xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Constants.cpp (revision c1d255d3ffdbe447de3ab875bf4e7d7accc5bfc5)
1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Constant* classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Constants.h"
14 #include "ConstantFold.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/GetElementPtrTypeIterator.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>
32 
33 using namespace llvm;
34 using namespace PatternMatch;
35 
36 //===----------------------------------------------------------------------===//
37 //                              Constant Class
38 //===----------------------------------------------------------------------===//
39 
40 bool Constant::isNegativeZeroValue() const {
41   // Floating point values have an explicit -0.0 value.
42   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
43     return CFP->isZero() && CFP->isNegative();
44 
45   // Equivalent for a vector of -0.0's.
46   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
47     if (CV->getElementType()->isFloatingPointTy() && CV->isSplat())
48       if (CV->getElementAsAPFloat(0).isNegZero())
49         return true;
50 
51   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
52     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53       if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
54         return true;
55 
56   // We've already handled true FP case; any other FP vectors can't represent -0.0.
57   if (getType()->isFPOrFPVectorTy())
58     return false;
59 
60   // Otherwise, just use +0.0.
61   return isNullValue();
62 }
63 
64 // Return true iff this constant is positive zero (floating point), negative
65 // zero (floating point), or a null value.
66 bool Constant::isZeroValue() const {
67   // Floating point values have an explicit -0.0 value.
68   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
69     return CFP->isZero();
70 
71   // Equivalent for a vector of -0.0's.
72   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
73     if (CV->getElementType()->isFloatingPointTy() && CV->isSplat())
74       if (CV->getElementAsAPFloat(0).isZero())
75         return true;
76 
77   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
78     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
79       if (SplatCFP && SplatCFP->isZero())
80         return true;
81 
82   // Otherwise, just use +0.0.
83   return isNullValue();
84 }
85 
86 bool Constant::isNullValue() const {
87   // 0 is null.
88   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
89     return CI->isZero();
90 
91   // +0.0 is null.
92   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
93     return CFP->isZero() && !CFP->isNegative();
94 
95   // constant zero is zero for aggregates, cpnull is null for pointers, none for
96   // tokens.
97   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
98          isa<ConstantTokenNone>(this);
99 }
100 
101 bool Constant::isAllOnesValue() const {
102   // Check for -1 integers
103   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
104     return CI->isMinusOne();
105 
106   // Check for FP which are bitcasted from -1 integers
107   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
108     return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
109 
110   // Check for constant vectors which are splats of -1 values.
111   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
112     if (Constant *Splat = CV->getSplatValue())
113       return Splat->isAllOnesValue();
114 
115   // Check for constant vectors which are splats of -1 values.
116   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
117     if (CV->isSplat()) {
118       if (CV->getElementType()->isFloatingPointTy())
119         return CV->getElementAsAPFloat(0).bitcastToAPInt().isAllOnesValue();
120       return CV->getElementAsAPInt(0).isAllOnesValue();
121     }
122   }
123 
124   return false;
125 }
126 
127 bool Constant::isOneValue() const {
128   // Check for 1 integers
129   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
130     return CI->isOne();
131 
132   // Check for FP which are bitcasted from 1 integers
133   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
134     return CFP->getValueAPF().bitcastToAPInt().isOneValue();
135 
136   // Check for constant vectors which are splats of 1 values.
137   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
138     if (Constant *Splat = CV->getSplatValue())
139       return Splat->isOneValue();
140 
141   // Check for constant vectors which are splats of 1 values.
142   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
143     if (CV->isSplat()) {
144       if (CV->getElementType()->isFloatingPointTy())
145         return CV->getElementAsAPFloat(0).bitcastToAPInt().isOneValue();
146       return CV->getElementAsAPInt(0).isOneValue();
147     }
148   }
149 
150   return false;
151 }
152 
153 bool Constant::isNotOneValue() const {
154   // Check for 1 integers
155   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
156     return !CI->isOneValue();
157 
158   // Check for FP which are bitcasted from 1 integers
159   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
160     return !CFP->getValueAPF().bitcastToAPInt().isOneValue();
161 
162   // Check that vectors don't contain 1
163   if (auto *VTy = dyn_cast<VectorType>(this->getType())) {
164     unsigned NumElts = cast<FixedVectorType>(VTy)->getNumElements();
165     for (unsigned i = 0; i != NumElts; ++i) {
166       Constant *Elt = this->getAggregateElement(i);
167       if (!Elt || !Elt->isNotOneValue())
168         return false;
169     }
170     return true;
171   }
172 
173   // It *may* contain 1, we can't tell.
174   return false;
175 }
176 
177 bool Constant::isMinSignedValue() const {
178   // Check for INT_MIN integers
179   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
180     return CI->isMinValue(/*isSigned=*/true);
181 
182   // Check for FP which are bitcasted from INT_MIN integers
183   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
184     return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
185 
186   // Check for constant vectors which are splats of INT_MIN values.
187   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
188     if (Constant *Splat = CV->getSplatValue())
189       return Splat->isMinSignedValue();
190 
191   // Check for constant vectors which are splats of INT_MIN values.
192   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
193     if (CV->isSplat()) {
194       if (CV->getElementType()->isFloatingPointTy())
195         return CV->getElementAsAPFloat(0).bitcastToAPInt().isMinSignedValue();
196       return CV->getElementAsAPInt(0).isMinSignedValue();
197     }
198   }
199 
200   return false;
201 }
202 
203 bool Constant::isNotMinSignedValue() const {
204   // Check for INT_MIN integers
205   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
206     return !CI->isMinValue(/*isSigned=*/true);
207 
208   // Check for FP which are bitcasted from INT_MIN integers
209   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
210     return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
211 
212   // Check that vectors don't contain INT_MIN
213   if (auto *VTy = dyn_cast<VectorType>(this->getType())) {
214     unsigned NumElts = cast<FixedVectorType>(VTy)->getNumElements();
215     for (unsigned i = 0; i != NumElts; ++i) {
216       Constant *Elt = this->getAggregateElement(i);
217       if (!Elt || !Elt->isNotMinSignedValue())
218         return false;
219     }
220     return true;
221   }
222 
223   // It *may* contain INT_MIN, we can't tell.
224   return false;
225 }
226 
227 bool Constant::isFiniteNonZeroFP() const {
228   if (auto *CFP = dyn_cast<ConstantFP>(this))
229     return CFP->getValueAPF().isFiniteNonZero();
230   auto *VTy = dyn_cast<FixedVectorType>(getType());
231   if (!VTy)
232     return false;
233   for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
234     auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
235     if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
236       return false;
237   }
238   return true;
239 }
240 
241 bool Constant::isNormalFP() const {
242   if (auto *CFP = dyn_cast<ConstantFP>(this))
243     return CFP->getValueAPF().isNormal();
244   auto *VTy = dyn_cast<FixedVectorType>(getType());
245   if (!VTy)
246     return false;
247   for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
248     auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
249     if (!CFP || !CFP->getValueAPF().isNormal())
250       return false;
251   }
252   return true;
253 }
254 
255 bool Constant::hasExactInverseFP() const {
256   if (auto *CFP = dyn_cast<ConstantFP>(this))
257     return CFP->getValueAPF().getExactInverse(nullptr);
258   auto *VTy = dyn_cast<FixedVectorType>(getType());
259   if (!VTy)
260     return false;
261   for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
262     auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
263     if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr))
264       return false;
265   }
266   return true;
267 }
268 
269 bool Constant::isNaN() const {
270   if (auto *CFP = dyn_cast<ConstantFP>(this))
271     return CFP->isNaN();
272   auto *VTy = dyn_cast<FixedVectorType>(getType());
273   if (!VTy)
274     return false;
275   for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
276     auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
277     if (!CFP || !CFP->isNaN())
278       return false;
279   }
280   return true;
281 }
282 
283 bool Constant::isElementWiseEqual(Value *Y) const {
284   // Are they fully identical?
285   if (this == Y)
286     return true;
287 
288   // The input value must be a vector constant with the same type.
289   auto *VTy = dyn_cast<VectorType>(getType());
290   if (!isa<Constant>(Y) || !VTy || VTy != Y->getType())
291     return false;
292 
293   // TODO: Compare pointer constants?
294   if (!(VTy->getElementType()->isIntegerTy() ||
295         VTy->getElementType()->isFloatingPointTy()))
296     return false;
297 
298   // They may still be identical element-wise (if they have `undef`s).
299   // Bitcast to integer to allow exact bitwise comparison for all types.
300   Type *IntTy = VectorType::getInteger(VTy);
301   Constant *C0 = ConstantExpr::getBitCast(const_cast<Constant *>(this), IntTy);
302   Constant *C1 = ConstantExpr::getBitCast(cast<Constant>(Y), IntTy);
303   Constant *CmpEq = ConstantExpr::getICmp(ICmpInst::ICMP_EQ, C0, C1);
304   return isa<UndefValue>(CmpEq) || match(CmpEq, m_One());
305 }
306 
307 static bool
308 containsUndefinedElement(const Constant *C,
309                          function_ref<bool(const Constant *)> HasFn) {
310   if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
311     if (HasFn(C))
312       return true;
313     if (isa<ConstantAggregateZero>(C))
314       return false;
315     if (isa<ScalableVectorType>(C->getType()))
316       return false;
317 
318     for (unsigned i = 0, e = cast<FixedVectorType>(VTy)->getNumElements();
319          i != e; ++i)
320       if (HasFn(C->getAggregateElement(i)))
321         return true;
322   }
323 
324   return false;
325 }
326 
327 bool Constant::containsUndefOrPoisonElement() const {
328   return containsUndefinedElement(
329       this, [&](const auto *C) { return isa<UndefValue>(C); });
330 }
331 
332 bool Constant::containsPoisonElement() const {
333   return containsUndefinedElement(
334       this, [&](const auto *C) { return isa<PoisonValue>(C); });
335 }
336 
337 bool Constant::containsConstantExpression() const {
338   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
339     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
340       if (isa<ConstantExpr>(getAggregateElement(i)))
341         return true;
342   }
343   return false;
344 }
345 
346 /// Constructor to create a '0' constant of arbitrary type.
