xref: /freebsd/contrib/llvm-project/llvm/lib/IR/DebugInfoMetadata.cpp (revision 53120fbb68952b7d620c2c0e1cf05c5017fc1b27)
1 //===- DebugInfoMetadata.cpp - Implement debug info metadata --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the debug info Metadata classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/DebugInfoMetadata.h"
14 #include "LLVMContextImpl.h"
15 #include "MetadataImpl.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/BinaryFormat/Dwarf.h"
19 #include "llvm/IR/DebugProgramInstruction.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/IR/Type.h"
23 #include "llvm/IR/Value.h"
24 
25 #include <numeric>
26 #include <optional>
27 
28 using namespace llvm;
29 
30 namespace llvm {
31 // Use FS-AFDO discriminator.
32 cl::opt<bool> EnableFSDiscriminator(
33     "enable-fs-discriminator", cl::Hidden,
34     cl::desc("Enable adding flow sensitive discriminators"));
35 } // namespace llvm
36 
37 const DIExpression::FragmentInfo DebugVariable::DefaultFragment = {
38     std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::min()};
39 
40 DebugVariable::DebugVariable(const DbgVariableIntrinsic *DII)
41     : Variable(DII->getVariable()),
42       Fragment(DII->getExpression()->getFragmentInfo()),
43       InlinedAt(DII->getDebugLoc().getInlinedAt()) {}
44 
45 DebugVariable::DebugVariable(const DPValue *DPV)
46     : Variable(DPV->getVariable()),
47       Fragment(DPV->getExpression()->getFragmentInfo()),
48       InlinedAt(DPV->getDebugLoc().getInlinedAt()) {}
49 
50 DebugVariableAggregate::DebugVariableAggregate(const DbgVariableIntrinsic *DVI)
51     : DebugVariable(DVI->getVariable(), std::nullopt,
52                     DVI->getDebugLoc()->getInlinedAt()) {}
53 
54 DILocation::DILocation(LLVMContext &C, StorageType Storage, unsigned Line,
55                        unsigned Column, ArrayRef<Metadata *> MDs,
56                        bool ImplicitCode)
57     : MDNode(C, DILocationKind, Storage, MDs) {
58   assert((MDs.size() == 1 || MDs.size() == 2) &&
59          "Expected a scope and optional inlined-at");
60 
61   // Set line and column.
62   assert(Column < (1u << 16) && "Expected 16-bit column");
63 
64   SubclassData32 = Line;
65   SubclassData16 = Column;
66 
67   setImplicitCode(ImplicitCode);
68 }
69 
70 static void adjustColumn(unsigned &Column) {
71   // Set to unknown on overflow.  We only have 16 bits to play with here.
72   if (Column >= (1u << 16))
73     Column = 0;
74 }
75 
76 DILocation *DILocation::getImpl(LLVMContext &Context, unsigned Line,
77                                 unsigned Column, Metadata *Scope,
78                                 Metadata *InlinedAt, bool ImplicitCode,
79                                 StorageType Storage, bool ShouldCreate) {
80   // Fixup column.
81   adjustColumn(Column);
82 
83   if (Storage == Uniqued) {
84     if (auto *N = getUniqued(Context.pImpl->DILocations,
85                              DILocationInfo::KeyTy(Line, Column, Scope,
86                                                    InlinedAt, ImplicitCode)))
87       return N;
88     if (!ShouldCreate)
89       return nullptr;
90   } else {
91     assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
92   }
93 
94   SmallVector<Metadata *, 2> Ops;
95   Ops.push_back(Scope);
96   if (InlinedAt)
97     Ops.push_back(InlinedAt);
98   return storeImpl(new (Ops.size(), Storage) DILocation(
99                        Context, Storage, Line, Column, Ops, ImplicitCode),
100                    Storage, Context.pImpl->DILocations);
101 }
102 
103 DILocation *DILocation::getMergedLocations(ArrayRef<DILocation *> Locs) {
104   if (Locs.empty())
105     return nullptr;
106   if (Locs.size() == 1)
107     return Locs[0];
108   auto *Merged = Locs[0];
109   for (DILocation *L : llvm::drop_begin(Locs)) {
110     Merged = getMergedLocation(Merged, L);
111     if (Merged == nullptr)
112       break;
113   }
114   return Merged;
115 }
116 
117 DILocation *DILocation::getMergedLocation(DILocation *LocA, DILocation *LocB) {
118   if (!LocA || !LocB)
119     return nullptr;
120 
121   if (LocA == LocB)
122     return LocA;
123 
124   LLVMContext &C = LocA->getContext();
125 
126   using LocVec = SmallVector<const DILocation *>;
127   LocVec ALocs;
128   LocVec BLocs;
129   SmallDenseMap<std::pair<const DISubprogram *, const DILocation *>, unsigned,
130                 4>
131       ALookup;
132 
133   // Walk through LocA and its inlined-at locations, populate them in ALocs and
134   // save the index for the subprogram and inlined-at pair, which we use to find
135   // a matching starting location in LocB's chain.
136   for (auto [L, I] = std::make_pair(LocA, 0U); L; L = L->getInlinedAt(), I++) {
137     ALocs.push_back(L);
138     auto Res = ALookup.try_emplace(
139         {L->getScope()->getSubprogram(), L->getInlinedAt()}, I);
140     assert(Res.second && "Multiple <SP, InlinedAt> pairs in a location chain?");
141     (void)Res;
142   }
143 
144   LocVec::reverse_iterator ARIt = ALocs.rend();
145   LocVec::reverse_iterator BRIt = BLocs.rend();
146 
147   // Populate BLocs and look for a matching starting location, the first
148   // location with the same subprogram and inlined-at location as in LocA's
149   // chain. Since the two locations have the same inlined-at location we do
150   // not need to look at those parts of the chains.
151   for (auto [L, I] = std::make_pair(LocB, 0U); L; L = L->getInlinedAt(), I++) {
152     BLocs.push_back(L);
153 
154     if (ARIt != ALocs.rend())
155       // We have already found a matching starting location.
156       continue;
157 
158     auto IT = ALookup.find({L->getScope()->getSubprogram(), L->getInlinedAt()});
159     if (IT == ALookup.end())
160       continue;
161 
162     // The + 1 is to account for the &*rev_it = &(it - 1) relationship.
163     ARIt = LocVec::reverse_iterator(ALocs.begin() + IT->second + 1);
164     BRIt = LocVec::reverse_iterator(BLocs.begin() + I + 1);
165 
166     // If we have found a matching starting location we do not need to add more
167     // locations to BLocs, since we will only look at location pairs preceding
168     // the matching starting location, and adding more elements to BLocs could
169     // invalidate the iterator that we initialized here.
170     break;
171   }
172 
173   // Merge the two locations if possible, using the supplied
174   // inlined-at location for the created location.
175   auto MergeLocPair = [&C](const DILocation *L1, const DILocation *L2,
176                            DILocation *InlinedAt) -> DILocation * {
177     if (L1 == L2)
178       return DILocation::get(C, L1->getLine(), L1->getColumn(), L1->getScope(),
179                              InlinedAt);
180 
181     // If the locations originate from different subprograms we can't produce
182     // a common location.
183     if (L1->getScope()->getSubprogram() != L2->getScope()->getSubprogram())
184       return nullptr;
185 
186     // Return the nearest common scope inside a subprogram.
187     auto GetNearestCommonScope = [](DIScope *S1, DIScope *S2) -> DIScope * {
188       SmallPtrSet<DIScope *, 8> Scopes;
189       for (; S1; S1 = S1->getScope()) {
190         Scopes.insert(S1);
191         if (isa<DISubprogram>(S1))
192           break;
193       }
194 
195       for (; S2; S2 = S2->getScope()) {
196         if (Scopes.count(S2))
197           return S2;
198         if (isa<DISubprogram>(S2))
199           break;
200       }
201 
202       return nullptr;
203     };
204 
205     auto Scope = GetNearestCommonScope(L1->getScope(), L2->getScope());
206     assert(Scope && "No common scope in the same subprogram?");
207 
208     bool SameLine = L1->getLine() == L2->getLine();
209     bool SameCol = L1->getColumn() == L2->getColumn();
210     unsigned Line = SameLine ? L1->getLine() : 0;
211     unsigned Col = SameLine && SameCol ? L1->getColumn() : 0;
212 
213     return DILocation::get(C, Line, Col, Scope, InlinedAt);
214   };
215 
216   DILocation *Result = ARIt != ALocs.rend() ? (*ARIt)->getInlinedAt() : nullptr;
217 
218   // If we have found a common starting location, walk up the inlined-at chains
219   // and try to produce common locations.
220   for (; ARIt != ALocs.rend() && BRIt != BLocs.rend(); ++ARIt, ++BRIt) {
221     DILocation *Tmp = MergeLocPair(*ARIt, *BRIt, Result);
222 
223     if (!Tmp)
224       // We have walked up to a point in the chains where the two locations
225       // are irreconsilable. At this point Result contains the nearest common
226       // location in the inlined-at chains of LocA and LocB, so we break here.
227       break;
228 
229     Result = Tmp;
230   }
231 
232   if (Result)
233     return Result;
234 
235   // We ended up with LocA and LocB as irreconsilable locations. Produce a
236   // location at 0:0 with one of the locations' scope. The function has
237   // historically picked A's scope, and a nullptr inlined-at location, so that
238   // behavior is mimicked here but I am not sure if this is always the correct
239   // way to handle this.
240   return DILocation::get(C, 0, 0, LocA->getScope(), nullptr);
241 }
242 
243 std::optional<unsigned>
244 DILocation::encodeDiscriminator(unsigned BD, unsigned DF, unsigned CI) {
245   std::array<unsigned, 3> Components = {BD, DF, CI};
246   uint64_t RemainingWork = 0U;
247   // We use RemainingWork to figure out if we have no remaining components to
248   // encode. For example: if BD != 0 but DF == 0 && CI == 0, we don't need to
249   // encode anything for the latter 2.
250   // Since any of the input components is at most 32 bits, their sum will be
251   // less than 34 bits, and thus RemainingWork won't overflow.
252   RemainingWork =
253       std::accumulate(Components.begin(), Components.end(), RemainingWork);
254 
255   int I = 0;
256   unsigned Ret = 0;
257   unsigned NextBitInsertionIndex = 0;
258   while (RemainingWork > 0) {
259     unsigned C = Components[I++];
260     RemainingWork -= C;
261     unsigned EC = encodeComponent(C);
262     Ret |= (EC << NextBitInsertionIndex);
263     NextBitInsertionIndex += encodingBits(C);
264   }
265 
266   // Encoding may be unsuccessful because of overflow. We determine success by
267   // checking equivalence of components before & after encoding. Alternatively,
268   // we could determine Success during encoding, but the current alternative is
269   // simpler.
270   unsigned TBD, TDF, TCI = 0;
271   decodeDiscriminator(Ret, TBD, TDF, TCI);
272   if (TBD == BD && TDF == DF && TCI == CI)
273     return Ret;
274   return std::nullopt;
275 }
276 
277 void DILocation::decodeDiscriminator(unsigned D, unsigned &BD, unsigned &DF,
278                                      unsigned &CI) {
279   BD = getUnsignedFromPrefixEncoding(D);
280   DF = getUnsignedFromPrefixEncoding(getNextComponentInDiscriminator(D));
281   CI = getUnsignedFromPrefixEncoding(
282       getNextComponentInDiscriminator(getNextComponentInDiscriminator(D)));
283 }
284 dwarf::Tag DINode::getTag() const { return (dwarf::Tag)SubclassData16; }
285 
286 DINode::DIFlags DINode::getFlag(StringRef Flag) {
287   return StringSwitch<DIFlags>(Flag)
288 #define HANDLE_DI_FLAG(ID, NAME) .Case("DIFlag" #NAME, Flag##NAME)
289 #include "llvm/IR/DebugInfoFlags.def"
290       .Default(DINode::FlagZero);
291 }
292 
293 StringRef DINode::getFlagString(DIFlags Flag) {
294   switch (Flag) {
295 #define HANDLE_DI_FLAG(ID, NAME)                                               \
296   case Flag##NAME:                                                             \
297     return "DIFlag" #NAME;
298 #include "llvm/IR/DebugInfoFlags.def"
299   }
300   return "";
301 }
302 
303 DINode::DIFlags DINode::splitFlags(DIFlags Flags,
304                                    SmallVectorImpl<DIFlags> &SplitFlags) {
305   // Flags that are packed together need to be specially handled, so
306   // that, for example, we emit "DIFlagPublic" and not
307   // "DIFlagPrivate | DIFlagProtected".
