1 //===- Dominators.cpp - Dominator Calculation -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements simple dominator construction algorithms for finding 10 // forward dominators. Postdominators are available in libanalysis, but are not 11 // included in libvmcore, because it's not needed. Forward dominators are 12 // needed to support the Verifier pass. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/IR/Dominators.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/Config/llvm-config.h" 20 #include "llvm/IR/CFG.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/PassManager.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/GenericDomTreeConstruction.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include <algorithm> 29 using namespace llvm; 30 31 bool llvm::VerifyDomInfo = false; 32 static cl::opt<bool, true> 33 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), cl::Hidden, 34 cl::desc("Verify dominator info (time consuming)")); 35 36 #ifdef EXPENSIVE_CHECKS 37 static constexpr bool ExpensiveChecksEnabled = true; 38 #else 39 static constexpr bool ExpensiveChecksEnabled = false; 40 #endif 41 42 bool BasicBlockEdge::isSingleEdge() const { 43 const Instruction *TI = Start->getTerminator(); 44 unsigned NumEdgesToEnd = 0; 45 for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) { 46 if (TI->getSuccessor(i) == End) 47 ++NumEdgesToEnd; 48 if (NumEdgesToEnd >= 2) 49 return false; 50 } 51 assert(NumEdgesToEnd == 1); 52 return true; 53 } 54 55 //===----------------------------------------------------------------------===// 56 // DominatorTree Implementation 57 //===----------------------------------------------------------------------===// 58 // 59 // Provide public access to DominatorTree information. Implementation details 60 // can be found in Dominators.h, GenericDomTree.h, and 61 // GenericDomTreeConstruction.h. 62 // 63 //===----------------------------------------------------------------------===// 64 65 template class llvm::DomTreeNodeBase<BasicBlock>; 66 template class llvm::DominatorTreeBase<BasicBlock, false>; // DomTreeBase 67 template class llvm::DominatorTreeBase<BasicBlock, true>; // PostDomTreeBase 68 69 template class llvm::cfg::Update<BasicBlock *>; 70 71 template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBDomTree>( 72 DomTreeBuilder::BBDomTree &DT); 73 template void 74 llvm::DomTreeBuilder::CalculateWithUpdates<DomTreeBuilder::BBDomTree>( 75 DomTreeBuilder::BBDomTree &DT, BBUpdates U); 76 77 template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBPostDomTree>( 78 DomTreeBuilder::BBPostDomTree &DT); 79 // No CalculateWithUpdates<PostDomTree> instantiation, unless a usecase arises. 80 81 template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBDomTree>( 82 DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To); 83 template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBPostDomTree>( 84 DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To); 85 86 template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBDomTree>( 87 DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To); 88 template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBPostDomTree>( 89 DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To); 90 91 template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBDomTree>( 92 DomTreeBuilder::BBDomTree &DT, DomTreeBuilder::BBUpdates); 93 template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBPostDomTree>( 94 DomTreeBuilder::BBPostDomTree &DT, DomTreeBuilder::BBUpdates); 95 96 template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBDomTree>( 97 const DomTreeBuilder::BBDomTree &DT, 98 DomTreeBuilder::BBDomTree::VerificationLevel VL); 99 template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBPostDomTree>( 100 const DomTreeBuilder::BBPostDomTree &DT, 101 DomTreeBuilder::BBPostDomTree::VerificationLevel VL); 102 103 bool DominatorTree::invalidate(Function &F, const PreservedAnalyses &PA, 104 FunctionAnalysisManager::Invalidator &) { 105 // Check whether the analysis, all analyses on functions, or the function's 106 // CFG have been preserved. 107 auto PAC = PA.getChecker<DominatorTreeAnalysis>(); 108 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 109 PAC.preservedSet<CFGAnalyses>()); 110 } 111 112 // dominates - Return true if Def dominates a use in User. This performs 113 // the special checks necessary if Def and User are in the same basic block. 114 // Note that Def doesn't dominate a use in Def itself! 