xref: /freebsd/contrib/llvm-project/llvm/lib/IR/DebugInfoMetadata.cpp (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 //===- DebugInfoMetadata.cpp - Implement debug info metadata --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the debug info Metadata classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/DebugInfoMetadata.h"
14 #include "LLVMContextImpl.h"
15 #include "MetadataImpl.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/BinaryFormat/Dwarf.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/Type.h"
22 #include "llvm/IR/Value.h"
23 
24 #include <numeric>
25 #include <optional>
26 
27 using namespace llvm;
28 
29 namespace llvm {
30 // Use FS-AFDO discriminator.
31 cl::opt<bool> EnableFSDiscriminator(
32     "enable-fs-discriminator", cl::Hidden,
33     cl::desc("Enable adding flow sensitive discriminators"));
34 } // namespace llvm
35 
36 const DIExpression::FragmentInfo DebugVariable::DefaultFragment = {
37     std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::min()};
38 
39 DebugVariable::DebugVariable(const DbgVariableIntrinsic *DII)
40     : Variable(DII->getVariable()),
41       Fragment(DII->getExpression()->getFragmentInfo()),
42       InlinedAt(DII->getDebugLoc().getInlinedAt()) {}
43 
44 DILocation::DILocation(LLVMContext &C, StorageType Storage, unsigned Line,
45                        unsigned Column, ArrayRef<Metadata *> MDs,
46                        bool ImplicitCode)
47     : MDNode(C, DILocationKind, Storage, MDs) {
48   assert((MDs.size() == 1 || MDs.size() == 2) &&
49          "Expected a scope and optional inlined-at");
50 
51   // Set line and column.
52   assert(Column < (1u << 16) && "Expected 16-bit column");
53 
54   SubclassData32 = Line;
55   SubclassData16 = Column;
56 
57   setImplicitCode(ImplicitCode);
58 }
59 
60 static void adjustColumn(unsigned &Column) {
61   // Set to unknown on overflow.  We only have 16 bits to play with here.
62   if (Column >= (1u << 16))
63     Column = 0;
64 }
65 
66 DILocation *DILocation::getImpl(LLVMContext &Context, unsigned Line,
67                                 unsigned Column, Metadata *Scope,
68                                 Metadata *InlinedAt, bool ImplicitCode,
69                                 StorageType Storage, bool ShouldCreate) {
70   // Fixup column.
71   adjustColumn(Column);
72 
73   if (Storage == Uniqued) {
74     if (auto *N = getUniqued(Context.pImpl->DILocations,
75                              DILocationInfo::KeyTy(Line, Column, Scope,
76                                                    InlinedAt, ImplicitCode)))
77       return N;
78     if (!ShouldCreate)
79       return nullptr;
80   } else {
81     assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
82   }
83 
84   SmallVector<Metadata *, 2> Ops;
85   Ops.push_back(Scope);
86   if (InlinedAt)
87     Ops.push_back(InlinedAt);
88   return storeImpl(new (Ops.size(), Storage) DILocation(
89                        Context, Storage, Line, Column, Ops, ImplicitCode),
90                    Storage, Context.pImpl->DILocations);
91 }
92 
93 const DILocation *
94 DILocation::getMergedLocations(ArrayRef<const DILocation *> Locs) {
95   if (Locs.empty())
96     return nullptr;
97   if (Locs.size() == 1)
98     return Locs[0];
99   auto *Merged = Locs[0];
100   for (const DILocation *L : llvm::drop_begin(Locs)) {
101     Merged = getMergedLocation(Merged, L);
102     if (Merged == nullptr)
103       break;
104   }
105   return Merged;
106 }
107 
108 const DILocation *DILocation::getMergedLocation(const DILocation *LocA,
109                                                 const DILocation *LocB) {
110   if (!LocA || !LocB)
111     return nullptr;
112 
113   if (LocA == LocB)
114     return LocA;
115 
116   LLVMContext &C = LocA->getContext();
117   SmallDenseMap<std::pair<DILocalScope *, DILocation *>,
118                 std::pair<unsigned, unsigned>, 4>
119       Locations;
120 
121   DIScope *S = LocA->getScope();
122   DILocation *L = LocA->getInlinedAt();
123   unsigned Line = LocA->getLine();
124   unsigned Col = LocA->getColumn();
125 
126   // Walk from the current source locaiton until the file scope;
127   // then, do the same for the inlined-at locations.
128   auto AdvanceToParentLoc = [&S, &L, &Line, &Col]() {
129     S = S->getScope();
130     if (!S && L) {
131       Line = L->getLine();
132       Col = L->getColumn();
133       S = L->getScope();
134       L = L->getInlinedAt();
135     }
136   };
137 
138   while (S) {
139     if (auto *LS = dyn_cast<DILocalScope>(S))
140       Locations.try_emplace(std::make_pair(LS, L), std::make_pair(Line, Col));
141     AdvanceToParentLoc();
142   }
143 
144   // Walk the source locations of LocB until a match with LocA is found.
145   S = LocB->getScope();
146   L = LocB->getInlinedAt();
147   Line = LocB->getLine();
148   Col = LocB->getColumn();
149   while (S) {
150     if (auto *LS = dyn_cast<DILocalScope>(S)) {
151       auto MatchLoc = Locations.find(std::make_pair(LS, L));
152       if (MatchLoc != Locations.end()) {
153         // If the lines match, keep the line, but set the column to '0'
154         // If the lines don't match, pick a "line 0" location but keep
155         // the current scope and inlined-at.
156         bool SameLine = Line == MatchLoc->second.first;
157         bool SameCol = Col == MatchLoc->second.second;
158         Line = SameLine ? Line : 0;
159         Col = SameLine && SameCol ? Col : 0;
160         break;
161       }
162     }
163     AdvanceToParentLoc();
164   }
165 
166   if (!S) {
167     // If the two locations are irreconsilable, pick any scope,
168     // and return a "line 0" location.
169     Line = Col = 0;
170     S = LocA->getScope();
171   }
172 
173   return DILocation::get(C, Line, Col, S, L);
174 }
175 
176 std::optional<unsigned>
177 DILocation::encodeDiscriminator(unsigned BD, unsigned DF, unsigned CI) {
178   std::array<unsigned, 3> Components = {BD, DF, CI};
179   uint64_t RemainingWork = 0U;
180   // We use RemainingWork to figure out if we have no remaining components to
181   // encode. For example: if BD != 0 but DF == 0 && CI == 0, we don't need to
182   // encode anything for the latter 2.
183   // Since any of the input components is at most 32 bits, their sum will be
184   // less than 34 bits, and thus RemainingWork won't overflow.
185   RemainingWork =
186       std::accumulate(Components.begin(), Components.end(), RemainingWork);
187 
188   int I = 0;
189   unsigned Ret = 0;
190   unsigned NextBitInsertionIndex = 0;
191   while (RemainingWork > 0) {
192     unsigned C = Components[I++];
193     RemainingWork -= C;
194     unsigned EC = encodeComponent(C);
195     Ret |= (EC << NextBitInsertionIndex);
196     NextBitInsertionIndex += encodingBits(C);
197   }
198 
199   // Encoding may be unsuccessful because of overflow. We determine success by
200   // checking equivalence of components before & after encoding. Alternatively,
201   // we could determine Success during encoding, but the current alternative is
202   // simpler.
203   unsigned TBD, TDF, TCI = 0;
204   decodeDiscriminator(Ret, TBD, TDF, TCI);
205   if (TBD == BD && TDF == DF && TCI == CI)
206     return Ret;
207   return std::nullopt;
208 }
209 
210 void DILocation::decodeDiscriminator(unsigned D, unsigned &BD, unsigned &DF,
211                                      unsigned &CI) {
212   BD = getUnsignedFromPrefixEncoding(D);
213   DF = getUnsignedFromPrefixEncoding(getNextComponentInDiscriminator(D));
214   CI = getUnsignedFromPrefixEncoding(
215       getNextComponentInDiscriminator(getNextComponentInDiscriminator(D)));
216 }
217 dwarf::Tag DINode::getTag() const { return (dwarf::Tag)SubclassData16; }
218 
219 DINode::DIFlags DINode::getFlag(StringRef Flag) {
220   return StringSwitch<DIFlags>(Flag)
221 #define HANDLE_DI_FLAG(ID, NAME) .Case("DIFlag" #NAME, Flag##NAME)
222 #include "llvm/IR/DebugInfoFlags.def"
223       .Default(DINode::FlagZero);
224 }
225 
226 StringRef DINode::getFlagString(DIFlags Flag) {
227   switch (Flag) {
228 #define HANDLE_DI_FLAG(ID, NAME)                                               \
229   case Flag##NAME:                                                             \
230     return "DIFlag" #NAME;
231 #include "llvm/IR/DebugInfoFlags.def"
232   }
233   return "";
234 }
235 
236 DINode::DIFlags DINode::splitFlags(DIFlags Flags,
237                                    SmallVectorImpl<DIFlags> &SplitFlags) {
238   // Flags that are packed together need to be specially handled, so
239   // that, for example, we emit "DIFlagPublic" and not
240   // "DIFlagPrivate | DIFlagProtected".
241   if (DIFlags A = Flags & FlagAccessibility) {
242     if (A == FlagPrivate)
243       SplitFlags.push_back(FlagPrivate);
244     else if (A == FlagProtected)
245       SplitFlags.push_back(FlagProtected);
246     else
247       SplitFlags.push_back(FlagPublic);
248     Flags &= ~A;
249   }
250   if (DIFlags R = Flags & FlagPtrToMemberRep) {
251     if (R == FlagSingleInheritance)
252       SplitFlags.push_back(FlagSingleInheritance);
253     else if (R == FlagMultipleInheritance)
254       SplitFlags.push_back(FlagMultipleInheritance);
255     else
256       SplitFlags.push_back(FlagVirtualInheritance);
257     Flags &= ~R;
258   }
259   if ((Flags & FlagIndirectVirtualBase) == FlagIndirectVirtualBase) {
260     Flags &= ~FlagIndirectVirtualBase;
261     SplitFlags.push_back(FlagIndirectVirtualBase);
262   }
263 
264 #define HANDLE_DI_FLAG(ID, NAME)                                               \
265   if (DIFlags Bit = Flags & Flag##NAME) {                                      \
266     SplitFlags.push_back(Bit);                                                 \
267     Flags &= ~Bit;                                                             \
268   }
269 #include "llvm/IR/DebugInfoFlags.def"
270   return Flags;
271 }
272 
273 DIScope *DIScope::getScope() const {
274   if (auto *T = dyn_cast<DIType>(this))
275     return T->getScope();
276 
277   if (auto *SP = dyn_cast<DISubprogram>(this))
278     return SP->getScope();
279 
280   if (auto *LB = dyn_cast<DILexicalBlockBase>(this))
281     return LB->getScope();
282 
283   if (auto *NS = dyn_cast<DINamespace>(this))
284     return NS->getScope();
285 
286   if (auto *CB = dyn_cast<DICommonBlock>(this))
287     return CB->getScope();
288 
289   if (auto *M = dyn_cast<DIModule>(this))
290     return M->getScope();
291 
292   assert((isa<DIFile>(this) || isa<DICompileUnit>(this)) &&
293          "Unhandled type of scope.");
294   return nullptr;
295 }
296 
297 StringRef DIScope::getName() const {
298   if (auto *T = dyn_cast<DIType>(this))
299     return T->getName();
300   if (auto *SP = dyn_cast<DISubprogram>(this))
301     return SP->getName();
302   if (auto *NS = dyn_cast<DINamespace>(this))
303     return NS->getName();
304   if (auto *CB = dyn_cast<DICommonBlock>(this))
305     return CB->getName();
306   if (auto *M = dyn_cast<DIModule>(this))
307     return M->getName();
308   assert((isa<DILexicalBlockBase>(this) || isa<DIFile>(this) ||
309           isa<DICompileUnit>(this)) &&
310          "Unhandled type of scope.");
311   return "";
312 }
313 
314 #ifndef NDEBUG
315 static bool isCanonical(const MDString *S) {
316   return !S || !S->getString().empty();
317 }
318 #endif
319 
320 dwarf::Tag GenericDINode::getTag() const { return (dwarf::Tag)SubclassData16; }
321 GenericDINode *GenericDINode::getImpl(LLVMContext &Context, unsigned Tag,
322                                       MDString *Header,
323                                       ArrayRef<Metadata *> DwarfOps,
324                                       StorageType Storage, bool ShouldCreate) {
325   unsigned Hash = 0;
326   if (Storage == Uniqued) {
327     GenericDINodeInfo::KeyTy Key(Tag, Header, DwarfOps);
328     if (auto *N = getUniqued(Context.pImpl->GenericDINodes, Key))
329       return N;
330     if (!ShouldCreate)
331       return nullptr;
332     Hash = Key.getHash();
333   } else {
334     assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
335   }
336 
337   // Use a nullptr for empty headers.