308   if (DIFlags A = Flags & FlagAccessibility) {
309     if (A == FlagPrivate)
310       SplitFlags.push_back(FlagPrivate);
311     else if (A == FlagProtected)
312       SplitFlags.push_back(FlagProtected);
313     else
314       SplitFlags.push_back(FlagPublic);
315     Flags &= ~A;
316   }
317   if (DIFlags R = Flags & FlagPtrToMemberRep) {
318     if (R == FlagSingleInheritance)
319       SplitFlags.push_back(FlagSingleInheritance);
320     else if (R == FlagMultipleInheritance)
321       SplitFlags.push_back(FlagMultipleInheritance);
322     else
323       SplitFlags.push_back(FlagVirtualInheritance);
324     Flags &= ~R;
325   }
326   if ((Flags & FlagIndirectVirtualBase) == FlagIndirectVirtualBase) {
327     Flags &= ~FlagIndirectVirtualBase;
328     SplitFlags.push_back(FlagIndirectVirtualBase);
329   }
330 
331 #define HANDLE_DI_FLAG(ID, NAME)                                               \
332   if (DIFlags Bit = Flags & Flag##NAME) {                                      \
333     SplitFlags.push_back(Bit);                                                 \
334     Flags &= ~Bit;                                                             \
335   }
336 #include "llvm/IR/DebugInfoFlags.def"
337   return Flags;
338 }
339 
340 DIScope *DIScope::getScope() const {
341   if (auto *T = dyn_cast<DIType>(this))
342     return T->getScope();
343 
344   if (auto *SP = dyn_cast<DISubprogram>(this))
345     return SP->getScope();
346 
347   if (auto *LB = dyn_cast<DILexicalBlockBase>(this))
348     return LB->getScope();
349 
350   if (auto *NS = dyn_cast<DINamespace>(this))
351     return NS->getScope();
352 
353   if (auto *CB = dyn_cast<DICommonBlock>(this))
354     return CB->getScope();
355 
356   if (auto *M = dyn_cast<DIModule>(this))
357     return M->getScope();
358 
359   assert((isa<DIFile>(this) || isa<DICompileUnit>(this)) &&
360          "Unhandled type of scope.");
361   return nullptr;
362 }
363 
364 StringRef DIScope::getName() const {
365   if (auto *T = dyn_cast<DIType>(this))
366     return T->getName();
367   if (auto *SP = dyn_cast<DISubprogram>(this))
368     return SP->getName();
369   if (auto *NS = dyn_cast<DINamespace>(this))
370     return NS->getName();
371   if (auto *CB = dyn_cast<DICommonBlock>(this))
372     return CB->getName();
373   if (auto *M = dyn_cast<DIModule>(this))
374     return M->getName();
375   assert((isa<DILexicalBlockBase>(this) || isa<DIFile>(this) ||
376           isa<DICompileUnit>(this)) &&
377          "Unhandled type of scope.");
378   return "";
379 }
380 
381 #ifndef NDEBUG
382 static bool isCanonical(const MDString *S) {
383   return !S || !S->getString().empty();
384 }
385 #endif
386 
387 dwarf::Tag GenericDINode::getTag() const { return (dwarf::Tag)SubclassData16; }
388 GenericDINode *GenericDINode::getImpl(LLVMContext &Context, unsigned Tag,
389                                       MDString *Header,
390                                       ArrayRef<Metadata *> DwarfOps,
391                                       StorageType Storage, bool ShouldCreate) {
392   unsigned Hash = 0;
393   if (Storage == Uniqued) {
394     GenericDINodeInfo::KeyTy Key(Tag, Header, DwarfOps);
395     if (auto *N = getUniqued(Context.pImpl->GenericDINodes, Key))
396       return N;
397     if (!ShouldCreate)
398       return nullptr;
399     Hash = Key.getHash();
400   } else {
401     assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
402   }
403 
404   // Use a nullptr for empty headers.
405   assert(isCanonical(Header) && "Expected canonical MDString");
406   Metadata *PreOps[] = {Header};
407   return storeImpl(new (DwarfOps.size() + 1, Storage) GenericDINode(
408                        Context, Storage, Hash, Tag, PreOps, DwarfOps),
409                    Storage, Context.pImpl->GenericDINodes);
410 }
411 
412 void GenericDINode::recalculateHash() {
413   setHash(GenericDINodeInfo::KeyTy::calculateHash(this));
414 }
415 
416 #define UNWRAP_ARGS_IMPL(...) __VA_ARGS__
417 #define UNWRAP_ARGS(ARGS) UNWRAP_ARGS_IMPL ARGS
418 #define DEFINE_GETIMPL_LOOKUP(CLASS, ARGS)                                     \
419   do {                                                                         \
420     if (Storage == Uniqued) {                                                  \
421       if (auto *N = getUniqued(Context.pImpl->CLASS##s,                        \
422                                CLASS##Info::KeyTy(UNWRAP_ARGS(ARGS))))         \
423         return N;                                                              \
424       if (!ShouldCreate)                                                       \
425         return nullptr;                                                        \
426     } else {                                                                   \
427       assert(ShouldCreate &&                                                   \
428              "Expected non-uniqued nodes to always be created");               \
429     }                                                                          \
430   } while (false)
431 #define DEFINE_GETIMPL_STORE(CLASS, ARGS, OPS)                                 \
432   return storeImpl(new (std::size(OPS), Storage)                               \
433                        CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS),        \
434                    Storage, Context.pImpl->CLASS##s)
435 #define DEFINE_GETIMPL_STORE_NO_OPS(CLASS, ARGS)                               \
436   return storeImpl(new (0u, Storage)                                           \
437                        CLASS(Context, Storage, UNWRAP_ARGS(ARGS)),             \
438                    Storage, Context.pImpl->CLASS##s)
439 #define DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(CLASS, OPS)                   \
440   return storeImpl(new (std::size(OPS), Storage) CLASS(Context, Storage, OPS), \
441                    Storage, Context.pImpl->CLASS##s)
442 #define DEFINE_GETIMPL_STORE_N(CLASS, ARGS, OPS, NUM_OPS)                      \
443   return storeImpl(new (NUM_OPS, Storage)                                      \
444                        CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS),        \
445                    Storage, Context.pImpl->CLASS##s)
446 
447 DISubrange::DISubrange(LLVMContext &C, StorageType Storage,
448                        ArrayRef<Metadata *> Ops)
449     : DINode(C, DISubrangeKind, Storage, dwarf::DW_TAG_subrange_type, Ops) {}
450 DISubrange *DISubrange::getImpl(LLVMContext &Context, int64_t Count, int64_t Lo,
451                                 StorageType Storage, bool ShouldCreate) {
452   auto *CountNode = ConstantAsMetadata::get(
453       ConstantInt::getSigned(Type::getInt64Ty(Context), Count));
454   auto *LB = ConstantAsMetadata::get(
455       ConstantInt::getSigned(Type::getInt64Ty(Context), Lo));
456   return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage,
457                  ShouldCreate);
458 }
459 
460 DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
461                                 int64_t Lo, StorageType Storage,
462                                 bool ShouldCreate) {
463   auto *LB = ConstantAsMetadata::get(
464       ConstantInt::getSigned(Type::getInt64Ty(Context), Lo));
465   return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage,
466                  ShouldCreate);
467 }
468 
469 DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
470                                 Metadata *LB, Metadata *UB, Metadata *Stride,
471                                 StorageType Storage, bool ShouldCreate) {
472   DEFINE_GETIMPL_LOOKUP(DISubrange, (CountNode, LB, UB, Stride));
473   Metadata *Ops[] = {CountNode, LB, UB, Stride};
474   DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DISubrange, Ops);
475 }
476 
477 DISubrange::BoundType DISubrange::getCount() const {
478   Metadata *CB = getRawCountNode();
479   if (!CB)
480     return BoundType();
481 
482   assert((isa<ConstantAsMetadata>(CB) || isa<DIVariable>(CB) ||
483           isa<DIExpression>(CB)) &&
484          "Count must be signed constant or DIVariable or DIExpression");
485 
486   if (auto *MD = dyn_cast<ConstantAsMetadata>(CB))
487     return BoundType(cast<ConstantInt>(MD->getValue()));
488 
489   if (auto *MD = dyn_cast<DIVariable>(CB))
490     return BoundType(MD);
491 
492   if (auto *MD = dyn_cast<DIExpression>(CB))
493     return BoundType(MD);
494 
495   return BoundType();
496 }
497 
498 DISubrange::BoundType DISubrange::getLowerBound() const {
499   Metadata *LB = getRawLowerBound();
500   if (!LB)
501     return BoundType();
502 
503   assert((isa<ConstantAsMetadata>(LB) || isa<DIVariable>(LB) ||
504           isa<DIExpression>(LB)) &&
505          "LowerBound must be signed constant or DIVariable or DIExpression");
506 
507   if (auto *MD = dyn_cast<ConstantAsMetadata>(LB))
508     return BoundType(cast<ConstantInt>(MD->getValue()));
509 
510   if (auto *MD = dyn_cast<DIVariable>(LB))
511     return BoundType(MD);
512 
513   if (auto *MD = dyn_cast<DIExpression>(LB))
514     return BoundType(MD);
515 
516   return BoundType();
517 }
518 
519 DISubrange::BoundType DISubrange::getUpperBound() const {
520   Metadata *UB = getRawUpperBound();
521   if (!UB)
522     return BoundType();
523 
524   assert((isa<ConstantAsMetadata>(UB) || isa<DIVariable>(UB) ||
525           isa<DIExpression>(UB)) &&
526          "UpperBound must be signed constant or DIVariable or DIExpression");
527 
528   if (auto *MD = dyn_cast<ConstantAsMetadata>(UB))
529     return BoundType(cast<ConstantInt>(MD->getValue()));
530 
531   if (auto *MD = dyn_cast<DIVariable>(UB))
532     return BoundType(MD);
533 
534   if (auto *MD = dyn_cast<DIExpression>(UB))
535     return BoundType(MD);
536 
537   return BoundType();
538 }
539 
540 DISubrange::BoundType DISubrange::getStride() const {
541   Metadata *ST = getRawStride();
542   if (!ST)
543     return BoundType();
544 
545   assert((isa<ConstantAsMetadata>(ST) || isa<DIVariable>(ST) ||
546           isa<DIExpression>(ST)) &&
547          "Stride must be signed constant or DIVariable or DIExpression");
548 
549   if (auto *MD = dyn_cast<ConstantAsMetadata>(ST))
550     return BoundType(cast<ConstantInt>(MD->getValue()));
551 
552   if (auto *MD = dyn_cast<DIVariable>(ST))
553     return BoundType(MD);
554 
555   if (auto *MD = dyn_cast<DIExpression>(ST))
556     return BoundType(MD);
557 
558   return BoundType();
559 }
560 DIGenericSubrange::DIGenericSubrange(LLVMContext &C, StorageType Storage,
561                                      ArrayRef<Metadata *> Ops)
562     : DINode(C, DIGenericSubrangeKind, Storage, dwarf::DW_TAG_generic_subrange,
563              Ops) {}
564 
565 DIGenericSubrange *DIGenericSubrange::getImpl(LLVMContext &Context,
566                                               Metadata *CountNode, Metadata *LB,
567                                               Metadata *UB, Metadata *Stride,
568                                               StorageType Storage,
569                                               bool ShouldCreate) {
570   DEFINE_GETIMPL_LOOKUP(DIGenericSubrange, (CountNode, LB, UB, Stride));
571   Metadata *Ops[] = {CountNode, LB, UB, Stride};
572   DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGenericSubrange, Ops);
573 }
574 
575 DIGenericSubrange::BoundType DIGenericSubrange::getCount() const {
576   Metadata *CB = getRawCountNode();
577   if (!CB)
578     return BoundType();
579 
580   assert((isa<DIVariable>(CB) || isa<DIExpression>(CB)) &&
581          "Count must be signed constant or DIVariable or DIExpression");
582 
583   if (auto *MD = dyn_cast<DIVariable>(CB))
584     return BoundType(MD);
585 
586   if (auto *MD = dyn_cast<DIExpression>(CB))
587     return BoundType(MD);
588 
589   return BoundType();
590 }
591 
592 DIGenericSubrange::BoundType DIGenericSubrange::getLowerBound() const {
593   Metadata *LB = getRawLowerBound();
594   if (!LB)
595     return BoundType();
596 
597   assert((isa<DIVariable>(LB) || isa<DIExpression>(LB)) &&
598          "LowerBound must be signed constant or DIVariable or DIExpression");
599 
600   if (auto *MD = dyn_cast<DIVariable>(LB))
601     return BoundType(MD);
602 
603   if (auto *MD = dyn_cast<DIExpression>(LB))
604     return BoundType(MD);
605 
606   return BoundType();
607 }
608 
609 DIGenericSubrange::BoundType DIGenericSubrange::getUpperBound() const {
610   Metadata *UB = getRawUpperBound();
611   if (!UB)
612     return BoundType();
613 
614   assert((isa<DIVariable>(UB) || isa<DIExpression>(UB)) &&
615          "UpperBound must be signed constant or DIVariable or DIExpression");
616 
