1 //===-- Constants.cpp - Implement Constant nodes --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Constant* classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Constants.h" 14 #include "LLVMContextImpl.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/IR/BasicBlock.h" 19 #include "llvm/IR/ConstantFold.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/GlobalAlias.h" 24 #include "llvm/IR/GlobalIFunc.h" 25 #include "llvm/IR/GlobalValue.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/PatternMatch.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <algorithm> 34 35 using namespace llvm; 36 using namespace PatternMatch; 37 38 //===----------------------------------------------------------------------===// 39 // Constant Class 40 //===----------------------------------------------------------------------===// 41 42 bool Constant::isNegativeZeroValue() const { 43 // Floating point values have an explicit -0.0 value. 44 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 45 return CFP->isZero() && CFP->isNegative(); 46 47 // Equivalent for a vector of -0.0's. 48 if (getType()->isVectorTy()) 49 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 50 return SplatCFP->isNegativeZeroValue(); 51 52 // We've already handled true FP case; any other FP vectors can't represent -0.0. 53 if (getType()->isFPOrFPVectorTy()) 54 return false; 55 56 // Otherwise, just use +0.0. 57 return isNullValue(); 58 } 59 60 // Return true iff this constant is positive zero (floating point), negative 61 // zero (floating point), or a null value. 62 bool Constant::isZeroValue() const { 63 // Floating point values have an explicit -0.0 value. 64 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 65 return CFP->isZero(); 66 67 // Check for constant splat vectors of 1 values. 68 if (getType()->isVectorTy()) 69 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 70 return SplatCFP->isZero(); 71 72 // Otherwise, just use +0.0. 73 return isNullValue(); 74 } 75 76 bool Constant::isNullValue() const { 77 // 0 is null. 78 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 79 return CI->isZero(); 80 81 // +0.0 is null. 82 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 83 // ppc_fp128 determine isZero using high order double only 84 // Should check the bitwise value to make sure all bits are zero. 85 return CFP->isExactlyValue(+0.0); 86 87 // constant zero is zero for aggregates, cpnull is null for pointers, none for 88 // tokens. 89 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) || 90 isa<ConstantTokenNone>(this); 91 } 92 93 bool Constant::isAllOnesValue() const { 94 // Check for -1 integers 95 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 96 return CI->isMinusOne(); 97 98 // Check for FP which are bitcasted from -1 integers 99 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 100 return CFP->getValueAPF().bitcastToAPInt().isAllOnes(); 101 102 // Check for constant splat vectors of 1 values. 103 if (getType()->isVectorTy()) 104 if (const auto *SplatVal = getSplatValue()) 105 return SplatVal->isAllOnesValue(); 106 107 return false; 108 } 109 110 bool Constant::isOneValue() const { 111 // Check for 1 integers 112 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 113 return CI->isOne(); 114 115 // Check for FP which are bitcasted from 1 integers 116 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 117 return CFP->getValueAPF().bitcastToAPInt().isOne(); 118 119 // Check for constant splat vectors of 1 values. 120 if (getType()->isVectorTy()) 121 if (const auto *SplatVal = getSplatValue()) 122 return SplatVal->isOneValue(); 123 124 return false; 125 } 126 127 bool Constant::isNotOneValue() const { 128 // Check for 1 integers 129 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 130 return !CI->isOneValue(); 131 132 // Check for FP which are bitcasted from 1 integers 133 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 134 return !CFP->getValueAPF().bitcastToAPInt().isOne(); 135 136 // Check that vectors don't contain 1 137 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 138 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 139 Constant *Elt = getAggregateElement(I); 140 if (!Elt || !Elt->isNotOneValue()) 141 return false; 142 } 143 return true; 144 } 145 146 // Check for splats that don't contain 1 147 if (getType()->isVectorTy()) 148 if (const auto *SplatVal = getSplatValue()) 149 return SplatVal->isNotOneValue(); 150 151 // It *may* contain 1, we can't tell. 152 return false; 153 } 154 155 bool Constant::isMinSignedValue() const { 156 // Check for INT_MIN integers 157 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 158 return CI->isMinValue(/*isSigned=*/true); 159 160 // Check for FP which are bitcasted from INT_MIN integers 161 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 162 return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); 163 164 // Check for splats of INT_MIN values. 165 if (getType()->isVectorTy()) 166 if (const auto *SplatVal = getSplatValue()) 167 return SplatVal->isMinSignedValue(); 168 169 return false; 170 } 171 172 bool Constant::isNotMinSignedValue() const { 173 // Check for INT_MIN integers 174 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 175 return !CI->isMinValue(/*isSigned=*/true); 176 177 // Check for FP which are bitcasted from INT_MIN integers 178 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 179 return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); 180 181 // Check that vectors don't contain INT_MIN 182 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 183 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 184 Constant *Elt = getAggregateElement(I); 185 if (!Elt || !Elt->isNotMinSignedValue()) 186 return false; 187 } 188 return true; 189 } 190 191 // Check for splats that aren't INT_MIN 192 if (getType()->isVectorTy()) 193 if (const auto *SplatVal = getSplatValue()) 194 return SplatVal->isNotMinSignedValue(); 195 196 // It *may* contain INT_MIN, we can't tell. 197 return false; 198 } 199 200 bool Constant::isFiniteNonZeroFP() const { 201 if (auto *CFP = dyn_cast<ConstantFP>(this)) 202 return CFP->getValueAPF().isFiniteNonZero(); 203 204 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 205 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 206 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I)); 207 if (!CFP || !CFP->getValueAPF().isFiniteNonZero()) 208 return false; 209 } 210 return true; 211 } 212 213 if (getType()->isVectorTy()) 214 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 215 return SplatCFP->isFiniteNonZeroFP(); 216 217 // It *may* contain finite non-zero, we can't tell. 218 return false; 219 } 220 221 bool Constant::isNormalFP() const { 222 if (auto *CFP = dyn_cast<ConstantFP>(this)) 223 return CFP->getValueAPF().isNormal(); 224 225 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 226 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 227 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I)); 228 if (!CFP || !CFP->getValueAPF().isNormal()) 229 return false; 230 } 231 return true; 232 } 233 234 if (getType()->isVectorTy()) 235 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 236 return SplatCFP->isNormalFP(); 237 238 // It *may* contain a normal fp value, we can't tell. 239 return false; 240 } 241 242 bool Constant::hasExactInverseFP() const { 243 if (auto *CFP = dyn_cast<ConstantFP>(this)) 244 return CFP->getValueAPF().getExactInverse(nullptr); 245 246 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 247 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 248 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I)); 249 if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr)) 250 return false; 251 } 252 return true; 253 } 254 255 if (getType()->isVectorTy()) 256 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 257 return SplatCFP->hasExactInverseFP(); 258 259 // It *may* have an exact inverse fp value, we can't tell. 260 return false; 261 } 262 263 bool Constant::isNaN() const { 264 if (auto *CFP = dyn_cast<ConstantFP>(this)) 265 return CFP->isNaN(); 266 267 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 268 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 269 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I)); 270 if (!CFP || !CFP->isNaN()) 271 return false; 272 } 273 return true; 274 } 275 276 if (getType()->isVectorTy()) 277 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 278 return SplatCFP->isNaN(); 279 280 // It *may* be NaN, we can't tell. 281 return false; 282 } 283 284 bool Constant::isElementWiseEqual(Value *Y) const { 285 // Are they fully identical? 286 if (this == Y) 287 return true; 288 289 // The input value must be a vector constant with the same type. 290 auto *VTy = dyn_cast<VectorType>(getType()); 291 if (!isa<Constant>(Y) || !VTy || VTy != Y->getType()) 292 return false; 293 294 // TODO: Compare pointer constants? 295 if (!(VTy->getElementType()->isIntegerTy() || 296 VTy->getElementType()->isFloatingPointTy())) 297 return false; 298 299 // They may still be identical element-wise (if they have `undef`s). 300 // Bitcast to integer to allow exact bitwise comparison for all types. 301 Type *IntTy = VectorType::getInteger(VTy); 302 Constant *C0 = ConstantExpr::getBitCast(const_cast<Constant *>(this), IntTy); 303 Constant *C1 = ConstantExpr::getBitCast(cast<Constant>(Y), IntTy); 304 Constant *CmpEq = ConstantExpr::getICmp(ICmpInst::ICMP_EQ, C0, C1); 305 return isa<UndefValue>(CmpEq) || match(CmpEq, m_One()); 306 } 307 308 static bool 309 containsUndefinedElement(const Constant *C, 310 function_ref<bool(const Constant *)> HasFn) { 311 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 312 if (HasFn(C)) 313 return true; 314 if (isa<ConstantAggregateZero>(C)) 315 return false; 316 if (isa<ScalableVectorType>(C->getType())) 317 return false; 318 319 for (unsigned i = 0, e = cast<FixedVectorType>(VTy)->getNumElements(); 320 i != e; ++i) { 321 if (Constant *Elem = C->getAggregateElement(i)) 322 if (HasFn(Elem)) 323 return true; 324 } 325 } 326 327 return false; 328 } 329 330 bool Constant::containsUndefOrPoisonElement() const { 331 return containsUndefinedElement( 332 this, [&](const auto *C) { return isa<UndefValue>(C); }); 333 } 334 335 bool Constant::containsPoisonElement() const { 336 return containsUndefinedElement( 337 this, [&](const auto *C) { return isa<PoisonValue>(C); }); 338 } 339 340 bool Constant::containsConstantExpression() const { 341 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 342 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 343 if (isa<ConstantExpr>(getAggregateElement(i))) 344 return true; 345 } 346 return false; 347 } 348 349 /// Constructor to create a '0' constant of arbitrary type. 350 Constant *Constant::getNullValue(Type *Ty) { 351 switch (Ty->getTypeID()) { 352 case Type::IntegerTyID: 353 return ConstantInt::get(Ty, 0); 354 case Type::HalfTyID: 355 case Type::BFloatTyID: 356 case Type::FloatTyID: 357 case Type::DoubleTyID: 358 case Type::X86_FP80TyID: 359 case Type::FP128TyID: 360 case Type::PPC_FP128TyID: 361 return ConstantFP::get(Ty->getContext(), 362 APFloat::getZero(Ty->getFltSemantics())); 363 case Type::PointerTyID: 364 return ConstantPointerNull::get(cast<PointerType>(Ty)); 365 case Type::StructTyID: 366 case Type::ArrayTyID: 367 case Type::FixedVectorTyID: 368 case Type::ScalableVectorTyID: 369 return ConstantAggregateZero::get(Ty); 370 case Type::TokenTyID: 371 return ConstantTokenNone::get(Ty->getContext()); 372 default: 373 // Function, Label, or Opaque type? 374 llvm_unreachable("Cannot create a null constant of that type!"); 375 } 376 } 377 378 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { 379 Type *ScalarTy = Ty->getScalarType(); 380 381 // Create the base integer constant. 382 Constant *C = ConstantInt::get(Ty->getContext(), V); 383 384 // Convert an integer to a pointer, if necessary. 385 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy)) 386 C = ConstantExpr::getIntToPtr(C, PTy); 387 388 // Broadcast a scalar to a vector, if necessary. 389 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 390 C = ConstantVector::getSplat(VTy->getElementCount(), C); 391 392 return C; 393 } 394 395 Constant *Constant::getAllOnesValue(Type *Ty) { 396 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) 397 return ConstantInt::get(Ty->getContext(), 398 APInt::getAllOnes(ITy->getBitWidth())); 399 400 if (Ty->isFloatingPointTy()) { 401 APFloat FL = APFloat::getAllOnesValue(Ty->getFltSemantics()); 402 return ConstantFP::get(Ty->getContext(), FL); 403 } 404 405 VectorType *VTy = cast<VectorType>(Ty); 406 return ConstantVector::getSplat(VTy->getElementCount(), 407 getAllOnesValue(VTy->getElementType())); 408 } 409 410 Constant *Constant::getAggregateElement(unsigned Elt) const { 411 assert((getType()->isAggregateType() || getType()->isVectorTy()) && 412 "Must be an aggregate/vector constant"); 413 414 if (const auto *CC = dyn_cast<ConstantAggregate>(this)) 415 return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr; 416 417 if (const auto *CAZ = dyn_cast<ConstantAggregateZero>(this)) 418 return Elt < CAZ->getElementCount().getKnownMinValue() 419 ? CAZ->getElementValue(Elt) 420 : nullptr; 421 422 // FIXME: getNumElements() will fail for non-fixed vector types. 423 if (isa<ScalableVectorType>(getType())) 424 return nullptr; 425 426 if (const auto *PV = dyn_cast<PoisonValue>(this)) 427 return Elt < PV->getNumElements() ? PV->getElementValue(Elt) : nullptr; 428 429 if (const auto *UV = dyn_cast<UndefValue>(this)) 430 return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr; 431 432 if (const auto *CDS = dyn_cast<ConstantDataSequential>(this)) 433 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) 434 : nullptr; 435 436 return nullptr; 437 } 438 439 Constant *Constant::getAggregateElement(Constant *Elt) const { 440 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer"); 441 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) { 442 // Check if the constant fits into an uint64_t. 443 if (CI->getValue().getActiveBits() > 64) 444 return nullptr; 445 return getAggregateElement(CI->getZExtValue()); 446 } 447 return nullptr; 448 } 449 450 void Constant::destroyConstant() { 451 /// First call destroyConstantImpl on the subclass. This gives the subclass 452 /// a chance to remove the constant from any maps/pools it's contained in. 453 switch (getValueID()) { 454 default: 455 llvm_unreachable("Not a constant!"); 456 #define HANDLE_CONSTANT(Name) \ 457 case Value::Name##Val: \ 458 cast<Name>(this)->destroyConstantImpl(); \ 459 break; 460 #include "llvm/IR/Value.def" 461 } 462 463 // When a Constant is destroyed, there may be lingering 464 // references to the constant by other constants in the constant pool. These 465 // constants are implicitly dependent on the module that is being deleted, 466 // but they don't know that. Because we only find out when the CPV is 467 // deleted, we must now notify all of our users (that should only be 468 // Constants) that they are, in fact, invalid now and should be deleted. 