338   assert(isCanonical(Header) && "Expected canonical MDString");
339   Metadata *PreOps[] = {Header};
340   return storeImpl(new (DwarfOps.size() + 1, Storage) GenericDINode(
341                        Context, Storage, Hash, Tag, PreOps, DwarfOps),
342                    Storage, Context.pImpl->GenericDINodes);
343 }
344 
345 void GenericDINode::recalculateHash() {
346   setHash(GenericDINodeInfo::KeyTy::calculateHash(this));
347 }
348 
349 #define UNWRAP_ARGS_IMPL(...) __VA_ARGS__
350 #define UNWRAP_ARGS(ARGS) UNWRAP_ARGS_IMPL ARGS
351 #define DEFINE_GETIMPL_LOOKUP(CLASS, ARGS)                                     \
352   do {                                                                         \
353     if (Storage == Uniqued) {                                                  \
354       if (auto *N = getUniqued(Context.pImpl->CLASS##s,                        \
355                                CLASS##Info::KeyTy(UNWRAP_ARGS(ARGS))))         \
356         return N;                                                              \
357       if (!ShouldCreate)                                                       \
358         return nullptr;                                                        \
359     } else {                                                                   \
360       assert(ShouldCreate &&                                                   \
361              "Expected non-uniqued nodes to always be created");               \
362     }                                                                          \
363   } while (false)
364 #define DEFINE_GETIMPL_STORE(CLASS, ARGS, OPS)                                 \
365   return storeImpl(new (std::size(OPS), Storage)                               \
366                        CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS),        \
367                    Storage, Context.pImpl->CLASS##s)
368 #define DEFINE_GETIMPL_STORE_NO_OPS(CLASS, ARGS)                               \
369   return storeImpl(new (0u, Storage)                                           \
370                        CLASS(Context, Storage, UNWRAP_ARGS(ARGS)),             \
371                    Storage, Context.pImpl->CLASS##s)
372 #define DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(CLASS, OPS)                   \
373   return storeImpl(new (std::size(OPS), Storage) CLASS(Context, Storage, OPS), \
374                    Storage, Context.pImpl->CLASS##s)
375 #define DEFINE_GETIMPL_STORE_N(CLASS, ARGS, OPS, NUM_OPS)                      \
376   return storeImpl(new (NUM_OPS, Storage)                                      \
377                        CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS),        \
378                    Storage, Context.pImpl->CLASS##s)
379 
380 DISubrange::DISubrange(LLVMContext &C, StorageType Storage,
381                        ArrayRef<Metadata *> Ops)
382     : DINode(C, DISubrangeKind, Storage, dwarf::DW_TAG_subrange_type, Ops) {}
383 DISubrange *DISubrange::getImpl(LLVMContext &Context, int64_t Count, int64_t Lo,
384                                 StorageType Storage, bool ShouldCreate) {
385   auto *CountNode = ConstantAsMetadata::get(
386       ConstantInt::getSigned(Type::getInt64Ty(Context), Count));
387   auto *LB = ConstantAsMetadata::get(
388       ConstantInt::getSigned(Type::getInt64Ty(Context), Lo));
389   return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage,
390                  ShouldCreate);
391 }
392 
393 DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
394                                 int64_t Lo, StorageType Storage,
395                                 bool ShouldCreate) {
396   auto *LB = ConstantAsMetadata::get(
397       ConstantInt::getSigned(Type::getInt64Ty(Context), Lo));
398   return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage,
399                  ShouldCreate);
400 }
401 
402 DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
403                                 Metadata *LB, Metadata *UB, Metadata *Stride,
404                                 StorageType Storage, bool ShouldCreate) {
405   DEFINE_GETIMPL_LOOKUP(DISubrange, (CountNode, LB, UB, Stride));
406   Metadata *Ops[] = {CountNode, LB, UB, Stride};
407   DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DISubrange, Ops);
408 }
409 
410 DISubrange::BoundType DISubrange::getCount() const {
411   Metadata *CB = getRawCountNode();
412   if (!CB)
413     return BoundType();
414 
415   assert((isa<ConstantAsMetadata>(CB) || isa<DIVariable>(CB) ||
416           isa<DIExpression>(CB)) &&
417          "Count must be signed constant or DIVariable or DIExpression");
418 
419   if (auto *MD = dyn_cast<ConstantAsMetadata>(CB))
420     return BoundType(cast<ConstantInt>(MD->getValue()));
421 
422   if (auto *MD = dyn_cast<DIVariable>(CB))
423     return BoundType(MD);
424 
425   if (auto *MD = dyn_cast<DIExpression>(CB))
426     return BoundType(MD);
427 
428   return BoundType();
429 }
430 
431 DISubrange::BoundType DISubrange::getLowerBound() const {
432   Metadata *LB = getRawLowerBound();
433   if (!LB)
434     return BoundType();
435 
436   assert((isa<ConstantAsMetadata>(LB) || isa<DIVariable>(LB) ||
437           isa<DIExpression>(LB)) &&
438          "LowerBound must be signed constant or DIVariable or DIExpression");
439 
440   if (auto *MD = dyn_cast<ConstantAsMetadata>(LB))
441     return BoundType(cast<ConstantInt>(MD->getValue()));
442 
443   if (auto *MD = dyn_cast<DIVariable>(LB))
444     return BoundType(MD);
445 
446   if (auto *MD = dyn_cast<DIExpression>(LB))
447     return BoundType(MD);
448 
449   return BoundType();
450 }
451 
452 DISubrange::BoundType DISubrange::getUpperBound() const {
453   Metadata *UB = getRawUpperBound();
454   if (!UB)
455     return BoundType();
456 
457   assert((isa<ConstantAsMetadata>(UB) || isa<DIVariable>(UB) ||
458           isa<DIExpression>(UB)) &&
459          "UpperBound must be signed constant or DIVariable or DIExpression");
460 
461   if (auto *MD = dyn_cast<ConstantAsMetadata>(UB))
462     return BoundType(cast<ConstantInt>(MD->getValue()));
463 
464   if (auto *MD = dyn_cast<DIVariable>(UB))
465     return BoundType(MD);
466 
467   if (auto *MD = dyn_cast<DIExpression>(UB))
468     return BoundType(MD);
469 
470   return BoundType();
471 }
472 
473 DISubrange::BoundType DISubrange::getStride() const {
474   Metadata *ST = getRawStride();
475   if (!ST)
476     return BoundType();
477 
478   assert((isa<ConstantAsMetadata>(ST) || isa<DIVariable>(ST) ||
479           isa<DIExpression>(ST)) &&
480          "Stride must be signed constant or DIVariable or DIExpression");
481 
482   if (auto *MD = dyn_cast<ConstantAsMetadata>(ST))
483     return BoundType(cast<ConstantInt>(MD->getValue()));
484 
485   if (auto *MD = dyn_cast<DIVariable>(ST))
486     return BoundType(MD);
487 
488   if (auto *MD = dyn_cast<DIExpression>(ST))
489     return BoundType(MD);
490 
491   return BoundType();
492 }
493 DIGenericSubrange::DIGenericSubrange(LLVMContext &C, StorageType Storage,
494                                      ArrayRef<Metadata *> Ops)
495     : DINode(C, DIGenericSubrangeKind, Storage, dwarf::DW_TAG_generic_subrange,
496              Ops) {}
497 
498 DIGenericSubrange *DIGenericSubrange::getImpl(LLVMContext &Context,
499                                               Metadata *CountNode, Metadata *LB,
500                                               Metadata *UB, Metadata *Stride,
501                                               StorageType Storage,
502                                               bool ShouldCreate) {
503   DEFINE_GETIMPL_LOOKUP(DIGenericSubrange, (CountNode, LB, UB, Stride));
504   Metadata *Ops[] = {CountNode, LB, UB, Stride};
505   DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGenericSubrange, Ops);
506 }
507 
508 DIGenericSubrange::BoundType DIGenericSubrange::getCount() const {
509   Metadata *CB = getRawCountNode();
510   if (!CB)
511     return BoundType();
512 
513   assert((isa<DIVariable>(CB) || isa<DIExpression>(CB)) &&
514          "Count must be signed constant or DIVariable or DIExpression");
515 
516   if (auto *MD = dyn_cast<DIVariable>(CB))
517     return BoundType(MD);
518 
519   if (auto *MD = dyn_cast<DIExpression>(CB))
520     return BoundType(MD);
521 
522   return BoundType();
523 }
524 
525 DIGenericSubrange::BoundType DIGenericSubrange::getLowerBound() const {
526   Metadata *LB = getRawLowerBound();
527   if (!LB)
528     return BoundType();
529 
530   assert((isa<DIVariable>(LB) || isa<DIExpression>(LB)) &&
531          "LowerBound must be signed constant or DIVariable or DIExpression");
532 
533   if (auto *MD = dyn_cast<DIVariable>(LB))
534     return BoundType(MD);
535 
536   if (auto *MD = dyn_cast<DIExpression>(LB))
537     return BoundType(MD);
538 
539   return BoundType();
540 }
541 
542 DIGenericSubrange::BoundType DIGenericSubrange::getUpperBound() const {
543   Metadata *UB = getRawUpperBound();
544   if (!UB)
545     return BoundType();
546 
547   assert((isa<DIVariable>(UB) || isa<DIExpression>(UB)) &&
548          "UpperBound must be signed constant or DIVariable or DIExpression");
549 
550   if (auto *MD = dyn_cast<DIVariable>(UB))
551     return BoundType(MD);
552 
553   if (auto *MD = dyn_cast<DIExpression>(UB))
554     return BoundType(MD);
555 
556   return BoundType();
557 }
558 
559 DIGenericSubrange::BoundType DIGenericSubrange::getStride() const {
560   Metadata *ST = getRawStride();
561   if (!ST)
562     return BoundType();
563 
564   assert((isa<DIVariable>(ST) || isa<DIExpression>(ST)) &&
565          "Stride must be signed constant or DIVariable or DIExpression");
566 
567   if (auto *MD = dyn_cast<DIVariable>(ST))
568     return BoundType(MD);
569 
570   if (auto *MD = dyn_cast<DIExpression>(ST))
571     return BoundType(MD);
572 
573   return BoundType();
574 }
575 
576 DIEnumerator::DIEnumerator(LLVMContext &C, StorageType Storage,
577                            const APInt &Value, bool IsUnsigned,
578                            ArrayRef<Metadata *> Ops)
579     : DINode(C, DIEnumeratorKind, Storage, dwarf::DW_TAG_enumerator, Ops),
580       Value(Value) {
581   SubclassData32 = IsUnsigned;
582 }
583 DIEnumerator *DIEnumerator::getImpl(LLVMContext &Context, const APInt &Value,
584                                     bool IsUnsigned, MDString *Name,
585                                     StorageType Storage, bool ShouldCreate) {
586   assert(isCanonical(Name) && "Expected canonical MDString");
587   DEFINE_GETIMPL_LOOKUP(DIEnumerator, (Value, IsUnsigned, Name));
588   Metadata *Ops[] = {Name};
589   DEFINE_GETIMPL_STORE(DIEnumerator, (Value, IsUnsigned), Ops);
590 }
591 
592 DIBasicType *DIBasicType::getImpl(LLVMContext &Context, unsigned Tag,
593                                   MDString *Name, uint64_t SizeInBits,
594                                   uint32_t AlignInBits, unsigned Encoding,
595                                   DIFlags Flags, StorageType Storage,
596                                   bool ShouldCreate) {
597   assert(isCanonical(Name) && "Expected canonical MDString");
