1 //===- DebugInfoMetadata.cpp - Implement debug info metadata --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the debug info Metadata classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/DebugInfoMetadata.h" 14 #include "LLVMContextImpl.h" 15 #include "MetadataImpl.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringSwitch.h" 19 #include "llvm/BinaryFormat/Dwarf.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/IR/Type.h" 23 #include "llvm/IR/Value.h" 24 25 #include <numeric> 26 #include <optional> 27 28 using namespace llvm; 29 30 namespace llvm { 31 // Use FS-AFDO discriminator. 32 cl::opt<bool> EnableFSDiscriminator( 33 "enable-fs-discriminator", cl::Hidden, 34 cl::desc("Enable adding flow sensitive discriminators")); 35 } // namespace llvm 36 37 const DIExpression::FragmentInfo DebugVariable::DefaultFragment = { 38 std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::min()}; 39 40 DebugVariable::DebugVariable(const DbgVariableIntrinsic *DII) 41 : Variable(DII->getVariable()), 42 Fragment(DII->getExpression()->getFragmentInfo()), 43 InlinedAt(DII->getDebugLoc().getInlinedAt()) {} 44 45 DebugVariableAggregate::DebugVariableAggregate(const DbgVariableIntrinsic *DVI) 46 : DebugVariable(DVI->getVariable(), std::nullopt, 47 DVI->getDebugLoc()->getInlinedAt()) {} 48 49 DILocation::DILocation(LLVMContext &C, StorageType Storage, unsigned Line, 50 unsigned Column, ArrayRef<Metadata *> MDs, 51 bool ImplicitCode) 52 : MDNode(C, DILocationKind, Storage, MDs) { 53 assert((MDs.size() == 1 || MDs.size() == 2) && 54 "Expected a scope and optional inlined-at"); 55 56 // Set line and column. 57 assert(Column < (1u << 16) && "Expected 16-bit column"); 58 59 SubclassData32 = Line; 60 SubclassData16 = Column; 61 62 setImplicitCode(ImplicitCode); 63 } 64 65 static void adjustColumn(unsigned &Column) { 66 // Set to unknown on overflow. We only have 16 bits to play with here. 67 if (Column >= (1u << 16)) 68 Column = 0; 69 } 70 71 DILocation *DILocation::getImpl(LLVMContext &Context, unsigned Line, 72 unsigned Column, Metadata *Scope, 73 Metadata *InlinedAt, bool ImplicitCode, 74 StorageType Storage, bool ShouldCreate) { 75 // Fixup column. 76 adjustColumn(Column); 77 78 if (Storage == Uniqued) { 79 if (auto *N = getUniqued(Context.pImpl->DILocations, 80 DILocationInfo::KeyTy(Line, Column, Scope, 81 InlinedAt, ImplicitCode))) 82 return N; 83 if (!ShouldCreate) 84 return nullptr; 85 } else { 86 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 87 } 88 89 SmallVector<Metadata *, 2> Ops; 90 Ops.push_back(Scope); 91 if (InlinedAt) 92 Ops.push_back(InlinedAt); 93 return storeImpl(new (Ops.size(), Storage) DILocation( 94 Context, Storage, Line, Column, Ops, ImplicitCode), 95 Storage, Context.pImpl->DILocations); 96 } 97 98 DILocation *DILocation::getMergedLocations(ArrayRef<DILocation *> Locs) { 99 if (Locs.empty()) 100 return nullptr; 101 if (Locs.size() == 1) 102 return Locs[0]; 103 auto *Merged = Locs[0]; 104 for (DILocation *L : llvm::drop_begin(Locs)) { 105 Merged = getMergedLocation(Merged, L); 106 if (Merged == nullptr) 107 break; 108 } 109 return Merged; 110 } 111 112 DILocation *DILocation::getMergedLocation(DILocation *LocA, DILocation *LocB) { 113 if (!LocA || !LocB) 114 return nullptr; 115 116 if (LocA == LocB) 117 return LocA; 118 119 LLVMContext &C = LocA->getContext(); 120 121 using LocVec = SmallVector<const DILocation *>; 122 LocVec ALocs; 123 LocVec BLocs; 124 SmallDenseMap<std::pair<const DISubprogram *, const DILocation *>, unsigned, 125 4> 126 ALookup; 127 128 // Walk through LocA and its inlined-at locations, populate them in ALocs and 129 // save the index for the subprogram and inlined-at pair, which we use to find 130 // a matching starting location in LocB's chain. 131 for (auto [L, I] = std::make_pair(LocA, 0U); L; L = L->getInlinedAt(), I++) { 132 ALocs.push_back(L); 133 auto Res = ALookup.try_emplace( 134 {L->getScope()->getSubprogram(), L->getInlinedAt()}, I); 135 assert(Res.second && "Multiple <SP, InlinedAt> pairs in a location chain?"); 136 (void)Res; 137 } 138 139 LocVec::reverse_iterator ARIt = ALocs.rend(); 140 LocVec::reverse_iterator BRIt = BLocs.rend(); 141 142 // Populate BLocs and look for a matching starting location, the first 143 // location with the same subprogram and inlined-at location as in LocA's 144 // chain. Since the two locations have the same inlined-at location we do 145 // not need to look at those parts of the chains. 146 for (auto [L, I] = std::make_pair(LocB, 0U); L; L = L->getInlinedAt(), I++) { 147 BLocs.push_back(L); 148 149 if (ARIt != ALocs.rend()) 150 // We have already found a matching starting location. 151 continue; 152 153 auto IT = ALookup.find({L->getScope()->getSubprogram(), L->getInlinedAt()}); 154 if (IT == ALookup.end()) 155 continue; 156 157 // The + 1 is to account for the &*rev_it = &(it - 1) relationship. 158 ARIt = LocVec::reverse_iterator(ALocs.begin() + IT->second + 1); 159 BRIt = LocVec::reverse_iterator(BLocs.begin() + I + 1); 160 161 // If we have found a matching starting location we do not need to add more 162 // locations to BLocs, since we will only look at location pairs preceding 163 // the matching starting location, and adding more elements to BLocs could 164 // invalidate the iterator that we initialized here. 165 break; 166 } 167 168 // Merge the two locations if possible, using the supplied 169 // inlined-at location for the created location. 170 auto MergeLocPair = [&C](const DILocation *L1, const DILocation *L2, 171 DILocation *InlinedAt) -> DILocation * { 172 if (L1 == L2) 173 return DILocation::get(C, L1->getLine(), L1->getColumn(), L1->getScope(), 174 InlinedAt); 175 176 // If the locations originate from different subprograms we can't produce 177 // a common location. 178 if (L1->getScope()->getSubprogram() != L2->getScope()->getSubprogram()) 179 return nullptr; 180 181 // Return the nearest common scope inside a subprogram. 182 auto GetNearestCommonScope = [](DIScope *S1, DIScope *S2) -> DIScope * { 183 SmallPtrSet<DIScope *, 8> Scopes; 184 for (; S1; S1 = S1->getScope()) { 185 Scopes.insert(S1); 186 if (isa<DISubprogram>(S1)) 187 break; 188 } 189 190 for (; S2; S2 = S2->getScope()) { 191 if (Scopes.count(S2)) 192 return S2; 193 if (isa<DISubprogram>(S2)) 194 break; 195 } 196 197 return nullptr; 198 }; 199 200 auto Scope = GetNearestCommonScope(L1->getScope(), L2->getScope()); 201 assert(Scope && "No common scope in the same subprogram?"); 202 203 bool SameLine = L1->getLine() == L2->getLine(); 204 bool SameCol = L1->getColumn() == L2->getColumn(); 205 unsigned Line = SameLine ? L1->getLine() : 0; 206 unsigned Col = SameLine && SameCol ? L1->getColumn() : 0; 207 208 return DILocation::get(C, Line, Col, Scope, InlinedAt); 209 }; 210 211 DILocation *Result = ARIt != ALocs.rend() ? (*ARIt)->getInlinedAt() : nullptr; 212 213 // If we have found a common starting location, walk up the inlined-at chains 214 // and try to produce common locations. 215 for (; ARIt != ALocs.rend() && BRIt != BLocs.rend(); ++ARIt, ++BRIt) { 216 DILocation *Tmp = MergeLocPair(*ARIt, *BRIt, Result); 217 218 if (!Tmp) 219 // We have walked up to a point in the chains where the two locations 220 // are irreconsilable. At this point Result contains the nearest common 221 // location in the inlined-at chains of LocA and LocB, so we break here. 222 break; 223 224 Result = Tmp; 225 } 226 227 if (Result) 228 return Result; 229 230 // We ended up with LocA and LocB as irreconsilable locations. Produce a 231 // location at 0:0 with one of the locations' scope. The function has 232 // historically picked A's scope, and a nullptr inlined-at location, so that 233 // behavior is mimicked here but I am not sure if this is always the correct 234 // way to handle this. 235 return DILocation::get(C, 0, 0, LocA->getScope(), nullptr); 236 } 237 238 std::optional<unsigned> 239 DILocation::encodeDiscriminator(unsigned BD, unsigned DF, unsigned CI) { 240 std::array<unsigned, 3> Components = {BD, DF, CI}; 241 uint64_t RemainingWork = 0U; 242 // We use RemainingWork to figure out if we have no remaining components to 243 // encode. For example: if BD != 0 but DF == 0 && CI == 0, we don't need to 244 // encode anything for the latter 2. 245 // Since any of the input components is at most 32 bits, their sum will be 246 // less than 34 bits, and thus RemainingWork won't overflow. 247 RemainingWork = 248 std::accumulate(Components.begin(), Components.end(), RemainingWork); 249 250 int I = 0; 251 unsigned Ret = 0; 252 unsigned NextBitInsertionIndex = 0; 253 while (RemainingWork > 0) { 254 unsigned C = Components[I++]; 255 RemainingWork -= C; 256 unsigned EC = encodeComponent(C); 257 Ret |= (EC << NextBitInsertionIndex); 258 NextBitInsertionIndex += encodingBits(C); 259 } 260 261 // Encoding may be unsuccessful because of overflow. We determine success by 262 // checking equivalence of components before & after encoding. Alternatively, 263 // we could determine Success during encoding, but the current alternative is 264 // simpler. 265 unsigned TBD, TDF, TCI = 0; 266 decodeDiscriminator(Ret, TBD, TDF, TCI); 267 if (TBD == BD && TDF == DF && TCI == CI) 268 return Ret; 269 return std::nullopt; 270 } 271 272 void DILocation::decodeDiscriminator(unsigned D, unsigned &BD, unsigned &DF, 273 unsigned &CI) { 274 BD = getUnsignedFromPrefixEncoding(D); 275 DF = getUnsignedFromPrefixEncoding(getNextComponentInDiscriminator(D)); 276 CI = getUnsignedFromPrefixEncoding( 277 getNextComponentInDiscriminator(getNextComponentInDiscriminator(D))); 278 } 279 dwarf::Tag DINode::getTag() const { return (dwarf::Tag)SubclassData16; } 280 281 DINode::DIFlags DINode::getFlag(StringRef Flag) { 282 return StringSwitch<DIFlags>(Flag) 283 #define HANDLE_DI_FLAG(ID, NAME) .Case("DIFlag" #NAME, Flag##NAME) 284 #include "llvm/IR/DebugInfoFlags.def" 285 .Default(DINode::FlagZero); 286 } 287 288 StringRef DINode::getFlagString(DIFlags Flag) { 289 switch (Flag) { 290 #define HANDLE_DI_FLAG(ID, NAME) \ 291 case Flag##NAME: \ 292 return "DIFlag" #NAME; 293 #include "llvm/IR/DebugInfoFlags.def" 294 } 295 return ""; 296 } 297 298 DINode::DIFlags DINode::splitFlags(DIFlags Flags, 299 SmallVectorImpl<DIFlags> &SplitFlags) { 300 // Flags that are packed together need to be specially handled, so 301 // that, for example, we emit "DIFlagPublic" and not 302 // "DIFlagPrivate | DIFlagProtected". 