617   if (auto *MD = dyn_cast<DIVariable>(UB))
618     return BoundType(MD);
619 
620   if (auto *MD = dyn_cast<DIExpression>(UB))
621     return BoundType(MD);
622 
623   return BoundType();
624 }
625 
626 DIGenericSubrange::BoundType DIGenericSubrange::getStride() const {
627   Metadata *ST = getRawStride();
628   if (!ST)
629     return BoundType();
630 
631   assert((isa<DIVariable>(ST) || isa<DIExpression>(ST)) &&
632          "Stride must be signed constant or DIVariable or DIExpression");
633 
634   if (auto *MD = dyn_cast<DIVariable>(ST))
635     return BoundType(MD);
636 
637   if (auto *MD = dyn_cast<DIExpression>(ST))
638     return BoundType(MD);
639 
640   return BoundType();
641 }
642 
643 DIEnumerator::DIEnumerator(LLVMContext &C, StorageType Storage,
644                            const APInt &Value, bool IsUnsigned,
645                            ArrayRef<Metadata *> Ops)
646     : DINode(C, DIEnumeratorKind, Storage, dwarf::DW_TAG_enumerator, Ops),
647       Value(Value) {
648   SubclassData32 = IsUnsigned;
649 }
650 DIEnumerator *DIEnumerator::getImpl(LLVMContext &Context, const APInt &Value,
651                                     bool IsUnsigned, MDString *Name,
652                                     StorageType Storage, bool ShouldCreate) {
653   assert(isCanonical(Name) && "Expected canonical MDString");
654   DEFINE_GETIMPL_LOOKUP(DIEnumerator, (Value, IsUnsigned, Name));
655   Metadata *Ops[] = {Name};
656   DEFINE_GETIMPL_STORE(DIEnumerator, (Value, IsUnsigned), Ops);
657 }
658 
659 DIBasicType *DIBasicType::getImpl(LLVMContext &Context, unsigned Tag,
660                                   MDString *Name, uint64_t SizeInBits,
661                                   uint32_t AlignInBits, unsigned Encoding,
662                                   DIFlags Flags, StorageType Storage,
663                                   bool ShouldCreate) {
664   assert(isCanonical(Name) && "Expected canonical MDString");
665   DEFINE_GETIMPL_LOOKUP(DIBasicType,
666                         (Tag, Name, SizeInBits, AlignInBits, Encoding, Flags));
667   Metadata *Ops[] = {nullptr, nullptr, Name};
668   DEFINE_GETIMPL_STORE(DIBasicType,
669                        (Tag, SizeInBits, AlignInBits, Encoding, Flags), Ops);
670 }
671 
672 std::optional<DIBasicType::Signedness> DIBasicType::getSignedness() const {
673   switch (getEncoding()) {
674   case dwarf::DW_ATE_signed:
675   case dwarf::DW_ATE_signed_char:
676     return Signedness::Signed;
677   case dwarf::DW_ATE_unsigned:
678   case dwarf::DW_ATE_unsigned_char:
679     return Signedness::Unsigned;
680   default:
681     return std::nullopt;
682   }
683 }
684 
685 DIStringType *DIStringType::getImpl(LLVMContext &Context, unsigned Tag,
686                                     MDString *Name, Metadata *StringLength,
687                                     Metadata *StringLengthExp,
688                                     Metadata *StringLocationExp,
689                                     uint64_t SizeInBits, uint32_t AlignInBits,
690                                     unsigned Encoding, StorageType Storage,
691                                     bool ShouldCreate) {
692   assert(isCanonical(Name) && "Expected canonical MDString");
693   DEFINE_GETIMPL_LOOKUP(DIStringType,
694                         (Tag, Name, StringLength, StringLengthExp,
695                          StringLocationExp, SizeInBits, AlignInBits, Encoding));
696   Metadata *Ops[] = {nullptr,      nullptr,         Name,
697                      StringLength, StringLengthExp, StringLocationExp};
698   DEFINE_GETIMPL_STORE(DIStringType, (Tag, SizeInBits, AlignInBits, Encoding),
699                        Ops);
700 }
701 DIType *DIDerivedType::getClassType() const {
702   assert(getTag() == dwarf::DW_TAG_ptr_to_member_type);
703   return cast_or_null<DIType>(getExtraData());
704 }
705 uint32_t DIDerivedType::getVBPtrOffset() const {
706   assert(getTag() == dwarf::DW_TAG_inheritance);
707   if (auto *CM = cast_or_null<ConstantAsMetadata>(getExtraData()))
708     if (auto *CI = dyn_cast_or_null<ConstantInt>(CM->getValue()))
709       return static_cast<uint32_t>(CI->getZExtValue());
710   return 0;
711 }
712 Constant *DIDerivedType::getStorageOffsetInBits() const {
713   assert(getTag() == dwarf::DW_TAG_member && isBitField());
714   if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData()))
715     return C->getValue();
716   return nullptr;
717 }
718 
719 Constant *DIDerivedType::getConstant() const {
720   assert((getTag() == dwarf::DW_TAG_member ||
721           getTag() == dwarf::DW_TAG_variable) &&
722          isStaticMember());
723   if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData()))
724     return C->getValue();
725   return nullptr;
726 }
727 Constant *DIDerivedType::getDiscriminantValue() const {
728   assert(getTag() == dwarf::DW_TAG_member && !isStaticMember());
729   if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData()))
730     return C->getValue();
731   return nullptr;
732 }
733 
734 DIDerivedType *
735 DIDerivedType::getImpl(LLVMContext &Context, unsigned Tag, MDString *Name,
736                        Metadata *File, unsigned Line, Metadata *Scope,
737                        Metadata *BaseType, uint64_t SizeInBits,
738                        uint32_t AlignInBits, uint64_t OffsetInBits,
739                        std::optional<unsigned> DWARFAddressSpace, DIFlags Flags,
740                        Metadata *ExtraData, Metadata *Annotations,
741                        StorageType Storage, bool ShouldCreate) {
742   assert(isCanonical(Name) && "Expected canonical MDString");
743   DEFINE_GETIMPL_LOOKUP(DIDerivedType,
744                         (Tag, Name, File, Line, Scope, BaseType, SizeInBits,
745                          AlignInBits, OffsetInBits, DWARFAddressSpace, Flags,
746                          ExtraData, Annotations));
747   Metadata *Ops[] = {File, Scope, Name, BaseType, ExtraData, Annotations};
748   DEFINE_GETIMPL_STORE(DIDerivedType,
749                        (Tag, Line, SizeInBits, AlignInBits, OffsetInBits,
750                         DWARFAddressSpace, Flags),
751                        Ops);
752 }
753 
754 DICompositeType *DICompositeType::getImpl(
755     LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File,
756     unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits,
757     uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags,
758     Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder,
759     Metadata *TemplateParams, MDString *Identifier, Metadata *Discriminator,
760     Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
761     Metadata *Rank, Metadata *Annotations, StorageType Storage,
762     bool ShouldCreate) {
763   assert(isCanonical(Name) && "Expected canonical MDString");
764 
765   // Keep this in sync with buildODRType.
766   DEFINE_GETIMPL_LOOKUP(DICompositeType,
767                         (Tag, Name, File, Line, Scope, BaseType, SizeInBits,
768                          AlignInBits, OffsetInBits, Flags, Elements,
769                          RuntimeLang, VTableHolder, TemplateParams, Identifier,
770                          Discriminator, DataLocation, Associated, Allocated,
771                          Rank, Annotations));
772   Metadata *Ops[] = {File,          Scope,        Name,           BaseType,
773                      Elements,      VTableHolder, TemplateParams, Identifier,
774                      Discriminator, DataLocation, Associated,     Allocated,
775                      Rank,          Annotations};
776   DEFINE_GETIMPL_STORE(
777       DICompositeType,
778       (Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits, Flags),
779       Ops);
780 }
781 
782 DICompositeType *DICompositeType::buildODRType(
783     LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
784     Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType,
785     uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits,
786     DIFlags Flags, Metadata *Elements, unsigned RuntimeLang,
787     Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator,
788     Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
789     Metadata *Rank, Metadata *Annotations) {
790   assert(!Identifier.getString().empty() && "Expected valid identifier");
791   if (!Context.isODRUniquingDebugTypes())
792     return nullptr;
793   auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
794   if (!CT)
795     return CT = DICompositeType::getDistinct(
796                Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
797                AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
798                VTableHolder, TemplateParams, &Identifier, Discriminator,
799                DataLocation, Associated, Allocated, Rank, Annotations);
800 
801   if (CT->getTag() != Tag)
802     return nullptr;
803 
804   // Only mutate CT if it's a forward declaration and the new operands aren't.
805   assert(CT->getRawIdentifier() == &Identifier && "Wrong ODR identifier?");
806   if (!CT->isForwardDecl() || (Flags & DINode::FlagFwdDecl))
807     return CT;
808 
809   // Mutate CT in place.  Keep this in sync with getImpl.
810   CT->mutate(Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits,
811              Flags);
812   Metadata *Ops[] = {File,          Scope,        Name,           BaseType,
813                      Elements,      VTableHolder, TemplateParams, &Identifier,
814                      Discriminator, DataLocation, Associated,     Allocated,
815                      Rank,          Annotations};
816   assert((std::end(Ops) - std::begin(Ops)) == (int)CT->getNumOperands() &&
817          "Mismatched number of operands");
818   for (unsigned I = 0, E = CT->getNumOperands(); I != E; ++I)
819     if (Ops[I] != CT->getOperand(I))
820       CT->setOperand(I, Ops[I]);
821   return CT;
822 }
823 
824 DICompositeType *DICompositeType::getODRType(
825     LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
826     Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType,
827     uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits,
828     DIFlags Flags, Metadata *Elements, unsigned RuntimeLang,
829     Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator,
830     Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
831     Metadata *Rank, Metadata *Annotations) {
832   assert(!Identifier.getString().empty() && "Expected valid identifier");
833   if (!Context.isODRUniquingDebugTypes())
834     return nullptr;
835   auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
836   if (!CT) {
837     CT = DICompositeType::getDistinct(
838         Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
839         AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder,
840         TemplateParams, &Identifier, Discriminator, DataLocation, Associated,
841         Allocated, Rank, Annotations);
842   } else {
843     if (CT->getTag() != Tag)
844       return nullptr;
845   }
846   return CT;
847 }
848 
849 DICompositeType *DICompositeType::getODRTypeIfExists(LLVMContext &Context,
850                                                      MDString &Identifier) {
851   assert(!Identifier.getString().empty() && "Expected valid identifier");
852   if (!Context.isODRUniquingDebugTypes())
853     return nullptr;
854   return Context.pImpl->DITypeMap->lookup(&Identifier);
855 }
856 DISubroutineType::DISubroutineType(LLVMContext &C, StorageType Storage,
857                                    DIFlags Flags, uint8_t CC,
858                                    ArrayRef<Metadata *> Ops)
859     : DIType(C, DISubroutineTypeKind, Storage, dwarf::DW_TAG_subroutine_type, 0,
860              0, 0, 0, Flags, Ops),
861       CC(CC) {}
862 
863 DISubroutineType *DISubroutineType::getImpl(LLVMContext &Context, DIFlags Flags,
864                                             uint8_t CC, Metadata *TypeArray,
865                                             StorageType Storage,
866                                             bool ShouldCreate) {
867   DEFINE_GETIMPL_LOOKUP(DISubroutineType, (Flags, CC, TypeArray));
868   Metadata *Ops[] = {nullptr, nullptr, nullptr, TypeArray};
869   DEFINE_GETIMPL_STORE(DISubroutineType, (Flags, CC), Ops);
870 }
871 
872 DIFile::DIFile(LLVMContext &C, StorageType Storage,
873                std::optional<ChecksumInfo<MDString *>> CS, MDString *Src,
874                ArrayRef<Metadata *> Ops)
875     : DIScope(C, DIFileKind, Storage, dwarf::DW_TAG_file_type, Ops),
876       Checksum(CS), Source(Src) {}
877 
878 // FIXME: Implement this string-enum correspondence with a .def file and macros,
879 // so that the association is explicit rather than implied.
