xref: /freebsd/contrib/llvm-project/llvm/lib/IR/DataLayout.cpp (revision 1f1e2261e341e6ca6862f82261066ef1705f0a7a)
1 //===- DataLayout.cpp - Data size & alignment routines ---------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines layout properties related to datatype size/offset/alignment
10 // information.
11 //
12 // This structure should be created once, filled in if the defaults are not
13 // correct and then passed around by const&.  None of the members functions
14 // require modification to the object.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GetElementPtrTypeIterator.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/Error.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/MemAlloc.h"
34 #include "llvm/Support/TypeSize.h"
35 #include <algorithm>
36 #include <cassert>
37 #include <cstdint>
38 #include <cstdlib>
39 #include <new>
40 #include <utility>
41 
42 using namespace llvm;
43 
44 //===----------------------------------------------------------------------===//
45 // Support for StructLayout
46 //===----------------------------------------------------------------------===//
47 
48 StructLayout::StructLayout(StructType *ST, const DataLayout &DL) {
49   assert(!ST->isOpaque() && "Cannot get layout of opaque structs");
50   StructSize = 0;
51   IsPadded = false;
52   NumElements = ST->getNumElements();
53 
54   // Loop over each of the elements, placing them in memory.
55   for (unsigned i = 0, e = NumElements; i != e; ++i) {
56     Type *Ty = ST->getElementType(i);
57     const Align TyAlign = ST->isPacked() ? Align(1) : DL.getABITypeAlign(Ty);
58 
59     // Add padding if necessary to align the data element properly.
60     if (!isAligned(TyAlign, StructSize)) {
61       IsPadded = true;
62       StructSize = alignTo(StructSize, TyAlign);
63     }
64 
65     // Keep track of maximum alignment constraint.
66     StructAlignment = std::max(TyAlign, StructAlignment);
67 
68     getMemberOffsets()[i] = StructSize;
69     // Consume space for this data item
70     StructSize += DL.getTypeAllocSize(Ty).getFixedValue();
71   }
72 
73   // Add padding to the end of the struct so that it could be put in an array
74   // and all array elements would be aligned correctly.
75   if (!isAligned(StructAlignment, StructSize)) {
76     IsPadded = true;
77     StructSize = alignTo(StructSize, StructAlignment);
78   }
79 }
80 
81 /// getElementContainingOffset - Given a valid offset into the structure,
82 /// return the structure index that contains it.
83 unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const {
84   ArrayRef<uint64_t> MemberOffsets = getMemberOffsets();
85   auto SI = llvm::upper_bound(MemberOffsets, Offset);
86   assert(SI != MemberOffsets.begin() && "Offset not in structure type!");
87   --SI;
88   assert(*SI <= Offset && "upper_bound didn't work");
89   assert((SI == MemberOffsets.begin() || *(SI - 1) <= Offset) &&
90          (SI + 1 == MemberOffsets.end() || *(SI + 1) > Offset) &&
91          "Upper bound didn't work!");
92 
93   // Multiple fields can have the same offset if any of them are zero sized.
94   // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop
95   // at the i32 element, because it is the last element at that offset.  This is
96   // the right one to return, because anything after it will have a higher
97   // offset, implying that this element is non-empty.
98   return SI - MemberOffsets.begin();
99 }
100 
101 //===----------------------------------------------------------------------===//
102 // LayoutAlignElem, LayoutAlign support
103 //===----------------------------------------------------------------------===//
104 
105 LayoutAlignElem LayoutAlignElem::get(AlignTypeEnum align_type, Align abi_align,
106                                      Align pref_align, uint32_t bit_width) {
107   assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
108   LayoutAlignElem retval;
109   retval.AlignType = align_type;
110   retval.ABIAlign = abi_align;
111   retval.PrefAlign = pref_align;
112   retval.TypeBitWidth = bit_width;
113   return retval;
114 }
115 
116 bool
117 LayoutAlignElem::operator==(const LayoutAlignElem &rhs) const {
118   return (AlignType == rhs.AlignType
119           && ABIAlign == rhs.ABIAlign
120           && PrefAlign == rhs.PrefAlign
121           && TypeBitWidth == rhs.TypeBitWidth);
122 }
123 
124 //===----------------------------------------------------------------------===//
125 // PointerAlignElem, PointerAlign support
126 //===----------------------------------------------------------------------===//
127 
128 PointerAlignElem PointerAlignElem::getInBits(uint32_t AddressSpace,
129                                              Align ABIAlign, Align PrefAlign,
130                                              uint32_t TypeBitWidth,
131                                              uint32_t IndexBitWidth) {
132   assert(ABIAlign <= PrefAlign && "Preferred alignment worse than ABI!");
133   PointerAlignElem retval;
134   retval.AddressSpace = AddressSpace;
135   retval.ABIAlign = ABIAlign;