303 if (DIFlags A = Flags & FlagAccessibility) { 304 if (A == FlagPrivate) 305 SplitFlags.push_back(FlagPrivate); 306 else if (A == FlagProtected) 307 SplitFlags.push_back(FlagProtected); 308 else 309 SplitFlags.push_back(FlagPublic); 310 Flags &= ~A; 311 } 312 if (DIFlags R = Flags & FlagPtrToMemberRep) { 313 if (R == FlagSingleInheritance) 314 SplitFlags.push_back(FlagSingleInheritance); 315 else if (R == FlagMultipleInheritance) 316 SplitFlags.push_back(FlagMultipleInheritance); 317 else 318 SplitFlags.push_back(FlagVirtualInheritance); 319 Flags &= ~R; 320 } 321 if ((Flags & FlagIndirectVirtualBase) == FlagIndirectVirtualBase) { 322 Flags &= ~FlagIndirectVirtualBase; 323 SplitFlags.push_back(FlagIndirectVirtualBase); 324 } 325 326 #define HANDLE_DI_FLAG(ID, NAME) \ 327 if (DIFlags Bit = Flags & Flag##NAME) { \ 328 SplitFlags.push_back(Bit); \ 329 Flags &= ~Bit; \ 330 } 331 #include "llvm/IR/DebugInfoFlags.def" 332 return Flags; 333 } 334 335 DIScope *DIScope::getScope() const { 336 if (auto *T = dyn_cast<DIType>(this)) 337 return T->getScope(); 338 339 if (auto *SP = dyn_cast<DISubprogram>(this)) 340 return SP->getScope(); 341 342 if (auto *LB = dyn_cast<DILexicalBlockBase>(this)) 343 return LB->getScope(); 344 345 if (auto *NS = dyn_cast<DINamespace>(this)) 346 return NS->getScope(); 347 348 if (auto *CB = dyn_cast<DICommonBlock>(this)) 349 return CB->getScope(); 350 351 if (auto *M = dyn_cast<DIModule>(this)) 352 return M->getScope(); 353 354 assert((isa<DIFile>(this) || isa<DICompileUnit>(this)) && 355 "Unhandled type of scope."); 356 return nullptr; 357 } 358 359 StringRef DIScope::getName() const { 360 if (auto *T = dyn_cast<DIType>(this)) 361 return T->getName(); 362 if (auto *SP = dyn_cast<DISubprogram>(this)) 363 return SP->getName(); 364 if (auto *NS = dyn_cast<DINamespace>(this)) 365 return NS->getName(); 366 if (auto *CB = dyn_cast<DICommonBlock>(this)) 367 return CB->getName(); 368 if (auto *M = dyn_cast<DIModule>(this)) 369 return M->getName(); 370 assert((isa<DILexicalBlockBase>(this) || isa<DIFile>(this) || 371 isa<DICompileUnit>(this)) && 372 "Unhandled type of scope."); 373 return ""; 374 } 375 376 #ifndef NDEBUG 377 static bool isCanonical(const MDString *S) { 378 return !S || !S->getString().empty(); 379 } 380 #endif 381 382 dwarf::Tag GenericDINode::getTag() const { return (dwarf::Tag)SubclassData16; } 383 GenericDINode *GenericDINode::getImpl(LLVMContext &Context, unsigned Tag, 384 MDString *Header, 385 ArrayRef<Metadata *> DwarfOps, 386 StorageType Storage, bool ShouldCreate) { 387 unsigned Hash = 0; 388 if (Storage == Uniqued) { 389 GenericDINodeInfo::KeyTy Key(Tag, Header, DwarfOps); 390 if (auto *N = getUniqued(Context.pImpl->GenericDINodes, Key)) 391 return N; 392 if (!ShouldCreate) 393 return nullptr; 394 Hash = Key.getHash(); 395 } else { 396 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 397 } 398 399 // Use a nullptr for empty headers. 400 assert(isCanonical(Header) && "Expected canonical MDString"); 401 Metadata *PreOps[] = {Header}; 402 return storeImpl(new (DwarfOps.size() + 1, Storage) GenericDINode( 403 Context, Storage, Hash, Tag, PreOps, DwarfOps), 404 Storage, Context.pImpl->GenericDINodes); 405 } 406 407 void GenericDINode::recalculateHash() { 408 setHash(GenericDINodeInfo::KeyTy::calculateHash(this)); 409 } 410 411 #define UNWRAP_ARGS_IMPL(...) __VA_ARGS__ 412 #define UNWRAP_ARGS(ARGS) UNWRAP_ARGS_IMPL ARGS 413 #define DEFINE_GETIMPL_LOOKUP(CLASS, ARGS) \ 414 do { \ 415 if (Storage == Uniqued) { \ 416 if (auto *N = getUniqued(Context.pImpl->CLASS##s, \ 417 CLASS##Info::KeyTy(UNWRAP_ARGS(ARGS)))) \ 418 return N; \ 419 if (!ShouldCreate) \ 420 return nullptr; \ 421 } else { \ 422 assert(ShouldCreate && \ 423 "Expected non-uniqued nodes to always be created"); \ 424 } \ 425 } while (false) 426 #define DEFINE_GETIMPL_STORE(CLASS, ARGS, OPS) \ 427 return storeImpl(new (std::size(OPS), Storage) \ 428 CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \ 429 Storage, Context.pImpl->CLASS##s) 430 #define DEFINE_GETIMPL_STORE_NO_OPS(CLASS, ARGS) \ 431 return storeImpl(new (0u, Storage) \ 432 CLASS(Context, Storage, UNWRAP_ARGS(ARGS)), \ 433 Storage, Context.pImpl->CLASS##s) 434 #define DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(CLASS, OPS) \ 435 return storeImpl(new (std::size(OPS), Storage) CLASS(Context, Storage, OPS), \ 436 Storage, Context.pImpl->CLASS##s) 437 #define DEFINE_GETIMPL_STORE_N(CLASS, ARGS, OPS, NUM_OPS) \ 438 return storeImpl(new (NUM_OPS, Storage) \ 439 CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \ 440 Storage, Context.pImpl->CLASS##s) 441 442 DISubrange::DISubrange(LLVMContext &C, StorageType Storage, 443 ArrayRef<Metadata *> Ops) 444 : DINode(C, DISubrangeKind, Storage, dwarf::DW_TAG_subrange_type, Ops) {} 445 DISubrange *DISubrange::getImpl(LLVMContext &Context, int64_t Count, int64_t Lo, 446 StorageType Storage, bool ShouldCreate) { 447 auto *CountNode = ConstantAsMetadata::get( 448 ConstantInt::getSigned(Type::getInt64Ty(Context), Count)); 449 auto *LB = ConstantAsMetadata::get( 450 ConstantInt::getSigned(Type::getInt64Ty(Context), Lo)); 451 return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage, 452 ShouldCreate); 453 } 454 455 DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode, 456 int64_t Lo, StorageType Storage, 457 bool ShouldCreate) { 458 auto *LB = ConstantAsMetadata::get( 459 ConstantInt::getSigned(Type::getInt64Ty(Context), Lo)); 460 return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage, 461 ShouldCreate); 462 } 463 464 DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode, 465 Metadata *LB, Metadata *UB, Metadata *Stride, 466 StorageType Storage, bool ShouldCreate) { 467 DEFINE_GETIMPL_LOOKUP(DISubrange, (CountNode, LB, UB, Stride)); 468 Metadata *Ops[] = {CountNode, LB, UB, Stride}; 469 DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DISubrange, Ops); 470 } 471 472 DISubrange::BoundType DISubrange::getCount() const { 473 Metadata *CB = getRawCountNode(); 474 if (!CB) 475 return BoundType(); 476 477 assert((isa<ConstantAsMetadata>(CB) || isa<DIVariable>(CB) || 478 isa<DIExpression>(CB)) && 479 "Count must be signed constant or DIVariable or DIExpression"); 480 481 if (auto *MD = dyn_cast<ConstantAsMetadata>(CB)) 482 return BoundType(cast<ConstantInt>(MD->getValue())); 483 484 if (auto *MD = dyn_cast<DIVariable>(CB)) 485 return BoundType(MD); 486 487 if (auto *MD = dyn_cast<DIExpression>(CB)) 488 return BoundType(MD); 489 490 return BoundType(); 491 } 492 493 DISubrange::BoundType DISubrange::getLowerBound() const { 494 Metadata *LB = getRawLowerBound(); 495 if (!LB) 496 return BoundType(); 497 498 assert((isa<ConstantAsMetadata>(LB) || isa<DIVariable>(LB) || 499 isa<DIExpression>(LB)) && 500 "LowerBound must be signed constant or DIVariable or DIExpression"); 501 502 if (auto *MD = dyn_cast<ConstantAsMetadata>(LB)) 503 return BoundType(cast<ConstantInt>(MD->getValue())); 504 505 if (auto *MD = dyn_cast<DIVariable>(LB)) 506 return BoundType(MD); 507 508 if (auto *MD = dyn_cast<DIExpression>(LB)) 509 return BoundType(MD); 510 511 return BoundType(); 512 } 513 514 DISubrange::BoundType DISubrange::getUpperBound() const { 515 Metadata *UB = getRawUpperBound(); 516 if (!UB) 517 return BoundType(); 518 519 assert((isa<ConstantAsMetadata>(UB) || isa<DIVariable>(UB) || 520 isa<DIExpression>(UB)) && 521 "UpperBound must be signed constant or DIVariable or DIExpression"); 522 523 if (auto *MD = dyn_cast<ConstantAsMetadata>(UB)) 524 return BoundType(cast<ConstantInt>(MD->getValue())); 525 526 if (auto *MD = dyn_cast<DIVariable>(UB)) 527 return BoundType(MD); 528 529 if (auto *MD = dyn_cast<DIExpression>(UB)) 530 return BoundType(MD); 531 532 return BoundType(); 533 } 534 535 DISubrange::BoundType DISubrange::getStride() const { 536 Metadata *ST = getRawStride(); 537 if (!ST) 538 return BoundType(); 539 540 assert((isa<ConstantAsMetadata>(ST) || isa<DIVariable>(ST) || 541 isa<DIExpression>(ST)) && 542 "Stride must be signed constant or DIVariable or DIExpression"); 543 544 if (auto *MD = dyn_cast<ConstantAsMetadata>(ST)) 545 return BoundType(cast<ConstantInt>(MD->getValue())); 546 547 if (auto *MD = dyn_cast<DIVariable>(ST)) 548 return BoundType(MD); 549 550 if (auto *MD = dyn_cast<DIExpression>(ST)) 551 return BoundType(MD); 552 553 return BoundType(); 554 } 555 DIGenericSubrange::DIGenericSubrange(LLVMContext &C, StorageType Storage, 556 ArrayRef<Metadata *> Ops) 557 : DINode(C, DIGenericSubrangeKind, Storage, dwarf::DW_TAG_generic_subrange, 558 Ops) {} 559 560 DIGenericSubrange *DIGenericSubrange::getImpl(LLVMContext &Context, 561 Metadata *CountNode, Metadata *LB, 562 Metadata *UB, Metadata *Stride, 563 StorageType Storage, 564 bool ShouldCreate) { 565 DEFINE_GETIMPL_LOOKUP(DIGenericSubrange, (CountNode, LB, UB, Stride)); 566 Metadata *Ops[] = {CountNode, LB, UB, Stride}; 567 DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGenericSubrange, Ops); 568 } 569 570 DIGenericSubrange::BoundType DIGenericSubrange::getCount() const { 571 Metadata *CB = getRawCountNode(); 572 if (!CB) 573 return BoundType(); 574 575 assert((isa<DIVariable>(CB) || isa<DIExpression>(CB)) && 