598   DEFINE_GETIMPL_LOOKUP(DIBasicType,
599                         (Tag, Name, SizeInBits, AlignInBits, Encoding, Flags));
600   Metadata *Ops[] = {nullptr, nullptr, Name};
601   DEFINE_GETIMPL_STORE(DIBasicType,
602                        (Tag, SizeInBits, AlignInBits, Encoding, Flags), Ops);
603 }
604 
605 std::optional<DIBasicType::Signedness> DIBasicType::getSignedness() const {
606   switch (getEncoding()) {
607   case dwarf::DW_ATE_signed:
608   case dwarf::DW_ATE_signed_char:
609     return Signedness::Signed;
610   case dwarf::DW_ATE_unsigned:
611   case dwarf::DW_ATE_unsigned_char:
612     return Signedness::Unsigned;
613   default:
614     return std::nullopt;
615   }
616 }
617 
618 DIStringType *DIStringType::getImpl(LLVMContext &Context, unsigned Tag,
619                                     MDString *Name, Metadata *StringLength,
620                                     Metadata *StringLengthExp,
621                                     Metadata *StringLocationExp,
622                                     uint64_t SizeInBits, uint32_t AlignInBits,
623                                     unsigned Encoding, StorageType Storage,
624                                     bool ShouldCreate) {
625   assert(isCanonical(Name) && "Expected canonical MDString");
626   DEFINE_GETIMPL_LOOKUP(DIStringType,
627                         (Tag, Name, StringLength, StringLengthExp,
628                          StringLocationExp, SizeInBits, AlignInBits, Encoding));
629   Metadata *Ops[] = {nullptr,      nullptr,         Name,
630                      StringLength, StringLengthExp, StringLocationExp};
631   DEFINE_GETIMPL_STORE(DIStringType, (Tag, SizeInBits, AlignInBits, Encoding),
632                        Ops);
633 }
634 DIType *DIDerivedType::getClassType() const {
635   assert(getTag() == dwarf::DW_TAG_ptr_to_member_type);
636   return cast_or_null<DIType>(getExtraData());
637 }
638 uint32_t DIDerivedType::getVBPtrOffset() const {
639   assert(getTag() == dwarf::DW_TAG_inheritance);
640   if (auto *CM = cast_or_null<ConstantAsMetadata>(getExtraData()))
641     if (auto *CI = dyn_cast_or_null<ConstantInt>(CM->getValue()))
642       return static_cast<uint32_t>(CI->getZExtValue());
643   return 0;
644 }
645 Constant *DIDerivedType::getStorageOffsetInBits() const {
646   assert(getTag() == dwarf::DW_TAG_member && isBitField());
647   if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData()))
648     return C->getValue();
649   return nullptr;
650 }
651 
652 Constant *DIDerivedType::getConstant() const {
653   assert(getTag() == dwarf::DW_TAG_member && isStaticMember());
654   if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData()))
655     return C->getValue();
656   return nullptr;
657 }
658 Constant *DIDerivedType::getDiscriminantValue() const {
659   assert(getTag() == dwarf::DW_TAG_member && !isStaticMember());
660   if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData()))
661     return C->getValue();
662   return nullptr;
663 }
664 
665 DIDerivedType *
666 DIDerivedType::getImpl(LLVMContext &Context, unsigned Tag, MDString *Name,
667                        Metadata *File, unsigned Line, Metadata *Scope,
668                        Metadata *BaseType, uint64_t SizeInBits,
669                        uint32_t AlignInBits, uint64_t OffsetInBits,
670                        std::optional<unsigned> DWARFAddressSpace, DIFlags Flags,
671                        Metadata *ExtraData, Metadata *Annotations,
672                        StorageType Storage, bool ShouldCreate) {
673   assert(isCanonical(Name) && "Expected canonical MDString");
674   DEFINE_GETIMPL_LOOKUP(DIDerivedType,
675                         (Tag, Name, File, Line, Scope, BaseType, SizeInBits,
676                          AlignInBits, OffsetInBits, DWARFAddressSpace, Flags,
677                          ExtraData, Annotations));
678   Metadata *Ops[] = {File, Scope, Name, BaseType, ExtraData, Annotations};
679   DEFINE_GETIMPL_STORE(DIDerivedType,
680                        (Tag, Line, SizeInBits, AlignInBits, OffsetInBits,
681                         DWARFAddressSpace, Flags),
682                        Ops);
683 }
684 
685 DICompositeType *DICompositeType::getImpl(
686     LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File,
687     unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits,
688     uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags,
689     Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder,
690     Metadata *TemplateParams, MDString *Identifier, Metadata *Discriminator,
691     Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
692     Metadata *Rank, Metadata *Annotations, StorageType Storage,
693     bool ShouldCreate) {
694   assert(isCanonical(Name) && "Expected canonical MDString");
695 
696   // Keep this in sync with buildODRType.
697   DEFINE_GETIMPL_LOOKUP(DICompositeType,
698                         (Tag, Name, File, Line, Scope, BaseType, SizeInBits,
699                          AlignInBits, OffsetInBits, Flags, Elements,
700                          RuntimeLang, VTableHolder, TemplateParams, Identifier,
701                          Discriminator, DataLocation, Associated, Allocated,
702                          Rank, Annotations));
703   Metadata *Ops[] = {File,          Scope,        Name,           BaseType,
704                      Elements,      VTableHolder, TemplateParams, Identifier,
705                      Discriminator, DataLocation, Associated,     Allocated,
706                      Rank,          Annotations};
707   DEFINE_GETIMPL_STORE(
708       DICompositeType,
709       (Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits, Flags),
710       Ops);
711 }
712 
713 DICompositeType *DICompositeType::buildODRType(
714     LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
715     Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType,
716     uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits,
717     DIFlags Flags, Metadata *Elements, unsigned RuntimeLang,
718     Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator,
719     Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
720     Metadata *Rank, Metadata *Annotations) {
721   assert(!Identifier.getString().empty() && "Expected valid identifier");
722   if (!Context.isODRUniquingDebugTypes())
723     return nullptr;
724   auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
725   if (!CT)
726     return CT = DICompositeType::getDistinct(
727                Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
728                AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
729                VTableHolder, TemplateParams, &Identifier, Discriminator,
730                DataLocation, Associated, Allocated, Rank, Annotations);
731 
732   if (CT->getTag() != Tag)
733     return nullptr;
734 
735   // Only mutate CT if it's a forward declaration and the new operands aren't.
736   assert(CT->getRawIdentifier() == &Identifier && "Wrong ODR identifier?");
737   if (!CT->isForwardDecl() || (Flags & DINode::FlagFwdDecl))
738     return CT;
739 
740   // Mutate CT in place.  Keep this in sync with getImpl.
741   CT->mutate(Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits,
742              Flags);
743   Metadata *Ops[] = {File,          Scope,        Name,           BaseType,
744                      Elements,      VTableHolder, TemplateParams, &Identifier,
745                      Discriminator, DataLocation, Associated,     Allocated,
746                      Rank,          Annotations};
747   assert((std::end(Ops) - std::begin(Ops)) == (int)CT->getNumOperands() &&
748          "Mismatched number of operands");
749   for (unsigned I = 0, E = CT->getNumOperands(); I != E; ++I)
750     if (Ops[I] != CT->getOperand(I))
751       CT->setOperand(I, Ops[I]);
752   return CT;
753 }
754 
755 DICompositeType *DICompositeType::getODRType(
756     LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
757     Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType,
758     uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits,
759     DIFlags Flags, Metadata *Elements, unsigned RuntimeLang,
760     Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator,
761     Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
762     Metadata *Rank, Metadata *Annotations) {
763   assert(!Identifier.getString().empty() && "Expected valid identifier");
764   if (!Context.isODRUniquingDebugTypes())
765     return nullptr;
766   auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
767   if (!CT) {
768     CT = DICompositeType::getDistinct(
769         Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
770         AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder,
771         TemplateParams, &Identifier, Discriminator, DataLocation, Associated,
772         Allocated, Rank, Annotations);
773   } else {
774     if (CT->getTag() != Tag)
775       return nullptr;
776   }
777   return CT;
778 }
779 
780 DICompositeType *DICompositeType::getODRTypeIfExists(LLVMContext &Context,
781                                                      MDString &Identifier) {
782   assert(!Identifier.getString().empty() && "Expected valid identifier");
783   if (!Context.isODRUniquingDebugTypes())
784     return nullptr;
785   return Context.pImpl->DITypeMap->lookup(&Identifier);
786 }
787 DISubroutineType::DISubroutineType(LLVMContext &C, StorageType Storage,
788                                    DIFlags Flags, uint8_t CC,
789                                    ArrayRef<Metadata *> Ops)
790     : DIType(C, DISubroutineTypeKind, Storage, dwarf::DW_TAG_subroutine_type, 0,
791              0, 0, 0, Flags, Ops),
792       CC(CC) {}
793 
794 DISubroutineType *DISubroutineType::getImpl(LLVMContext &Context, DIFlags Flags,
795                                             uint8_t CC, Metadata *TypeArray,
796                                             StorageType Storage,
797                                             bool ShouldCreate) {
798   DEFINE_GETIMPL_LOOKUP(DISubroutineType, (Flags, CC, TypeArray));
799   Metadata *Ops[] = {nullptr, nullptr, nullptr, TypeArray};
800   DEFINE_GETIMPL_STORE(DISubroutineType, (Flags, CC), Ops);
801 }
802 
803 DIFile::DIFile(LLVMContext &C, StorageType Storage,
804                std::optional<ChecksumInfo<MDString *>> CS, MDString *Src,
805                ArrayRef<Metadata *> Ops)
806     : DIScope(C, DIFileKind, Storage, dwarf::DW_TAG_file_type, Ops),
807       Checksum(CS), Source(Src) {}
808 
809 // FIXME: Implement this string-enum correspondence with a .def file and macros,
810 // so that the association is explicit rather than implied.
811 static const char *ChecksumKindName[DIFile::CSK_Last] = {
812     "CSK_MD5",
813     "CSK_SHA1",
814     "CSK_SHA256",
815 };
816 
817 StringRef DIFile::getChecksumKindAsString(ChecksumKind CSKind) {
818   assert(CSKind <= DIFile::CSK_Last && "Invalid checksum kind");
819   // The first space was originally the CSK_None variant, which is now
820   // obsolete, but the space is still reserved in ChecksumKind, so we account
821   // for it here.