347 Constant *Constant::getNullValue(Type *Ty) {
348   switch (Ty->getTypeID()) {
349   case Type::IntegerTyID:
350     return ConstantInt::get(Ty, 0);
351   case Type::HalfTyID:
352     return ConstantFP::get(Ty->getContext(),
353                            APFloat::getZero(APFloat::IEEEhalf()));
354   case Type::BFloatTyID:
355     return ConstantFP::get(Ty->getContext(),
356                            APFloat::getZero(APFloat::BFloat()));
357   case Type::FloatTyID:
358     return ConstantFP::get(Ty->getContext(),
359                            APFloat::getZero(APFloat::IEEEsingle()));
360   case Type::DoubleTyID:
361     return ConstantFP::get(Ty->getContext(),
362                            APFloat::getZero(APFloat::IEEEdouble()));
363   case Type::X86_FP80TyID:
364     return ConstantFP::get(Ty->getContext(),
365                            APFloat::getZero(APFloat::x87DoubleExtended()));
366   case Type::FP128TyID:
367     return ConstantFP::get(Ty->getContext(),
368                            APFloat::getZero(APFloat::IEEEquad()));
369   case Type::PPC_FP128TyID:
370     return ConstantFP::get(Ty->getContext(),
371                            APFloat(APFloat::PPCDoubleDouble(),
372                                    APInt::getNullValue(128)));
373   case Type::PointerTyID:
374     return ConstantPointerNull::get(cast<PointerType>(Ty));
375   case Type::StructTyID:
376   case Type::ArrayTyID:
377   case Type::FixedVectorTyID:
378   case Type::ScalableVectorTyID:
379     return ConstantAggregateZero::get(Ty);
380   case Type::TokenTyID:
381     return ConstantTokenNone::get(Ty->getContext());
382   default:
383     // Function, Label, or Opaque type?
384     llvm_unreachable("Cannot create a null constant of that type!");
385   }
386 }
387 
388 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
389   Type *ScalarTy = Ty->getScalarType();
390 
391   // Create the base integer constant.
392   Constant *C = ConstantInt::get(Ty->getContext(), V);
393 
394   // Convert an integer to a pointer, if necessary.
395   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
396     C = ConstantExpr::getIntToPtr(C, PTy);
397 
398   // Broadcast a scalar to a vector, if necessary.
399   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
400     C = ConstantVector::getSplat(VTy->getElementCount(), C);
401 
402   return C;
403 }
404 
405 Constant *Constant::getAllOnesValue(Type *Ty) {
406   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
407     return ConstantInt::get(Ty->getContext(),
408                             APInt::getAllOnesValue(ITy->getBitWidth()));
409 
410   if (Ty->isFloatingPointTy()) {
411     APFloat FL = APFloat::getAllOnesValue(Ty->getFltSemantics(),
412                                           Ty->getPrimitiveSizeInBits());
413     return ConstantFP::get(Ty->getContext(), FL);
414   }
415 
416   VectorType *VTy = cast<VectorType>(Ty);
417   return ConstantVector::getSplat(VTy->getElementCount(),
418                                   getAllOnesValue(VTy->getElementType()));
419 }
420 
421 Constant *Constant::getAggregateElement(unsigned Elt) const {
422   if (const auto *CC = dyn_cast<ConstantAggregate>(this))
423     return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr;
424 
425   // FIXME: getNumElements() will fail for non-fixed vector types.
426   if (isa<ScalableVectorType>(getType()))
427     return nullptr;
428 
429   if (const auto *CAZ = dyn_cast<ConstantAggregateZero>(this))
430     return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
431 
432   if (const auto *PV = dyn_cast<PoisonValue>(this))
433     return Elt < PV->getNumElements() ? PV->getElementValue(Elt) : nullptr;
434 
435   if (const auto *UV = dyn_cast<UndefValue>(this))
436     return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
437 
438   if (const auto *CDS = dyn_cast<ConstantDataSequential>(this))
439     return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
440                                        : nullptr;
441   return nullptr;
442 }
443 
444 Constant *Constant::getAggregateElement(Constant *Elt) const {
445   assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
446   if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) {
447     // Check if the constant fits into an uint64_t.
448     if (CI->getValue().getActiveBits() > 64)
449       return nullptr;
450     return getAggregateElement(CI->getZExtValue());
451   }
452   return nullptr;
453 }
454 
455 void Constant::destroyConstant() {
456   /// First call destroyConstantImpl on the subclass.  This gives the subclass
457   /// a chance to remove the constant from any maps/pools it's contained in.
458   switch (getValueID()) {
459   default:
460     llvm_unreachable("Not a constant!");
461 #define HANDLE_CONSTANT(Name)                                                  \
462   case Value::Name##Val:                                                       \
463     cast<Name>(this)->destroyConstantImpl();                                   \
464     break;
465 #include "llvm/IR/Value.def"
466   }
467 
468   // When a Constant is destroyed, there may be lingering
469   // references to the constant by other constants in the constant pool.  These
470   // constants are implicitly dependent on the module that is being deleted,
471   // but they don't know that.  Because we only find out when the CPV is
472   // deleted, we must now notify all of our users (that should only be
473   // Constants) that they are, in fact, invalid now and should be deleted.
474   //
475   while (!use_empty()) {
476     Value *V = user_back();
477 #ifndef NDEBUG // Only in -g mode...
478     if (!isa<Constant>(V)) {
479       dbgs() << "While deleting: " << *this
480              << "\n\nUse still stuck around after Def is destroyed: " << *V
481              << "\n\n";
482     }
483 #endif
484     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
485     cast<Constant>(V)->destroyConstant();
486 
487     // The constant should remove itself from our use list...
488     assert((use_empty() || user_back() != V) && "Constant not removed!");
489   }
490 
491   // Value has no outstanding references it is safe to delete it now...
492   deleteConstant(this);
493 }
494 
495 void llvm::deleteConstant(Constant *C) {
496   switch (C->getValueID()) {
497   case Constant::ConstantIntVal:
498     delete static_cast<ConstantInt *>(C);
499     break;
500   case Constant::ConstantFPVal:
501     delete static_cast<ConstantFP *>(C);
502     break;
503   case Constant::ConstantAggregateZeroVal:
504     delete static_cast<ConstantAggregateZero *>(C);
505     break;
506   case Constant::ConstantArrayVal:
507     delete static_cast<ConstantArray *>(C);
508     break;
509   case Constant::ConstantStructVal:
510     delete static_cast<ConstantStruct *>(C);
511     break;
512   case Constant::ConstantVectorVal:
513     delete static_cast<ConstantVector *>(C);
514     break;
515   case Constant::ConstantPointerNullVal:
516     delete static_cast<ConstantPointerNull *>(C);
517     break;
518   case Constant::ConstantDataArrayVal:
519     delete static_cast<ConstantDataArray *>(C);
520     break;
521   case Constant::ConstantDataVectorVal:
522     delete static_cast<ConstantDataVector *>(C);
523     break;
524   case Constant::ConstantTokenNoneVal:
525     delete static_cast<ConstantTokenNone *>(C);
526     break;
527   case Constant::BlockAddressVal:
528     delete static_cast<BlockAddress *>(C);
529     break;
530   case Constant::DSOLocalEquivalentVal:
531     delete static_cast<DSOLocalEquivalent *>(C);
532     break;
533   case Constant::UndefValueVal:
534     delete static_cast<UndefValue *>(C);
535     break;
536   case Constant::PoisonValueVal:
537     delete static_cast<PoisonValue *>(C);
538     break;
539   case Constant::ConstantExprVal:
540     if (isa<UnaryConstantExpr>(C))
541       delete static_cast<UnaryConstantExpr *>(C);
542     else if (isa<BinaryConstantExpr>(C))
543       delete static_cast<BinaryConstantExpr *>(C);
544     else if (isa<SelectConstantExpr>(C))
545       delete static_cast<SelectConstantExpr *>(C);
546     else if (isa<ExtractElementConstantExpr>(C))
547       delete static_cast<ExtractElementConstantExpr *>(C);
548     else if (isa<InsertElementConstantExpr>(C))
549       delete static_cast<InsertElementConstantExpr *>(C);
550     else if (isa<ShuffleVectorConstantExpr>(C))
551       delete static_cast<ShuffleVectorConstantExpr *>(C);
552     else if (isa<ExtractValueConstantExpr>(C))
553       delete static_cast<ExtractValueConstantExpr *>(C);
554     else if (isa<InsertValueConstantExpr>(C))
555       delete static_cast<InsertValueConstantExpr *>(C);
556     else if (isa<GetElementPtrConstantExpr>(C))
557       delete static_cast<GetElementPtrConstantExpr *>(C);
558     else if (isa<CompareConstantExpr>(C))
559       delete static_cast<CompareConstantExpr *>(C);
560     else
561       llvm_unreachable("Unexpected constant expr");
562     break;
563   default:
564     llvm_unreachable("Unexpected constant");
565   }
566 }
567 
568 static bool canTrapImpl(const Constant *C,
569                         SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
570   assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
571   // The only thing that could possibly trap are constant exprs.