576 "Count must be signed constant or DIVariable or DIExpression"); 577 578 if (auto *MD = dyn_cast<DIVariable>(CB)) 579 return BoundType(MD); 580 581 if (auto *MD = dyn_cast<DIExpression>(CB)) 582 return BoundType(MD); 583 584 return BoundType(); 585 } 586 587 DIGenericSubrange::BoundType DIGenericSubrange::getLowerBound() const { 588 Metadata *LB = getRawLowerBound(); 589 if (!LB) 590 return BoundType(); 591 592 assert((isa<DIVariable>(LB) || isa<DIExpression>(LB)) && 593 "LowerBound must be signed constant or DIVariable or DIExpression"); 594 595 if (auto *MD = dyn_cast<DIVariable>(LB)) 596 return BoundType(MD); 597 598 if (auto *MD = dyn_cast<DIExpression>(LB)) 599 return BoundType(MD); 600 601 return BoundType(); 602 } 603 604 DIGenericSubrange::BoundType DIGenericSubrange::getUpperBound() const { 605 Metadata *UB = getRawUpperBound(); 606 if (!UB) 607 return BoundType(); 608 609 assert((isa<DIVariable>(UB) || isa<DIExpression>(UB)) && 610 "UpperBound must be signed constant or DIVariable or DIExpression"); 611 612 if (auto *MD = dyn_cast<DIVariable>(UB)) 613 return BoundType(MD); 614 615 if (auto *MD = dyn_cast<DIExpression>(UB)) 616 return BoundType(MD); 617 618 return BoundType(); 619 } 620 621 DIGenericSubrange::BoundType DIGenericSubrange::getStride() const { 622 Metadata *ST = getRawStride(); 623 if (!ST) 624 return BoundType(); 625 626 assert((isa<DIVariable>(ST) || isa<DIExpression>(ST)) && 627 "Stride must be signed constant or DIVariable or DIExpression"); 628 629 if (auto *MD = dyn_cast<DIVariable>(ST)) 630 return BoundType(MD); 631 632 if (auto *MD = dyn_cast<DIExpression>(ST)) 633 return BoundType(MD); 634 635 return BoundType(); 636 } 637 638 DIEnumerator::DIEnumerator(LLVMContext &C, StorageType Storage, 639 const APInt &Value, bool IsUnsigned, 640 ArrayRef<Metadata *> Ops) 641 : DINode(C, DIEnumeratorKind, Storage, dwarf::DW_TAG_enumerator, Ops), 642 Value(Value) { 643 SubclassData32 = IsUnsigned; 644 } 645 DIEnumerator *DIEnumerator::getImpl(LLVMContext &Context, const APInt &Value, 646 bool IsUnsigned, MDString *Name, 647 StorageType Storage, bool ShouldCreate) { 648 assert(isCanonical(Name) && "Expected canonical MDString"); 649 DEFINE_GETIMPL_LOOKUP(DIEnumerator, (Value, IsUnsigned, Name)); 650 Metadata *Ops[] = {Name}; 651 DEFINE_GETIMPL_STORE(DIEnumerator, (Value, IsUnsigned), Ops); 652 } 653 654 DIBasicType *DIBasicType::getImpl(LLVMContext &Context, unsigned Tag, 655 MDString *Name, uint64_t SizeInBits, 656 uint32_t AlignInBits, unsigned Encoding, 657 DIFlags Flags, StorageType Storage, 658 bool ShouldCreate) { 659 assert(isCanonical(Name) && "Expected canonical MDString"); 660 DEFINE_GETIMPL_LOOKUP(DIBasicType, 661 (Tag, Name, SizeInBits, AlignInBits, Encoding, Flags)); 662 Metadata *Ops[] = {nullptr, nullptr, Name}; 663 DEFINE_GETIMPL_STORE(DIBasicType, 664 (Tag, SizeInBits, AlignInBits, Encoding, Flags), Ops); 665 } 666 667 std::optional<DIBasicType::Signedness> DIBasicType::getSignedness() const { 668 switch (getEncoding()) { 669 case dwarf::DW_ATE_signed: 670 case dwarf::DW_ATE_signed_char: 671 return Signedness::Signed; 672 case dwarf::DW_ATE_unsigned: 673 case dwarf::DW_ATE_unsigned_char: 674 return Signedness::Unsigned; 675 default: 676 return std::nullopt; 677 } 678 } 679 680 DIStringType *DIStringType::getImpl(LLVMContext &Context, unsigned Tag, 681 MDString *Name, Metadata *StringLength, 682 Metadata *StringLengthExp, 683 Metadata *StringLocationExp, 684 uint64_t SizeInBits, uint32_t AlignInBits, 685 unsigned Encoding, StorageType Storage, 686 bool ShouldCreate) { 687 assert(isCanonical(Name) && "Expected canonical MDString"); 688 DEFINE_GETIMPL_LOOKUP(DIStringType, 689 (Tag, Name, StringLength, StringLengthExp, 690 StringLocationExp, SizeInBits, AlignInBits, Encoding)); 691 Metadata *Ops[] = {nullptr, nullptr, Name, 692 StringLength, StringLengthExp, StringLocationExp}; 693 DEFINE_GETIMPL_STORE(DIStringType, (Tag, SizeInBits, AlignInBits, Encoding), 694 Ops); 695 } 696 DIType *DIDerivedType::getClassType() const { 697 assert(getTag() == dwarf::DW_TAG_ptr_to_member_type); 698 return cast_or_null<DIType>(getExtraData()); 699 } 700 uint32_t DIDerivedType::getVBPtrOffset() const { 701 assert(getTag() == dwarf::DW_TAG_inheritance); 702 if (auto *CM = cast_or_null<ConstantAsMetadata>(getExtraData())) 703 if (auto *CI = dyn_cast_or_null<ConstantInt>(CM->getValue())) 704 return static_cast<uint32_t>(CI->getZExtValue()); 705 return 0; 706 } 707 Constant *DIDerivedType::getStorageOffsetInBits() const { 708 assert(getTag() == dwarf::DW_TAG_member && isBitField()); 709 if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData())) 710 return C->getValue(); 711 return nullptr; 712 } 713 714 Constant *DIDerivedType::getConstant() const { 715 assert(getTag() == dwarf::DW_TAG_member && isStaticMember()); 716 if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData())) 717 return C->getValue(); 718 return nullptr; 719 } 720 Constant *DIDerivedType::getDiscriminantValue() const { 721 assert(getTag() == dwarf::DW_TAG_member && !isStaticMember()); 722 if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData())) 723 return C->getValue(); 724 return nullptr; 725 } 726 727 DIDerivedType * 728 DIDerivedType::getImpl(LLVMContext &Context, unsigned Tag, MDString *Name, 729 Metadata *File, unsigned Line, Metadata *Scope, 730 Metadata *BaseType, uint64_t SizeInBits, 731 uint32_t AlignInBits, uint64_t OffsetInBits, 732 std::optional<unsigned> DWARFAddressSpace, DIFlags Flags, 733 Metadata *ExtraData, Metadata *Annotations, 734 StorageType Storage, bool ShouldCreate) { 735 assert(isCanonical(Name) && "Expected canonical MDString"); 736 DEFINE_GETIMPL_LOOKUP(DIDerivedType, 737 (Tag, Name, File, Line, Scope, BaseType, SizeInBits, 738 AlignInBits, OffsetInBits, DWARFAddressSpace, Flags, 739 ExtraData, Annotations)); 740 Metadata *Ops[] = {File, Scope, Name, BaseType, ExtraData, Annotations}; 741 DEFINE_GETIMPL_STORE(DIDerivedType, 742 (Tag, Line, SizeInBits, AlignInBits, OffsetInBits, 743 DWARFAddressSpace, Flags), 744 Ops); 745 } 746 747 DICompositeType *DICompositeType::getImpl( 748 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File, 749 unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits, 750 uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags, 751 Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder, 752 Metadata *TemplateParams, MDString *Identifier, Metadata *Discriminator, 753 Metadata *DataLocation, Metadata *Associated, Metadata *Allocated, 754 Metadata *Rank, Metadata *Annotations, StorageType Storage, 755 bool ShouldCreate) { 756 assert(isCanonical(Name) && "Expected canonical MDString"); 757 758 // Keep this in sync with buildODRType. 759 DEFINE_GETIMPL_LOOKUP(DICompositeType, 760 (Tag, Name, File, Line, Scope, BaseType, SizeInBits, 761 AlignInBits, OffsetInBits, Flags, Elements, 762 RuntimeLang, VTableHolder, TemplateParams, Identifier, 763 Discriminator, DataLocation, Associated, Allocated, 764 Rank, Annotations)); 765 Metadata *Ops[] = {File, Scope, Name, BaseType, 766 Elements, VTableHolder, TemplateParams, Identifier, 767 Discriminator, DataLocation, Associated, Allocated, 768 Rank, Annotations}; 769 DEFINE_GETIMPL_STORE( 770 DICompositeType, 771 (Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits, Flags), 772 Ops); 773 } 774 775 DICompositeType *DICompositeType::buildODRType( 776 LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name, 777 Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, 778 uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, 779 DIFlags Flags, Metadata *Elements, unsigned RuntimeLang, 780 Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator, 781 Metadata *DataLocation, Metadata *Associated, Metadata *Allocated, 782 Metadata *Rank, Metadata *Annotations) { 783 assert(!Identifier.getString().empty() && "Expected valid identifier"); 784 if (!Context.isODRUniquingDebugTypes()) 785 return nullptr; 786 auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier]; 787 if (!CT) 788 return CT = DICompositeType::getDistinct( 789 Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits, 790 AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 791 VTableHolder, TemplateParams, &Identifier, Discriminator, 792 DataLocation, Associated, Allocated, Rank, Annotations); 793 794 if (CT->getTag() != Tag) 795 return nullptr; 796 797 // Only mutate CT if it's a forward declaration and the new operands aren't. 798 assert(CT->getRawIdentifier() == &Identifier && "Wrong ODR identifier?"); 799 if (!CT->isForwardDecl() || (Flags & DINode::FlagFwdDecl)) 800 return CT; 801 802 // Mutate CT in place. Keep this in sync with getImpl. 