822   return ChecksumKindName[CSKind - 1];
823 }
824 
825 std::optional<DIFile::ChecksumKind>
826 DIFile::getChecksumKind(StringRef CSKindStr) {
827   return StringSwitch<std::optional<DIFile::ChecksumKind>>(CSKindStr)
828       .Case("CSK_MD5", DIFile::CSK_MD5)
829       .Case("CSK_SHA1", DIFile::CSK_SHA1)
830       .Case("CSK_SHA256", DIFile::CSK_SHA256)
831       .Default(std::nullopt);
832 }
833 
834 DIFile *DIFile::getImpl(LLVMContext &Context, MDString *Filename,
835                         MDString *Directory,
836                         std::optional<DIFile::ChecksumInfo<MDString *>> CS,
837                         MDString *Source, StorageType Storage,
838                         bool ShouldCreate) {
839   assert(isCanonical(Filename) && "Expected canonical MDString");
840   assert(isCanonical(Directory) && "Expected canonical MDString");
841   assert((!CS || isCanonical(CS->Value)) && "Expected canonical MDString");
842   // We do *NOT* expect Source to be a canonical MDString because nullptr
843   // means none, so we need something to represent the empty file.
844   DEFINE_GETIMPL_LOOKUP(DIFile, (Filename, Directory, CS, Source));
845   Metadata *Ops[] = {Filename, Directory, CS ? CS->Value : nullptr, Source};
846   DEFINE_GETIMPL_STORE(DIFile, (CS, Source), Ops);
847 }
848 DICompileUnit::DICompileUnit(LLVMContext &C, StorageType Storage,
849                              unsigned SourceLanguage, bool IsOptimized,
850                              unsigned RuntimeVersion, unsigned EmissionKind,
851                              uint64_t DWOId, bool SplitDebugInlining,
852                              bool DebugInfoForProfiling, unsigned NameTableKind,
853                              bool RangesBaseAddress, ArrayRef<Metadata *> Ops)
854     : DIScope(C, DICompileUnitKind, Storage, dwarf::DW_TAG_compile_unit, Ops),
855       SourceLanguage(SourceLanguage), IsOptimized(IsOptimized),
856       RuntimeVersion(RuntimeVersion), EmissionKind(EmissionKind), DWOId(DWOId),
857       SplitDebugInlining(SplitDebugInlining),
858       DebugInfoForProfiling(DebugInfoForProfiling),
859       NameTableKind(NameTableKind), RangesBaseAddress(RangesBaseAddress) {
860   assert(Storage != Uniqued);
861 }
862 
863 DICompileUnit *DICompileUnit::getImpl(
864     LLVMContext &Context, unsigned SourceLanguage, Metadata *File,
865     MDString *Producer, bool IsOptimized, MDString *Flags,
866     unsigned RuntimeVersion, MDString *SplitDebugFilename,
867     unsigned EmissionKind, Metadata *EnumTypes, Metadata *RetainedTypes,
868     Metadata *GlobalVariables, Metadata *ImportedEntities, Metadata *Macros,
869     uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling,
870     unsigned NameTableKind, bool RangesBaseAddress, MDString *SysRoot,
871     MDString *SDK, StorageType Storage, bool ShouldCreate) {
872   assert(Storage != Uniqued && "Cannot unique DICompileUnit");
873   assert(isCanonical(Producer) && "Expected canonical MDString");
874   assert(isCanonical(Flags) && "Expected canonical MDString");
875   assert(isCanonical(SplitDebugFilename) && "Expected canonical MDString");
876 
877   Metadata *Ops[] = {File,
878                      Producer,
879                      Flags,
880                      SplitDebugFilename,
881                      EnumTypes,
882                      RetainedTypes,
883                      GlobalVariables,
884                      ImportedEntities,
885                      Macros,
886                      SysRoot,
887                      SDK};
888   return storeImpl(new (std::size(Ops), Storage) DICompileUnit(
889                        Context, Storage, SourceLanguage, IsOptimized,
890                        RuntimeVersion, EmissionKind, DWOId, SplitDebugInlining,
891                        DebugInfoForProfiling, NameTableKind, RangesBaseAddress,
892                        Ops),
893                    Storage);
894 }
895 
896 std::optional<DICompileUnit::DebugEmissionKind>
897 DICompileUnit::getEmissionKind(StringRef Str) {
898   return StringSwitch<std::optional<DebugEmissionKind>>(Str)
899       .Case("NoDebug", NoDebug)
900       .Case("FullDebug", FullDebug)
901       .Case("LineTablesOnly", LineTablesOnly)
902       .Case("DebugDirectivesOnly", DebugDirectivesOnly)
903       .Default(std::nullopt);
904 }
905 
906 std::optional<DICompileUnit::DebugNameTableKind>
907 DICompileUnit::getNameTableKind(StringRef Str) {
908   return StringSwitch<std::optional<DebugNameTableKind>>(Str)
909       .Case("Default", DebugNameTableKind::Default)
910       .Case("GNU", DebugNameTableKind::GNU)
911       .Case("None", DebugNameTableKind::None)
912       .Default(std::nullopt);
913 }
914 
915 const char *DICompileUnit::emissionKindString(DebugEmissionKind EK) {
916   switch (EK) {
917   case NoDebug:
918     return "NoDebug";
919   case FullDebug:
920     return "FullDebug";
921   case LineTablesOnly:
922     return "LineTablesOnly";
923   case DebugDirectivesOnly:
924     return "DebugDirectivesOnly";
925   }
926   return nullptr;
927 }
928 
929 const char *DICompileUnit::nameTableKindString(DebugNameTableKind NTK) {
930   switch (NTK) {
931   case DebugNameTableKind::Default:
932     return nullptr;
933   case DebugNameTableKind::GNU:
934     return "GNU";
935   case DebugNameTableKind::None:
936     return "None";
937   }
938   return nullptr;
939 }
940 DISubprogram::DISubprogram(LLVMContext &C, StorageType Storage, unsigned Line,
941                            unsigned ScopeLine, unsigned VirtualIndex,
942                            int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags,
943                            ArrayRef<Metadata *> Ops)
944     : DILocalScope(C, DISubprogramKind, Storage, dwarf::DW_TAG_subprogram, Ops),
945       Line(Line), ScopeLine(ScopeLine), VirtualIndex(VirtualIndex),
946       ThisAdjustment(ThisAdjustment), Flags(Flags), SPFlags(SPFlags) {
947   static_assert(dwarf::DW_VIRTUALITY_max < 4, "Virtuality out of range");
948 }
949 DISubprogram::DISPFlags
950 DISubprogram::toSPFlags(bool IsLocalToUnit, bool IsDefinition, bool IsOptimized,
951                         unsigned Virtuality, bool IsMainSubprogram) {
952   // We're assuming virtuality is the low-order field.
953   static_assert(int(SPFlagVirtual) == int(dwarf::DW_VIRTUALITY_virtual) &&
954                     int(SPFlagPureVirtual) ==
955                         int(dwarf::DW_VIRTUALITY_pure_virtual),
956                 "Virtuality constant mismatch");
957   return static_cast<DISPFlags>(
958       (Virtuality & SPFlagVirtuality) |
959       (IsLocalToUnit ? SPFlagLocalToUnit : SPFlagZero) |
960       (IsDefinition ? SPFlagDefinition : SPFlagZero) |
961       (IsOptimized ? SPFlagOptimized : SPFlagZero) |
962       (IsMainSubprogram ? SPFlagMainSubprogram : SPFlagZero));
963 }
964 
965 DISubprogram *DILocalScope::getSubprogram() const {
966   if (auto *Block = dyn_cast<DILexicalBlockBase>(this))
967     return Block->getScope()->getSubprogram();
968   return const_cast<DISubprogram *>(cast<DISubprogram>(this));
969 }
970 
971 DILocalScope *DILocalScope::getNonLexicalBlockFileScope() const {
972   if (auto *File = dyn_cast<DILexicalBlockFile>(this))
973     return File->getScope()->getNonLexicalBlockFileScope();
974   return const_cast<DILocalScope *>(this);
975 }
976 
977 DILocalScope *DILocalScope::cloneScopeForSubprogram(
978     DILocalScope &RootScope, DISubprogram &NewSP, LLVMContext &Ctx,
979     DenseMap<const MDNode *, MDNode *> &Cache) {
980   SmallVector<DIScope *> ScopeChain;
981   DIScope *CachedResult = nullptr;
982 
983   for (DIScope *Scope = &RootScope; !isa<DISubprogram>(Scope);
984        Scope = Scope->getScope()) {
985     if (auto It = Cache.find(Scope); It != Cache.end()) {
986       CachedResult = cast<DIScope>(It->second);
987       break;
988     }
989     ScopeChain.push_back(Scope);
990   }
991 
992   // Recreate the scope chain, bottom-up, starting at the new subprogram (or a
993   // cached result).
994   DIScope *UpdatedScope = CachedResult ? CachedResult : &NewSP;
995   for (DIScope *ScopeToUpdate : reverse(ScopeChain)) {
996     TempMDNode ClonedScope = ScopeToUpdate->clone();
997     cast<DILexicalBlockBase>(*ClonedScope).replaceScope(UpdatedScope);
998     UpdatedScope =
999         cast<DIScope>(MDNode::replaceWithUniqued(std::move(ClonedScope)));
1000     Cache[ScopeToUpdate] = UpdatedScope;
1001   }
1002 
1003   return cast<DILocalScope>(UpdatedScope);
1004 }
1005 
1006 DISubprogram::DISPFlags DISubprogram::getFlag(StringRef Flag) {
1007   return StringSwitch<DISPFlags>(Flag)
1008 #define HANDLE_DISP_FLAG(ID, NAME) .Case("DISPFlag" #NAME, SPFlag##NAME)
1009 #include "llvm/IR/DebugInfoFlags.def"
1010       .Default(SPFlagZero);
1011 }
1012 
1013 StringRef DISubprogram::getFlagString(DISPFlags Flag) {
1014   switch (Flag) {
1015   // Appease a warning.
1016   case SPFlagVirtuality:
1017     return "";
1018 #define HANDLE_DISP_FLAG(ID, NAME)                                             \
1019   case SPFlag##NAME:                                                           \
1020     return "DISPFlag" #NAME;
1021 #include "llvm/IR/DebugInfoFlags.def"
1022   }
1023   return "";
1024 }
1025 
1026 DISubprogram::DISPFlags
1027 DISubprogram::splitFlags(DISPFlags Flags,
1028                          SmallVectorImpl<DISPFlags> &SplitFlags) {
1029   // Multi-bit fields can require special handling. In our case, however, the
1030   // only multi-bit field is virtuality, and all its values happen to be
1031   // single-bit values, so the right behavior just falls out.
