1 //===- Dominators.cpp - Dominator Calculation -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements simple dominator construction algorithms for finding 10 // forward dominators. Postdominators are available in libanalysis, but are not 11 // included in libvmcore, because it's not needed. Forward dominators are 12 // needed to support the Verifier pass. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/IR/Dominators.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/Config/llvm-config.h" 20 #include "llvm/IR/CFG.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/PassManager.h" 24 #include "llvm/InitializePasses.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/GenericDomTreeConstruction.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <algorithm> 30 using namespace llvm; 31 32 bool llvm::VerifyDomInfo = false; 33 static cl::opt<bool, true> 34 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), cl::Hidden, 35 cl::desc("Verify dominator info (time consuming)")); 36 37 #ifdef EXPENSIVE_CHECKS 38 static constexpr bool ExpensiveChecksEnabled = true; 39 #else 40 static constexpr bool ExpensiveChecksEnabled = false; 41 #endif 42 43 bool BasicBlockEdge::isSingleEdge() const { 44 const Instruction *TI = Start->getTerminator(); 45 unsigned NumEdgesToEnd = 0; 46 for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) { 47 if (TI->getSuccessor(i) == End) 48 ++NumEdgesToEnd; 49 if (NumEdgesToEnd >= 2) 50 return false; 51 } 52 assert(NumEdgesToEnd == 1); 53 return true; 54 } 55 56 //===----------------------------------------------------------------------===// 57 // DominatorTree Implementation 58 //===----------------------------------------------------------------------===// 59 // 60 // Provide public access to DominatorTree information. Implementation details 61 // can be found in Dominators.h, GenericDomTree.h, and 62 // GenericDomTreeConstruction.h. 63 // 64 //===----------------------------------------------------------------------===// 65 66 template class llvm::DomTreeNodeBase<BasicBlock>; 67 template class llvm::DominatorTreeBase<BasicBlock, false>; // DomTreeBase 68 template class llvm::DominatorTreeBase<BasicBlock, true>; // PostDomTreeBase 69 70 template class llvm::cfg::Update<BasicBlock *>; 71 72 template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBDomTree>( 73 DomTreeBuilder::BBDomTree &DT); 74 template void 75 llvm::DomTreeBuilder::CalculateWithUpdates<DomTreeBuilder::BBDomTree>( 76 DomTreeBuilder::BBDomTree &DT, BBUpdates U); 77 78 template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBPostDomTree>( 79 DomTreeBuilder::BBPostDomTree &DT); 80 // No CalculateWithUpdates<PostDomTree> instantiation, unless a usecase arises. 81 82 template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBDomTree>( 83 DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To); 84 template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBPostDomTree>( 85 DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To); 86 87 template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBDomTree>( 88 DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To); 89 template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBPostDomTree>( 90 DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To); 91 92 template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBDomTree>( 93 DomTreeBuilder::BBDomTree &DT, DomTreeBuilder::BBDomTreeGraphDiff &, 94 DomTreeBuilder::BBDomTreeGraphDiff *); 95 template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBPostDomTree>( 96 DomTreeBuilder::BBPostDomTree &DT, DomTreeBuilder::BBPostDomTreeGraphDiff &, 97 DomTreeBuilder::BBPostDomTreeGraphDiff *); 98 99 template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBDomTree>( 100 const DomTreeBuilder::BBDomTree &DT, 101 DomTreeBuilder::BBDomTree::VerificationLevel VL); 102 template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBPostDomTree>( 103 const DomTreeBuilder::BBPostDomTree &DT, 104 DomTreeBuilder::BBPostDomTree::VerificationLevel VL); 105 106 bool DominatorTree::invalidate(Function &F, const PreservedAnalyses &PA, 107 FunctionAnalysisManager::Invalidator &) { 108 // Check whether the analysis, all analyses on functions, or the function's 109 // CFG have been preserved. 110 auto PAC = PA.getChecker<DominatorTreeAnalysis>(); 111 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 112 PAC.preservedSet<CFGAnalyses>()); 113 } 114 115 // dominates - Return true if Def dominates a use in User. This performs 116 // the special checks necessary if Def and User are in the same basic block. 117 // Note that Def doesn't dominate a use in Def itself! 118 bool DominatorTree::dominates(const Value *DefV, 119 const Instruction *User) const { 120 const Instruction *Def = dyn_cast<Instruction>(DefV); 121 if (!Def) { 122 assert((isa<Argument>(DefV) || isa<Constant>(DefV)) && 123 "Should be called with an instruction, argument or constant"); 124 return true; // Arguments and constants dominate everything. 