572   const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
573   if (!CE)
574     return false;
575 
576   // ConstantExpr traps if any operands can trap.
577   for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
578     if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
579       if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
580         return true;
581     }
582   }
583 
584   // Otherwise, only specific operations can trap.
585   switch (CE->getOpcode()) {
586   default:
587     return false;
588   case Instruction::UDiv:
589   case Instruction::SDiv:
590   case Instruction::URem:
591   case Instruction::SRem:
592     // Div and rem can trap if the RHS is not known to be non-zero.
593     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
594       return true;
595     return false;
596   }
597 }
598 
599 bool Constant::canTrap() const {
600   SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
601   return canTrapImpl(this, NonTrappingOps);
602 }
603 
604 /// Check if C contains a GlobalValue for which Predicate is true.
605 static bool
606 ConstHasGlobalValuePredicate(const Constant *C,
607                              bool (*Predicate)(const GlobalValue *)) {
608   SmallPtrSet<const Constant *, 8> Visited;
609   SmallVector<const Constant *, 8> WorkList;
610   WorkList.push_back(C);
611   Visited.insert(C);
612 
613   while (!WorkList.empty()) {
614     const Constant *WorkItem = WorkList.pop_back_val();
615     if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
616       if (Predicate(GV))
617         return true;
618     for (const Value *Op : WorkItem->operands()) {
619       const Constant *ConstOp = dyn_cast<Constant>(Op);
620       if (!ConstOp)
621         continue;
622       if (Visited.insert(ConstOp).second)
623         WorkList.push_back(ConstOp);
624     }
625   }
626   return false;
627 }
628 
629 bool Constant::isThreadDependent() const {
630   auto DLLImportPredicate = [](const GlobalValue *GV) {
631     return GV->isThreadLocal();
632   };
633   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
634 }
635 
636 bool Constant::isDLLImportDependent() const {
637   auto DLLImportPredicate = [](const GlobalValue *GV) {
638     return GV->hasDLLImportStorageClass();
639   };
640   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
641 }
642 
643 bool Constant::isConstantUsed() const {
644   for (const User *U : users()) {
645     const Constant *UC = dyn_cast<Constant>(U);
646     if (!UC || isa<GlobalValue>(UC))
647       return true;
648 
649     if (UC->isConstantUsed())
650       return true;
651   }
652   return false;
653 }
654 
655 bool Constant::needsRelocation() const {
656   if (isa<GlobalValue>(this))
657     return true; // Global reference.
658 
659   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
660     return BA->getFunction()->needsRelocation();
661 
662   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) {
663     if (CE->getOpcode() == Instruction::Sub) {
664       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
665       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
666       if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
667           RHS->getOpcode() == Instruction::PtrToInt) {
668         Constant *LHSOp0 = LHS->getOperand(0);
669         Constant *RHSOp0 = RHS->getOperand(0);
670 
671         // While raw uses of blockaddress need to be relocated, differences
672         // between two of them don't when they are for labels in the same
673         // function.  This is a common idiom when creating a table for the
674         // indirect goto extension, so we handle it efficiently here.
675         if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) &&
676             cast<BlockAddress>(LHSOp0)->getFunction() ==
677                 cast<BlockAddress>(RHSOp0)->getFunction())
678           return false;
679 
680         // Relative pointers do not need to be dynamically relocated.
681         if (auto *RHSGV =
682                 dyn_cast<GlobalValue>(RHSOp0->stripInBoundsConstantOffsets())) {
683           auto *LHS = LHSOp0->stripInBoundsConstantOffsets();
684           if (auto *LHSGV = dyn_cast<GlobalValue>(LHS)) {
685             if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal())
686               return false;
687           } else if (isa<DSOLocalEquivalent>(LHS)) {
688             if (RHSGV->isDSOLocal())
689               return false;
690           }
691         }
692       }
693     }
694   }
695 
696   bool Result = false;
697   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
698     Result |= cast<Constant>(getOperand(i))->needsRelocation();
699 
700   return Result;
701 }
702 
703 /// If the specified constantexpr is dead, remove it. This involves recursively
704 /// eliminating any dead users of the constantexpr.
705 static bool removeDeadUsersOfConstant(const Constant *C) {
706   if (isa<GlobalValue>(C)) return false; // Cannot remove this
707 
708   while (!C->use_empty()) {
709     const Constant *User = dyn_cast<Constant>(C->user_back());
710     if (!User) return false; // Non-constant usage;
711     if (!removeDeadUsersOfConstant(User))
712       return false; // Constant wasn't dead
713   }
714 
715   const_cast<Constant*>(C)->destroyConstant();
716   return true;
717 }
718 
719 
720 void Constant::removeDeadConstantUsers() const {
721   Value::const_user_iterator I = user_begin(), E = user_end();
722   Value::const_user_iterator LastNonDeadUser = E;
723   while (I != E) {
724     const Constant *User = dyn_cast<Constant>(*I);
725     if (!User) {
726       LastNonDeadUser = I;
727       ++I;
728       continue;
729     }
730 
731     if (!removeDeadUsersOfConstant(User)) {
732       // If the constant wasn't dead, remember that this was the last live use
733       // and move on to the next constant.
734       LastNonDeadUser = I;
735       ++I;
736       continue;
737     }
738 
739     // If the constant was dead, then the iterator is invalidated.
740     if (LastNonDeadUser == E)
741       I = user_begin();
742     else
743       I = std::next(LastNonDeadUser);
744   }
745 }
746 
747 Constant *Constant::replaceUndefsWith(Constant *C, Constant *Replacement) {
748   assert(C && Replacement && "Expected non-nullptr constant arguments");
749   Type *Ty = C->getType();
750   if (match(C, m_Undef())) {
751     assert(Ty == Replacement->getType() && "Expected matching types");
752     return Replacement;
753   }
754 
755   // Don't know how to deal with this constant.
756   auto *VTy = dyn_cast<FixedVectorType>(Ty);
757   if (!VTy)
758     return C;
759 
760   unsigned NumElts = VTy->getNumElements();
761   SmallVector<Constant *, 32> NewC(NumElts);
762   for (unsigned i = 0; i != NumElts; ++i) {
763     Constant *EltC = C->getAggregateElement(i);
764     assert((!EltC || EltC->getType() == Replacement->getType()) &&
765            "Expected matching types");
766     NewC[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC;
767   }
768   return ConstantVector::get(NewC);
769 }
770 
771 Constant *Constant::mergeUndefsWith(Constant *C, Constant *Other) {
772   assert(C && Other && "Expected non-nullptr constant arguments");
773   if (match(C, m_Undef()))
774     return C;
775 
776   Type *Ty = C->getType();
777   if (match(Other, m_Undef()))
778     return UndefValue::get(Ty);
779 
780   auto *VTy = dyn_cast<FixedVectorType>(Ty);
781   if (!VTy)
782     return C;
783 
784   Type *EltTy = VTy->getElementType();
785   unsigned NumElts = VTy->getNumElements();
786   assert(isa<FixedVectorType>(Other->getType()) &&
787          cast<FixedVectorType>(Other->getType())->getNumElements() == NumElts &&
788          "Type mismatch");
789 
790   bool FoundExtraUndef = false;
791   SmallVector<Constant *, 32> NewC(NumElts);
792   for (unsigned I = 0; I != NumElts; ++I) {
793     NewC[I] = C->getAggregateElement(I);
794     Constant *OtherEltC = Other->getAggregateElement(I);
795     assert(NewC[I] && OtherEltC && "Unknown vector element");
796     if (!match(NewC[I], m_Undef()) && match(OtherEltC, m_Undef())) {
797       NewC[I] = UndefValue::get(EltTy);
798       FoundExtraUndef = true;
799     }
800   }
801   if (FoundExtraUndef)
802     return ConstantVector::get(NewC);
803   return C;
804 }
805 
806 bool Constant::isManifestConstant() const {
807   if (isa<ConstantData>(this))
808     return true;
809   if (isa<ConstantAggregate>(this) || isa<ConstantExpr>(this)) {
810     for (const Value *Op : operand_values())
811       if (!cast<Constant>(Op)->isManifestConstant())
812         return false;
813     return true;
814   }
815   return false;
816 }
817 
818 //===----------------------------------------------------------------------===//
819 //                                ConstantInt
820 //===----------------------------------------------------------------------===//
821 
822 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V)
823     : ConstantData(Ty, ConstantIntVal), Val(V) {
824   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
825 }
826 
827 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
828   LLVMContextImpl *pImpl = Context.pImpl;
829   if (!pImpl->TheTrueVal)
830     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
831   return pImpl->TheTrueVal;
832 }
833 
834 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
835   LLVMContextImpl *pImpl = Context.pImpl;
836   if (!pImpl->TheFalseVal)
837     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
838   return pImpl->TheFalseVal;
839 }
840 
841 ConstantInt *ConstantInt::getBool(LLVMContext &Context, bool V) {
842   return V ? getTrue(Context) : getFalse(Context);
843 }
844 
845 Constant *ConstantInt::getTrue(Type *Ty) {
846   assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
847   ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext());
848   if (auto *VTy = dyn_cast<VectorType>(Ty))
849     return ConstantVector::getSplat(VTy->getElementCount(), TrueC);
850   return TrueC;
851 }
852 
853 Constant *ConstantInt::getFalse(Type *Ty) {
854   assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
855   ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext());
856   if (auto *VTy = dyn_cast<VectorType>(Ty))
857     return ConstantVector::getSplat(VTy->getElementCount(), FalseC);
858   return FalseC;
859 }
860 
861 Constant *ConstantInt::getBool(Type *Ty, bool V) {
862   return V ? getTrue(Ty) : getFalse(Ty);
863 }
864 
865 // Get a ConstantInt from an APInt.
