1 //===- DebugInfoMetadata.cpp - Implement debug info metadata --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the debug info Metadata classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/DebugInfoMetadata.h" 14 #include "LLVMContextImpl.h" 15 #include "MetadataImpl.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/BinaryFormat/Dwarf.h" 19 #include "llvm/IR/DebugProgramInstruction.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/IR/Type.h" 23 #include "llvm/IR/Value.h" 24 25 #include <numeric> 26 #include <optional> 27 28 using namespace llvm; 29 30 namespace llvm { 31 // Use FS-AFDO discriminator. 32 cl::opt<bool> EnableFSDiscriminator( 33 "enable-fs-discriminator", cl::Hidden, 34 cl::desc("Enable adding flow sensitive discriminators")); 35 } // namespace llvm 36 37 uint32_t DIType::getAlignInBits() const { 38 return (getTag() == dwarf::DW_TAG_LLVM_ptrauth_type ? 0 : SubclassData32); 39 } 40 41 const DIExpression::FragmentInfo DebugVariable::DefaultFragment = { 42 std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::min()}; 43 44 DebugVariable::DebugVariable(const DbgVariableIntrinsic *DII) 45 : Variable(DII->getVariable()), 46 Fragment(DII->getExpression()->getFragmentInfo()), 47 InlinedAt(DII->getDebugLoc().getInlinedAt()) {} 48 49 DebugVariable::DebugVariable(const DbgVariableRecord *DVR) 50 : Variable(DVR->getVariable()), 51 Fragment(DVR->getExpression()->getFragmentInfo()), 52 InlinedAt(DVR->getDebugLoc().getInlinedAt()) {} 53 54 DebugVariableAggregate::DebugVariableAggregate(const DbgVariableIntrinsic *DVI) 55 : DebugVariable(DVI->getVariable(), std::nullopt, 56 DVI->getDebugLoc()->getInlinedAt()) {} 57 58 DILocation::DILocation(LLVMContext &C, StorageType Storage, unsigned Line, 59 unsigned Column, ArrayRef<Metadata *> MDs, 60 bool ImplicitCode) 61 : MDNode(C, DILocationKind, Storage, MDs) { 62 assert((MDs.size() == 1 || MDs.size() == 2) && 63 "Expected a scope and optional inlined-at"); 64 65 // Set line and column. 66 assert(Column < (1u << 16) && "Expected 16-bit column"); 67 68 SubclassData32 = Line; 69 SubclassData16 = Column; 70 71 setImplicitCode(ImplicitCode); 72 } 73 74 static void adjustColumn(unsigned &Column) { 75 // Set to unknown on overflow. We only have 16 bits to play with here. 76 if (Column >= (1u << 16)) 77 Column = 0; 78 } 79 80 DILocation *DILocation::getImpl(LLVMContext &Context, unsigned Line, 81 unsigned Column, Metadata *Scope, 82 Metadata *InlinedAt, bool ImplicitCode, 83 StorageType Storage, bool ShouldCreate) { 84 // Fixup column. 85 adjustColumn(Column); 86 87 if (Storage == Uniqued) { 88 if (auto *N = getUniqued(Context.pImpl->DILocations, 89 DILocationInfo::KeyTy(Line, Column, Scope, 90 InlinedAt, ImplicitCode))) 91 return N; 92 if (!ShouldCreate) 93 return nullptr; 94 } else { 95 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 96 } 97 98 SmallVector<Metadata *, 2> Ops; 99 Ops.push_back(Scope); 100 if (InlinedAt) 101 Ops.push_back(InlinedAt); 102 return storeImpl(new (Ops.size(), Storage) DILocation( 103 Context, Storage, Line, Column, Ops, ImplicitCode), 104 Storage, Context.pImpl->DILocations); 105 } 106 107 DILocation *DILocation::getMergedLocations(ArrayRef<DILocation *> Locs) { 108 if (Locs.empty()) 109 return nullptr; 110 if (Locs.size() == 1) 111 return Locs[0]; 112 auto *Merged = Locs[0]; 113 for (DILocation *L : llvm::drop_begin(Locs)) { 114 Merged = getMergedLocation(Merged, L); 115 if (Merged == nullptr) 116 break; 117 } 118 return Merged; 119 } 120 121 DILocation *DILocation::getMergedLocation(DILocation *LocA, DILocation *LocB) { 122 if (!LocA || !LocB) 123 return nullptr; 124 125 if (LocA == LocB) 126 return LocA; 127 128 LLVMContext &C = LocA->getContext(); 129 130 using LocVec = SmallVector<const DILocation *>; 131 LocVec ALocs; 132 LocVec BLocs; 133 SmallDenseMap<std::pair<const DISubprogram *, const DILocation *>, unsigned, 134 4> 135 ALookup; 136 137 // Walk through LocA and its inlined-at locations, populate them in ALocs and 138 // save the index for the subprogram and inlined-at pair, which we use to find 139 // a matching starting location in LocB's chain. 140 for (auto [L, I] = std::make_pair(LocA, 0U); L; L = L->getInlinedAt(), I++) { 141 ALocs.push_back(L); 142 auto Res = ALookup.try_emplace( 143 {L->getScope()->getSubprogram(), L->getInlinedAt()}, I); 144 assert(Res.second && "Multiple <SP, InlinedAt> pairs in a location chain?"); 145 (void)Res; 146 } 147 148 LocVec::reverse_iterator ARIt = ALocs.rend(); 149 LocVec::reverse_iterator BRIt = BLocs.rend(); 150 151 // Populate BLocs and look for a matching starting location, the first 152 // location with the same subprogram and inlined-at location as in LocA's 153 // chain. Since the two locations have the same inlined-at location we do 154 // not need to look at those parts of the chains. 155 for (auto [L, I] = std::make_pair(LocB, 0U); L; L = L->getInlinedAt(), I++) { 156 BLocs.push_back(L); 157 158 if (ARIt != ALocs.rend()) 159 // We have already found a matching starting location. 160 continue; 161 162 auto IT = ALookup.find({L->getScope()->getSubprogram(), L->getInlinedAt()}); 163 if (IT == ALookup.end()) 164 continue; 165 166 // The + 1 is to account for the &*rev_it = &(it - 1) relationship. 167 ARIt = LocVec::reverse_iterator(ALocs.begin() + IT->second + 1); 168 BRIt = LocVec::reverse_iterator(BLocs.begin() + I + 1); 169 170 // If we have found a matching starting location we do not need to add more 171 // locations to BLocs, since we will only look at location pairs preceding 172 // the matching starting location, and adding more elements to BLocs could 173 // invalidate the iterator that we initialized here. 174 break; 175 } 176 177 // Merge the two locations if possible, using the supplied 178 // inlined-at location for the created location. 179 auto MergeLocPair = [&C](const DILocation *L1, const DILocation *L2, 180 DILocation *InlinedAt) -> DILocation * { 181 if (L1 == L2) 182 return DILocation::get(C, L1->getLine(), L1->getColumn(), L1->getScope(), 183 InlinedAt); 184 185 // If the locations originate from different subprograms we can't produce 186 // a common location. 187 if (L1->getScope()->getSubprogram() != L2->getScope()->getSubprogram()) 188 return nullptr; 189 190 // Return the nearest common scope inside a subprogram. 191 auto GetNearestCommonScope = [](DIScope *S1, DIScope *S2) -> DIScope * { 192 SmallPtrSet<DIScope *, 8> Scopes; 193 for (; S1; S1 = S1->getScope()) { 194 Scopes.insert(S1); 195 if (isa<DISubprogram>(S1)) 196 break; 197 } 198 199 for (; S2; S2 = S2->getScope()) { 200 if (Scopes.count(S2)) 201 return S2; 202 if (isa<DISubprogram>(S2)) 203 break; 204 } 205 206 return nullptr; 207 }; 208 209 auto Scope = GetNearestCommonScope(L1->getScope(), L2->getScope()); 210 assert(Scope && "No common scope in the same subprogram?"); 211 212 bool SameLine = L1->getLine() == L2->getLine(); 213 bool SameCol = L1->getColumn() == L2->getColumn(); 214 unsigned Line = SameLine ? L1->getLine() : 0; 215 unsigned Col = SameLine && SameCol ? L1->getColumn() : 0; 216 217 return DILocation::get(C, Line, Col, Scope, InlinedAt); 218 }; 219 220 DILocation *Result = ARIt != ALocs.rend() ? (*ARIt)->getInlinedAt() : nullptr; 221 222 // If we have found a common starting location, walk up the inlined-at chains 223 // and try to produce common locations. 224 for (; ARIt != ALocs.rend() && BRIt != BLocs.rend(); ++ARIt, ++BRIt) { 225 DILocation *Tmp = MergeLocPair(*ARIt, *BRIt, Result); 226 227 if (!Tmp) 228 // We have walked up to a point in the chains where the two locations 229 // are irreconsilable. At this point Result contains the nearest common 230 // location in the inlined-at chains of LocA and LocB, so we break here. 231 break; 232 233 Result = Tmp; 234 } 235 236 if (Result) 237 return Result; 238 239 // We ended up with LocA and LocB as irreconsilable locations. Produce a 240 // location at 0:0 with one of the locations' scope. The function has 241 // historically picked A's scope, and a nullptr inlined-at location, so that 242 // behavior is mimicked here but I am not sure if this is always the correct 243 // way to handle this. 244 return DILocation::get(C, 0, 0, LocA->getScope(), nullptr); 245 } 246 247 std::optional<unsigned> 248 DILocation::encodeDiscriminator(unsigned BD, unsigned DF, unsigned CI) { 249 std::array<unsigned, 3> Components = {BD, DF, CI}; 250 uint64_t RemainingWork = 0U; 251 // We use RemainingWork to figure out if we have no remaining components to 252 // encode. For example: if BD != 0 but DF == 0 && CI == 0, we don't need to 253 // encode anything for the latter 2. 254 // Since any of the input components is at most 32 bits, their sum will be 255 // less than 34 bits, and thus RemainingWork won't overflow. 256 RemainingWork = 257 std::accumulate(Components.begin(), Components.end(), RemainingWork); 258 259 int I = 0; 260 unsigned Ret = 0; 261 unsigned NextBitInsertionIndex = 0; 262 while (RemainingWork > 0) { 263 unsigned C = Components[I++]; 264 RemainingWork -= C; 265 unsigned EC = encodeComponent(C); 266 Ret |= (EC << NextBitInsertionIndex); 267 NextBitInsertionIndex += encodingBits(C); 268 } 269 270 // Encoding may be unsuccessful because of overflow. We determine success by 271 // checking equivalence of components before & after encoding. Alternatively, 272 // we could determine Success during encoding, but the current alternative is 273 // simpler. 274 unsigned TBD, TDF, TCI = 0; 275 decodeDiscriminator(Ret, TBD, TDF, TCI); 276 if (TBD == BD && TDF == DF && TCI == CI) 277 return Ret; 278 return std::nullopt; 279 } 280 281 void DILocation::decodeDiscriminator(unsigned D, unsigned &BD, unsigned &DF, 282 unsigned &CI) { 283 BD = getUnsignedFromPrefixEncoding(D); 284 DF = getUnsignedFromPrefixEncoding(getNextComponentInDiscriminator(D)); 285 CI = getUnsignedFromPrefixEncoding( 286 getNextComponentInDiscriminator(getNextComponentInDiscriminator(D))); 287 } 288 dwarf::Tag DINode::getTag() const { return (dwarf::Tag)SubclassData16; } 289 290 DINode::DIFlags DINode::getFlag(StringRef Flag) { 291 return StringSwitch<DIFlags>(Flag) 292 #define HANDLE_DI_FLAG(ID, NAME) .Case("DIFlag" #NAME, Flag##NAME) 293 #include "llvm/IR/DebugInfoFlags.def" 294 .Default(DINode::FlagZero); 295 } 296 297 StringRef DINode::getFlagString(DIFlags Flag) { 298 switch (Flag) { 299 #define HANDLE_DI_FLAG(ID, NAME) \ 300 case Flag##NAME: \ 301 return "DIFlag" #NAME; 302 #include "llvm/IR/DebugInfoFlags.def" 303 } 304 return ""; 305 } 306 307 DINode::DIFlags DINode::splitFlags(DIFlags Flags, 308 SmallVectorImpl<DIFlags> &SplitFlags) { 309 // Flags that are packed together need to be specially handled, so 310 // that, for example, we emit "DIFlagPublic" and not 311 // "DIFlagPrivate | DIFlagProtected". 