136   retval.PrefAlign = PrefAlign;
137   retval.TypeBitWidth = TypeBitWidth;
138   retval.IndexBitWidth = IndexBitWidth;
139   return retval;
140 }
141 
142 bool
143 PointerAlignElem::operator==(const PointerAlignElem &rhs) const {
144   return (ABIAlign == rhs.ABIAlign && AddressSpace == rhs.AddressSpace &&
145           PrefAlign == rhs.PrefAlign && TypeBitWidth == rhs.TypeBitWidth &&
146           IndexBitWidth == rhs.IndexBitWidth);
147 }
148 
149 //===----------------------------------------------------------------------===//
150 //                       DataLayout Class Implementation
151 //===----------------------------------------------------------------------===//
152 
153 const char *DataLayout::getManglingComponent(const Triple &T) {
154   if (T.isOSBinFormatGOFF())
155     return "-m:l";
156   if (T.isOSBinFormatMachO())
157     return "-m:o";
158   if (T.isOSWindows() && T.isOSBinFormatCOFF())
159     return T.getArch() == Triple::x86 ? "-m:x" : "-m:w";
160   if (T.isOSBinFormatXCOFF())
161     return "-m:a";
162   return "-m:e";
163 }
164 
165 static const LayoutAlignElem DefaultAlignments[] = {
166     {INTEGER_ALIGN, 1, Align(1), Align(1)},    // i1
167     {INTEGER_ALIGN, 8, Align(1), Align(1)},    // i8
168     {INTEGER_ALIGN, 16, Align(2), Align(2)},   // i16
169     {INTEGER_ALIGN, 32, Align(4), Align(4)},   // i32
170     {INTEGER_ALIGN, 64, Align(4), Align(8)},   // i64
171     {FLOAT_ALIGN, 16, Align(2), Align(2)},     // half, bfloat
172     {FLOAT_ALIGN, 32, Align(4), Align(4)},     // float
173     {FLOAT_ALIGN, 64, Align(8), Align(8)},     // double
174     {FLOAT_ALIGN, 128, Align(16), Align(16)},  // ppcf128, quad, ...
175     {VECTOR_ALIGN, 64, Align(8), Align(8)},    // v2i32, v1i64, ...
176     {VECTOR_ALIGN, 128, Align(16), Align(16)}, // v16i8, v8i16, v4i32, ...
177     {AGGREGATE_ALIGN, 0, Align(1), Align(8)}   // struct
178 };
179 
180 void DataLayout::reset(StringRef Desc) {
181   clear();
182 
183   LayoutMap = nullptr;
184   BigEndian = false;
185   AllocaAddrSpace = 0;
186   StackNaturalAlign.reset();
187   ProgramAddrSpace = 0;
188   DefaultGlobalsAddrSpace = 0;
189   FunctionPtrAlign.reset();
190   TheFunctionPtrAlignType = FunctionPtrAlignType::Independent;
191   ManglingMode = MM_None;
192   NonIntegralAddressSpaces.clear();
193 
194   // Default alignments
195   for (const LayoutAlignElem &E : DefaultAlignments) {
196     if (Error Err = setAlignment((AlignTypeEnum)E.AlignType, E.ABIAlign,
197                                  E.PrefAlign, E.TypeBitWidth))
198       return report_fatal_error(std::move(Err));
199   }
200   if (Error Err = setPointerAlignmentInBits(0, Align(8), Align(8), 64, 64))
201     return report_fatal_error(std::move(Err));
202 
203   if (Error Err = parseSpecifier(Desc))
204     return report_fatal_error(std::move(Err));
205 }
206 
207 Expected<DataLayout> DataLayout::parse(StringRef LayoutDescription) {
208   DataLayout Layout("");
209   if (Error Err = Layout.parseSpecifier(LayoutDescription))
210     return std::move(Err);
211   return Layout;
212 }
213 
214 static Error reportError(const Twine &Message) {
215   return createStringError(inconvertibleErrorCode(), Message);
216 }
217 
218 /// Checked version of split, to ensure mandatory subparts.
219 static Error split(StringRef Str, char Separator,
220                    std::pair<StringRef, StringRef> &Split) {
221   assert(!Str.empty() && "parse error, string can't be empty here");
222   Split = Str.split(Separator);
223   if (Split.second.empty() && Split.first != Str)
224     return reportError("Trailing separator in datalayout string");
225   if (!Split.second.empty() && Split.first.empty())
226     return reportError("Expected token before separator in datalayout string");
227   return Error::success();
228 }
229 
230 /// Get an unsigned integer, including error checks.
231 template <typename IntTy> static Error getInt(StringRef R, IntTy &Result) {
232   bool error = R.getAsInteger(10, Result); (void)error;
233   if (error)
234     return reportError("not a number, or does not fit in an unsigned int");
235   return Error::success();
236 }
237 
238 /// Get an unsigned integer representing the number of bits and convert it into
239 /// bytes. Error out of not a byte width multiple.
240 template <typename IntTy>
241 static Error getIntInBytes(StringRef R, IntTy &Result) {
242   if (Error Err = getInt<IntTy>(R, Result))
243     return Err;
244   if (Result % 8)
245     return reportError("number of bits must be a byte width multiple");
246   Result /= 8;
247   return Error::success();
248 }
249 
250 static Error getAddrSpace(StringRef R, unsigned &AddrSpace) {
251   if (Error Err = getInt(R, AddrSpace))
252     return Err;
253   if (!isUInt<24>(AddrSpace))
254     return reportError("Invalid address space, must be a 24-bit integer");
255   return Error::success();
256 }
257 
258 Error DataLayout::parseSpecifier(StringRef Desc) {
259   StringRepresentation = std::string(Desc);
260   while (!Desc.empty()) {
261     // Split at '-'.