803 CT->mutate(Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits, 804 Flags); 805 Metadata *Ops[] = {File, Scope, Name, BaseType, 806 Elements, VTableHolder, TemplateParams, &Identifier, 807 Discriminator, DataLocation, Associated, Allocated, 808 Rank, Annotations}; 809 assert((std::end(Ops) - std::begin(Ops)) == (int)CT->getNumOperands() && 810 "Mismatched number of operands"); 811 for (unsigned I = 0, E = CT->getNumOperands(); I != E; ++I) 812 if (Ops[I] != CT->getOperand(I)) 813 CT->setOperand(I, Ops[I]); 814 return CT; 815 } 816 817 DICompositeType *DICompositeType::getODRType( 818 LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name, 819 Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, 820 uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, 821 DIFlags Flags, Metadata *Elements, unsigned RuntimeLang, 822 Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator, 823 Metadata *DataLocation, Metadata *Associated, Metadata *Allocated, 824 Metadata *Rank, Metadata *Annotations) { 825 assert(!Identifier.getString().empty() && "Expected valid identifier"); 826 if (!Context.isODRUniquingDebugTypes()) 827 return nullptr; 828 auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier]; 829 if (!CT) { 830 CT = DICompositeType::getDistinct( 831 Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits, 832 AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder, 833 TemplateParams, &Identifier, Discriminator, DataLocation, Associated, 834 Allocated, Rank, Annotations); 835 } else { 836 if (CT->getTag() != Tag) 837 return nullptr; 838 } 839 return CT; 840 } 841 842 DICompositeType *DICompositeType::getODRTypeIfExists(LLVMContext &Context, 843 MDString &Identifier) { 844 assert(!Identifier.getString().empty() && "Expected valid identifier"); 845 if (!Context.isODRUniquingDebugTypes()) 846 return nullptr; 847 return Context.pImpl->DITypeMap->lookup(&Identifier); 848 } 849 DISubroutineType::DISubroutineType(LLVMContext &C, StorageType Storage, 850 DIFlags Flags, uint8_t CC, 851 ArrayRef<Metadata *> Ops) 852 : DIType(C, DISubroutineTypeKind, Storage, dwarf::DW_TAG_subroutine_type, 0, 853 0, 0, 0, Flags, Ops), 854 CC(CC) {} 855 856 DISubroutineType *DISubroutineType::getImpl(LLVMContext &Context, DIFlags Flags, 857 uint8_t CC, Metadata *TypeArray, 858 StorageType Storage, 859 bool ShouldCreate) { 860 DEFINE_GETIMPL_LOOKUP(DISubroutineType, (Flags, CC, TypeArray)); 861 Metadata *Ops[] = {nullptr, nullptr, nullptr, TypeArray}; 862 DEFINE_GETIMPL_STORE(DISubroutineType, (Flags, CC), Ops); 863 } 864 865 DIFile::DIFile(LLVMContext &C, StorageType Storage, 866 std::optional<ChecksumInfo<MDString *>> CS, MDString *Src, 867 ArrayRef<Metadata *> Ops) 868 : DIScope(C, DIFileKind, Storage, dwarf::DW_TAG_file_type, Ops), 869 Checksum(CS), Source(Src) {} 870 871 // FIXME: Implement this string-enum correspondence with a .def file and macros, 872 // so that the association is explicit rather than implied. 873 static const char *ChecksumKindName[DIFile::CSK_Last] = { 874 "CSK_MD5", 875 "CSK_SHA1", 876 "CSK_SHA256", 877 }; 878 879 StringRef DIFile::getChecksumKindAsString(ChecksumKind CSKind) { 880 assert(CSKind <= DIFile::CSK_Last && "Invalid checksum kind"); 881 // The first space was originally the CSK_None variant, which is now 882 // obsolete, but the space is still reserved in ChecksumKind, so we account 883 // for it here. 884 return ChecksumKindName[CSKind - 1]; 885 } 886 887 std::optional<DIFile::ChecksumKind> 888 DIFile::getChecksumKind(StringRef CSKindStr) { 889 return StringSwitch<std::optional<DIFile::ChecksumKind>>(CSKindStr) 890 .Case("CSK_MD5", DIFile::CSK_MD5) 891 .Case("CSK_SHA1", DIFile::CSK_SHA1) 892 .Case("CSK_SHA256", DIFile::CSK_SHA256) 893 .Default(std::nullopt); 894 } 895 896 DIFile *DIFile::getImpl(LLVMContext &Context, MDString *Filename, 897 MDString *Directory, 898 std::optional<DIFile::ChecksumInfo<MDString *>> CS, 899 MDString *Source, StorageType Storage, 900 bool ShouldCreate) { 901 assert(isCanonical(Filename) && "Expected canonical MDString"); 902 assert(isCanonical(Directory) && "Expected canonical MDString"); 903 assert((!CS || isCanonical(CS->Value)) && "Expected canonical MDString"); 904 // We do *NOT* expect Source to be a canonical MDString because nullptr 905 // means none, so we need something to represent the empty file. 906 DEFINE_GETIMPL_LOOKUP(DIFile, (Filename, Directory, CS, Source)); 907 Metadata *Ops[] = {Filename, Directory, CS ? CS->Value : nullptr, Source}; 908 DEFINE_GETIMPL_STORE(DIFile, (CS, Source), Ops); 909 } 910 DICompileUnit::DICompileUnit(LLVMContext &C, StorageType Storage, 911 unsigned SourceLanguage, bool IsOptimized, 912 unsigned RuntimeVersion, unsigned EmissionKind, 913 uint64_t DWOId, bool SplitDebugInlining, 914 bool DebugInfoForProfiling, unsigned NameTableKind, 915 bool RangesBaseAddress, ArrayRef<Metadata *> Ops) 916 : DIScope(C, DICompileUnitKind, Storage, dwarf::DW_TAG_compile_unit, Ops), 917 SourceLanguage(SourceLanguage), IsOptimized(IsOptimized), 918 RuntimeVersion(RuntimeVersion), EmissionKind(EmissionKind), DWOId(DWOId), 919 SplitDebugInlining(SplitDebugInlining), 920 DebugInfoForProfiling(DebugInfoForProfiling), 921 NameTableKind(NameTableKind), RangesBaseAddress(RangesBaseAddress) { 922 assert(Storage != Uniqued); 923 } 924 925 DICompileUnit *DICompileUnit::getImpl( 926 LLVMContext &Context, unsigned SourceLanguage, Metadata *File, 927 MDString *Producer, bool IsOptimized, MDString *Flags, 928 unsigned RuntimeVersion, MDString *SplitDebugFilename, 929 unsigned EmissionKind, Metadata *EnumTypes, Metadata *RetainedTypes, 930 Metadata *GlobalVariables, Metadata *ImportedEntities, Metadata *Macros, 931 uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling, 932 unsigned NameTableKind, bool RangesBaseAddress, MDString *SysRoot, 933 MDString *SDK, StorageType Storage, bool ShouldCreate) { 934 assert(Storage != Uniqued && "Cannot unique DICompileUnit"); 935 assert(isCanonical(Producer) && "Expected canonical MDString"); 936 assert(isCanonical(Flags) && "Expected canonical MDString"); 937 assert(isCanonical(SplitDebugFilename) && "Expected canonical MDString"); 938 939 Metadata *Ops[] = {File, 940 Producer, 941 Flags, 942 SplitDebugFilename, 943 EnumTypes, 944 RetainedTypes, 945 GlobalVariables, 946 ImportedEntities, 947 Macros, 948 SysRoot, 949 SDK}; 950 return storeImpl(new (std::size(Ops), Storage) DICompileUnit( 951 Context, Storage, SourceLanguage, IsOptimized, 952 RuntimeVersion, EmissionKind, DWOId, SplitDebugInlining, 953 DebugInfoForProfiling, NameTableKind, RangesBaseAddress, 954 Ops), 955 Storage); 956 } 957 958 std::optional<DICompileUnit::DebugEmissionKind> 959 DICompileUnit::getEmissionKind(StringRef Str) { 960 return StringSwitch<std::optional<DebugEmissionKind>>(Str) 961 .Case("NoDebug", NoDebug) 962 .Case("FullDebug", FullDebug) 963 .Case("LineTablesOnly", LineTablesOnly) 964 .Case("DebugDirectivesOnly", DebugDirectivesOnly) 965 .Default(std::nullopt); 966 } 967 968 std::optional<DICompileUnit::DebugNameTableKind> 969 DICompileUnit::getNameTableKind(StringRef Str) { 970 return StringSwitch<std::optional<DebugNameTableKind>>(Str) 971 .Case("Default", DebugNameTableKind::Default) 972 .Case("GNU", DebugNameTableKind::GNU) 973 .Case("Apple", DebugNameTableKind::Apple) 974 .Case("None", DebugNameTableKind::None) 975 .Default(std::nullopt); 976 } 977 978 const char *DICompileUnit::emissionKindString(DebugEmissionKind EK) { 979 switch (EK) { 980 case NoDebug: 981 return "NoDebug"; 982 case FullDebug: 983 return "FullDebug"; 984 case LineTablesOnly: 985 return "LineTablesOnly"; 986 case DebugDirectivesOnly: 987 return "DebugDirectivesOnly"; 988 } 989 return nullptr; 990 } 991 992 const char *DICompileUnit::nameTableKindString(DebugNameTableKind NTK) { 993 switch (NTK) { 994 case DebugNameTableKind::Default: 995 return nullptr; 996 case DebugNameTableKind::GNU: 997 return "GNU"; 998 case DebugNameTableKind::Apple: 999 return "Apple"; 1000 case DebugNameTableKind::None: 1001 return "None"; 1002 } 1003 return nullptr; 1004 } 1005 DISubprogram::DISubprogram(LLVMContext &C, StorageType Storage, unsigned Line, 1006 unsigned ScopeLine, unsigned VirtualIndex, 1007 int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, 1008 ArrayRef<Metadata *> Ops) 1009 : DILocalScope(C, DISubprogramKind, Storage, dwarf::DW_TAG_subprogram, Ops), 1010 Line(Line), ScopeLine(ScopeLine), VirtualIndex(VirtualIndex), 1011 ThisAdjustment(ThisAdjustment), Flags(Flags), SPFlags(SPFlags) { 1012 static_assert(dwarf::DW_VIRTUALITY_max < 4, "Virtuality out of range"); 1013 } 1014 DISubprogram::DISPFlags 1015 DISubprogram::toSPFlags(bool IsLocalToUnit, bool IsDefinition, bool IsOptimized, 1016 unsigned Virtuality, bool IsMainSubprogram) { 1017 // We're assuming virtuality is the low-order field. 1018 static_assert(int(SPFlagVirtual) == int(dwarf::DW_VIRTUALITY_virtual) && 1019 int(SPFlagPureVirtual) == 1020 int(dwarf::DW_VIRTUALITY_pure_virtual), 1021 "Virtuality constant mismatch"); 1022 return static_cast<DISPFlags>( 1023 (Virtuality & SPFlagVirtuality) | 1024 (IsLocalToUnit ? SPFlagLocalToUnit : SPFlagZero) | 1025 (IsDefinition ? SPFlagDefinition : SPFlagZero) | 1026 (IsOptimized ? SPFlagOptimized : SPFlagZero) | 1027 (IsMainSubprogram ? SPFlagMainSubprogram : SPFlagZero)); 1028 } 1029 1030 DISubprogram *DILocalScope::getSubprogram() const { 1031 if (auto *Block = dyn_cast<DILexicalBlockBase>(this)) 1032 return Block->getScope()->getSubprogram(); 1033 return const_cast<DISubprogram *>(cast<DISubprogram>(this)); 1034 } 1035 1036 DILocalScope *DILocalScope::getNonLexicalBlockFileScope() const { 1037 if (auto *File = dyn_cast<DILexicalBlockFile>(this)) 1038 return File->getScope()->getNonLexicalBlockFileScope(); 1039 return const_cast<DILocalScope *>(this); 1040 } 1041 1042 DILocalScope *DILocalScope::cloneScopeForSubprogram( 1043 DILocalScope &RootScope, DISubprogram &NewSP, LLVMContext &Ctx, 1044 DenseMap<const MDNode *, MDNode *> &Cache) { 1045 SmallVector<DIScope *> ScopeChain; 1046 DIScope *CachedResult = nullptr; 1047 1048 for (DIScope *Scope = &RootScope; !isa<DISubprogram>(Scope); 1049 Scope = Scope->getScope()) { 1050 if (auto It = Cache.find(Scope); It != Cache.end()) { 1051 CachedResult = cast<DIScope>(It->second); 1052 break; 1053 } 1054 ScopeChain.push_back(Scope); 1055 } 1056 1057 // Recreate the scope chain, bottom-up, starting at the new subprogram (or a 1058 // cached result). 1059 DIScope *UpdatedScope = CachedResult ? CachedResult : &NewSP; 1060 for (DIScope *ScopeToUpdate : reverse(ScopeChain)) { 1061 TempMDNode ClonedScope = ScopeToUpdate->clone(); 1062 cast<DILexicalBlockBase>(*ClonedScope).replaceScope(UpdatedScope); 1063 UpdatedScope = 1064 cast<DIScope>(MDNode::replaceWithUniqued(std::move(ClonedScope))); 1065 Cache[ScopeToUpdate] = UpdatedScope; 1066 } 1067 1068 return cast<DILocalScope>(UpdatedScope); 1069 } 1070 1071 DISubprogram::DISPFlags DISubprogram::getFlag(StringRef Flag) { 1072 return StringSwitch<DISPFlags>(Flag) 1073 #define HANDLE_DISP_FLAG(ID, NAME) .Case("DISPFlag" #NAME, SPFlag##NAME) 1074 #include "llvm/IR/DebugInfoFlags.def" 1075 .Default(SPFlagZero); 1076 } 1077 1078 StringRef DISubprogram::getFlagString(DISPFlags Flag) { 1079 switch (Flag) { 1080 // Appease a warning. 