1032 #define HANDLE_DISP_FLAG(ID, NAME)                                             \
1033   if (DISPFlags Bit = Flags & SPFlag##NAME) {                                  \
1034     SplitFlags.push_back(Bit);                                                 \
1035     Flags &= ~Bit;                                                             \
1036   }
1037 #include "llvm/IR/DebugInfoFlags.def"
1038   return Flags;
1039 }
1040 
1041 DISubprogram *DISubprogram::getImpl(
1042     LLVMContext &Context, Metadata *Scope, MDString *Name,
1043     MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type,
1044     unsigned ScopeLine, Metadata *ContainingType, unsigned VirtualIndex,
1045     int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, Metadata *Unit,
1046     Metadata *TemplateParams, Metadata *Declaration, Metadata *RetainedNodes,
1047     Metadata *ThrownTypes, Metadata *Annotations, MDString *TargetFuncName,
1048     StorageType Storage, bool ShouldCreate) {
1049   assert(isCanonical(Name) && "Expected canonical MDString");
1050   assert(isCanonical(LinkageName) && "Expected canonical MDString");
1051   assert(isCanonical(TargetFuncName) && "Expected canonical MDString");
1052   DEFINE_GETIMPL_LOOKUP(DISubprogram,
1053                         (Scope, Name, LinkageName, File, Line, Type, ScopeLine,
1054                          ContainingType, VirtualIndex, ThisAdjustment, Flags,
1055                          SPFlags, Unit, TemplateParams, Declaration,
1056                          RetainedNodes, ThrownTypes, Annotations,
1057                          TargetFuncName));
1058   SmallVector<Metadata *, 13> Ops = {
1059       File,           Scope,          Name,        LinkageName,
1060       Type,           Unit,           Declaration, RetainedNodes,
1061       ContainingType, TemplateParams, ThrownTypes, Annotations,
1062       TargetFuncName};
1063   if (!TargetFuncName) {
1064     Ops.pop_back();
1065     if (!Annotations) {
1066       Ops.pop_back();
1067       if (!ThrownTypes) {
1068         Ops.pop_back();
1069         if (!TemplateParams) {
1070           Ops.pop_back();
1071           if (!ContainingType)
1072             Ops.pop_back();
1073         }
1074       }
1075     }
1076   }
1077   DEFINE_GETIMPL_STORE_N(
1078       DISubprogram,
1079       (Line, ScopeLine, VirtualIndex, ThisAdjustment, Flags, SPFlags), Ops,
1080       Ops.size());
1081 }
1082 
1083 bool DISubprogram::describes(const Function *F) const {
1084   assert(F && "Invalid function");
1085   return F->getSubprogram() == this;
1086 }
1087 DILexicalBlockBase::DILexicalBlockBase(LLVMContext &C, unsigned ID,
1088                                        StorageType Storage,
1089                                        ArrayRef<Metadata *> Ops)
1090     : DILocalScope(C, ID, Storage, dwarf::DW_TAG_lexical_block, Ops) {}
1091 
1092 DILexicalBlock *DILexicalBlock::getImpl(LLVMContext &Context, Metadata *Scope,
1093                                         Metadata *File, unsigned Line,
1094                                         unsigned Column, StorageType Storage,
1095                                         bool ShouldCreate) {
1096   // Fixup column.
1097   adjustColumn(Column);
1098 
1099   assert(Scope && "Expected scope");
1100   DEFINE_GETIMPL_LOOKUP(DILexicalBlock, (Scope, File, Line, Column));
1101   Metadata *Ops[] = {File, Scope};
1102   DEFINE_GETIMPL_STORE(DILexicalBlock, (Line, Column), Ops);
1103 }
1104 
1105 DILexicalBlockFile *DILexicalBlockFile::getImpl(LLVMContext &Context,
1106                                                 Metadata *Scope, Metadata *File,
1107                                                 unsigned Discriminator,
1108                                                 StorageType Storage,
1109                                                 bool ShouldCreate) {
1110   assert(Scope && "Expected scope");
1111   DEFINE_GETIMPL_LOOKUP(DILexicalBlockFile, (Scope, File, Discriminator));
1112   Metadata *Ops[] = {File, Scope};
1113   DEFINE_GETIMPL_STORE(DILexicalBlockFile, (Discriminator), Ops);
1114 }
1115 
1116 DINamespace::DINamespace(LLVMContext &Context, StorageType Storage,
1117                          bool ExportSymbols, ArrayRef<Metadata *> Ops)
1118     : DIScope(Context, DINamespaceKind, Storage, dwarf::DW_TAG_namespace, Ops),
1119       ExportSymbols(ExportSymbols) {}
1120 DINamespace *DINamespace::getImpl(LLVMContext &Context, Metadata *Scope,
1121                                   MDString *Name, bool ExportSymbols,
1122                                   StorageType Storage, bool ShouldCreate) {
1123   assert(isCanonical(Name) && "Expected canonical MDString");
1124   DEFINE_GETIMPL_LOOKUP(DINamespace, (Scope, Name, ExportSymbols));
1125   // The nullptr is for DIScope's File operand. This should be refactored.
1126   Metadata *Ops[] = {nullptr, Scope, Name};
1127   DEFINE_GETIMPL_STORE(DINamespace, (ExportSymbols), Ops);
1128 }
1129 
1130 DICommonBlock::DICommonBlock(LLVMContext &Context, StorageType Storage,
1131                              unsigned LineNo, ArrayRef<Metadata *> Ops)
1132     : DIScope(Context, DICommonBlockKind, Storage, dwarf::DW_TAG_common_block,
1133               Ops),
1134       LineNo(LineNo) {}
1135 DICommonBlock *DICommonBlock::getImpl(LLVMContext &Context, Metadata *Scope,
1136                                       Metadata *Decl, MDString *Name,
1137                                       Metadata *File, unsigned LineNo,
1138                                       StorageType Storage, bool ShouldCreate) {
1139   assert(isCanonical(Name) && "Expected canonical MDString");
1140   DEFINE_GETIMPL_LOOKUP(DICommonBlock, (Scope, Decl, Name, File, LineNo));
1141   // The nullptr is for DIScope's File operand. This should be refactored.
1142   Metadata *Ops[] = {Scope, Decl, Name, File};
1143   DEFINE_GETIMPL_STORE(DICommonBlock, (LineNo), Ops);
1144 }
1145 
1146 DIModule::DIModule(LLVMContext &Context, StorageType Storage, unsigned LineNo,
1147                    bool IsDecl, ArrayRef<Metadata *> Ops)
1148     : DIScope(Context, DIModuleKind, Storage, dwarf::DW_TAG_module, Ops),
1149       LineNo(LineNo), IsDecl(IsDecl) {}
1150 DIModule *DIModule::getImpl(LLVMContext &Context, Metadata *File,
1151                             Metadata *Scope, MDString *Name,
1152                             MDString *ConfigurationMacros,
1153                             MDString *IncludePath, MDString *APINotesFile,
1154                             unsigned LineNo, bool IsDecl, StorageType Storage,
1155                             bool ShouldCreate) {
1156   assert(isCanonical(Name) && "Expected canonical MDString");
1157   DEFINE_GETIMPL_LOOKUP(DIModule, (File, Scope, Name, ConfigurationMacros,
1158                                    IncludePath, APINotesFile, LineNo, IsDecl));
1159   Metadata *Ops[] = {File,        Scope,       Name, ConfigurationMacros,
1160                      IncludePath, APINotesFile};
1161   DEFINE_GETIMPL_STORE(DIModule, (LineNo, IsDecl), Ops);
1162 }
1163 DITemplateTypeParameter::DITemplateTypeParameter(LLVMContext &Context,
1164                                                  StorageType Storage,
1165                                                  bool IsDefault,
1166                                                  ArrayRef<Metadata *> Ops)
1167     : DITemplateParameter(Context, DITemplateTypeParameterKind, Storage,
1168                           dwarf::DW_TAG_template_type_parameter, IsDefault,
1169                           Ops) {}
1170 
1171 DITemplateTypeParameter *
1172 DITemplateTypeParameter::getImpl(LLVMContext &Context, MDString *Name,
1173                                  Metadata *Type, bool isDefault,
1174                                  StorageType Storage, bool ShouldCreate) {
1175   assert(isCanonical(Name) && "Expected canonical MDString");
1176   DEFINE_GETIMPL_LOOKUP(DITemplateTypeParameter, (Name, Type, isDefault));
1177   Metadata *Ops[] = {Name, Type};
1178   DEFINE_GETIMPL_STORE(DITemplateTypeParameter, (isDefault), Ops);
1179 }
1180 
1181 DITemplateValueParameter *DITemplateValueParameter::getImpl(
1182     LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *Type,
1183     bool isDefault, Metadata *Value, StorageType Storage, bool ShouldCreate) {
1184   assert(isCanonical(Name) && "Expected canonical MDString");
1185   DEFINE_GETIMPL_LOOKUP(DITemplateValueParameter,
1186                         (Tag, Name, Type, isDefault, Value));
1187   Metadata *Ops[] = {Name, Type, Value};
1188   DEFINE_GETIMPL_STORE(DITemplateValueParameter, (Tag, isDefault), Ops);
1189 }
1190 
1191 DIGlobalVariable *
1192 DIGlobalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1193                           MDString *LinkageName, Metadata *File, unsigned Line,
1194                           Metadata *Type, bool IsLocalToUnit, bool IsDefinition,
1195                           Metadata *StaticDataMemberDeclaration,
1196                           Metadata *TemplateParams, uint32_t AlignInBits,
1197                           Metadata *Annotations, StorageType Storage,
1198                           bool ShouldCreate) {
1199   assert(isCanonical(Name) && "Expected canonical MDString");
1200   assert(isCanonical(LinkageName) && "Expected canonical MDString");
1201   DEFINE_GETIMPL_LOOKUP(
1202       DIGlobalVariable,
1203       (Scope, Name, LinkageName, File, Line, Type, IsLocalToUnit, IsDefinition,
1204        StaticDataMemberDeclaration, TemplateParams, AlignInBits, Annotations));
1205   Metadata *Ops[] = {Scope,
1206                      Name,
1207                      File,
1208                      Type,
1209                      Name,
1210                      LinkageName,
1211                      StaticDataMemberDeclaration,
1212                      TemplateParams,
1213                      Annotations};
1214   DEFINE_GETIMPL_STORE(DIGlobalVariable,
1215                        (Line, IsLocalToUnit, IsDefinition, AlignInBits), Ops);
1216 }
1217 
1218 DILocalVariable *
1219 DILocalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1220                          Metadata *File, unsigned Line, Metadata *Type,
1221                          unsigned Arg, DIFlags Flags, uint32_t AlignInBits,
1222                          Metadata *Annotations, StorageType Storage,
1223                          bool ShouldCreate) {
1224   // 64K ought to be enough for any frontend.
1225   assert(Arg <= UINT16_MAX && "Expected argument number to fit in 16-bits");
1226 
1227   assert(Scope && "Expected scope");
1228   assert(isCanonical(Name) && "Expected canonical MDString");
1229   DEFINE_GETIMPL_LOOKUP(DILocalVariable, (Scope, Name, File, Line, Type, Arg,
1230                                           Flags, AlignInBits, Annotations));
1231   Metadata *Ops[] = {Scope, Name, File, Type, Annotations};
1232   DEFINE_GETIMPL_STORE(DILocalVariable, (Line, Arg, Flags, AlignInBits), Ops);
1233 }
1234 
1235 DIVariable::DIVariable(LLVMContext &C, unsigned ID, StorageType Storage,
1236                        signed Line, ArrayRef<Metadata *> Ops,
1237                        uint32_t AlignInBits)
1238     : DINode(C, ID, Storage, dwarf::DW_TAG_variable, Ops), Line(Line),
1239       AlignInBits(AlignInBits) {}
1240 std::optional<uint64_t> DIVariable::getSizeInBits() const {
1241   // This is used by the Verifier so be mindful of broken types.
1242   const Metadata *RawType = getRawType();
1243   while (RawType) {
1244     // Try to get the size directly.
1245     if (auto *T = dyn_cast<DIType>(RawType))
1246       if (uint64_t Size = T->getSizeInBits())
1247         return Size;
1248 
1249     if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
1250       // Look at the base type.
1251       RawType = DT->getRawBaseType();
1252       continue;
1253     }
1254 
1255     // Missing type or size.
1256     break;
1257   }
1258 
1259   // Fail gracefully.
