1 //===- Dominators.cpp - Dominator Calculation -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements simple dominator construction algorithms for finding 10 // forward dominators. Postdominators are available in libanalysis, but are not 11 // included in libvmcore, because it's not needed. Forward dominators are 12 // needed to support the Verifier pass. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/IR/Dominators.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/Config/llvm-config.h" 20 #include "llvm/IR/CFG.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/PassManager.h" 24 #include "llvm/InitializePasses.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/GenericDomTreeConstruction.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <algorithm> 30 using namespace llvm; 31 32 bool llvm::VerifyDomInfo = false; 33 static cl::opt<bool, true> 34 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), cl::Hidden, 35 cl::desc("Verify dominator info (time consuming)")); 36 37 #ifdef EXPENSIVE_CHECKS 38 static constexpr bool ExpensiveChecksEnabled = true; 39 #else 40 static constexpr bool ExpensiveChecksEnabled = false; 41 #endif 42 43 bool BasicBlockEdge::isSingleEdge() const { 44 const Instruction *TI = Start->getTerminator(); 45 unsigned NumEdgesToEnd = 0; 46 for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) { 47 if (TI->getSuccessor(i) == End) 48 ++NumEdgesToEnd; 49 if (NumEdgesToEnd >= 2) 50 return false; 51 } 52 assert(NumEdgesToEnd == 1); 53 return true; 54 } 55 56 //===----------------------------------------------------------------------===// 57 // DominatorTree Implementation 58 //===----------------------------------------------------------------------===// 59 // 60 // Provide public access to DominatorTree information. Implementation details 61 // can be found in Dominators.h, GenericDomTree.h, and 62 // GenericDomTreeConstruction.h. 63 // 64 //===----------------------------------------------------------------------===// 65 66 template class llvm::DomTreeNodeBase<BasicBlock>; 67 template class llvm::DominatorTreeBase<BasicBlock, false>; // DomTreeBase 68 template class llvm::DominatorTreeBase<BasicBlock, true>; // PostDomTreeBase 69 70 template class llvm::cfg::Update<BasicBlock *>; 71 72 template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBDomTree>( 73 DomTreeBuilder::BBDomTree &DT); 74 template void 75 llvm::DomTreeBuilder::CalculateWithUpdates<DomTreeBuilder::BBDomTree>( 76 DomTreeBuilder::BBDomTree &DT, BBUpdates U); 77 78 template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBPostDomTree>( 79 DomTreeBuilder::BBPostDomTree &DT); 80 // No CalculateWithUpdates<PostDomTree> instantiation, unless a usecase arises. 81 82 template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBDomTree>( 83 DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To); 84 template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBPostDomTree>( 85 DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To); 86 87 template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBDomTree>( 88 DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To); 89 template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBPostDomTree>( 90 DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To); 91 92 template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBDomTree>( 93 DomTreeBuilder::BBDomTree &DT, DomTreeBuilder::BBDomTreeGraphDiff &, 94 DomTreeBuilder::BBDomTreeGraphDiff *); 95 template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBPostDomTree>( 96 DomTreeBuilder::BBPostDomTree &DT, DomTreeBuilder::BBPostDomTreeGraphDiff &, 97 DomTreeBuilder::BBPostDomTreeGraphDiff *); 98 99 template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBDomTree>( 100 const DomTreeBuilder::BBDomTree &DT, 101 DomTreeBuilder::BBDomTree::VerificationLevel VL); 102 template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBPostDomTree>( 103 const DomTreeBuilder::BBPostDomTree &DT, 104 DomTreeBuilder::BBPostDomTree::VerificationLevel VL); 105 106 bool DominatorTree::invalidate(Function &F, const PreservedAnalyses &PA, 107 FunctionAnalysisManager::Invalidator &) { 108 // Check whether the analysis, all analyses on functions, or the function's 109 // CFG have been preserved. 