262     std::pair<StringRef, StringRef> Split;
263     if (Error Err = ::split(Desc, '-', Split))
264       return Err;
265     Desc = Split.second;
266 
267     // Split at ':'.
268     if (Error Err = ::split(Split.first, ':', Split))
269       return Err;
270 
271     // Aliases used below.
272     StringRef &Tok  = Split.first;  // Current token.
273     StringRef &Rest = Split.second; // The rest of the string.
274 
275     if (Tok == "ni") {
276       do {
277         if (Error Err = ::split(Rest, ':', Split))
278           return Err;
279         Rest = Split.second;
280         unsigned AS;
281         if (Error Err = getInt(Split.first, AS))
282           return Err;
283         if (AS == 0)
284           return reportError("Address space 0 can never be non-integral");
285         NonIntegralAddressSpaces.push_back(AS);
286       } while (!Rest.empty());
287 
288       continue;
289     }
290 
291     char Specifier = Tok.front();
292     Tok = Tok.substr(1);
293 
294     switch (Specifier) {
295     case 's':
296       // Deprecated, but ignoring here to preserve loading older textual llvm
297       // ASM file
298       break;
299     case 'E':
300       BigEndian = true;
301       break;
302     case 'e':
303       BigEndian = false;
304       break;
305     case 'p': {
306       // Address space.
307       unsigned AddrSpace = 0;
308       if (!Tok.empty())
309         if (Error Err = getInt(Tok, AddrSpace))
310           return Err;
311       if (!isUInt<24>(AddrSpace))
312         return reportError("Invalid address space, must be a 24bit integer");
313 
314       // Size.
315       if (Rest.empty())
316         return reportError(
317             "Missing size specification for pointer in datalayout string");
318       if (Error Err = ::split(Rest, ':', Split))
319         return Err;
320       unsigned PointerMemSize;
321       if (Error Err = getInt(Tok, PointerMemSize))
322         return Err;
323       if (!PointerMemSize)
324         return reportError("Invalid pointer size of 0 bytes");
325 
326       // ABI alignment.
327       if (Rest.empty())
328         return reportError(
329             "Missing alignment specification for pointer in datalayout string");
330       if (Error Err = ::split(Rest, ':', Split))
331         return Err;
332       unsigned PointerABIAlign;
333       if (Error Err = getIntInBytes(Tok, PointerABIAlign))
334         return Err;
335       if (!isPowerOf2_64(PointerABIAlign))
336         return reportError("Pointer ABI alignment must be a power of 2");
337 
338       // Size of index used in GEP for address calculation.
339       // The parameter is optional. By default it is equal to size of pointer.
340       unsigned IndexSize = PointerMemSize;
341 
342       // Preferred alignment.
343       unsigned PointerPrefAlign = PointerABIAlign;
344       if (!Rest.empty()) {
345         if (Error Err = ::split(Rest, ':', Split))
346           return Err;
347         if (Error Err = getIntInBytes(Tok, PointerPrefAlign))
348           return Err;
349         if (!isPowerOf2_64(PointerPrefAlign))
350           return reportError(
351               "Pointer preferred alignment must be a power of 2");
352 
353         // Now read the index. It is the second optional parameter here.
354         if (!Rest.empty()) {
355           if (Error Err = ::split(Rest, ':', Split))
356             return Err;
357           if (Error Err = getInt(Tok, IndexSize))
358             return Err;
359           if (!IndexSize)
360             return reportError("Invalid index size of 0 bytes");
361         }
362       }
363       if (Error Err = setPointerAlignmentInBits(
364               AddrSpace, assumeAligned(PointerABIAlign),
365               assumeAligned(PointerPrefAlign), PointerMemSize, IndexSize))
366         return Err;
367       break;
368     }
369     case 'i':
370     case 'v':
371     case 'f':
372     case 'a': {
373       AlignTypeEnum AlignType;
374       switch (Specifier) {
375       default: llvm_unreachable("Unexpected specifier!");
376       case 'i': AlignType = INTEGER_ALIGN; break;
377       case 'v': AlignType = VECTOR_ALIGN; break;
378       case 'f': AlignType = FLOAT_ALIGN; break;
379       case 'a': AlignType = AGGREGATE_ALIGN; break;
380       }
381 
382       // Bit size.
383       unsigned Size = 0;
384       if (!Tok.empty())
385         if (Error Err = getInt(Tok, Size))
386           return Err;
387 
388       if (AlignType == AGGREGATE_ALIGN && Size != 0)
389         return reportError(
390             "Sized aggregate specification in datalayout string");
391 
392       // ABI alignment.