866 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
867   // get an existing value or the insertion position
868   LLVMContextImpl *pImpl = Context.pImpl;
869   std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V];
870   if (!Slot) {
871     // Get the corresponding integer type for the bit width of the value.
872     IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
873     Slot.reset(new ConstantInt(ITy, V));
874   }
875   assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
876   return Slot.get();
877 }
878 
879 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
880   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
881 
882   // For vectors, broadcast the value.
883   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
884     return ConstantVector::getSplat(VTy->getElementCount(), C);
885 
886   return C;
887 }
888 
889 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) {
890   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
891 }
892 
893 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
894   return get(Ty, V, true);
895 }
896 
897 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
898   return get(Ty, V, true);
899 }
900 
901 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
902   ConstantInt *C = get(Ty->getContext(), V);
903   assert(C->getType() == Ty->getScalarType() &&
904          "ConstantInt type doesn't match the type implied by its value!");
905 
906   // For vectors, broadcast the value.
907   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
908     return ConstantVector::getSplat(VTy->getElementCount(), C);
909 
910   return C;
911 }
912 
913 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) {
914   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
915 }
916 
917 /// Remove the constant from the constant table.
918 void ConstantInt::destroyConstantImpl() {
919   llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
920 }
921 
922 //===----------------------------------------------------------------------===//
923 //                                ConstantFP
924 //===----------------------------------------------------------------------===//
925 
926 Constant *ConstantFP::get(Type *Ty, double V) {
927   LLVMContext &Context = Ty->getContext();
928 
929   APFloat FV(V);
930   bool ignored;
931   FV.convert(Ty->getScalarType()->getFltSemantics(),
932              APFloat::rmNearestTiesToEven, &ignored);
933   Constant *C = get(Context, FV);
934 
935   // For vectors, broadcast the value.
936   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
937     return ConstantVector::getSplat(VTy->getElementCount(), C);
938 
939   return C;
940 }
941 
942 Constant *ConstantFP::get(Type *Ty, const APFloat &V) {
943   ConstantFP *C = get(Ty->getContext(), V);
944   assert(C->getType() == Ty->getScalarType() &&
945          "ConstantFP type doesn't match the type implied by its value!");
946 
947   // For vectors, broadcast the value.
948   if (auto *VTy = dyn_cast<VectorType>(Ty))
949     return ConstantVector::getSplat(VTy->getElementCount(), C);
950 
951   return C;
952 }
953 
954 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
955   LLVMContext &Context = Ty->getContext();
956 
957   APFloat FV(Ty->getScalarType()->getFltSemantics(), Str);
958   Constant *C = get(Context, FV);
959 
960   // For vectors, broadcast the value.
961   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
962     return ConstantVector::getSplat(VTy->getElementCount(), C);
963 
964   return C;
965 }
966 
967 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) {
968   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
969   APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload);
970   Constant *C = get(Ty->getContext(), NaN);
971 
972   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
973     return ConstantVector::getSplat(VTy->getElementCount(), C);
974 
975   return C;
976 }
977 
978 Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) {
979   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
980   APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload);
981   Constant *C = get(Ty->getContext(), NaN);
982 
983   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
984     return ConstantVector::getSplat(VTy->getElementCount(), C);
985 
986   return C;
987 }
988 
989 Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) {
990   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
991   APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload);
992   Constant *C = get(Ty->getContext(), NaN);
993 
994   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
995     return ConstantVector::getSplat(VTy->getElementCount(), C);
996 
997   return C;
998 }
999 
1000 Constant *ConstantFP::getNegativeZero(Type *Ty) {
1001   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1002   APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
1003   Constant *C = get(Ty->getContext(), NegZero);
1004 
1005   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1006     return ConstantVector::getSplat(VTy->getElementCount(), C);
1007 
1008   return C;
1009 }
1010 
1011 
1012 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
1013   if (Ty->isFPOrFPVectorTy())
1014     return getNegativeZero(Ty);
1015 
1016   return Constant::getNullValue(Ty);
1017 }
1018 
1019 
1020 // ConstantFP accessors.
1021 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
1022   LLVMContextImpl* pImpl = Context.pImpl;
1023 
1024   std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V];
1025 
1026   if (!Slot) {
1027     Type *Ty = Type::getFloatingPointTy(Context, V.getSemantics());
1028     Slot.reset(new ConstantFP(Ty, V));
1029   }
1030 
1031   return Slot.get();
1032 }
1033 
1034 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
1035   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1036   Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
1037 
1038   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1039     return ConstantVector::getSplat(VTy->getElementCount(), C);
1040 
1041   return C;
1042 }
1043 
1044 ConstantFP::ConstantFP(Type *Ty, const APFloat &V)
1045     : ConstantData(Ty, ConstantFPVal), Val(V) {
1046   assert(&V.getSemantics() == &Ty->getFltSemantics() &&
1047          "FP type Mismatch");
1048 }
1049 
1050 bool ConstantFP::isExactlyValue(const APFloat &V) const {
1051   return Val.bitwiseIsEqual(V);
1052 }
1053 
1054 /// Remove the constant from the constant table.
1055 void ConstantFP::destroyConstantImpl() {
1056   llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!");
1057 }
1058 
1059 //===----------------------------------------------------------------------===//
1060 //                   ConstantAggregateZero Implementation
1061 //===----------------------------------------------------------------------===//
1062 
1063 Constant *ConstantAggregateZero::getSequentialElement() const {
1064   if (auto *AT = dyn_cast<ArrayType>(getType()))
1065     return Constant::getNullValue(AT->getElementType());
1066   return Constant::getNullValue(cast<VectorType>(getType())->getElementType());
1067 }
1068 
1069 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
1070   return Constant::getNullValue(getType()->getStructElementType(Elt));
1071 }
1072 
1073 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
1074   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1075     return getSequentialElement();
1076   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1077 }
1078 
1079 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
1080   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1081     return getSequentialElement();
1082   return getStructElement(Idx);
1083 }
1084 
1085 unsigned ConstantAggregateZero::getNumElements() const {
1086   Type *Ty = getType();
1087   if (auto *AT = dyn_cast<ArrayType>(Ty))
1088     return AT->getNumElements();
1089   if (auto *VT = dyn_cast<VectorType>(Ty))
1090     return cast<FixedVectorType>(VT)->getNumElements();
1091   return Ty->getStructNumElements();
1092 }
1093 
1094 //===----------------------------------------------------------------------===//
1095 //                         UndefValue Implementation
1096 //===----------------------------------------------------------------------===//
1097 
1098 UndefValue *UndefValue::getSequentialElement() const {
1099   if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
1100     return UndefValue::get(ATy->getElementType());
1101   return UndefValue::get(cast<VectorType>(getType())->getElementType());
1102 }
1103 
1104 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
1105   return UndefValue::get(getType()->getStructElementType(Elt));
1106 }
1107 
1108 UndefValue *UndefValue::getElementValue(Constant *C) const {
1109   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1110     return getSequentialElement();
1111   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1112 }
1113 
1114 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
1115   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1116     return getSequentialElement();
1117   return getStructElement(Idx);
1118 }
1119 
1120 unsigned UndefValue::getNumElements() const {
1121   Type *Ty = getType();
1122   if (auto *AT = dyn_cast<ArrayType>(Ty))
1123     return AT->getNumElements();
1124   if (auto *VT = dyn_cast<VectorType>(Ty))
1125     return cast<FixedVectorType>(VT)->getNumElements();
1126   return Ty->getStructNumElements();
1127 }
1128 
1129 //===----------------------------------------------------------------------===//
1130 //                         PoisonValue Implementation
1131 //===----------------------------------------------------------------------===//
1132 
1133 PoisonValue *PoisonValue::getSequentialElement() const {
1134   if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
1135     return PoisonValue::get(ATy->getElementType());
1136   return PoisonValue::get(cast<VectorType>(getType())->getElementType());
1137 }
1138 
1139 PoisonValue *PoisonValue::getStructElement(unsigned Elt) const {
1140   return PoisonValue::get(getType()->getStructElementType(Elt));
1141 }
1142 
1143 PoisonValue *PoisonValue::getElementValue(Constant *C) const {
1144   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1145     return getSequentialElement();
1146   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1147 }
1148 
1149 PoisonValue *PoisonValue::getElementValue(unsigned Idx) const {
1150   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1151     return getSequentialElement();
1152   return getStructElement(Idx);
1153 }
1154 
1155 //===----------------------------------------------------------------------===//
1156 //                            ConstantXXX Classes
1157 //===----------------------------------------------------------------------===//
1158 
1159 template <typename ItTy, typename EltTy>
1160 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
1161   for (; Start != End; ++Start)
1162     if (*Start != Elt)
1163       return false;
1164   return true;
1165 }
1166 
1167 template <typename SequentialTy, typename ElementTy>
1168 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
1169   assert(!V.empty() && "Cannot get empty int sequence.");
1170 
1171   SmallVector<ElementTy, 16> Elts;
1172   for (Constant *C : V)
1173     if (auto *CI = dyn_cast<ConstantInt>(C))
1174       Elts.push_back(CI->getZExtValue());
1175     else
1176       return nullptr;
1177   return SequentialTy::get(V[0]->getContext(), Elts);
1178 }
1179 
1180 template <typename SequentialTy, typename ElementTy>
1181 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
1182   assert(!V.empty() && "Cannot get empty FP sequence.");
1183 
1184   SmallVector<ElementTy, 16> Elts;
1185   for (Constant *C : V)
1186     if (auto *CFP = dyn_cast<ConstantFP>(C))
1187       Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
1188     else
1189       return nullptr;
1190   return SequentialTy::getFP(V[0]->getType(), Elts);
1191 }
1192 
1193 template <typename SequenceTy>
1194 static Constant *getSequenceIfElementsMatch(Constant *C,
1195                                             ArrayRef<Constant *> V) {
1196   // We speculatively build the elements here even if it turns out that there is
1197   // a constantexpr or something else weird, since it is so uncommon for that to
1198   // happen.