469 // 470 while (!use_empty()) { 471 Value *V = user_back(); 472 #ifndef NDEBUG // Only in -g mode... 473 if (!isa<Constant>(V)) { 474 dbgs() << "While deleting: " << *this 475 << "\n\nUse still stuck around after Def is destroyed: " << *V 476 << "\n\n"; 477 } 478 #endif 479 assert(isa<Constant>(V) && "References remain to Constant being destroyed"); 480 cast<Constant>(V)->destroyConstant(); 481 482 // The constant should remove itself from our use list... 483 assert((use_empty() || user_back() != V) && "Constant not removed!"); 484 } 485 486 // Value has no outstanding references it is safe to delete it now... 487 deleteConstant(this); 488 } 489 490 void llvm::deleteConstant(Constant *C) { 491 switch (C->getValueID()) { 492 case Constant::ConstantIntVal: 493 delete static_cast<ConstantInt *>(C); 494 break; 495 case Constant::ConstantFPVal: 496 delete static_cast<ConstantFP *>(C); 497 break; 498 case Constant::ConstantAggregateZeroVal: 499 delete static_cast<ConstantAggregateZero *>(C); 500 break; 501 case Constant::ConstantArrayVal: 502 delete static_cast<ConstantArray *>(C); 503 break; 504 case Constant::ConstantStructVal: 505 delete static_cast<ConstantStruct *>(C); 506 break; 507 case Constant::ConstantVectorVal: 508 delete static_cast<ConstantVector *>(C); 509 break; 510 case Constant::ConstantPointerNullVal: 511 delete static_cast<ConstantPointerNull *>(C); 512 break; 513 case Constant::ConstantDataArrayVal: 514 delete static_cast<ConstantDataArray *>(C); 515 break; 516 case Constant::ConstantDataVectorVal: 517 delete static_cast<ConstantDataVector *>(C); 518 break; 519 case Constant::ConstantTokenNoneVal: 520 delete static_cast<ConstantTokenNone *>(C); 521 break; 522 case Constant::BlockAddressVal: 523 delete static_cast<BlockAddress *>(C); 524 break; 525 case Constant::DSOLocalEquivalentVal: 526 delete static_cast<DSOLocalEquivalent *>(C); 527 break; 528 case Constant::NoCFIValueVal: 529 delete static_cast<NoCFIValue *>(C); 530 break; 531 case Constant::UndefValueVal: 532 delete static_cast<UndefValue *>(C); 533 break; 534 case Constant::PoisonValueVal: 535 delete static_cast<PoisonValue *>(C); 536 break; 537 case Constant::ConstantExprVal: 538 if (isa<UnaryConstantExpr>(C)) 539 delete static_cast<UnaryConstantExpr *>(C); 540 else if (isa<BinaryConstantExpr>(C)) 541 delete static_cast<BinaryConstantExpr *>(C); 542 else if (isa<SelectConstantExpr>(C)) 543 delete static_cast<SelectConstantExpr *>(C); 544 else if (isa<ExtractElementConstantExpr>(C)) 545 delete static_cast<ExtractElementConstantExpr *>(C); 546 else if (isa<InsertElementConstantExpr>(C)) 547 delete static_cast<InsertElementConstantExpr *>(C); 548 else if (isa<ShuffleVectorConstantExpr>(C)) 549 delete static_cast<ShuffleVectorConstantExpr *>(C); 550 else if (isa<GetElementPtrConstantExpr>(C)) 551 delete static_cast<GetElementPtrConstantExpr *>(C); 552 else if (isa<CompareConstantExpr>(C)) 553 delete static_cast<CompareConstantExpr *>(C); 554 else 555 llvm_unreachable("Unexpected constant expr"); 556 break; 557 default: 558 llvm_unreachable("Unexpected constant"); 559 } 560 } 561 562 /// Check if C contains a GlobalValue for which Predicate is true. 563 static bool 564 ConstHasGlobalValuePredicate(const Constant *C, 565 bool (*Predicate)(const GlobalValue *)) { 566 SmallPtrSet<const Constant *, 8> Visited; 567 SmallVector<const Constant *, 8> WorkList; 568 WorkList.push_back(C); 569 Visited.insert(C); 570 571 while (!WorkList.empty()) { 572 const Constant *WorkItem = WorkList.pop_back_val(); 573 if (const auto *GV = dyn_cast<GlobalValue>(WorkItem)) 574 if (Predicate(GV)) 575 return true; 576 for (const Value *Op : WorkItem->operands()) { 577 const Constant *ConstOp = dyn_cast<Constant>(Op); 578 if (!ConstOp) 579 continue; 580 if (Visited.insert(ConstOp).second) 581 WorkList.push_back(ConstOp); 582 } 583 } 584 return false; 585 } 586 587 bool Constant::isThreadDependent() const { 588 auto DLLImportPredicate = [](const GlobalValue *GV) { 589 return GV->isThreadLocal(); 590 }; 591 return ConstHasGlobalValuePredicate(this, DLLImportPredicate); 592 } 593 594 bool Constant::isDLLImportDependent() const { 595 auto DLLImportPredicate = [](const GlobalValue *GV) { 596 return GV->hasDLLImportStorageClass(); 597 }; 598 return ConstHasGlobalValuePredicate(this, DLLImportPredicate); 599 } 600 601 bool Constant::isConstantUsed() const { 602 for (const User *U : users()) { 603 const Constant *UC = dyn_cast<Constant>(U); 604 if (!UC || isa<GlobalValue>(UC)) 605 return true; 606 607 if (UC->isConstantUsed()) 608 return true; 609 } 610 return false; 611 } 612 613 bool Constant::needsDynamicRelocation() const { 614 return getRelocationInfo() == GlobalRelocation; 615 } 616 617 bool Constant::needsRelocation() const { 618 return getRelocationInfo() != NoRelocation; 619 } 620 621 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const { 622 if (isa<GlobalValue>(this)) 623 return GlobalRelocation; // Global reference. 624 625 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this)) 626 return BA->getFunction()->getRelocationInfo(); 627 628 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) { 629 if (CE->getOpcode() == Instruction::Sub) { 630 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0)); 631 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1)); 632 if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt && 633 RHS->getOpcode() == Instruction::PtrToInt) { 634 Constant *LHSOp0 = LHS->getOperand(0); 635 Constant *RHSOp0 = RHS->getOperand(0); 636 637 // While raw uses of blockaddress need to be relocated, differences 638 // between two of them don't when they are for labels in the same 639 // function. This is a common idiom when creating a table for the 640 // indirect goto extension, so we handle it efficiently here. 641 if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) && 642 cast<BlockAddress>(LHSOp0)->getFunction() == 643 cast<BlockAddress>(RHSOp0)->getFunction()) 644 return NoRelocation; 645 646 // Relative pointers do not need to be dynamically relocated. 647 if (auto *RHSGV = 648 dyn_cast<GlobalValue>(RHSOp0->stripInBoundsConstantOffsets())) { 649 auto *LHS = LHSOp0->stripInBoundsConstantOffsets(); 650 if (auto *LHSGV = dyn_cast<GlobalValue>(LHS)) { 651 if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal()) 652 return LocalRelocation; 653 } else if (isa<DSOLocalEquivalent>(LHS)) { 654 if (RHSGV->isDSOLocal()) 655 return LocalRelocation; 656 } 657 } 658 } 659 } 660 } 661 662 PossibleRelocationsTy Result = NoRelocation; 663 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 664 Result = 665 std::max(cast<Constant>(getOperand(i))->getRelocationInfo(), Result); 666 667 return Result; 668 } 669 670 /// Return true if the specified constantexpr is dead. This involves 671 /// recursively traversing users of the constantexpr. 672 /// If RemoveDeadUsers is true, also remove dead users at the same time. 673 static bool constantIsDead(const Constant *C, bool RemoveDeadUsers) { 674 if (isa<GlobalValue>(C)) return false; // Cannot remove this 675 676 Value::const_user_iterator I = C->user_begin(), E = C->user_end(); 677 while (I != E) { 678 const Constant *User = dyn_cast<Constant>(*I); 679 if (!User) return false; // Non-constant usage; 680 if (!constantIsDead(User, RemoveDeadUsers)) 681 return false; // Constant wasn't dead 682 683 // Just removed User, so the iterator was invalidated. 684 // Since we return immediately upon finding a live user, we can always 685 // restart from user_begin(). 686 if (RemoveDeadUsers) 687 I = C->user_begin(); 688 else 689 ++I; 690 } 691 692 if (RemoveDeadUsers) { 693 // If C is only used by metadata, it should not be preserved but should 694 // have its uses replaced. 695 ReplaceableMetadataImpl::SalvageDebugInfo(*C); 696 const_cast<Constant *>(C)->destroyConstant(); 697 } 698 699 return true; 700 } 701 702 void Constant::removeDeadConstantUsers() const { 703 Value::const_user_iterator I = user_begin(), E = user_end(); 704 Value::const_user_iterator LastNonDeadUser = E; 705 while (I != E) { 706 const Constant *User = dyn_cast<Constant>(*I); 707 if (!User) { 708 LastNonDeadUser = I; 709 ++I; 710 continue; 711 } 712 713 if (!constantIsDead(User, /* RemoveDeadUsers= */ true)) { 714 // If the constant wasn't dead, remember that this was the last live use 715 // and move on to the next constant. 716 LastNonDeadUser = I; 717 ++I; 718 continue; 719 } 720 721 // If the constant was dead, then the iterator is invalidated. 722 if (LastNonDeadUser == E) 723 I = user_begin(); 724 else 725 I = std::next(LastNonDeadUser); 726 } 727 } 728 729 bool Constant::hasOneLiveUse() const { return hasNLiveUses(1); } 730 731 bool Constant::hasZeroLiveUses() const { return hasNLiveUses(0); } 732 733 bool Constant::hasNLiveUses(unsigned N) const { 734 unsigned NumUses = 0; 735 for (const Use &U : uses()) { 736 const Constant *User = dyn_cast<Constant>(U.getUser()); 737 if (!User || !constantIsDead(User, /* RemoveDeadUsers= */ false)) { 738 ++NumUses; 739 740 if (NumUses > N) 741 return false; 742 } 743 } 744 return NumUses == N; 745 } 746 747 Constant *Constant::replaceUndefsWith(Constant *C, Constant *Replacement) { 748 assert(C && Replacement && "Expected non-nullptr constant arguments"); 749 Type *Ty = C->getType(); 750 if (match(C, m_Undef())) { 751 assert(Ty == Replacement->getType() && "Expected matching types"); 752 return Replacement; 753 } 754 755 // Don't know how to deal with this constant. 756 auto *VTy = dyn_cast<FixedVectorType>(Ty); 757 if (!VTy) 758 return C; 759 760 unsigned NumElts = VTy->getNumElements(); 761 SmallVector<Constant *, 32> NewC(NumElts); 762 for (unsigned i = 0; i != NumElts; ++i) { 763 Constant *EltC = C->getAggregateElement(i); 764 assert((!EltC || EltC->getType() == Replacement->getType()) && 765 "Expected matching types"); 766 NewC[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC; 767 } 768 return ConstantVector::get(NewC); 769 } 770 771 Constant *Constant::mergeUndefsWith(Constant *C, Constant *Other) { 772 assert(C && Other && "Expected non-nullptr constant arguments"); 773 if (match(C, m_Undef())) 774 return C; 775 776 Type *Ty = C->getType(); 777 if (match(Other, m_Undef())) 778 return UndefValue::get(Ty); 779 780 auto *VTy = dyn_cast<FixedVectorType>(Ty); 781 if (!VTy) 782 return C; 783 784 Type *EltTy = VTy->getElementType(); 785 unsigned NumElts = VTy->getNumElements(); 786 assert(isa<FixedVectorType>(Other->getType()) && 787 cast<FixedVectorType>(Other->getType())->getNumElements() == NumElts && 788 "Type mismatch"); 789 790 bool FoundExtraUndef = false; 791 SmallVector<Constant *, 32> NewC(NumElts); 792 for (unsigned I = 0; I != NumElts; ++I) { 793 NewC[I] = C->getAggregateElement(I); 794 Constant *OtherEltC = Other->getAggregateElement(I); 795 assert(NewC[I] && OtherEltC && "Unknown vector element"); 796 if (!match(NewC[I], m_Undef()) && match(OtherEltC, m_Undef())) { 797 NewC[I] = UndefValue::get(EltTy); 798 FoundExtraUndef = true; 799 } 800 } 801 if (FoundExtraUndef) 802 return ConstantVector::get(NewC); 803 return C; 804 } 805 806 bool Constant::isManifestConstant() const { 807 if (isa<ConstantData>(this)) 808 return true; 809 if (isa<ConstantAggregate>(this) || isa<ConstantExpr>(this)) { 810 for (const Value *Op : operand_values()) 811 if (!cast<Constant>(Op)->isManifestConstant()) 812 return false; 813 return true; 814 } 815 return false; 816 } 817 818 //===----------------------------------------------------------------------===// 819 // ConstantInt 820 //===----------------------------------------------------------------------===// 821 822 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V) 823 : ConstantData(Ty, ConstantIntVal), Val(V) { 824 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); 825 } 826 827 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) { 828 LLVMContextImpl *pImpl = Context.pImpl; 829 if (!pImpl->TheTrueVal) 830 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1); 831 return pImpl->TheTrueVal; 832 } 833 834 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { 835 LLVMContextImpl *pImpl = Context.pImpl; 836 if (!pImpl->TheFalseVal) 837 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0); 838 return pImpl->TheFalseVal; 839 } 840 841 ConstantInt *ConstantInt::getBool(LLVMContext &Context, bool V) { 842 return V ? getTrue(Context) : getFalse(Context); 843 } 844 845 Constant *ConstantInt::getTrue(Type *Ty) { 846 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); 847 ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext()); 848 if (auto *VTy = dyn_cast<VectorType>(Ty)) 849 return ConstantVector::getSplat(VTy->getElementCount(), TrueC); 850 return TrueC; 851 } 852 853 Constant *ConstantInt::getFalse(Type *Ty) { 854 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); 855 ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext()); 856 if (auto *VTy = dyn_cast<VectorType>(Ty)) 857 return ConstantVector::getSplat(VTy->getElementCount(), FalseC); 858 return FalseC; 859 } 860 861 Constant *ConstantInt::getBool(Type *Ty, bool V) { 862 return V ? getTrue(Ty) : getFalse(Ty); 863 } 864 865 // Get a ConstantInt from an APInt. 866 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { 867 // get an existing value or the insertion position 868 LLVMContextImpl *pImpl = Context.pImpl; 869 std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V]; 870 if (!Slot) { 871 // Get the corresponding integer type for the bit width of the value. 872 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); 873 Slot.reset(new ConstantInt(ITy, V)); 874 } 875 assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth())); 876 return Slot.get(); 877 } 878 879 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { 880 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned); 881 882 // For vectors, broadcast the value. 883 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 884 return ConstantVector::getSplat(VTy->getElementCount(), C); 885 886 return C; 887 } 888 889 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) { 890 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); 891 } 892 893 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) { 894 return get(Ty, V, true); 895 } 896 897 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) { 898 return get(Ty, V, true); 899 } 900 901 Constant *ConstantInt::get(Type *Ty, const APInt& V) { 902 ConstantInt *C = get(Ty->getContext(), V); 903 assert(C->getType() == Ty->getScalarType() && 904 "ConstantInt type doesn't match the type implied by its value!"); 905 906 // For vectors, broadcast the value. 907 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 908 return ConstantVector::getSplat(VTy->getElementCount(), C); 909 910 return C; 911 } 912 913 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) { 914 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); 915 } 916 917 /// Remove the constant from the constant table. 918 void ConstantInt::destroyConstantImpl() { 919 llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!"); 920 } 921 922 //===----------------------------------------------------------------------===// 923 // ConstantFP 924 //===----------------------------------------------------------------------===// 925 926 Constant *ConstantFP::get(Type *Ty, double V) { 927 LLVMContext &Context = Ty->getContext(); 928 929 APFloat FV(V); 930 bool ignored; 931 FV.convert(Ty->getScalarType()->getFltSemantics(), 932 APFloat::rmNearestTiesToEven, &ignored); 933 Constant *C = get(Context, FV); 934 935 // For vectors, broadcast the value. 936 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 937 return ConstantVector::getSplat(VTy->getElementCount(), C); 938 939 return C; 940 } 941 942 Constant *ConstantFP::get(Type *Ty, const APFloat &V) { 943 ConstantFP *C = get(Ty->getContext(), V); 944 assert(C->getType() == Ty->getScalarType() && 945 "ConstantFP type doesn't match the type implied by its value!"); 946 947 // For vectors, broadcast the value. 