomTree &DT, DomTreeBuilder::BBUpdates);
96 
97 template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBDomTree>(
98     const DomTreeBuilder::BBDomTree &DT,
99     DomTreeBuilder::BBDomTree::VerificationLevel VL);
100 template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBPostDomTree>(
101     const DomTreeBuilder::BBPostDomTree &DT,
102     DomTreeBuilder::BBPostDomTree::VerificationLevel VL);
103 
104 bool DominatorTree::invalidate(Function &F, const PreservedAnalyses &PA,
105                                FunctionAnalysisManager::Invalidator &) {
106   // Check whether the analysis, all analyses on functions, or the function's
107   // CFG have been preserved.
108   auto PAC = PA.getChecker<DominatorTreeAnalysis>();
109   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
110            PAC.preservedSet<CFGAnalyses>());
111 }
112 
113 // dominates - Return true if Def dominates a use in User. This performs
114 // the special checks necessary if Def and User are in the same basic block.
115 // Note that Def doesn't dominate a use in Def itself!
116 bool DominatorTree::dominates(const Instruction *Def,
117                               const Instruction *User) const {
118   const BasicBlock *UseBB = User->getParent();
119   const BasicBlock *DefBB = Def->getParent();
120 
121   // Any unreachable use is dominated, even if Def == User.
122   if (!isReachableFromEntry(UseBB))
123     return true;
124 
125   // Unreachable definitions don't dominate anything.
126   if (!isReachableFromEntry(DefBB))
127     return false;
128 
129   // An instruction doesn't dominate a use in itself.
130   if (Def == User)
131     return false;
132 
133   // The value defined by an invoke dominates an instruction only if it
134   // dominates every instruction in UseBB.
135   // A PHI is dominated only if the instruction dominates every possible use in
136   // the UseBB.
137   if (isa<InvokeInst>(Def) || isa<PHINode>(User))
138     return dominates(Def, UseBB);
139 
140   if (DefBB != UseBB)
141     return dominates(DefBB, UseBB);
142 
143   // Loop through the basic block until we find Def or User.
144   BasicBlock::const_iterator I = DefBB->begin();
145   for (; &*I != Def && &*I != User; ++I)
146     /*empty*/;
147 
148   return &*I == Def;
149 }
150 
151 // true if Def would dominate a use in any instruction in UseBB.
152 // note that dominates(Def, Def->getParent()) is false.
153 bool DominatorTree::dominates(const Instruction *Def,
154                               const BasicBlock *UseBB) const {
155   const BasicBlock *DefBB = Def->getParent();
156 
157   // Any unreachable use is dominated, even if DefBB == UseBB.
158   if (!isReachableFromEntry(UseBB))
159     return true;
160 
161   // Unreachable definitions don't dominate anything.
162   if (!isReachableFromEntry(DefBB))
163     return false;
164 
165   if (DefBB == UseBB)
166     return false;
167 
168   // Invoke results are only usable in the normal destination, not in the
169   // exceptional destination.
170   if (const auto *II = dyn_cast<InvokeInst>(Def)) {
171     BasicBlock *NormalDest = II->getNormalDest();
172     BasicBlockEdge E(DefBB, NormalDest);
173     return dominates(E, UseBB);
174   }
175 
176   return dominates(DefBB, UseBB);
177 }
178 
179 bool DominatorTree::dominates(const BasicBlockEdge &BBE,
180                               const BasicBlock *UseBB) const {
181   // If the BB the edge ends in doesn't dominate the use BB, then the
182   // edge also doesn't.
183   const BasicBlock *Start = BBE.getStart();
184   const BasicBlock *End = BBE.getEnd();
185   if (!dominates(End, UseBB))
186     return false;
187 
188   // Simple case: if the end BB has a single predecessor, the fact that it
189   // dominates the use block implies that the edge also does.
190   if (End->getSinglePredecessor())
191     return true;
192 
193   // The normal edge from the invoke is critical. Conceptually, what we would
194   // like to do is split it and check if the new block dominates the use.
195   // With X being the new block, the graph would look like:
196   //
197   //        DefBB
198   //          /\      .  .
199   //         /  \     .  .
200   //        /    \    .  .
201   //       /      \   |  |
202   //      A        X  B  C
203   //      |         \ | /
204   //      .          \|/
205   //      .      NormalDest
206   //      .
207   //
208   // Given the definition of dominance, NormalDest is dominated by X iff X
209   // dominates all of NormalDest's predecessors (X, B, C in the example). X
210   // trivially dominates itself, so we only have to find if it dominates the
211   // other predecessors. Since the only way out of X is via NormalDest, X can
212   // only properly dominate a node if NormalDest dominates that node too.
213   int IsDuplicateEdge = 0;
214   for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
215        PI != E; ++PI) {
216     const BasicBlock *BB = *PI;
217     if (BB == Start) {
218       // If there are multiple edges between Start and End, by definition they
219       // can't dominate anything.
220       if (IsDuplicateEdge++)
221         return false;
222       continue;
223     }
224 
225     if (!dominates(End, BB))
226       return false;
227   }
228   return true;
229 }
230 
231 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
232   Instruction *UserInst = cast<Instruction>(U.getUser());
233   // A PHI in the end of the edge is dominated by it.