312 if (DIFlags A = Flags & FlagAccessibility) { 313 if (A == FlagPrivate) 314 SplitFlags.push_back(FlagPrivate); 315 else if (A == FlagProtected) 316 SplitFlags.push_back(FlagProtected); 317 else 318 SplitFlags.push_back(FlagPublic); 319 Flags &= ~A; 320 } 321 if (DIFlags R = Flags & FlagPtrToMemberRep) { 322 if (R == FlagSingleInheritance) 323 SplitFlags.push_back(FlagSingleInheritance); 324 else if (R == FlagMultipleInheritance) 325 SplitFlags.push_back(FlagMultipleInheritance); 326 else 327 SplitFlags.push_back(FlagVirtualInheritance); 328 Flags &= ~R; 329 } 330 if ((Flags & FlagIndirectVirtualBase) == FlagIndirectVirtualBase) { 331 Flags &= ~FlagIndirectVirtualBase; 332 SplitFlags.push_back(FlagIndirectVirtualBase); 333 } 334 335 #define HANDLE_DI_FLAG(ID, NAME) \ 336 if (DIFlags Bit = Flags & Flag##NAME) { \ 337 SplitFlags.push_back(Bit); \ 338 Flags &= ~Bit; \ 339 } 340 #include "llvm/IR/DebugInfoFlags.def" 341 return Flags; 342 } 343 344 DIScope *DIScope::getScope() const { 345 if (auto *T = dyn_cast<DIType>(this)) 346 return T->getScope(); 347 348 if (auto *SP = dyn_cast<DISubprogram>(this)) 349 return SP->getScope(); 350 351 if (auto *LB = dyn_cast<DILexicalBlockBase>(this)) 352 return LB->getScope(); 353 354 if (auto *NS = dyn_cast<DINamespace>(this)) 355 return NS->getScope(); 356 357 if (auto *CB = dyn_cast<DICommonBlock>(this)) 358 return CB->getScope(); 359 360 if (auto *M = dyn_cast<DIModule>(this)) 361 return M->getScope(); 362 363 assert((isa<DIFile>(this) || isa<DICompileUnit>(this)) && 364 "Unhandled type of scope."); 365 return nullptr; 366 } 367 368 StringRef DIScope::getName() const { 369 if (auto *T = dyn_cast<DIType>(this)) 370 return T->getName(); 371 if (auto *SP = dyn_cast<DISubprogram>(this)) 372 return SP->getName(); 373 if (auto *NS = dyn_cast<DINamespace>(this)) 374 return NS->getName(); 375 if (auto *CB = dyn_cast<DICommonBlock>(this)) 376 return CB->getName(); 377 if (auto *M = dyn_cast<DIModule>(this)) 378 return M->getName(); 379 assert((isa<DILexicalBlockBase>(this) || isa<DIFile>(this) || 380 isa<DICompileUnit>(this)) && 381 "Unhandled type of scope."); 382 return ""; 383 } 384 385 #ifndef NDEBUG 386 static bool isCanonical(const MDString *S) { 387 return !S || !S->getString().empty(); 388 } 389 #endif 390 391 dwarf::Tag GenericDINode::getTag() const { return (dwarf::Tag)SubclassData16; } 392 GenericDINode *GenericDINode::getImpl(LLVMContext &Context, unsigned Tag, 393 MDString *Header, 394 ArrayRef<Metadata *> DwarfOps, 395 StorageType Storage, bool ShouldCreate) { 396 unsigned Hash = 0; 397 if (Storage == Uniqued) { 398 GenericDINodeInfo::KeyTy Key(Tag, Header, DwarfOps); 399 if (auto *N = getUniqued(Context.pImpl->GenericDINodes, Key)) 400 return N; 401 if (!ShouldCreate) 402 return nullptr; 403 Hash = Key.getHash(); 404 } else { 405 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 406 } 407 408 // Use a nullptr for empty headers. 409 assert(isCanonical(Header) && "Expected canonical MDString"); 410 Metadata *PreOps[] = {Header}; 411 return storeImpl(new (DwarfOps.size() + 1, Storage) GenericDINode( 412 Context, Storage, Hash, Tag, PreOps, DwarfOps), 413 Storage, Context.pImpl->GenericDINodes); 414 } 415 416 void GenericDINode::recalculateHash() { 417 setHash(GenericDINodeInfo::KeyTy::calculateHash(this)); 418 } 419 420 #define UNWRAP_ARGS_IMPL(...) __VA_ARGS__ 421 #define UNWRAP_ARGS(ARGS) UNWRAP_ARGS_IMPL ARGS 422 #define DEFINE_GETIMPL_LOOKUP(CLASS, ARGS) \ 423 do { \ 424 if (Storage == Uniqued) { \ 425 if (auto *N = getUniqued(Context.pImpl->CLASS##s, \ 426 CLASS##Info::KeyTy(UNWRAP_ARGS(ARGS)))) \ 427 return N; \ 428 if (!ShouldCreate) \ 429 return nullptr; \ 430 } else { \ 431 assert(ShouldCreate && \ 432 "Expected non-uniqued nodes to always be created"); \ 433 } \ 434 } while (false) 435 #define DEFINE_GETIMPL_STORE(CLASS, ARGS, OPS) \ 436 return storeImpl(new (std::size(OPS), Storage) \ 437 CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \ 438 Storage, Context.pImpl->CLASS##s) 439 #define DEFINE_GETIMPL_STORE_NO_OPS(CLASS, ARGS) \ 440 return storeImpl(new (0u, Storage) \ 441 CLASS(Context, Storage, UNWRAP_ARGS(ARGS)), \ 442 Storage, Context.pImpl->CLASS##s) 443 #define DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(CLASS, OPS) \ 444 return storeImpl(new (std::size(OPS), Storage) CLASS(Context, Storage, OPS), \ 445 Storage, Context.pImpl->CLASS##s) 446 #define DEFINE_GETIMPL_STORE_N(CLASS, ARGS, OPS, NUM_OPS) \ 447 return storeImpl(new (NUM_OPS, Storage) \ 448 CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \ 449 Storage, Context.pImpl->CLASS##s) 450 451 DISubrange::DISubrange(LLVMContext &C, StorageType Storage, 452 ArrayRef<Metadata *> Ops) 453 : DINode(C, DISubrangeKind, Storage, dwarf::DW_TAG_subrange_type, Ops) {} 454 DISubrange *DISubrange::getImpl(LLVMContext &Context, int64_t Count, int64_t Lo, 455 StorageType Storage, bool ShouldCreate) { 456 auto *CountNode = ConstantAsMetadata::get( 457 ConstantInt::getSigned(Type::getInt64Ty(Context), Count)); 458 auto *LB = ConstantAsMetadata::get( 459 ConstantInt::getSigned(Type::getInt64Ty(Context), Lo)); 460 return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage, 461 ShouldCreate); 462 } 463 464 DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode, 465 int64_t Lo, StorageType Storage, 466 bool ShouldCreate) { 467 auto *LB = ConstantAsMetadata::get( 468 ConstantInt::getSigned(Type::getInt64Ty(Context), Lo)); 469 return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage, 470 ShouldCreate); 471 } 472 473 DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode, 474 Metadata *LB, Metadata *UB, Metadata *Stride, 475 StorageType Storage, bool ShouldCreate) { 476 DEFINE_GETIMPL_LOOKUP(DISubrange, (CountNode, LB, UB, Stride)); 477 Metadata *Ops[] = {CountNode, LB, UB, Stride}; 478 DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DISubrange, Ops); 479 } 480 481 DISubrange::BoundType DISubrange::getCount() const { 482 Metadata *CB = getRawCountNode(); 483 if (!CB) 484 return BoundType(); 485 486 assert((isa<ConstantAsMetadata>(CB) || isa<DIVariable>(CB) || 487 isa<DIExpression>(CB)) && 488 "Count must be signed constant or DIVariable or DIExpression"); 489 490 if (auto *MD = dyn_cast<ConstantAsMetadata>(CB)) 491 return BoundType(cast<ConstantInt>(MD->getValue())); 492 493 if (auto *MD = dyn_cast<DIVariable>(CB)) 494 return BoundType(MD); 495 496 if (auto *MD = dyn_cast<DIExpression>(CB)) 497 return BoundType(MD); 498 499 return BoundType(); 500 } 501 502 DISubrange::BoundType DISubrange::getLowerBound() const { 503 Metadata *LB = getRawLowerBound(); 504 if (!LB) 505 return BoundType(); 506 507 assert((isa<ConstantAsMetadata>(LB) || isa<DIVariable>(LB) || 508 isa<DIExpression>(LB)) && 509 "LowerBound must be signed constant or DIVariable or DIExpression"); 510 511 if (auto *MD = dyn_cast<ConstantAsMetadata>(LB)) 512 return BoundType(cast<ConstantInt>(MD->getValue())); 513 514 if (auto *MD = dyn_cast<DIVariable>(LB)) 515 return BoundType(MD); 516 517 if (auto *MD = dyn_cast<DIExpression>(LB)) 518 return BoundType(MD); 519 520 return BoundType(); 521 } 522 523 DISubrange::BoundType DISubrange::getUpperBound() const { 524 Metadata *UB = getRawUpperBound(); 525 if (!UB) 526 return BoundType(); 527 528 assert((isa<ConstantAsMetadata>(UB) || isa<DIVariable>(UB) || 529 isa<DIExpression>(UB)) && 530 "UpperBound must be signed constant or DIVariable or DIExpression"); 531 532 if (auto *MD = dyn_cast<ConstantAsMetadata>(UB)) 533 return BoundType(cast<ConstantInt>(MD->getValue())); 534 535 if (auto *MD = dyn_cast<DIVariable>(UB)) 536 return BoundType(MD); 537 538 if (auto *MD = dyn_cast<DIExpression>(UB)) 539 return BoundType(MD); 540 541 return BoundType(); 542 } 543 544 DISubrange::BoundType DISubrange::getStride() const { 545 Metadata *ST = getRawStride(); 546 if (!ST) 547 return BoundType(); 548 549 assert((isa<ConstantAsMetadata>(ST) || isa<DIVariable>(ST) || 550 isa<DIExpression>(ST)) && 551 "Stride must be signed constant or DIVariable or DIExpression"); 552 553 if (auto *MD = dyn_cast<ConstantAsMetadata>(ST)) 554 return BoundType(cast<ConstantInt>(MD->getValue())); 555 556 if (auto *MD = dyn_cast<DIVariable>(ST)) 557 return BoundType(MD); 558 559 if (auto *MD = dyn_cast<DIExpression>(ST)) 560 return BoundType(MD); 561 562 return BoundType(); 563 } 564 DIGenericSubrange::DIGenericSubrange(LLVMContext &C, StorageType Storage, 565 ArrayRef<Metadata *> Ops) 566 : DINode(C, DIGenericSubrangeKind, Storage, dwarf::DW_TAG_generic_subrange, 567 Ops) {} 568 569 DIGenericSubrange *DIGenericSubrange::getImpl(LLVMContext &Context, 570 Metadata *CountNode, Metadata *LB, 571 Metadata *UB, Metadata *Stride, 572 StorageType Storage, 573 bool ShouldCreate) { 574 DEFINE_GETIMPL_LOOKUP(DIGenericSubrange, (CountNode, LB, UB, Stride)); 575 Metadata *Ops[] = {CountNode, LB, UB, Stride}; 576 DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGenericSubrange, Ops); 577 } 578 579 DIGenericSubrange::BoundType DIGenericSubrange::getCount() const { 580 Metadata *CB = getRawCountNode(); 581 if (!CB) 582 return BoundType(); 583 584 assert((isa<DIVariable>(CB) || isa<DIExpression>(CB)) && 585 "Count must be signed constant or DIVariable or DIExpression"); 586 587 if (auto *MD = dyn_cast<DIVariable>(CB)) 588 return BoundType(MD); 589 590 if (auto *MD = dyn_cast<DIExpression>(CB)) 591 return BoundType(MD); 592 593 return BoundType(); 594 } 595 596 DIGenericSubrange::BoundType DIGenericSubrange::getLowerBound() const { 597 Metadata *LB = getRawLowerBound(); 598 if (!LB) 599 return BoundType(); 600 601 assert((isa<DIVariable>(LB) || isa<DIExpression>(LB)) && 602 "LowerBound must be signed constant or DIVariable or DIExpression"); 603 604 if (auto *MD = dyn_cast<DIVariable>(LB)) 605 return BoundType(MD); 606 607 if (auto *MD = dyn_cast<DIExpression>(LB)) 608 return BoundType(MD); 609 610 return BoundType(); 611 } 612 613 DIGenericSubrange::BoundType DIGenericSubrange::getUpperBound() const { 614 Metadata *UB = getRawUpperBound(); 615 if (!UB) 616 return BoundType(); 617 618 assert((isa<DIVariable>(UB) || isa<DIExpression>(UB)) && 619 "UpperBound must be signed constant or DIVariable or DIExpression"); 620 621 if (auto *MD = dyn_cast<DIVariable>(UB)) 622 return BoundType(MD); 623 624 if (auto *MD = dyn_cast<DIExpression>(UB)) 625 return BoundType(MD); 626 627 return BoundType(); 628 } 629 630 DIGenericSubrange::BoundType DIGenericSubrange::getStride() const { 631 Metadata *ST = getRawStride(); 632 if (!ST) 633 return BoundType(); 634 635 assert((isa<DIVariable>(ST) || isa<DIExpression>(ST)) && 636 "Stride must be signed constant or DIVariable or DIExpression"); 637 638 if (auto *MD = dyn_cast<DIVariable>(ST)) 639 return BoundType(MD); 640 641 if (auto *MD = dyn_cast<DIExpression>(ST)) 642 return BoundType(MD); 643 644 return BoundType(); 645 } 646 647 DIEnumerator::DIEnumerator(LLVMContext &C, StorageType Storage, 648 const APInt &Value, bool IsUnsigned, 649 ArrayRef<Metadata *> Ops) 650 : DINode(C, DIEnumeratorKind, Storage, dwarf::DW_TAG_enumerator, Ops), 651 Value(Value) { 652 SubclassData32 = IsUnsigned; 653 } 654 DIEnumerator *DIEnumerator::getImpl(LLVMContext &Context, const APInt &Value, 655 bool IsUnsigned, MDString *Name, 656 StorageType Storage, bool ShouldCreate) { 657 assert(isCanonical(Name) && "Expected canonical MDString"); 658 DEFINE_GETIMPL_LOOKUP(DIEnumerator, (Value, IsUnsigned, Name)); 659 Metadata *Ops[] = {Name}; 660 DEFINE_GETIMPL_STORE(DIEnumerator, (Value, IsUnsigned), Ops); 661 } 662 663 DIBasicType *DIBasicType::getImpl(LLVMContext &Context, unsigned Tag, 664 MDString *Name, uint64_t SizeInBits, 665 uint32_t AlignInBits, unsigned Encoding, 666 DIFlags Flags, StorageType Storage, 667 bool ShouldCreate) { 668 assert(isCanonical(Name) && "Expected canonical MDString"); 669 DEFINE_GETIMPL_LOOKUP(DIBasicType, 670 (Tag, Name, SizeInBits, AlignInBits, Encoding, Flags)); 671 Metadata *Ops[] = {nullptr, nullptr, Name}; 672 DEFINE_GETIMPL_STORE(DIBasicType, 673 (Tag, SizeInBits, AlignInBits, Encoding, Flags), Ops); 674 } 675 676 std::optional<DIBasicType::Signedness> DIBasicType::getSignedness() const { 677 switch (getEncoding()) { 678 case dwarf::DW_ATE_signed: 679 case dwarf::DW_ATE_signed_char: 680 return Signedness::Signed; 681 case dwarf::DW_ATE_unsigned: 682 case dwarf::DW_ATE_unsigned_char: 683 return Signedness::Unsigned; 684 default: 685 return std::nullopt; 686 } 687 } 688 689 DIStringType *DIStringType::getImpl(LLVMContext &Context, unsigned Tag, 690 MDString *Name, Metadata *StringLength, 691 Metadata *StringLengthExp, 692 Metadata *StringLocationExp, 693 uint64_t SizeInBits, uint32_t AlignInBits, 694 unsigned Encoding, StorageType Storage, 695 bool ShouldCreate) { 696 assert(isCanonical(Name) && "Expected canonical MDString"); 697 DEFINE_GETIMPL_LOOKUP(DIStringType, 698 (Tag, Name, StringLength, StringLengthExp, 699 StringLocationExp, SizeInBits, AlignInBits, Encoding)); 700 Metadata *Ops[] = {nullptr, nullptr, Name, 701 StringLength, StringLengthExp, StringLocationExp}; 702 DEFINE_GETIMPL_STORE(DIStringType, (Tag, SizeInBits, AlignInBits, Encoding), 703 Ops); 704 } 705 DIType *DIDerivedType::getClassType() const { 706 assert(getTag() == dwarf::DW_TAG_ptr_to_member_type); 707 return cast_or_null<DIType>(getExtraData()); 708 } 709 uint32_t DIDerivedType::getVBPtrOffset() const { 710 assert(getTag() == dwarf::DW_TAG_inheritance); 711 if (auto *CM = cast_or_null<ConstantAsMetadata>(getExtraData())) 712 if (auto *CI = dyn_cast_or_null<ConstantInt>(CM->getValue())) 713 return static_cast<uint32_t>(CI->getZExtValue()); 714 return 0; 715 } 716 Constant *DIDerivedType::getStorageOffsetInBits() const { 717 assert(getTag() == dwarf::DW_TAG_member && isBitField()); 718 if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData())) 719 return C->getValue(); 720 return nullptr; 721 } 722 723 Constant *DIDerivedType::getConstant() const { 724 assert((getTag() == dwarf::DW_TAG_member || 725 getTag() == dwarf::DW_TAG_variable) && 726 isStaticMember()); 727 if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData())) 728 return C->getValue(); 729 return nullptr; 730 } 731 Constant *DIDerivedType::getDiscriminantValue() const { 732 assert(getTag() == dwarf::DW_TAG_member && !isStaticMember()); 733 if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData())) 734 return C->getValue(); 735 return nullptr; 736 } 737 738 DIDerivedType *DIDerivedType::getImpl( 739 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File, 740 unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits, 741 uint32_t AlignInBits, uint64_t OffsetInBits, 742 std::optional<unsigned> DWARFAddressSpace, 743 std::optional<PtrAuthData> PtrAuthData, DIFlags Flags, Metadata *ExtraData, 744 Metadata *Annotations, StorageType Storage, bool ShouldCreate) { 745 assert(isCanonical(Name) && "Expected canonical MDString"); 746 DEFINE_GETIMPL_LOOKUP(DIDerivedType, 747 (Tag, Name, File, Line, Scope, BaseType, SizeInBits, 748 AlignInBits, OffsetInBits, DWARFAddressSpace, 749 PtrAuthData, Flags, ExtraData, Annotations)); 750 Metadata *Ops[] = {File, Scope, Name, BaseType, ExtraData, Annotations}; 751 DEFINE_GETIMPL_STORE(DIDerivedType, 752 (Tag, Line, SizeInBits, AlignInBits, OffsetInBits, 753 DWARFAddressSpace, PtrAuthData, Flags), 754 Ops); 755 } 756 757 std::optional<DIDerivedType::PtrAuthData> 758 DIDerivedType::getPtrAuthData() const { 759 return getTag() == dwarf::DW_TAG_LLVM_ptrauth_type 760 ? std::optional<PtrAuthData>(PtrAuthData(SubclassData32)) 761 : std::nullopt; 762 } 763 764 DICompositeType *DICompositeType::getImpl( 765 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File, 766 unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits, 767 uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags, 768 Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder, 769 Metadata *TemplateParams, MDString *Identifier, Metadata *Discriminator, 770 Metadata *DataLocation, Metadata *Associated, Metadata *Allocated, 771 Metadata *Rank, Metadata *Annotations, StorageType Storage, 772 bool ShouldCreate) { 773 assert(isCanonical(Name) && "Expected canonical MDString"); 774 775 // Keep this in sync with buildODRType. 776 DEFINE_GETIMPL_LOOKUP(DICompositeType, 777 (Tag, Name, File, Line, Scope, BaseType, SizeInBits, 778 AlignInBits, OffsetInBits, Flags, Elements, 779 RuntimeLang, VTableHolder, TemplateParams, Identifier, 780 Discriminator, DataLocation, Associated, Allocated, 781 Rank, Annotations)); 782 Metadata *Ops[] = {File, Scope, Name, BaseType, 783 Elements, VTableHolder, TemplateParams, Identifier, 784 Discriminator, DataLocation, Associated, Allocated, 785 Rank, Annotations}; 786 DEFINE_GETIMPL_STORE( 787 DICompositeType, 788 (Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits, Flags), 789 Ops); 790 } 791 792 DICompositeType *DICompositeType::buildODRType( 793 LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name, 794 Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, 795 uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, 796 DIFlags Flags, Metadata *Elements, unsigned RuntimeLang, 797 Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator, 798 Metadata *DataLocation, Metadata *Associated, Metadata *Allocated, 799 Metadata *Rank, Metadata *Annotations) { 800 assert(!Identifier.getString().empty() && "Expected valid identifier"); 801 if (!Context.isODRUniquingDebugTypes()) 802 return nullptr; 803 auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier]; 804 if (!CT) 805 return CT = DICompositeType::getDistinct( 806 Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits, 807 AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 808 VTableHolder, TemplateParams, &Identifier, Discriminator, 809 DataLocation, Associated, Allocated, Rank, Annotations); 810 811 if (CT->getTag() != Tag) 812 return nullptr; 813 814 // Only mutate CT if it's a forward declaration and the new operands aren't. 815 assert(CT->getRawIdentifier() == &Identifier && "Wrong ODR identifier?"); 816 if (!CT->isForwardDecl() || (Flags & DINode::FlagFwdDecl)) 817 return CT; 818 819 // Mutate CT in place. Keep this in sync with getImpl. 820 CT->mutate(Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits, 821 Flags); 822 Metadata *Ops[] = {File, Scope, Name, BaseType, 823 Elements, VTableHolder, TemplateParams, &Identifier, 824 Discriminator, DataLocation, Associated, Allocated, 825 Rank, Annotations}; 826 assert((std::end(Ops) - std::begin(Ops)) == (int)CT->getNumOperands() && 827 "Mismatched number of operands"); 828 for (unsigned I = 0, E = CT->getNumOperands(); I != E; ++I) 829 if (Ops[I] != CT->getOperand(I)) 830 CT->setOperand(I, Ops[I]); 831 return CT; 832 } 833 834 DICompositeType *DICompositeType::getODRType( 835 LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name, 836 Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, 837 uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, 838 DIFlags Flags, Metadata *Elements, unsigned RuntimeLang, 839 Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator, 840 Metadata *DataLocation, Metadata *Associated, Metadata *Allocated, 841 Metadata *Rank, Metadata *Annotations) { 842 assert(!Identifier.getString().empty() && "Expected valid identifier"); 843 if (!Context.isODRUniquingDebugTypes()) 844 return nullptr; 845 auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier]; 846 if (!CT) { 847 CT = DICompositeType::getDistinct( 848 Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits, 849 AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder, 850 TemplateParams, &Identifier, Discriminator, DataLocation, Associated, 851 Allocated, Rank, Annotations); 852 } else { 853 if (CT->getTag() != Tag) 854 return nullptr; 855 } 856 return CT; 857 } 858 859 DICompositeType *DICompositeType::getODRTypeIfExists(LLVMContext &Context, 860 MDString &Identifier) { 861 assert(!Identifier.getString().empty() && "Expected valid identifier"); 862 if (!Context.isODRUniquingDebugTypes()) 863 return nullptr; 864 return Context.pImpl->DITypeMap->lookup(&Identifier); 865 } 866 DISubroutineType::DISubroutineType(LLVMContext &C, StorageType Storage, 867 DIFlags Flags, uint8_t CC, 868 ArrayRef<Metadata *> Ops) 869 : DIType(C, DISubroutineTypeKind, Storage, dwarf::DW_TAG_subroutine_type, 0, 870 0, 0, 0, Flags, Ops), 871 CC(CC) {} 872 873 DISubroutineType *DISubroutineType::getImpl(LLVMContext &Context, DIFlags Flags, 874 uint8_t CC, Metadata *TypeArray, 875 StorageType Storage, 876 bool ShouldCreate) { 877 DEFINE_GETIMPL_LOOKUP(DISubroutineType, (Flags, CC, TypeArray)); 878 Metadata *Ops[] = {nullptr, nullptr, nullptr, TypeArray}; 879 DEFINE_GETIMPL_STORE(DISubroutineType, (Flags, CC), Ops); 880 } 881 882 DIFile::DIFile(LLVMContext &C, StorageType Storage, 883 std::optional<ChecksumInfo<MDString *>> CS, MDString *Src, 884 ArrayRef<Metadata *> Ops) 885 : DIScope(C, DIFileKind, Storage, dwarf::DW_TAG_file_type, Ops), 886 Checksum(CS), Source(Src) {} 887 888 // FIXME: Implement this string-enum correspondence with a .def file and macros, 889 // so that the association is explicit rather than implied. 