125 } 126 127 const BasicBlock *UseBB = User->getParent(); 128 const BasicBlock *DefBB = Def->getParent(); 129 130 // Any unreachable use is dominated, even if Def == User. 131 if (!isReachableFromEntry(UseBB)) 132 return true; 133 134 // Unreachable definitions don't dominate anything. 135 if (!isReachableFromEntry(DefBB)) 136 return false; 137 138 // An instruction doesn't dominate a use in itself. 139 if (Def == User) 140 return false; 141 142 // The value defined by an invoke dominates an instruction only if it 143 // dominates every instruction in UseBB. 144 // A PHI is dominated only if the instruction dominates every possible use in 145 // the UseBB. 146 if (isa<InvokeInst>(Def) || isa<CallBrInst>(Def) || isa<PHINode>(User)) 147 return dominates(Def, UseBB); 148 149 if (DefBB != UseBB) 150 return dominates(DefBB, UseBB); 151 152 return Def->comesBefore(User); 153 } 154 155 // true if Def would dominate a use in any instruction in UseBB. 156 // note that dominates(Def, Def->getParent()) is false. 157 bool DominatorTree::dominates(const Instruction *Def, 158 const BasicBlock *UseBB) const { 159 const BasicBlock *DefBB = Def->getParent(); 160 161 // Any unreachable use is dominated, even if DefBB == UseBB. 162 if (!isReachableFromEntry(UseBB)) 163 return true; 164 165 // Unreachable definitions don't dominate anything. 166 if (!isReachableFromEntry(DefBB)) 167 return false; 168 169 if (DefBB == UseBB) 170 return false; 171 172 // Invoke results are only usable in the normal destination, not in the 173 // exceptional destination. 174 if (const auto *II = dyn_cast<InvokeInst>(Def)) { 175 BasicBlock *NormalDest = II->getNormalDest(); 176 BasicBlockEdge E(DefBB, NormalDest); 177 return dominates(E, UseBB); 178 } 179 180 // Callbr results are similarly only usable in the default destination. 181 if (const auto *CBI = dyn_cast<CallBrInst>(Def)) { 182 BasicBlock *NormalDest = CBI->getDefaultDest(); 183 BasicBlockEdge E(DefBB, NormalDest); 184 return dominates(E, UseBB); 185 } 186 187 return dominates(DefBB, UseBB); 188 } 189 190 bool DominatorTree::dominates(const BasicBlockEdge &BBE, 191 const BasicBlock *UseBB) const { 192 // If the BB the edge ends in doesn't dominate the use BB, then the 193 // edge also doesn't. 194 const BasicBlock *Start = BBE.getStart(); 195 const BasicBlock *End = BBE.getEnd(); 196 if (!dominates(End, UseBB)) 197 return false; 198 199 // Simple case: if the end BB has a single predecessor, the fact that it 200 // dominates the use block implies that the edge also does. 201 if (End->getSinglePredecessor()) 202 return true; 203 204 // The normal edge from the invoke is critical. Conceptually, what we would 205 // like to do is split it and check if the new block dominates the use. 206 // With X being the new block, the graph would look like: 207 // 208 // DefBB 209 // /\ . . 210 // / \ . . 211 // / \ . . 212 // / \ | | 213 // A X B C 214 // | \ | / 215 // . \|/ 216 // . NormalDest 217 // . 218 // 219 // Given the definition of dominance, NormalDest is dominated by X iff X 220 // dominates all of NormalDest's predecessors (X, B, C in the example). X 221 // trivially dominates itself, so we only have to find if it dominates the 222 // other predecessors. Since the only way out of X is via NormalDest, X can 223 // only properly dominate a node if NormalDest dominates that node too. 224 int IsDuplicateEdge = 0; 225 for (const_pred_iterator PI = pred_begin(End), E = pred_end(End); 226 PI != E; ++PI) { 227 const BasicBlock *BB = *PI; 228 if (BB == Start) { 229 // If there are multiple edges between Start and End, by definition they 230 // can't dominate anything. 231 if (IsDuplicateEdge++) 232 return false; 233 continue; 234 } 235 236 if (!dominates(End, BB)) 237 return false; 238 } 239 return true; 240 } 241 242 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const { 243 Instruction *UserInst = cast<Instruction>(U.getUser()); 244 // A PHI in the end of the edge is dominated by it. 245 PHINode *PN = dyn_cast<PHINode>(UserInst); 246 if (PN && PN->getParent() == BBE.getEnd() && 247 PN->getIncomingBlock(U) == BBE.getStart()) 248 return true; 249 250 // Otherwise use the edge-dominates-block query, which 251 // handles the crazy critical edge cases properly. 252 const BasicBlock *UseBB; 253 if (PN) 254 UseBB = PN->getIncomingBlock(U); 255 else 256 UseBB = UserInst->getParent(); 257 return dominates(BBE, UseBB); 258 } 259 260 bool DominatorTree::dominates(const Value *DefV, const Use &U) const { 261 const Instruction *Def = dyn_cast<Instruction>(DefV); 262 if (!Def) { 263 assert((isa<Argument>(DefV) || isa<Constant>(DefV)) && 264 "Should be called with an instruction, argument or constant"); 265 return true; // Arguments and constants dominate everything. 266 } 267 268 Instruction *UserInst = cast<Instruction>(U.getUser()); 269 const BasicBlock *DefBB = Def->getParent(); 270 271 // Determine the block in which the use happens. PHI nodes use 272 // their operands on edges; simulate this by thinking of the use 273 // happening at the end of the predecessor block. 