880 static const char *ChecksumKindName[DIFile::CSK_Last] = {
881     "CSK_MD5",
882     "CSK_SHA1",
883     "CSK_SHA256",
884 };
885 
886 StringRef DIFile::getChecksumKindAsString(ChecksumKind CSKind) {
887   assert(CSKind <= DIFile::CSK_Last && "Invalid checksum kind");
888   // The first space was originally the CSK_None variant, which is now
889   // obsolete, but the space is still reserved in ChecksumKind, so we account
890   // for it here.
891   return ChecksumKindName[CSKind - 1];
892 }
893 
894 std::optional<DIFile::ChecksumKind>
895 DIFile::getChecksumKind(StringRef CSKindStr) {
896   return StringSwitch<std::optional<DIFile::ChecksumKind>>(CSKindStr)
897       .Case("CSK_MD5", DIFile::CSK_MD5)
898       .Case("CSK_SHA1", DIFile::CSK_SHA1)
899       .Case("CSK_SHA256", DIFile::CSK_SHA256)
900       .Default(std::nullopt);
901 }
902 
903 DIFile *DIFile::getImpl(LLVMContext &Context, MDString *Filename,
904                         MDString *Directory,
905                         std::optional<DIFile::ChecksumInfo<MDString *>> CS,
906                         MDString *Source, StorageType Storage,
907                         bool ShouldCreate) {
908   assert(isCanonical(Filename) && "Expected canonical MDString");
909   assert(isCanonical(Directory) && "Expected canonical MDString");
910   assert((!CS || isCanonical(CS->Value)) && "Expected canonical MDString");
911   // We do *NOT* expect Source to be a canonical MDString because nullptr
912   // means none, so we need something to represent the empty file.
913   DEFINE_GETIMPL_LOOKUP(DIFile, (Filename, Directory, CS, Source));
914   Metadata *Ops[] = {Filename, Directory, CS ? CS->Value : nullptr, Source};
915   DEFINE_GETIMPL_STORE(DIFile, (CS, Source), Ops);
916 }
917 DICompileUnit::DICompileUnit(LLVMContext &C, StorageType Storage,
918                              unsigned SourceLanguage, bool IsOptimized,
919                              unsigned RuntimeVersion, unsigned EmissionKind,
920                              uint64_t DWOId, bool SplitDebugInlining,
921                              bool DebugInfoForProfiling, unsigned NameTableKind,
922                              bool RangesBaseAddress, ArrayRef<Metadata *> Ops)
923     : DIScope(C, DICompileUnitKind, Storage, dwarf::DW_TAG_compile_unit, Ops),
924       SourceLanguage(SourceLanguage), RuntimeVersion(RuntimeVersion),
925       DWOId(DWOId), EmissionKind(EmissionKind), NameTableKind(NameTableKind),
926       IsOptimized(IsOptimized), SplitDebugInlining(SplitDebugInlining),
927       DebugInfoForProfiling(DebugInfoForProfiling),
928       RangesBaseAddress(RangesBaseAddress) {
929   assert(Storage != Uniqued);
930 }
931 
932 DICompileUnit *DICompileUnit::getImpl(
933     LLVMContext &Context, unsigned SourceLanguage, Metadata *File,
934     MDString *Producer, bool IsOptimized, MDString *Flags,
935     unsigned RuntimeVersion, MDString *SplitDebugFilename,
936     unsigned EmissionKind, Metadata *EnumTypes, Metadata *RetainedTypes,
937     Metadata *GlobalVariables, Metadata *ImportedEntities, Metadata *Macros,
938     uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling,
939     unsigned NameTableKind, bool RangesBaseAddress, MDString *SysRoot,
940     MDString *SDK, StorageType Storage, bool ShouldCreate) {
941   assert(Storage != Uniqued && "Cannot unique DICompileUnit");
942   assert(isCanonical(Producer) && "Expected canonical MDString");
943   assert(isCanonical(Flags) && "Expected canonical MDString");
944   assert(isCanonical(SplitDebugFilename) && "Expected canonical MDString");
945 
946   Metadata *Ops[] = {File,
947                      Producer,
948                      Flags,
949                      SplitDebugFilename,
950                      EnumTypes,
951                      RetainedTypes,
952                      GlobalVariables,
953                      ImportedEntities,
954                      Macros,
955                      SysRoot,
956                      SDK};
957   return storeImpl(new (std::size(Ops), Storage) DICompileUnit(
958                        Context, Storage, SourceLanguage, IsOptimized,
959                        RuntimeVersion, EmissionKind, DWOId, SplitDebugInlining,
960                        DebugInfoForProfiling, NameTableKind, RangesBaseAddress,
961                        Ops),
962                    Storage);
963 }
964 
965 std::optional<DICompileUnit::DebugEmissionKind>
966 DICompileUnit::getEmissionKind(StringRef Str) {
967   return StringSwitch<std::optional<DebugEmissionKind>>(Str)
968       .Case("NoDebug", NoDebug)
969       .Case("FullDebug", FullDebug)
970       .Case("LineTablesOnly", LineTablesOnly)
971       .Case("DebugDirectivesOnly", DebugDirectivesOnly)
972       .Default(std::nullopt);
973 }
974 
975 std::optional<DICompileUnit::DebugNameTableKind>
976 DICompileUnit::getNameTableKind(StringRef Str) {
977   return StringSwitch<std::optional<DebugNameTableKind>>(Str)
978       .Case("Default", DebugNameTableKind::Default)
979       .Case("GNU", DebugNameTableKind::GNU)
980       .Case("Apple", DebugNameTableKind::Apple)
981       .Case("None", DebugNameTableKind::None)
982       .Default(std::nullopt);
983 }
984 
985 const char *DICompileUnit::emissionKindString(DebugEmissionKind EK) {
986   switch (EK) {
987   case NoDebug:
988     return "NoDebug";
989   case FullDebug:
990     return "FullDebug";
991   case LineTablesOnly:
992     return "LineTablesOnly";
993   case DebugDirectivesOnly:
994     return "DebugDirectivesOnly";
995   }
996   return nullptr;
997 }
998 
999 const char *DICompileUnit::nameTableKindString(DebugNameTableKind NTK) {
1000   switch (NTK) {
1001   case DebugNameTableKind::Default:
1002     return nullptr;
1003   case DebugNameTableKind::GNU:
1004     return "GNU";
1005   case DebugNameTableKind::Apple:
1006     return "Apple";
1007   case DebugNameTableKind::None:
1008     return "None";
1009   }
1010   return nullptr;
1011 }
1012 DISubprogram::DISubprogram(LLVMContext &C, StorageType Storage, unsigned Line,
1013                            unsigned ScopeLine, unsigned VirtualIndex,
1014                            int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags,
1015                            ArrayRef<Metadata *> Ops)
1016     : DILocalScope(C, DISubprogramKind, Storage, dwarf::DW_TAG_subprogram, Ops),
1017       Line(Line), ScopeLine(ScopeLine), VirtualIndex(VirtualIndex),
1018       ThisAdjustment(ThisAdjustment), Flags(Flags), SPFlags(SPFlags) {
1019   static_assert(dwarf::DW_VIRTUALITY_max < 4, "Virtuality out of range");
1020 }
1021 DISubprogram::DISPFlags
1022 DISubprogram::toSPFlags(bool IsLocalToUnit, bool IsDefinition, bool IsOptimized,
1023                         unsigned Virtuality, bool IsMainSubprogram) {
1024   // We're assuming virtuality is the low-order field.
1025   static_assert(int(SPFlagVirtual) == int(dwarf::DW_VIRTUALITY_virtual) &&
1026                     int(SPFlagPureVirtual) ==
1027                         int(dwarf::DW_VIRTUALITY_pure_virtual),
1028                 "Virtuality constant mismatch");
1029   return static_cast<DISPFlags>(
1030       (Virtuality & SPFlagVirtuality) |
1031       (IsLocalToUnit ? SPFlagLocalToUnit : SPFlagZero) |
1032       (IsDefinition ? SPFlagDefinition : SPFlagZero) |
1033       (IsOptimized ? SPFlagOptimized : SPFlagZero) |
1034       (IsMainSubprogram ? SPFlagMainSubprogram : SPFlagZero));
1035 }
1036 
1037 DISubprogram *DILocalScope::getSubprogram() const {
1038   if (auto *Block = dyn_cast<DILexicalBlockBase>(this))
1039     return Block->getScope()->getSubprogram();
1040   return const_cast<DISubprogram *>(cast<DISubprogram>(this));
1041 }
1042 
1043 DILocalScope *DILocalScope::getNonLexicalBlockFileScope() const {
1044   if (auto *File = dyn_cast<DILexicalBlockFile>(this))
1045     return File->getScope()->getNonLexicalBlockFileScope();
1046   return const_cast<DILocalScope *>(this);
1047 }
1048 
1049 DILocalScope *DILocalScope::cloneScopeForSubprogram(
1050     DILocalScope &RootScope, DISubprogram &NewSP, LLVMContext &Ctx,
1051     DenseMap<const MDNode *, MDNode *> &Cache) {
1052   SmallVector<DIScope *> ScopeChain;
1053   DIScope *CachedResult = nullptr;
1054 
1055   for (DIScope *Scope = &RootScope; !isa<DISubprogram>(Scope);
1056        Scope = Scope->getScope()) {
1057     if (auto It = Cache.find(Scope); It != Cache.end()) {
1058       CachedResult = cast<DIScope>(It->second);
1059       break;
1060     }
1061     ScopeChain.push_back(Scope);
1062   }
1063 
1064   // Recreate the scope chain, bottom-up, starting at the new subprogram (or a
1065   // cached result).
1066   DIScope *UpdatedScope = CachedResult ? CachedResult : &NewSP;
1067   for (DIScope *ScopeToUpdate : reverse(ScopeChain)) {
1068     TempMDNode ClonedScope = ScopeToUpdate->clone();
1069     cast<DILexicalBlockBase>(*ClonedScope).replaceScope(UpdatedScope);
1070     UpdatedScope =
1071         cast<DIScope>(MDNode::replaceWithUniqued(std::move(ClonedScope)));
1072     Cache[ScopeToUpdate] = UpdatedScope;
1073   }
1074 
1075   return cast<DILocalScope>(UpdatedScope);
1076 }
1077 
1078 DISubprogram::DISPFlags DISubprogram::getFlag(StringRef Flag) {
1079   return StringSwitch<DISPFlags>(Flag)
1080 #define HANDLE_DISP_FLAG(ID, NAME) .Case("DISPFlag" #NAME, SPFlag##NAME)
1081 #include "llvm/IR/DebugInfoFlags.def"
1082       .Default(SPFlagZero);
1083 }
1084 
1085 StringRef DISubprogram::getFlagString(DISPFlags Flag) {
1086   switch (Flag) {
1087   // Appease a warning.
1088   case SPFlagVirtuality:
1089     return "";
1090 #define HANDLE_DISP_FLAG(ID, NAME)                                             \
1091   case SPFlag##NAME:                                                           \
1092     return "DISPFlag" #NAME;
1093 #include "llvm/IR/DebugInfoFlags.def"
1094   }
1095   return "";
1096 }
1097 
1098 DISubprogram::DISPFlags
1099 DISubprogram::splitFlags(DISPFlags Flags,
1100                          SmallVectorImpl<DISPFlags> &SplitFlags) {
1101   // Multi-bit fields can require special handling. In our case, however, the
1102   // only multi-bit field is virtuality, and all its values happen to be
1103   // single-bit values, so the right behavior just falls out.