110 auto PAC = PA.getChecker<DominatorTreeAnalysis>(); 111 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 112 PAC.preservedSet<CFGAnalyses>()); 113 } 114 115 bool DominatorTree::dominates(const BasicBlock *BB, const Use &U) const { 116 Instruction *UserInst = cast<Instruction>(U.getUser()); 117 if (auto *PN = dyn_cast<PHINode>(UserInst)) 118 // A phi use using a value from a block is dominated by the end of that 119 // block. Note that the phi's parent block may not be. 120 return dominates(BB, PN->getIncomingBlock(U)); 121 else 122 return properlyDominates(BB, UserInst->getParent()); 123 } 124 125 // dominates - Return true if Def dominates a use in User. This performs 126 // the special checks necessary if Def and User are in the same basic block. 127 // Note that Def doesn't dominate a use in Def itself! 128 bool DominatorTree::dominates(const Value *DefV, 129 const Instruction *User) const { 130 const Instruction *Def = dyn_cast<Instruction>(DefV); 131 if (!Def) { 132 assert((isa<Argument>(DefV) || isa<Constant>(DefV)) && 133 "Should be called with an instruction, argument or constant"); 134 return true; // Arguments and constants dominate everything. 135 } 136 137 const BasicBlock *UseBB = User->getParent(); 138 const BasicBlock *DefBB = Def->getParent(); 139 140 // Any unreachable use is dominated, even if Def == User. 141 if (!isReachableFromEntry(UseBB)) 142 return true; 143 144 // Unreachable definitions don't dominate anything. 145 if (!isReachableFromEntry(DefBB)) 146 return false; 147 148 // An instruction doesn't dominate a use in itself. 149 if (Def == User) 150 return false; 151 152 // The value defined by an invoke dominates an instruction only if it 153 // dominates every instruction in UseBB. 154 // A PHI is dominated only if the instruction dominates every possible use in 155 // the UseBB. 156 if (isa<InvokeInst>(Def) || isa<CallBrInst>(Def) || isa<PHINode>(User)) 157 return dominates(Def, UseBB); 158 159 if (DefBB != UseBB) 160 return dominates(DefBB, UseBB); 161 162 return Def->comesBefore(User); 163 } 164 165 // true if Def would dominate a use in any instruction in UseBB. 166 // note that dominates(Def, Def->getParent()) is false. 167 bool DominatorTree::dominates(const Instruction *Def, 168 const BasicBlock *UseBB) const { 169 const BasicBlock *DefBB = Def->getParent(); 170 171 // Any unreachable use is dominated, even if DefBB == UseBB. 172 if (!isReachableFromEntry(UseBB)) 173 return true; 174 175 // Unreachable definitions don't dominate anything. 176 if (!isReachableFromEntry(DefBB)) 177 return false; 178 179 if (DefBB == UseBB) 180 return false; 181 182 // Invoke results are only usable in the normal destination, not in the 183 // exceptional destination. 184 if (const auto *II = dyn_cast<InvokeInst>(Def)) { 185 BasicBlock *NormalDest = II->getNormalDest(); 186 BasicBlockEdge E(DefBB, NormalDest); 187 return dominates(E, UseBB); 188 } 189 190 // Callbr results are similarly only usable in the default destination. 