393       if (Rest.empty())
394         return reportError(
395             "Missing alignment specification in datalayout string");
396       if (Error Err = ::split(Rest, ':', Split))
397         return Err;
398       unsigned ABIAlign;
399       if (Error Err = getIntInBytes(Tok, ABIAlign))
400         return Err;
401       if (AlignType != AGGREGATE_ALIGN && !ABIAlign)
402         return reportError(
403             "ABI alignment specification must be >0 for non-aggregate types");
404 
405       if (!isUInt<16>(ABIAlign))
406         return reportError("Invalid ABI alignment, must be a 16bit integer");
407       if (ABIAlign != 0 && !isPowerOf2_64(ABIAlign))
408         return reportError("Invalid ABI alignment, must be a power of 2");
409 
410       // Preferred alignment.
411       unsigned PrefAlign = ABIAlign;
412       if (!Rest.empty()) {
413         if (Error Err = ::split(Rest, ':', Split))
414           return Err;
415         if (Error Err = getIntInBytes(Tok, PrefAlign))
416           return Err;
417       }
418 
419       if (!isUInt<16>(PrefAlign))
420         return reportError(
421             "Invalid preferred alignment, must be a 16bit integer");
422       if (PrefAlign != 0 && !isPowerOf2_64(PrefAlign))
423         return reportError("Invalid preferred alignment, must be a power of 2");
424 
425       if (Error Err = setAlignment(AlignType, assumeAligned(ABIAlign),
426                                    assumeAligned(PrefAlign), Size))
427         return Err;
428 
429       break;
430     }
431     case 'n':  // Native integer types.
432       while (true) {
433         unsigned Width;
434         if (Error Err = getInt(Tok, Width))
435           return Err;
436         if (Width == 0)
437           return reportError(
438               "Zero width native integer type in datalayout string");
439         LegalIntWidths.push_back(Width);
440         if (Rest.empty())
441           break;
442         if (Error Err = ::split(Rest, ':', Split))
443           return Err;
444       }
445       break;
446     case 'S': { // Stack natural alignment.
447       uint64_t Alignment;
448       if (Error Err = getIntInBytes(Tok, Alignment))
449         return Err;
450       if (Alignment != 0 && !llvm::isPowerOf2_64(Alignment))
451         return reportError("Alignment is neither 0 nor a power of 2");
452       StackNaturalAlign = MaybeAlign(Alignment);
453       break;
454     }
455     case 'F': {
456       switch (Tok.front()) {
457       case 'i':
458         TheFunctionPtrAlignType = FunctionPtrAlignType::Independent;
459         break;
460       case 'n':
461         TheFunctionPtrAlignType = FunctionPtrAlignType::MultipleOfFunctionAlign;
462         break;
463       default:
464         return reportError("Unknown function pointer alignment type in "
465                            "datalayout string");
466       }
467       Tok = Tok.substr(1);
468       uint64_t Alignment;
469       if (Error Err = getIntInBytes(Tok, Alignment))
470         return Err;
471       if (Alignment != 0 && !llvm::isPowerOf2_64(Alignment))
472         return reportError("Alignment is neither 0 nor a power of 2");
473       FunctionPtrAlign = MaybeAlign(Alignment);
474       break;
475     }
476     case 'P': { // Function address space.
477       if (Error Err = getAddrSpace(Tok, ProgramAddrSpace))
478         return Err;
479       break;
480     }
481     case 'A': { // Default stack/alloca address space.
482       if (Error Err = getAddrSpace(Tok, AllocaAddrSpace))
483         return Err;
484       break;
485     }
486     case 'G': { // Default address space for global variables.
487       if (Error Err = getAddrSpace(Tok, DefaultGlobalsAddrSpace))
488         return Err;
489       break;
490     }
491     case 'm':
492       if (!Tok.empty())
493         return reportError("Unexpected trailing characters after mangling "
494                            "specifier in datalayout string");
495       if (Rest.empty())
496         return reportError("Expected mangling specifier in datalayout string");
497       if (Rest.size() > 1)
498         return reportError("Unknown mangling specifier in datalayout string");
499       switch(Rest[0]) {
500       default:
501         return reportError("Unknown mangling in datalayout string");
502       case 'e':
503         ManglingMode = MM_ELF;
504         break;
505       case 'l':
506         ManglingMode = MM_GOFF;
507         break;
508       case 'o':
509         ManglingMode = MM_MachO;
510         break;
511       case 'm':
512         ManglingMode = MM_Mips;
513         break;
514       case 'w':
515         ManglingMode = MM_WinCOFF;
516         break;
517       case 'x':
518         ManglingMode = MM_WinCOFFX86;
519         break;
520       case 'a':
521         ManglingMode = MM_XCOFF;
522         break;
523       }
524       break;
525     default:
526       return reportError("Unknown specifier in datalayout string");
527       break;
528     }
529   }
530 
531   return Error::success();
532 }
533 
534 DataLayout::DataLayout(const Module *M) {