234   PHINode *PN = dyn_cast<PHINode>(UserInst);
235   if (PN && PN->getParent() == BBE.getEnd() &&
236       PN->getIncomingBlock(U) == BBE.getStart())
237     return true;
238 
239   // Otherwise use the edge-dominates-block query, which
240   // handles the crazy critical edge cases properly.
241   const BasicBlock *UseBB;
242   if (PN)
243     UseBB = PN->getIncomingBlock(U);
244   else
245     UseBB = UserInst->getParent();
246   return dominates(BBE, UseBB);
247 }
248 
249 bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
250   Instruction *UserInst = cast<Instruction>(U.getUser());
251   const BasicBlock *DefBB = Def->getParent();
252 
253   // Determine the block in which the use happens. PHI nodes use
254   // their operands on edges; simulate this by thinking of the use
255   // happening at the end of the predecessor block.
256   const BasicBlock *UseBB;
257   if (PHINode *PN = dyn_cast<PHINode>(UserInst))
258     UseBB = PN->getIncomingBlock(U);
259   else
260     UseBB = UserInst->getParent();
261 
262   // Any unreachable use is dominated, even if Def == User.
263   if (!isReachableFromEntry(UseBB))
264     return true;
265 
266   // Unreachable definitions don't dominate anything.
267   if (!isReachableFromEntry(DefBB))
268     return false;
269 
270   // Invoke instructions define their return values on the edges to their normal
271   // successors, so we have to handle them specially.
272   // Among other things, this means they don't dominate anything in
273   // their own block, except possibly a phi, so we don't need to
274   // walk the block in any case.
275   if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
276     BasicBlock *NormalDest = II->getNormalDest();
277     BasicBlockEdge E(DefBB, NormalDest);
278     return dominates(E, U);
279   }
280 
281   // If the def and use are in different blocks, do a simple CFG dominator
282   // tree query.
283   if (DefBB != UseBB)
284     return dominates(DefBB, UseBB);
285 
286   // Ok, def and use are in the same block. If the def is an invoke, it
287   // doesn't dominate anything in the block. If it's a PHI, it dominates
288   // everything in the block.
289   if (isa<PHINode>(UserInst))
290     return true;
291 
292   // Otherwise, just loop through the basic block until we find Def or User.
293   BasicBlock::const_iterator I = DefBB->begin();
294   for (; &*I != Def && &*I != UserInst; ++I)
295     /*empty*/;
296 
297   return &*I != UserInst;
298 }
299 
300 bool DominatorTree::isReachableFromEntry(const Use &U) const {
301   Instruction *I = dyn_cast<Instruction>(U.getUser());
302 
303   // ConstantExprs aren't really reachable from the entry block, but they
304   // don't need to be treated like unreachable code either.
305   if (!I) return true;
306 
307   // PHI nodes use their operands on their incoming edges.
308   if (PHINode *PN = dyn_cast<PHINode>(I))
309     return isReachableFromEntry(PN->getIncomingBlock(U));
310 
311   // Everything else uses their operands in their own block.
312   return isReachableFromEntry(I->getParent());
313 }
314 
315 //===----------------------------------------------------------------------===//
316 //  DominatorTreeAnalysis and related pass implementations
317 //===----------------------------------------------------------------------===//
318 //
319 // This implements the DominatorTreeAnalysis which is used with the new pass
320 // manager. It also implements some methods from utility passes.
321 //
322 //===----------------------------------------------------------------------===//
323 
324 DominatorTree DominatorTreeAnalysis::run(Function &F,
325                                          FunctionAnalysisManager &) {
326   DominatorTree DT;
327   DT.recalculate(F);
328   return DT;
329 }
330 
331 AnalysisKey DominatorTreeAnalysis::Key;
332 
333 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
334 
335 PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
336                                                 FunctionAnalysisManager &AM) {
337   OS << "DominatorTree for function: " << F.getName() << "\n";
338   AM.getResult<DominatorTreeAnalysis>(F).print(OS);
339 
340   return PreservedAnalyses::all();
341 }
342 
343 PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
344                                                  FunctionAnalysisManager &AM) {
345   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
346   assert(DT.verify());
347   (void)DT;
348   return PreservedAnalyses::all();
349 }
350 
351 //===----------------------------------------------------------------------===//
352 //  DominatorTreeWrapperPass Implementation
353 //===----------------------------------------------------------------------===//
354 //
355 // The implementation details of the wrapper pass that holds a DominatorTree
356 // suitable for use with the legacy pass manager.
357 //
358 //===----------------------------------------------------------------------===//
359 
360 char DominatorTreeWrapperPass::ID = 0;
361 
362 DominatorTreeWrapperPass::DominatorTreeWrapperPass() : FunctionPass(ID) {
363   initializeDominatorTreeWrapperPassPass(*PassRegistry::getPassRegistry());
364 }
365 
366 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
367                 "Dominator Tree Construction", true, true)
368 
369 bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
370   DT.recalculate(F);
371   return false;
372 }
373 
374 void DominatorTreeWrapperPass::verifyAnalysis() const {
375   if (VerifyDomInfo)
376     assert(DT.verify(DominatorTree::VerificationLevel::Full));
377   else if (ExpensiveChecksEnabled)
378     assert(DT.verify(DominatorTree::VerificationLevel::Basic));
379 }
380 
381 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
382   DT.print(OS);
383 }
384 
385