xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Dominators.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements simple dominator construction algorithms for finding
10 // forward dominators.  Postdominators are available in libanalysis, but are not
11 // included in libvmcore, because it's not needed.  Forward dominators are
12 // needed to support the Verifier pass.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/IR/Dominators.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/Config/llvm-config.h"
19 #include "llvm/IR/CFG.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/Instruction.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/PassManager.h"
24 #include "llvm/InitializePasses.h"
25 #include "llvm/PassRegistry.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/GenericDomTreeConstruction.h"
29 #include "llvm/Support/raw_ostream.h"
30 
31 #include <cassert>
32 
33 namespace llvm {
34 class Argument;
35 class Constant;
36 class Value;
37 } // namespace llvm
38 using namespace llvm;
39 
40 bool llvm::VerifyDomInfo = false;
41 static cl::opt<bool, true>
42     VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), cl::Hidden,
43                    cl::desc("Verify dominator info (time consuming)"));
44 
45 #ifdef EXPENSIVE_CHECKS
46 static constexpr bool ExpensiveChecksEnabled = true;
47 #else
48 static constexpr bool ExpensiveChecksEnabled = false;
49 #endif
50 
51 bool BasicBlockEdge::isSingleEdge() const {
52   unsigned NumEdgesToEnd = 0;
53   for (const BasicBlock *Succ : successors(Start)) {
54     if (Succ == End)
55       ++NumEdgesToEnd;
56     if (NumEdgesToEnd >= 2)
57       return false;
58   }
59   assert(NumEdgesToEnd == 1);
60   return true;
61 }
62 
63 //===----------------------------------------------------------------------===//
64 //  DominatorTree Implementation
65 //===----------------------------------------------------------------------===//
66 //
67 // Provide public access to DominatorTree information.  Implementation details
68 // can be found in Dominators.h, GenericDomTree.h, and
69 // GenericDomTreeConstruction.h.
70 //
71 //===----------------------------------------------------------------------===//
72 
73 template class llvm::DomTreeNodeBase<BasicBlock>;
74 template class llvm::DominatorTreeBase<BasicBlock, false>; // DomTreeBase
75 template class llvm::DominatorTreeBase<BasicBlock, true>; // PostDomTreeBase
76 
77 template class llvm::cfg::Update<BasicBlock *>;
78 
79 template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBDomTree>(
80     DomTreeBuilder::BBDomTree &DT);
81 template void
82 llvm::DomTreeBuilder::CalculateWithUpdates<DomTreeBuilder::BBDomTree>(
83     DomTreeBuilder::BBDomTree &DT, BBUpdates U);
84 
85 template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBPostDomTree>(
86     DomTreeBuilder::BBPostDomTree &DT);
87 // No CalculateWithUpdates<PostDomTree> instantiation, unless a usecase arises.
88 
89 template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBDomTree>(
90     DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To);
91 template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBPostDomTree>(
92     DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To);
93 
94 template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBDomTree>(
95     DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To);
96 template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBPostDomTree>(
97     DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To);
98 
99 template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBDomTree>(
100     DomTreeBuilder::BBDomTree &DT, DomTreeBuilder::BBDomTreeGraphDiff &,
101     DomTreeBuilder::BBDomTreeGraphDiff *);
102 template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBPostDomTree>(
103     DomTreeBuilder::BBPostDomTree &DT, DomTreeBuilder::BBPostDomTreeGraphDiff &,
104     DomTreeBuilder::BBPostDomTreeGraphDiff *);
105 
106 template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBDomTree>(
107     const DomTreeBuilder::BBDomTree &DT,
108     DomTreeBuilder::BBDomTree::VerificationLevel VL);
109 template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBPostDomTree>(
110     const DomTreeBuilder::BBPostDomTree &DT,
111     DomTreeBuilder::BBPostDomTree::VerificationLevel VL);
112 
113 bool DominatorTree::invalidate(Function &F, const PreservedAnalyses &PA,
114                                FunctionAnalysisManager::Invalidator &) {
115   // Check whether the analysis, all analyses on functions, or the function's
116   // CFG have been preserved.