535   init(M);
536 }
537 
538 void DataLayout::init(const Module *M) { *this = M->getDataLayout(); }
539 
540 bool DataLayout::operator==(const DataLayout &Other) const {
541   bool Ret = BigEndian == Other.BigEndian &&
542              AllocaAddrSpace == Other.AllocaAddrSpace &&
543              StackNaturalAlign == Other.StackNaturalAlign &&
544              ProgramAddrSpace == Other.ProgramAddrSpace &&
545              DefaultGlobalsAddrSpace == Other.DefaultGlobalsAddrSpace &&
546              FunctionPtrAlign == Other.FunctionPtrAlign &&
547              TheFunctionPtrAlignType == Other.TheFunctionPtrAlignType &&
548              ManglingMode == Other.ManglingMode &&
549              LegalIntWidths == Other.LegalIntWidths &&
550              Alignments == Other.Alignments && Pointers == Other.Pointers;
551   // Note: getStringRepresentation() might differs, it is not canonicalized
552   return Ret;
553 }
554 
555 DataLayout::AlignmentsTy::iterator
556 DataLayout::findAlignmentLowerBound(AlignTypeEnum AlignType,
557                                     uint32_t BitWidth) {
558   auto Pair = std::make_pair((unsigned)AlignType, BitWidth);
559   return partition_point(Alignments, [=](const LayoutAlignElem &E) {
560     return std::make_pair(E.AlignType, E.TypeBitWidth) < Pair;
561   });
562 }
563 
564 Error DataLayout::setAlignment(AlignTypeEnum align_type, Align abi_align,
565                                Align pref_align, uint32_t bit_width) {
566   // AlignmentsTy::ABIAlign and AlignmentsTy::PrefAlign were once stored as
567   // uint16_t, it is unclear if there are requirements for alignment to be less
568   // than 2^16 other than storage. In the meantime we leave the restriction as
569   // an assert. See D67400 for context.
570   assert(Log2(abi_align) < 16 && Log2(pref_align) < 16 && "Alignment too big");
571   if (!isUInt<24>(bit_width))
572     return reportError("Invalid bit width, must be a 24bit integer");
573   if (pref_align < abi_align)
574     return reportError(
575         "Preferred alignment cannot be less than the ABI alignment");
576 
577   AlignmentsTy::iterator I = findAlignmentLowerBound(align_type, bit_width);
578   if (I != Alignments.end() &&
579       I->AlignType == (unsigned)align_type && I->TypeBitWidth == bit_width) {
580     // Update the abi, preferred alignments.
581     I->ABIAlign = abi_align;
582     I->PrefAlign = pref_align;
583   } else {
584     // Insert before I to keep the vector sorted.
585     Alignments.insert(I, LayoutAlignElem::get(align_type, abi_align,
586                                               pref_align, bit_width));
587   }
588   return Error::success();
589 }
590 
591 const PointerAlignElem &
592 DataLayout::getPointerAlignElem(uint32_t AddressSpace) const {
593   if (AddressSpace != 0) {
594     auto I = lower_bound(Pointers, AddressSpace,
595                          [](const PointerAlignElem &A, uint32_t AddressSpace) {
596       return A.AddressSpace < AddressSpace;
597     });
598     if (I != Pointers.end() && I->AddressSpace == AddressSpace)
599       return *I;
600   }
601 
602   assert(Pointers[0].AddressSpace == 0);
603   return Pointers[0];
604 }
605 
606 Error DataLayout::setPointerAlignmentInBits(uint32_t AddrSpace, Align ABIAlign,
607                                             Align PrefAlign,
608                                             uint32_t TypeBitWidth,
609                                             uint32_t IndexBitWidth) {
610   if (PrefAlign < ABIAlign)
611     return reportError(
612         "Preferred alignment cannot be less than the ABI alignment");
613 
614   auto I = lower_bound(Pointers, AddrSpace,
615                        [](const PointerAlignElem &A, uint32_t AddressSpace) {
616     return A.AddressSpace < AddressSpace;
617   });
618   if (I == Pointers.end() || I->AddressSpace != AddrSpace) {
619     Pointers.insert(I,
620                     PointerAlignElem::getInBits(AddrSpace, ABIAlign, PrefAlign,
621                                                 TypeBitWidth, IndexBitWidth));
622   } else {
623     I->ABIAlign = ABIAlign;
624     I->PrefAlign = PrefAlign;
625     I->TypeBitWidth = TypeBitWidth;
626     I->IndexBitWidth = IndexBitWidth;
627   }
628   return Error::success();
629 }
630 
631 Align DataLayout::getIntegerAlignment(uint32_t BitWidth,
632                                       bool abi_or_pref) const {
633   auto I = findAlignmentLowerBound(INTEGER_ALIGN, BitWidth);
634   // If we don't have an exact match, use alignment of next larger integer
635   // type. If there is none, use alignment of largest integer type by going
636   // back one element.
637   if (I == Alignments.end() || I->AlignType != INTEGER_ALIGN)
638     --I;
639   assert(I->AlignType == INTEGER_ALIGN && "Must be integer alignment");
640   return abi_or_pref ? I->ABIAlign : I->PrefAlign;
641 }
642 
643 namespace {
644 
645 class StructLayoutMap {
646   using LayoutInfoTy = DenseMap<StructType*, StructLayout*>;
647   LayoutInfoTy LayoutInfo;
648 
649 public:
650   ~StructLayoutMap() {
651     // Remove any layouts.