1104 #define HANDLE_DISP_FLAG(ID, NAME)                                             \
1105   if (DISPFlags Bit = Flags & SPFlag##NAME) {                                  \
1106     SplitFlags.push_back(Bit);                                                 \
1107     Flags &= ~Bit;                                                             \
1108   }
1109 #include "llvm/IR/DebugInfoFlags.def"
1110   return Flags;
1111 }
1112 
1113 DISubprogram *DISubprogram::getImpl(
1114     LLVMContext &Context, Metadata *Scope, MDString *Name,
1115     MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type,
1116     unsigned ScopeLine, Metadata *ContainingType, unsigned VirtualIndex,
1117     int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, Metadata *Unit,
1118     Metadata *TemplateParams, Metadata *Declaration, Metadata *RetainedNodes,
1119     Metadata *ThrownTypes, Metadata *Annotations, MDString *TargetFuncName,
1120     StorageType Storage, bool ShouldCreate) {
1121   assert(isCanonical(Name) && "Expected canonical MDString");
1122   assert(isCanonical(LinkageName) && "Expected canonical MDString");
1123   assert(isCanonical(TargetFuncName) && "Expected canonical MDString");
1124   DEFINE_GETIMPL_LOOKUP(DISubprogram,
1125                         (Scope, Name, LinkageName, File, Line, Type, ScopeLine,
1126                          ContainingType, VirtualIndex, ThisAdjustment, Flags,
1127                          SPFlags, Unit, TemplateParams, Declaration,
1128                          RetainedNodes, ThrownTypes, Annotations,
1129                          TargetFuncName));
1130   SmallVector<Metadata *, 13> Ops = {
1131       File,           Scope,          Name,        LinkageName,
1132       Type,           Unit,           Declaration, RetainedNodes,
1133       ContainingType, TemplateParams, ThrownTypes, Annotations,
1134       TargetFuncName};
1135   if (!TargetFuncName) {
1136     Ops.pop_back();
1137     if (!Annotations) {
1138       Ops.pop_back();
1139       if (!ThrownTypes) {
1140         Ops.pop_back();
1141         if (!TemplateParams) {
1142           Ops.pop_back();
1143           if (!ContainingType)
1144             Ops.pop_back();
1145         }
1146       }
1147     }
1148   }
1149   DEFINE_GETIMPL_STORE_N(
1150       DISubprogram,
1151       (Line, ScopeLine, VirtualIndex, ThisAdjustment, Flags, SPFlags), Ops,
1152       Ops.size());
1153 }
1154 
1155 bool DISubprogram::describes(const Function *F) const {
1156   assert(F && "Invalid function");
1157   return F->getSubprogram() == this;
1158 }
1159 DILexicalBlockBase::DILexicalBlockBase(LLVMContext &C, unsigned ID,
1160                                        StorageType Storage,
1161                                        ArrayRef<Metadata *> Ops)
1162     : DILocalScope(C, ID, Storage, dwarf::DW_TAG_lexical_block, Ops) {}
1163 
1164 DILexicalBlock *DILexicalBlock::getImpl(LLVMContext &Context, Metadata *Scope,
1165                                         Metadata *File, unsigned Line,
1166                                         unsigned Column, StorageType Storage,
1167                                         bool ShouldCreate) {
1168   // Fixup column.
1169   adjustColumn(Column);
1170 
1171   assert(Scope && "Expected scope");
1172   DEFINE_GETIMPL_LOOKUP(DILexicalBlock, (Scope, File, Line, Column));
1173   Metadata *Ops[] = {File, Scope};
1174   DEFINE_GETIMPL_STORE(DILexicalBlock, (Line, Column), Ops);
1175 }
1176 
1177 DILexicalBlockFile *DILexicalBlockFile::getImpl(LLVMContext &Context,
1178                                                 Metadata *Scope, Metadata *File,
1179                                                 unsigned Discriminator,
1180                                                 StorageType Storage,
1181                                                 bool ShouldCreate) {
1182   assert(Scope && "Expected scope");
1183   DEFINE_GETIMPL_LOOKUP(DILexicalBlockFile, (Scope, File, Discriminator));
1184   Metadata *Ops[] = {File, Scope};
1185   DEFINE_GETIMPL_STORE(DILexicalBlockFile, (Discriminator), Ops);
1186 }
1187 
1188 DINamespace::DINamespace(LLVMContext &Context, StorageType Storage,
1189                          bool ExportSymbols, ArrayRef<Metadata *> Ops)
1190     : DIScope(Context, DINamespaceKind, Storage, dwarf::DW_TAG_namespace, Ops) {
1191   SubclassData1 = ExportSymbols;
1192 }
1193 DINamespace *DINamespace::getImpl(LLVMContext &Context, Metadata *Scope,
1194                                   MDString *Name, bool ExportSymbols,
1195                                   StorageType Storage, bool ShouldCreate) {
1196   assert(isCanonical(Name) && "Expected canonical MDString");
1197   DEFINE_GETIMPL_LOOKUP(DINamespace, (Scope, Name, ExportSymbols));
1198   // The nullptr is for DIScope's File operand. This should be refactored.
1199   Metadata *Ops[] = {nullptr, Scope, Name};
1200   DEFINE_GETIMPL_STORE(DINamespace, (ExportSymbols), Ops);
1201 }
1202 
1203 DICommonBlock::DICommonBlock(LLVMContext &Context, StorageType Storage,
1204                              unsigned LineNo, ArrayRef<Metadata *> Ops)
1205     : DIScope(Context, DICommonBlockKind, Storage, dwarf::DW_TAG_common_block,
1206               Ops) {
1207   SubclassData32 = LineNo;
1208 }
1209 DICommonBlock *DICommonBlock::getImpl(LLVMContext &Context, Metadata *Scope,
1210                                       Metadata *Decl, MDString *Name,
1211                                       Metadata *File, unsigned LineNo,
1212                                       StorageType Storage, bool ShouldCreate) {
1213   assert(isCanonical(Name) && "Expected canonical MDString");
1214   DEFINE_GETIMPL_LOOKUP(DICommonBlock, (Scope, Decl, Name, File, LineNo));
1215   // The nullptr is for DIScope's File operand. This should be refactored.
1216   Metadata *Ops[] = {Scope, Decl, Name, File};
1217   DEFINE_GETIMPL_STORE(DICommonBlock, (LineNo), Ops);
1218 }
1219 
1220 DIModule::DIModule(LLVMContext &Context, StorageType Storage, unsigned LineNo,
1221                    bool IsDecl, ArrayRef<Metadata *> Ops)
1222     : DIScope(Context, DIModuleKind, Storage, dwarf::DW_TAG_module, Ops) {
1223   SubclassData1 = IsDecl;
1224   SubclassData32 = LineNo;
1225 }
1226 DIModule *DIModule::getImpl(LLVMContext &Context, Metadata *File,
1227                             Metadata *Scope, MDString *Name,
1228                             MDString *ConfigurationMacros,
1229                             MDString *IncludePath, MDString *APINotesFile,
1230                             unsigned LineNo, bool IsDecl, StorageType Storage,
1231                             bool ShouldCreate) {
1232   assert(isCanonical(Name) && "Expected canonical MDString");
1233   DEFINE_GETIMPL_LOOKUP(DIModule, (File, Scope, Name, ConfigurationMacros,
1234                                    IncludePath, APINotesFile, LineNo, IsDecl));
1235   Metadata *Ops[] = {File,        Scope,       Name, ConfigurationMacros,
1236                      IncludePath, APINotesFile};
1237   DEFINE_GETIMPL_STORE(DIModule, (LineNo, IsDecl), Ops);
1238 }
1239 DITemplateTypeParameter::DITemplateTypeParameter(LLVMContext &Context,
1240                                                  StorageType Storage,
1241                                                  bool IsDefault,
1242                                                  ArrayRef<Metadata *> Ops)
1243     : DITemplateParameter(Context, DITemplateTypeParameterKind, Storage,
1244                           dwarf::DW_TAG_template_type_parameter, IsDefault,
1245                           Ops) {}
1246 
1247 DITemplateTypeParameter *
1248 DITemplateTypeParameter::getImpl(LLVMContext &Context, MDString *Name,
1249                                  Metadata *Type, bool isDefault,
1250                                  StorageType Storage, bool ShouldCreate) {
1251   assert(isCanonical(Name) && "Expected canonical MDString");
1252   DEFINE_GETIMPL_LOOKUP(DITemplateTypeParameter, (Name, Type, isDefault));
1253   Metadata *Ops[] = {Name, Type};
1254   DEFINE_GETIMPL_STORE(DITemplateTypeParameter, (isDefault), Ops);
1255 }
1256 
1257 DITemplateValueParameter *DITemplateValueParameter::getImpl(
1258     LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *Type,
1259     bool isDefault, Metadata *Value, StorageType Storage, bool ShouldCreate) {
1260   assert(isCanonical(Name) && "Expected canonical MDString");
1261   DEFINE_GETIMPL_LOOKUP(DITemplateValueParameter,
1262                         (Tag, Name, Type, isDefault, Value));
1263   Metadata *Ops[] = {Name, Type, Value};
1264   DEFINE_GETIMPL_STORE(DITemplateValueParameter, (Tag, isDefault), Ops);
1265 }
1266 
1267 DIGlobalVariable *
1268 DIGlobalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1269                           MDString *LinkageName, Metadata *File, unsigned Line,
1270                           Metadata *Type, bool IsLocalToUnit, bool IsDefinition,
1271                           Metadata *StaticDataMemberDeclaration,
1272                           Metadata *TemplateParams, uint32_t AlignInBits,
1273                           Metadata *Annotations, StorageType Storage,
1274                           bool ShouldCreate) {
1275   assert(isCanonical(Name) && "Expected canonical MDString");
1276   assert(isCanonical(LinkageName) && "Expected canonical MDString");
1277   DEFINE_GETIMPL_LOOKUP(
1278       DIGlobalVariable,
1279       (Scope, Name, LinkageName, File, Line, Type, IsLocalToUnit, IsDefinition,
1280        StaticDataMemberDeclaration, TemplateParams, AlignInBits, Annotations));
1281   Metadata *Ops[] = {Scope,
1282                      Name,
1283                      File,
1284                      Type,
1285                      Name,
1286                      LinkageName,
1287                      StaticDataMemberDeclaration,
1288                      TemplateParams,
1289                      Annotations};
1290   DEFINE_GETIMPL_STORE(DIGlobalVariable,
1291                        (Line, IsLocalToUnit, IsDefinition, AlignInBits), Ops);
1292 }
1293 
1294 DILocalVariable *
1295 DILocalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1296                          Metadata *File, unsigned Line, Metadata *Type,
1297                          unsigned Arg, DIFlags Flags, uint32_t AlignInBits,
1298                          Metadata *Annotations, StorageType Storage,
1299                          bool ShouldCreate) {
1300   // 64K ought to be enough for any frontend.
1301   assert(Arg <= UINT16_MAX && "Expected argument number to fit in 16-bits");
1302 
1303   assert(Scope && "Expected scope");
1304   assert(isCanonical(Name) && "Expected canonical MDString");
1305   DEFINE_GETIMPL_LOOKUP(DILocalVariable, (Scope, Name, File, Line, Type, Arg,
1306                                           Flags, AlignInBits, Annotations));
1307   Metadata *Ops[] = {Scope, Name, File, Type, Annotations};
1308   DEFINE_GETIMPL_STORE(DILocalVariable, (Line, Arg, Flags, AlignInBits), Ops);
1309 }
1310 
1311 DIVariable::DIVariable(LLVMContext &C, unsigned ID, StorageType Storage,
1312                        signed Line, ArrayRef<Metadata *> Ops,
1313                        uint32_t AlignInBits)
1314     : DINode(C, ID, Storage, dwarf::DW_TAG_variable, Ops), Line(Line) {
1315   SubclassData32 = AlignInBits;
1316 }
1317 std::optional<uint64_t> DIVariable::getSizeInBits() const {
1318   // This is used by the Verifier so be mindful of broken types.
1319   const Metadata *RawType = getRawType();
1320   while (RawType) {
1321     // Try to get the size directly.
1322     if (auto *T = dyn_cast<DIType>(RawType))
1323       if (uint64_t Size = T->getSizeInBits())
1324         return Size;
1325 
1326     if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
1327       // Look at the base type.
1328       RawType = DT->getRawBaseType();
1329       continue;
1330     }
1331 
1332     // Missing type or size.
1333     break;
1334   }
1335 
1336   // Fail gracefully.