1081 case SPFlagVirtuality: 1082 return ""; 1083 #define HANDLE_DISP_FLAG(ID, NAME) \ 1084 case SPFlag##NAME: \ 1085 return "DISPFlag" #NAME; 1086 #include "llvm/IR/DebugInfoFlags.def" 1087 } 1088 return ""; 1089 } 1090 1091 DISubprogram::DISPFlags 1092 DISubprogram::splitFlags(DISPFlags Flags, 1093 SmallVectorImpl<DISPFlags> &SplitFlags) { 1094 // Multi-bit fields can require special handling. In our case, however, the 1095 // only multi-bit field is virtuality, and all its values happen to be 1096 // single-bit values, so the right behavior just falls out. 1097 #define HANDLE_DISP_FLAG(ID, NAME) \ 1098 if (DISPFlags Bit = Flags & SPFlag##NAME) { \ 1099 SplitFlags.push_back(Bit); \ 1100 Flags &= ~Bit; \ 1101 } 1102 #include "llvm/IR/DebugInfoFlags.def" 1103 return Flags; 1104 } 1105 1106 DISubprogram *DISubprogram::getImpl( 1107 LLVMContext &Context, Metadata *Scope, MDString *Name, 1108 MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type, 1109 unsigned ScopeLine, Metadata *ContainingType, unsigned VirtualIndex, 1110 int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, Metadata *Unit, 1111 Metadata *TemplateParams, Metadata *Declaration, Metadata *RetainedNodes, 1112 Metadata *ThrownTypes, Metadata *Annotations, MDString *TargetFuncName, 1113 StorageType Storage, bool ShouldCreate) { 1114 assert(isCanonical(Name) && "Expected canonical MDString"); 1115 assert(isCanonical(LinkageName) && "Expected canonical MDString"); 1116 assert(isCanonical(TargetFuncName) && "Expected canonical MDString"); 1117 DEFINE_GETIMPL_LOOKUP(DISubprogram, 1118 (Scope, Name, LinkageName, File, Line, Type, ScopeLine, 1119 ContainingType, VirtualIndex, ThisAdjustment, Flags, 1120 SPFlags, Unit, TemplateParams, Declaration, 1121 RetainedNodes, ThrownTypes, Annotations, 1122 TargetFuncName)); 1123 SmallVector<Metadata *, 13> Ops = { 1124 File, Scope, Name, LinkageName, 1125 Type, Unit, Declaration, RetainedNodes, 1126 ContainingType, TemplateParams, ThrownTypes, Annotations, 1127 TargetFuncName}; 1128 if (!TargetFuncName) { 1129 Ops.pop_back(); 1130 if (!Annotations) { 1131 Ops.pop_back(); 1132 if (!ThrownTypes) { 1133 Ops.pop_back(); 1134 if (!TemplateParams) { 1135 Ops.pop_back(); 1136 if (!ContainingType) 1137 Ops.pop_back(); 1138 } 1139 } 1140 } 1141 } 1142 DEFINE_GETIMPL_STORE_N( 1143 DISubprogram, 1144 (Line, ScopeLine, VirtualIndex, ThisAdjustment, Flags, SPFlags), Ops, 1145 Ops.size()); 1146 } 1147 1148 bool DISubprogram::describes(const Function *F) const { 1149 assert(F && "Invalid function"); 1150 return F->getSubprogram() == this; 1151 } 1152 DILexicalBlockBase::DILexicalBlockBase(LLVMContext &C, unsigned ID, 1153 StorageType Storage, 1154 ArrayRef<Metadata *> Ops) 1155 : DILocalScope(C, ID, Storage, dwarf::DW_TAG_lexical_block, Ops) {} 1156 1157 DILexicalBlock *DILexicalBlock::getImpl(LLVMContext &Context, Metadata *Scope, 1158 Metadata *File, unsigned Line, 1159 unsigned Column, StorageType Storage, 1160 bool ShouldCreate) { 1161 // Fixup column. 1162 adjustColumn(Column); 1163 1164 assert(Scope && "Expected scope"); 1165 DEFINE_GETIMPL_LOOKUP(DILexicalBlock, (Scope, File, Line, Column)); 1166 Metadata *Ops[] = {File, Scope}; 1167 DEFINE_GETIMPL_STORE(DILexicalBlock, (Line, Column), Ops); 1168 } 1169 1170 DILexicalBlockFile *DILexicalBlockFile::getImpl(LLVMContext &Context, 1171 Metadata *Scope, Metadata *File, 1172 unsigned Discriminator, 1173 StorageType Storage, 1174 bool ShouldCreate) { 1175 assert(Scope && "Expected scope"); 1176 DEFINE_GETIMPL_LOOKUP(DILexicalBlockFile, (Scope, File, Discriminator)); 1177 Metadata *Ops[] = {File, Scope}; 1178 DEFINE_GETIMPL_STORE(DILexicalBlockFile, (Discriminator), Ops); 1179 } 1180 1181 DINamespace::DINamespace(LLVMContext &Context, StorageType Storage, 1182 bool ExportSymbols, ArrayRef<Metadata *> Ops) 1183 : DIScope(Context, DINamespaceKind, Storage, dwarf::DW_TAG_namespace, Ops), 1184 ExportSymbols(ExportSymbols) {} 1185 DINamespace *DINamespace::getImpl(LLVMContext &Context, Metadata *Scope, 1186 MDString *Name, bool ExportSymbols, 1187 StorageType Storage, bool ShouldCreate) { 1188 assert(isCanonical(Name) && "Expected canonical MDString"); 1189 DEFINE_GETIMPL_LOOKUP(DINamespace, (Scope, Name, ExportSymbols)); 1190 // The nullptr is for DIScope's File operand. This should be refactored. 1191 Metadata *Ops[] = {nullptr, Scope, Name}; 1192 DEFINE_GETIMPL_STORE(DINamespace, (ExportSymbols), Ops); 1193 } 1194 1195 DICommonBlock::DICommonBlock(LLVMContext &Context, StorageType Storage, 1196 unsigned LineNo, ArrayRef<Metadata *> Ops) 1197 : DIScope(Context, DICommonBlockKind, Storage, dwarf::DW_TAG_common_block, 1198 Ops), 1199 LineNo(LineNo) {} 1200 DICommonBlock *DICommonBlock::getImpl(LLVMContext &Context, Metadata *Scope, 1201 Metadata *Decl, MDString *Name, 1202 Metadata *File, unsigned LineNo, 1203 StorageType Storage, bool ShouldCreate) { 1204 assert(isCanonical(Name) && "Expected canonical MDString"); 1205 DEFINE_GETIMPL_LOOKUP(DICommonBlock, (Scope, Decl, Name, File, LineNo)); 1206 // The nullptr is for DIScope's File operand. This should be refactored. 1207 Metadata *Ops[] = {Scope, Decl, Name, File}; 1208 DEFINE_GETIMPL_STORE(DICommonBlock, (LineNo), Ops); 1209 } 1210 1211 DIModule::DIModule(LLVMContext &Context, StorageType Storage, unsigned LineNo, 1212 bool IsDecl, ArrayRef<Metadata *> Ops) 1213 : DIScope(Context, DIModuleKind, Storage, dwarf::DW_TAG_module, Ops), 1214 LineNo(LineNo), IsDecl(IsDecl) {} 1215 DIModule *DIModule::getImpl(LLVMContext &Context, Metadata *File, 1216 Metadata *Scope, MDString *Name, 1217 MDString *ConfigurationMacros, 1218 MDString *IncludePath, MDString *APINotesFile, 1219 unsigned LineNo, bool IsDecl, StorageType Storage, 1220 bool ShouldCreate) { 1221 assert(isCanonical(Name) && "Expected canonical MDString"); 1222 DEFINE_GETIMPL_LOOKUP(DIModule, (File, Scope, Name, ConfigurationMacros, 1223 IncludePath, APINotesFile, LineNo, IsDecl)); 1224 Metadata *Ops[] = {File, Scope, Name, ConfigurationMacros, 1225 IncludePath, APINotesFile}; 1226 DEFINE_GETIMPL_STORE(DIModule, (LineNo, IsDecl), Ops); 1227 } 1228 DITemplateTypeParameter::DITemplateTypeParameter(LLVMContext &Context, 1229 StorageType Storage, 1230 bool IsDefault, 1231 ArrayRef<Metadata *> Ops) 1232 : DITemplateParameter(Context, DITemplateTypeParameterKind, Storage, 1233 dwarf::DW_TAG_template_type_parameter, IsDefault, 1234 Ops) {} 1235 1236 DITemplateTypeParameter * 1237 DITemplateTypeParameter::getImpl(LLVMContext &Context, MDString *Name, 1238 Metadata *Type, bool isDefault, 1239 StorageType Storage, bool ShouldCreate) { 1240 assert(isCanonical(Name) && "Expected canonical MDString"); 1241 DEFINE_GETIMPL_LOOKUP(DITemplateTypeParameter, (Name, Type, isDefault)); 1242 Metadata *Ops[] = {Name, Type}; 1243 DEFINE_GETIMPL_STORE(DITemplateTypeParameter, (isDefault), Ops); 1244 } 1245 1246 DITemplateValueParameter *DITemplateValueParameter::getImpl( 1247 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *Type, 1248 bool isDefault, Metadata *Value, StorageType Storage, bool ShouldCreate) { 1249 assert(isCanonical(Name) && "Expected canonical MDString"); 1250 DEFINE_GETIMPL_LOOKUP(DITemplateValueParameter, 1251 (Tag, Name, Type, isDefault, Value)); 1252 Metadata *Ops[] = {Name, Type, Value}; 1253 DEFINE_GETIMPL_STORE(DITemplateValueParameter, (Tag, isDefault), Ops); 1254 } 1255 1256 DIGlobalVariable * 1257 DIGlobalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, 1258 MDString *LinkageName, Metadata *File, unsigned Line, 1259 Metadata *Type, bool IsLocalToUnit, bool IsDefinition, 1260 Metadata *StaticDataMemberDeclaration, 1261 Metadata *TemplateParams, uint32_t AlignInBits, 1262 Metadata *Annotations, StorageType Storage, 1263 bool ShouldCreate) { 1264 assert(isCanonical(Name) && "Expected canonical MDString"); 1265 assert(isCanonical(LinkageName) && "Expected canonical MDString"); 1266 DEFINE_GETIMPL_LOOKUP( 1267 DIGlobalVariable, 1268 (Scope, Name, LinkageName, File, Line, Type, IsLocalToUnit, IsDefinition, 1269 StaticDataMemberDeclaration, TemplateParams, AlignInBits, Annotations)); 1270 Metadata *Ops[] = {Scope, 1271 Name, 1272 File, 1273 Type, 1274 Name, 1275 LinkageName, 1276 StaticDataMemberDeclaration, 1277 TemplateParams, 1278 Annotations}; 1279 DEFINE_GETIMPL_STORE(DIGlobalVariable, 1280 (Line, IsLocalToUnit, IsDefinition, AlignInBits), Ops); 1281 } 1282 1283 DILocalVariable * 1284 DILocalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, 1285 Metadata *File, unsigned Line, Metadata *Type, 1286 unsigned Arg, DIFlags Flags, uint32_t AlignInBits, 1287 Metadata *Annotations, StorageType Storage, 1288 bool ShouldCreate) { 1289 // 64K ought to be enough for any frontend. 1290 assert(Arg <= UINT16_MAX && "Expected argument number to fit in 16-bits"); 1291 1292 assert(Scope && "Expected scope"); 1293 assert(isCanonical(Name) && "Expected canonical MDString"); 1294 DEFINE_GETIMPL_LOOKUP(DILocalVariable, (Scope, Name, File, Line, Type, Arg, 1295 Flags, AlignInBits, Annotations)); 1296 Metadata *Ops[] = {Scope, Name, File, Type, Annotations}; 1297 DEFINE_GETIMPL_STORE(DILocalVariable, (Line, Arg, Flags, AlignInBits), Ops); 1298 } 1299 1300 DIVariable::DIVariable(LLVMContext &C, unsigned ID, StorageType Storage, 1301 signed Line, ArrayRef<Metadata *> Ops, 1302 uint32_t AlignInBits) 1303 : DINode(C, ID, Storage, dwarf::DW_TAG_variable, Ops), Line(Line), 1304 AlignInBits(AlignInBits) {} 1305 std::optional<uint64_t> DIVariable::getSizeInBits() const { 1306 // This is used by the Verifier so be mindful of broken types. 