1260   return std::nullopt;
1261 }
1262 
1263 DILabel::DILabel(LLVMContext &C, StorageType Storage, unsigned Line,
1264                  ArrayRef<Metadata *> Ops)
1265     : DINode(C, DILabelKind, Storage, dwarf::DW_TAG_label, Ops), Line(Line) {}
1266 DILabel *DILabel::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1267                           Metadata *File, unsigned Line, StorageType Storage,
1268                           bool ShouldCreate) {
1269   assert(Scope && "Expected scope");
1270   assert(isCanonical(Name) && "Expected canonical MDString");
1271   DEFINE_GETIMPL_LOOKUP(DILabel, (Scope, Name, File, Line));
1272   Metadata *Ops[] = {Scope, Name, File};
1273   DEFINE_GETIMPL_STORE(DILabel, (Line), Ops);
1274 }
1275 
1276 DIExpression *DIExpression::getImpl(LLVMContext &Context,
1277                                     ArrayRef<uint64_t> Elements,
1278                                     StorageType Storage, bool ShouldCreate) {
1279   DEFINE_GETIMPL_LOOKUP(DIExpression, (Elements));
1280   DEFINE_GETIMPL_STORE_NO_OPS(DIExpression, (Elements));
1281 }
1282 bool DIExpression::isEntryValue() const {
1283   return getNumElements() > 0 && getElement(0) == dwarf::DW_OP_LLVM_entry_value;
1284 }
1285 bool DIExpression::startsWithDeref() const {
1286   return getNumElements() > 0 && getElement(0) == dwarf::DW_OP_deref;
1287 }
1288 
1289 DIAssignID *DIAssignID::getImpl(LLVMContext &Context, StorageType Storage,
1290                                 bool ShouldCreate) {
1291   // Uniqued DIAssignID are not supported as the instance address *is* the ID.
1292   assert(Storage != StorageType::Uniqued && "uniqued DIAssignID unsupported");
1293   return storeImpl(new (0u, Storage) DIAssignID(Context, Storage), Storage);
1294 }
1295 
1296 unsigned DIExpression::ExprOperand::getSize() const {
1297   uint64_t Op = getOp();
1298 
1299   if (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31)
1300     return 2;
1301 
1302   switch (Op) {
1303   case dwarf::DW_OP_LLVM_convert:
1304   case dwarf::DW_OP_LLVM_fragment:
1305   case dwarf::DW_OP_bregx:
1306     return 3;
1307   case dwarf::DW_OP_constu:
1308   case dwarf::DW_OP_consts:
1309   case dwarf::DW_OP_deref_size:
1310   case dwarf::DW_OP_plus_uconst:
1311   case dwarf::DW_OP_LLVM_tag_offset:
1312   case dwarf::DW_OP_LLVM_entry_value:
1313   case dwarf::DW_OP_LLVM_arg:
1314   case dwarf::DW_OP_regx:
1315     return 2;
1316   default:
1317     return 1;
1318   }
1319 }
1320 
1321 bool DIExpression::isValid() const {
1322   for (auto I = expr_op_begin(), E = expr_op_end(); I != E; ++I) {
1323     // Check that there's space for the operand.
1324     if (I->get() + I->getSize() > E->get())
1325       return false;
1326 
1327     uint64_t Op = I->getOp();
1328     if ((Op >= dwarf::DW_OP_reg0 && Op <= dwarf::DW_OP_reg31) ||
1329         (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31))
1330       return true;
1331 
1332     // Check that the operand is valid.
1333     switch (Op) {
1334     default:
1335       return false;
1336     case dwarf::DW_OP_LLVM_fragment:
1337       // A fragment operator must appear at the end.
1338       return I->get() + I->getSize() == E->get();
1339     case dwarf::DW_OP_stack_value: {
1340       // Must be the last one or followed by a DW_OP_LLVM_fragment.
1341       if (I->get() + I->getSize() == E->get())
1342         break;
1343       auto J = I;
1344       if ((++J)->getOp() != dwarf::DW_OP_LLVM_fragment)
1345         return false;
1346       break;
1347     }
1348     case dwarf::DW_OP_swap: {
1349       // Must be more than one implicit element on the stack.
1350 
1351       // FIXME: A better way to implement this would be to add a local variable
1352       // that keeps track of the stack depth and introduce something like a
1353       // DW_LLVM_OP_implicit_location as a placeholder for the location this
1354       // DIExpression is attached to, or else pass the number of implicit stack
1355       // elements into isValid.
1356       if (getNumElements() == 1)
1357         return false;
1358       break;
1359     }
1360     case dwarf::DW_OP_LLVM_entry_value: {
1361       // An entry value operator must appear at the beginning or immediately
1362       // following `DW_OP_LLVM_arg 0`, and the number of operations it cover can
1363       // currently only be 1, because we support only entry values of a simple
1364       // register location. One reason for this is that we currently can't
1365       // calculate the size of the resulting DWARF block for other expressions.
1366       auto FirstOp = expr_op_begin();
1367       if (FirstOp->getOp() == dwarf::DW_OP_LLVM_arg && FirstOp->getArg(0) == 0)
1368         ++FirstOp;
1369       return I->get() == FirstOp->get() && I->getArg(0) == 1;
1370     }
1371     case dwarf::DW_OP_LLVM_implicit_pointer:
1372     case dwarf::DW_OP_LLVM_convert:
1373     case dwarf::DW_OP_LLVM_arg:
1374     case dwarf::DW_OP_LLVM_tag_offset:
1375     case dwarf::DW_OP_constu:
1376     case dwarf::DW_OP_plus_uconst:
1377     case dwarf::DW_OP_plus:
1378     case dwarf::DW_OP_minus:
1379     case dwarf::DW_OP_mul:
1380     case dwarf::DW_OP_div:
1381     case dwarf::DW_OP_mod:
1382     case dwarf::DW_OP_or:
1383     case dwarf::DW_OP_and:
1384     case dwarf::DW_OP_xor:
1385     case dwarf::DW_OP_shl:
1386     case dwarf::DW_OP_shr:
1387     case dwarf::DW_OP_shra:
1388     case dwarf::DW_OP_deref:
1389     case dwarf::DW_OP_deref_size:
1390     case dwarf::DW_OP_xderef:
1391     case dwarf::DW_OP_lit0:
1392     case dwarf::DW_OP_not:
1393     case dwarf::DW_OP_dup:
1394     case dwarf::DW_OP_regx:
1395     case dwarf::DW_OP_bregx:
1396     case dwarf::DW_OP_push_object_address:
1397     case dwarf::DW_OP_over:
1398     case dwarf::DW_OP_consts:
1399       break;
1400     }
1401   }
1402   return true;
1403 }
1404 
1405 bool DIExpression::isImplicit() const {
1406   if (!isValid())
1407     return false;
1408 
1409   if (getNumElements() == 0)
1410     return false;
1411 
1412   for (const auto &It : expr_ops()) {
1413     switch (It.getOp()) {
1414     default:
1415       break;
1416     case dwarf::DW_OP_stack_value:
1417     case dwarf::DW_OP_LLVM_tag_offset:
1418       return true;
1419     }
1420   }
1421 
1422   return false;
1423 }
1424 
1425 bool DIExpression::isComplex() const {
1426   if (!isValid())
1427     return false;
1428 
1429   if (getNumElements() == 0)
1430     return false;
1431 
1432   // If there are any elements other than fragment or tag_offset, then some
1433   // kind of complex computation occurs.
1434   for (const auto &It : expr_ops()) {
1435     switch (It.getOp()) {
1436     case dwarf::DW_OP_LLVM_tag_offset:
1437     case dwarf::DW_OP_LLVM_fragment:
1438     case dwarf::DW_OP_LLVM_arg:
1439       continue;
1440     default:
1441       return true;
1442     }
1443   }
1444 
1445   return false;
1446 }
1447 
1448 bool DIExpression::isSingleLocationExpression() const {
1449   if (!isValid())
1450     return false;
1451 
1452   if (getNumElements() == 0)
1453     return true;
1454 
1455   auto ExprOpBegin = expr_ops().begin();
1456   auto ExprOpEnd = expr_ops().end();
1457   if (ExprOpBegin->getOp() == dwarf::DW_OP_LLVM_arg)
1458     ++ExprOpBegin;
1459 
1460   return !std::any_of(ExprOpBegin, ExprOpEnd, [](auto Op) {
1461     return Op.getOp() == dwarf::DW_OP_LLVM_arg;
1462   });
1463 }
1464 
1465 const DIExpression *
1466 DIExpression::convertToUndefExpression(const DIExpression *Expr) {
1467   SmallVector<uint64_t, 3> UndefOps;
1468   if (auto FragmentInfo = Expr->getFragmentInfo()) {
1469     UndefOps.append({dwarf::DW_OP_LLVM_fragment, FragmentInfo->OffsetInBits,
1470                      FragmentInfo->SizeInBits});
1471   }
1472   return DIExpression::get(Expr->getContext(), UndefOps);
1473 }
1474 
1475 const DIExpression *
1476 DIExpression::convertToVariadicExpression(const DIExpression *Expr) {
1477   if (any_of(Expr->expr_ops(), [](auto ExprOp) {
1478         return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg;
1479       }))
1480     return Expr;
1481   SmallVector<uint64_t> NewOps;
1482   NewOps.reserve(Expr->getNumElements() + 2);
1483   NewOps.append({dwarf::DW_OP_LLVM_arg, 0});
1484   NewOps.append(Expr->elements_begin(), Expr->elements_end());
1485   return DIExpression::get(Expr->getContext(), NewOps);
1486 }
1487 
1488 std::optional<const DIExpression *>
1489 DIExpression::convertToNonVariadicExpression(const DIExpression *Expr) {
1490   // Check for `isValid` covered by `isSingleLocationExpression`.
1491   if (!Expr->isSingleLocationExpression())
1492     return std::nullopt;
1493 
1494   // An empty expression is already non-variadic.
1495   if (!Expr->getNumElements())
1496     return Expr;
1497 
1498   auto ElementsBegin = Expr->elements_begin();
1499   // If Expr does not have a leading DW_OP_LLVM_arg then we don't need to do
1500   // anything.
1501   if (*ElementsBegin != dwarf::DW_OP_LLVM_arg)
1502     return Expr;
1503 
1504   SmallVector<uint64_t> NonVariadicOps(
1505       make_range(ElementsBegin + 2, Expr->elements_end()));
1506   return DIExpression::get(Expr->getContext(), NonVariadicOps);
1507 }
1508 
1509 void DIExpression::canonicalizeExpressionOps(SmallVectorImpl<uint64_t> &Ops,
1510                                              const DIExpression *Expr,
1511                                              bool IsIndirect) {
1512   // If Expr is not already variadic, insert the implied `DW_OP_LLVM_arg 0`
1513   // to the existing expression ops.
1514   if (none_of(Expr->expr_ops(), [](auto ExprOp) {
1515         return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg;
1516       }))
1517     Ops.append({dwarf::DW_OP_LLVM_arg, 0});
1518   // If Expr is not indirect, we only need to insert the expression elements and
1519   // we're done.
1520   if (!IsIndirect) {
1521     Ops.append(Expr->elements_begin(), Expr->elements_end());
1522     return;
1523   }
1524   // If Expr is indirect, insert the implied DW_OP_deref at the end of the
1525   // expression but before DW_OP_{stack_value, LLVM_fragment} if they are
1526   // present.
1527   for (auto Op : Expr->expr_ops()) {
1528     if (Op.getOp() == dwarf::DW_OP_stack_value ||
1529         Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1530       Ops.push_back(dwarf::DW_OP_deref);
1531       IsIndirect = false;
1532     }
1533     Op.appendToVector(Ops);
1534   }
1535   if (IsIndirect)
1536     Ops.push_back(dwarf::DW_OP_deref);
1537 }
1538 
1539 bool DIExpression::isEqualExpression(const DIExpression *FirstExpr,
1540                                      bool FirstIndirect,
1541                                      const DIExpression *SecondExpr,
1542                                      bool SecondIndirect) {
1543   SmallVector<uint64_t> FirstOps;
1544   DIExpression::canonicalizeExpressionOps(FirstOps, FirstExpr, FirstIndirect);
1545   SmallVector<uint64_t> SecondOps;
1546   DIExpression::canonicalizeExpressionOps(SecondOps, SecondExpr,
1547                                           SecondIndirect);
1548   return FirstOps == SecondOps;
1549 }
1550 
1551 std::optional<DIExpression::FragmentInfo>
1552 DIExpression::getFragmentInfo(expr_op_iterator Start, expr_op_iterator End) {
1553   for (auto I = Start; I != End; ++I)
1554     if (I->getOp() == dwarf::DW_OP_LLVM_fragment) {
1555       DIExpression::FragmentInfo Info = {I->getArg(1), I->getArg(0)};
1556       return Info;
1557     }
1558   return std::nullopt;
1559 }
1560 
1561 void DIExpression::appendOffset(SmallVectorImpl<uint64_t> &Ops,
1562                                 int64_t Offset) {
1563   if (Offset > 0) {
1564     Ops.push_back(dwarf::DW_OP_plus_uconst);
1565     Ops.push_back(Offset);
1566   } else if (Offset < 0) {
1567     Ops.push_back(dwarf::DW_OP_constu);
1568     // Avoid UB when encountering LLONG_MIN, because in 2's complement
1569     // abs(LLONG_MIN) is LLONG_MAX+1.