948 if (auto *VTy = dyn_cast<VectorType>(Ty)) 949 return ConstantVector::getSplat(VTy->getElementCount(), C); 950 951 return C; 952 } 953 954 Constant *ConstantFP::get(Type *Ty, StringRef Str) { 955 LLVMContext &Context = Ty->getContext(); 956 957 APFloat FV(Ty->getScalarType()->getFltSemantics(), Str); 958 Constant *C = get(Context, FV); 959 960 // For vectors, broadcast the value. 961 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 962 return ConstantVector::getSplat(VTy->getElementCount(), C); 963 964 return C; 965 } 966 967 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) { 968 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 969 APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload); 970 Constant *C = get(Ty->getContext(), NaN); 971 972 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 973 return ConstantVector::getSplat(VTy->getElementCount(), C); 974 975 return C; 976 } 977 978 Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) { 979 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 980 APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload); 981 Constant *C = get(Ty->getContext(), NaN); 982 983 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 984 return ConstantVector::getSplat(VTy->getElementCount(), C); 985 986 return C; 987 } 988 989 Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) { 990 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 991 APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload); 992 Constant *C = get(Ty->getContext(), NaN); 993 994 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 995 return ConstantVector::getSplat(VTy->getElementCount(), C); 996 997 return C; 998 } 999 1000 Constant *ConstantFP::getZero(Type *Ty, bool Negative) { 1001 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 1002 APFloat NegZero = APFloat::getZero(Semantics, Negative); 1003 Constant *C = get(Ty->getContext(), NegZero); 1004 1005 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1006 return ConstantVector::getSplat(VTy->getElementCount(), C); 1007 1008 return C; 1009 } 1010 1011 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) { 1012 if (Ty->isFPOrFPVectorTy()) 1013 return getNegativeZero(Ty); 1014 1015 return Constant::getNullValue(Ty); 1016 } 1017 1018 1019 // ConstantFP accessors. 1020 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { 1021 LLVMContextImpl* pImpl = Context.pImpl; 1022 1023 std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V]; 1024 1025 if (!Slot) { 1026 Type *Ty = Type::getFloatingPointTy(Context, V.getSemantics()); 1027 Slot.reset(new ConstantFP(Ty, V)); 1028 } 1029 1030 return Slot.get(); 1031 } 1032 1033 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) { 1034 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 1035 Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative)); 1036 1037 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1038 return ConstantVector::getSplat(VTy->getElementCount(), C); 1039 1040 return C; 1041 } 1042 1043 ConstantFP::ConstantFP(Type *Ty, const APFloat &V) 1044 : ConstantData(Ty, ConstantFPVal), Val(V) { 1045 assert(&V.getSemantics() == &Ty->getFltSemantics() && 1046 "FP type Mismatch"); 1047 } 1048 1049 bool ConstantFP::isExactlyValue(const APFloat &V) const { 1050 return Val.bitwiseIsEqual(V); 1051 } 1052 1053 /// Remove the constant from the constant table. 1054 void ConstantFP::destroyConstantImpl() { 1055 llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!"); 1056 } 1057 1058 //===----------------------------------------------------------------------===// 1059 // ConstantAggregateZero Implementation 1060 //===----------------------------------------------------------------------===// 1061 1062 Constant *ConstantAggregateZero::getSequentialElement() const { 1063 if (auto *AT = dyn_cast<ArrayType>(getType())) 1064 return Constant::getNullValue(AT->getElementType()); 1065 return Constant::getNullValue(cast<VectorType>(getType())->getElementType()); 1066 } 1067 1068 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const { 1069 return Constant::getNullValue(getType()->getStructElementType(Elt)); 1070 } 1071 1072 Constant *ConstantAggregateZero::getElementValue(Constant *C) const { 1073 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1074 return getSequentialElement(); 1075 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 1076 } 1077 1078 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const { 1079 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1080 return getSequentialElement(); 1081 return getStructElement(Idx); 1082 } 1083 1084 ElementCount ConstantAggregateZero::getElementCount() const { 1085 Type *Ty = getType(); 1086 if (auto *AT = dyn_cast<ArrayType>(Ty)) 1087 return ElementCount::getFixed(AT->getNumElements()); 1088 if (auto *VT = dyn_cast<VectorType>(Ty)) 1089 return VT->getElementCount(); 1090 return ElementCount::getFixed(Ty->getStructNumElements()); 1091 } 1092 1093 //===----------------------------------------------------------------------===// 1094 // UndefValue Implementation 1095 //===----------------------------------------------------------------------===// 1096 1097 UndefValue *UndefValue::getSequentialElement() const { 1098 if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) 1099 return UndefValue::get(ATy->getElementType()); 1100 return UndefValue::get(cast<VectorType>(getType())->getElementType()); 1101 } 1102 1103 UndefValue *UndefValue::getStructElement(unsigned Elt) const { 1104 return UndefValue::get(getType()->getStructElementType(Elt)); 1105 } 1106 1107 UndefValue *UndefValue::getElementValue(Constant *C) const { 1108 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1109 return getSequentialElement(); 1110 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 1111 } 1112 1113 UndefValue *UndefValue::getElementValue(unsigned Idx) const { 1114 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1115 return getSequentialElement(); 1116 return getStructElement(Idx); 1117 } 1118 1119 unsigned UndefValue::getNumElements() const { 1120 Type *Ty = getType(); 1121 if (auto *AT = dyn_cast<ArrayType>(Ty)) 1122 return AT->getNumElements(); 1123 if (auto *VT = dyn_cast<VectorType>(Ty)) 1124 return cast<FixedVectorType>(VT)->getNumElements(); 1125 return Ty->getStructNumElements(); 1126 } 1127 1128 //===----------------------------------------------------------------------===// 1129 // PoisonValue Implementation 1130 //===----------------------------------------------------------------------===// 1131 1132 PoisonValue *PoisonValue::getSequentialElement() const { 1133 if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) 1134 return PoisonValue::get(ATy->getElementType()); 1135 return PoisonValue::get(cast<VectorType>(getType())->getElementType()); 1136 } 1137 1138 PoisonValue *PoisonValue::getStructElement(unsigned Elt) const { 1139 return PoisonValue::get(getType()->getStructElementType(Elt)); 1140 } 1141 1142 PoisonValue *PoisonValue::getElementValue(Constant *C) const { 1143 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1144 return getSequentialElement(); 1145 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 1146 } 1147 1148 PoisonValue *PoisonValue::getElementValue(unsigned Idx) const { 1149 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1150 return getSequentialElement(); 1151 return getStructElement(Idx); 1152 } 1153 1154 //===----------------------------------------------------------------------===// 1155 // ConstantXXX Classes 1156 //===----------------------------------------------------------------------===// 1157 1158 template <typename ItTy, typename EltTy> 1159 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) { 1160 for (; Start != End; ++Start) 1161 if (*Start != Elt) 1162 return false; 1163 return true; 1164 } 1165 1166 template <typename SequentialTy, typename ElementTy> 1167 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) { 1168 assert(!V.empty() && "Cannot get empty int sequence."); 1169 1170 SmallVector<ElementTy, 16> Elts; 1171 for (Constant *C : V) 1172 if (auto *CI = dyn_cast<ConstantInt>(C)) 1173 Elts.push_back(CI->getZExtValue()); 1174 else 1175 return nullptr; 1176 return SequentialTy::get(V[0]->getContext(), Elts); 1177 } 1178 1179 template <typename SequentialTy, typename ElementTy> 1180 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) { 1181 assert(!V.empty() && "Cannot get empty FP sequence."); 1182 1183 SmallVector<ElementTy, 16> Elts; 1184 for (Constant *C : V) 1185 if (auto *CFP = dyn_cast<ConstantFP>(C)) 1186 Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 1187 else 1188 return nullptr; 1189 return SequentialTy::getFP(V[0]->getType(), Elts); 1190 } 1191 1192 template <typename SequenceTy> 1193 static Constant *getSequenceIfElementsMatch(Constant *C, 1194 ArrayRef<Constant *> V) { 1195 // We speculatively build the elements here even if it turns out that there is 1196 // a constantexpr or something else weird, since it is so uncommon for that to 1197 // happen. 1198 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 1199 if (CI->getType()->isIntegerTy(8)) 1200 return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V); 1201 else if (CI->getType()->isIntegerTy(16)) 1202 return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V); 1203 else if (CI->getType()->isIntegerTy(32)) 1204 return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V); 1205 else if (CI->getType()->isIntegerTy(64)) 1206 return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V); 1207 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1208 if (CFP->getType()->isHalfTy() || CFP->getType()->isBFloatTy()) 1209 return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V); 1210 else if (CFP->getType()->isFloatTy()) 1211 return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V); 1212 else if (CFP->getType()->isDoubleTy()) 1213 return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V); 1214 } 1215 1216 return nullptr; 1217 } 1218 1219 ConstantAggregate::ConstantAggregate(Type *T, ValueTy VT, 1220 ArrayRef<Constant *> V) 1221 : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(), 1222 V.size()) { 1223 llvm::copy(V, op_begin()); 1224 1225 // Check that types match, unless this is an opaque struct. 1226 if (auto *ST = dyn_cast<StructType>(T)) { 1227 if (ST->isOpaque()) 1228 return; 1229 for (unsigned I = 0, E = V.size(); I != E; ++I) 1230 assert(V[I]->getType() == ST->getTypeAtIndex(I) && 1231 "Initializer for struct element doesn't match!"); 1232 } 1233 } 1234 1235 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) 1236 : ConstantAggregate(T, ConstantArrayVal, V) { 1237 assert(V.size() == T->getNumElements() && 1238 "Invalid initializer for constant array"); 1239 } 1240 1241 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) { 1242 if (Constant *C = getImpl(Ty, V)) 1243 return C; 1244 return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V); 1245 } 1246 1247 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) { 1248 // Empty arrays are canonicalized to ConstantAggregateZero. 1249 if (V.empty()) 1250 return ConstantAggregateZero::get(Ty); 1251 1252 for (Constant *C : V) { 1253 assert(C->getType() == Ty->getElementType() && 1254 "Wrong type in array element initializer"); 1255 (void)C; 1256 } 1257 1258 // If this is an all-zero array, return a ConstantAggregateZero object. If 1259 // all undef, return an UndefValue, if "all simple", then return a 1260 // ConstantDataArray. 1261 Constant *C = V[0]; 1262 if (isa<PoisonValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) 1263 return PoisonValue::get(Ty); 1264 1265 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) 1266 return UndefValue::get(Ty); 1267 1268 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C)) 1269 return ConstantAggregateZero::get(Ty); 1270 1271 // Check to see if all of the elements are ConstantFP or ConstantInt and if 1272 // the element type is compatible with ConstantDataVector. If so, use it. 1273 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) 1274 return getSequenceIfElementsMatch<ConstantDataArray>(C, V); 1275 1276 // Otherwise, we really do want to create a ConstantArray. 1277 return nullptr; 1278 } 1279 1280 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, 1281 ArrayRef<Constant*> V, 1282 bool Packed) { 1283 unsigned VecSize = V.size(); 1284 SmallVector<Type*, 16> EltTypes(VecSize); 1285 for (unsigned i = 0; i != VecSize; ++i) 1286 EltTypes[i] = V[i]->getType(); 1287 1288 return StructType::get(Context, EltTypes, Packed); 1289 } 1290 1291 1292 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V, 1293 bool Packed) { 1294 assert(!V.empty() && 1295 "ConstantStruct::getTypeForElements cannot be called on empty list"); 1296 return getTypeForElements(V[0]->getContext(), V, Packed); 1297 } 1298 1299 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V) 1300 : ConstantAggregate(T, ConstantStructVal, V) { 1301 assert((T->isOpaque() || V.size() == T->getNumElements()) && 1302 "Invalid initializer for constant struct"); 1303 } 1304 1305 // ConstantStruct accessors. 1306 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) { 1307 assert((ST->isOpaque() || ST->getNumElements() == V.size()) && 1308 "Incorrect # elements specified to ConstantStruct::get"); 1309 1310 // Create a ConstantAggregateZero value if all elements are zeros. 1311 bool isZero = true; 1312 bool isUndef = false; 1313 bool isPoison = false; 1314 1315 if (!V.empty()) { 1316 isUndef = isa<UndefValue>(V[0]); 1317 isPoison = isa<PoisonValue>(V[0]); 1318 isZero = V[0]->isNullValue(); 1319 // PoisonValue inherits UndefValue, so its check is not necessary. 1320 if (isUndef || isZero) { 1321 for (Constant *C : V) { 1322 if (!C->isNullValue()) 1323 isZero = false; 1324 if (!isa<PoisonValue>(C)) 1325 isPoison = false; 1326 if (isa<PoisonValue>(C) || !isa<UndefValue>(C)) 1327 isUndef = false; 1328 } 1329 } 1330 } 1331 if (isZero) 1332 return ConstantAggregateZero::get(ST); 1333 if (isPoison) 1334 return PoisonValue::get(ST); 1335 if (isUndef) 1336 return UndefValue::get(ST); 1337 1338 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); 1339 } 1340 1341 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V) 1342 : ConstantAggregate(T, ConstantVectorVal, V) { 1343 assert(V.size() == cast<FixedVectorType>(T)->getNumElements() && 1344 "Invalid initializer for constant vector"); 1345 } 1346 1347 // ConstantVector accessors. 1348 Constant *ConstantVector::get(ArrayRef<Constant*> V) { 1349 if (Constant *C = getImpl(V)) 1350 return C; 1351 auto *Ty = FixedVectorType::get(V.front()->getType(), V.size()); 1352 return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V); 1353 } 1354 1355 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) { 1356 assert(!V.empty() && "Vectors can't be empty"); 1357 auto *T = FixedVectorType::get(V.front()->getType(), V.size()); 1358 1359 // If this is an all-undef or all-zero vector, return a 1360 // ConstantAggregateZero or UndefValue. 1361 Constant *C = V[0]; 1362 bool isZero = C->isNullValue(); 1363 bool isUndef = isa<UndefValue>(C); 1364 bool isPoison = isa<PoisonValue>(C); 1365 1366 if (isZero || isUndef) { 1367 for (unsigned i = 1, e = V.size(); i != e; ++i) 1368 if (V[i] != C) { 1369 isZero = isUndef = isPoison = false; 1370 break; 1371 } 1372 } 1373 1374 if (isZero) 1375 return ConstantAggregateZero::get(T); 1376 if (isPoison) 1377 return PoisonValue::get(T); 1378 if (isUndef) 1379 return UndefValue::get(T); 1380 1381 // Check to see if all of the elements are ConstantFP or ConstantInt and if 1382 // the element type is compatible with ConstantDataVector. If so, use it. 1383 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) 1384 return getSequenceIfElementsMatch<ConstantDataVector>(C, V); 1385 1386 // Otherwise, the element type isn't compatible with ConstantDataVector, or 1387 // the operand list contains a ConstantExpr or something else strange. 