191 if (const auto *CBI = dyn_cast<CallBrInst>(Def)) { 192 BasicBlock *NormalDest = CBI->getDefaultDest(); 193 BasicBlockEdge E(DefBB, NormalDest); 194 return dominates(E, UseBB); 195 } 196 197 return dominates(DefBB, UseBB); 198 } 199 200 bool DominatorTree::dominates(const BasicBlockEdge &BBE, 201 const BasicBlock *UseBB) const { 202 // If the BB the edge ends in doesn't dominate the use BB, then the 203 // edge also doesn't. 204 const BasicBlock *Start = BBE.getStart(); 205 const BasicBlock *End = BBE.getEnd(); 206 if (!dominates(End, UseBB)) 207 return false; 208 209 // Simple case: if the end BB has a single predecessor, the fact that it 210 // dominates the use block implies that the edge also does. 211 if (End->getSinglePredecessor()) 212 return true; 213 214 // The normal edge from the invoke is critical. Conceptually, what we would 215 // like to do is split it and check if the new block dominates the use. 216 // With X being the new block, the graph would look like: 217 // 218 // DefBB 219 // /\ . . 220 // / \ . . 221 // / \ . . 222 // / \ | | 223 // A X B C 224 // | \ | / 225 // . \|/ 226 // . NormalDest 227 // . 228 // 229 // Given the definition of dominance, NormalDest is dominated by X iff X 230 // dominates all of NormalDest's predecessors (X, B, C in the example). X 231 // trivially dominates itself, so we only have to find if it dominates the 232 // other predecessors. Since the only way out of X is via NormalDest, X can 233 // only properly dominate a node if NormalDest dominates that node too. 234 int IsDuplicateEdge = 0; 235 for (const BasicBlock *BB : predecessors(End)) { 236 if (BB == Start) { 237 // If there are multiple edges between Start and End, by definition they 238 // can't dominate anything. 239 if (IsDuplicateEdge++) 240 return false; 241 continue; 242 } 243 244 if (!dominates(End, BB)) 245 return false; 246 } 247 return true; 248 } 249 250 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const { 251 Instruction *UserInst = cast<Instruction>(U.getUser()); 252 // A PHI in the end of the edge is dominated by it. 253 PHINode *PN = dyn_cast<PHINode>(UserInst); 254 if (PN && PN->getParent() == BBE.getEnd() && 255 PN->getIncomingBlock(U) == BBE.getStart()) 256 return true; 257 258 // Otherwise use the edge-dominates-block query, which 259 // handles the crazy critical edge cases properly. 260 const BasicBlock *UseBB; 261 if (PN) 262 UseBB = PN->getIncomingBlock(U); 263 else 264 UseBB = UserInst->getParent(); 265 return dominates(BBE, UseBB); 266 } 267 268 bool DominatorTree::dominates(const Value *DefV, const Use &U) const { 269 const Instruction *Def = dyn_cast<Instruction>(DefV); 270 if (!Def) { 271 assert((isa<Argument>(DefV) || isa<Constant>(DefV)) && 272 "Should be called with an instruction, argument or constant"); 273 return true; // Arguments and constants dominate everything. 274 } 275 276 Instruction *UserInst = cast<Instruction>(U.getUser()); 277 const BasicBlock *DefBB = Def->getParent(); 278 279 // Determine the block in which the use happens. PHI nodes use 280 // their operands on edges; simulate this by thinking of the use 281 // happening at the end of the predecessor block. 282 const BasicBlock *UseBB; 283 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 284 UseBB = PN->getIncomingBlock(U); 285 else 286 UseBB = UserInst->getParent(); 287 288 // Any unreachable use is dominated, even if Def == User. 289 if (!isReachableFromEntry(UseBB)) 290 return true; 291 292 // Unreachable definitions don't dominate anything. 293 if (!isReachableFromEntry(DefBB)) 294 return false; 295 296 // Invoke instructions define their return values on the edges to their normal 297 // successors, so we have to handle them specially. 298 // Among other things, this means they don't dominate anything in 299 // their own block, except possibly a phi, so we don't need to 300 // walk the block in any case. 301 if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) { 302 BasicBlock *NormalDest = II->getNormalDest(); 303 BasicBlockEdge E(DefBB, NormalDest); 304 return dominates(E, U); 305 } 306 307 // Callbr results are similarly only usable in the default destination. 308 if (const auto *CBI = dyn_cast<CallBrInst>(Def)) { 309 BasicBlock *NormalDest = CBI->getDefaultDest(); 310 BasicBlockEdge E(DefBB, NormalDest); 311 return dominates(E, U); 312 } 313 314 // If the def and use are in different blocks, do a simple CFG dominator 315 // tree query. 