890 static const char *ChecksumKindName[DIFile::CSK_Last] = { 891 "CSK_MD5", 892 "CSK_SHA1", 893 "CSK_SHA256", 894 }; 895 896 StringRef DIFile::getChecksumKindAsString(ChecksumKind CSKind) { 897 assert(CSKind <= DIFile::CSK_Last && "Invalid checksum kind"); 898 // The first space was originally the CSK_None variant, which is now 899 // obsolete, but the space is still reserved in ChecksumKind, so we account 900 // for it here. 901 return ChecksumKindName[CSKind - 1]; 902 } 903 904 std::optional<DIFile::ChecksumKind> 905 DIFile::getChecksumKind(StringRef CSKindStr) { 906 return StringSwitch<std::optional<DIFile::ChecksumKind>>(CSKindStr) 907 .Case("CSK_MD5", DIFile::CSK_MD5) 908 .Case("CSK_SHA1", DIFile::CSK_SHA1) 909 .Case("CSK_SHA256", DIFile::CSK_SHA256) 910 .Default(std::nullopt); 911 } 912 913 DIFile *DIFile::getImpl(LLVMContext &Context, MDString *Filename, 914 MDString *Directory, 915 std::optional<DIFile::ChecksumInfo<MDString *>> CS, 916 MDString *Source, StorageType Storage, 917 bool ShouldCreate) { 918 assert(isCanonical(Filename) && "Expected canonical MDString"); 919 assert(isCanonical(Directory) && "Expected canonical MDString"); 920 assert((!CS || isCanonical(CS->Value)) && "Expected canonical MDString"); 921 // We do *NOT* expect Source to be a canonical MDString because nullptr 922 // means none, so we need something to represent the empty file. 923 DEFINE_GETIMPL_LOOKUP(DIFile, (Filename, Directory, CS, Source)); 924 Metadata *Ops[] = {Filename, Directory, CS ? CS->Value : nullptr, Source}; 925 DEFINE_GETIMPL_STORE(DIFile, (CS, Source), Ops); 926 } 927 DICompileUnit::DICompileUnit(LLVMContext &C, StorageType Storage, 928 unsigned SourceLanguage, bool IsOptimized, 929 unsigned RuntimeVersion, unsigned EmissionKind, 930 uint64_t DWOId, bool SplitDebugInlining, 931 bool DebugInfoForProfiling, unsigned NameTableKind, 932 bool RangesBaseAddress, ArrayRef<Metadata *> Ops) 933 : DIScope(C, DICompileUnitKind, Storage, dwarf::DW_TAG_compile_unit, Ops), 934 SourceLanguage(SourceLanguage), RuntimeVersion(RuntimeVersion), 935 DWOId(DWOId), EmissionKind(EmissionKind), NameTableKind(NameTableKind), 936 IsOptimized(IsOptimized), SplitDebugInlining(SplitDebugInlining), 937 DebugInfoForProfiling(DebugInfoForProfiling), 938 RangesBaseAddress(RangesBaseAddress) { 939 assert(Storage != Uniqued); 940 } 941 942 DICompileUnit *DICompileUnit::getImpl( 943 LLVMContext &Context, unsigned SourceLanguage, Metadata *File, 944 MDString *Producer, bool IsOptimized, MDString *Flags, 945 unsigned RuntimeVersion, MDString *SplitDebugFilename, 946 unsigned EmissionKind, Metadata *EnumTypes, Metadata *RetainedTypes, 947 Metadata *GlobalVariables, Metadata *ImportedEntities, Metadata *Macros, 948 uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling, 949 unsigned NameTableKind, bool RangesBaseAddress, MDString *SysRoot, 950 MDString *SDK, StorageType Storage, bool ShouldCreate) { 951 assert(Storage != Uniqued && "Cannot unique DICompileUnit"); 952 assert(isCanonical(Producer) && "Expected canonical MDString"); 953 assert(isCanonical(Flags) && "Expected canonical MDString"); 954 assert(isCanonical(SplitDebugFilename) && "Expected canonical MDString"); 955 956 Metadata *Ops[] = {File, 957 Producer, 958 Flags, 959 SplitDebugFilename, 960 EnumTypes, 961 RetainedTypes, 962 GlobalVariables, 963 ImportedEntities, 964 Macros, 965 SysRoot, 966 SDK}; 967 return storeImpl(new (std::size(Ops), Storage) DICompileUnit( 968 Context, Storage, SourceLanguage, IsOptimized, 969 RuntimeVersion, EmissionKind, DWOId, SplitDebugInlining, 970 DebugInfoForProfiling, NameTableKind, RangesBaseAddress, 971 Ops), 972 Storage); 973 } 974 975 std::optional<DICompileUnit::DebugEmissionKind> 976 DICompileUnit::getEmissionKind(StringRef Str) { 977 return StringSwitch<std::optional<DebugEmissionKind>>(Str) 978 .Case("NoDebug", NoDebug) 979 .Case("FullDebug", FullDebug) 980 .Case("LineTablesOnly", LineTablesOnly) 981 .Case("DebugDirectivesOnly", DebugDirectivesOnly) 982 .Default(std::nullopt); 983 } 984 985 std::optional<DICompileUnit::DebugNameTableKind> 986 DICompileUnit::getNameTableKind(StringRef Str) { 987 return StringSwitch<std::optional<DebugNameTableKind>>(Str) 988 .Case("Default", DebugNameTableKind::Default) 989 .Case("GNU", DebugNameTableKind::GNU) 990 .Case("Apple", DebugNameTableKind::Apple) 991 .Case("None", DebugNameTableKind::None) 992 .Default(std::nullopt); 993 } 994 995 const char *DICompileUnit::emissionKindString(DebugEmissionKind EK) { 996 switch (EK) { 997 case NoDebug: 998 return "NoDebug"; 999 case FullDebug: 1000 return "FullDebug"; 1001 case LineTablesOnly: 1002 return "LineTablesOnly"; 1003 case DebugDirectivesOnly: 1004 return "DebugDirectivesOnly"; 1005 } 1006 return nullptr; 1007 } 1008 1009 const char *DICompileUnit::nameTableKindString(DebugNameTableKind NTK) { 1010 switch (NTK) { 1011 case DebugNameTableKind::Default: 1012 return nullptr; 1013 case DebugNameTableKind::GNU: 1014 return "GNU"; 1015 case DebugNameTableKind::Apple: 1016 return "Apple"; 1017 case DebugNameTableKind::None: 1018 return "None"; 1019 } 1020 return nullptr; 1021 } 1022 DISubprogram::DISubprogram(LLVMContext &C, StorageType Storage, unsigned Line, 1023 unsigned ScopeLine, unsigned VirtualIndex, 1024 int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, 1025 ArrayRef<Metadata *> Ops) 1026 : DILocalScope(C, DISubprogramKind, Storage, dwarf::DW_TAG_subprogram, Ops), 1027 Line(Line), ScopeLine(ScopeLine), VirtualIndex(VirtualIndex), 1028 ThisAdjustment(ThisAdjustment), Flags(Flags), SPFlags(SPFlags) { 1029 static_assert(dwarf::DW_VIRTUALITY_max < 4, "Virtuality out of range"); 1030 } 1031 DISubprogram::DISPFlags 1032 DISubprogram::toSPFlags(bool IsLocalToUnit, bool IsDefinition, bool IsOptimized, 1033 unsigned Virtuality, bool IsMainSubprogram) { 1034 // We're assuming virtuality is the low-order field. 1035 static_assert(int(SPFlagVirtual) == int(dwarf::DW_VIRTUALITY_virtual) && 1036 int(SPFlagPureVirtual) == 1037 int(dwarf::DW_VIRTUALITY_pure_virtual), 1038 "Virtuality constant mismatch"); 1039 return static_cast<DISPFlags>( 1040 (Virtuality & SPFlagVirtuality) | 1041 (IsLocalToUnit ? SPFlagLocalToUnit : SPFlagZero) | 1042 (IsDefinition ? SPFlagDefinition : SPFlagZero) | 1043 (IsOptimized ? SPFlagOptimized : SPFlagZero) | 1044 (IsMainSubprogram ? SPFlagMainSubprogram : SPFlagZero)); 1045 } 1046 1047 DISubprogram *DILocalScope::getSubprogram() const { 1048 if (auto *Block = dyn_cast<DILexicalBlockBase>(this)) 1049 return Block->getScope()->getSubprogram(); 1050 return const_cast<DISubprogram *>(cast<DISubprogram>(this)); 1051 } 1052 1053 DILocalScope *DILocalScope::getNonLexicalBlockFileScope() const { 1054 if (auto *File = dyn_cast<DILexicalBlockFile>(this)) 1055 return File->getScope()->getNonLexicalBlockFileScope(); 1056 return const_cast<DILocalScope *>(this); 1057 } 1058 1059 DILocalScope *DILocalScope::cloneScopeForSubprogram( 1060 DILocalScope &RootScope, DISubprogram &NewSP, LLVMContext &Ctx, 1061 DenseMap<const MDNode *, MDNode *> &Cache) { 1062 SmallVector<DIScope *> ScopeChain; 1063 DIScope *CachedResult = nullptr; 1064 1065 for (DIScope *Scope = &RootScope; !isa<DISubprogram>(Scope); 1066 Scope = Scope->getScope()) { 1067 if (auto It = Cache.find(Scope); It != Cache.end()) { 1068 CachedResult = cast<DIScope>(It->second); 1069 break; 1070 } 1071 ScopeChain.push_back(Scope); 1072 } 1073 1074 // Recreate the scope chain, bottom-up, starting at the new subprogram (or a 1075 // cached result). 1076 DIScope *UpdatedScope = CachedResult ? CachedResult : &NewSP; 1077 for (DIScope *ScopeToUpdate : reverse(ScopeChain)) { 1078 TempMDNode ClonedScope = ScopeToUpdate->clone(); 1079 cast<DILexicalBlockBase>(*ClonedScope).replaceScope(UpdatedScope); 1080 UpdatedScope = 1081 cast<DIScope>(MDNode::replaceWithUniqued(std::move(ClonedScope))); 1082 Cache[ScopeToUpdate] = UpdatedScope; 1083 } 1084 1085 return cast<DILocalScope>(UpdatedScope); 1086 } 1087 1088 DISubprogram::DISPFlags DISubprogram::getFlag(StringRef Flag) { 1089 return StringSwitch<DISPFlags>(Flag) 1090 #define HANDLE_DISP_FLAG(ID, NAME) .Case("DISPFlag" #NAME, SPFlag##NAME) 1091 #include "llvm/IR/DebugInfoFlags.def" 1092 .Default(SPFlagZero); 1093 } 1094 1095 StringRef DISubprogram::getFlagString(DISPFlags Flag) { 1096 switch (Flag) { 1097 // Appease a warning. 1098 case SPFlagVirtuality: 1099 return ""; 1100 #define HANDLE_DISP_FLAG(ID, NAME) \ 1101 case SPFlag##NAME: \ 1102 return "DISPFlag" #NAME; 1103 #include "llvm/IR/DebugInfoFlags.def" 1104 } 1105 return ""; 1106 } 1107 1108 DISubprogram::DISPFlags 1109 DISubprogram::splitFlags(DISPFlags Flags, 1110 SmallVectorImpl<DISPFlags> &SplitFlags) { 1111 // Multi-bit fields can require special handling. In our case, however, the 1112 // only multi-bit field is virtuality, and all its values happen to be 1113 // single-bit values, so the right behavior just falls out. 1114 #define HANDLE_DISP_FLAG(ID, NAME) \ 1115 if (DISPFlags Bit = Flags & SPFlag##NAME) { \ 1116 SplitFlags.push_back(Bit); \ 1117 Flags &= ~Bit; \ 1118 } 1119 #include "llvm/IR/DebugInfoFlags.def" 1120 return Flags; 1121 } 1122 1123 DISubprogram *DISubprogram::getImpl( 1124 LLVMContext &Context, Metadata *Scope, MDString *Name, 1125 MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type, 1126 unsigned ScopeLine, Metadata *ContainingType, unsigned VirtualIndex, 1127 int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, Metadata *Unit, 1128 Metadata *TemplateParams, Metadata *Declaration, Metadata *RetainedNodes, 1129 Metadata *ThrownTypes, Metadata *Annotations, MDString *TargetFuncName, 1130 StorageType Storage, bool ShouldCreate) { 1131 assert(isCanonical(Name) && "Expected canonical MDString"); 1132 assert(isCanonical(LinkageName) && "Expected canonical MDString"); 1133 assert(isCanonical(TargetFuncName) && "Expected canonical MDString"); 1134 DEFINE_GETIMPL_LOOKUP(DISubprogram, 1135 (Scope, Name, LinkageName, File, Line, Type, ScopeLine, 1136 ContainingType, VirtualIndex, ThisAdjustment, Flags, 1137 SPFlags, Unit, TemplateParams, Declaration, 1138 RetainedNodes, ThrownTypes, Annotations, 1139 TargetFuncName)); 1140 SmallVector<Metadata *, 13> Ops = { 1141 File, Scope, Name, LinkageName, 1142 Type, Unit, Declaration, RetainedNodes, 1143 ContainingType, TemplateParams, ThrownTypes, Annotations, 1144 TargetFuncName}; 1145 if (!TargetFuncName) { 1146 Ops.pop_back(); 1147 if (!Annotations) { 1148 Ops.pop_back(); 1149 if (!ThrownTypes) { 1150 Ops.pop_back(); 1151 if (!TemplateParams) { 1152 Ops.pop_back(); 1153 if (!ContainingType) 1154 Ops.pop_back(); 1155 } 1156 } 1157 } 1158 } 1159 DEFINE_GETIMPL_STORE_N( 1160 DISubprogram, 1161 (Line, ScopeLine, VirtualIndex, ThisAdjustment, Flags, SPFlags), Ops, 1162 Ops.size()); 1163 } 1164 1165 bool DISubprogram::describes(const Function *F) const { 1166 assert(F && "Invalid function"); 1167 return F->getSubprogram() == this; 1168 } 1169 DILexicalBlockBase::DILexicalBlockBase(LLVMContext &C, unsigned ID, 1170 StorageType Storage, 1171 ArrayRef<Metadata *> Ops) 1172 : DILocalScope(C, ID, Storage, dwarf::DW_TAG_lexical_block, Ops) {} 1173 1174 DILexicalBlock *DILexicalBlock::getImpl(LLVMContext &Context, Metadata *Scope, 1175 Metadata *File, unsigned Line, 1176 unsigned Column, StorageType Storage, 1177 bool ShouldCreate) { 1178 // Fixup column. 1179 adjustColumn(Column); 1180 1181 assert(Scope && "Expected scope"); 1182 DEFINE_GETIMPL_LOOKUP(DILexicalBlock, (Scope, File, Line, Column)); 1183 Metadata *Ops[] = {File, Scope}; 1184 DEFINE_GETIMPL_STORE(DILexicalBlock, (Line, Column), Ops); 1185 } 1186 1187 DILexicalBlockFile *DILexicalBlockFile::getImpl(LLVMContext &Context, 1188 Metadata *Scope, Metadata *File, 1189 unsigned Discriminator, 1190 StorageType Storage, 1191 bool ShouldCreate) { 1192 assert(Scope && "Expected scope"); 1193 DEFINE_GETIMPL_LOOKUP(DILexicalBlockFile, (Scope, File, Discriminator)); 1194 Metadata *Ops[] = {File, Scope}; 1195 DEFINE_GETIMPL_STORE(DILexicalBlockFile, (Discriminator), Ops); 1196 } 1197 1198 DINamespace::DINamespace(LLVMContext &Context, StorageType Storage, 1199 bool ExportSymbols, ArrayRef<Metadata *> Ops) 1200 : DIScope(Context, DINamespaceKind, Storage, dwarf::DW_TAG_namespace, Ops) { 1201 SubclassData1 = ExportSymbols; 1202 } 1203 DINamespace *DINamespace::getImpl(LLVMContext &Context, Metadata *Scope, 1204 MDString *Name, bool ExportSymbols, 1205 StorageType Storage, bool ShouldCreate) { 1206 assert(isCanonical(Name) && "Expected canonical MDString"); 1207 DEFINE_GETIMPL_LOOKUP(DINamespace, (Scope, Name, ExportSymbols)); 1208 // The nullptr is for DIScope's File operand. This should be refactored. 