1388 return nullptr; 1389 } 1390 1391 Constant *ConstantVector::getSplat(ElementCount EC, Constant *V) { 1392 if (!EC.isScalable()) { 1393 // If this splat is compatible with ConstantDataVector, use it instead of 1394 // ConstantVector. 1395 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) && 1396 ConstantDataSequential::isElementTypeCompatible(V->getType())) 1397 return ConstantDataVector::getSplat(EC.getKnownMinValue(), V); 1398 1399 SmallVector<Constant *, 32> Elts(EC.getKnownMinValue(), V); 1400 return get(Elts); 1401 } 1402 1403 Type *VTy = VectorType::get(V->getType(), EC); 1404 1405 if (V->isNullValue()) 1406 return ConstantAggregateZero::get(VTy); 1407 else if (isa<UndefValue>(V)) 1408 return UndefValue::get(VTy); 1409 1410 Type *I32Ty = Type::getInt32Ty(VTy->getContext()); 1411 1412 // Move scalar into vector. 1413 Constant *PoisonV = PoisonValue::get(VTy); 1414 V = ConstantExpr::getInsertElement(PoisonV, V, ConstantInt::get(I32Ty, 0)); 1415 // Build shuffle mask to perform the splat. 1416 SmallVector<int, 8> Zeros(EC.getKnownMinValue(), 0); 1417 // Splat. 1418 return ConstantExpr::getShuffleVector(V, PoisonV, Zeros); 1419 } 1420 1421 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) { 1422 LLVMContextImpl *pImpl = Context.pImpl; 1423 if (!pImpl->TheNoneToken) 1424 pImpl->TheNoneToken.reset(new ConstantTokenNone(Context)); 1425 return pImpl->TheNoneToken.get(); 1426 } 1427 1428 /// Remove the constant from the constant table. 1429 void ConstantTokenNone::destroyConstantImpl() { 1430 llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!"); 1431 } 1432 1433 // Utility function for determining if a ConstantExpr is a CastOp or not. This 1434 // can't be inline because we don't want to #include Instruction.h into 1435 // Constant.h 1436 bool ConstantExpr::isCast() const { 1437 return Instruction::isCast(getOpcode()); 1438 } 1439 1440 bool ConstantExpr::isCompare() const { 1441 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; 1442 } 1443 1444 unsigned ConstantExpr::getPredicate() const { 1445 return cast<CompareConstantExpr>(this)->predicate; 1446 } 1447 1448 ArrayRef<int> ConstantExpr::getShuffleMask() const { 1449 return cast<ShuffleVectorConstantExpr>(this)->ShuffleMask; 1450 } 1451 1452 Constant *ConstantExpr::getShuffleMaskForBitcode() const { 1453 return cast<ShuffleVectorConstantExpr>(this)->ShuffleMaskForBitcode; 1454 } 1455 1456 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, 1457 bool OnlyIfReduced, Type *SrcTy) const { 1458 assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); 1459 1460 // If no operands changed return self. 1461 if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin())) 1462 return const_cast<ConstantExpr*>(this); 1463 1464 Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr; 1465 switch (getOpcode()) { 1466 case Instruction::Trunc: 1467 case Instruction::ZExt: 1468 case Instruction::SExt: 1469 case Instruction::FPTrunc: 1470 case Instruction::FPExt: 1471 case Instruction::UIToFP: 1472 case Instruction::SIToFP: 1473 case Instruction::FPToUI: 1474 case Instruction::FPToSI: 1475 case Instruction::PtrToInt: 1476 case Instruction::IntToPtr: 1477 case Instruction::BitCast: 1478 case Instruction::AddrSpaceCast: 1479 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced); 1480 case Instruction::Select: 1481 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy); 1482 case Instruction::InsertElement: 1483 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2], 1484 OnlyIfReducedTy); 1485 case Instruction::ExtractElement: 1486 return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy); 1487 case Instruction::FNeg: 1488 return ConstantExpr::getFNeg(Ops[0]); 1489 case Instruction::ShuffleVector: 1490 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], getShuffleMask(), 1491 OnlyIfReducedTy); 1492 case Instruction::GetElementPtr: { 1493 auto *GEPO = cast<GEPOperator>(this); 1494 assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType())); 1495 return ConstantExpr::getGetElementPtr( 1496 SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1), 1497 GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy); 1498 } 1499 case Instruction::ICmp: 1500 case Instruction::FCmp: 1501 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1], 1502 OnlyIfReducedTy); 1503 default: 1504 assert(getNumOperands() == 2 && "Must be binary operator?"); 1505 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData, 1506 OnlyIfReducedTy); 1507 } 1508 } 1509 1510 1511 //===----------------------------------------------------------------------===// 1512 // isValueValidForType implementations 1513 1514 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { 1515 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay 1516 if (Ty->isIntegerTy(1)) 1517 return Val == 0 || Val == 1; 1518 return isUIntN(NumBits, Val); 1519 } 1520 1521 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) { 1522 unsigned NumBits = Ty->getIntegerBitWidth(); 1523 if (Ty->isIntegerTy(1)) 1524 return Val == 0 || Val == 1 || Val == -1; 1525 return isIntN(NumBits, Val); 1526 } 1527 1528 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { 1529 // convert modifies in place, so make a copy. 1530 APFloat Val2 = APFloat(Val); 1531 bool losesInfo; 1532 switch (Ty->getTypeID()) { 1533 default: 1534 return false; // These can't be represented as floating point! 1535 1536 // FIXME rounding mode needs to be more flexible 1537 case Type::HalfTyID: { 1538 if (&Val2.getSemantics() == &APFloat::IEEEhalf()) 1539 return true; 1540 Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo); 1541 return !losesInfo; 1542 } 1543 case Type::BFloatTyID: { 1544 if (&Val2.getSemantics() == &APFloat::BFloat()) 1545 return true; 1546 Val2.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, &losesInfo); 1547 return !losesInfo; 1548 } 1549 case Type::FloatTyID: { 1550 if (&Val2.getSemantics() == &APFloat::IEEEsingle()) 1551 return true; 1552 Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo); 1553 return !losesInfo; 1554 } 1555 case Type::DoubleTyID: { 1556 if (&Val2.getSemantics() == &APFloat::IEEEhalf() || 1557 &Val2.getSemantics() == &APFloat::BFloat() || 1558 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1559 &Val2.getSemantics() == &APFloat::IEEEdouble()) 1560 return true; 1561 Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo); 1562 return !losesInfo; 1563 } 1564 case Type::X86_FP80TyID: 1565 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1566 &Val2.getSemantics() == &APFloat::BFloat() || 1567 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1568 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1569 &Val2.getSemantics() == &APFloat::x87DoubleExtended(); 1570 case Type::FP128TyID: 1571 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1572 &Val2.getSemantics() == &APFloat::BFloat() || 1573 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1574 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1575 &Val2.getSemantics() == &APFloat::IEEEquad(); 1576 case Type::PPC_FP128TyID: 1577 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1578 &Val2.getSemantics() == &APFloat::BFloat() || 1579 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1580 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1581 &Val2.getSemantics() == &APFloat::PPCDoubleDouble(); 1582 } 1583 } 1584 1585 1586 //===----------------------------------------------------------------------===// 1587 // Factory Function Implementation 1588 1589 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) { 1590 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && 1591 "Cannot create an aggregate zero of non-aggregate type!"); 1592 1593 std::unique_ptr<ConstantAggregateZero> &Entry = 1594 Ty->getContext().pImpl->CAZConstants[Ty]; 1595 if (!Entry) 1596 Entry.reset(new ConstantAggregateZero(Ty)); 1597 1598 return Entry.get(); 1599 } 1600 1601 /// Remove the constant from the constant table. 1602 void ConstantAggregateZero::destroyConstantImpl() { 1603 getContext().pImpl->CAZConstants.erase(getType()); 1604 } 1605 1606 /// Remove the constant from the constant table. 1607 void ConstantArray::destroyConstantImpl() { 1608 getType()->getContext().pImpl->ArrayConstants.remove(this); 1609 } 1610 1611 1612 //---- ConstantStruct::get() implementation... 1613 // 1614 1615 /// Remove the constant from the constant table. 1616 void ConstantStruct::destroyConstantImpl() { 1617 getType()->getContext().pImpl->StructConstants.remove(this); 1618 } 1619 1620 /// Remove the constant from the constant table. 1621 void ConstantVector::destroyConstantImpl() { 1622 getType()->getContext().pImpl->VectorConstants.remove(this); 1623 } 1624 1625 Constant *Constant::getSplatValue(bool AllowUndefs) const { 1626 assert(this->getType()->isVectorTy() && "Only valid for vectors!"); 1627 if (isa<ConstantAggregateZero>(this)) 1628 return getNullValue(cast<VectorType>(getType())->getElementType()); 1629 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 1630 return CV->getSplatValue(); 1631 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 1632 return CV->getSplatValue(AllowUndefs); 1633 1634 // Check if this is a constant expression splat of the form returned by 1635 // ConstantVector::getSplat() 1636 const auto *Shuf = dyn_cast<ConstantExpr>(this); 1637 if (Shuf && Shuf->getOpcode() == Instruction::ShuffleVector && 1638 isa<UndefValue>(Shuf->getOperand(1))) { 1639 1640 const auto *IElt = dyn_cast<ConstantExpr>(Shuf->getOperand(0)); 1641 if (IElt && IElt->getOpcode() == Instruction::InsertElement && 1642 isa<UndefValue>(IElt->getOperand(0))) { 1643 1644 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1645 Constant *SplatVal = IElt->getOperand(1); 1646 ConstantInt *Index = dyn_cast<ConstantInt>(IElt->getOperand(2)); 1647 1648 if (Index && Index->getValue() == 0 && 1649 llvm::all_of(Mask, [](int I) { return I == 0; })) 1650 return SplatVal; 1651 } 1652 } 1653 1654 return nullptr; 1655 } 1656 1657 Constant *ConstantVector::getSplatValue(bool AllowUndefs) const { 1658 // Check out first element. 1659 Constant *Elt = getOperand(0); 1660 // Then make sure all remaining elements point to the same value. 1661 for (unsigned I = 1, E = getNumOperands(); I < E; ++I) { 1662 Constant *OpC = getOperand(I); 1663 if (OpC == Elt) 1664 continue; 1665 1666 // Strict mode: any mismatch is not a splat. 1667 if (!AllowUndefs) 1668 return nullptr; 1669 1670 // Allow undefs mode: ignore undefined elements. 1671 if (isa<UndefValue>(OpC)) 1672 continue; 1673 1674 // If we do not have a defined element yet, use the current operand. 1675 if (isa<UndefValue>(Elt)) 1676 Elt = OpC; 1677 1678 if (OpC != Elt) 1679 return nullptr; 1680 } 1681 return Elt; 1682 } 1683 1684 const APInt &Constant::getUniqueInteger() const { 1685 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 1686 return CI->getValue(); 1687 assert(this->getSplatValue() && "Doesn't contain a unique integer!"); 1688 const Constant *C = this->getAggregateElement(0U); 1689 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!"); 1690 return cast<ConstantInt>(C)->getValue(); 1691 } 1692 1693 //---- ConstantPointerNull::get() implementation. 1694 // 1695 1696 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { 1697 std::unique_ptr<ConstantPointerNull> &Entry = 1698 Ty->getContext().pImpl->CPNConstants[Ty]; 1699 if (!Entry) 1700 Entry.reset(new ConstantPointerNull(Ty)); 1701 1702 return Entry.get(); 1703 } 1704 1705 /// Remove the constant from the constant table. 1706 void ConstantPointerNull::destroyConstantImpl() { 1707 getContext().pImpl->CPNConstants.erase(getType()); 1708 } 1709 1710 UndefValue *UndefValue::get(Type *Ty) { 1711 std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty]; 1712 if (!Entry) 1713 Entry.reset(new UndefValue(Ty)); 1714 1715 return Entry.get(); 1716 } 1717 1718 /// Remove the constant from the constant table. 1719 void UndefValue::destroyConstantImpl() { 1720 // Free the constant and any dangling references to it. 1721 if (getValueID() == UndefValueVal) { 1722 getContext().pImpl->UVConstants.erase(getType()); 1723 } else if (getValueID() == PoisonValueVal) { 1724 getContext().pImpl->PVConstants.erase(getType()); 1725 } 1726 llvm_unreachable("Not a undef or a poison!"); 1727 } 1728 1729 PoisonValue *PoisonValue::get(Type *Ty) { 1730 std::unique_ptr<PoisonValue> &Entry = Ty->getContext().pImpl->PVConstants[Ty]; 1731 if (!Entry) 1732 Entry.reset(new PoisonValue(Ty)); 1733 1734 return Entry.get(); 1735 } 1736 1737 /// Remove the constant from the constant table. 1738 void PoisonValue::destroyConstantImpl() { 1739 // Free the constant and any dangling references to it. 1740 getContext().pImpl->PVConstants.erase(getType()); 1741 } 1742 1743 BlockAddress *BlockAddress::get(BasicBlock *BB) { 1744 assert(BB->getParent() && "Block must have a parent"); 1745 return get(BB->getParent(), BB); 1746 } 1747 1748 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { 1749 BlockAddress *&BA = 1750 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; 1751 if (!BA) 1752 BA = new BlockAddress(F, BB); 1753 1754 assert(BA->getFunction() == F && "Basic block moved between functions"); 1755 return BA; 1756 } 1757 1758 BlockAddress::BlockAddress(Function *F, BasicBlock *BB) 1759 : Constant(Type::getInt8PtrTy(F->getContext(), F->getAddressSpace()), 1760 Value::BlockAddressVal, &Op<0>(), 2) { 1761 setOperand(0, F); 1762 setOperand(1, BB); 1763 BB->AdjustBlockAddressRefCount(1); 1764 } 1765 1766 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) { 1767 if (!BB->hasAddressTaken()) 1768 return nullptr; 1769 1770 const Function *F = BB->getParent(); 1771 assert(F && "Block must have a parent"); 1772 BlockAddress *BA = 1773 F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB)); 1774 assert(BA && "Refcount and block address map disagree!"); 1775 return BA; 1776 } 1777 1778 /// Remove the constant from the constant table. 1779 void BlockAddress::destroyConstantImpl() { 1780 getFunction()->getType()->getContext().pImpl 1781 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); 1782 getBasicBlock()->AdjustBlockAddressRefCount(-1); 1783 } 1784 1785 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) { 1786 // This could be replacing either the Basic Block or the Function. In either 1787 // case, we have to remove the map entry. 1788 Function *NewF = getFunction(); 1789 BasicBlock *NewBB = getBasicBlock(); 1790 1791 if (From == NewF) 1792 NewF = cast<Function>(To->stripPointerCasts()); 1793 else { 1794 assert(From == NewBB && "From does not match any operand"); 1795 NewBB = cast<BasicBlock>(To); 1796 } 1797 1798 // See if the 'new' entry already exists, if not, just update this in place 1799 // and return early. 1800 BlockAddress *&NewBA = 1801 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; 1802 if (NewBA) 1803 return NewBA; 1804 1805 getBasicBlock()->AdjustBlockAddressRefCount(-1); 1806 1807 // Remove the old entry, this can't cause the map to rehash (just a 1808 // tombstone will get added). 1809 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), 1810 getBasicBlock())); 1811 NewBA = this; 1812 setOperand(0, NewF); 1813 setOperand(1, NewBB); 1814 getBasicBlock()->AdjustBlockAddressRefCount(1); 1815 1816 // If we just want to keep the existing value, then return null. 1817 // Callers know that this means we shouldn't delete this value. 