1337   return std::nullopt;
1338 }
1339 
1340 DILabel::DILabel(LLVMContext &C, StorageType Storage, unsigned Line,
1341                  ArrayRef<Metadata *> Ops)
1342     : DINode(C, DILabelKind, Storage, dwarf::DW_TAG_label, Ops) {
1343   SubclassData32 = Line;
1344 }
1345 DILabel *DILabel::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1346                           Metadata *File, unsigned Line, StorageType Storage,
1347                           bool ShouldCreate) {
1348   assert(Scope && "Expected scope");
1349   assert(isCanonical(Name) && "Expected canonical MDString");
1350   DEFINE_GETIMPL_LOOKUP(DILabel, (Scope, Name, File, Line));
1351   Metadata *Ops[] = {Scope, Name, File};
1352   DEFINE_GETIMPL_STORE(DILabel, (Line), Ops);
1353 }
1354 
1355 DIExpression *DIExpression::getImpl(LLVMContext &Context,
1356                                     ArrayRef<uint64_t> Elements,
1357                                     StorageType Storage, bool ShouldCreate) {
1358   DEFINE_GETIMPL_LOOKUP(DIExpression, (Elements));
1359   DEFINE_GETIMPL_STORE_NO_OPS(DIExpression, (Elements));
1360 }
1361 bool DIExpression::isEntryValue() const {
1362   if (auto singleLocElts = getSingleLocationExpressionElements()) {
1363     return singleLocElts->size() > 0 &&
1364            (*singleLocElts)[0] == dwarf::DW_OP_LLVM_entry_value;
1365   }
1366   return false;
1367 }
1368 bool DIExpression::startsWithDeref() const {
1369   if (auto singleLocElts = getSingleLocationExpressionElements())
1370     return singleLocElts->size() > 0 &&
1371            (*singleLocElts)[0] == dwarf::DW_OP_deref;
1372   return false;
1373 }
1374 bool DIExpression::isDeref() const {
1375   if (auto singleLocElts = getSingleLocationExpressionElements())
1376     return singleLocElts->size() == 1 &&
1377            (*singleLocElts)[0] == dwarf::DW_OP_deref;
1378   return false;
1379 }
1380 
1381 DIAssignID *DIAssignID::getImpl(LLVMContext &Context, StorageType Storage,
1382                                 bool ShouldCreate) {
1383   // Uniqued DIAssignID are not supported as the instance address *is* the ID.
1384   assert(Storage != StorageType::Uniqued && "uniqued DIAssignID unsupported");
1385   return storeImpl(new (0u, Storage) DIAssignID(Context, Storage), Storage);
1386 }
1387 
1388 unsigned DIExpression::ExprOperand::getSize() const {
1389   uint64_t Op = getOp();
1390 
1391   if (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31)
1392     return 2;
1393 
1394   switch (Op) {
1395   case dwarf::DW_OP_LLVM_convert:
1396   case dwarf::DW_OP_LLVM_fragment:
1397   case dwarf::DW_OP_bregx:
1398     return 3;
1399   case dwarf::DW_OP_constu:
1400   case dwarf::DW_OP_consts:
1401   case dwarf::DW_OP_deref_size:
1402   case dwarf::DW_OP_plus_uconst:
1403   case dwarf::DW_OP_LLVM_tag_offset:
1404   case dwarf::DW_OP_LLVM_entry_value:
1405   case dwarf::DW_OP_LLVM_arg:
1406   case dwarf::DW_OP_regx:
1407     return 2;
1408   default:
1409     return 1;
1410   }
1411 }
1412 
1413 bool DIExpression::isValid() const {
1414   for (auto I = expr_op_begin(), E = expr_op_end(); I != E; ++I) {
1415     // Check that there's space for the operand.
1416     if (I->get() + I->getSize() > E->get())
1417       return false;
1418 
1419     uint64_t Op = I->getOp();
1420     if ((Op >= dwarf::DW_OP_reg0 && Op <= dwarf::DW_OP_reg31) ||
1421         (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31))
1422       return true;
1423 
1424     // Check that the operand is valid.
1425     switch (Op) {
1426     default:
1427       return false;
1428     case dwarf::DW_OP_LLVM_fragment:
1429       // A fragment operator must appear at the end.
1430       return I->get() + I->getSize() == E->get();
1431     case dwarf::DW_OP_stack_value: {
1432       // Must be the last one or followed by a DW_OP_LLVM_fragment.
1433       if (I->get() + I->getSize() == E->get())
1434         break;
1435       auto J = I;
1436       if ((++J)->getOp() != dwarf::DW_OP_LLVM_fragment)
1437         return false;
1438       break;
1439     }
1440     case dwarf::DW_OP_swap: {
1441       // Must be more than one implicit element on the stack.
1442 
1443       // FIXME: A better way to implement this would be to add a local variable
1444       // that keeps track of the stack depth and introduce something like a
1445       // DW_LLVM_OP_implicit_location as a placeholder for the location this
1446       // DIExpression is attached to, or else pass the number of implicit stack
1447       // elements into isValid.
1448       if (getNumElements() == 1)
1449         return false;
1450       break;
1451     }
1452     case dwarf::DW_OP_LLVM_entry_value: {
1453       // An entry value operator must appear at the beginning or immediately
1454       // following `DW_OP_LLVM_arg 0`, and the number of operations it cover can
1455       // currently only be 1, because we support only entry values of a simple
1456       // register location. One reason for this is that we currently can't
1457       // calculate the size of the resulting DWARF block for other expressions.
1458       auto FirstOp = expr_op_begin();
1459       if (FirstOp->getOp() == dwarf::DW_OP_LLVM_arg && FirstOp->getArg(0) == 0)
1460         ++FirstOp;
1461       return I->get() == FirstOp->get() && I->getArg(0) == 1;
1462     }
1463     case dwarf::DW_OP_LLVM_implicit_pointer:
1464     case dwarf::DW_OP_LLVM_convert:
1465     case dwarf::DW_OP_LLVM_arg:
1466     case dwarf::DW_OP_LLVM_tag_offset:
1467     case dwarf::DW_OP_constu:
1468     case dwarf::DW_OP_plus_uconst:
1469     case dwarf::DW_OP_plus:
1470     case dwarf::DW_OP_minus:
1471     case dwarf::DW_OP_mul:
1472     case dwarf::DW_OP_div:
1473     case dwarf::DW_OP_mod:
1474     case dwarf::DW_OP_or:
1475     case dwarf::DW_OP_and:
1476     case dwarf::DW_OP_xor:
1477     case dwarf::DW_OP_shl:
1478     case dwarf::DW_OP_shr:
1479     case dwarf::DW_OP_shra:
1480     case dwarf::DW_OP_deref:
1481     case dwarf::DW_OP_deref_size:
1482     case dwarf::DW_OP_xderef:
1483     case dwarf::DW_OP_lit0:
1484     case dwarf::DW_OP_not:
1485     case dwarf::DW_OP_dup:
1486     case dwarf::DW_OP_regx:
1487     case dwarf::DW_OP_bregx:
1488     case dwarf::DW_OP_push_object_address:
1489     case dwarf::DW_OP_over:
1490     case dwarf::DW_OP_consts:
1491     case dwarf::DW_OP_eq:
1492     case dwarf::DW_OP_ne:
1493     case dwarf::DW_OP_gt:
1494     case dwarf::DW_OP_ge:
1495     case dwarf::DW_OP_lt:
1496     case dwarf::DW_OP_le:
1497       break;
1498     }
1499   }
1500   return true;
1501 }
1502 
1503 bool DIExpression::isImplicit() const {
1504   if (!isValid())
1505     return false;
1506 
1507   if (getNumElements() == 0)
1508     return false;
1509 
1510   for (const auto &It : expr_ops()) {
1511     switch (It.getOp()) {
1512     default:
1513       break;
1514     case dwarf::DW_OP_stack_value:
1515     case dwarf::DW_OP_LLVM_tag_offset:
1516       return true;
1517     }
1518   }
1519 
1520   return false;
1521 }
1522 
1523 bool DIExpression::isComplex() const {
1524   if (!isValid())
1525     return false;
1526 
1527   if (getNumElements() == 0)
1528     return false;
1529 
1530   // If there are any elements other than fragment or tag_offset, then some
1531   // kind of complex computation occurs.
1532   for (const auto &It : expr_ops()) {
1533     switch (It.getOp()) {
1534     case dwarf::DW_OP_LLVM_tag_offset:
1535     case dwarf::DW_OP_LLVM_fragment:
1536     case dwarf::DW_OP_LLVM_arg:
1537       continue;
1538     default:
1539       return true;
1540     }
1541   }
1542 
1543   return false;
1544 }
1545 
1546 bool DIExpression::isSingleLocationExpression() const {
1547   if (!isValid())
1548     return false;
1549 
1550   if (getNumElements() == 0)
1551     return true;
1552 
1553   auto ExprOpBegin = expr_ops().begin();
1554   auto ExprOpEnd = expr_ops().end();
1555   if (ExprOpBegin->getOp() == dwarf::DW_OP_LLVM_arg) {
1556     if (ExprOpBegin->getArg(0) != 0)
1557       return false;
1558     ++ExprOpBegin;
1559   }
1560 
1561   return !std::any_of(ExprOpBegin, ExprOpEnd, [](auto Op) {
1562     return Op.getOp() == dwarf::DW_OP_LLVM_arg;
1563   });
1564 }
1565 
1566 std::optional<ArrayRef<uint64_t>>
1567 DIExpression::getSingleLocationExpressionElements() const {
1568   // Check for `isValid` covered by `isSingleLocationExpression`.
1569   if (!isSingleLocationExpression())
1570     return std::nullopt;
1571 
1572   // An empty expression is already non-variadic.
1573   if (!getNumElements())
1574     return ArrayRef<uint64_t>();
1575 
1576   // If Expr does not have a leading DW_OP_LLVM_arg then we don't need to do
1577   // anything.
1578   if (getElements()[0] == dwarf::DW_OP_LLVM_arg)
1579     return getElements().drop_front(2);
1580   return getElements();
1581 }
1582 
1583 const DIExpression *
1584 DIExpression::convertToUndefExpression(const DIExpression *Expr) {
1585   SmallVector<uint64_t, 3> UndefOps;
1586   if (auto FragmentInfo = Expr->getFragmentInfo()) {
1587     UndefOps.append({dwarf::DW_OP_LLVM_fragment, FragmentInfo->OffsetInBits,
1588                      FragmentInfo->SizeInBits});
1589   }
1590   return DIExpression::get(Expr->getContext(), UndefOps);
1591 }
1592 
1593 const DIExpression *
1594 DIExpression::convertToVariadicExpression(const DIExpression *Expr) {
1595   if (any_of(Expr->expr_ops(), [](auto ExprOp) {
1596         return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg;
1597       }))
1598     return Expr;
1599   SmallVector<uint64_t> NewOps;
1600   NewOps.reserve(Expr->getNumElements() + 2);
1601   NewOps.append({dwarf::DW_OP_LLVM_arg, 0});
1602   NewOps.append(Expr->elements_begin(), Expr->elements_end());
1603   return DIExpression::get(Expr->getContext(), NewOps);
1604 }
1605 
1606 std::optional<const DIExpression *>
1607 DIExpression::convertToNonVariadicExpression(const DIExpression *Expr) {
1608   if (!Expr)
1609     return std::nullopt;
1610 
1611   if (auto Elts = Expr->getSingleLocationExpressionElements())
1612     return DIExpression::get(Expr->getContext(), *Elts);
1613 
1614   return std::nullopt;
1615 }
1616 
1617 void DIExpression::canonicalizeExpressionOps(SmallVectorImpl<uint64_t> &Ops,
1618                                              const DIExpression *Expr,
1619                                              bool IsIndirect) {
1620   // If Expr is not already variadic, insert the implied `DW_OP_LLVM_arg 0`
1621   // to the existing expression ops.
1622   if (none_of(Expr->expr_ops(), [](auto ExprOp) {
1623         return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg;
1624       }))
1625     Ops.append({dwarf::DW_OP_LLVM_arg, 0});
1626   // If Expr is not indirect, we only need to insert the expression elements and
1627   // we're done.
1628   if (!IsIndirect) {
1629     Ops.append(Expr->elements_begin(), Expr->elements_end());
1630     return;
1631   }
1632   // If Expr is indirect, insert the implied DW_OP_deref at the end of the
1633   // expression but before DW_OP_{stack_value, LLVM_fragment} if they are
1634   // present.