1209 Metadata *Ops[] = {nullptr, Scope, Name}; 1210 DEFINE_GETIMPL_STORE(DINamespace, (ExportSymbols), Ops); 1211 } 1212 1213 DICommonBlock::DICommonBlock(LLVMContext &Context, StorageType Storage, 1214 unsigned LineNo, ArrayRef<Metadata *> Ops) 1215 : DIScope(Context, DICommonBlockKind, Storage, dwarf::DW_TAG_common_block, 1216 Ops) { 1217 SubclassData32 = LineNo; 1218 } 1219 DICommonBlock *DICommonBlock::getImpl(LLVMContext &Context, Metadata *Scope, 1220 Metadata *Decl, MDString *Name, 1221 Metadata *File, unsigned LineNo, 1222 StorageType Storage, bool ShouldCreate) { 1223 assert(isCanonical(Name) && "Expected canonical MDString"); 1224 DEFINE_GETIMPL_LOOKUP(DICommonBlock, (Scope, Decl, Name, File, LineNo)); 1225 // The nullptr is for DIScope's File operand. This should be refactored. 1226 Metadata *Ops[] = {Scope, Decl, Name, File}; 1227 DEFINE_GETIMPL_STORE(DICommonBlock, (LineNo), Ops); 1228 } 1229 1230 DIModule::DIModule(LLVMContext &Context, StorageType Storage, unsigned LineNo, 1231 bool IsDecl, ArrayRef<Metadata *> Ops) 1232 : DIScope(Context, DIModuleKind, Storage, dwarf::DW_TAG_module, Ops) { 1233 SubclassData1 = IsDecl; 1234 SubclassData32 = LineNo; 1235 } 1236 DIModule *DIModule::getImpl(LLVMContext &Context, Metadata *File, 1237 Metadata *Scope, MDString *Name, 1238 MDString *ConfigurationMacros, 1239 MDString *IncludePath, MDString *APINotesFile, 1240 unsigned LineNo, bool IsDecl, StorageType Storage, 1241 bool ShouldCreate) { 1242 assert(isCanonical(Name) && "Expected canonical MDString"); 1243 DEFINE_GETIMPL_LOOKUP(DIModule, (File, Scope, Name, ConfigurationMacros, 1244 IncludePath, APINotesFile, LineNo, IsDecl)); 1245 Metadata *Ops[] = {File, Scope, Name, ConfigurationMacros, 1246 IncludePath, APINotesFile}; 1247 DEFINE_GETIMPL_STORE(DIModule, (LineNo, IsDecl), Ops); 1248 } 1249 DITemplateTypeParameter::DITemplateTypeParameter(LLVMContext &Context, 1250 StorageType Storage, 1251 bool IsDefault, 1252 ArrayRef<Metadata *> Ops) 1253 : DITemplateParameter(Context, DITemplateTypeParameterKind, Storage, 1254 dwarf::DW_TAG_template_type_parameter, IsDefault, 1255 Ops) {} 1256 1257 DITemplateTypeParameter * 1258 DITemplateTypeParameter::getImpl(LLVMContext &Context, MDString *Name, 1259 Metadata *Type, bool isDefault, 1260 StorageType Storage, bool ShouldCreate) { 1261 assert(isCanonical(Name) && "Expected canonical MDString"); 1262 DEFINE_GETIMPL_LOOKUP(DITemplateTypeParameter, (Name, Type, isDefault)); 1263 Metadata *Ops[] = {Name, Type}; 1264 DEFINE_GETIMPL_STORE(DITemplateTypeParameter, (isDefault), Ops); 1265 } 1266 1267 DITemplateValueParameter *DITemplateValueParameter::getImpl( 1268 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *Type, 1269 bool isDefault, Metadata *Value, StorageType Storage, bool ShouldCreate) { 1270 assert(isCanonical(Name) && "Expected canonical MDString"); 1271 DEFINE_GETIMPL_LOOKUP(DITemplateValueParameter, 1272 (Tag, Name, Type, isDefault, Value)); 1273 Metadata *Ops[] = {Name, Type, Value}; 1274 DEFINE_GETIMPL_STORE(DITemplateValueParameter, (Tag, isDefault), Ops); 1275 } 1276 1277 DIGlobalVariable * 1278 DIGlobalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, 1279 MDString *LinkageName, Metadata *File, unsigned Line, 1280 Metadata *Type, bool IsLocalToUnit, bool IsDefinition, 1281 Metadata *StaticDataMemberDeclaration, 1282 Metadata *TemplateParams, uint32_t AlignInBits, 1283 Metadata *Annotations, StorageType Storage, 1284 bool ShouldCreate) { 1285 assert(isCanonical(Name) && "Expected canonical MDString"); 1286 assert(isCanonical(LinkageName) && "Expected canonical MDString"); 1287 DEFINE_GETIMPL_LOOKUP( 1288 DIGlobalVariable, 1289 (Scope, Name, LinkageName, File, Line, Type, IsLocalToUnit, IsDefinition, 1290 StaticDataMemberDeclaration, TemplateParams, AlignInBits, Annotations)); 1291 Metadata *Ops[] = {Scope, 1292 Name, 1293 File, 1294 Type, 1295 Name, 1296 LinkageName, 1297 StaticDataMemberDeclaration, 1298 TemplateParams, 1299 Annotations}; 1300 DEFINE_GETIMPL_STORE(DIGlobalVariable, 1301 (Line, IsLocalToUnit, IsDefinition, AlignInBits), Ops); 1302 } 1303 1304 DILocalVariable * 1305 DILocalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, 1306 Metadata *File, unsigned Line, Metadata *Type, 1307 unsigned Arg, DIFlags Flags, uint32_t AlignInBits, 1308 Metadata *Annotations, StorageType Storage, 1309 bool ShouldCreate) { 1310 // 64K ought to be enough for any frontend. 1311 assert(Arg <= UINT16_MAX && "Expected argument number to fit in 16-bits"); 1312 1313 assert(Scope && "Expected scope"); 1314 assert(isCanonical(Name) && "Expected canonical MDString"); 1315 DEFINE_GETIMPL_LOOKUP(DILocalVariable, (Scope, Name, File, Line, Type, Arg, 1316 Flags, AlignInBits, Annotations)); 1317 Metadata *Ops[] = {Scope, Name, File, Type, Annotations}; 1318 DEFINE_GETIMPL_STORE(DILocalVariable, (Line, Arg, Flags, AlignInBits), Ops); 1319 } 1320 1321 DIVariable::DIVariable(LLVMContext &C, unsigned ID, StorageType Storage, 1322 signed Line, ArrayRef<Metadata *> Ops, 1323 uint32_t AlignInBits) 1324 : DINode(C, ID, Storage, dwarf::DW_TAG_variable, Ops), Line(Line) { 1325 SubclassData32 = AlignInBits; 1326 } 1327 std::optional<uint64_t> DIVariable::getSizeInBits() const { 1328 // This is used by the Verifier so be mindful of broken types. 1329 const Metadata *RawType = getRawType(); 1330 while (RawType) { 1331 // Try to get the size directly. 1332 if (auto *T = dyn_cast<DIType>(RawType)) 1333 if (uint64_t Size = T->getSizeInBits()) 1334 return Size; 1335 1336 if (auto *DT = dyn_cast<DIDerivedType>(RawType)) { 1337 // Look at the base type. 1338 RawType = DT->getRawBaseType(); 1339 continue; 1340 } 1341 1342 // Missing type or size. 1343 break; 1344 } 1345 1346 // Fail gracefully. 1347 return std::nullopt; 1348 } 1349 1350 DILabel::DILabel(LLVMContext &C, StorageType Storage, unsigned Line, 1351 ArrayRef<Metadata *> Ops) 1352 : DINode(C, DILabelKind, Storage, dwarf::DW_TAG_label, Ops) { 1353 SubclassData32 = Line; 1354 } 1355 DILabel *DILabel::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, 1356 Metadata *File, unsigned Line, StorageType Storage, 1357 bool ShouldCreate) { 1358 assert(Scope && "Expected scope"); 1359 assert(isCanonical(Name) && "Expected canonical MDString"); 1360 DEFINE_GETIMPL_LOOKUP(DILabel, (Scope, Name, File, Line)); 1361 Metadata *Ops[] = {Scope, Name, File}; 1362 DEFINE_GETIMPL_STORE(DILabel, (Line), Ops); 1363 } 1364 1365 DIExpression *DIExpression::getImpl(LLVMContext &Context, 1366 ArrayRef<uint64_t> Elements, 1367 StorageType Storage, bool ShouldCreate) { 1368 DEFINE_GETIMPL_LOOKUP(DIExpression, (Elements)); 1369 DEFINE_GETIMPL_STORE_NO_OPS(DIExpression, (Elements)); 1370 } 1371 bool DIExpression::isEntryValue() const { 1372 if (auto singleLocElts = getSingleLocationExpressionElements()) { 1373 return singleLocElts->size() > 0 && 1374 (*singleLocElts)[0] == dwarf::DW_OP_LLVM_entry_value; 1375 } 1376 return false; 1377 } 1378 bool DIExpression::startsWithDeref() const { 1379 if (auto singleLocElts = getSingleLocationExpressionElements()) 1380 return singleLocElts->size() > 0 && 1381 (*singleLocElts)[0] == dwarf::DW_OP_deref; 1382 return false; 1383 } 1384 bool DIExpression::isDeref() const { 1385 if (auto singleLocElts = getSingleLocationExpressionElements()) 1386 return singleLocElts->size() == 1 && 1387 (*singleLocElts)[0] == dwarf::DW_OP_deref; 1388 return false; 1389 } 1390 1391 DIAssignID *DIAssignID::getImpl(LLVMContext &Context, StorageType Storage, 1392 bool ShouldCreate) { 1393 // Uniqued DIAssignID are not supported as the instance address *is* the ID. 1394 assert(Storage != StorageType::Uniqued && "uniqued DIAssignID unsupported"); 1395 return storeImpl(new (0u, Storage) DIAssignID(Context, Storage), Storage); 1396 } 1397 1398 unsigned DIExpression::ExprOperand::getSize() const { 1399 uint64_t Op = getOp(); 1400 1401 if (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31) 1402 return 2; 1403 1404 switch (Op) { 1405 case dwarf::DW_OP_LLVM_convert: 1406 case dwarf::DW_OP_LLVM_fragment: 1407 case dwarf::DW_OP_LLVM_extract_bits_sext: 1408 case dwarf::DW_OP_LLVM_extract_bits_zext: 1409 case dwarf::DW_OP_bregx: 1410 return 3; 1411 case dwarf::DW_OP_constu: 1412 case dwarf::DW_OP_consts: 1413 case dwarf::DW_OP_deref_size: 1414 case dwarf::DW_OP_plus_uconst: 1415 case dwarf::DW_OP_LLVM_tag_offset: 1416 case dwarf::DW_OP_LLVM_entry_value: 1417 case dwarf::DW_OP_LLVM_arg: 1418 case dwarf::DW_OP_regx: 1419 return 2; 1420 default: 1421 return 1; 1422 } 1423 } 1424 1425 bool DIExpression::isValid() const { 1426 for (auto I = expr_op_begin(), E = expr_op_end(); I != E; ++I) { 1427 // Check that there's space for the operand. 1428 if (I->get() + I->getSize() > E->get()) 1429 return false; 1430 1431 uint64_t Op = I->getOp(); 1432 if ((Op >= dwarf::DW_OP_reg0 && Op <= dwarf::DW_OP_reg31) || 1433 (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31)) 1434 return true; 1435 1436 // Check that the operand is valid. 1437 switch (Op) { 1438 default: 1439 return false; 1440 case dwarf::DW_OP_LLVM_fragment: 1441 // A fragment operator must appear at the end. 1442 return I->get() + I->getSize() == E->get(); 1443 case dwarf::DW_OP_stack_value: { 1444 // Must be the last one or followed by a DW_OP_LLVM_fragment. 1445 if (I->get() + I->getSize() == E->get()) 1446 break; 1447 auto J = I; 1448 if ((++J)->getOp() != dwarf::DW_OP_LLVM_fragment) 1449 return false; 1450 break; 1451 } 1452 case dwarf::DW_OP_swap: { 1453 // Must be more than one implicit element on the stack. 1454 1455 // FIXME: A better way to implement this would be to add a local variable 1456 // that keeps track of the stack depth and introduce something like a 1457 // DW_LLVM_OP_implicit_location as a placeholder for the location this 1458 // DIExpression is attached to, or else pass the number of implicit stack 1459 // elements into isValid. 1460 if (getNumElements() == 1) 1461 return false; 1462 break; 1463 } 1464 case dwarf::DW_OP_LLVM_entry_value: { 1465 // An entry value operator must appear at the beginning or immediately 1466 // following `DW_OP_LLVM_arg 0`, and the number of operations it cover can 1467 // currently only be 1, because we support only entry values of a simple 1468 // register location. One reason for this is that we currently can't 1469 // calculate the size of the resulting DWARF block for other expressions. 