1199   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1200     if (CI->getType()->isIntegerTy(8))
1201       return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
1202     else if (CI->getType()->isIntegerTy(16))
1203       return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1204     else if (CI->getType()->isIntegerTy(32))
1205       return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1206     else if (CI->getType()->isIntegerTy(64))
1207       return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1208   } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1209     if (CFP->getType()->isHalfTy() || CFP->getType()->isBFloatTy())
1210       return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1211     else if (CFP->getType()->isFloatTy())
1212       return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1213     else if (CFP->getType()->isDoubleTy())
1214       return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1215   }
1216 
1217   return nullptr;
1218 }
1219 
1220 ConstantAggregate::ConstantAggregate(Type *T, ValueTy VT,
1221                                      ArrayRef<Constant *> V)
1222     : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(),
1223                V.size()) {
1224   llvm::copy(V, op_begin());
1225 
1226   // Check that types match, unless this is an opaque struct.
1227   if (auto *ST = dyn_cast<StructType>(T)) {
1228     if (ST->isOpaque())
1229       return;
1230     for (unsigned I = 0, E = V.size(); I != E; ++I)
1231       assert(V[I]->getType() == ST->getTypeAtIndex(I) &&
1232              "Initializer for struct element doesn't match!");
1233   }
1234 }
1235 
1236 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
1237     : ConstantAggregate(T, ConstantArrayVal, V) {
1238   assert(V.size() == T->getNumElements() &&
1239          "Invalid initializer for constant array");
1240 }
1241 
1242 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
1243   if (Constant *C = getImpl(Ty, V))
1244     return C;
1245   return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
1246 }
1247 
1248 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
1249   // Empty arrays are canonicalized to ConstantAggregateZero.
1250   if (V.empty())
1251     return ConstantAggregateZero::get(Ty);
1252 
1253   for (unsigned i = 0, e = V.size(); i != e; ++i) {
1254     assert(V[i]->getType() == Ty->getElementType() &&
1255            "Wrong type in array element initializer");
1256   }
1257 
1258   // If this is an all-zero array, return a ConstantAggregateZero object.  If
1259   // all undef, return an UndefValue, if "all simple", then return a
1260   // ConstantDataArray.
1261   Constant *C = V[0];
1262   if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
1263     return UndefValue::get(Ty);
1264 
1265   if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
1266     return ConstantAggregateZero::get(Ty);
1267 
1268   // Check to see if all of the elements are ConstantFP or ConstantInt and if
1269   // the element type is compatible with ConstantDataVector.  If so, use it.
1270   if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1271     return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
1272 
1273   // Otherwise, we really do want to create a ConstantArray.
1274   return nullptr;
1275 }
1276 
1277 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
1278                                                ArrayRef<Constant*> V,
1279                                                bool Packed) {
1280   unsigned VecSize = V.size();
1281   SmallVector<Type*, 16> EltTypes(VecSize);
1282   for (unsigned i = 0; i != VecSize; ++i)
1283     EltTypes[i] = V[i]->getType();
1284 
1285   return StructType::get(Context, EltTypes, Packed);
1286 }
1287 
1288 
1289 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
1290                                                bool Packed) {
1291   assert(!V.empty() &&
1292          "ConstantStruct::getTypeForElements cannot be called on empty list");
1293   return getTypeForElements(V[0]->getContext(), V, Packed);
1294 }
1295 
1296 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
1297     : ConstantAggregate(T, ConstantStructVal, V) {
1298   assert((T->isOpaque() || V.size() == T->getNumElements()) &&
1299          "Invalid initializer for constant struct");
1300 }
1301 
1302 // ConstantStruct accessors.
1303 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
1304   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
1305          "Incorrect # elements specified to ConstantStruct::get");
1306 
1307   // Create a ConstantAggregateZero value if all elements are zeros.
1308   bool isZero = true;
1309   bool isUndef = false;
1310 
1311   if (!V.empty()) {
1312     isUndef = isa<UndefValue>(V[0]);
1313     isZero = V[0]->isNullValue();
1314     if (isUndef || isZero) {
1315       for (unsigned i = 0, e = V.size(); i != e; ++i) {
1316         if (!V[i]->isNullValue())
1317           isZero = false;
1318         if (!isa<UndefValue>(V[i]))
1319           isUndef = false;
1320       }
1321     }
1322   }
1323   if (isZero)
1324     return ConstantAggregateZero::get(ST);
1325   if (isUndef)
1326     return UndefValue::get(ST);
1327 
1328   return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1329 }
1330 
1331 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
1332     : ConstantAggregate(T, ConstantVectorVal, V) {
1333   assert(V.size() == cast<FixedVectorType>(T)->getNumElements() &&
1334          "Invalid initializer for constant vector");
1335 }
1336 
1337 // ConstantVector accessors.
1338 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
1339   if (Constant *C = getImpl(V))
1340     return C;
1341   auto *Ty = FixedVectorType::get(V.front()->getType(), V.size());
1342   return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1343 }
1344 
1345 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1346   assert(!V.empty() && "Vectors can't be empty");
1347   auto *T = FixedVectorType::get(V.front()->getType(), V.size());
1348 
1349   // If this is an all-undef or all-zero vector, return a
1350   // ConstantAggregateZero or UndefValue.
1351   Constant *C = V[0];
1352   bool isZero = C->isNullValue();
1353   bool isUndef = isa<UndefValue>(C);
1354   bool isPoison = isa<PoisonValue>(C);
1355 
1356   if (isZero || isUndef) {
1357     for (unsigned i = 1, e = V.size(); i != e; ++i)
1358       if (V[i] != C) {
1359         isZero = isUndef = isPoison = false;
1360         break;
1361       }
1362   }
1363 
1364   if (isZero)
1365     return ConstantAggregateZero::get(T);
1366   if (isPoison)
1367     return PoisonValue::get(T);
1368   if (isUndef)
1369     return UndefValue::get(T);
1370 
1371   // Check to see if all of the elements are ConstantFP or ConstantInt and if
1372   // the element type is compatible with ConstantDataVector.  If so, use it.
1373   if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1374     return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
1375 
1376   // Otherwise, the element type isn't compatible with ConstantDataVector, or
1377   // the operand list contains a ConstantExpr or something else strange.
1378   return nullptr;
1379 }
1380 
1381 Constant *ConstantVector::getSplat(ElementCount EC, Constant *V) {
1382   if (!EC.isScalable()) {
1383     // If this splat is compatible with ConstantDataVector, use it instead of
1384     // ConstantVector.
1385     if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1386         ConstantDataSequential::isElementTypeCompatible(V->getType()))
1387       return ConstantDataVector::getSplat(EC.getKnownMinValue(), V);
1388 
1389     SmallVector<Constant *, 32> Elts(EC.getKnownMinValue(), V);
1390     return get(Elts);
1391   }
1392 
1393   Type *VTy = VectorType::get(V->getType(), EC);
1394 
1395   if (V->isNullValue())
1396     return ConstantAggregateZero::get(VTy);
1397   else if (isa<UndefValue>(V))
1398     return UndefValue::get(VTy);
1399 
1400   Type *I32Ty = Type::getInt32Ty(VTy->getContext());
1401 
1402   // Move scalar into vector.
1403   Constant *UndefV = UndefValue::get(VTy);
1404   V = ConstantExpr::getInsertElement(UndefV, V, ConstantInt::get(I32Ty, 0));
1405   // Build shuffle mask to perform the splat.
1406   SmallVector<int, 8> Zeros(EC.getKnownMinValue(), 0);
1407   // Splat.
1408   return ConstantExpr::getShuffleVector(V, UndefV, Zeros);
1409 }
1410 
1411 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
1412   LLVMContextImpl *pImpl = Context.pImpl;
1413   if (!pImpl->TheNoneToken)
1414     pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
1415   return pImpl->TheNoneToken.get();
1416 }
1417 
1418 /// Remove the constant from the constant table.
1419 void ConstantTokenNone::destroyConstantImpl() {
1420   llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
1421 }
1422 
1423 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1424 // can't be inline because we don't want to #include Instruction.h into
1425 // Constant.h
1426 bool ConstantExpr::isCast() const {
1427   return Instruction::isCast(getOpcode());
1428 }
1429 
1430 bool ConstantExpr::isCompare() const {
1431   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1432 }
1433 
1434 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1435   if (getOpcode() != Instruction::GetElementPtr) return false;
1436 
1437   gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1438   User::const_op_iterator OI = std::next(this->op_begin());
1439 
1440   // The remaining indices may be compile-time known integers within the bounds
1441   // of the corresponding notional static array types.
1442   for (; GEPI != E; ++GEPI, ++OI) {
1443     if (isa<UndefValue>(*OI))
1444       continue;
1445     auto *CI = dyn_cast<ConstantInt>(*OI);
1446     if (!CI || (GEPI.isBoundedSequential() &&
1447                 (CI->getValue().getActiveBits() > 64 ||
1448                  CI->getZExtValue() >= GEPI.getSequentialNumElements())))
1449       return false;
1450   }
1451 
1452   // All the indices checked out.