117   auto PAC = PA.getChecker<DominatorTreeAnalysis>();
118   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
119            PAC.preservedSet<CFGAnalyses>());
120 }
121 
122 bool DominatorTree::dominates(const BasicBlock *BB, const Use &U) const {
123   Instruction *UserInst = cast<Instruction>(U.getUser());
124   if (auto *PN = dyn_cast<PHINode>(UserInst))
125     // A phi use using a value from a block is dominated by the end of that
126     // block.  Note that the phi's parent block may not be.
127     return dominates(BB, PN->getIncomingBlock(U));
128   else
129     return properlyDominates(BB, UserInst->getParent());
130 }
131 
132 // dominates - Return true if Def dominates a use in User. This performs
133 // the special checks necessary if Def and User are in the same basic block.
134 // Note that Def doesn't dominate a use in Def itself!
135 bool DominatorTree::dominates(const Value *DefV,
136                               const Instruction *User) const {
137   const Instruction *Def = dyn_cast<Instruction>(DefV);
138   if (!Def) {
139     assert((isa<Argument>(DefV) || isa<Constant>(DefV)) &&
140            "Should be called with an instruction, argument or constant");
141     return true; // Arguments and constants dominate everything.
142   }
143 
144   const BasicBlock *UseBB = User->getParent();
145   const BasicBlock *DefBB = Def->getParent();
146 
147   // Any unreachable use is dominated, even if Def == User.
148   if (!isReachableFromEntry(UseBB))
149     return true;
150 
151   // Unreachable definitions don't dominate anything.
152   if (!isReachableFromEntry(DefBB))
153     return false;
154 
155   // An instruction doesn't dominate a use in itself.
156   if (Def == User)
157     return false;
158 
159   // The value defined by an invoke dominates an instruction only if it
160   // dominates every instruction in UseBB.
161   // A PHI is dominated only if the instruction dominates every possible use in
162   // the UseBB.
163   if (isa<InvokeInst>(Def) || isa<CallBrInst>(Def) || isa<PHINode>(User))
164     return dominates(Def, UseBB);
165 
166   if (DefBB != UseBB)
167     return dominates(DefBB, UseBB);
168 
169   return Def->comesBefore(User);
170 }
171 
172 // true if Def would dominate a use in any instruction in UseBB.
173 // note that dominates(Def, Def->getParent()) is false.
174 bool DominatorTree::dominates(const Instruction *Def,
175                               const BasicBlock *UseBB) const {
176   const BasicBlock *DefBB = Def->getParent();
177 
178   // Any unreachable use is dominated, even if DefBB == UseBB.
179   if (!isReachableFromEntry(UseBB))
180     return true;
181 
182   // Unreachable definitions don't dominate anything.
183   if (!isReachableFromEntry(DefBB))
184     return false;
185 
186   if (DefBB == UseBB)
187     return false;
188 
189   // Invoke results are only usable in the normal destination, not in the
190   // exceptional destination.
191   if (const auto *II = dyn_cast<InvokeInst>(Def)) {
192     BasicBlock *NormalDest = II->getNormalDest();
193     BasicBlockEdge E(DefBB, NormalDest);
194     return dominates(E, UseBB);
195   }
196 
197   return dominates(DefBB, UseBB);
198 }
199 
200 bool DominatorTree::dominates(const BasicBlockEdge &BBE,
201                               const BasicBlock *UseBB) const {
202   // If the BB the edge ends in doesn't dominate the use BB, then the
203   // edge also doesn't.
204   const BasicBlock *Start = BBE.getStart();
205   const BasicBlock *End = BBE.getEnd();
206   if (!dominates(End, UseBB))
207     return false;
208 
209   // Simple case: if the end BB has a single predecessor, the fact that it
210   // dominates the use block implies that the edge also does.
211   if (End->getSinglePredecessor())
212     return true;
213 
214   // The normal edge from the invoke is critical. Conceptually, what we would
215   // like to do is split it and check if the new block dominates the use.