1635   for (auto Op : Expr->expr_ops()) {
1636     if (Op.getOp() == dwarf::DW_OP_stack_value ||
1637         Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1638       Ops.push_back(dwarf::DW_OP_deref);
1639       IsIndirect = false;
1640     }
1641     Op.appendToVector(Ops);
1642   }
1643   if (IsIndirect)
1644     Ops.push_back(dwarf::DW_OP_deref);
1645 }
1646 
1647 bool DIExpression::isEqualExpression(const DIExpression *FirstExpr,
1648                                      bool FirstIndirect,
1649                                      const DIExpression *SecondExpr,
1650                                      bool SecondIndirect) {
1651   SmallVector<uint64_t> FirstOps;
1652   DIExpression::canonicalizeExpressionOps(FirstOps, FirstExpr, FirstIndirect);
1653   SmallVector<uint64_t> SecondOps;
1654   DIExpression::canonicalizeExpressionOps(SecondOps, SecondExpr,
1655                                           SecondIndirect);
1656   return FirstOps == SecondOps;
1657 }
1658 
1659 std::optional<DIExpression::FragmentInfo>
1660 DIExpression::getFragmentInfo(expr_op_iterator Start, expr_op_iterator End) {
1661   for (auto I = Start; I != End; ++I)
1662     if (I->getOp() == dwarf::DW_OP_LLVM_fragment) {
1663       DIExpression::FragmentInfo Info = {I->getArg(1), I->getArg(0)};
1664       return Info;
1665     }
1666   return std::nullopt;
1667 }
1668 
1669 void DIExpression::appendOffset(SmallVectorImpl<uint64_t> &Ops,
1670                                 int64_t Offset) {
1671   if (Offset > 0) {
1672     Ops.push_back(dwarf::DW_OP_plus_uconst);
1673     Ops.push_back(Offset);
1674   } else if (Offset < 0) {
1675     Ops.push_back(dwarf::DW_OP_constu);
1676     // Avoid UB when encountering LLONG_MIN, because in 2's complement
1677     // abs(LLONG_MIN) is LLONG_MAX+1.
1678     uint64_t AbsMinusOne = -(Offset+1);
1679     Ops.push_back(AbsMinusOne + 1);
1680     Ops.push_back(dwarf::DW_OP_minus);
1681   }
1682 }
1683 
1684 bool DIExpression::extractIfOffset(int64_t &Offset) const {
1685   auto SingleLocEltsOpt = getSingleLocationExpressionElements();
1686   if (!SingleLocEltsOpt)
1687     return false;
1688   auto SingleLocElts = *SingleLocEltsOpt;
1689 
1690   if (SingleLocElts.size() == 0) {
1691     Offset = 0;
1692     return true;
1693   }
1694 
1695   if (SingleLocElts.size() == 2 &&
1696       SingleLocElts[0] == dwarf::DW_OP_plus_uconst) {
1697     Offset = SingleLocElts[1];
1698     return true;
1699   }
1700 
1701   if (SingleLocElts.size() == 3 && SingleLocElts[0] == dwarf::DW_OP_constu) {
1702     if (SingleLocElts[2] == dwarf::DW_OP_plus) {
1703       Offset = SingleLocElts[1];
1704       return true;
1705     }
1706     if (SingleLocElts[2] == dwarf::DW_OP_minus) {
1707       Offset = -SingleLocElts[1];
1708       return true;
1709     }
1710   }
1711 
1712   return false;
1713 }
1714 
1715 bool DIExpression::hasAllLocationOps(unsigned N) const {
1716   SmallDenseSet<uint64_t, 4> SeenOps;
1717   for (auto ExprOp : expr_ops())
1718     if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg)
1719       SeenOps.insert(ExprOp.getArg(0));
1720   for (uint64_t Idx = 0; Idx < N; ++Idx)
1721     if (!SeenOps.contains(Idx))
1722       return false;
1723   return true;
1724 }
1725 
1726 const DIExpression *DIExpression::extractAddressClass(const DIExpression *Expr,
1727                                                       unsigned &AddrClass) {
1728   // FIXME: This seems fragile. Nothing that verifies that these elements
1729   // actually map to ops and not operands.
1730   auto SingleLocEltsOpt = Expr->getSingleLocationExpressionElements();
1731   if (!SingleLocEltsOpt)
1732     return nullptr;
1733   auto SingleLocElts = *SingleLocEltsOpt;
1734 
1735   const unsigned PatternSize = 4;
1736   if (SingleLocElts.size() >= PatternSize &&
1737       SingleLocElts[PatternSize - 4] == dwarf::DW_OP_constu &&
1738       SingleLocElts[PatternSize - 2] == dwarf::DW_OP_swap &&
1739       SingleLocElts[PatternSize - 1] == dwarf::DW_OP_xderef) {
1740     AddrClass = SingleLocElts[PatternSize - 3];
1741 
1742     if (SingleLocElts.size() == PatternSize)
1743       return nullptr;
1744     return DIExpression::get(
1745         Expr->getContext(),
1746         ArrayRef(&*SingleLocElts.begin(), SingleLocElts.size() - PatternSize));
1747   }
1748   return Expr;
1749 }
1750 
1751 DIExpression *DIExpression::prepend(const DIExpression *Expr, uint8_t Flags,
1752                                     int64_t Offset) {
1753   SmallVector<uint64_t, 8> Ops;
1754   if (Flags & DIExpression::DerefBefore)
1755     Ops.push_back(dwarf::DW_OP_deref);
1756 
1757   appendOffset(Ops, Offset);
1758   if (Flags & DIExpression::DerefAfter)
1759     Ops.push_back(dwarf::DW_OP_deref);
1760 
1761   bool StackValue = Flags & DIExpression::StackValue;
1762   bool EntryValue = Flags & DIExpression::EntryValue;
1763 
1764   return prependOpcodes(Expr, Ops, StackValue, EntryValue);
1765 }
1766 
1767 DIExpression *DIExpression::appendOpsToArg(const DIExpression *Expr,
1768                                            ArrayRef<uint64_t> Ops,
1769                                            unsigned ArgNo, bool StackValue) {
1770   assert(Expr && "Can't add ops to this expression");
1771 
1772   // Handle non-variadic intrinsics by prepending the opcodes.
1773   if (!any_of(Expr->expr_ops(),
1774               [](auto Op) { return Op.getOp() == dwarf::DW_OP_LLVM_arg; })) {
1775     assert(ArgNo == 0 &&
1776            "Location Index must be 0 for a non-variadic expression.");
1777     SmallVector<uint64_t, 8> NewOps(Ops.begin(), Ops.end());
1778     return DIExpression::prependOpcodes(Expr, NewOps, StackValue);
1779   }
1780 
1781   SmallVector<uint64_t, 8> NewOps;
1782   for (auto Op : Expr->expr_ops()) {
1783     // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
1784     if (StackValue) {
1785       if (Op.getOp() == dwarf::DW_OP_stack_value)
1786         StackValue = false;
1787       else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1788         NewOps.push_back(dwarf::DW_OP_stack_value);
1789         StackValue = false;
1790       }
1791     }
1792     Op.appendToVector(NewOps);
1793     if (Op.getOp() == dwarf::DW_OP_LLVM_arg && Op.getArg(0) == ArgNo)
1794       NewOps.insert(NewOps.end(), Ops.begin(), Ops.end());
1795   }
1796   if (StackValue)
1797     NewOps.push_back(dwarf::DW_OP_stack_value);
1798 
1799   return DIExpression::get(Expr->getContext(), NewOps);
1800 }
1801 
1802 DIExpression *DIExpression::replaceArg(const DIExpression *Expr,
1803                                        uint64_t OldArg, uint64_t NewArg) {
1804   assert(Expr && "Can't replace args in this expression");
1805 
1806   SmallVector<uint64_t, 8> NewOps;
1807 
1808   for (auto Op : Expr->expr_ops()) {
1809     if (Op.getOp() != dwarf::DW_OP_LLVM_arg || Op.getArg(0) < OldArg) {
1810       Op.appendToVector(NewOps);
1811       continue;
1812     }
1813     NewOps.push_back(dwarf::DW_OP_LLVM_arg);
1814     uint64_t Arg = Op.getArg(0) == OldArg ? NewArg : Op.getArg(0);
1815     // OldArg has been deleted from the Op list, so decrement all indices
1816     // greater than it.
1817     if (Arg > OldArg)
1818       --Arg;
1819     NewOps.push_back(Arg);
1820   }
1821   return DIExpression::get(Expr->getContext(), NewOps);
1822 }
1823 
1824 DIExpression *DIExpression::prependOpcodes(const DIExpression *Expr,
1825                                            SmallVectorImpl<uint64_t> &Ops,
1826                                            bool StackValue, bool EntryValue) {
1827   assert(Expr && "Can't prepend ops to this expression");
1828 
1829   if (EntryValue) {
1830     Ops.push_back(dwarf::DW_OP_LLVM_entry_value);
1831     // Use a block size of 1 for the target register operand.  The
1832     // DWARF backend currently cannot emit entry values with a block
1833     // size > 1.
1834     Ops.push_back(1);
1835   }
1836 
1837   // If there are no ops to prepend, do not even add the DW_OP_stack_value.
1838   if (Ops.empty())
1839     StackValue = false;
1840   for (auto Op : Expr->expr_ops()) {
1841     // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
1842     if (StackValue) {
1843       if (Op.getOp() == dwarf::DW_OP_stack_value)
1844         StackValue = false;
1845       else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1846         Ops.push_back(dwarf::DW_OP_stack_value);
1847         StackValue = false;
1848       }
1849     }
1850     Op.appendToVector(Ops);
1851   }
1852   if (StackValue)
1853     Ops.push_back(dwarf::DW_OP_stack_value);
1854   return DIExpression::get(Expr->getContext(), Ops);
1855 }
1856 
1857 DIExpression *DIExpression::append(const DIExpression *Expr,
1858                                    ArrayRef<uint64_t> Ops) {
1859   assert(Expr && !Ops.empty() && "Can't append ops to this expression");
1860 
1861   // Copy Expr's current op list.
1862   SmallVector<uint64_t, 16> NewOps;
1863   for (auto Op : Expr->expr_ops()) {
1864     // Append new opcodes before DW_OP_{stack_value, LLVM_fragment}.
1865     if (Op.getOp() == dwarf::DW_OP_stack_value ||
1866         Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1867       NewOps.append(Ops.begin(), Ops.end());
1868 
1869       // Ensure that the new opcodes are only appended once.
1870       Ops = std::nullopt;
1871     }
1872     Op.appendToVector(NewOps);
1873   }
1874 
1875   NewOps.append(Ops.begin(), Ops.end());
1876   auto *result = DIExpression::get(Expr->getContext(), NewOps);
1877   assert(result->isValid() && "concatenated expression is not valid");
1878   return result;
1879 }
1880 
1881 DIExpression *DIExpression::appendToStack(const DIExpression *Expr,
1882                                           ArrayRef<uint64_t> Ops) {
1883   assert(Expr && !Ops.empty() && "Can't append ops to this expression");
1884   assert(none_of(Ops,
1885                  [](uint64_t Op) {
1886                    return Op == dwarf::DW_OP_stack_value ||
1887                           Op == dwarf::DW_OP_LLVM_fragment;
1888                  }) &&
1889          "Can't append this op");
1890 
1891   // Append a DW_OP_deref after Expr's current op list if it's non-empty and
1892   // has no DW_OP_stack_value.
1893   //
1894   // Match .* DW_OP_stack_value (DW_OP_LLVM_fragment A B)?.
1895   std::optional<FragmentInfo> FI = Expr->getFragmentInfo();
1896   unsigned DropUntilStackValue = FI ? 3 : 0;
1897   ArrayRef<uint64_t> ExprOpsBeforeFragment =
1898       Expr->getElements().drop_back(DropUntilStackValue);
1899   bool NeedsDeref = (Expr->getNumElements() > DropUntilStackValue) &&
1900                     (ExprOpsBeforeFragment.back() != dwarf::DW_OP_stack_value);
1901   bool NeedsStackValue = NeedsDeref || ExprOpsBeforeFragment.empty();
1902 
1903   // Append a DW_OP_deref after Expr's current op list if needed, then append
1904   // the new ops, and finally ensure that a single DW_OP_stack_value is present.
1905   SmallVector<uint64_t, 16> NewOps;
1906   if (NeedsDeref)
1907     NewOps.push_back(dwarf::DW_OP_deref);
1908   NewOps.append(Ops.begin(), Ops.end());
1909   if (NeedsStackValue)
1910     NewOps.push_back(dwarf::DW_OP_stack_value);
1911   return DIExpression::append(Expr, NewOps);
1912 }
1913 
1914 std::optional<DIExpression *> DIExpression::createFragmentExpression(
1915     const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits) {
1916   SmallVector<uint64_t, 8> Ops;
1917   // Track whether it's safe to split the value at the top of the DWARF stack,
1918   // assuming that it'll be used as an implicit location value.
1919   bool CanSplitValue = true;
1920   // Copy over the expression, but leave off any trailing DW_OP_LLVM_fragment.
1921   if (Expr) {
1922     for (auto Op : Expr->expr_ops()) {
1923       switch (Op.getOp()) {
1924       default:
1925         break;
1926       case dwarf::DW_OP_shr:
1927       case dwarf::DW_OP_shra:
1928       case dwarf::DW_OP_shl:
1929       case dwarf::DW_OP_plus:
1930       case dwarf::DW_OP_plus_uconst:
1931       case dwarf::DW_OP_minus:
1932         // We can't safely split arithmetic or shift operations into multiple
1933         // fragments because we can't express carry-over between fragments.