1818 return nullptr; 1819 } 1820 1821 DSOLocalEquivalent *DSOLocalEquivalent::get(GlobalValue *GV) { 1822 DSOLocalEquivalent *&Equiv = GV->getContext().pImpl->DSOLocalEquivalents[GV]; 1823 if (!Equiv) 1824 Equiv = new DSOLocalEquivalent(GV); 1825 1826 assert(Equiv->getGlobalValue() == GV && 1827 "DSOLocalFunction does not match the expected global value"); 1828 return Equiv; 1829 } 1830 1831 DSOLocalEquivalent::DSOLocalEquivalent(GlobalValue *GV) 1832 : Constant(GV->getType(), Value::DSOLocalEquivalentVal, &Op<0>(), 1) { 1833 setOperand(0, GV); 1834 } 1835 1836 /// Remove the constant from the constant table. 1837 void DSOLocalEquivalent::destroyConstantImpl() { 1838 const GlobalValue *GV = getGlobalValue(); 1839 GV->getContext().pImpl->DSOLocalEquivalents.erase(GV); 1840 } 1841 1842 Value *DSOLocalEquivalent::handleOperandChangeImpl(Value *From, Value *To) { 1843 assert(From == getGlobalValue() && "Changing value does not match operand."); 1844 assert(isa<Constant>(To) && "Can only replace the operands with a constant"); 1845 1846 // The replacement is with another global value. 1847 if (const auto *ToObj = dyn_cast<GlobalValue>(To)) { 1848 DSOLocalEquivalent *&NewEquiv = 1849 getContext().pImpl->DSOLocalEquivalents[ToObj]; 1850 if (NewEquiv) 1851 return llvm::ConstantExpr::getBitCast(NewEquiv, getType()); 1852 } 1853 1854 // If the argument is replaced with a null value, just replace this constant 1855 // with a null value. 1856 if (cast<Constant>(To)->isNullValue()) 1857 return To; 1858 1859 // The replacement could be a bitcast or an alias to another function. We can 1860 // replace it with a bitcast to the dso_local_equivalent of that function. 1861 auto *Func = cast<Function>(To->stripPointerCastsAndAliases()); 1862 DSOLocalEquivalent *&NewEquiv = getContext().pImpl->DSOLocalEquivalents[Func]; 1863 if (NewEquiv) 1864 return llvm::ConstantExpr::getBitCast(NewEquiv, getType()); 1865 1866 // Replace this with the new one. 1867 getContext().pImpl->DSOLocalEquivalents.erase(getGlobalValue()); 1868 NewEquiv = this; 1869 setOperand(0, Func); 1870 1871 if (Func->getType() != getType()) { 1872 // It is ok to mutate the type here because this constant should always 1873 // reflect the type of the function it's holding. 1874 mutateType(Func->getType()); 1875 } 1876 return nullptr; 1877 } 1878 1879 NoCFIValue *NoCFIValue::get(GlobalValue *GV) { 1880 NoCFIValue *&NC = GV->getContext().pImpl->NoCFIValues[GV]; 1881 if (!NC) 1882 NC = new NoCFIValue(GV); 1883 1884 assert(NC->getGlobalValue() == GV && 1885 "NoCFIValue does not match the expected global value"); 1886 return NC; 1887 } 1888 1889 NoCFIValue::NoCFIValue(GlobalValue *GV) 1890 : Constant(GV->getType(), Value::NoCFIValueVal, &Op<0>(), 1) { 1891 setOperand(0, GV); 1892 } 1893 1894 /// Remove the constant from the constant table. 1895 void NoCFIValue::destroyConstantImpl() { 1896 const GlobalValue *GV = getGlobalValue(); 1897 GV->getContext().pImpl->NoCFIValues.erase(GV); 1898 } 1899 1900 Value *NoCFIValue::handleOperandChangeImpl(Value *From, Value *To) { 1901 assert(From == getGlobalValue() && "Changing value does not match operand."); 1902 1903 GlobalValue *GV = dyn_cast<GlobalValue>(To->stripPointerCasts()); 1904 assert(GV && "Can only replace the operands with a global value"); 1905 1906 NoCFIValue *&NewNC = getContext().pImpl->NoCFIValues[GV]; 1907 if (NewNC) 1908 return llvm::ConstantExpr::getBitCast(NewNC, getType()); 1909 1910 getContext().pImpl->NoCFIValues.erase(getGlobalValue()); 1911 NewNC = this; 1912 setOperand(0, GV); 1913 1914 if (GV->getType() != getType()) 1915 mutateType(GV->getType()); 1916 1917 return nullptr; 1918 } 1919 1920 //---- ConstantExpr::get() implementations. 1921 // 1922 1923 /// This is a utility function to handle folding of casts and lookup of the 1924 /// cast in the ExprConstants map. It is used by the various get* methods below. 1925 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty, 1926 bool OnlyIfReduced = false) { 1927 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); 1928 // Fold a few common cases 1929 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) 1930 return FC; 1931 1932 if (OnlyIfReduced) 1933 return nullptr; 1934 1935 LLVMContextImpl *pImpl = Ty->getContext().pImpl; 1936 1937 // Look up the constant in the table first to ensure uniqueness. 1938 ConstantExprKeyType Key(opc, C); 1939 1940 return pImpl->ExprConstants.getOrCreate(Ty, Key); 1941 } 1942 1943 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty, 1944 bool OnlyIfReduced) { 1945 Instruction::CastOps opc = Instruction::CastOps(oc); 1946 assert(Instruction::isCast(opc) && "opcode out of range"); 1947 assert(C && Ty && "Null arguments to getCast"); 1948 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); 1949 1950 switch (opc) { 1951 default: 1952 llvm_unreachable("Invalid cast opcode"); 1953 case Instruction::Trunc: 1954 return getTrunc(C, Ty, OnlyIfReduced); 1955 case Instruction::ZExt: 1956 return getZExt(C, Ty, OnlyIfReduced); 1957 case Instruction::SExt: 1958 return getSExt(C, Ty, OnlyIfReduced); 1959 case Instruction::FPTrunc: 1960 return getFPTrunc(C, Ty, OnlyIfReduced); 1961 case Instruction::FPExt: 1962 return getFPExtend(C, Ty, OnlyIfReduced); 1963 case Instruction::UIToFP: 1964 return getUIToFP(C, Ty, OnlyIfReduced); 1965 case Instruction::SIToFP: 1966 return getSIToFP(C, Ty, OnlyIfReduced); 1967 case Instruction::FPToUI: 1968 return getFPToUI(C, Ty, OnlyIfReduced); 1969 case Instruction::FPToSI: 1970 return getFPToSI(C, Ty, OnlyIfReduced); 1971 case Instruction::PtrToInt: 1972 return getPtrToInt(C, Ty, OnlyIfReduced); 1973 case Instruction::IntToPtr: 1974 return getIntToPtr(C, Ty, OnlyIfReduced); 1975 case Instruction::BitCast: 1976 return getBitCast(C, Ty, OnlyIfReduced); 1977 case Instruction::AddrSpaceCast: 1978 return getAddrSpaceCast(C, Ty, OnlyIfReduced); 1979 } 1980 } 1981 1982 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) { 1983 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1984 return getBitCast(C, Ty); 1985 return getZExt(C, Ty); 1986 } 1987 1988 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) { 1989 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1990 return getBitCast(C, Ty); 1991 return getSExt(C, Ty); 1992 } 1993 1994 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) { 1995 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1996 return getBitCast(C, Ty); 1997 return getTrunc(C, Ty); 1998 } 1999 2000 Constant *ConstantExpr::getSExtOrTrunc(Constant *C, Type *Ty) { 2001 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 2002 "Can only sign extend/truncate integers!"); 2003 Type *CTy = C->getType(); 2004 if (CTy->getScalarSizeInBits() < Ty->getScalarSizeInBits()) 2005 return getSExt(C, Ty); 2006 if (CTy->getScalarSizeInBits() > Ty->getScalarSizeInBits()) 2007 return getTrunc(C, Ty); 2008 return C; 2009 } 2010 2011 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) { 2012 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2013 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 2014 "Invalid cast"); 2015 2016 if (Ty->isIntOrIntVectorTy()) 2017 return getPtrToInt(S, Ty); 2018 2019 unsigned SrcAS = S->getType()->getPointerAddressSpace(); 2020 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace()) 2021 return getAddrSpaceCast(S, Ty); 2022 2023 return getBitCast(S, Ty); 2024 } 2025 2026 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S, 2027 Type *Ty) { 2028 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2029 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 2030 2031 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 2032 return getAddrSpaceCast(S, Ty); 2033 2034 return getBitCast(S, Ty); 2035 } 2036 2037 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) { 2038 assert(C->getType()->isIntOrIntVectorTy() && 2039 Ty->isIntOrIntVectorTy() && "Invalid cast"); 2040 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2041 unsigned DstBits = Ty->getScalarSizeInBits(); 2042 Instruction::CastOps opcode = 2043 (SrcBits == DstBits ? Instruction::BitCast : 2044 (SrcBits > DstBits ? Instruction::Trunc : 2045 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2046 return getCast(opcode, C, Ty); 2047 } 2048 2049 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) { 2050 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2051 "Invalid cast"); 2052 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2053 unsigned DstBits = Ty->getScalarSizeInBits(); 2054 if (SrcBits == DstBits) 2055 return C; // Avoid a useless cast 2056 Instruction::CastOps opcode = 2057 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); 2058 return getCast(opcode, C, Ty); 2059 } 2060 2061 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { 2062 #ifndef NDEBUG 2063 bool fromVec = isa<VectorType>(C->getType()); 2064 bool toVec = isa<VectorType>(Ty); 2065 #endif 2066 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2067 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); 2068 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); 2069 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& 2070 "SrcTy must be larger than DestTy for Trunc!"); 2071 2072 return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced); 2073 } 2074 2075 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) { 2076 #ifndef NDEBUG 2077 bool fromVec = isa<VectorType>(C->getType()); 2078 bool toVec = isa<VectorType>(Ty); 2079 #endif 2080 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2081 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral"); 2082 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer"); 2083 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 2084 "SrcTy must be smaller than DestTy for SExt!"); 2085 2086 return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced); 2087 } 2088 2089 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) { 2090 #ifndef NDEBUG 2091 bool fromVec = isa<VectorType>(C->getType()); 2092 bool toVec = isa<VectorType>(Ty); 2093 #endif 2094 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2095 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral"); 2096 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer"); 2097 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 2098 "SrcTy must be smaller than DestTy for ZExt!"); 2099 2100 return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced); 2101 } 2102 2103 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { 2104 #ifndef NDEBUG 2105 bool fromVec = isa<VectorType>(C->getType()); 2106 bool toVec = isa<VectorType>(Ty); 2107 #endif 2108 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2109 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2110 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& 2111 "This is an illegal floating point truncation!"); 2112 return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced); 2113 } 2114 2115 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) { 2116 #ifndef NDEBUG 2117 bool fromVec = isa<VectorType>(C->getType()); 2118 bool toVec = isa<VectorType>(Ty); 2119 #endif 2120 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2121 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2122 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 2123 "This is an illegal floating point extension!"); 2124 return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced); 2125 } 2126 2127 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { 2128 #ifndef NDEBUG 2129 bool fromVec = isa<VectorType>(C->getType()); 2130 bool toVec = isa<VectorType>(Ty); 2131 #endif 2132 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2133 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && 2134 "This is an illegal uint to floating point cast!"); 2135 return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced); 2136 } 2137 2138 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { 2139 #ifndef NDEBUG 2140 bool fromVec = isa<VectorType>(C->getType()); 2141 bool toVec = isa<VectorType>(Ty); 2142 #endif 2143 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2144 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && 2145 "This is an illegal sint to floating point cast!"); 2146 return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced); 2147 } 2148 2149 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) { 2150 #ifndef NDEBUG 2151 bool fromVec = isa<VectorType>(C->getType()); 2152 bool toVec = isa<VectorType>(Ty); 2153 #endif 2154 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2155 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && 2156 "This is an illegal floating point to uint cast!"); 2157 return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced); 2158 } 2159 2160 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) { 2161 #ifndef NDEBUG 2162 bool fromVec = isa<VectorType>(C->getType()); 2163 bool toVec = isa<VectorType>(Ty); 2164 #endif 2165 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2166 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && 2167 "This is an illegal floating point to sint cast!"); 2168 return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced); 2169 } 2170 2171 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy, 2172 bool OnlyIfReduced) { 2173 assert(C->getType()->isPtrOrPtrVectorTy() && 2174 "PtrToInt source must be pointer or pointer vector"); 2175 assert(DstTy->isIntOrIntVectorTy() && 2176 "PtrToInt destination must be integer or integer vector"); 2177 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); 2178 if (isa<VectorType>(C->getType())) 2179 assert(cast<VectorType>(C->getType())->getElementCount() == 2180 cast<VectorType>(DstTy)->getElementCount() && 2181 "Invalid cast between a different number of vector elements"); 2182 return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced); 2183 } 2184 2185 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy, 2186 bool OnlyIfReduced) { 2187 assert(C->getType()->isIntOrIntVectorTy() && 2188 "IntToPtr source must be integer or integer vector"); 2189 assert(DstTy->isPtrOrPtrVectorTy() && 2190 "IntToPtr destination must be a pointer or pointer vector"); 2191 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); 2192 if (isa<VectorType>(C->getType())) 2193 assert(cast<VectorType>(C->getType())->getElementCount() == 2194 cast<VectorType>(DstTy)->getElementCount() && 2195 "Invalid cast between a different number of vector elements"); 2196 return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced); 2197 } 2198 2199 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy, 2200 bool OnlyIfReduced) { 2201 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && 2202 "Invalid constantexpr bitcast!"); 2203 2204 // It is common to ask for a bitcast of a value to its own type, handle this 2205 // speedily. 2206 if (C->getType() == DstTy) return C; 2207 2208 return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced); 2209 } 2210 2211 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy, 2212 bool OnlyIfReduced) { 2213 assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) && 2214 "Invalid constantexpr addrspacecast!"); 2215 2216 // Canonicalize addrspacecasts between different pointer types by first 2217 // bitcasting the pointer type and then converting the address space. 2218 PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType()); 2219 PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType()); 2220 if (!SrcScalarTy->hasSameElementTypeAs(DstScalarTy)) { 2221 Type *MidTy = PointerType::getWithSamePointeeType( 2222 DstScalarTy, SrcScalarTy->getAddressSpace()); 2223 if (VectorType *VT = dyn_cast<VectorType>(DstTy)) { 2224 // Handle vectors of pointers. 