1470 auto FirstOp = expr_op_begin(); 1471 if (FirstOp->getOp() == dwarf::DW_OP_LLVM_arg && FirstOp->getArg(0) == 0) 1472 ++FirstOp; 1473 return I->get() == FirstOp->get() && I->getArg(0) == 1; 1474 } 1475 case dwarf::DW_OP_LLVM_implicit_pointer: 1476 case dwarf::DW_OP_LLVM_convert: 1477 case dwarf::DW_OP_LLVM_arg: 1478 case dwarf::DW_OP_LLVM_tag_offset: 1479 case dwarf::DW_OP_LLVM_extract_bits_sext: 1480 case dwarf::DW_OP_LLVM_extract_bits_zext: 1481 case dwarf::DW_OP_constu: 1482 case dwarf::DW_OP_plus_uconst: 1483 case dwarf::DW_OP_plus: 1484 case dwarf::DW_OP_minus: 1485 case dwarf::DW_OP_mul: 1486 case dwarf::DW_OP_div: 1487 case dwarf::DW_OP_mod: 1488 case dwarf::DW_OP_or: 1489 case dwarf::DW_OP_and: 1490 case dwarf::DW_OP_xor: 1491 case dwarf::DW_OP_shl: 1492 case dwarf::DW_OP_shr: 1493 case dwarf::DW_OP_shra: 1494 case dwarf::DW_OP_deref: 1495 case dwarf::DW_OP_deref_size: 1496 case dwarf::DW_OP_xderef: 1497 case dwarf::DW_OP_lit0: 1498 case dwarf::DW_OP_not: 1499 case dwarf::DW_OP_dup: 1500 case dwarf::DW_OP_regx: 1501 case dwarf::DW_OP_bregx: 1502 case dwarf::DW_OP_push_object_address: 1503 case dwarf::DW_OP_over: 1504 case dwarf::DW_OP_consts: 1505 case dwarf::DW_OP_eq: 1506 case dwarf::DW_OP_ne: 1507 case dwarf::DW_OP_gt: 1508 case dwarf::DW_OP_ge: 1509 case dwarf::DW_OP_lt: 1510 case dwarf::DW_OP_le: 1511 break; 1512 } 1513 } 1514 return true; 1515 } 1516 1517 bool DIExpression::isImplicit() const { 1518 if (!isValid()) 1519 return false; 1520 1521 if (getNumElements() == 0) 1522 return false; 1523 1524 for (const auto &It : expr_ops()) { 1525 switch (It.getOp()) { 1526 default: 1527 break; 1528 case dwarf::DW_OP_stack_value: 1529 return true; 1530 } 1531 } 1532 1533 return false; 1534 } 1535 1536 bool DIExpression::isComplex() const { 1537 if (!isValid()) 1538 return false; 1539 1540 if (getNumElements() == 0) 1541 return false; 1542 1543 // If there are any elements other than fragment or tag_offset, then some 1544 // kind of complex computation occurs. 1545 for (const auto &It : expr_ops()) { 1546 switch (It.getOp()) { 1547 case dwarf::DW_OP_LLVM_tag_offset: 1548 case dwarf::DW_OP_LLVM_fragment: 1549 case dwarf::DW_OP_LLVM_arg: 1550 continue; 1551 default: 1552 return true; 1553 } 1554 } 1555 1556 return false; 1557 } 1558 1559 bool DIExpression::isSingleLocationExpression() const { 1560 if (!isValid()) 1561 return false; 1562 1563 if (getNumElements() == 0) 1564 return true; 1565 1566 auto ExprOpBegin = expr_ops().begin(); 1567 auto ExprOpEnd = expr_ops().end(); 1568 if (ExprOpBegin->getOp() == dwarf::DW_OP_LLVM_arg) { 1569 if (ExprOpBegin->getArg(0) != 0) 1570 return false; 1571 ++ExprOpBegin; 1572 } 1573 1574 return !std::any_of(ExprOpBegin, ExprOpEnd, [](auto Op) { 1575 return Op.getOp() == dwarf::DW_OP_LLVM_arg; 1576 }); 1577 } 1578 1579 std::optional<ArrayRef<uint64_t>> 1580 DIExpression::getSingleLocationExpressionElements() const { 1581 // Check for `isValid` covered by `isSingleLocationExpression`. 1582 if (!isSingleLocationExpression()) 1583 return std::nullopt; 1584 1585 // An empty expression is already non-variadic. 1586 if (!getNumElements()) 1587 return ArrayRef<uint64_t>(); 1588 1589 // If Expr does not have a leading DW_OP_LLVM_arg then we don't need to do 1590 // anything. 1591 if (getElements()[0] == dwarf::DW_OP_LLVM_arg) 1592 return getElements().drop_front(2); 1593 return getElements(); 1594 } 1595 1596 const DIExpression * 1597 DIExpression::convertToUndefExpression(const DIExpression *Expr) { 1598 SmallVector<uint64_t, 3> UndefOps; 1599 if (auto FragmentInfo = Expr->getFragmentInfo()) { 1600 UndefOps.append({dwarf::DW_OP_LLVM_fragment, FragmentInfo->OffsetInBits, 1601 FragmentInfo->SizeInBits}); 1602 } 1603 return DIExpression::get(Expr->getContext(), UndefOps); 1604 } 1605 1606 const DIExpression * 1607 DIExpression::convertToVariadicExpression(const DIExpression *Expr) { 1608 if (any_of(Expr->expr_ops(), [](auto ExprOp) { 1609 return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg; 1610 })) 1611 return Expr; 1612 SmallVector<uint64_t> NewOps; 1613 NewOps.reserve(Expr->getNumElements() + 2); 1614 NewOps.append({dwarf::DW_OP_LLVM_arg, 0}); 1615 NewOps.append(Expr->elements_begin(), Expr->elements_end()); 1616 return DIExpression::get(Expr->getContext(), NewOps); 1617 } 1618 1619 std::optional<const DIExpression *> 1620 DIExpression::convertToNonVariadicExpression(const DIExpression *Expr) { 1621 if (!Expr) 1622 return std::nullopt; 1623 1624 if (auto Elts = Expr->getSingleLocationExpressionElements()) 1625 return DIExpression::get(Expr->getContext(), *Elts); 1626 1627 return std::nullopt; 1628 } 1629 1630 void DIExpression::canonicalizeExpressionOps(SmallVectorImpl<uint64_t> &Ops, 1631 const DIExpression *Expr, 1632 bool IsIndirect) { 1633 // If Expr is not already variadic, insert the implied `DW_OP_LLVM_arg 0` 1634 // to the existing expression ops. 1635 if (none_of(Expr->expr_ops(), [](auto ExprOp) { 1636 return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg; 1637 })) 1638 Ops.append({dwarf::DW_OP_LLVM_arg, 0}); 1639 // If Expr is not indirect, we only need to insert the expression elements and 1640 // we're done. 1641 if (!IsIndirect) { 1642 Ops.append(Expr->elements_begin(), Expr->elements_end()); 1643 return; 1644 } 1645 // If Expr is indirect, insert the implied DW_OP_deref at the end of the 1646 // expression but before DW_OP_{stack_value, LLVM_fragment} if they are 1647 // present. 1648 for (auto Op : Expr->expr_ops()) { 1649 if (Op.getOp() == dwarf::DW_OP_stack_value || 1650 Op.getOp() == dwarf::DW_OP_LLVM_fragment) { 1651 Ops.push_back(dwarf::DW_OP_deref); 1652 IsIndirect = false; 1653 } 1654 Op.appendToVector(Ops); 1655 } 1656 if (IsIndirect) 1657 Ops.push_back(dwarf::DW_OP_deref); 1658 } 1659 1660 bool DIExpression::isEqualExpression(const DIExpression *FirstExpr, 1661 bool FirstIndirect, 1662 const DIExpression *SecondExpr, 1663 bool SecondIndirect) { 1664 SmallVector<uint64_t> FirstOps; 1665 DIExpression::canonicalizeExpressionOps(FirstOps, FirstExpr, FirstIndirect); 1666 SmallVector<uint64_t> SecondOps; 1667 DIExpression::canonicalizeExpressionOps(SecondOps, SecondExpr, 1668 SecondIndirect); 1669 return FirstOps == SecondOps; 1670 } 1671 1672 std::optional<DIExpression::FragmentInfo> 1673 DIExpression::getFragmentInfo(expr_op_iterator Start, expr_op_iterator End) { 1674 for (auto I = Start; I != End; ++I) 1675 if (I->getOp() == dwarf::DW_OP_LLVM_fragment) { 1676 DIExpression::FragmentInfo Info = {I->getArg(1), I->getArg(0)}; 1677 return Info; 1678 } 1679 return std::nullopt; 1680 } 1681 1682 std::optional<uint64_t> DIExpression::getActiveBits(DIVariable *Var) { 1683 std::optional<uint64_t> InitialActiveBits = Var->getSizeInBits(); 1684 std::optional<uint64_t> ActiveBits = InitialActiveBits; 1685 for (auto Op : expr_ops()) { 1686 switch (Op.getOp()) { 1687 default: 1688 // We assume the worst case for anything we don't currently handle and 1689 // revert to the initial active bits. 1690 ActiveBits = InitialActiveBits; 1691 break; 1692 case dwarf::DW_OP_LLVM_extract_bits_zext: 1693 case dwarf::DW_OP_LLVM_extract_bits_sext: { 1694 // We can't handle an extract whose sign doesn't match that of the 1695 // variable. 1696 std::optional<DIBasicType::Signedness> VarSign = Var->getSignedness(); 1697 bool VarSigned = (VarSign == DIBasicType::Signedness::Signed); 1698 bool OpSigned = (Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_sext); 1699 if (!VarSign || VarSigned != OpSigned) { 1700 ActiveBits = InitialActiveBits; 1701 break; 1702 } 1703 [[fallthrough]]; 1704 } 1705 case dwarf::DW_OP_LLVM_fragment: 1706 // Extract or fragment narrows the active bits 1707 if (ActiveBits) 1708 ActiveBits = std::min(*ActiveBits, Op.getArg(1)); 1709 else 1710 ActiveBits = Op.getArg(1); 1711 break; 1712 } 1713 } 1714 return ActiveBits; 1715 } 1716 1717 void DIExpression::appendOffset(SmallVectorImpl<uint64_t> &Ops, 1718 int64_t Offset) { 1719 if (Offset > 0) { 1720 Ops.push_back(dwarf::DW_OP_plus_uconst); 1721 Ops.push_back(Offset); 1722 } else if (Offset < 0) { 1723 Ops.push_back(dwarf::DW_OP_constu); 1724 // Avoid UB when encountering LLONG_MIN, because in 2's complement 1725 // abs(LLONG_MIN) is LLONG_MAX+1. 1726 uint64_t AbsMinusOne = -(Offset+1); 1727 Ops.push_back(AbsMinusOne + 1); 1728 Ops.push_back(dwarf::DW_OP_minus); 1729 } 1730 } 1731 1732 bool DIExpression::extractIfOffset(int64_t &Offset) const { 1733 auto SingleLocEltsOpt = getSingleLocationExpressionElements(); 1734 if (!SingleLocEltsOpt) 1735 return false; 1736 auto SingleLocElts = *SingleLocEltsOpt; 1737 1738 if (SingleLocElts.size() == 0) { 1739 Offset = 0; 1740 return true; 1741 } 1742 1743 if (SingleLocElts.size() == 2 && 1744 SingleLocElts[0] == dwarf::DW_OP_plus_uconst) { 1745 Offset = SingleLocElts[1]; 1746 return true; 1747 } 1748 1749 if (SingleLocElts.size() == 3 && SingleLocElts[0] == dwarf::DW_OP_constu) { 1750 if (SingleLocElts[2] == dwarf::DW_OP_plus) { 1751 Offset = SingleLocElts[1]; 1752 return true; 1753 } 1754 if (SingleLocElts[2] == dwarf::DW_OP_minus) { 1755 Offset = -SingleLocElts[1]; 1756 return true; 1757 } 1758 } 1759 1760 return false; 1761 } 1762 1763 bool DIExpression::extractLeadingOffset( 1764 int64_t &OffsetInBytes, SmallVectorImpl<uint64_t> &RemainingOps) const { 1765 OffsetInBytes = 0; 1766 RemainingOps.clear(); 1767 1768 auto SingleLocEltsOpt = getSingleLocationExpressionElements(); 1769 if (!SingleLocEltsOpt) 1770 return false; 1771 1772 auto ExprOpEnd = expr_op_iterator(SingleLocEltsOpt->end()); 1773 auto ExprOpIt = expr_op_iterator(SingleLocEltsOpt->begin()); 1774 while (ExprOpIt != ExprOpEnd) { 1775 uint64_t Op = ExprOpIt->getOp(); 1776 if (Op == dwarf::DW_OP_deref || Op == dwarf::DW_OP_deref_size || 1777 Op == dwarf::DW_OP_deref_type || Op == dwarf::DW_OP_LLVM_fragment || 1778 Op == dwarf::DW_OP_LLVM_extract_bits_zext || 1779 Op == dwarf::DW_OP_LLVM_extract_bits_sext) { 1780 break; 1781 } else if (Op == dwarf::DW_OP_plus_uconst) { 1782 OffsetInBytes += ExprOpIt->getArg(0); 1783 } else if (Op == dwarf::DW_OP_constu) { 1784 uint64_t Value = ExprOpIt->getArg(0); 1785 ++ExprOpIt; 1786 if (ExprOpIt->getOp() == dwarf::DW_OP_plus) 1787 OffsetInBytes += Value; 1788 else if (ExprOpIt->getOp() == dwarf::DW_OP_minus) 1789 OffsetInBytes -= Value; 1790 else 1791 return false; 1792 } else { 1793 // Not a const plus/minus operation or deref. 1794 return false; 1795 } 1796 ++ExprOpIt; 1797 } 1798 RemainingOps.append(ExprOpIt.getBase(), ExprOpEnd.getBase()); 1799 return true; 1800 } 1801 1802 bool DIExpression::hasAllLocationOps(unsigned N) const { 1803 SmallDenseSet<uint64_t, 4> SeenOps; 1804 for (auto ExprOp : expr_ops()) 1805 if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg) 1806 SeenOps.insert(ExprOp.getArg(0)); 1807 for (uint64_t Idx = 0; Idx < N; ++Idx) 1808 if (!SeenOps.contains(Idx)) 1809 return false; 1810 return true; 1811 } 1812 1813 const DIExpression *DIExpression::extractAddressClass(const DIExpression *Expr, 1814 unsigned &AddrClass) { 1815 // FIXME: This seems fragile. Nothing that verifies that these elements 1816 // actually map to ops and not operands. 