115 bool DominatorTree::dominates(const Instruction *Def, 116 const Instruction *User) const { 117 const BasicBlock *UseBB = User->getParent(); 118 const BasicBlock *DefBB = Def->getParent(); 119 120 // Any unreachable use is dominated, even if Def == User. 121 if (!isReachableFromEntry(UseBB)) 122 return true; 123 124 // Unreachable definitions don't dominate anything. 125 if (!isReachableFromEntry(DefBB)) 126 return false; 127 128 // An instruction doesn't dominate a use in itself. 129 if (Def == User) 130 return false; 131 132 // The value defined by an invoke dominates an instruction only if it 133 // dominates every instruction in UseBB. 134 // A PHI is dominated only if the instruction dominates every possible use in 135 // the UseBB. 136 if (isa<InvokeInst>(Def) || isa<PHINode>(User)) 137 return dominates(Def, UseBB); 138 139 if (DefBB != UseBB) 140 return dominates(DefBB, UseBB); 141 142 // Loop through the basic block until we find Def or User. 143 BasicBlock::const_iterator I = DefBB->begin(); 144 for (; &*I != Def && &*I != User; ++I) 145 /*empty*/; 146 147 return &*I == Def; 148 } 149 150 // true if Def would dominate a use in any instruction in UseBB. 151 // note that dominates(Def, Def->getParent()) is false. 152 bool DominatorTree::dominates(const Instruction *Def, 153 const BasicBlock *UseBB) const { 154 const BasicBlock *DefBB = Def->getParent(); 155 156 // Any unreachable use is dominated, even if DefBB == UseBB. 157 if (!isReachableFromEntry(UseBB)) 158 return true; 159 160 // Unreachable definitions don't dominate anything. 161 if (!isReachableFromEntry(DefBB)) 162 return false; 163 164 if (DefBB == UseBB) 165 return false; 166 167 // Invoke results are only usable in the normal destination, not in the 168 // exceptional destination. 169 if (const auto *II = dyn_cast<InvokeInst>(Def)) { 170 BasicBlock *NormalDest = II->getNormalDest(); 171 BasicBlockEdge E(DefBB, NormalDest); 172 return dominates(E, UseBB); 173 } 174 175 return dominates(DefBB, UseBB); 176 } 177 178 bool DominatorTree::dominates(const BasicBlockEdge &BBE, 179 const BasicBlock *UseBB) const { 180 // If the BB the edge ends in doesn't dominate the use BB, then the 181 // edge also doesn't. 182 const BasicBlock *Start = BBE.getStart(); 183 const BasicBlock *End = BBE.getEnd(); 184 if (!dominates(End, UseBB)) 185 return false; 186 187 // Simple case: if the end BB has a single predecessor, the fact that it 188 // dominates the use block implies that the edge also does. 189 if (End->getSinglePredecessor()) 190 return true; 191 192 // The normal edge from the invoke is critical. Conceptually, what we would 193 // like to do is split it and check if the new block dominates the use. 194 // With X being the new block, the graph would look like: 195 // 196 // DefBB 197 // /\ . . 198 // / \ . . 199 // / \ . . 200 // / \ | | 201 // A X B C 202 // | \ | / 203 // . \|/ 204 // . NormalDest 205 // . 206 // 207 // Given the definition of dominance, NormalDest is dominated by X iff X 208 // dominates all of NormalDest's predecessors (X, B, C in the example). X 209 // trivially dominates itself, so we only have to find if it dominates the 210 // other predecessors. Since the only way out of X is via NormalDest, X can 211 // only properly dominate a node if NormalDest dominates that node too. 212 int IsDuplicateEdge = 0; 213 for (const_pred_iterator PI = pred_begin(End), E = pred_end(End); 214 PI != E; ++PI) { 215 const BasicBlock *BB = *PI; 216 if (BB == Start) { 217 // If there are multiple edges between Start and End, by definition they 218 // can't dominate anything. 219 if (IsDuplicateEdge++) 220 return false; 221 continue; 222 } 223 224 if (!dominates(End, BB)) 225 return false; 226 } 227 return true; 228 } 229 230 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const { 231 Instruction *UserInst = cast<Instruction>(U.getUser()); 232 // A PHI in the end of the edge is dominated by it. 233 PHINode *PN = dyn_cast<PHINode>(UserInst); 234 if (PN && PN->getParent() == BBE.getEnd() && 235 PN->getIncomingBlock(U) == BBE.getStart()) 236 return true; 237 238 // Otherwise use the edge-dominates-block query, which 239 // handles the crazy critical edge cases properly. 240 const BasicBlock *UseBB; 241 if (PN) 242 UseBB = PN->getIncomingBlock(U); 243 else 244 UseBB = UserInst->getParent(); 245 return dominates(BBE, UseBB); 246 } 247 248 bool DominatorTree::dominates(const Instruction *Def, const Use &U) const { 249 Instruction *UserInst = cast<Instruction>(U.getUser()); 250 const BasicBlock *DefBB = Def->getParent(); 251 252 // Determine the block in which the use happens. PHI nodes use 253 // their operands on edges; simulate this by thinking of the use 254 // happening at the end of the predecessor block. 