274 const BasicBlock *UseBB; 275 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 276 UseBB = PN->getIncomingBlock(U); 277 else 278 UseBB = UserInst->getParent(); 279 280 // Any unreachable use is dominated, even if Def == User. 281 if (!isReachableFromEntry(UseBB)) 282 return true; 283 284 // Unreachable definitions don't dominate anything. 285 if (!isReachableFromEntry(DefBB)) 286 return false; 287 288 // Invoke instructions define their return values on the edges to their normal 289 // successors, so we have to handle them specially. 290 // Among other things, this means they don't dominate anything in 291 // their own block, except possibly a phi, so we don't need to 292 // walk the block in any case. 293 if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) { 294 BasicBlock *NormalDest = II->getNormalDest(); 295 BasicBlockEdge E(DefBB, NormalDest); 296 return dominates(E, U); 297 } 298 299 // Callbr results are similarly only usable in the default destination. 300 if (const auto *CBI = dyn_cast<CallBrInst>(Def)) { 301 BasicBlock *NormalDest = CBI->getDefaultDest(); 302 BasicBlockEdge E(DefBB, NormalDest); 303 return dominates(E, U); 304 } 305 306 // If the def and use are in different blocks, do a simple CFG dominator 307 // tree query. 308 if (DefBB != UseBB) 309 return dominates(DefBB, UseBB); 310 311 // Ok, def and use are in the same block. If the def is an invoke, it 312 // doesn't dominate anything in the block. If it's a PHI, it dominates 313 // everything in the block. 314 if (isa<PHINode>(UserInst)) 315 return true; 316 317 return Def->comesBefore(UserInst); 318 } 319 320 bool DominatorTree::isReachableFromEntry(const Use &U) const { 321 Instruction *I = dyn_cast<Instruction>(U.getUser()); 322 323 // ConstantExprs aren't really reachable from the entry block, but they 324 // don't need to be treated like unreachable code either. 325 if (!I) return true; 326 327 // PHI nodes use their operands on their incoming edges. 328 if (PHINode *PN = dyn_cast<PHINode>(I)) 329 return isReachableFromEntry(PN->getIncomingBlock(U)); 330 331 // Everything else uses their operands in their own block. 332 return isReachableFromEntry(I->getParent()); 333 } 334 335 // Edge BBE1 dominates edge BBE2 if they match or BBE1 dominates start of BBE2. 336 bool DominatorTree::dominates(const BasicBlockEdge &BBE1, 337 const BasicBlockEdge &BBE2) const { 338 if (BBE1.getStart() == BBE2.getStart() && BBE1.getEnd() == BBE2.getEnd()) 339 return true; 340 return dominates(BBE1, BBE2.getStart()); 341 } 342 343 //===----------------------------------------------------------------------===// 344 // DominatorTreeAnalysis and related pass implementations 345 //===----------------------------------------------------------------------===// 346 // 347 // This implements the DominatorTreeAnalysis which is used with the new pass 348 // manager. It also implements some methods from utility passes. 349 // 350 //===----------------------------------------------------------------------===// 351 352 DominatorTree DominatorTreeAnalysis::run(Function &F, 353 FunctionAnalysisManager &) { 354 DominatorTree DT; 355 DT.recalculate(F); 356 return DT; 357 } 358 359 AnalysisKey DominatorTreeAnalysis::Key; 360 361 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {} 362 363 PreservedAnalyses DominatorTreePrinterPass::run(Function &F, 364 FunctionAnalysisManager &AM) { 365 OS << "DominatorTree for function: " << F.getName() << "\n"; 366 AM.getResult<DominatorTreeAnalysis>(F).print(OS); 367 368 return PreservedAnalyses::all(); 369 } 370 371 PreservedAnalyses DominatorTreeVerifierPass::run(Function &F, 372 FunctionAnalysisManager &AM) { 373 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 374 assert(DT.verify()); 375 (void)DT; 376 return PreservedAnalyses::all(); 377 } 378 379 //===----------------------------------------------------------------------===// 380 // DominatorTreeWrapperPass Implementation 381 //===----------------------------------------------------------------------===// 382 // 383 // The implementation details of the wrapper pass that holds a DominatorTree 384 // suitable for use with the legacy pass manager. 385 // 386 //===----------------------------------------------------------------------===// 387 388 char DominatorTreeWrapperPass::ID = 0; 389 390 DominatorTreeWrapperPass::DominatorTreeWrapperPass() : FunctionPass(ID) { 391 initializeDominatorTreeWrapperPassPass(*PassRegistry::getPassRegistry()); 392 } 393 394 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree", 395 "Dominator Tree Construction", true, true) 396 397 bool DominatorTreeWrapperPass::runOnFunction(Function &F) { 398 DT.recalculate(F); 399 return false; 400 } 401 402 void DominatorTreeWrapperPass::verifyAnalysis() const { 403 if (VerifyDomInfo) 404 assert(DT.verify(DominatorTree::VerificationLevel::Full)); 405 else if (ExpensiveChecksEnabled) 406 assert(DT.verify(DominatorTree::VerificationLevel::Basic)); 407 } 408 409 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const { 410 DT.print(OS); 411 } 412