1570     uint64_t AbsMinusOne = -(Offset+1);
1571     Ops.push_back(AbsMinusOne + 1);
1572     Ops.push_back(dwarf::DW_OP_minus);
1573   }
1574 }
1575 
1576 bool DIExpression::extractIfOffset(int64_t &Offset) const {
1577   if (getNumElements() == 0) {
1578     Offset = 0;
1579     return true;
1580   }
1581 
1582   if (getNumElements() == 2 && Elements[0] == dwarf::DW_OP_plus_uconst) {
1583     Offset = Elements[1];
1584     return true;
1585   }
1586 
1587   if (getNumElements() == 3 && Elements[0] == dwarf::DW_OP_constu) {
1588     if (Elements[2] == dwarf::DW_OP_plus) {
1589       Offset = Elements[1];
1590       return true;
1591     }
1592     if (Elements[2] == dwarf::DW_OP_minus) {
1593       Offset = -Elements[1];
1594       return true;
1595     }
1596   }
1597 
1598   return false;
1599 }
1600 
1601 bool DIExpression::hasAllLocationOps(unsigned N) const {
1602   SmallDenseSet<uint64_t, 4> SeenOps;
1603   for (auto ExprOp : expr_ops())
1604     if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg)
1605       SeenOps.insert(ExprOp.getArg(0));
1606   for (uint64_t Idx = 0; Idx < N; ++Idx)
1607     if (!is_contained(SeenOps, Idx))
1608       return false;
1609   return true;
1610 }
1611 
1612 const DIExpression *DIExpression::extractAddressClass(const DIExpression *Expr,
1613                                                       unsigned &AddrClass) {
1614   // FIXME: This seems fragile. Nothing that verifies that these elements
1615   // actually map to ops and not operands.
1616   const unsigned PatternSize = 4;
1617   if (Expr->Elements.size() >= PatternSize &&
1618       Expr->Elements[PatternSize - 4] == dwarf::DW_OP_constu &&
1619       Expr->Elements[PatternSize - 2] == dwarf::DW_OP_swap &&
1620       Expr->Elements[PatternSize - 1] == dwarf::DW_OP_xderef) {
1621     AddrClass = Expr->Elements[PatternSize - 3];
1622 
1623     if (Expr->Elements.size() == PatternSize)
1624       return nullptr;
1625     return DIExpression::get(Expr->getContext(),
1626                              ArrayRef(&*Expr->Elements.begin(),
1627                                       Expr->Elements.size() - PatternSize));
1628   }
1629   return Expr;
1630 }
1631 
1632 DIExpression *DIExpression::prepend(const DIExpression *Expr, uint8_t Flags,
1633                                     int64_t Offset) {
1634   SmallVector<uint64_t, 8> Ops;
1635   if (Flags & DIExpression::DerefBefore)
1636     Ops.push_back(dwarf::DW_OP_deref);
1637 
1638   appendOffset(Ops, Offset);
1639   if (Flags & DIExpression::DerefAfter)
1640     Ops.push_back(dwarf::DW_OP_deref);
1641 
1642   bool StackValue = Flags & DIExpression::StackValue;
1643   bool EntryValue = Flags & DIExpression::EntryValue;
1644 
1645   return prependOpcodes(Expr, Ops, StackValue, EntryValue);
1646 }
1647 
1648 DIExpression *DIExpression::appendOpsToArg(const DIExpression *Expr,
1649                                            ArrayRef<uint64_t> Ops,
1650                                            unsigned ArgNo, bool StackValue) {
1651   assert(Expr && "Can't add ops to this expression");
1652 
1653   // Handle non-variadic intrinsics by prepending the opcodes.
1654   if (!any_of(Expr->expr_ops(),
1655               [](auto Op) { return Op.getOp() == dwarf::DW_OP_LLVM_arg; })) {
1656     assert(ArgNo == 0 &&
1657            "Location Index must be 0 for a non-variadic expression.");
1658     SmallVector<uint64_t, 8> NewOps(Ops.begin(), Ops.end());
1659     return DIExpression::prependOpcodes(Expr, NewOps, StackValue);
1660   }
1661 
1662   SmallVector<uint64_t, 8> NewOps;
1663   for (auto Op : Expr->expr_ops()) {
1664     // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
1665     if (StackValue) {
1666       if (Op.getOp() == dwarf::DW_OP_stack_value)
1667         StackValue = false;
1668       else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1669         NewOps.push_back(dwarf::DW_OP_stack_value);
1670         StackValue = false;
1671       }
1672     }
1673     Op.appendToVector(NewOps);
1674     if (Op.getOp() == dwarf::DW_OP_LLVM_arg && Op.getArg(0) == ArgNo)
1675       NewOps.insert(NewOps.end(), Ops.begin(), Ops.end());
1676   }
1677   if (StackValue)
1678     NewOps.push_back(dwarf::DW_OP_stack_value);
1679 
1680   return DIExpression::get(Expr->getContext(), NewOps);
1681 }
1682 
1683 DIExpression *DIExpression::replaceArg(const DIExpression *Expr,
1684                                        uint64_t OldArg, uint64_t NewArg) {
1685   assert(Expr && "Can't replace args in this expression");
1686 
1687   SmallVector<uint64_t, 8> NewOps;
1688 
1689   for (auto Op : Expr->expr_ops()) {
1690     if (Op.getOp() != dwarf::DW_OP_LLVM_arg || Op.getArg(0) < OldArg) {
1691       Op.appendToVector(NewOps);
1692       continue;
1693     }
1694     NewOps.push_back(dwarf::DW_OP_LLVM_arg);
1695     uint64_t Arg = Op.getArg(0) == OldArg ? NewArg : Op.getArg(0);
1696     // OldArg has been deleted from the Op list, so decrement all indices
1697     // greater than it.
1698     if (Arg > OldArg)
1699       --Arg;
1700     NewOps.push_back(Arg);
1701   }
1702   return DIExpression::get(Expr->getContext(), NewOps);
1703 }
1704 
1705 DIExpression *DIExpression::prependOpcodes(const DIExpression *Expr,
1706                                            SmallVectorImpl<uint64_t> &Ops,
1707                                            bool StackValue, bool EntryValue) {
1708   assert(Expr && "Can't prepend ops to this expression");
1709 
1710   if (EntryValue) {
1711     Ops.push_back(dwarf::DW_OP_LLVM_entry_value);
1712     // Use a block size of 1 for the target register operand.  The
1713     // DWARF backend currently cannot emit entry values with a block
1714     // size > 1.
1715     Ops.push_back(1);
1716   }
1717 
1718   // If there are no ops to prepend, do not even add the DW_OP_stack_value.
1719   if (Ops.empty())
1720     StackValue = false;
1721   for (auto Op : Expr->expr_ops()) {
1722     // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
1723     if (StackValue) {
1724       if (Op.getOp() == dwarf::DW_OP_stack_value)
1725         StackValue = false;
1726       else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1727         Ops.push_back(dwarf::DW_OP_stack_value);
1728         StackValue = false;
1729       }
1730     }
1731     Op.appendToVector(Ops);
1732   }
1733   if (StackValue)
1734     Ops.push_back(dwarf::DW_OP_stack_value);
1735   return DIExpression::get(Expr->getContext(), Ops);
1736 }
1737 
1738 DIExpression *DIExpression::append(const DIExpression *Expr,
1739                                    ArrayRef<uint64_t> Ops) {
1740   assert(Expr && !Ops.empty() && "Can't append ops to this expression");
1741 
1742   // Copy Expr's current op list.
1743   SmallVector<uint64_t, 16> NewOps;
1744   for (auto Op : Expr->expr_ops()) {
1745     // Append new opcodes before DW_OP_{stack_value, LLVM_fragment}.
1746     if (Op.getOp() == dwarf::DW_OP_stack_value ||
1747         Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1748       NewOps.append(Ops.begin(), Ops.end());
1749 
1750       // Ensure that the new opcodes are only appended once.
1751       Ops = std::nullopt;
1752     }
1753     Op.appendToVector(NewOps);
1754   }
1755 
1756   NewOps.append(Ops.begin(), Ops.end());
1757   auto *result = DIExpression::get(Expr->getContext(), NewOps);
1758   assert(result->isValid() && "concatenated expression is not valid");
1759   return result;
1760 }
1761 
1762 DIExpression *DIExpression::appendToStack(const DIExpression *Expr,
1763                                           ArrayRef<uint64_t> Ops) {
1764   assert(Expr && !Ops.empty() && "Can't append ops to this expression");
1765   assert(none_of(Ops,
1766                  [](uint64_t Op) {
1767                    return Op == dwarf::DW_OP_stack_value ||
1768                           Op == dwarf::DW_OP_LLVM_fragment;
1769                  }) &&
1770          "Can't append this op");
1771 
1772   // Append a DW_OP_deref after Expr's current op list if it's non-empty and
1773   // has no DW_OP_stack_value.
1774   //
1775   // Match .* DW_OP_stack_value (DW_OP_LLVM_fragment A B)?.
1776   std::optional<FragmentInfo> FI = Expr->getFragmentInfo();
1777   unsigned DropUntilStackValue = FI ? 3 : 0;
1778   ArrayRef<uint64_t> ExprOpsBeforeFragment =
1779       Expr->getElements().drop_back(DropUntilStackValue);
1780   bool NeedsDeref = (Expr->getNumElements() > DropUntilStackValue) &&
1781                     (ExprOpsBeforeFragment.back() != dwarf::DW_OP_stack_value);
1782   bool NeedsStackValue = NeedsDeref || ExprOpsBeforeFragment.empty();
1783 
1784   // Append a DW_OP_deref after Expr's current op list if needed, then append
1785   // the new ops, and finally ensure that a single DW_OP_stack_value is present.
1786   SmallVector<uint64_t, 16> NewOps;
1787   if (NeedsDeref)
1788     NewOps.push_back(dwarf::DW_OP_deref);
1789   NewOps.append(Ops.begin(), Ops.end());
1790   if (NeedsStackValue)
1791     NewOps.push_back(dwarf::DW_OP_stack_value);
1792   return DIExpression::append(Expr, NewOps);
1793 }
1794 
1795 std::optional<DIExpression *> DIExpression::createFragmentExpression(
1796     const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits) {
1797   SmallVector<uint64_t, 8> Ops;
1798   // Track whether it's safe to split the value at the top of the DWARF stack,
1799   // assuming that it'll be used as an implicit location value.
1800   bool CanSplitValue = true;
1801   // Copy over the expression, but leave off any trailing DW_OP_LLVM_fragment.
1802   if (Expr) {
1803     for (auto Op : Expr->expr_ops()) {
1804       switch (Op.getOp()) {
1805       default:
1806         break;
1807       case dwarf::DW_OP_shr:
1808       case dwarf::DW_OP_shra:
1809       case dwarf::DW_OP_shl:
1810       case dwarf::DW_OP_plus:
1811       case dwarf::DW_OP_plus_uconst:
1812       case dwarf::DW_OP_minus:
1813         // We can't safely split arithmetic or shift operations into multiple
1814         // fragments because we can't express carry-over between fragments.