1453   return true;
1454 }
1455 
1456 bool ConstantExpr::hasIndices() const {
1457   return getOpcode() == Instruction::ExtractValue ||
1458          getOpcode() == Instruction::InsertValue;
1459 }
1460 
1461 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1462   if (const ExtractValueConstantExpr *EVCE =
1463         dyn_cast<ExtractValueConstantExpr>(this))
1464     return EVCE->Indices;
1465 
1466   return cast<InsertValueConstantExpr>(this)->Indices;
1467 }
1468 
1469 unsigned ConstantExpr::getPredicate() const {
1470   return cast<CompareConstantExpr>(this)->predicate;
1471 }
1472 
1473 ArrayRef<int> ConstantExpr::getShuffleMask() const {
1474   return cast<ShuffleVectorConstantExpr>(this)->ShuffleMask;
1475 }
1476 
1477 Constant *ConstantExpr::getShuffleMaskForBitcode() const {
1478   return cast<ShuffleVectorConstantExpr>(this)->ShuffleMaskForBitcode;
1479 }
1480 
1481 Constant *
1482 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1483   assert(Op->getType() == getOperand(OpNo)->getType() &&
1484          "Replacing operand with value of different type!");
1485   if (getOperand(OpNo) == Op)
1486     return const_cast<ConstantExpr*>(this);
1487 
1488   SmallVector<Constant*, 8> NewOps;
1489   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1490     NewOps.push_back(i == OpNo ? Op : getOperand(i));
1491 
1492   return getWithOperands(NewOps);
1493 }
1494 
1495 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1496                                         bool OnlyIfReduced, Type *SrcTy) const {
1497   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1498 
1499   // If no operands changed return self.
1500   if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1501     return const_cast<ConstantExpr*>(this);
1502 
1503   Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1504   switch (getOpcode()) {
1505   case Instruction::Trunc:
1506   case Instruction::ZExt:
1507   case Instruction::SExt:
1508   case Instruction::FPTrunc:
1509   case Instruction::FPExt:
1510   case Instruction::UIToFP:
1511   case Instruction::SIToFP:
1512   case Instruction::FPToUI:
1513   case Instruction::FPToSI:
1514   case Instruction::PtrToInt:
1515   case Instruction::IntToPtr:
1516   case Instruction::BitCast:
1517   case Instruction::AddrSpaceCast:
1518     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1519   case Instruction::Select:
1520     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
1521   case Instruction::InsertElement:
1522     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1523                                           OnlyIfReducedTy);
1524   case Instruction::ExtractElement:
1525     return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1526   case Instruction::InsertValue:
1527     return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
1528                                         OnlyIfReducedTy);
1529   case Instruction::ExtractValue:
1530     return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
1531   case Instruction::FNeg:
1532     return ConstantExpr::getFNeg(Ops[0]);
1533   case Instruction::ShuffleVector:
1534     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], getShuffleMask(),
1535                                           OnlyIfReducedTy);
1536   case Instruction::GetElementPtr: {
1537     auto *GEPO = cast<GEPOperator>(this);
1538     assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
1539     return ConstantExpr::getGetElementPtr(
1540         SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
1541         GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy);
1542   }
1543   case Instruction::ICmp:
1544   case Instruction::FCmp:
1545     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1546                                     OnlyIfReducedTy);
1547   default:
1548     assert(getNumOperands() == 2 && "Must be binary operator?");
1549     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1550                              OnlyIfReducedTy);
1551   }
1552 }
1553 
1554 
1555 //===----------------------------------------------------------------------===//
1556 //                      isValueValidForType implementations
1557 
1558 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1559   unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1560   if (Ty->isIntegerTy(1))
1561     return Val == 0 || Val == 1;
1562   return isUIntN(NumBits, Val);
1563 }
1564 
1565 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1566   unsigned NumBits = Ty->getIntegerBitWidth();
1567   if (Ty->isIntegerTy(1))
1568     return Val == 0 || Val == 1 || Val == -1;
1569   return isIntN(NumBits, Val);
1570 }
1571 
1572 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1573   // convert modifies in place, so make a copy.
1574   APFloat Val2 = APFloat(Val);
1575   bool losesInfo;
1576   switch (Ty->getTypeID()) {
1577   default:
1578     return false;         // These can't be represented as floating point!
1579 
1580   // FIXME rounding mode needs to be more flexible
1581   case Type::HalfTyID: {
1582     if (&Val2.getSemantics() == &APFloat::IEEEhalf())
1583       return true;
1584     Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo);
1585     return !losesInfo;
1586   }
1587   case Type::BFloatTyID: {
1588     if (&Val2.getSemantics() == &APFloat::BFloat())
1589       return true;
1590     Val2.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, &losesInfo);
1591     return !losesInfo;
1592   }
1593   case Type::FloatTyID: {
1594     if (&Val2.getSemantics() == &APFloat::IEEEsingle())
1595       return true;
1596     Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo);
1597     return !losesInfo;
1598   }
1599   case Type::DoubleTyID: {
1600     if (&Val2.getSemantics() == &APFloat::IEEEhalf() ||
1601         &Val2.getSemantics() == &APFloat::BFloat() ||
1602         &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1603         &Val2.getSemantics() == &APFloat::IEEEdouble())
1604       return true;
1605     Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo);
1606     return !losesInfo;
1607   }
1608   case Type::X86_FP80TyID:
1609     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1610            &Val2.getSemantics() == &APFloat::BFloat() ||
1611            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1612            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1613            &Val2.getSemantics() == &APFloat::x87DoubleExtended();
1614   case Type::FP128TyID:
1615     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1616            &Val2.getSemantics() == &APFloat::BFloat() ||
1617            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1618            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1619            &Val2.getSemantics() == &APFloat::IEEEquad();
1620   case Type::PPC_FP128TyID:
1621     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1622            &Val2.getSemantics() == &APFloat::BFloat() ||
1623            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1624            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1625            &Val2.getSemantics() == &APFloat::PPCDoubleDouble();
1626   }
1627 }
1628 
1629 
1630 //===----------------------------------------------------------------------===//
1631 //                      Factory Function Implementation
1632 
1633 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1634   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1635          "Cannot create an aggregate zero of non-aggregate type!");
1636 
1637   std::unique_ptr<ConstantAggregateZero> &Entry =
1638       Ty->getContext().pImpl->CAZConstants[Ty];
1639   if (!Entry)
1640     Entry.reset(new ConstantAggregateZero(Ty));
1641 
1642   return Entry.get();
1643 }
1644 
1645 /// Remove the constant from the constant table.
1646 void ConstantAggregateZero::destroyConstantImpl() {
1647   getContext().pImpl->CAZConstants.erase(getType());
1648 }
1649 
1650 /// Remove the constant from the constant table.
1651 void ConstantArray::destroyConstantImpl() {
1652   getType()->getContext().pImpl->ArrayConstants.remove(this);
1653 }
1654 
1655 
1656 //---- ConstantStruct::get() implementation...
1657 //
1658 
1659 /// Remove the constant from the constant table.
1660 void ConstantStruct::destroyConstantImpl() {
1661   getType()->getContext().pImpl->StructConstants.remove(this);
1662 }
1663 
1664 /// Remove the constant from the constant table.
1665 void ConstantVector::destroyConstantImpl() {
1666   getType()->getContext().pImpl->VectorConstants.remove(this);
1667 }
1668 
1669 Constant *Constant::getSplatValue(bool AllowUndefs) const {
1670   assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1671   if (isa<ConstantAggregateZero>(this))
1672     return getNullValue(cast<VectorType>(getType())->getElementType());
1673   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1674     return CV->getSplatValue();
1675   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1676     return CV->getSplatValue(AllowUndefs);
1677 
1678   // Check if this is a constant expression splat of the form returned by
1679   // ConstantVector::getSplat()
1680   const auto *Shuf = dyn_cast<ConstantExpr>(this);
1681   if (Shuf && Shuf->getOpcode() == Instruction::ShuffleVector &&
1682       isa<UndefValue>(Shuf->getOperand(1))) {
1683 
1684     const auto *IElt = dyn_cast<ConstantExpr>(Shuf->getOperand(0));
1685     if (IElt && IElt->getOpcode() == Instruction::InsertElement &&
1686         isa<UndefValue>(IElt->getOperand(0))) {
1687 
1688       ArrayRef<int> Mask = Shuf->getShuffleMask();
1689       Constant *SplatVal = IElt->getOperand(1);
1690       ConstantInt *Index = dyn_cast<ConstantInt>(IElt->getOperand(2));
1691 
1692       if (Index && Index->getValue() == 0 &&
1693           llvm::all_of(Mask, [](int I) { return I == 0; }))
1694         return SplatVal;
1695     }
1696   }
1697 
1698   return nullptr;
1699 }
1700 
1701 Constant *ConstantVector::getSplatValue(bool AllowUndefs) const {
1702   // Check out first element.
1703   Constant *Elt = getOperand(0);
1704   // Then make sure all remaining elements point to the same value.
1705   for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
1706     Constant *OpC = getOperand(I);
1707     if (OpC == Elt)
1708       continue;
1709 
1710     // Strict mode: any mismatch is not a splat.
1711     if (!AllowUndefs)
1712       return nullptr;
1713 
1714     // Allow undefs mode: ignore undefined elements.
1715     if (isa<UndefValue>(OpC))
1716       continue;
1717 
1718     // If we do not have a defined element yet, use the current operand.
1719     if (isa<UndefValue>(Elt))
1720       Elt = OpC;
1721 
1722     if (OpC != Elt)
1723       return nullptr;
1724   }
1725   return Elt;
1726 }
1727 
1728 const APInt &Constant::getUniqueInteger() const {
1729   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1730     return CI->getValue();
1731   assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1732   const Constant *C = this->getAggregateElement(0U);
1733   assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1734   return cast<ConstantInt>(C)->getValue();
1735 }
1736 
1737 //---- ConstantPointerNull::get() implementation.