652     for (const auto &I : LayoutInfo) {
653       StructLayout *Value = I.second;
654       Value->~StructLayout();
655       free(Value);
656     }
657   }
658 
659   StructLayout *&operator[](StructType *STy) {
660     return LayoutInfo[STy];
661   }
662 };
663 
664 } // end anonymous namespace
665 
666 void DataLayout::clear() {
667   LegalIntWidths.clear();
668   Alignments.clear();
669   Pointers.clear();
670   delete static_cast<StructLayoutMap *>(LayoutMap);
671   LayoutMap = nullptr;
672 }
673 
674 DataLayout::~DataLayout() {
675   clear();
676 }
677 
678 const StructLayout *DataLayout::getStructLayout(StructType *Ty) const {
679   if (!LayoutMap)
680     LayoutMap = new StructLayoutMap();
681 
682   StructLayoutMap *STM = static_cast<StructLayoutMap*>(LayoutMap);
683   StructLayout *&SL = (*STM)[Ty];
684   if (SL) return SL;
685 
686   // Otherwise, create the struct layout.  Because it is variable length, we
687   // malloc it, then use placement new.
688   StructLayout *L = (StructLayout *)safe_malloc(
689       StructLayout::totalSizeToAlloc<uint64_t>(Ty->getNumElements()));
690 
691   // Set SL before calling StructLayout's ctor.  The ctor could cause other
692   // entries to be added to TheMap, invalidating our reference.
693   SL = L;
694 
695   new (L) StructLayout(Ty, *this);
696 
697   return L;
698 }
699 
700 Align DataLayout::getPointerABIAlignment(unsigned AS) const {
701   return getPointerAlignElem(AS).ABIAlign;
702 }
703 
704 Align DataLayout::getPointerPrefAlignment(unsigned AS) const {
705   return getPointerAlignElem(AS).PrefAlign;
706 }
707 
708 unsigned DataLayout::getPointerSize(unsigned AS) const {
709   return divideCeil(getPointerAlignElem(AS).TypeBitWidth, 8);
710 }
711 
712 unsigned DataLayout::getMaxIndexSize() const {
713   unsigned MaxIndexSize = 0;
714   for (auto &P : Pointers)
715     MaxIndexSize =
716         std::max(MaxIndexSize, (unsigned)divideCeil(P.TypeBitWidth, 8));
717 
718   return MaxIndexSize;
719 }
720 
721 unsigned DataLayout::getPointerTypeSizeInBits(Type *Ty) const {
722   assert(Ty->isPtrOrPtrVectorTy() &&
723          "This should only be called with a pointer or pointer vector type");
724   Ty = Ty->getScalarType();
725   return getPointerSizeInBits(cast<PointerType>(Ty)->getAddressSpace());
726 }
727 
728 unsigned DataLayout::getIndexSize(unsigned AS) const {
729   return divideCeil(getPointerAlignElem(AS).IndexBitWidth, 8);
730 }
731 
732 unsigned DataLayout::getIndexTypeSizeInBits(Type *Ty) const {
733   assert(Ty->isPtrOrPtrVectorTy() &&
734          "This should only be called with a pointer or pointer vector type");
735   Ty = Ty->getScalarType();
736   return getIndexSizeInBits(cast<PointerType>(Ty)->getAddressSpace());
737 }
738 
739 /*!
740   \param abi_or_pref Flag that determines which alignment is returned. true
741   returns the ABI alignment, false returns the preferred alignment.
742   \param Ty The underlying type for which alignment is determined.
743 
744   Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
745   == false) for the requested type \a Ty.
746  */
747 Align DataLayout::getAlignment(Type *Ty, bool abi_or_pref) const {
748   assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
749   switch (Ty->getTypeID()) {
750   // Early escape for the non-numeric types.
751   case Type::LabelTyID:
752     return abi_or_pref ? getPointerABIAlignment(0) : getPointerPrefAlignment(0);
753   case Type::PointerTyID: {
754     unsigned AS = cast<PointerType>(Ty)->getAddressSpace();
755     return abi_or_pref ? getPointerABIAlignment(AS)
756                        : getPointerPrefAlignment(AS);
757     }
758   case Type::ArrayTyID:
759     return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref);
760 
761   case Type::StructTyID: {
762     // Packed structure types always have an ABI alignment of one.
763     if (cast<StructType>(Ty)->isPacked() && abi_or_pref)
764       return Align(1);
765 
766     // Get the layout annotation... which is lazily created on demand.
767     const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
768     const LayoutAlignElem &AggregateAlign = Alignments[0];
769     assert(AggregateAlign.AlignType == AGGREGATE_ALIGN &&
770            "Aggregate alignment must be first alignment entry");
771     const Align Align =
772         abi_or_pref ? AggregateAlign.ABIAlign : AggregateAlign.PrefAlign;
773     return std::max(Align, Layout->getAlignment());
774   }
775   case Type::IntegerTyID:
776     return getIntegerAlignment(Ty->getIntegerBitWidth(), abi_or_pref);
777   case Type::HalfTyID:
778   case Type::BFloatTyID:
779   case Type::FloatTyID:
780   case Type::DoubleTyID:
781   // PPC_FP128TyID and FP128TyID have different data contents, but the
782   // same size and alignment, so they look the same here.