1817 auto SingleLocEltsOpt = Expr->getSingleLocationExpressionElements(); 1818 if (!SingleLocEltsOpt) 1819 return nullptr; 1820 auto SingleLocElts = *SingleLocEltsOpt; 1821 1822 const unsigned PatternSize = 4; 1823 if (SingleLocElts.size() >= PatternSize && 1824 SingleLocElts[PatternSize - 4] == dwarf::DW_OP_constu && 1825 SingleLocElts[PatternSize - 2] == dwarf::DW_OP_swap && 1826 SingleLocElts[PatternSize - 1] == dwarf::DW_OP_xderef) { 1827 AddrClass = SingleLocElts[PatternSize - 3]; 1828 1829 if (SingleLocElts.size() == PatternSize) 1830 return nullptr; 1831 return DIExpression::get( 1832 Expr->getContext(), 1833 ArrayRef(&*SingleLocElts.begin(), SingleLocElts.size() - PatternSize)); 1834 } 1835 return Expr; 1836 } 1837 1838 DIExpression *DIExpression::prepend(const DIExpression *Expr, uint8_t Flags, 1839 int64_t Offset) { 1840 SmallVector<uint64_t, 8> Ops; 1841 if (Flags & DIExpression::DerefBefore) 1842 Ops.push_back(dwarf::DW_OP_deref); 1843 1844 appendOffset(Ops, Offset); 1845 if (Flags & DIExpression::DerefAfter) 1846 Ops.push_back(dwarf::DW_OP_deref); 1847 1848 bool StackValue = Flags & DIExpression::StackValue; 1849 bool EntryValue = Flags & DIExpression::EntryValue; 1850 1851 return prependOpcodes(Expr, Ops, StackValue, EntryValue); 1852 } 1853 1854 DIExpression *DIExpression::appendOpsToArg(const DIExpression *Expr, 1855 ArrayRef<uint64_t> Ops, 1856 unsigned ArgNo, bool StackValue) { 1857 assert(Expr && "Can't add ops to this expression"); 1858 1859 // Handle non-variadic intrinsics by prepending the opcodes. 1860 if (!any_of(Expr->expr_ops(), 1861 [](auto Op) { return Op.getOp() == dwarf::DW_OP_LLVM_arg; })) { 1862 assert(ArgNo == 0 && 1863 "Location Index must be 0 for a non-variadic expression."); 1864 SmallVector<uint64_t, 8> NewOps(Ops.begin(), Ops.end()); 1865 return DIExpression::prependOpcodes(Expr, NewOps, StackValue); 1866 } 1867 1868 SmallVector<uint64_t, 8> NewOps; 1869 for (auto Op : Expr->expr_ops()) { 1870 // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment. 1871 if (StackValue) { 1872 if (Op.getOp() == dwarf::DW_OP_stack_value) 1873 StackValue = false; 1874 else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) { 1875 NewOps.push_back(dwarf::DW_OP_stack_value); 1876 StackValue = false; 1877 } 1878 } 1879 Op.appendToVector(NewOps); 1880 if (Op.getOp() == dwarf::DW_OP_LLVM_arg && Op.getArg(0) == ArgNo) 1881 NewOps.insert(NewOps.end(), Ops.begin(), Ops.end()); 1882 } 1883 if (StackValue) 1884 NewOps.push_back(dwarf::DW_OP_stack_value); 1885 1886 return DIExpression::get(Expr->getContext(), NewOps); 1887 } 1888 1889 DIExpression *DIExpression::replaceArg(const DIExpression *Expr, 1890 uint64_t OldArg, uint64_t NewArg) { 1891 assert(Expr && "Can't replace args in this expression"); 1892 1893 SmallVector<uint64_t, 8> NewOps; 1894 1895 for (auto Op : Expr->expr_ops()) { 1896 if (Op.getOp() != dwarf::DW_OP_LLVM_arg || Op.getArg(0) < OldArg) { 1897 Op.appendToVector(NewOps); 1898 continue; 1899 } 1900 NewOps.push_back(dwarf::DW_OP_LLVM_arg); 1901 uint64_t Arg = Op.getArg(0) == OldArg ? NewArg : Op.getArg(0); 1902 // OldArg has been deleted from the Op list, so decrement all indices 1903 // greater than it. 1904 if (Arg > OldArg) 1905 --Arg; 1906 NewOps.push_back(Arg); 1907 } 1908 return DIExpression::get(Expr->getContext(), NewOps); 1909 } 1910 1911 DIExpression *DIExpression::prependOpcodes(const DIExpression *Expr, 1912 SmallVectorImpl<uint64_t> &Ops, 1913 bool StackValue, bool EntryValue) { 1914 assert(Expr && "Can't prepend ops to this expression"); 1915 1916 if (EntryValue) { 1917 Ops.push_back(dwarf::DW_OP_LLVM_entry_value); 1918 // Use a block size of 1 for the target register operand. The 1919 // DWARF backend currently cannot emit entry values with a block 1920 // size > 1. 1921 Ops.push_back(1); 1922 } 1923 1924 // If there are no ops to prepend, do not even add the DW_OP_stack_value. 1925 if (Ops.empty()) 1926 StackValue = false; 1927 for (auto Op : Expr->expr_ops()) { 1928 // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment. 1929 if (StackValue) { 1930 if (Op.getOp() == dwarf::DW_OP_stack_value) 1931 StackValue = false; 1932 else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) { 1933 Ops.push_back(dwarf::DW_OP_stack_value); 1934 StackValue = false; 1935 } 1936 } 1937 Op.appendToVector(Ops); 1938 } 1939 if (StackValue) 1940 Ops.push_back(dwarf::DW_OP_stack_value); 1941 return DIExpression::get(Expr->getContext(), Ops); 1942 } 1943 1944 DIExpression *DIExpression::append(const DIExpression *Expr, 1945 ArrayRef<uint64_t> Ops) { 1946 assert(Expr && !Ops.empty() && "Can't append ops to this expression"); 1947 1948 // Copy Expr's current op list. 1949 SmallVector<uint64_t, 16> NewOps; 1950 for (auto Op : Expr->expr_ops()) { 1951 // Append new opcodes before DW_OP_{stack_value, LLVM_fragment}. 1952 if (Op.getOp() == dwarf::DW_OP_stack_value || 1953 Op.getOp() == dwarf::DW_OP_LLVM_fragment) { 1954 NewOps.append(Ops.begin(), Ops.end()); 1955 1956 // Ensure that the new opcodes are only appended once. 1957 Ops = std::nullopt; 1958 } 1959 Op.appendToVector(NewOps); 1960 } 1961 NewOps.append(Ops.begin(), Ops.end()); 1962 auto *result = 1963 DIExpression::get(Expr->getContext(), NewOps)->foldConstantMath(); 1964 assert(result->isValid() && "concatenated expression is not valid"); 1965 return result; 1966 } 1967 1968 DIExpression *DIExpression::appendToStack(const DIExpression *Expr, 1969 ArrayRef<uint64_t> Ops) { 1970 assert(Expr && !Ops.empty() && "Can't append ops to this expression"); 1971 assert(std::none_of(expr_op_iterator(Ops.begin()), 1972 expr_op_iterator(Ops.end()), 1973 [](auto Op) { 1974 return Op.getOp() == dwarf::DW_OP_stack_value || 1975 Op.getOp() == dwarf::DW_OP_LLVM_fragment; 1976 }) && 1977 "Can't append this op"); 1978 1979 // Append a DW_OP_deref after Expr's current op list if it's non-empty and 1980 // has no DW_OP_stack_value. 1981 // 1982 // Match .* DW_OP_stack_value (DW_OP_LLVM_fragment A B)?. 1983 std::optional<FragmentInfo> FI = Expr->getFragmentInfo(); 1984 unsigned DropUntilStackValue = FI ? 3 : 0; 1985 ArrayRef<uint64_t> ExprOpsBeforeFragment = 1986 Expr->getElements().drop_back(DropUntilStackValue); 1987 bool NeedsDeref = (Expr->getNumElements() > DropUntilStackValue) && 1988 (ExprOpsBeforeFragment.back() != dwarf::DW_OP_stack_value); 1989 bool NeedsStackValue = NeedsDeref || ExprOpsBeforeFragment.empty(); 1990 1991 // Append a DW_OP_deref after Expr's current op list if needed, then append 1992 // the new ops, and finally ensure that a single DW_OP_stack_value is present. 1993 SmallVector<uint64_t, 16> NewOps; 1994 if (NeedsDeref) 1995 NewOps.push_back(dwarf::DW_OP_deref); 1996 NewOps.append(Ops.begin(), Ops.end()); 1997 if (NeedsStackValue) 1998 NewOps.push_back(dwarf::DW_OP_stack_value); 1999 return DIExpression::append(Expr, NewOps); 2000 } 2001 2002 std::optional<DIExpression *> DIExpression::createFragmentExpression( 2003 const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits) { 2004 SmallVector<uint64_t, 8> Ops; 2005 // Track whether it's safe to split the value at the top of the DWARF stack, 2006 // assuming that it'll be used as an implicit location value. 2007 bool CanSplitValue = true; 2008 // Track whether we need to add a fragment expression to the end of Expr. 2009 bool EmitFragment = true; 2010 // Copy over the expression, but leave off any trailing DW_OP_LLVM_fragment. 2011 if (Expr) { 2012 for (auto Op : Expr->expr_ops()) { 2013 switch (Op.getOp()) { 2014 default: 2015 break; 2016 case dwarf::DW_OP_shr: 2017 case dwarf::DW_OP_shra: 2018 case dwarf::DW_OP_shl: 2019 case dwarf::DW_OP_plus: 2020 case dwarf::DW_OP_plus_uconst: 2021 case dwarf::DW_OP_minus: 2022 // We can't safely split arithmetic or shift operations into multiple 2023 // fragments because we can't express carry-over between fragments. 2024 // 2025 // FIXME: We *could* preserve the lowest fragment of a constant offset 2026 // operation if the offset fits into SizeInBits. 2027 CanSplitValue = false; 2028 break; 2029 case dwarf::DW_OP_deref: 2030 case dwarf::DW_OP_deref_size: 2031 case dwarf::DW_OP_deref_type: 2032 case dwarf::DW_OP_xderef: 2033 case dwarf::DW_OP_xderef_size: 2034 case dwarf::DW_OP_xderef_type: 2035 // Preceeding arithmetic operations have been applied to compute an 2036 // address. It's okay to split the value loaded from that address. 2037 CanSplitValue = true; 2038 break; 2039 case dwarf::DW_OP_stack_value: 2040 // Bail if this expression computes a value that cannot be split. 2041 if (!CanSplitValue) 2042 return std::nullopt; 2043 break; 2044 case dwarf::DW_OP_LLVM_fragment: { 2045 // If we've decided we don't need a fragment then give up if we see that 2046 // there's already a fragment expression. 2047 // FIXME: We could probably do better here 2048 if (!EmitFragment) 2049 return std::nullopt; 2050 // Make the new offset point into the existing fragment. 2051 uint64_t FragmentOffsetInBits = Op.getArg(0); 2052 uint64_t FragmentSizeInBits = Op.getArg(1); 2053 (void)FragmentSizeInBits; 2054 assert((OffsetInBits + SizeInBits <= FragmentSizeInBits) && 2055 "new fragment outside of original fragment"); 2056 OffsetInBits += FragmentOffsetInBits; 2057 continue; 2058 } 2059 case dwarf::DW_OP_LLVM_extract_bits_zext: 2060 case dwarf::DW_OP_LLVM_extract_bits_sext: { 2061 // If we're extracting bits from inside of the fragment that we're 2062 // creating then we don't have a fragment after all, and just need to 2063 // adjust the offset that we're extracting from. 2064 uint64_t ExtractOffsetInBits = Op.getArg(0); 2065 uint64_t ExtractSizeInBits = Op.getArg(1); 2066 if (ExtractOffsetInBits >= OffsetInBits && 2067 ExtractOffsetInBits + ExtractSizeInBits <= 2068 OffsetInBits + SizeInBits) { 2069 Ops.push_back(Op.getOp()); 2070 Ops.push_back(ExtractOffsetInBits - OffsetInBits); 2071 Ops.push_back(ExtractSizeInBits); 2072 EmitFragment = false; 2073 continue; 2074 } 2075 // If the extracted bits aren't fully contained within the fragment then 2076 // give up. 2077 // FIXME: We could probably do better here 2078 return std::nullopt; 2079 } 2080 } 2081 Op.appendToVector(Ops); 2082 } 2083 } 2084 assert((!Expr->isImplicit() || CanSplitValue) && "Expr can't be split"); 2085 assert(Expr && "Unknown DIExpression"); 2086 if (EmitFragment) { 2087 Ops.push_back(dwarf::DW_OP_LLVM_fragment); 2088 Ops.push_back(OffsetInBits); 2089 Ops.push_back(SizeInBits); 2090 } 2091 return DIExpression::get(Expr->getContext(), Ops); 2092 } 2093 2094 /// See declaration for more info. 2095 bool DIExpression::calculateFragmentIntersect( 2096 const DataLayout &DL, const Value *SliceStart, uint64_t SliceOffsetInBits, 2097 uint64_t SliceSizeInBits, const Value *DbgPtr, int64_t DbgPtrOffsetInBits, 2098 int64_t DbgExtractOffsetInBits, DIExpression::FragmentInfo VarFrag, 2099 std::optional<DIExpression::FragmentInfo> &Result, 2100 int64_t &OffsetFromLocationInBits) { 2101 2102 if (VarFrag.SizeInBits == 0) 2103 return false; // Variable size is unknown. 