1307 const Metadata *RawType = getRawType(); 1308 while (RawType) { 1309 // Try to get the size directly. 1310 if (auto *T = dyn_cast<DIType>(RawType)) 1311 if (uint64_t Size = T->getSizeInBits()) 1312 return Size; 1313 1314 if (auto *DT = dyn_cast<DIDerivedType>(RawType)) { 1315 // Look at the base type. 1316 RawType = DT->getRawBaseType(); 1317 continue; 1318 } 1319 1320 // Missing type or size. 1321 break; 1322 } 1323 1324 // Fail gracefully. 1325 return std::nullopt; 1326 } 1327 1328 DILabel::DILabel(LLVMContext &C, StorageType Storage, unsigned Line, 1329 ArrayRef<Metadata *> Ops) 1330 : DINode(C, DILabelKind, Storage, dwarf::DW_TAG_label, Ops), Line(Line) {} 1331 DILabel *DILabel::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, 1332 Metadata *File, unsigned Line, StorageType Storage, 1333 bool ShouldCreate) { 1334 assert(Scope && "Expected scope"); 1335 assert(isCanonical(Name) && "Expected canonical MDString"); 1336 DEFINE_GETIMPL_LOOKUP(DILabel, (Scope, Name, File, Line)); 1337 Metadata *Ops[] = {Scope, Name, File}; 1338 DEFINE_GETIMPL_STORE(DILabel, (Line), Ops); 1339 } 1340 1341 DIExpression *DIExpression::getImpl(LLVMContext &Context, 1342 ArrayRef<uint64_t> Elements, 1343 StorageType Storage, bool ShouldCreate) { 1344 DEFINE_GETIMPL_LOOKUP(DIExpression, (Elements)); 1345 DEFINE_GETIMPL_STORE_NO_OPS(DIExpression, (Elements)); 1346 } 1347 bool DIExpression::isEntryValue() const { 1348 return getNumElements() > 0 && getElement(0) == dwarf::DW_OP_LLVM_entry_value; 1349 } 1350 bool DIExpression::startsWithDeref() const { 1351 return getNumElements() > 0 && getElement(0) == dwarf::DW_OP_deref; 1352 } 1353 bool DIExpression::isDeref() const { 1354 return getNumElements() == 1 && startsWithDeref(); 1355 } 1356 1357 DIAssignID *DIAssignID::getImpl(LLVMContext &Context, StorageType Storage, 1358 bool ShouldCreate) { 1359 // Uniqued DIAssignID are not supported as the instance address *is* the ID. 1360 assert(Storage != StorageType::Uniqued && "uniqued DIAssignID unsupported"); 1361 return storeImpl(new (0u, Storage) DIAssignID(Context, Storage), Storage); 1362 } 1363 1364 unsigned DIExpression::ExprOperand::getSize() const { 1365 uint64_t Op = getOp(); 1366 1367 if (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31) 1368 return 2; 1369 1370 switch (Op) { 1371 case dwarf::DW_OP_LLVM_convert: 1372 case dwarf::DW_OP_LLVM_fragment: 1373 case dwarf::DW_OP_bregx: 1374 return 3; 1375 case dwarf::DW_OP_constu: 1376 case dwarf::DW_OP_consts: 1377 case dwarf::DW_OP_deref_size: 1378 case dwarf::DW_OP_plus_uconst: 1379 case dwarf::DW_OP_LLVM_tag_offset: 1380 case dwarf::DW_OP_LLVM_entry_value: 1381 case dwarf::DW_OP_LLVM_arg: 1382 case dwarf::DW_OP_regx: 1383 return 2; 1384 default: 1385 return 1; 1386 } 1387 } 1388 1389 bool DIExpression::isValid() const { 1390 for (auto I = expr_op_begin(), E = expr_op_end(); I != E; ++I) { 1391 // Check that there's space for the operand. 1392 if (I->get() + I->getSize() > E->get()) 1393 return false; 1394 1395 uint64_t Op = I->getOp(); 1396 if ((Op >= dwarf::DW_OP_reg0 && Op <= dwarf::DW_OP_reg31) || 1397 (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31)) 1398 return true; 1399 1400 // Check that the operand is valid. 1401 switch (Op) { 1402 default: 1403 return false; 1404 case dwarf::DW_OP_LLVM_fragment: 1405 // A fragment operator must appear at the end. 1406 return I->get() + I->getSize() == E->get(); 1407 case dwarf::DW_OP_stack_value: { 1408 // Must be the last one or followed by a DW_OP_LLVM_fragment. 1409 if (I->get() + I->getSize() == E->get()) 1410 break; 1411 auto J = I; 1412 if ((++J)->getOp() != dwarf::DW_OP_LLVM_fragment) 1413 return false; 1414 break; 1415 } 1416 case dwarf::DW_OP_swap: { 1417 // Must be more than one implicit element on the stack. 1418 1419 // FIXME: A better way to implement this would be to add a local variable 1420 // that keeps track of the stack depth and introduce something like a 1421 // DW_LLVM_OP_implicit_location as a placeholder for the location this 1422 // DIExpression is attached to, or else pass the number of implicit stack 1423 // elements into isValid. 1424 if (getNumElements() == 1) 1425 return false; 1426 break; 1427 } 1428 case dwarf::DW_OP_LLVM_entry_value: { 1429 // An entry value operator must appear at the beginning or immediately 1430 // following `DW_OP_LLVM_arg 0`, and the number of operations it cover can 1431 // currently only be 1, because we support only entry values of a simple 1432 // register location. One reason for this is that we currently can't 1433 // calculate the size of the resulting DWARF block for other expressions. 1434 auto FirstOp = expr_op_begin(); 1435 if (FirstOp->getOp() == dwarf::DW_OP_LLVM_arg && FirstOp->getArg(0) == 0) 1436 ++FirstOp; 1437 return I->get() == FirstOp->get() && I->getArg(0) == 1; 1438 } 1439 case dwarf::DW_OP_LLVM_implicit_pointer: 1440 case dwarf::DW_OP_LLVM_convert: 1441 case dwarf::DW_OP_LLVM_arg: 1442 case dwarf::DW_OP_LLVM_tag_offset: 1443 case dwarf::DW_OP_constu: 1444 case dwarf::DW_OP_plus_uconst: 1445 case dwarf::DW_OP_plus: 1446 case dwarf::DW_OP_minus: 1447 case dwarf::DW_OP_mul: 1448 case dwarf::DW_OP_div: 1449 case dwarf::DW_OP_mod: 1450 case dwarf::DW_OP_or: 1451 case dwarf::DW_OP_and: 1452 case dwarf::DW_OP_xor: 1453 case dwarf::DW_OP_shl: 1454 case dwarf::DW_OP_shr: 1455 case dwarf::DW_OP_shra: 1456 case dwarf::DW_OP_deref: 1457 case dwarf::DW_OP_deref_size: 1458 case dwarf::DW_OP_xderef: 1459 case dwarf::DW_OP_lit0: 1460 case dwarf::DW_OP_not: 1461 case dwarf::DW_OP_dup: 1462 case dwarf::DW_OP_regx: 1463 case dwarf::DW_OP_bregx: 1464 case dwarf::DW_OP_push_object_address: 1465 case dwarf::DW_OP_over: 1466 case dwarf::DW_OP_consts: 1467 case dwarf::DW_OP_eq: 1468 case dwarf::DW_OP_ne: 1469 case dwarf::DW_OP_gt: 1470 case dwarf::DW_OP_ge: 1471 case dwarf::DW_OP_lt: 1472 case dwarf::DW_OP_le: 1473 break; 1474 } 1475 } 1476 return true; 1477 } 1478 1479 bool DIExpression::isImplicit() const { 1480 if (!isValid()) 1481 return false; 1482 1483 if (getNumElements() == 0) 1484 return false; 1485 1486 for (const auto &It : expr_ops()) { 1487 switch (It.getOp()) { 1488 default: 1489 break; 1490 case dwarf::DW_OP_stack_value: 1491 case dwarf::DW_OP_LLVM_tag_offset: 1492 return true; 1493 } 1494 } 1495 1496 return false; 1497 } 1498 1499 bool DIExpression::isComplex() const { 1500 if (!isValid()) 1501 return false; 1502 1503 if (getNumElements() == 0) 1504 return false; 1505 1506 // If there are any elements other than fragment or tag_offset, then some 1507 // kind of complex computation occurs. 1508 for (const auto &It : expr_ops()) { 1509 switch (It.getOp()) { 1510 case dwarf::DW_OP_LLVM_tag_offset: 1511 case dwarf::DW_OP_LLVM_fragment: 1512 case dwarf::DW_OP_LLVM_arg: 1513 continue; 1514 default: 1515 return true; 1516 } 1517 } 1518 1519 return false; 1520 } 1521 1522 bool DIExpression::isSingleLocationExpression() const { 1523 if (!isValid()) 1524 return false; 1525 1526 if (getNumElements() == 0) 1527 return true; 1528 1529 auto ExprOpBegin = expr_ops().begin(); 1530 auto ExprOpEnd = expr_ops().end(); 1531 if (ExprOpBegin->getOp() == dwarf::DW_OP_LLVM_arg) 1532 ++ExprOpBegin; 1533 1534 return !std::any_of(ExprOpBegin, ExprOpEnd, [](auto Op) { 1535 return Op.getOp() == dwarf::DW_OP_LLVM_arg; 1536 }); 1537 } 1538 1539 const DIExpression * 1540 DIExpression::convertToUndefExpression(const DIExpression *Expr) { 1541 SmallVector<uint64_t, 3> UndefOps; 1542 if (auto FragmentInfo = Expr->getFragmentInfo()) { 1543 UndefOps.append({dwarf::DW_OP_LLVM_fragment, FragmentInfo->OffsetInBits, 1544 FragmentInfo->SizeInBits}); 1545 } 1546 return DIExpression::get(Expr->getContext(), UndefOps); 1547 } 1548 1549 const DIExpression * 1550 DIExpression::convertToVariadicExpression(const DIExpression *Expr) { 1551 if (any_of(Expr->expr_ops(), [](auto ExprOp) { 1552 return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg; 1553 })) 1554 return Expr; 1555 SmallVector<uint64_t> NewOps; 1556 NewOps.reserve(Expr->getNumElements() + 2); 1557 NewOps.append({dwarf::DW_OP_LLVM_arg, 0}); 1558 NewOps.append(Expr->elements_begin(), Expr->elements_end()); 1559 return DIExpression::get(Expr->getContext(), NewOps); 1560 } 1561 1562 std::optional<const DIExpression *> 1563 DIExpression::convertToNonVariadicExpression(const DIExpression *Expr) { 1564 // Check for `isValid` covered by `isSingleLocationExpression`. 1565 if (!Expr->isSingleLocationExpression()) 1566 return std::nullopt; 1567 1568 // An empty expression is already non-variadic. 1569 if (!Expr->getNumElements()) 1570 return Expr; 1571 1572 auto ElementsBegin = Expr->elements_begin(); 1573 // If Expr does not have a leading DW_OP_LLVM_arg then we don't need to do 1574 // anything. 1575 if (*ElementsBegin != dwarf::DW_OP_LLVM_arg) 1576 return Expr; 1577 1578 SmallVector<uint64_t> NonVariadicOps( 1579 make_range(ElementsBegin + 2, Expr->elements_end())); 1580 return DIExpression::get(Expr->getContext(), NonVariadicOps); 1581 } 1582 1583 void DIExpression::canonicalizeExpressionOps(SmallVectorImpl<uint64_t> &Ops, 1584 const DIExpression *Expr, 1585 bool IsIndirect) { 1586 // If Expr is not already variadic, insert the implied `DW_OP_LLVM_arg 0` 1587 // to the existing expression ops. 1588 if (none_of(Expr->expr_ops(), [](auto ExprOp) { 1589 return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg; 1590 })) 1591 Ops.append({dwarf::DW_OP_LLVM_arg, 0}); 1592 // If Expr is not indirect, we only need to insert the expression elements and 1593 // we're done. 1594 if (!IsIndirect) { 1595 Ops.append(Expr->elements_begin(), Expr->elements_end()); 1596 return; 1597 } 1598 // If Expr is indirect, insert the implied DW_OP_deref at the end of the 1599 // expression but before DW_OP_{stack_value, LLVM_fragment} if they are 1600 // present. 