2225 MidTy = FixedVectorType::get(MidTy, 2226 cast<FixedVectorType>(VT)->getNumElements()); 2227 } 2228 C = getBitCast(C, MidTy); 2229 } 2230 return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced); 2231 } 2232 2233 Constant *ConstantExpr::get(unsigned Opcode, Constant *C, unsigned Flags, 2234 Type *OnlyIfReducedTy) { 2235 // Check the operands for consistency first. 2236 assert(Instruction::isUnaryOp(Opcode) && 2237 "Invalid opcode in unary constant expression"); 2238 2239 #ifndef NDEBUG 2240 switch (Opcode) { 2241 case Instruction::FNeg: 2242 assert(C->getType()->isFPOrFPVectorTy() && 2243 "Tried to create a floating-point operation on a " 2244 "non-floating-point type!"); 2245 break; 2246 default: 2247 break; 2248 } 2249 #endif 2250 2251 if (Constant *FC = ConstantFoldUnaryInstruction(Opcode, C)) 2252 return FC; 2253 2254 if (OnlyIfReducedTy == C->getType()) 2255 return nullptr; 2256 2257 Constant *ArgVec[] = { C }; 2258 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags); 2259 2260 LLVMContextImpl *pImpl = C->getContext().pImpl; 2261 return pImpl->ExprConstants.getOrCreate(C->getType(), Key); 2262 } 2263 2264 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, 2265 unsigned Flags, Type *OnlyIfReducedTy) { 2266 // Check the operands for consistency first. 2267 assert(Instruction::isBinaryOp(Opcode) && 2268 "Invalid opcode in binary constant expression"); 2269 assert(isSupportedBinOp(Opcode) && 2270 "Binop not supported as constant expression"); 2271 assert(C1->getType() == C2->getType() && 2272 "Operand types in binary constant expression should match"); 2273 2274 #ifndef NDEBUG 2275 switch (Opcode) { 2276 case Instruction::Add: 2277 case Instruction::Sub: 2278 case Instruction::Mul: 2279 case Instruction::UDiv: 2280 case Instruction::SDiv: 2281 case Instruction::URem: 2282 case Instruction::SRem: 2283 assert(C1->getType()->isIntOrIntVectorTy() && 2284 "Tried to create an integer operation on a non-integer type!"); 2285 break; 2286 case Instruction::FAdd: 2287 case Instruction::FSub: 2288 case Instruction::FMul: 2289 case Instruction::FDiv: 2290 case Instruction::FRem: 2291 assert(C1->getType()->isFPOrFPVectorTy() && 2292 "Tried to create a floating-point operation on a " 2293 "non-floating-point type!"); 2294 break; 2295 case Instruction::And: 2296 case Instruction::Or: 2297 case Instruction::Xor: 2298 assert(C1->getType()->isIntOrIntVectorTy() && 2299 "Tried to create a logical operation on a non-integral type!"); 2300 break; 2301 case Instruction::Shl: 2302 case Instruction::LShr: 2303 case Instruction::AShr: 2304 assert(C1->getType()->isIntOrIntVectorTy() && 2305 "Tried to create a shift operation on a non-integer type!"); 2306 break; 2307 default: 2308 break; 2309 } 2310 #endif 2311 2312 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) 2313 return FC; 2314 2315 if (OnlyIfReducedTy == C1->getType()) 2316 return nullptr; 2317 2318 Constant *ArgVec[] = { C1, C2 }; 2319 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags); 2320 2321 LLVMContextImpl *pImpl = C1->getContext().pImpl; 2322 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key); 2323 } 2324 2325 bool ConstantExpr::isDesirableBinOp(unsigned Opcode) { 2326 switch (Opcode) { 2327 case Instruction::UDiv: 2328 case Instruction::SDiv: 2329 case Instruction::URem: 2330 case Instruction::SRem: 2331 case Instruction::FAdd: 2332 case Instruction::FSub: 2333 case Instruction::FMul: 2334 case Instruction::FDiv: 2335 case Instruction::FRem: 2336 return false; 2337 case Instruction::Add: 2338 case Instruction::Sub: 2339 case Instruction::Mul: 2340 case Instruction::Shl: 2341 case Instruction::LShr: 2342 case Instruction::AShr: 2343 case Instruction::And: 2344 case Instruction::Or: 2345 case Instruction::Xor: 2346 return true; 2347 default: 2348 llvm_unreachable("Argument must be binop opcode"); 2349 } 2350 } 2351 2352 bool ConstantExpr::isSupportedBinOp(unsigned Opcode) { 2353 switch (Opcode) { 2354 case Instruction::UDiv: 2355 case Instruction::SDiv: 2356 case Instruction::URem: 2357 case Instruction::SRem: 2358 case Instruction::FAdd: 2359 case Instruction::FSub: 2360 case Instruction::FMul: 2361 case Instruction::FDiv: 2362 case Instruction::FRem: 2363 return false; 2364 case Instruction::Add: 2365 case Instruction::Sub: 2366 case Instruction::Mul: 2367 case Instruction::Shl: 2368 case Instruction::LShr: 2369 case Instruction::AShr: 2370 case Instruction::And: 2371 case Instruction::Or: 2372 case Instruction::Xor: 2373 return true; 2374 default: 2375 llvm_unreachable("Argument must be binop opcode"); 2376 } 2377 } 2378 2379 Constant *ConstantExpr::getSizeOf(Type* Ty) { 2380 // sizeof is implemented as: (i64) gep (Ty*)null, 1 2381 // Note that a non-inbounds gep is used, as null isn't within any object. 2382 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); 2383 Constant *GEP = getGetElementPtr( 2384 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); 2385 return getPtrToInt(GEP, 2386 Type::getInt64Ty(Ty->getContext())); 2387 } 2388 2389 Constant *ConstantExpr::getAlignOf(Type* Ty) { 2390 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 2391 // Note that a non-inbounds gep is used, as null isn't within any object. 2392 Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty); 2393 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0)); 2394 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); 2395 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); 2396 Constant *Indices[2] = { Zero, One }; 2397 Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices); 2398 return getPtrToInt(GEP, 2399 Type::getInt64Ty(Ty->getContext())); 2400 } 2401 2402 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) { 2403 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()), 2404 FieldNo)); 2405 } 2406 2407 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) { 2408 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo 2409 // Note that a non-inbounds gep is used, as null isn't within any object. 2410 Constant *GEPIdx[] = { 2411 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0), 2412 FieldNo 2413 }; 2414 Constant *GEP = getGetElementPtr( 2415 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); 2416 return getPtrToInt(GEP, 2417 Type::getInt64Ty(Ty->getContext())); 2418 } 2419 2420 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1, 2421 Constant *C2, bool OnlyIfReduced) { 2422 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 2423 2424 switch (Predicate) { 2425 default: llvm_unreachable("Invalid CmpInst predicate"); 2426 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: 2427 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: 2428 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: 2429 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: 2430 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: 2431 case CmpInst::FCMP_TRUE: 2432 return getFCmp(Predicate, C1, C2, OnlyIfReduced); 2433 2434 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: 2435 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: 2436 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: 2437 case CmpInst::ICMP_SLE: 2438 return getICmp(Predicate, C1, C2, OnlyIfReduced); 2439 } 2440 } 2441 2442 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2, 2443 Type *OnlyIfReducedTy) { 2444 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); 2445 2446 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) 2447 return SC; // Fold common cases 2448 2449 if (OnlyIfReducedTy == V1->getType()) 2450 return nullptr; 2451 2452 Constant *ArgVec[] = { C, V1, V2 }; 2453 ConstantExprKeyType Key(Instruction::Select, ArgVec); 2454 2455 LLVMContextImpl *pImpl = C->getContext().pImpl; 2456 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key); 2457 } 2458 2459 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C, 2460 ArrayRef<Value *> Idxs, bool InBounds, 2461 Optional<unsigned> InRangeIndex, 2462 Type *OnlyIfReducedTy) { 2463 PointerType *OrigPtrTy = cast<PointerType>(C->getType()->getScalarType()); 2464 assert(Ty && "Must specify element type"); 2465 assert(OrigPtrTy->isOpaqueOrPointeeTypeMatches(Ty)); 2466 2467 if (Constant *FC = 2468 ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs)) 2469 return FC; // Fold a few common cases. 2470 2471 // Get the result type of the getelementptr! 2472 Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs); 2473 assert(DestTy && "GEP indices invalid!"); 2474 unsigned AS = OrigPtrTy->getAddressSpace(); 2475 Type *ReqTy = OrigPtrTy->isOpaque() 2476 ? PointerType::get(OrigPtrTy->getContext(), AS) 2477 : DestTy->getPointerTo(AS); 2478 2479 auto EltCount = ElementCount::getFixed(0); 2480 if (VectorType *VecTy = dyn_cast<VectorType>(C->getType())) 2481 EltCount = VecTy->getElementCount(); 2482 else 2483 for (auto Idx : Idxs) 2484 if (VectorType *VecTy = dyn_cast<VectorType>(Idx->getType())) 2485 EltCount = VecTy->getElementCount(); 2486 2487 if (EltCount.isNonZero()) 2488 ReqTy = VectorType::get(ReqTy, EltCount); 2489 2490 if (OnlyIfReducedTy == ReqTy) 2491 return nullptr; 2492 2493 // Look up the constant in the table first to ensure uniqueness 2494 std::vector<Constant*> ArgVec; 2495 ArgVec.reserve(1 + Idxs.size()); 2496 ArgVec.push_back(C); 2497 auto GTI = gep_type_begin(Ty, Idxs), GTE = gep_type_end(Ty, Idxs); 2498 for (; GTI != GTE; ++GTI) { 2499 auto *Idx = cast<Constant>(GTI.getOperand()); 2500 assert( 2501 (!isa<VectorType>(Idx->getType()) || 2502 cast<VectorType>(Idx->getType())->getElementCount() == EltCount) && 2503 "getelementptr index type missmatch"); 2504 2505 if (GTI.isStruct() && Idx->getType()->isVectorTy()) { 2506 Idx = Idx->getSplatValue(); 2507 } else if (GTI.isSequential() && EltCount.isNonZero() && 2508 !Idx->getType()->isVectorTy()) { 2509 Idx = ConstantVector::getSplat(EltCount, Idx); 2510 } 2511 ArgVec.push_back(Idx); 2512 } 2513 2514 unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0; 2515 if (InRangeIndex && *InRangeIndex < 63) 2516 SubClassOptionalData |= (*InRangeIndex + 1) << 1; 2517 const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0, 2518 SubClassOptionalData, None, Ty); 2519 2520 LLVMContextImpl *pImpl = C->getContext().pImpl; 2521 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2522 } 2523 2524 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS, 2525 Constant *RHS, bool OnlyIfReduced) { 2526 auto Predicate = static_cast<CmpInst::Predicate>(pred); 2527 assert(LHS->getType() == RHS->getType()); 2528 assert(CmpInst::isIntPredicate(Predicate) && "Invalid ICmp Predicate"); 2529 2530 if (Constant *FC = ConstantFoldCompareInstruction(Predicate, LHS, RHS)) 2531 return FC; // Fold a few common cases... 2532 2533 if (OnlyIfReduced) 2534 return nullptr; 2535 2536 // Look up the constant in the table first to ensure uniqueness 2537 Constant *ArgVec[] = { LHS, RHS }; 2538 // Get the key type with both the opcode and predicate 2539 const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, Predicate); 2540 2541 Type *ResultTy = Type::getInt1Ty(LHS->getContext()); 2542 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) 2543 ResultTy = VectorType::get(ResultTy, VT->getElementCount()); 2544 2545 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; 2546 return pImpl->ExprConstants.getOrCreate(ResultTy, Key); 2547 } 2548 2549 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, 2550 Constant *RHS, bool OnlyIfReduced) { 2551 auto Predicate = static_cast<CmpInst::Predicate>(pred); 2552 assert(LHS->getType() == RHS->getType()); 2553 assert(CmpInst::isFPPredicate(Predicate) && "Invalid FCmp Predicate"); 2554 2555 if (Constant *FC = ConstantFoldCompareInstruction(Predicate, LHS, RHS)) 2556 return FC; // Fold a few common cases... 2557 2558 if (OnlyIfReduced) 2559 return nullptr; 2560 2561 // Look up the constant in the table first to ensure uniqueness 2562 Constant *ArgVec[] = { LHS, RHS }; 2563 // Get the key type with both the opcode and predicate 2564 const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, Predicate); 2565 2566 Type *ResultTy = Type::getInt1Ty(LHS->getContext()); 2567 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) 2568 ResultTy = VectorType::get(ResultTy, VT->getElementCount()); 2569 2570 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; 2571 return pImpl->ExprConstants.getOrCreate(ResultTy, Key); 2572 } 2573 2574 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx, 2575 Type *OnlyIfReducedTy) { 2576 assert(Val->getType()->isVectorTy() && 2577 "Tried to create extractelement operation on non-vector type!"); 2578 assert(Idx->getType()->isIntegerTy() && 2579 "Extractelement index must be an integer type!"); 2580 2581 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) 2582 return FC; // Fold a few common cases. 2583 2584 Type *ReqTy = cast<VectorType>(Val->getType())->getElementType(); 2585 if (OnlyIfReducedTy == ReqTy) 2586 return nullptr; 2587 2588 // Look up the constant in the table first to ensure uniqueness 2589 Constant *ArgVec[] = { Val, Idx }; 2590 const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec); 2591 2592 LLVMContextImpl *pImpl = Val->getContext().pImpl; 2593 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2594 } 2595 2596 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 2597 Constant *Idx, Type *OnlyIfReducedTy) { 2598 assert(Val->getType()->isVectorTy() && 2599 "Tried to create insertelement operation on non-vector type!"); 2600 assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() && 2601 "Insertelement types must match!"); 2602 assert(Idx->getType()->isIntegerTy() && 2603 "Insertelement index must be i32 type!"); 2604 2605 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) 2606 return FC; // Fold a few common cases. 2607 2608 if (OnlyIfReducedTy == Val->getType()) 2609 return nullptr; 2610 2611 // Look up the constant in the table first to ensure uniqueness 2612 Constant *ArgVec[] = { Val, Elt, Idx }; 2613 const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec); 2614 2615 LLVMContextImpl *pImpl = Val->getContext().pImpl; 2616 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key); 2617 } 2618 2619 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, 2620 ArrayRef<int> Mask, 2621 Type *OnlyIfReducedTy) { 2622 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && 2623 "Invalid shuffle vector constant expr operands!"); 2624 2625 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) 2626 return FC; // Fold a few common cases. 