783   case Type::PPC_FP128TyID:
784   case Type::FP128TyID:
785   case Type::X86_FP80TyID: {
786     unsigned BitWidth = getTypeSizeInBits(Ty).getFixedSize();
787     auto I = findAlignmentLowerBound(FLOAT_ALIGN, BitWidth);
788     if (I != Alignments.end() && I->AlignType == FLOAT_ALIGN &&
789         I->TypeBitWidth == BitWidth)
790       return abi_or_pref ? I->ABIAlign : I->PrefAlign;
791 
792     // If we still couldn't find a reasonable default alignment, fall back
793     // to a simple heuristic that the alignment is the first power of two
794     // greater-or-equal to the store size of the type.  This is a reasonable
795     // approximation of reality, and if the user wanted something less
796     // less conservative, they should have specified it explicitly in the data
797     // layout.
798     return Align(PowerOf2Ceil(BitWidth / 8));
799   }
800   case Type::X86_MMXTyID:
801   case Type::FixedVectorTyID:
802   case Type::ScalableVectorTyID: {
803     unsigned BitWidth = getTypeSizeInBits(Ty).getKnownMinSize();
804     auto I = findAlignmentLowerBound(VECTOR_ALIGN, BitWidth);
805     if (I != Alignments.end() && I->AlignType == VECTOR_ALIGN &&
806         I->TypeBitWidth == BitWidth)
807       return abi_or_pref ? I->ABIAlign : I->PrefAlign;
808 
809     // By default, use natural alignment for vector types. This is consistent
810     // with what clang and llvm-gcc do.
811     //
812     // We're only calculating a natural alignment, so it doesn't have to be
813     // based on the full size for scalable vectors. Using the minimum element
814     // count should be enough here.
815     return Align(PowerOf2Ceil(getTypeStoreSize(Ty).getKnownMinSize()));
816   }
817   case Type::X86_AMXTyID:
818     return Align(64);
819   default:
820     llvm_unreachable("Bad type for getAlignment!!!");
821   }
822 }
823 
824 /// TODO: Remove this function once the transition to Align is over.
825 uint64_t DataLayout::getABITypeAlignment(Type *Ty) const {
826   return getABITypeAlign(Ty).value();
827 }
828 
829 Align DataLayout::getABITypeAlign(Type *Ty) const {
830   return getAlignment(Ty, true);
831 }
832 
833 /// TODO: Remove this function once the transition to Align is over.
834 uint64_t DataLayout::getPrefTypeAlignment(Type *Ty) const {
835   return getPrefTypeAlign(Ty).value();
836 }
837 
838 Align DataLayout::getPrefTypeAlign(Type *Ty) const {
839   return getAlignment(Ty, false);
840 }
841 
842 IntegerType *DataLayout::getIntPtrType(LLVMContext &C,
843                                        unsigned AddressSpace) const {
844   return IntegerType::get(C, getPointerSizeInBits(AddressSpace));
845 }
846 
847 Type *DataLayout::getIntPtrType(Type *Ty) const {
848   assert(Ty->isPtrOrPtrVectorTy() &&
849          "Expected a pointer or pointer vector type.");
850   unsigned NumBits = getPointerTypeSizeInBits(Ty);
851   IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits);
852   if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
853     return VectorType::get(IntTy, VecTy);
854   return IntTy;
855 }
856 
857 Type *DataLayout::getSmallestLegalIntType(LLVMContext &C, unsigned Width) const {
858   for (unsigned LegalIntWidth : LegalIntWidths)
859     if (Width <= LegalIntWidth)
860       return Type::getIntNTy(C, LegalIntWidth);
861   return nullptr;
862 }
863 
864 unsigned DataLayout::getLargestLegalIntTypeSizeInBits() const {
865   auto Max = std::max_element(LegalIntWidths.begin(), LegalIntWidths.end());
866   return Max != LegalIntWidths.end() ? *Max : 0;
867 }
868 
869 Type *DataLayout::getIndexType(Type *Ty) const {
870   assert(Ty->isPtrOrPtrVectorTy() &&
871          "Expected a pointer or pointer vector type.");
872   unsigned NumBits = getIndexTypeSizeInBits(Ty);
873   IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits);
874   if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
875     return VectorType::get(IntTy, VecTy);
876   return IntTy;
877 }
878 
879 int64_t DataLayout::getIndexedOffsetInType(Type *ElemTy,
880                                            ArrayRef<Value *> Indices) const {
881   int64_t Result = 0;
882 
883   generic_gep_type_iterator<Value* const*>
884     GTI = gep_type_begin(ElemTy, Indices),
885     GTE = gep_type_end(ElemTy, Indices);
886   for (; GTI != GTE; ++GTI) {
887     Value *Idx = GTI.getOperand();
888     if (StructType *STy = GTI.getStructTypeOrNull()) {
889       assert(Idx->getType()->isIntegerTy(32) && "Illegal struct idx");
890       unsigned FieldNo = cast<ConstantInt>(Idx)->getZExtValue();
891 
892       // Get structure layout information...