1601 for (auto Op : Expr->expr_ops()) { 1602 if (Op.getOp() == dwarf::DW_OP_stack_value || 1603 Op.getOp() == dwarf::DW_OP_LLVM_fragment) { 1604 Ops.push_back(dwarf::DW_OP_deref); 1605 IsIndirect = false; 1606 } 1607 Op.appendToVector(Ops); 1608 } 1609 if (IsIndirect) 1610 Ops.push_back(dwarf::DW_OP_deref); 1611 } 1612 1613 bool DIExpression::isEqualExpression(const DIExpression *FirstExpr, 1614 bool FirstIndirect, 1615 const DIExpression *SecondExpr, 1616 bool SecondIndirect) { 1617 SmallVector<uint64_t> FirstOps; 1618 DIExpression::canonicalizeExpressionOps(FirstOps, FirstExpr, FirstIndirect); 1619 SmallVector<uint64_t> SecondOps; 1620 DIExpression::canonicalizeExpressionOps(SecondOps, SecondExpr, 1621 SecondIndirect); 1622 return FirstOps == SecondOps; 1623 } 1624 1625 std::optional<DIExpression::FragmentInfo> 1626 DIExpression::getFragmentInfo(expr_op_iterator Start, expr_op_iterator End) { 1627 for (auto I = Start; I != End; ++I) 1628 if (I->getOp() == dwarf::DW_OP_LLVM_fragment) { 1629 DIExpression::FragmentInfo Info = {I->getArg(1), I->getArg(0)}; 1630 return Info; 1631 } 1632 return std::nullopt; 1633 } 1634 1635 void DIExpression::appendOffset(SmallVectorImpl<uint64_t> &Ops, 1636 int64_t Offset) { 1637 if (Offset > 0) { 1638 Ops.push_back(dwarf::DW_OP_plus_uconst); 1639 Ops.push_back(Offset); 1640 } else if (Offset < 0) { 1641 Ops.push_back(dwarf::DW_OP_constu); 1642 // Avoid UB when encountering LLONG_MIN, because in 2's complement 1643 // abs(LLONG_MIN) is LLONG_MAX+1. 1644 uint64_t AbsMinusOne = -(Offset+1); 1645 Ops.push_back(AbsMinusOne + 1); 1646 Ops.push_back(dwarf::DW_OP_minus); 1647 } 1648 } 1649 1650 bool DIExpression::extractIfOffset(int64_t &Offset) const { 1651 if (getNumElements() == 0) { 1652 Offset = 0; 1653 return true; 1654 } 1655 1656 if (getNumElements() == 2 && Elements[0] == dwarf::DW_OP_plus_uconst) { 1657 Offset = Elements[1]; 1658 return true; 1659 } 1660 1661 if (getNumElements() == 3 && Elements[0] == dwarf::DW_OP_constu) { 1662 if (Elements[2] == dwarf::DW_OP_plus) { 1663 Offset = Elements[1]; 1664 return true; 1665 } 1666 if (Elements[2] == dwarf::DW_OP_minus) { 1667 Offset = -Elements[1]; 1668 return true; 1669 } 1670 } 1671 1672 return false; 1673 } 1674 1675 bool DIExpression::hasAllLocationOps(unsigned N) const { 1676 SmallDenseSet<uint64_t, 4> SeenOps; 1677 for (auto ExprOp : expr_ops()) 1678 if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg) 1679 SeenOps.insert(ExprOp.getArg(0)); 1680 for (uint64_t Idx = 0; Idx < N; ++Idx) 1681 if (!SeenOps.contains(Idx)) 1682 return false; 1683 return true; 1684 } 1685 1686 const DIExpression *DIExpression::extractAddressClass(const DIExpression *Expr, 1687 unsigned &AddrClass) { 1688 // FIXME: This seems fragile. Nothing that verifies that these elements 1689 // actually map to ops and not operands. 1690 const unsigned PatternSize = 4; 1691 if (Expr->Elements.size() >= PatternSize && 1692 Expr->Elements[PatternSize - 4] == dwarf::DW_OP_constu && 1693 Expr->Elements[PatternSize - 2] == dwarf::DW_OP_swap && 1694 Expr->Elements[PatternSize - 1] == dwarf::DW_OP_xderef) { 1695 AddrClass = Expr->Elements[PatternSize - 3]; 1696 1697 if (Expr->Elements.size() == PatternSize) 1698 return nullptr; 1699 return DIExpression::get(Expr->getContext(), 1700 ArrayRef(&*Expr->Elements.begin(), 1701 Expr->Elements.size() - PatternSize)); 1702 } 1703 return Expr; 1704 } 1705 1706 DIExpression *DIExpression::prepend(const DIExpression *Expr, uint8_t Flags, 1707 int64_t Offset) { 1708 SmallVector<uint64_t, 8> Ops; 1709 if (Flags & DIExpression::DerefBefore) 1710 Ops.push_back(dwarf::DW_OP_deref); 1711 1712 appendOffset(Ops, Offset); 1713 if (Flags & DIExpression::DerefAfter) 1714 Ops.push_back(dwarf::DW_OP_deref); 1715 1716 bool StackValue = Flags & DIExpression::StackValue; 1717 bool EntryValue = Flags & DIExpression::EntryValue; 1718 1719 return prependOpcodes(Expr, Ops, StackValue, EntryValue); 1720 } 1721 1722 DIExpression *DIExpression::appendOpsToArg(const DIExpression *Expr, 1723 ArrayRef<uint64_t> Ops, 1724 unsigned ArgNo, bool StackValue) { 1725 assert(Expr && "Can't add ops to this expression"); 1726 1727 // Handle non-variadic intrinsics by prepending the opcodes. 1728 if (!any_of(Expr->expr_ops(), 1729 [](auto Op) { return Op.getOp() == dwarf::DW_OP_LLVM_arg; })) { 1730 assert(ArgNo == 0 && 1731 "Location Index must be 0 for a non-variadic expression."); 1732 SmallVector<uint64_t, 8> NewOps(Ops.begin(), Ops.end()); 1733 return DIExpression::prependOpcodes(Expr, NewOps, StackValue); 1734 } 1735 1736 SmallVector<uint64_t, 8> NewOps; 1737 for (auto Op : Expr->expr_ops()) { 1738 // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment. 1739 if (StackValue) { 1740 if (Op.getOp() == dwarf::DW_OP_stack_value) 1741 StackValue = false; 1742 else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) { 1743 NewOps.push_back(dwarf::DW_OP_stack_value); 1744 StackValue = false; 1745 } 1746 } 1747 Op.appendToVector(NewOps); 1748 if (Op.getOp() == dwarf::DW_OP_LLVM_arg && Op.getArg(0) == ArgNo) 1749 NewOps.insert(NewOps.end(), Ops.begin(), Ops.end()); 1750 } 1751 if (StackValue) 1752 NewOps.push_back(dwarf::DW_OP_stack_value); 1753 1754 return DIExpression::get(Expr->getContext(), NewOps); 1755 } 1756 1757 DIExpression *DIExpression::replaceArg(const DIExpression *Expr, 1758 uint64_t OldArg, uint64_t NewArg) { 1759 assert(Expr && "Can't replace args in this expression"); 1760 1761 SmallVector<uint64_t, 8> NewOps; 1762 1763 for (auto Op : Expr->expr_ops()) { 1764 if (Op.getOp() != dwarf::DW_OP_LLVM_arg || Op.getArg(0) < OldArg) { 1765 Op.appendToVector(NewOps); 1766 continue; 1767 } 1768 NewOps.push_back(dwarf::DW_OP_LLVM_arg); 1769 uint64_t Arg = Op.getArg(0) == OldArg ? NewArg : Op.getArg(0); 1770 // OldArg has been deleted from the Op list, so decrement all indices 1771 // greater than it. 1772 if (Arg > OldArg) 1773 --Arg; 1774 NewOps.push_back(Arg); 1775 } 1776 return DIExpression::get(Expr->getContext(), NewOps); 1777 } 1778 1779 DIExpression *DIExpression::prependOpcodes(const DIExpression *Expr, 1780 SmallVectorImpl<uint64_t> &Ops, 1781 bool StackValue, bool EntryValue) { 1782 assert(Expr && "Can't prepend ops to this expression"); 1783 1784 if (EntryValue) { 1785 Ops.push_back(dwarf::DW_OP_LLVM_entry_value); 1786 // Use a block size of 1 for the target register operand. The 1787 // DWARF backend currently cannot emit entry values with a block 1788 // size > 1. 1789 Ops.push_back(1); 1790 } 1791 1792 // If there are no ops to prepend, do not even add the DW_OP_stack_value. 1793 if (Ops.empty()) 1794 StackValue = false; 1795 for (auto Op : Expr->expr_ops()) { 1796 // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment. 1797 if (StackValue) { 1798 if (Op.getOp() == dwarf::DW_OP_stack_value) 1799 StackValue = false; 1800 else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) { 1801 Ops.push_back(dwarf::DW_OP_stack_value); 1802 StackValue = false; 1803 } 1804 } 1805 Op.appendToVector(Ops); 1806 } 1807 if (StackValue) 1808 Ops.push_back(dwarf::DW_OP_stack_value); 1809 return DIExpression::get(Expr->getContext(), Ops); 1810 } 1811 1812 DIExpression *DIExpression::append(const DIExpression *Expr, 1813 ArrayRef<uint64_t> Ops) { 1814 assert(Expr && !Ops.empty() && "Can't append ops to this expression"); 1815 1816 // Copy Expr's current op list. 1817 SmallVector<uint64_t, 16> NewOps; 1818 for (auto Op : Expr->expr_ops()) { 1819 // Append new opcodes before DW_OP_{stack_value, LLVM_fragment}. 1820 if (Op.getOp() == dwarf::DW_OP_stack_value || 1821 Op.getOp() == dwarf::DW_OP_LLVM_fragment) { 1822 NewOps.append(Ops.begin(), Ops.end()); 1823 1824 // Ensure that the new opcodes are only appended once. 1825 Ops = std::nullopt; 1826 } 1827 Op.appendToVector(NewOps); 1828 } 1829 1830 NewOps.append(Ops.begin(), Ops.end()); 1831 auto *result = DIExpression::get(Expr->getContext(), NewOps); 1832 assert(result->isValid() && "concatenated expression is not valid"); 1833 return result; 1834 } 1835 1836 DIExpression *DIExpression::appendToStack(const DIExpression *Expr, 1837 ArrayRef<uint64_t> Ops) { 1838 assert(Expr && !Ops.empty() && "Can't append ops to this expression"); 1839 assert(none_of(Ops, 1840 [](uint64_t Op) { 1841 return Op == dwarf::DW_OP_stack_value || 1842 Op == dwarf::DW_OP_LLVM_fragment; 1843 }) && 1844 "Can't append this op"); 1845 1846 // Append a DW_OP_deref after Expr's current op list if it's non-empty and 1847 // has no DW_OP_stack_value. 1848 // 1849 // Match .* DW_OP_stack_value (DW_OP_LLVM_fragment A B)?. 1850 std::optional<FragmentInfo> FI = Expr->getFragmentInfo(); 1851 unsigned DropUntilStackValue = FI ? 3 : 0; 1852 ArrayRef<uint64_t> ExprOpsBeforeFragment = 1853 Expr->getElements().drop_back(DropUntilStackValue); 1854 bool NeedsDeref = (Expr->getNumElements() > DropUntilStackValue) && 1855 (ExprOpsBeforeFragment.back() != dwarf::DW_OP_stack_value); 1856 bool NeedsStackValue = NeedsDeref || ExprOpsBeforeFragment.empty(); 1857 1858 // Append a DW_OP_deref after Expr's current op list if needed, then append 1859 // the new ops, and finally ensure that a single DW_OP_stack_value is present. 1860 SmallVector<uint64_t, 16> NewOps; 1861 if (NeedsDeref) 1862 NewOps.push_back(dwarf::DW_OP_deref); 1863 NewOps.append(Ops.begin(), Ops.end()); 1864 if (NeedsStackValue) 1865 NewOps.push_back(dwarf::DW_OP_stack_value); 1866 return DIExpression::append(Expr, NewOps); 1867 } 1868 1869 std::optional<DIExpression *> DIExpression::createFragmentExpression( 1870 const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits) { 1871 SmallVector<uint64_t, 8> Ops; 1872 // Track whether it's safe to split the value at the top of the DWARF stack, 1873 // assuming that it'll be used as an implicit location value. 