316 if (DefBB != UseBB) 317 return dominates(DefBB, UseBB); 318 319 // Ok, def and use are in the same block. If the def is an invoke, it 320 // doesn't dominate anything in the block. If it's a PHI, it dominates 321 // everything in the block. 322 if (isa<PHINode>(UserInst)) 323 return true; 324 325 return Def->comesBefore(UserInst); 326 } 327 328 bool DominatorTree::isReachableFromEntry(const Use &U) const { 329 Instruction *I = dyn_cast<Instruction>(U.getUser()); 330 331 // ConstantExprs aren't really reachable from the entry block, but they 332 // don't need to be treated like unreachable code either. 333 if (!I) return true; 334 335 // PHI nodes use their operands on their incoming edges. 336 if (PHINode *PN = dyn_cast<PHINode>(I)) 337 return isReachableFromEntry(PN->getIncomingBlock(U)); 338 339 // Everything else uses their operands in their own block. 340 return isReachableFromEntry(I->getParent()); 341 } 342 343 // Edge BBE1 dominates edge BBE2 if they match or BBE1 dominates start of BBE2. 344 bool DominatorTree::dominates(const BasicBlockEdge &BBE1, 345 const BasicBlockEdge &BBE2) const { 346 if (BBE1.getStart() == BBE2.getStart() && BBE1.getEnd() == BBE2.getEnd()) 347 return true; 348 return dominates(BBE1, BBE2.getStart()); 349 } 350 351 //===----------------------------------------------------------------------===// 352 // DominatorTreeAnalysis and related pass implementations 353 //===----------------------------------------------------------------------===// 354 // 355 // This implements the DominatorTreeAnalysis which is used with the new pass 356 // manager. It also implements some methods from utility passes. 357 // 358 //===----------------------------------------------------------------------===// 359 360 DominatorTree DominatorTreeAnalysis::run(Function &F, 361 FunctionAnalysisManager &) { 362 DominatorTree DT; 363 DT.recalculate(F); 364 return DT; 365 } 366 367 AnalysisKey DominatorTreeAnalysis::Key; 368 369 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {} 370 371 PreservedAnalyses DominatorTreePrinterPass::run(Function &F, 372 FunctionAnalysisManager &AM) { 373 OS << "DominatorTree for function: " << F.getName() << "\n"; 374 AM.getResult<DominatorTreeAnalysis>(F).print(OS); 375 376 return PreservedAnalyses::all(); 377 } 378 379 PreservedAnalyses DominatorTreeVerifierPass::run(Function &F, 380 FunctionAnalysisManager &AM) { 381 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 382 assert(DT.verify()); 383 (void)DT; 384 return PreservedAnalyses::all(); 385 } 386 387 //===----------------------------------------------------------------------===// 388 // DominatorTreeWrapperPass Implementation 389 //===----------------------------------------------------------------------===// 390 // 391 // The implementation details of the wrapper pass that holds a DominatorTree 392 // suitable for use with the legacy pass manager. 393 // 394 //===----------------------------------------------------------------------===// 395 396 char DominatorTreeWrapperPass::ID = 0; 397 398 DominatorTreeWrapperPass::DominatorTreeWrapperPass() : FunctionPass(ID) { 399 initializeDominatorTreeWrapperPassPass(*PassRegistry::getPassRegistry()); 400 } 401 402 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree", 403 "Dominator Tree Construction", true, true) 404 405 bool DominatorTreeWrapperPass::runOnFunction(Function &F) { 406 DT.recalculate(F); 407 return false; 408 } 409 410 void DominatorTreeWrapperPass::verifyAnalysis() const { 411 if (VerifyDomInfo) 412 assert(DT.verify(DominatorTree::VerificationLevel::Full)); 413 else if (ExpensiveChecksEnabled) 414 assert(DT.verify(DominatorTree::VerificationLevel::Basic)); 415 } 416 417 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const { 418 DT.print(OS); 419 } 420