1738 //
1739 
1740 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1741   std::unique_ptr<ConstantPointerNull> &Entry =
1742       Ty->getContext().pImpl->CPNConstants[Ty];
1743   if (!Entry)
1744     Entry.reset(new ConstantPointerNull(Ty));
1745 
1746   return Entry.get();
1747 }
1748 
1749 /// Remove the constant from the constant table.
1750 void ConstantPointerNull::destroyConstantImpl() {
1751   getContext().pImpl->CPNConstants.erase(getType());
1752 }
1753 
1754 UndefValue *UndefValue::get(Type *Ty) {
1755   std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty];
1756   if (!Entry)
1757     Entry.reset(new UndefValue(Ty));
1758 
1759   return Entry.get();
1760 }
1761 
1762 /// Remove the constant from the constant table.
1763 void UndefValue::destroyConstantImpl() {
1764   // Free the constant and any dangling references to it.
1765   if (getValueID() == UndefValueVal) {
1766     getContext().pImpl->UVConstants.erase(getType());
1767   } else if (getValueID() == PoisonValueVal) {
1768     getContext().pImpl->PVConstants.erase(getType());
1769   }
1770   llvm_unreachable("Not a undef or a poison!");
1771 }
1772 
1773 PoisonValue *PoisonValue::get(Type *Ty) {
1774   std::unique_ptr<PoisonValue> &Entry = Ty->getContext().pImpl->PVConstants[Ty];
1775   if (!Entry)
1776     Entry.reset(new PoisonValue(Ty));
1777 
1778   return Entry.get();
1779 }
1780 
1781 /// Remove the constant from the constant table.
1782 void PoisonValue::destroyConstantImpl() {
1783   // Free the constant and any dangling references to it.
1784   getContext().pImpl->PVConstants.erase(getType());
1785 }
1786 
1787 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1788   assert(BB->getParent() && "Block must have a parent");
1789   return get(BB->getParent(), BB);
1790 }
1791 
1792 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1793   BlockAddress *&BA =
1794     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1795   if (!BA)
1796     BA = new BlockAddress(F, BB);
1797 
1798   assert(BA->getFunction() == F && "Basic block moved between functions");
1799   return BA;
1800 }
1801 
1802 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1803 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1804            &Op<0>(), 2) {
1805   setOperand(0, F);
1806   setOperand(1, BB);
1807   BB->AdjustBlockAddressRefCount(1);
1808 }
1809 
1810 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1811   if (!BB->hasAddressTaken())
1812     return nullptr;
1813 
1814   const Function *F = BB->getParent();
1815   assert(F && "Block must have a parent");
1816   BlockAddress *BA =
1817       F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1818   assert(BA && "Refcount and block address map disagree!");
1819   return BA;
1820 }
1821 
1822 /// Remove the constant from the constant table.
1823 void BlockAddress::destroyConstantImpl() {
1824   getFunction()->getType()->getContext().pImpl
1825     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1826   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1827 }
1828 
1829 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) {
1830   // This could be replacing either the Basic Block or the Function.  In either
1831   // case, we have to remove the map entry.
1832   Function *NewF = getFunction();
1833   BasicBlock *NewBB = getBasicBlock();
1834 
1835   if (From == NewF)
1836     NewF = cast<Function>(To->stripPointerCasts());
1837   else {
1838     assert(From == NewBB && "From does not match any operand");
1839     NewBB = cast<BasicBlock>(To);
1840   }
1841 
1842   // See if the 'new' entry already exists, if not, just update this in place
1843   // and return early.
1844   BlockAddress *&NewBA =
1845     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1846   if (NewBA)
1847     return NewBA;
1848 
1849   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1850 
1851   // Remove the old entry, this can't cause the map to rehash (just a
1852   // tombstone will get added).
1853   getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1854                                                           getBasicBlock()));
1855   NewBA = this;
1856   setOperand(0, NewF);
1857   setOperand(1, NewBB);
1858   getBasicBlock()->AdjustBlockAddressRefCount(1);
1859 
1860   // If we just want to keep the existing value, then return null.
1861   // Callers know that this means we shouldn't delete this value.
1862   return nullptr;
1863 }
1864 
1865 DSOLocalEquivalent *DSOLocalEquivalent::get(GlobalValue *GV) {
1866   DSOLocalEquivalent *&Equiv = GV->getContext().pImpl->DSOLocalEquivalents[GV];
1867   if (!Equiv)
1868     Equiv = new DSOLocalEquivalent(GV);
1869 
1870   assert(Equiv->getGlobalValue() == GV &&
1871          "DSOLocalFunction does not match the expected global value");
1872   return Equiv;
1873 }
1874 
1875 DSOLocalEquivalent::DSOLocalEquivalent(GlobalValue *GV)
1876     : Constant(GV->getType(), Value::DSOLocalEquivalentVal, &Op<0>(), 1) {
1877   setOperand(0, GV);
1878 }
1879 
1880 /// Remove the constant from the constant table.
1881 void DSOLocalEquivalent::destroyConstantImpl() {
1882   const GlobalValue *GV = getGlobalValue();
1883   GV->getContext().pImpl->DSOLocalEquivalents.erase(GV);
1884 }
1885 
1886 Value *DSOLocalEquivalent::handleOperandChangeImpl(Value *From, Value *To) {
1887   assert(From == getGlobalValue() && "Changing value does not match operand.");
1888   assert(isa<Constant>(To) && "Can only replace the operands with a constant");
1889 
1890   // The replacement is with another global value.
1891   if (const auto *ToObj = dyn_cast<GlobalValue>(To)) {
1892     DSOLocalEquivalent *&NewEquiv =
1893         getContext().pImpl->DSOLocalEquivalents[ToObj];
1894     if (NewEquiv)
1895       return llvm::ConstantExpr::getBitCast(NewEquiv, getType());
1896   }
1897 
1898   // If the argument is replaced with a null value, just replace this constant
1899   // with a null value.
1900   if (cast<Constant>(To)->isNullValue())
1901     return To;
1902 
1903   // The replacement could be a bitcast or an alias to another function. We can
1904   // replace it with a bitcast to the dso_local_equivalent of that function.
1905   auto *Func = cast<Function>(To->stripPointerCastsAndAliases());
1906   DSOLocalEquivalent *&NewEquiv = getContext().pImpl->DSOLocalEquivalents[Func];
1907   if (NewEquiv)
1908     return llvm::ConstantExpr::getBitCast(NewEquiv, getType());
1909 
1910   // Replace this with the new one.
1911   getContext().pImpl->DSOLocalEquivalents.erase(getGlobalValue());
1912   NewEquiv = this;
1913   setOperand(0, Func);
1914   return nullptr;
1915 }
1916 
1917 //---- ConstantExpr::get() implementations.
1918 //
1919 
1920 /// This is a utility function to handle folding of casts and lookup of the
1921 /// cast in the ExprConstants map. It is used by the various get* methods below.
1922 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1923                                bool OnlyIfReduced = false) {
1924   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1925   // Fold a few common cases
1926   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1927     return FC;
1928 
1929   if (OnlyIfReduced)
1930     return nullptr;
1931 
1932   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1933 
1934   // Look up the constant in the table first to ensure uniqueness.