2627 2628 unsigned NElts = Mask.size(); 2629 auto V1VTy = cast<VectorType>(V1->getType()); 2630 Type *EltTy = V1VTy->getElementType(); 2631 bool TypeIsScalable = isa<ScalableVectorType>(V1VTy); 2632 Type *ShufTy = VectorType::get(EltTy, NElts, TypeIsScalable); 2633 2634 if (OnlyIfReducedTy == ShufTy) 2635 return nullptr; 2636 2637 // Look up the constant in the table first to ensure uniqueness 2638 Constant *ArgVec[] = {V1, V2}; 2639 ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec, 0, 0, Mask); 2640 2641 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl; 2642 return pImpl->ExprConstants.getOrCreate(ShufTy, Key); 2643 } 2644 2645 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) { 2646 assert(C->getType()->isIntOrIntVectorTy() && 2647 "Cannot NEG a nonintegral value!"); 2648 return getSub(ConstantFP::getZeroValueForNegation(C->getType()), 2649 C, HasNUW, HasNSW); 2650 } 2651 2652 Constant *ConstantExpr::getFNeg(Constant *C) { 2653 assert(C->getType()->isFPOrFPVectorTy() && 2654 "Cannot FNEG a non-floating-point value!"); 2655 return get(Instruction::FNeg, C); 2656 } 2657 2658 Constant *ConstantExpr::getNot(Constant *C) { 2659 assert(C->getType()->isIntOrIntVectorTy() && 2660 "Cannot NOT a nonintegral value!"); 2661 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); 2662 } 2663 2664 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2, 2665 bool HasNUW, bool HasNSW) { 2666 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2667 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2668 return get(Instruction::Add, C1, C2, Flags); 2669 } 2670 2671 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2, 2672 bool HasNUW, bool HasNSW) { 2673 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2674 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2675 return get(Instruction::Sub, C1, C2, Flags); 2676 } 2677 2678 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2, 2679 bool HasNUW, bool HasNSW) { 2680 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2681 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2682 return get(Instruction::Mul, C1, C2, Flags); 2683 } 2684 2685 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { 2686 return get(Instruction::And, C1, C2); 2687 } 2688 2689 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { 2690 return get(Instruction::Or, C1, C2); 2691 } 2692 2693 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { 2694 return get(Instruction::Xor, C1, C2); 2695 } 2696 2697 Constant *ConstantExpr::getUMin(Constant *C1, Constant *C2) { 2698 Constant *Cmp = ConstantExpr::getICmp(CmpInst::ICMP_ULT, C1, C2); 2699 return getSelect(Cmp, C1, C2); 2700 } 2701 2702 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2, 2703 bool HasNUW, bool HasNSW) { 2704 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2705 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2706 return get(Instruction::Shl, C1, C2, Flags); 2707 } 2708 2709 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) { 2710 return get(Instruction::LShr, C1, C2, 2711 isExact ? PossiblyExactOperator::IsExact : 0); 2712 } 2713 2714 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) { 2715 return get(Instruction::AShr, C1, C2, 2716 isExact ? PossiblyExactOperator::IsExact : 0); 2717 } 2718 2719 Constant *ConstantExpr::getExactLogBase2(Constant *C) { 2720 Type *Ty = C->getType(); 2721 const APInt *IVal; 2722 if (match(C, m_APInt(IVal)) && IVal->isPowerOf2()) 2723 return ConstantInt::get(Ty, IVal->logBase2()); 2724 2725 // FIXME: We can extract pow of 2 of splat constant for scalable vectors. 2726 auto *VecTy = dyn_cast<FixedVectorType>(Ty); 2727 if (!VecTy) 2728 return nullptr; 2729 2730 SmallVector<Constant *, 4> Elts; 2731 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 2732 Constant *Elt = C->getAggregateElement(I); 2733 if (!Elt) 2734 return nullptr; 2735 // Note that log2(iN undef) is *NOT* iN undef, because log2(iN undef) u< N. 2736 if (isa<UndefValue>(Elt)) { 2737 Elts.push_back(Constant::getNullValue(Ty->getScalarType())); 2738 continue; 2739 } 2740 if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2()) 2741 return nullptr; 2742 Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2())); 2743 } 2744 2745 return ConstantVector::get(Elts); 2746 } 2747 2748 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty, 2749 bool AllowRHSConstant, bool NSZ) { 2750 assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed"); 2751 2752 // Commutative opcodes: it does not matter if AllowRHSConstant is set. 2753 if (Instruction::isCommutative(Opcode)) { 2754 switch (Opcode) { 2755 case Instruction::Add: // X + 0 = X 2756 case Instruction::Or: // X | 0 = X 2757 case Instruction::Xor: // X ^ 0 = X 2758 return Constant::getNullValue(Ty); 2759 case Instruction::Mul: // X * 1 = X 2760 return ConstantInt::get(Ty, 1); 2761 case Instruction::And: // X & -1 = X 2762 return Constant::getAllOnesValue(Ty); 2763 case Instruction::FAdd: // X + -0.0 = X 2764 return ConstantFP::getZero(Ty, !NSZ); 2765 case Instruction::FMul: // X * 1.0 = X 2766 return ConstantFP::get(Ty, 1.0); 2767 default: 2768 llvm_unreachable("Every commutative binop has an identity constant"); 2769 } 2770 } 2771 2772 // Non-commutative opcodes: AllowRHSConstant must be set. 2773 if (!AllowRHSConstant) 2774 return nullptr; 2775 2776 switch (Opcode) { 2777 case Instruction::Sub: // X - 0 = X 2778 case Instruction::Shl: // X << 0 = X 2779 case Instruction::LShr: // X >>u 0 = X 2780 case Instruction::AShr: // X >> 0 = X 2781 case Instruction::FSub: // X - 0.0 = X 2782 return Constant::getNullValue(Ty); 2783 case Instruction::SDiv: // X / 1 = X 2784 case Instruction::UDiv: // X /u 1 = X 2785 return ConstantInt::get(Ty, 1); 2786 case Instruction::FDiv: // X / 1.0 = X 2787 return ConstantFP::get(Ty, 1.0); 2788 default: 2789 return nullptr; 2790 } 2791 } 2792 2793 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) { 2794 switch (Opcode) { 2795 default: 2796 // Doesn't have an absorber. 2797 return nullptr; 2798 2799 case Instruction::Or: 2800 return Constant::getAllOnesValue(Ty); 2801 2802 case Instruction::And: 2803 case Instruction::Mul: 2804 return Constant::getNullValue(Ty); 2805 } 2806 } 2807 2808 /// Remove the constant from the constant table. 2809 void ConstantExpr::destroyConstantImpl() { 2810 getType()->getContext().pImpl->ExprConstants.remove(this); 2811 } 2812 2813 const char *ConstantExpr::getOpcodeName() const { 2814 return Instruction::getOpcodeName(getOpcode()); 2815 } 2816 2817 GetElementPtrConstantExpr::GetElementPtrConstantExpr( 2818 Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy) 2819 : ConstantExpr(DestTy, Instruction::GetElementPtr, 2820 OperandTraits<GetElementPtrConstantExpr>::op_end(this) - 2821 (IdxList.size() + 1), 2822 IdxList.size() + 1), 2823 SrcElementTy(SrcElementTy), 2824 ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) { 2825 Op<0>() = C; 2826 Use *OperandList = getOperandList(); 2827 for (unsigned i = 0, E = IdxList.size(); i != E; ++i) 2828 OperandList[i+1] = IdxList[i]; 2829 } 2830 2831 Type *GetElementPtrConstantExpr::getSourceElementType() const { 2832 return SrcElementTy; 2833 } 2834 2835 Type *GetElementPtrConstantExpr::getResultElementType() const { 2836 return ResElementTy; 2837 } 2838 2839 //===----------------------------------------------------------------------===// 2840 // ConstantData* implementations 2841 2842 Type *ConstantDataSequential::getElementType() const { 2843 if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) 2844 return ATy->getElementType(); 2845 return cast<VectorType>(getType())->getElementType(); 2846 } 2847 2848 StringRef ConstantDataSequential::getRawDataValues() const { 2849 return StringRef(DataElements, getNumElements()*getElementByteSize()); 2850 } 2851 2852 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) { 2853 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || Ty->isDoubleTy()) 2854 return true; 2855 if (auto *IT = dyn_cast<IntegerType>(Ty)) { 2856 switch (IT->getBitWidth()) { 2857 case 8: 2858 case 16: 2859 case 32: 2860 case 64: 2861 return true; 2862 default: break; 2863 } 2864 } 2865 return false; 2866 } 2867 2868 unsigned ConstantDataSequential::getNumElements() const { 2869 if (ArrayType *AT = dyn_cast<ArrayType>(getType())) 2870 return AT->getNumElements(); 2871 return cast<FixedVectorType>(getType())->getNumElements(); 2872 } 2873 2874 2875 uint64_t ConstantDataSequential::getElementByteSize() const { 2876 return getElementType()->getPrimitiveSizeInBits()/8; 2877 } 2878 2879 /// Return the start of the specified element. 2880 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const { 2881 assert(Elt < getNumElements() && "Invalid Elt"); 2882 return DataElements+Elt*getElementByteSize(); 2883 } 2884 2885 2886 /// Return true if the array is empty or all zeros. 2887 static bool isAllZeros(StringRef Arr) { 2888 for (char I : Arr) 2889 if (I != 0) 2890 return false; 2891 return true; 2892 } 2893 2894 /// This is the underlying implementation of all of the 2895 /// ConstantDataSequential::get methods. They all thunk down to here, providing 2896 /// the correct element type. We take the bytes in as a StringRef because 2897 /// we *want* an underlying "char*" to avoid TBAA type punning violations. 2898 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) { 2899 #ifndef NDEBUG 2900 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) 2901 assert(isElementTypeCompatible(ATy->getElementType())); 2902 else 2903 assert(isElementTypeCompatible(cast<VectorType>(Ty)->getElementType())); 2904 #endif 2905 // If the elements are all zero or there are no elements, return a CAZ, which 2906 // is more dense and canonical. 2907 if (isAllZeros(Elements)) 2908 return ConstantAggregateZero::get(Ty); 2909 2910 // Do a lookup to see if we have already formed one of these. 2911 auto &Slot = 2912 *Ty->getContext() 2913 .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr)) 2914 .first; 2915 2916 // The bucket can point to a linked list of different CDS's that have the same 2917 // body but different types. For example, 0,0,0,1 could be a 4 element array 2918 // of i8, or a 1-element array of i32. They'll both end up in the same 2919 /// StringMap bucket, linked up by their Next pointers. Walk the list. 2920 std::unique_ptr<ConstantDataSequential> *Entry = &Slot.second; 2921 for (; *Entry; Entry = &(*Entry)->Next) 2922 if ((*Entry)->getType() == Ty) 2923 return Entry->get(); 2924 2925 // Okay, we didn't get a hit. Create a node of the right class, link it in, 2926 // and return it. 2927 if (isa<ArrayType>(Ty)) { 2928 // Use reset because std::make_unique can't access the constructor. 2929 Entry->reset(new ConstantDataArray(Ty, Slot.first().data())); 2930 return Entry->get(); 2931 } 2932 2933 assert(isa<VectorType>(Ty)); 2934 // Use reset because std::make_unique can't access the constructor. 2935 Entry->reset(new ConstantDataVector(Ty, Slot.first().data())); 2936 return Entry->get(); 2937 } 2938 2939 void ConstantDataSequential::destroyConstantImpl() { 2940 // Remove the constant from the StringMap. 2941 StringMap<std::unique_ptr<ConstantDataSequential>> &CDSConstants = 2942 getType()->getContext().pImpl->CDSConstants; 2943 2944 auto Slot = CDSConstants.find(getRawDataValues()); 2945 2946 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table"); 2947 2948 std::unique_ptr<ConstantDataSequential> *Entry = &Slot->getValue(); 2949 2950 // Remove the entry from the hash table. 2951 if (!(*Entry)->Next) { 2952 // If there is only one value in the bucket (common case) it must be this 2953 // entry, and removing the entry should remove the bucket completely. 2954 assert(Entry->get() == this && "Hash mismatch in ConstantDataSequential"); 2955 getContext().pImpl->CDSConstants.erase(Slot); 2956 return; 2957 } 2958 2959 // Otherwise, there are multiple entries linked off the bucket, unlink the 2960 // node we care about but keep the bucket around. 2961 while (true) { 2962 std::unique_ptr<ConstantDataSequential> &Node = *Entry; 2963 assert(Node && "Didn't find entry in its uniquing hash table!"); 2964 // If we found our entry, unlink it from the list and we're done. 2965 if (Node.get() == this) { 2966 Node = std::move(Node->Next); 2967 return; 2968 } 2969 2970 Entry = &Node->Next; 2971 } 2972 } 2973 2974 /// getFP() constructors - Return a constant of array type with a float 2975 /// element type taken from argument `ElementType', and count taken from 2976 /// argument `Elts'. The amount of bits of the contained type must match the 2977 /// number of bits of the type contained in the passed in ArrayRef. 2978 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note 2979 /// that this can return a ConstantAggregateZero object. 2980 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint16_t> Elts) { 2981 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) && 2982 "Element type is not a 16-bit float type"); 2983 Type *Ty = ArrayType::get(ElementType, Elts.size()); 2984 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2985 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 2986 } 2987 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint32_t> Elts) { 2988 assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type"); 2989 Type *Ty = ArrayType::get(ElementType, Elts.size()); 2990 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2991 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 2992 } 2993 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint64_t> Elts) { 2994 assert(ElementType->isDoubleTy() && 2995 "Element type is not a 64-bit float type"); 2996 Type *Ty = ArrayType::get(ElementType, Elts.size()); 2997 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2998 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 2999 } 3000 3001 Constant *ConstantDataArray::getString(LLVMContext &Context, 3002 StringRef Str, bool AddNull) { 3003 if (!AddNull) { 3004 const uint8_t *Data = Str.bytes_begin(); 3005 return get(Context, makeArrayRef(Data, Str.size())); 3006 } 3007 3008 SmallVector<uint8_t, 64> ElementVals; 3009 ElementVals.append(Str.begin(), Str.end()); 3010 ElementVals.push_back(0); 3011 return get(Context, ElementVals); 3012 } 3013 3014 /// get() constructors - Return a constant with vector type with an element 3015 /// count and element type matching the ArrayRef passed in. Note that this 3016 /// can return a ConstantAggregateZero object. 3017 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){ 3018 auto *Ty = FixedVectorType::get(Type::getInt8Ty(Context), Elts.size()); 3019 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3020 return getImpl(StringRef(Data, Elts.size() * 1), Ty); 3021 } 3022 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ 3023 auto *Ty = FixedVectorType::get(Type::getInt16Ty(Context), Elts.size()); 3024 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3025 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 3026 } 3027 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ 3028 auto *Ty = FixedVectorType::get(Type::getInt32Ty(Context), Elts.size()); 3029 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3030 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 3031 } 3032 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ 3033 auto *Ty = FixedVectorType::get(Type::getInt64Ty(Context), Elts.size()); 3034 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3035 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 3036 } 3037 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) { 3038 auto *Ty = FixedVectorType::get(Type::getFloatTy(Context), Elts.size()); 3039 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3040 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 3041 } 3042 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) { 3043 auto *Ty = FixedVectorType::get(Type::getDoubleTy(Context), Elts.size()); 3044 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3045 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 3046 } 3047 3048 /// getFP() constructors - Return a constant of vector type with a float 3049 /// element type taken from argument `ElementType', and count taken from 3050 /// argument `Elts'. The amount of bits of the contained type must match the 3051 /// number of bits of the type contained in the passed in ArrayRef. 3052 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note 3053 /// that this can return a ConstantAggregateZero object. 