2104 2105 // Difference between mem slice start and the dbg location start. 2106 // 0 4 8 12 16 ... 2107 // | | 2108 // dbg location start 2109 // | 2110 // mem slice start 2111 // Here MemStartRelToDbgStartInBits is 8. Note this can be negative. 2112 int64_t MemStartRelToDbgStartInBits; 2113 { 2114 auto MemOffsetFromDbgInBytes = SliceStart->getPointerOffsetFrom(DbgPtr, DL); 2115 if (!MemOffsetFromDbgInBytes) 2116 return false; // Can't calculate difference in addresses. 2117 // Difference between the pointers. 2118 MemStartRelToDbgStartInBits = *MemOffsetFromDbgInBytes * 8; 2119 // Add the difference of the offsets. 2120 MemStartRelToDbgStartInBits += 2121 SliceOffsetInBits - (DbgPtrOffsetInBits + DbgExtractOffsetInBits); 2122 } 2123 2124 // Out-param. Invert offset to get offset from debug location. 2125 OffsetFromLocationInBits = -MemStartRelToDbgStartInBits; 2126 2127 // Check if the variable fragment sits outside (before) this memory slice. 2128 int64_t MemEndRelToDbgStart = MemStartRelToDbgStartInBits + SliceSizeInBits; 2129 if (MemEndRelToDbgStart < 0) { 2130 Result = {0, 0}; // Out-param. 2131 return true; 2132 } 2133 2134 // Work towards creating SliceOfVariable which is the bits of the variable 2135 // that the memory region covers. 2136 // 0 4 8 12 16 ... 2137 // | | 2138 // dbg location start with VarFrag offset=32 2139 // | 2140 // mem slice start: SliceOfVariable offset=40 2141 int64_t MemStartRelToVarInBits = 2142 MemStartRelToDbgStartInBits + VarFrag.OffsetInBits; 2143 int64_t MemEndRelToVarInBits = MemStartRelToVarInBits + SliceSizeInBits; 2144 // If the memory region starts before the debug location the fragment 2145 // offset would be negative, which we can't encode. Limit those to 0. This 2146 // is fine because those bits necessarily don't overlap with the existing 2147 // variable fragment. 2148 int64_t MemFragStart = std::max<int64_t>(0, MemStartRelToVarInBits); 2149 int64_t MemFragSize = 2150 std::max<int64_t>(0, MemEndRelToVarInBits - MemFragStart); 2151 DIExpression::FragmentInfo SliceOfVariable(MemFragSize, MemFragStart); 2152 2153 // Intersect the memory region fragment with the variable location fragment. 2154 DIExpression::FragmentInfo TrimmedSliceOfVariable = 2155 DIExpression::FragmentInfo::intersect(SliceOfVariable, VarFrag); 2156 if (TrimmedSliceOfVariable == VarFrag) 2157 Result = std::nullopt; // Out-param. 2158 else 2159 Result = TrimmedSliceOfVariable; // Out-param. 2160 return true; 2161 } 2162 2163 std::pair<DIExpression *, const ConstantInt *> 2164 DIExpression::constantFold(const ConstantInt *CI) { 2165 // Copy the APInt so we can modify it. 2166 APInt NewInt = CI->getValue(); 2167 SmallVector<uint64_t, 8> Ops; 2168 2169 // Fold operators only at the beginning of the expression. 2170 bool First = true; 2171 bool Changed = false; 2172 for (auto Op : expr_ops()) { 2173 switch (Op.getOp()) { 2174 default: 2175 // We fold only the leading part of the expression; if we get to a part 2176 // that we're going to copy unchanged, and haven't done any folding, 2177 // then the entire expression is unchanged and we can return early. 2178 if (!Changed) 2179 return {this, CI}; 2180 First = false; 2181 break; 2182 case dwarf::DW_OP_LLVM_convert: 2183 if (!First) 2184 break; 2185 Changed = true; 2186 if (Op.getArg(1) == dwarf::DW_ATE_signed) 2187 NewInt = NewInt.sextOrTrunc(Op.getArg(0)); 2188 else { 2189 assert(Op.getArg(1) == dwarf::DW_ATE_unsigned && "Unexpected operand"); 2190 NewInt = NewInt.zextOrTrunc(Op.getArg(0)); 2191 } 2192 continue; 2193 } 2194 Op.appendToVector(Ops); 2195 } 2196 if (!Changed) 2197 return {this, CI}; 2198 return {DIExpression::get(getContext(), Ops), 2199 ConstantInt::get(getContext(), NewInt)}; 2200 } 2201 2202 uint64_t DIExpression::getNumLocationOperands() const { 2203 uint64_t Result = 0; 2204 for (auto ExprOp : expr_ops()) 2205 if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg) 2206 Result = std::max(Result, ExprOp.getArg(0) + 1); 2207 assert(hasAllLocationOps(Result) && 2208 "Expression is missing one or more location operands."); 2209 return Result; 2210 } 2211 2212 std::optional<DIExpression::SignedOrUnsignedConstant> 2213 DIExpression::isConstant() const { 2214 2215 // Recognize signed and unsigned constants. 2216 // An signed constants can be represented as DW_OP_consts C DW_OP_stack_value 2217 // (DW_OP_LLVM_fragment of Len). 2218 // An unsigned constant can be represented as 2219 // DW_OP_constu C DW_OP_stack_value (DW_OP_LLVM_fragment of Len). 2220 2221 if ((getNumElements() != 2 && getNumElements() != 3 && 2222 getNumElements() != 6) || 2223 (getElement(0) != dwarf::DW_OP_consts && 2224 getElement(0) != dwarf::DW_OP_constu)) 2225 return std::nullopt; 2226 2227 if (getNumElements() == 2 && getElement(0) == dwarf::DW_OP_consts) 2228 return SignedOrUnsignedConstant::SignedConstant; 2229 2230 if ((getNumElements() == 3 && getElement(2) != dwarf::DW_OP_stack_value) || 2231 (getNumElements() == 6 && (getElement(2) != dwarf::DW_OP_stack_value || 2232 getElement(3) != dwarf::DW_OP_LLVM_fragment))) 2233 return std::nullopt; 2234 return getElement(0) == dwarf::DW_OP_constu 2235 ? SignedOrUnsignedConstant::UnsignedConstant 2236 : SignedOrUnsignedConstant::SignedConstant; 2237 } 2238 2239 DIExpression::ExtOps DIExpression::getExtOps(unsigned FromSize, unsigned ToSize, 2240 bool Signed) { 2241 dwarf::TypeKind TK = Signed ? dwarf::DW_ATE_signed : dwarf::DW_ATE_unsigned; 2242 DIExpression::ExtOps Ops{{dwarf::DW_OP_LLVM_convert, FromSize, TK, 2243 dwarf::DW_OP_LLVM_convert, ToSize, TK}}; 2244 return Ops; 2245 } 2246 2247 DIExpression *DIExpression::appendExt(const DIExpression *Expr, 2248 unsigned FromSize, unsigned ToSize, 2249 bool Signed) { 2250 return appendToStack(Expr, getExtOps(FromSize, ToSize, Signed)); 2251 } 2252 2253 DIGlobalVariableExpression * 2254 DIGlobalVariableExpression::getImpl(LLVMContext &Context, Metadata *Variable, 2255 Metadata *Expression, StorageType Storage, 2256 bool ShouldCreate) { 2257 DEFINE_GETIMPL_LOOKUP(DIGlobalVariableExpression, (Variable, Expression)); 2258 Metadata *Ops[] = {Variable, Expression}; 2259 DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGlobalVariableExpression, Ops); 2260 } 2261 DIObjCProperty::DIObjCProperty(LLVMContext &C, StorageType Storage, 2262 unsigned Line, unsigned Attributes, 2263 ArrayRef<Metadata *> Ops) 2264 : DINode(C, DIObjCPropertyKind, Storage, dwarf::DW_TAG_APPLE_property, Ops), 2265 Line(Line), Attributes(Attributes) {} 2266 2267 DIObjCProperty *DIObjCProperty::getImpl( 2268 LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line, 2269 MDString *GetterName, MDString *SetterName, unsigned Attributes, 2270 Metadata *Type, StorageType Storage, bool ShouldCreate) { 2271 assert(isCanonical(Name) && "Expected canonical MDString"); 2272 assert(isCanonical(GetterName) && "Expected canonical MDString"); 2273 assert(isCanonical(SetterName) && "Expected canonical MDString"); 2274 DEFINE_GETIMPL_LOOKUP(DIObjCProperty, (Name, File, Line, GetterName, 2275 SetterName, Attributes, Type)); 2276 Metadata *Ops[] = {Name, File, GetterName, SetterName, Type}; 2277 DEFINE_GETIMPL_STORE(DIObjCProperty, (Line, Attributes), Ops); 2278 } 2279 2280 DIImportedEntity *DIImportedEntity::getImpl(LLVMContext &Context, unsigned Tag, 2281 Metadata *Scope, Metadata *Entity, 2282 Metadata *File, unsigned Line, 2283 MDString *Name, Metadata *Elements, 2284 StorageType Storage, 2285 bool ShouldCreate) { 2286 assert(isCanonical(Name) && "Expected canonical MDString"); 2287 DEFINE_GETIMPL_LOOKUP(DIImportedEntity, 2288 (Tag, Scope, Entity, File, Line, Name, Elements)); 2289 Metadata *Ops[] = {Scope, Entity, Name, File, Elements}; 2290 DEFINE_GETIMPL_STORE(DIImportedEntity, (Tag, Line), Ops); 2291 } 2292 2293 DIMacro *DIMacro::getImpl(LLVMContext &Context, unsigned MIType, unsigned Line, 2294 MDString *Name, MDString *Value, StorageType Storage, 2295 bool ShouldCreate) { 2296 assert(isCanonical(Name) && "Expected canonical MDString"); 2297 DEFINE_GETIMPL_LOOKUP(DIMacro, (MIType, Line, Name, Value)); 2298 Metadata *Ops[] = {Name, Value}; 2299 DEFINE_GETIMPL_STORE(DIMacro, (MIType, Line), Ops); 2300 } 2301 2302 DIMacroFile *DIMacroFile::getImpl(LLVMContext &Context, unsigned MIType, 2303 unsigned Line, Metadata *File, 2304 Metadata *Elements, StorageType Storage, 2305 bool ShouldCreate) { 2306 DEFINE_GETIMPL_LOOKUP(DIMacroFile, (MIType, Line, File, Elements)); 2307 Metadata *Ops[] = {File, Elements}; 2308 DEFINE_GETIMPL_STORE(DIMacroFile, (MIType, Line), Ops); 2309 } 2310 2311 DIArgList *DIArgList::get(LLVMContext &Context, 2312 ArrayRef<ValueAsMetadata *> Args) { 2313 auto ExistingIt = Context.pImpl->DIArgLists.find_as(DIArgListKeyInfo(Args)); 2314 if (ExistingIt != Context.pImpl->DIArgLists.end()) 2315 return *ExistingIt; 2316 DIArgList *NewArgList = new DIArgList(Context, Args); 2317 Context.pImpl->DIArgLists.insert(NewArgList); 2318 return NewArgList; 2319 } 2320 2321 void DIArgList::handleChangedOperand(void *Ref, Metadata *New) { 2322 ValueAsMetadata **OldVMPtr = static_cast<ValueAsMetadata **>(Ref); 2323 assert((!New || isa<ValueAsMetadata>(New)) && 2324 "DIArgList must be passed a ValueAsMetadata"); 2325 untrack(); 2326 // We need to update the set storage once the Args are updated since they 2327 // form the key to the DIArgLists store. 2328 getContext().pImpl->DIArgLists.erase(this); 2329 ValueAsMetadata *NewVM = cast_or_null<ValueAsMetadata>(New); 2330 for (ValueAsMetadata *&VM : Args) { 2331 if (&VM == OldVMPtr) { 2332 if (NewVM) 2333 VM = NewVM; 2334 else 2335 VM = ValueAsMetadata::get(PoisonValue::get(VM->getValue()->getType())); 2336 } 2337 } 2338 // We've changed the contents of this DIArgList, and the set storage may 2339 // already contain a DIArgList with our new set of args; if it does, then we 2340 // must RAUW this with the existing DIArgList, otherwise we simply insert this 2341 // back into the set storage. 2342 DIArgList *ExistingArgList = getUniqued(getContext().pImpl->DIArgLists, this); 2343 if (ExistingArgList) { 2344 replaceAllUsesWith(ExistingArgList); 2345 // Clear this here so we don't try to untrack in the destructor. 2346 Args.clear(); 2347 delete this; 2348 return; 2349 } 2350 getContext().pImpl->DIArgLists.insert(this); 2351 track(); 2352 } 2353 void DIArgList::track() { 2354 for (ValueAsMetadata *&VAM : Args) 2355 if (VAM) 2356 MetadataTracking::track(&VAM, *VAM, *this); 2357 } 2358 void DIArgList::untrack() { 2359 for (ValueAsMetadata *&VAM : Args) 2360 if (VAM) 2361 MetadataTracking::untrack(&VAM, *VAM); 2362 } 2363 void DIArgList::dropAllReferences(bool Untrack) { 2364 if (Untrack) 2365 untrack(); 2366 Args.clear(); 2367 ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false); 2368 } 2369