893       const StructLayout *Layout = getStructLayout(STy);
894 
895       // Add in the offset, as calculated by the structure layout info...
896       Result += Layout->getElementOffset(FieldNo);
897     } else {
898       // Get the array index and the size of each array element.
899       if (int64_t arrayIdx = cast<ConstantInt>(Idx)->getSExtValue())
900         Result += arrayIdx * getTypeAllocSize(GTI.getIndexedType());
901     }
902   }
903 
904   return Result;
905 }
906 
907 static APInt getElementIndex(TypeSize ElemSize, APInt &Offset) {
908   // Skip over scalable or zero size elements. Also skip element sizes larger
909   // than the positive index space, because the arithmetic below may not be
910   // correct in that case.
911   unsigned BitWidth = Offset.getBitWidth();
912   if (ElemSize.isScalable() || ElemSize == 0 ||
913       !isUIntN(BitWidth - 1, ElemSize)) {
914     return APInt::getZero(BitWidth);
915   }
916 
917   APInt Index = Offset.sdiv(ElemSize);
918   Offset -= Index * ElemSize;
919   if (Offset.isNegative()) {
920     // Prefer a positive remaining offset to allow struct indexing.
921     --Index;
922     Offset += ElemSize;
923     assert(Offset.isNonNegative() && "Remaining offset shouldn't be negative");
924   }
925   return Index;
926 }
927 
928 Optional<APInt> DataLayout::getGEPIndexForOffset(Type *&ElemTy,
929                                                  APInt &Offset) const {
930   if (auto *ArrTy = dyn_cast<ArrayType>(ElemTy)) {
931     ElemTy = ArrTy->getElementType();
932     return getElementIndex(getTypeAllocSize(ElemTy), Offset);
933   }
934 
935   if (auto *VecTy = dyn_cast<VectorType>(ElemTy)) {
936     ElemTy = VecTy->getElementType();
937     unsigned ElemSizeInBits = getTypeSizeInBits(ElemTy).getFixedSize();
938     // GEPs over non-multiple of 8 size vector elements are invalid.
939     if (ElemSizeInBits % 8 != 0)
940       return None;
941 
942     return getElementIndex(TypeSize::Fixed(ElemSizeInBits / 8), Offset);
943   }
944 
945   if (auto *STy = dyn_cast<StructType>(ElemTy)) {
946     const StructLayout *SL = getStructLayout(STy);
947     uint64_t IntOffset = Offset.getZExtValue();
948     if (IntOffset >= SL->getSizeInBytes())
949       return None;
950 
951     unsigned Index = SL->getElementContainingOffset(IntOffset);
952     Offset -= SL->getElementOffset(Index);
953     ElemTy = STy->getElementType(Index);
954     return APInt(32, Index);
955   }
956 
957   // Non-aggregate type.
958   return None;
959 }
960 
961 SmallVector<APInt> DataLayout::getGEPIndicesForOffset(Type *&ElemTy,
962                                                       APInt &Offset) const {
963   assert(ElemTy->isSized() && "Element type must be sized");
964   SmallVector<APInt> Indices;
965   Indices.push_back(getElementIndex(getTypeAllocSize(ElemTy), Offset));
966   while (Offset != 0) {
967     Optional<APInt> Index = getGEPIndexForOffset(ElemTy, Offset);
968     if (!Index)
969       break;
970     Indices.push_back(*Index);
971   }
972 
973   return Indices;
974 }
975 
976 /// getPreferredAlign - Return the preferred alignment of the specified global.
977 /// This includes an explicitly requested alignment (if the global has one).
978 Align DataLayout::getPreferredAlign(const GlobalVariable *GV) const {
979   MaybeAlign GVAlignment = GV->getAlign();
980   // If a section is specified, always precisely honor explicit alignment,
981   // so we don't insert padding into a section we don't control.
982   if (GVAlignment && GV->hasSection())
983     return *GVAlignment;
984 
985   // If no explicit alignment is specified, compute the alignment based on
986   // the IR type. If an alignment is specified, increase it to match the ABI
987   // alignment of the IR type.
988   //
989   // FIXME: Not sure it makes sense to use the alignment of the type if
990   // there's already an explicit alignment specification.
991   Type *ElemType = GV->getValueType();
992   Align Alignment = getPrefTypeAlign(ElemType);
993   if (GVAlignment) {
994     if (*GVAlignment >= Alignment)
995       Alignment = *GVAlignment;
996     else
997       Alignment = std::max(*GVAlignment, getABITypeAlign(ElemType));
998   }
999 
1000   // If no explicit alignment is specified, and the global is large, increase
1001   // the alignment to 16.
1002   // FIXME: Why 16, specifically?
1003   if (GV->hasInitializer() && !GVAlignment) {
1004     if (Alignment < Align(16)) {
1005       // If the global is not external, see if it is large.  If so, give it a
1006       // larger alignment.
1007       if (getTypeSizeInBits(ElemType) > 128)
1008         Alignment = Align(16); // 16-byte alignment.
1009     }
1010   }
1011   return Alignment;
1012 }
1013