3054 Constant *ConstantDataVector::getFP(Type *ElementType, 3055 ArrayRef<uint16_t> Elts) { 3056 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) && 3057 "Element type is not a 16-bit float type"); 3058 auto *Ty = FixedVectorType::get(ElementType, Elts.size()); 3059 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3060 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 3061 } 3062 Constant *ConstantDataVector::getFP(Type *ElementType, 3063 ArrayRef<uint32_t> Elts) { 3064 assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type"); 3065 auto *Ty = FixedVectorType::get(ElementType, Elts.size()); 3066 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3067 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 3068 } 3069 Constant *ConstantDataVector::getFP(Type *ElementType, 3070 ArrayRef<uint64_t> Elts) { 3071 assert(ElementType->isDoubleTy() && 3072 "Element type is not a 64-bit float type"); 3073 auto *Ty = FixedVectorType::get(ElementType, Elts.size()); 3074 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3075 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 3076 } 3077 3078 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) { 3079 assert(isElementTypeCompatible(V->getType()) && 3080 "Element type not compatible with ConstantData"); 3081 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 3082 if (CI->getType()->isIntegerTy(8)) { 3083 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue()); 3084 return get(V->getContext(), Elts); 3085 } 3086 if (CI->getType()->isIntegerTy(16)) { 3087 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue()); 3088 return get(V->getContext(), Elts); 3089 } 3090 if (CI->getType()->isIntegerTy(32)) { 3091 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue()); 3092 return get(V->getContext(), Elts); 3093 } 3094 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type"); 3095 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue()); 3096 return get(V->getContext(), Elts); 3097 } 3098 3099 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3100 if (CFP->getType()->isHalfTy()) { 3101 SmallVector<uint16_t, 16> Elts( 3102 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 3103 return getFP(V->getType(), Elts); 3104 } 3105 if (CFP->getType()->isBFloatTy()) { 3106 SmallVector<uint16_t, 16> Elts( 3107 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 3108 return getFP(V->getType(), Elts); 3109 } 3110 if (CFP->getType()->isFloatTy()) { 3111 SmallVector<uint32_t, 16> Elts( 3112 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 3113 return getFP(V->getType(), Elts); 3114 } 3115 if (CFP->getType()->isDoubleTy()) { 3116 SmallVector<uint64_t, 16> Elts( 3117 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 3118 return getFP(V->getType(), Elts); 3119 } 3120 } 3121 return ConstantVector::getSplat(ElementCount::getFixed(NumElts), V); 3122 } 3123 3124 3125 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { 3126 assert(isa<IntegerType>(getElementType()) && 3127 "Accessor can only be used when element is an integer"); 3128 const char *EltPtr = getElementPointer(Elt); 3129 3130 // The data is stored in host byte order, make sure to cast back to the right 3131 // type to load with the right endianness. 3132 switch (getElementType()->getIntegerBitWidth()) { 3133 default: llvm_unreachable("Invalid bitwidth for CDS"); 3134 case 8: 3135 return *reinterpret_cast<const uint8_t *>(EltPtr); 3136 case 16: 3137 return *reinterpret_cast<const uint16_t *>(EltPtr); 3138 case 32: 3139 return *reinterpret_cast<const uint32_t *>(EltPtr); 3140 case 64: 3141 return *reinterpret_cast<const uint64_t *>(EltPtr); 3142 } 3143 } 3144 3145 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const { 3146 assert(isa<IntegerType>(getElementType()) && 3147 "Accessor can only be used when element is an integer"); 3148 const char *EltPtr = getElementPointer(Elt); 3149 3150 // The data is stored in host byte order, make sure to cast back to the right 3151 // type to load with the right endianness. 3152 switch (getElementType()->getIntegerBitWidth()) { 3153 default: llvm_unreachable("Invalid bitwidth for CDS"); 3154 case 8: { 3155 auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr); 3156 return APInt(8, EltVal); 3157 } 3158 case 16: { 3159 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 3160 return APInt(16, EltVal); 3161 } 3162 case 32: { 3163 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr); 3164 return APInt(32, EltVal); 3165 } 3166 case 64: { 3167 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr); 3168 return APInt(64, EltVal); 3169 } 3170 } 3171 } 3172 3173 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { 3174 const char *EltPtr = getElementPointer(Elt); 3175 3176 switch (getElementType()->getTypeID()) { 3177 default: 3178 llvm_unreachable("Accessor can only be used when element is float/double!"); 3179 case Type::HalfTyID: { 3180 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 3181 return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal)); 3182 } 3183 case Type::BFloatTyID: { 3184 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 3185 return APFloat(APFloat::BFloat(), APInt(16, EltVal)); 3186 } 3187 case Type::FloatTyID: { 3188 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr); 3189 return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal)); 3190 } 3191 case Type::DoubleTyID: { 3192 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr); 3193 return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal)); 3194 } 3195 } 3196 } 3197 3198 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { 3199 assert(getElementType()->isFloatTy() && 3200 "Accessor can only be used when element is a 'float'"); 3201 return *reinterpret_cast<const float *>(getElementPointer(Elt)); 3202 } 3203 3204 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { 3205 assert(getElementType()->isDoubleTy() && 3206 "Accessor can only be used when element is a 'float'"); 3207 return *reinterpret_cast<const double *>(getElementPointer(Elt)); 3208 } 3209 3210 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { 3211 if (getElementType()->isHalfTy() || getElementType()->isBFloatTy() || 3212 getElementType()->isFloatTy() || getElementType()->isDoubleTy()) 3213 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt)); 3214 3215 return ConstantInt::get(getElementType(), getElementAsInteger(Elt)); 3216 } 3217 3218 bool ConstantDataSequential::isString(unsigned CharSize) const { 3219 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize); 3220 } 3221 3222 bool ConstantDataSequential::isCString() const { 3223 if (!isString()) 3224 return false; 3225 3226 StringRef Str = getAsString(); 3227 3228 // The last value must be nul. 3229 if (Str.back() != 0) return false; 3230 3231 // Other elements must be non-nul. 3232 return !Str.drop_back().contains(0); 3233 } 3234 3235 bool ConstantDataVector::isSplatData() const { 3236 const char *Base = getRawDataValues().data(); 3237 3238 // Compare elements 1+ to the 0'th element. 3239 unsigned EltSize = getElementByteSize(); 3240 for (unsigned i = 1, e = getNumElements(); i != e; ++i) 3241 if (memcmp(Base, Base+i*EltSize, EltSize)) 3242 return false; 3243 3244 return true; 3245 } 3246 3247 bool ConstantDataVector::isSplat() const { 3248 if (!IsSplatSet) { 3249 IsSplatSet = true; 3250 IsSplat = isSplatData(); 3251 } 3252 return IsSplat; 3253 } 3254 3255 Constant *ConstantDataVector::getSplatValue() const { 3256 // If they're all the same, return the 0th one as a representative. 3257 return isSplat() ? getElementAsConstant(0) : nullptr; 3258 } 3259 3260 //===----------------------------------------------------------------------===// 3261 // handleOperandChange implementations 3262 3263 /// Update this constant array to change uses of 3264 /// 'From' to be uses of 'To'. This must update the uniquing data structures 3265 /// etc. 3266 /// 3267 /// Note that we intentionally replace all uses of From with To here. Consider 3268 /// a large array that uses 'From' 1000 times. By handling this case all here, 3269 /// ConstantArray::handleOperandChange is only invoked once, and that 3270 /// single invocation handles all 1000 uses. Handling them one at a time would 3271 /// work, but would be really slow because it would have to unique each updated 3272 /// array instance. 3273 /// 3274 void Constant::handleOperandChange(Value *From, Value *To) { 3275 Value *Replacement = nullptr; 3276 switch (getValueID()) { 3277 default: 3278 llvm_unreachable("Not a constant!"); 3279 #define HANDLE_CONSTANT(Name) \ 3280 case Value::Name##Val: \ 3281 Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \ 3282 break; 3283 #include "llvm/IR/Value.def" 3284 } 3285 3286 // If handleOperandChangeImpl returned nullptr, then it handled 3287 // replacing itself and we don't want to delete or replace anything else here. 3288 if (!Replacement) 3289 return; 3290 3291 // I do need to replace this with an existing value. 3292 assert(Replacement != this && "I didn't contain From!"); 3293 3294 // Everyone using this now uses the replacement. 3295 replaceAllUsesWith(Replacement); 3296 3297 // Delete the old constant! 3298 destroyConstant(); 3299 } 3300 3301 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) { 3302 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3303 Constant *ToC = cast<Constant>(To); 3304 3305 SmallVector<Constant*, 8> Values; 3306 Values.reserve(getNumOperands()); // Build replacement array. 3307 3308 // Fill values with the modified operands of the constant array. Also, 3309 // compute whether this turns into an all-zeros array. 3310 unsigned NumUpdated = 0; 3311 3312 // Keep track of whether all the values in the array are "ToC". 3313 bool AllSame = true; 3314 Use *OperandList = getOperandList(); 3315 unsigned OperandNo = 0; 3316 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { 3317 Constant *Val = cast<Constant>(O->get()); 3318 if (Val == From) { 3319 OperandNo = (O - OperandList); 3320 Val = ToC; 3321 ++NumUpdated; 3322 } 3323 Values.push_back(Val); 3324 AllSame &= Val == ToC; 3325 } 3326 3327 if (AllSame && ToC->isNullValue()) 3328 return ConstantAggregateZero::get(getType()); 3329 3330 if (AllSame && isa<UndefValue>(ToC)) 3331 return UndefValue::get(getType()); 3332 3333 // Check for any other type of constant-folding. 3334 if (Constant *C = getImpl(getType(), Values)) 3335 return C; 3336 3337 // Update to the new value. 3338 return getContext().pImpl->ArrayConstants.replaceOperandsInPlace( 3339 Values, this, From, ToC, NumUpdated, OperandNo); 3340 } 3341 3342 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) { 3343 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3344 Constant *ToC = cast<Constant>(To); 3345 3346 Use *OperandList = getOperandList(); 3347 3348 SmallVector<Constant*, 8> Values; 3349 Values.reserve(getNumOperands()); // Build replacement struct. 3350 3351 // Fill values with the modified operands of the constant struct. Also, 3352 // compute whether this turns into an all-zeros struct. 3353 unsigned NumUpdated = 0; 3354 bool AllSame = true; 3355 unsigned OperandNo = 0; 3356 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) { 3357 Constant *Val = cast<Constant>(O->get()); 3358 if (Val == From) { 3359 OperandNo = (O - OperandList); 3360 Val = ToC; 3361 ++NumUpdated; 3362 } 3363 Values.push_back(Val); 3364 AllSame &= Val == ToC; 3365 } 3366 3367 if (AllSame && ToC->isNullValue()) 3368 return ConstantAggregateZero::get(getType()); 3369 3370 if (AllSame && isa<UndefValue>(ToC)) 3371 return UndefValue::get(getType()); 3372 3373 // Update to the new value. 3374 return getContext().pImpl->StructConstants.replaceOperandsInPlace( 3375 Values, this, From, ToC, NumUpdated, OperandNo); 3376 } 3377 3378 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) { 3379 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3380 Constant *ToC = cast<Constant>(To); 3381 3382 SmallVector<Constant*, 8> Values; 3383 Values.reserve(getNumOperands()); // Build replacement array... 3384 unsigned NumUpdated = 0; 3385 unsigned OperandNo = 0; 3386 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 3387 Constant *Val = getOperand(i); 3388 if (Val == From) { 3389 OperandNo = i; 3390 ++NumUpdated; 3391 Val = ToC; 3392 } 3393 Values.push_back(Val); 3394 } 3395 3396 if (Constant *C = getImpl(Values)) 3397 return C; 3398 3399 // Update to the new value. 3400 return getContext().pImpl->VectorConstants.replaceOperandsInPlace( 3401 Values, this, From, ToC, NumUpdated, OperandNo); 3402 } 3403 3404 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) { 3405 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); 3406 Constant *To = cast<Constant>(ToV); 3407 3408 SmallVector<Constant*, 8> NewOps; 3409 unsigned NumUpdated = 0; 3410 unsigned OperandNo = 0; 3411 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 3412 Constant *Op = getOperand(i); 3413 if (Op == From) { 3414 OperandNo = i; 3415 ++NumUpdated; 3416 Op = To; 3417 } 3418 NewOps.push_back(Op); 3419 } 3420 assert(NumUpdated && "I didn't contain From!"); 3421 3422 if (Constant *C = getWithOperands(NewOps, getType(), true)) 3423 return C; 3424 3425 // Update to the new value. 3426 return getContext().pImpl->ExprConstants.replaceOperandsInPlace( 3427 NewOps, this, From, To, NumUpdated, OperandNo); 3428 } 3429 3430 Instruction *ConstantExpr::getAsInstruction(Instruction *InsertBefore) const { 3431 SmallVector<Value *, 4> ValueOperands(operands()); 3432 ArrayRef<Value*> Ops(ValueOperands); 3433 3434 switch (getOpcode()) { 3435 case Instruction::Trunc: 3436 case Instruction::ZExt: 3437 case Instruction::SExt: 3438 case Instruction::FPTrunc: 3439 case Instruction::FPExt: 3440 case Instruction::UIToFP: 3441 case Instruction::SIToFP: 3442 case Instruction::FPToUI: 3443 case Instruction::FPToSI: 3444 case Instruction::PtrToInt: 3445 case Instruction::IntToPtr: 3446 case Instruction::BitCast: 3447 case Instruction::AddrSpaceCast: 3448 return CastInst::Create((Instruction::CastOps)getOpcode(), Ops[0], 3449 getType(), "", InsertBefore); 3450 case Instruction::Select: 3451 return SelectInst::Create(Ops[0], Ops[1], Ops[2], "", InsertBefore); 3452 case Instruction::InsertElement: 3453 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "", InsertBefore); 3454 case Instruction::ExtractElement: 3455 return ExtractElementInst::Create(Ops[0], Ops[1], "", InsertBefore); 3456 case Instruction::ShuffleVector: 3457 return new ShuffleVectorInst(Ops[0], Ops[1], getShuffleMask(), "", 3458 InsertBefore); 3459 3460 case Instruction::GetElementPtr: { 3461 const auto *GO = cast<GEPOperator>(this); 3462 if (GO->isInBounds()) 3463 return GetElementPtrInst::CreateInBounds( 3464 GO->getSourceElementType(), Ops[0], Ops.slice(1), "", InsertBefore); 3465 return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0], 3466 Ops.slice(1), "", InsertBefore); 3467 } 3468 case Instruction::ICmp: 3469 case Instruction::FCmp: 3470 return CmpInst::Create((Instruction::OtherOps)getOpcode(), 3471 (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1], 3472 "", InsertBefore); 3473 case Instruction::FNeg: 3474 return UnaryOperator::Create((Instruction::UnaryOps)getOpcode(), Ops[0], "", 3475 InsertBefore); 3476 default: 3477 assert(getNumOperands() == 2 && "Must be binary operator?"); 3478 BinaryOperator *BO = BinaryOperator::Create( 3479 (Instruction::BinaryOps)getOpcode(), Ops[0], Ops[1], "", InsertBefore); 3480 if (isa<OverflowingBinaryOperator>(BO)) { 3481 BO->setHasNoUnsignedWrap(SubclassOptionalData & 3482 OverflowingBinaryOperator::NoUnsignedWrap); 3483 BO->setHasNoSignedWrap(SubclassOptionalData & 3484 OverflowingBinaryOperator::NoSignedWrap); 3485 } 3486 if (isa<PossiblyExactOperator>(BO)) 3487 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact); 3488 return BO; 3489 } 3490 } 3491