1934         //
1935         // FIXME: We *could* preserve the lowest fragment of a constant offset
1936         // operation if the offset fits into SizeInBits.
1937         CanSplitValue = false;
1938         break;
1939       case dwarf::DW_OP_deref:
1940       case dwarf::DW_OP_deref_size:
1941       case dwarf::DW_OP_deref_type:
1942       case dwarf::DW_OP_xderef:
1943       case dwarf::DW_OP_xderef_size:
1944       case dwarf::DW_OP_xderef_type:
1945         // Preceeding arithmetic operations have been applied to compute an
1946         // address. It's okay to split the value loaded from that address.
1947         CanSplitValue = true;
1948         break;
1949       case dwarf::DW_OP_stack_value:
1950         // Bail if this expression computes a value that cannot be split.
1951         if (!CanSplitValue)
1952           return std::nullopt;
1953         break;
1954       case dwarf::DW_OP_LLVM_fragment: {
1955         // Make the new offset point into the existing fragment.
1956         uint64_t FragmentOffsetInBits = Op.getArg(0);
1957         uint64_t FragmentSizeInBits = Op.getArg(1);
1958         (void)FragmentSizeInBits;
1959         assert((OffsetInBits + SizeInBits <= FragmentSizeInBits) &&
1960                "new fragment outside of original fragment");
1961         OffsetInBits += FragmentOffsetInBits;
1962         continue;
1963       }
1964       }
1965       Op.appendToVector(Ops);
1966     }
1967   }
1968   assert((!Expr->isImplicit() || CanSplitValue) && "Expr can't be split");
1969   assert(Expr && "Unknown DIExpression");
1970   Ops.push_back(dwarf::DW_OP_LLVM_fragment);
1971   Ops.push_back(OffsetInBits);
1972   Ops.push_back(SizeInBits);
1973   return DIExpression::get(Expr->getContext(), Ops);
1974 }
1975 
1976 std::pair<DIExpression *, const ConstantInt *>
1977 DIExpression::constantFold(const ConstantInt *CI) {
1978   // Copy the APInt so we can modify it.
1979   APInt NewInt = CI->getValue();
1980   SmallVector<uint64_t, 8> Ops;
1981 
1982   // Fold operators only at the beginning of the expression.
1983   bool First = true;
1984   bool Changed = false;
1985   for (auto Op : expr_ops()) {
1986     switch (Op.getOp()) {
1987     default:
1988       // We fold only the leading part of the expression; if we get to a part
1989       // that we're going to copy unchanged, and haven't done any folding,
1990       // then the entire expression is unchanged and we can return early.
1991       if (!Changed)
1992         return {this, CI};
1993       First = false;
1994       break;
1995     case dwarf::DW_OP_LLVM_convert:
1996       if (!First)
1997         break;
1998       Changed = true;
1999       if (Op.getArg(1) == dwarf::DW_ATE_signed)
2000         NewInt = NewInt.sextOrTrunc(Op.getArg(0));
2001       else {
2002         assert(Op.getArg(1) == dwarf::DW_ATE_unsigned && "Unexpected operand");
2003         NewInt = NewInt.zextOrTrunc(Op.getArg(0));
2004       }
2005       continue;
2006     }
2007     Op.appendToVector(Ops);
2008   }
2009   if (!Changed)
2010     return {this, CI};
2011   return {DIExpression::get(getContext(), Ops),
2012           ConstantInt::get(getContext(), NewInt)};
2013 }
2014 
2015 uint64_t DIExpression::getNumLocationOperands() const {
2016   uint64_t Result = 0;
2017   for (auto ExprOp : expr_ops())
2018     if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg)
2019       Result = std::max(Result, ExprOp.getArg(0) + 1);
2020   assert(hasAllLocationOps(Result) &&
2021          "Expression is missing one or more location operands.");
2022   return Result;
2023 }
2024 
2025 std::optional<DIExpression::SignedOrUnsignedConstant>
2026 DIExpression::isConstant() const {
2027 
2028   // Recognize signed and unsigned constants.
2029   // An signed constants can be represented as DW_OP_consts C DW_OP_stack_value
2030   // (DW_OP_LLVM_fragment of Len).
2031   // An unsigned constant can be represented as
2032   // DW_OP_constu C DW_OP_stack_value (DW_OP_LLVM_fragment of Len).
2033 
2034   if ((getNumElements() != 2 && getNumElements() != 3 &&
2035        getNumElements() != 6) ||
2036       (getElement(0) != dwarf::DW_OP_consts &&
2037        getElement(0) != dwarf::DW_OP_constu))
2038     return std::nullopt;
2039 
2040   if (getNumElements() == 2 && getElement(0) == dwarf::DW_OP_consts)
2041     return SignedOrUnsignedConstant::SignedConstant;
2042 
2043   if ((getNumElements() == 3 && getElement(2) != dwarf::DW_OP_stack_value) ||
2044       (getNumElements() == 6 && (getElement(2) != dwarf::DW_OP_stack_value ||
2045                                  getElement(3) != dwarf::DW_OP_LLVM_fragment)))
2046     return std::nullopt;
2047   return getElement(0) == dwarf::DW_OP_constu
2048              ? SignedOrUnsignedConstant::UnsignedConstant
2049              : SignedOrUnsignedConstant::SignedConstant;
2050 }
2051 
2052 DIExpression::ExtOps DIExpression::getExtOps(unsigned FromSize, unsigned ToSize,
2053                                              bool Signed) {
2054   dwarf::TypeKind TK = Signed ? dwarf::DW_ATE_signed : dwarf::DW_ATE_unsigned;
2055   DIExpression::ExtOps Ops{{dwarf::DW_OP_LLVM_convert, FromSize, TK,
2056                             dwarf::DW_OP_LLVM_convert, ToSize, TK}};
2057   return Ops;
2058 }
2059 
2060 DIExpression *DIExpression::appendExt(const DIExpression *Expr,
2061                                       unsigned FromSize, unsigned ToSize,
2062                                       bool Signed) {
2063   return appendToStack(Expr, getExtOps(FromSize, ToSize, Signed));
2064 }
2065 
2066 DIGlobalVariableExpression *
2067 DIGlobalVariableExpression::getImpl(LLVMContext &Context, Metadata *Variable,
2068                                     Metadata *Expression, StorageType Storage,
2069                                     bool ShouldCreate) {
2070   DEFINE_GETIMPL_LOOKUP(DIGlobalVariableExpression, (Variable, Expression));
2071   Metadata *Ops[] = {Variable, Expression};
2072   DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGlobalVariableExpression, Ops);
2073 }
2074 DIObjCProperty::DIObjCProperty(LLVMContext &C, StorageType Storage,
2075                                unsigned Line, unsigned Attributes,
2076                                ArrayRef<Metadata *> Ops)
2077     : DINode(C, DIObjCPropertyKind, Storage, dwarf::DW_TAG_APPLE_property, Ops),
2078       Line(Line), Attributes(Attributes) {}
2079 
2080 DIObjCProperty *DIObjCProperty::getImpl(
2081     LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line,
2082     MDString *GetterName, MDString *SetterName, unsigned Attributes,
2083     Metadata *Type, StorageType Storage, bool ShouldCreate) {
2084   assert(isCanonical(Name) && "Expected canonical MDString");
2085   assert(isCanonical(GetterName) && "Expected canonical MDString");
2086   assert(isCanonical(SetterName) && "Expected canonical MDString");
2087   DEFINE_GETIMPL_LOOKUP(DIObjCProperty, (Name, File, Line, GetterName,
2088                                          SetterName, Attributes, Type));
2089   Metadata *Ops[] = {Name, File, GetterName, SetterName, Type};
2090   DEFINE_GETIMPL_STORE(DIObjCProperty, (Line, Attributes), Ops);
2091 }
2092 
2093 DIImportedEntity *DIImportedEntity::getImpl(LLVMContext &Context, unsigned Tag,
2094                                             Metadata *Scope, Metadata *Entity,
2095                                             Metadata *File, unsigned Line,
2096                                             MDString *Name, Metadata *Elements,
2097                                             StorageType Storage,
2098                                             bool ShouldCreate) {
2099   assert(isCanonical(Name) && "Expected canonical MDString");
2100   DEFINE_GETIMPL_LOOKUP(DIImportedEntity,
2101                         (Tag, Scope, Entity, File, Line, Name, Elements));
2102   Metadata *Ops[] = {Scope, Entity, Name, File, Elements};
2103   DEFINE_GETIMPL_STORE(DIImportedEntity, (Tag, Line), Ops);
2104 }
2105 
2106 DIMacro *DIMacro::getImpl(LLVMContext &Context, unsigned MIType, unsigned Line,
2107                           MDString *Name, MDString *Value, StorageType Storage,
2108                           bool ShouldCreate) {
2109   assert(isCanonical(Name) && "Expected canonical MDString");
2110   DEFINE_GETIMPL_LOOKUP(DIMacro, (MIType, Line, Name, Value));
2111   Metadata *Ops[] = {Name, Value};
2112   DEFINE_GETIMPL_STORE(DIMacro, (MIType, Line), Ops);
2113 }
2114 
2115 DIMacroFile *DIMacroFile::getImpl(LLVMContext &Context, unsigned MIType,
2116                                   unsigned Line, Metadata *File,
2117                                   Metadata *Elements, StorageType Storage,
2118                                   bool ShouldCreate) {
2119   DEFINE_GETIMPL_LOOKUP(DIMacroFile, (MIType, Line, File, Elements));
2120   Metadata *Ops[] = {File, Elements};
2121   DEFINE_GETIMPL_STORE(DIMacroFile, (MIType, Line), Ops);
2122 }
2123 
2124 DIArgList *DIArgList::get(LLVMContext &Context,
2125                           ArrayRef<ValueAsMetadata *> Args) {
2126   auto ExistingIt = Context.pImpl->DIArgLists.find_as(DIArgListKeyInfo(Args));
2127   if (ExistingIt != Context.pImpl->DIArgLists.end())
2128     return *ExistingIt;
2129   DIArgList *NewArgList = new DIArgList(Context, Args);
2130   Context.pImpl->DIArgLists.insert(NewArgList);
2131   return NewArgList;
2132 }
2133 
2134 void DIArgList::handleChangedOperand(void *Ref, Metadata *New) {
2135   ValueAsMetadata **OldVMPtr = static_cast<ValueAsMetadata **>(Ref);
2136   assert((!New || isa<ValueAsMetadata>(New)) &&
2137          "DIArgList must be passed a ValueAsMetadata");
2138   untrack();
2139   // We need to update the set storage once the Args are updated since they
2140   // form the key to the DIArgLists store.
2141   getContext().pImpl->DIArgLists.erase(this);
2142   ValueAsMetadata *NewVM = cast_or_null<ValueAsMetadata>(New);
2143   for (ValueAsMetadata *&VM : Args) {
2144     if (&VM == OldVMPtr) {
2145       if (NewVM)
2146         VM = NewVM;
2147       else
2148         VM = ValueAsMetadata::get(PoisonValue::get(VM->getValue()->getType()));
2149     }
2150   }
2151   // We've changed the contents of this DIArgList, and the set storage may
2152   // already contain a DIArgList with our new set of args; if it does, then we
2153   // must RAUW this with the existing DIArgList, otherwise we simply insert this
2154   // back into the set storage.
2155   DIArgList *ExistingArgList = getUniqued(getContext().pImpl->DIArgLists, this);
2156   if (ExistingArgList) {
2157     replaceAllUsesWith(ExistingArgList);
2158     // Clear this here so we don't try to untrack in the destructor.
2159     Args.clear();
2160     delete this;
2161     return;
2162   }
2163   getContext().pImpl->DIArgLists.insert(this);
2164   track();
2165 }
2166 void DIArgList::track() {
2167   for (ValueAsMetadata *&VAM : Args)
2168     if (VAM)
2169       MetadataTracking::track(&VAM, *VAM, *this);
2170 }
2171 void DIArgList::untrack() {
2172   for (ValueAsMetadata *&VAM : Args)
2173     if (VAM)
2174       MetadataTracking::untrack(&VAM, *VAM);
2175 }
2176 void DIArgList::dropAllReferences(bool Untrack) {
2177   if (Untrack)
2178     untrack();
2179   Args.clear();
2180   ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
2181 }
2182