255 const BasicBlock *UseBB; 256 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 257 UseBB = PN->getIncomingBlock(U); 258 else 259 UseBB = UserInst->getParent(); 260 261 // Any unreachable use is dominated, even if Def == User. 262 if (!isReachableFromEntry(UseBB)) 263 return true; 264 265 // Unreachable definitions don't dominate anything. 266 if (!isReachableFromEntry(DefBB)) 267 return false; 268 269 // Invoke instructions define their return values on the edges to their normal 270 // successors, so we have to handle them specially. 271 // Among other things, this means they don't dominate anything in 272 // their own block, except possibly a phi, so we don't need to 273 // walk the block in any case. 274 if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) { 275 BasicBlock *NormalDest = II->getNormalDest(); 276 BasicBlockEdge E(DefBB, NormalDest); 277 return dominates(E, U); 278 } 279 280 // If the def and use are in different blocks, do a simple CFG dominator 281 // tree query. 282 if (DefBB != UseBB) 283 return dominates(DefBB, UseBB); 284 285 // Ok, def and use are in the same block. If the def is an invoke, it 286 // doesn't dominate anything in the block. If it's a PHI, it dominates 287 // everything in the block. 288 if (isa<PHINode>(UserInst)) 289 return true; 290 291 // Otherwise, just loop through the basic block until we find Def or User. 292 BasicBlock::const_iterator I = DefBB->begin(); 293 for (; &*I != Def && &*I != UserInst; ++I) 294 /*empty*/; 295 296 return &*I != UserInst; 297 } 298 299 bool DominatorTree::isReachableFromEntry(const Use &U) const { 300 Instruction *I = dyn_cast<Instruction>(U.getUser()); 301 302 // ConstantExprs aren't really reachable from the entry block, but they 303 // don't need to be treated like unreachable code either. 304 if (!I) return true; 305 306 // PHI nodes use their operands on their incoming edges. 307 if (PHINode *PN = dyn_cast<PHINode>(I)) 308 return isReachableFromEntry(PN->getIncomingBlock(U)); 309 310 // Everything else uses their operands in their own block. 311 return isReachableFromEntry(I->getParent()); 312 } 313 314 //===----------------------------------------------------------------------===// 315 // DominatorTreeAnalysis and related pass implementations 316 //===----------------------------------------------------------------------===// 317 // 318 // This implements the DominatorTreeAnalysis which is used with the new pass 319 // manager. It also implements some methods from utility passes. 320 // 321 //===----------------------------------------------------------------------===// 322 323 DominatorTree DominatorTreeAnalysis::run(Function &F, 324 FunctionAnalysisManager &) { 325 DominatorTree DT; 326 DT.recalculate(F); 327 return DT; 328 } 329 330 AnalysisKey DominatorTreeAnalysis::Key; 331 332 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {} 333 334 PreservedAnalyses DominatorTreePrinterPass::run(Function &F, 335 FunctionAnalysisManager &AM) { 336 OS << "DominatorTree for function: " << F.getName() << "\n"; 337 AM.getResult<DominatorTreeAnalysis>(F).print(OS); 338 339 return PreservedAnalyses::all(); 340 } 341 342 PreservedAnalyses DominatorTreeVerifierPass::run(Function &F, 343 FunctionAnalysisManager &AM) { 344 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 345 assert(DT.verify()); 346 (void)DT; 347 return PreservedAnalyses::all(); 348 } 349 350 //===----------------------------------------------------------------------===// 351 // DominatorTreeWrapperPass Implementation 352 //===----------------------------------------------------------------------===// 353 // 354 // The implementation details of the wrapper pass that holds a DominatorTree 355 // suitable for use with the legacy pass manager. 356 // 357 //===----------------------------------------------------------------------===// 358 359 char DominatorTreeWrapperPass::ID = 0; 360 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree", 361 "Dominator Tree Construction", true, true) 362 363 bool DominatorTreeWrapperPass::runOnFunction(Function &F) { 364 DT.recalculate(F); 365 return false; 366 } 367 368 void DominatorTreeWrapperPass::verifyAnalysis() const { 369 if (VerifyDomInfo) 370 assert(DT.verify(DominatorTree::VerificationLevel::Full)); 371 else if (ExpensiveChecksEnabled) 372 assert(DT.verify(DominatorTree::VerificationLevel::Basic)); 373 } 374 375 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const { 376 DT.print(OS); 377 } 378 379