216   // With X being the new block, the graph would look like:
217   //
218   //        DefBB
219   //          /\      .  .
220   //         /  \     .  .
221   //        /    \    .  .
222   //       /      \   |  |
223   //      A        X  B  C
224   //      |         \ | /
225   //      .          \|/
226   //      .      NormalDest
227   //      .
228   //
229   // Given the definition of dominance, NormalDest is dominated by X iff X
230   // dominates all of NormalDest's predecessors (X, B, C in the example). X
231   // trivially dominates itself, so we only have to find if it dominates the
232   // other predecessors. Since the only way out of X is via NormalDest, X can
233   // only properly dominate a node if NormalDest dominates that node too.
234   int IsDuplicateEdge = 0;
235   for (const BasicBlock *BB : predecessors(End)) {
236     if (BB == Start) {
237       // If there are multiple edges between Start and End, by definition they
238       // can't dominate anything.
239       if (IsDuplicateEdge++)
240         return false;
241       continue;
242     }
243 
244     if (!dominates(End, BB))
245       return false;
246   }
247   return true;
248 }
249 
250 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
251   Instruction *UserInst = cast<Instruction>(U.getUser());
252   // A PHI in the end of the edge is dominated by it.
253   PHINode *PN = dyn_cast<PHINode>(UserInst);
254   if (PN && PN->getParent() == BBE.getEnd() &&
255       PN->getIncomingBlock(U) == BBE.getStart())
256     return true;
257 
258   // Otherwise use the edge-dominates-block query, which
259   // handles the crazy critical edge cases properly.
260   const BasicBlock *UseBB;
261   if (PN)
262     UseBB = PN->getIncomingBlock(U);
263   else
264     UseBB = UserInst->getParent();
265   return dominates(BBE, UseBB);
266 }
267 
268 bool DominatorTree::dominates(const Value *DefV, const Use &U) const {
269   const Instruction *Def = dyn_cast<Instruction>(DefV);
270   if (!Def) {
271     assert((isa<Argument>(DefV) || isa<Constant>(DefV)) &&
272            "Should be called with an instruction, argument or constant");
273     return true; // Arguments and constants dominate everything.
274   }
275 
276   Instruction *UserInst = cast<Instruction>(U.getUser());
277   const BasicBlock *DefBB = Def->getParent();
278 
279   // Determine the block in which the use happens. PHI nodes use
280   // their operands on edges; simulate this by thinking of the use
281   // happening at the end of the predecessor block.
282   const BasicBlock *UseBB;
283   if (PHINode *PN = dyn_cast<PHINode>(UserInst))
284     UseBB = PN->getIncomingBlock(U);
285   else
286     UseBB = UserInst->getParent();
287 
288   // Any unreachable use is dominated, even if Def == User.
289   if (!isReachableFromEntry(UseBB))
290     return true;
291 
292   // Unreachable definitions don't dominate anything.
293   if (!isReachableFromEntry(DefBB))
294     return false;
295 
296   // Invoke instructions define their return values on the edges to their normal
297   // successors, so we have to handle them specially.
298   // Among other things, this means they don't dominate anything in
299   // their own block, except possibly a phi, so we don't need to
300   // walk the block in any case.
301   if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
302     BasicBlock *NormalDest = II->getNormalDest();
303     BasicBlockEdge E(DefBB, NormalDest);
304     return dominates(E, U);
305   }
306 
307   // If the def and use are in different blocks, do a simple CFG dominator
308   // tree query.
309   if (DefBB != UseBB)
310     return dominates(DefBB, UseBB);
311 
312   // Ok, def and use are in the same block. If the def is an invoke, it
313   // doesn't dominate anything in the block. If it's a PHI, it dominates
314   // everything in the block.
315   if (isa<PHINode>(UserInst))
316     return true;
317 
318   return Def->comesBefore(UserInst);
319 }
320 
321 bool DominatorTree::isReachableFromEntry(const Use &U) const {
322   Instruction *I = dyn_cast<Instruction>(U.getUser());
323 
324   // ConstantExprs aren't really reachable from the entry block, but they
325   // don't need to be treated like unreachable code either.