1874 bool CanSplitValue = true; 1875 // Copy over the expression, but leave off any trailing DW_OP_LLVM_fragment. 1876 if (Expr) { 1877 for (auto Op : Expr->expr_ops()) { 1878 switch (Op.getOp()) { 1879 default: 1880 break; 1881 case dwarf::DW_OP_shr: 1882 case dwarf::DW_OP_shra: 1883 case dwarf::DW_OP_shl: 1884 case dwarf::DW_OP_plus: 1885 case dwarf::DW_OP_plus_uconst: 1886 case dwarf::DW_OP_minus: 1887 // We can't safely split arithmetic or shift operations into multiple 1888 // fragments because we can't express carry-over between fragments. 1889 // 1890 // FIXME: We *could* preserve the lowest fragment of a constant offset 1891 // operation if the offset fits into SizeInBits. 1892 CanSplitValue = false; 1893 break; 1894 case dwarf::DW_OP_deref: 1895 case dwarf::DW_OP_deref_size: 1896 case dwarf::DW_OP_deref_type: 1897 case dwarf::DW_OP_xderef: 1898 case dwarf::DW_OP_xderef_size: 1899 case dwarf::DW_OP_xderef_type: 1900 // Preceeding arithmetic operations have been applied to compute an 1901 // address. It's okay to split the value loaded from that address. 1902 CanSplitValue = true; 1903 break; 1904 case dwarf::DW_OP_stack_value: 1905 // Bail if this expression computes a value that cannot be split. 1906 if (!CanSplitValue) 1907 return std::nullopt; 1908 break; 1909 case dwarf::DW_OP_LLVM_fragment: { 1910 // Make the new offset point into the existing fragment. 1911 uint64_t FragmentOffsetInBits = Op.getArg(0); 1912 uint64_t FragmentSizeInBits = Op.getArg(1); 1913 (void)FragmentSizeInBits; 1914 assert((OffsetInBits + SizeInBits <= FragmentSizeInBits) && 1915 "new fragment outside of original fragment"); 1916 OffsetInBits += FragmentOffsetInBits; 1917 continue; 1918 } 1919 } 1920 Op.appendToVector(Ops); 1921 } 1922 } 1923 assert((!Expr->isImplicit() || CanSplitValue) && "Expr can't be split"); 1924 assert(Expr && "Unknown DIExpression"); 1925 Ops.push_back(dwarf::DW_OP_LLVM_fragment); 1926 Ops.push_back(OffsetInBits); 1927 Ops.push_back(SizeInBits); 1928 return DIExpression::get(Expr->getContext(), Ops); 1929 } 1930 1931 std::pair<DIExpression *, const ConstantInt *> 1932 DIExpression::constantFold(const ConstantInt *CI) { 1933 // Copy the APInt so we can modify it. 1934 APInt NewInt = CI->getValue(); 1935 SmallVector<uint64_t, 8> Ops; 1936 1937 // Fold operators only at the beginning of the expression. 1938 bool First = true; 1939 bool Changed = false; 1940 for (auto Op : expr_ops()) { 1941 switch (Op.getOp()) { 1942 default: 1943 // We fold only the leading part of the expression; if we get to a part 1944 // that we're going to copy unchanged, and haven't done any folding, 1945 // then the entire expression is unchanged and we can return early. 1946 if (!Changed) 1947 return {this, CI}; 1948 First = false; 1949 break; 1950 case dwarf::DW_OP_LLVM_convert: 1951 if (!First) 1952 break; 1953 Changed = true; 1954 if (Op.getArg(1) == dwarf::DW_ATE_signed) 1955 NewInt = NewInt.sextOrTrunc(Op.getArg(0)); 1956 else { 1957 assert(Op.getArg(1) == dwarf::DW_ATE_unsigned && "Unexpected operand"); 1958 NewInt = NewInt.zextOrTrunc(Op.getArg(0)); 1959 } 1960 continue; 1961 } 1962 Op.appendToVector(Ops); 1963 } 1964 if (!Changed) 1965 return {this, CI}; 1966 return {DIExpression::get(getContext(), Ops), 1967 ConstantInt::get(getContext(), NewInt)}; 1968 } 1969 1970 uint64_t DIExpression::getNumLocationOperands() const { 1971 uint64_t Result = 0; 1972 for (auto ExprOp : expr_ops()) 1973 if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg) 1974 Result = std::max(Result, ExprOp.getArg(0) + 1); 1975 assert(hasAllLocationOps(Result) && 1976 "Expression is missing one or more location operands."); 1977 return Result; 1978 } 1979 1980 std::optional<DIExpression::SignedOrUnsignedConstant> 1981 DIExpression::isConstant() const { 1982 1983 // Recognize signed and unsigned constants. 1984 // An signed constants can be represented as DW_OP_consts C DW_OP_stack_value 1985 // (DW_OP_LLVM_fragment of Len). 1986 // An unsigned constant can be represented as 1987 // DW_OP_constu C DW_OP_stack_value (DW_OP_LLVM_fragment of Len). 1988 1989 if ((getNumElements() != 2 && getNumElements() != 3 && 1990 getNumElements() != 6) || 1991 (getElement(0) != dwarf::DW_OP_consts && 1992 getElement(0) != dwarf::DW_OP_constu)) 1993 return std::nullopt; 1994 1995 if (getNumElements() == 2 && getElement(0) == dwarf::DW_OP_consts) 1996 return SignedOrUnsignedConstant::SignedConstant; 1997 1998 if ((getNumElements() == 3 && getElement(2) != dwarf::DW_OP_stack_value) || 1999 (getNumElements() == 6 && (getElement(2) != dwarf::DW_OP_stack_value || 2000 getElement(3) != dwarf::DW_OP_LLVM_fragment))) 2001 return std::nullopt; 2002 return getElement(0) == dwarf::DW_OP_constu 2003 ? SignedOrUnsignedConstant::UnsignedConstant 2004 : SignedOrUnsignedConstant::SignedConstant; 2005 } 2006 2007 DIExpression::ExtOps DIExpression::getExtOps(unsigned FromSize, unsigned ToSize, 2008 bool Signed) { 2009 dwarf::TypeKind TK = Signed ? dwarf::DW_ATE_signed : dwarf::DW_ATE_unsigned; 2010 DIExpression::ExtOps Ops{{dwarf::DW_OP_LLVM_convert, FromSize, TK, 2011 dwarf::DW_OP_LLVM_convert, ToSize, TK}}; 2012 return Ops; 2013 } 2014 2015 DIExpression *DIExpression::appendExt(const DIExpression *Expr, 2016 unsigned FromSize, unsigned ToSize, 2017 bool Signed) { 2018 return appendToStack(Expr, getExtOps(FromSize, ToSize, Signed)); 2019 } 2020 2021 DIGlobalVariableExpression * 2022 DIGlobalVariableExpression::getImpl(LLVMContext &Context, Metadata *Variable, 2023 Metadata *Expression, StorageType Storage, 2024 bool ShouldCreate) { 2025 DEFINE_GETIMPL_LOOKUP(DIGlobalVariableExpression, (Variable, Expression)); 2026 Metadata *Ops[] = {Variable, Expression}; 2027 DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGlobalVariableExpression, Ops); 2028 } 2029 DIObjCProperty::DIObjCProperty(LLVMContext &C, StorageType Storage, 2030 unsigned Line, unsigned Attributes, 2031 ArrayRef<Metadata *> Ops) 2032 : DINode(C, DIObjCPropertyKind, Storage, dwarf::DW_TAG_APPLE_property, Ops), 2033 Line(Line), Attributes(Attributes) {} 2034 2035 DIObjCProperty *DIObjCProperty::getImpl( 2036 LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line, 2037 MDString *GetterName, MDString *SetterName, unsigned Attributes, 2038 Metadata *Type, StorageType Storage, bool ShouldCreate) { 2039 assert(isCanonical(Name) && "Expected canonical MDString"); 2040 assert(isCanonical(GetterName) && "Expected canonical MDString"); 2041 assert(isCanonical(SetterName) && "Expected canonical MDString"); 2042 DEFINE_GETIMPL_LOOKUP(DIObjCProperty, (Name, File, Line, GetterName, 2043 SetterName, Attributes, Type)); 2044 Metadata *Ops[] = {Name, File, GetterName, SetterName, Type}; 2045 DEFINE_GETIMPL_STORE(DIObjCProperty, (Line, Attributes), Ops); 2046 } 2047 2048 DIImportedEntity *DIImportedEntity::getImpl(LLVMContext &Context, unsigned Tag, 2049 Metadata *Scope, Metadata *Entity, 2050 Metadata *File, unsigned Line, 2051 MDString *Name, Metadata *Elements, 2052 StorageType Storage, 2053 bool ShouldCreate) { 2054 assert(isCanonical(Name) && "Expected canonical MDString"); 2055 DEFINE_GETIMPL_LOOKUP(DIImportedEntity, 2056 (Tag, Scope, Entity, File, Line, Name, Elements)); 2057 Metadata *Ops[] = {Scope, Entity, Name, File, Elements}; 2058 DEFINE_GETIMPL_STORE(DIImportedEntity, (Tag, Line), Ops); 2059 } 2060 2061 DIMacro *DIMacro::getImpl(LLVMContext &Context, unsigned MIType, unsigned Line, 2062 MDString *Name, MDString *Value, StorageType Storage, 2063 bool ShouldCreate) { 2064 assert(isCanonical(Name) && "Expected canonical MDString"); 2065 DEFINE_GETIMPL_LOOKUP(DIMacro, (MIType, Line, Name, Value)); 2066 Metadata *Ops[] = {Name, Value}; 2067 DEFINE_GETIMPL_STORE(DIMacro, (MIType, Line), Ops); 2068 } 2069 2070 DIMacroFile *DIMacroFile::getImpl(LLVMContext &Context, unsigned MIType, 2071 unsigned Line, Metadata *File, 2072 Metadata *Elements, StorageType Storage, 2073 bool ShouldCreate) { 2074 DEFINE_GETIMPL_LOOKUP(DIMacroFile, (MIType, Line, File, Elements)); 2075 Metadata *Ops[] = {File, Elements}; 2076 DEFINE_GETIMPL_STORE(DIMacroFile, (MIType, Line), Ops); 2077 } 2078 2079 DIArgList *DIArgList::getImpl(LLVMContext &Context, 2080 ArrayRef<ValueAsMetadata *> Args, 2081 StorageType Storage, bool ShouldCreate) { 2082 DEFINE_GETIMPL_LOOKUP(DIArgList, (Args)); 2083 DEFINE_GETIMPL_STORE_NO_OPS(DIArgList, (Args)); 2084 } 2085 2086 void DIArgList::handleChangedOperand(void *Ref, Metadata *New) { 2087 ValueAsMetadata **OldVMPtr = static_cast<ValueAsMetadata **>(Ref); 2088 assert((!New || isa<ValueAsMetadata>(New)) && 2089 "DIArgList must be passed a ValueAsMetadata"); 2090 untrack(); 2091 bool Uniq = isUniqued(); 2092 if (Uniq) { 2093 // We need to update the uniqueness once the Args are updated since they 2094 // form the key to the DIArgLists store. 2095 eraseFromStore(); 2096 } 2097 ValueAsMetadata *NewVM = cast_or_null<ValueAsMetadata>(New); 2098 for (ValueAsMetadata *&VM : Args) { 2099 if (&VM == OldVMPtr) { 2100 if (NewVM) 2101 VM = NewVM; 2102 else 2103 VM = ValueAsMetadata::get(PoisonValue::get(VM->getValue()->getType())); 2104 } 2105 } 2106 if (Uniq) { 2107 if (uniquify() != this) 2108 storeDistinctInContext(); 2109 } 2110 track(); 2111 } 2112 void DIArgList::track() { 2113 for (ValueAsMetadata *&VAM : Args) 2114 if (VAM) 2115 MetadataTracking::track(&VAM, *VAM, *this); 2116 } 2117 void DIArgList::untrack() { 2118 for (ValueAsMetadata *&VAM : Args) 2119 if (VAM) 2120 MetadataTracking::untrack(&VAM, *VAM); 2121 } 2122 void DIArgList::dropAllReferences() { 2123 untrack(); 2124 Args.clear(); 2125 MDNode::dropAllReferences(); 2126 } 2127