1815         //
1816         // FIXME: We *could* preserve the lowest fragment of a constant offset
1817         // operation if the offset fits into SizeInBits.
1818         CanSplitValue = false;
1819         break;
1820       case dwarf::DW_OP_deref:
1821       case dwarf::DW_OP_deref_size:
1822       case dwarf::DW_OP_deref_type:
1823       case dwarf::DW_OP_xderef:
1824       case dwarf::DW_OP_xderef_size:
1825       case dwarf::DW_OP_xderef_type:
1826         // Preceeding arithmetic operations have been applied to compute an
1827         // address. It's okay to split the value loaded from that address.
1828         CanSplitValue = true;
1829         break;
1830       case dwarf::DW_OP_stack_value:
1831         // Bail if this expression computes a value that cannot be split.
1832         if (!CanSplitValue)
1833           return std::nullopt;
1834         break;
1835       case dwarf::DW_OP_LLVM_fragment: {
1836         // Make the new offset point into the existing fragment.
1837         uint64_t FragmentOffsetInBits = Op.getArg(0);
1838         uint64_t FragmentSizeInBits = Op.getArg(1);
1839         (void)FragmentSizeInBits;
1840         assert((OffsetInBits + SizeInBits <= FragmentSizeInBits) &&
1841                "new fragment outside of original fragment");
1842         OffsetInBits += FragmentOffsetInBits;
1843         continue;
1844       }
1845       }
1846       Op.appendToVector(Ops);
1847     }
1848   }
1849   assert((!Expr->isImplicit() || CanSplitValue) && "Expr can't be split");
1850   assert(Expr && "Unknown DIExpression");
1851   Ops.push_back(dwarf::DW_OP_LLVM_fragment);
1852   Ops.push_back(OffsetInBits);
1853   Ops.push_back(SizeInBits);
1854   return DIExpression::get(Expr->getContext(), Ops);
1855 }
1856 
1857 std::pair<DIExpression *, const ConstantInt *>
1858 DIExpression::constantFold(const ConstantInt *CI) {
1859   // Copy the APInt so we can modify it.
1860   APInt NewInt = CI->getValue();
1861   SmallVector<uint64_t, 8> Ops;
1862 
1863   // Fold operators only at the beginning of the expression.
1864   bool First = true;
1865   bool Changed = false;
1866   for (auto Op : expr_ops()) {
1867     switch (Op.getOp()) {
1868     default:
1869       // We fold only the leading part of the expression; if we get to a part
1870       // that we're going to copy unchanged, and haven't done any folding,
1871       // then the entire expression is unchanged and we can return early.
1872       if (!Changed)
1873         return {this, CI};
1874       First = false;
1875       break;
1876     case dwarf::DW_OP_LLVM_convert:
1877       if (!First)
1878         break;
1879       Changed = true;
1880       if (Op.getArg(1) == dwarf::DW_ATE_signed)
1881         NewInt = NewInt.sextOrTrunc(Op.getArg(0));
1882       else {
1883         assert(Op.getArg(1) == dwarf::DW_ATE_unsigned && "Unexpected operand");
1884         NewInt = NewInt.zextOrTrunc(Op.getArg(0));
1885       }
1886       continue;
1887     }
1888     Op.appendToVector(Ops);
1889   }
1890   if (!Changed)
1891     return {this, CI};
1892   return {DIExpression::get(getContext(), Ops),
1893           ConstantInt::get(getContext(), NewInt)};
1894 }
1895 
1896 uint64_t DIExpression::getNumLocationOperands() const {
1897   uint64_t Result = 0;
1898   for (auto ExprOp : expr_ops())
1899     if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg)
1900       Result = std::max(Result, ExprOp.getArg(0) + 1);
1901   assert(hasAllLocationOps(Result) &&
1902          "Expression is missing one or more location operands.");
1903   return Result;
1904 }
1905 
1906 std::optional<DIExpression::SignedOrUnsignedConstant>
1907 DIExpression::isConstant() const {
1908 
1909   // Recognize signed and unsigned constants.
1910   // An signed constants can be represented as DW_OP_consts C DW_OP_stack_value
1911   // (DW_OP_LLVM_fragment of Len).
1912   // An unsigned constant can be represented as
1913   // DW_OP_constu C DW_OP_stack_value (DW_OP_LLVM_fragment of Len).
1914 
1915   if ((getNumElements() != 2 && getNumElements() != 3 &&
1916        getNumElements() != 6) ||
1917       (getElement(0) != dwarf::DW_OP_consts &&
1918        getElement(0) != dwarf::DW_OP_constu))
1919     return std::nullopt;
1920 
1921   if (getNumElements() == 2 && getElement(0) == dwarf::DW_OP_consts)
1922     return SignedOrUnsignedConstant::SignedConstant;
1923 
1924   if ((getNumElements() == 3 && getElement(2) != dwarf::DW_OP_stack_value) ||
1925       (getNumElements() == 6 && (getElement(2) != dwarf::DW_OP_stack_value ||
1926                                  getElement(3) != dwarf::DW_OP_LLVM_fragment)))
1927     return std::nullopt;
1928   return getElement(0) == dwarf::DW_OP_constu
1929              ? SignedOrUnsignedConstant::UnsignedConstant
1930              : SignedOrUnsignedConstant::SignedConstant;
1931 }
1932 
1933 DIExpression::ExtOps DIExpression::getExtOps(unsigned FromSize, unsigned ToSize,
1934                                              bool Signed) {
1935   dwarf::TypeKind TK = Signed ? dwarf::DW_ATE_signed : dwarf::DW_ATE_unsigned;
1936   DIExpression::ExtOps Ops{{dwarf::DW_OP_LLVM_convert, FromSize, TK,
1937                             dwarf::DW_OP_LLVM_convert, ToSize, TK}};
1938   return Ops;
1939 }
1940 
1941 DIExpression *DIExpression::appendExt(const DIExpression *Expr,
1942                                       unsigned FromSize, unsigned ToSize,
1943                                       bool Signed) {
1944   return appendToStack(Expr, getExtOps(FromSize, ToSize, Signed));
1945 }
1946 
1947 DIGlobalVariableExpression *
1948 DIGlobalVariableExpression::getImpl(LLVMContext &Context, Metadata *Variable,
1949                                     Metadata *Expression, StorageType Storage,
1950                                     bool ShouldCreate) {
1951   DEFINE_GETIMPL_LOOKUP(DIGlobalVariableExpression, (Variable, Expression));
1952   Metadata *Ops[] = {Variable, Expression};
1953   DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGlobalVariableExpression, Ops);
1954 }
1955 DIObjCProperty::DIObjCProperty(LLVMContext &C, StorageType Storage,
1956                                unsigned Line, unsigned Attributes,
1957                                ArrayRef<Metadata *> Ops)
1958     : DINode(C, DIObjCPropertyKind, Storage, dwarf::DW_TAG_APPLE_property, Ops),
1959       Line(Line), Attributes(Attributes) {}
1960 
1961 DIObjCProperty *DIObjCProperty::getImpl(
1962     LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line,
1963     MDString *GetterName, MDString *SetterName, unsigned Attributes,
1964     Metadata *Type, StorageType Storage, bool ShouldCreate) {
1965   assert(isCanonical(Name) && "Expected canonical MDString");
1966   assert(isCanonical(GetterName) && "Expected canonical MDString");
1967   assert(isCanonical(SetterName) && "Expected canonical MDString");
1968   DEFINE_GETIMPL_LOOKUP(DIObjCProperty, (Name, File, Line, GetterName,
1969                                          SetterName, Attributes, Type));
1970   Metadata *Ops[] = {Name, File, GetterName, SetterName, Type};
1971   DEFINE_GETIMPL_STORE(DIObjCProperty, (Line, Attributes), Ops);
1972 }
1973 
1974 DIImportedEntity *DIImportedEntity::getImpl(LLVMContext &Context, unsigned Tag,
1975                                             Metadata *Scope, Metadata *Entity,
1976                                             Metadata *File, unsigned Line,
1977                                             MDString *Name, Metadata *Elements,
1978                                             StorageType Storage,
1979                                             bool ShouldCreate) {
1980   assert(isCanonical(Name) && "Expected canonical MDString");
1981   DEFINE_GETIMPL_LOOKUP(DIImportedEntity,
1982                         (Tag, Scope, Entity, File, Line, Name, Elements));
1983   Metadata *Ops[] = {Scope, Entity, Name, File, Elements};
1984   DEFINE_GETIMPL_STORE(DIImportedEntity, (Tag, Line), Ops);
1985 }
1986 
1987 DIMacro *DIMacro::getImpl(LLVMContext &Context, unsigned MIType, unsigned Line,
1988                           MDString *Name, MDString *Value, StorageType Storage,
1989                           bool ShouldCreate) {
1990   assert(isCanonical(Name) && "Expected canonical MDString");
1991   DEFINE_GETIMPL_LOOKUP(DIMacro, (MIType, Line, Name, Value));
1992   Metadata *Ops[] = {Name, Value};
1993   DEFINE_GETIMPL_STORE(DIMacro, (MIType, Line), Ops);
1994 }
1995 
1996 DIMacroFile *DIMacroFile::getImpl(LLVMContext &Context, unsigned MIType,
1997                                   unsigned Line, Metadata *File,
1998                                   Metadata *Elements, StorageType Storage,
1999                                   bool ShouldCreate) {
2000   DEFINE_GETIMPL_LOOKUP(DIMacroFile, (MIType, Line, File, Elements));
2001   Metadata *Ops[] = {File, Elements};
2002   DEFINE_GETIMPL_STORE(DIMacroFile, (MIType, Line), Ops);
2003 }
2004 
2005 DIArgList *DIArgList::getImpl(LLVMContext &Context,
2006                               ArrayRef<ValueAsMetadata *> Args,
2007                               StorageType Storage, bool ShouldCreate) {
2008   DEFINE_GETIMPL_LOOKUP(DIArgList, (Args));
2009   DEFINE_GETIMPL_STORE_NO_OPS(DIArgList, (Args));
2010 }
2011 
2012 void DIArgList::handleChangedOperand(void *Ref, Metadata *New) {
2013   ValueAsMetadata **OldVMPtr = static_cast<ValueAsMetadata **>(Ref);
2014   assert((!New || isa<ValueAsMetadata>(New)) &&
2015          "DIArgList must be passed a ValueAsMetadata");
2016   untrack();
2017   bool Uniq = isUniqued();
2018   if (Uniq) {
2019     // We need to update the uniqueness once the Args are updated since they
2020     // form the key to the DIArgLists store.
2021     eraseFromStore();
2022   }
2023   ValueAsMetadata *NewVM = cast_or_null<ValueAsMetadata>(New);
2024   for (ValueAsMetadata *&VM : Args) {
2025     if (&VM == OldVMPtr) {
2026       if (NewVM)
2027         VM = NewVM;
2028       else
2029         VM = ValueAsMetadata::get(UndefValue::get(VM->getValue()->getType()));
2030     }
2031   }
2032   if (Uniq) {
2033     if (uniquify() != this)
2034       storeDistinctInContext();
2035   }
2036   track();
2037 }
2038 void DIArgList::track() {
2039   for (ValueAsMetadata *&VAM : Args)
2040     if (VAM)
2041       MetadataTracking::track(&VAM, *VAM, *this);
2042 }
2043 void DIArgList::untrack() {
2044   for (ValueAsMetadata *&VAM : Args)
2045     if (VAM)
2046       MetadataTracking::untrack(&VAM, *VAM);
2047 }
2048 void DIArgList::dropAllReferences() {
2049   untrack();
2050   Args.clear();
2051   MDNode::dropAllReferences();
2052 }
2053