326   if (!I) return true;
327 
328   // PHI nodes use their operands on their incoming edges.
329   if (PHINode *PN = dyn_cast<PHINode>(I))
330     return isReachableFromEntry(PN->getIncomingBlock(U));
331 
332   // Everything else uses their operands in their own block.
333   return isReachableFromEntry(I->getParent());
334 }
335 
336 // Edge BBE1 dominates edge BBE2 if they match or BBE1 dominates start of BBE2.
337 bool DominatorTree::dominates(const BasicBlockEdge &BBE1,
338                               const BasicBlockEdge &BBE2) const {
339   if (BBE1.getStart() == BBE2.getStart() && BBE1.getEnd() == BBE2.getEnd())
340     return true;
341   return dominates(BBE1, BBE2.getStart());
342 }
343 
344 Instruction *DominatorTree::findNearestCommonDominator(Instruction *I1,
345                                                        Instruction *I2) const {
346   BasicBlock *BB1 = I1->getParent();
347   BasicBlock *BB2 = I2->getParent();
348   if (BB1 == BB2)
349     return I1->comesBefore(I2) ? I1 : I2;
350   if (!isReachableFromEntry(BB2))
351     return I1;
352   if (!isReachableFromEntry(BB1))
353     return I2;
354   BasicBlock *DomBB = findNearestCommonDominator(BB1, BB2);
355   if (BB1 == DomBB)
356     return I1;
357   if (BB2 == DomBB)
358     return I2;
359   return DomBB->getTerminator();
360 }
361 
362 //===----------------------------------------------------------------------===//
363 //  DominatorTreeAnalysis and related pass implementations
364 //===----------------------------------------------------------------------===//
365 //
366 // This implements the DominatorTreeAnalysis which is used with the new pass
367 // manager. It also implements some methods from utility passes.
368 //
369 //===----------------------------------------------------------------------===//
370 
371 DominatorTree DominatorTreeAnalysis::run(Function &F,
372                                          FunctionAnalysisManager &) {
373   DominatorTree DT;
374   DT.recalculate(F);
375   return DT;
376 }
377 
378 AnalysisKey DominatorTreeAnalysis::Key;
379 
380 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
381 
382 PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
383                                                 FunctionAnalysisManager &AM) {
384   OS << "DominatorTree for function: " << F.getName() << "\n";
385   AM.getResult<DominatorTreeAnalysis>(F).print(OS);
386 
387   return PreservedAnalyses::all();
388 }
389 
390 PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
391                                                  FunctionAnalysisManager &AM) {
392   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
393   assert(DT.verify());
394   (void)DT;
395   return PreservedAnalyses::all();
396 }
397 
398 //===----------------------------------------------------------------------===//
399 //  DominatorTreeWrapperPass Implementation
400 //===----------------------------------------------------------------------===//
401 //
402 // The implementation details of the wrapper pass that holds a DominatorTree
403 // suitable for use with the legacy pass manager.
404 //
405 //===----------------------------------------------------------------------===//
406 
407 char DominatorTreeWrapperPass::ID = 0;
408 
409 DominatorTreeWrapperPass::DominatorTreeWrapperPass() : FunctionPass(ID) {
410   initializeDominatorTreeWrapperPassPass(*PassRegistry::getPassRegistry());
411 }
412 
413 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
414                 "Dominator Tree Construction", true, true)
415 
416 bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
417   DT.recalculate(F);
418   return false;
419 }
420 
421 void DominatorTreeWrapperPass::verifyAnalysis() const {
422   if (VerifyDomInfo)
423     assert(DT.verify(DominatorTree::VerificationLevel::Full));
424   else if (ExpensiveChecksEnabled)
425     assert(DT.verify(DominatorTree::VerificationLevel::Basic));
426 }
427 
428 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
429   DT.print(OS);
430 }
431