1935   ConstantExprKeyType Key(opc, C);
1936 
1937   return pImpl->ExprConstants.getOrCreate(Ty, Key);
1938 }
1939 
1940 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
1941                                 bool OnlyIfReduced) {
1942   Instruction::CastOps opc = Instruction::CastOps(oc);
1943   assert(Instruction::isCast(opc) && "opcode out of range");
1944   assert(C && Ty && "Null arguments to getCast");
1945   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1946 
1947   switch (opc) {
1948   default:
1949     llvm_unreachable("Invalid cast opcode");
1950   case Instruction::Trunc:
1951     return getTrunc(C, Ty, OnlyIfReduced);
1952   case Instruction::ZExt:
1953     return getZExt(C, Ty, OnlyIfReduced);
1954   case Instruction::SExt:
1955     return getSExt(C, Ty, OnlyIfReduced);
1956   case Instruction::FPTrunc:
1957     return getFPTrunc(C, Ty, OnlyIfReduced);
1958   case Instruction::FPExt:
1959     return getFPExtend(C, Ty, OnlyIfReduced);
1960   case Instruction::UIToFP:
1961     return getUIToFP(C, Ty, OnlyIfReduced);
1962   case Instruction::SIToFP:
1963     return getSIToFP(C, Ty, OnlyIfReduced);
1964   case Instruction::FPToUI:
1965     return getFPToUI(C, Ty, OnlyIfReduced);
1966   case Instruction::FPToSI:
1967     return getFPToSI(C, Ty, OnlyIfReduced);
1968   case Instruction::PtrToInt:
1969     return getPtrToInt(C, Ty, OnlyIfReduced);
1970   case Instruction::IntToPtr:
1971     return getIntToPtr(C, Ty, OnlyIfReduced);
1972   case Instruction::BitCast:
1973     return getBitCast(C, Ty, OnlyIfReduced);
1974   case Instruction::AddrSpaceCast:
1975     return getAddrSpaceCast(C, Ty, OnlyIfReduced);
1976   }
1977 }
1978 
1979 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1980   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1981     return getBitCast(C, Ty);
1982   return getZExt(C, Ty);
1983 }
1984 
1985 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1986   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1987     return getBitCast(C, Ty);
1988   return getSExt(C, Ty);
1989 }
1990 
1991 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1992   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1993     return getBitCast(C, Ty);
1994   return getTrunc(C, Ty);
1995 }
1996 
1997 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1998   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1999   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2000           "Invalid cast");
2001 
2002   if (Ty->isIntOrIntVectorTy())
2003     return getPtrToInt(S, Ty);
2004 
2005   unsigned SrcAS = S->getType()->getPointerAddressSpace();
2006   if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
2007     return getAddrSpaceCast(S, Ty);
2008 
2009   return getBitCast(S, Ty);
2010 }
2011 
2012 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
2013                                                          Type *Ty) {
2014   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2015   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2016 
2017   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2018     return getAddrSpaceCast(S, Ty);
2019 
2020   return getBitCast(S, Ty);
2021 }
2022 
2023 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) {
2024   assert(C->getType()->isIntOrIntVectorTy() &&
2025          Ty->isIntOrIntVectorTy() && "Invalid cast");
2026   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2027   unsigned DstBits = Ty->getScalarSizeInBits();
2028   Instruction::CastOps opcode =
2029     (SrcBits == DstBits ? Instruction::BitCast :
2030      (SrcBits > DstBits ? Instruction::Trunc :
2031       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2032   return getCast(opcode, C, Ty);
2033 }
2034 
2035 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
2036   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2037          "Invalid cast");
2038   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2039   unsigned DstBits = Ty->getScalarSizeInBits();
2040   if (SrcBits == DstBits)
2041     return C; // Avoid a useless cast
2042   Instruction::CastOps opcode =
2043     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
2044   return getCast(opcode, C, Ty);
2045 }
2046 
2047 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
2048 #ifndef NDEBUG
2049   bool fromVec = isa<VectorType>(C->getType());
2050   bool toVec = isa<VectorType>(Ty);
2051 #endif
2052   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2053   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
2054   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
2055   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
2056          "SrcTy must be larger than DestTy for Trunc!");
2057 
2058   return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
2059 }
2060 
2061 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
2062 #ifndef NDEBUG
2063   bool fromVec = isa<VectorType>(C->getType());
2064   bool toVec = isa<VectorType>(Ty);
2065 #endif
2066   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2067   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
2068   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
2069   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
2070          "SrcTy must be smaller than DestTy for SExt!");
2071 
2072   return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
2073 }
2074 
2075 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
2076 #ifndef NDEBUG
2077   bool fromVec = isa<VectorType>(C->getType());
2078   bool toVec = isa<VectorType>(Ty);
2079 #endif
2080   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2081   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
2082   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
2083   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
2084          "SrcTy must be smaller than DestTy for ZExt!");
2085 
2086   return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
2087 }
2088 
2089 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
2090 #ifndef NDEBUG
2091   bool fromVec = isa<VectorType>(C->getType());
2092   bool toVec = isa<VectorType>(Ty);
2093 #endif
2094   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2095   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2096          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
2097          "This is an illegal floating point truncation!");
2098   return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
2099 }
2100 
2101 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
2102 #ifndef NDEBUG
2103   bool fromVec = isa<VectorType>(C->getType());
2104   bool toVec = isa<VectorType>(Ty);
2105 #endif
2106   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2107   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2108          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
2109          "This is an illegal floating point extension!");
2110   return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
2111 }
2112 
2113 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
2114 #ifndef NDEBUG
2115   bool fromVec = isa<VectorType>(C->getType());
2116   bool toVec = isa<VectorType>(Ty);
2117 #endif
2118   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2119   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
2120          "This is an illegal uint to floating point cast!");
2121   return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
2122 }
2123 
2124 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
2125 #ifndef NDEBUG
2126   bool fromVec = isa<VectorType>(C->getType());
2127   bool toVec = isa<VectorType>(Ty);
2128 #endif
2129   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2130   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
2131          "This is an illegal sint to floating point cast!");
2132   return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
2133 }
2134 
2135 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
2136 #ifndef NDEBUG
2137   bool fromVec = isa<VectorType>(C->getType());
2138   bool toVec = isa<VectorType>(Ty);
2139 #endif
2140   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2141   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
2142          "This is an illegal floating point to uint cast!");
2143   return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
2144 }
2145 
2146 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
2147 #ifndef NDEBUG
2148   bool fromVec = isa<VectorType>(C->getType());
2149   bool toVec = isa<VectorType>(Ty);
2150 #endif
2151   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2152   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
2153          "This is an illegal floating point to sint cast!");
2154   return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
2155 }
2156 
2157 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
2158                                     bool OnlyIfReduced) {
2159   assert(C->getType()->isPtrOrPtrVectorTy() &&
2160          "PtrToInt source must be pointer or pointer vector");
2161   assert(DstTy->isIntOrIntVectorTy() &&
2162          "PtrToInt destination must be integer or integer vector");
2163   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
2164   if (isa<VectorType>(C->getType()))
2165     assert(cast<FixedVectorType>(C->getType())->getNumElements() ==
2166                cast<FixedVectorType>(DstTy)->getNumElements() &&
2167            "Invalid cast between a different number of vector elements");
2168   return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
2169 }
2170 
2171 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
2172                                     bool OnlyIfReduced) {
2173   assert(C->getType()->isIntOrIntVectorTy() &&
2174          "IntToPtr source must be integer or integer vector");
2175   assert(DstTy->isPtrOrPtrVectorTy() &&
2176          "IntToPtr destination must be a pointer or pointer vector");
2177   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
2178   if (isa<VectorType>(C->getType()))
2179     assert(cast<VectorType>(C->getType())->getElementCount() ==
2180                cast<VectorType>(DstTy)->getElementCount() &&
2181            "Invalid cast between a different number of vector elements");
2182   return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
2183 }
2184 
2185 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
2186                                    bool OnlyIfReduced) {
2187   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
2188          "Invalid constantexpr bitcast!");
2189 
2190   // It is common to ask for a bitcast of a value to its own type, handle this
2191   // speedily.
2192   if (C->getType() == DstTy) return C;
2193 
2194   return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
2195 }
2196 
2197 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
2198                                          bool OnlyIfReduced) {
2199   assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
2200          "Invalid constantexpr addrspacecast!");
2201 
2202   // Canonicalize addrspacecasts between different pointer types by first
2203   // bitcasting the pointer type and then converting the address space.
2204   PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
2205   PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
2206   Type *DstElemTy = DstScalarTy->getElementType();
2207   if (SrcScalarTy->getElementType() != DstElemTy) {
2208     Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
2209     if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
2210       // Handle vectors of pointers.
2211       MidTy = FixedVectorType::get(MidTy,
2212                                    cast<FixedVectorType>(VT)->getNumElements());
2213     }
2214     C = getBitCast(C, MidTy);
2215   }
2216   return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
2217 }
2218 
2219 Constant *ConstantExpr::get(unsigned Opcode, Constant *C, unsigned Flags,
2220                             Type *OnlyIfReducedTy) {
2221   // Check the operands for consistency first.
2222   assert(Instruction::isUnaryOp(Opcode) &&
2223          "Invalid opcode in unary constant expression");
2224 
2225 #ifndef NDEBUG
2226   switch (Opcode) {
2227   case Instruction::FNeg:
2228     assert(C->getType()->isFPOrFPVectorTy() &&
2229            "Tried to create a floating-point operation on a "
2230            "non-floating-point type!");
2231     break;
2232   default:
2233     break;
2234   }
2235 #endif
2236 
2237   if (Constant *FC = ConstantFoldUnaryInstruction(Opcode, C))
2238     return FC;
2239 
2240   if (OnlyIfReducedTy == C->getType())
2241     return nullptr;
2242 
2243   Constant *ArgVec[] = { C };
2244   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
2245 
2246   LLVMContextImpl *pImpl = C->getContext().pImpl;
2247   return pImpl->ExprConstants.getOrCreate(C->getType(), Key);
2248 }
2249 
2250 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
2251                             unsigned Flags, Type *OnlyIfReducedTy) {
2252   // Check the operands for consistency first.
2253   assert(Instruction::isBinaryOp(Opcode) &&
2254          "Invalid opcode in binary constant expression");
2255   assert(C1->getType() == C2->getType() &&
2256          "Operand types in binary constant expression should match");
2257 
2258 #ifndef NDEBUG
2259   switch (Opcode) {
2260   case Instruction::Add:
2261   case Instruction::Sub:
2262   case Instruction::Mul:
2263   case Instruction::UDiv:
2264   case Instruction::SDiv:
2265   case Instruction::URem:
2266   case Instruction::SRem:
2267     assert(C1->getType()->isIntOrIntVectorTy() &&
2268            "Tried to create an integer operation on a non-integer type!");
2269     break;
2270   case Instruction::FAdd:
2271   case Instruction::FSub:
2272   case Instruction::FMul:
2273   case Instruction::FDiv:
2274   case Instruction::FRem:
2275     assert(C1->getType()->isFPOrFPVectorTy() &&
2276            "Tried to create a floating-point operation on a "
2277            "non-floating-point type!");
2278     break;
2279   case Instruction::And:
2280   case Instruction::Or:
2281   case Instruction::Xor:
2282     assert(C1->getType()->isIntOrIntVectorTy() &&
2283            "Tried to create a logical operation on a non-integral type!");
2284     break;
2285   case Instruction::Shl:
2286   case Instruction::LShr:
2287   case Instruction::AShr:
2288     assert(C1->getType()->isIntOrIntVectorTy() &&
2289            "Tried to create a shift operation on a non-integer type!");
2290     break;
2291   default:
2292     break;
2293   }
2294 #endif
2295 
2296   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
2297     return FC;
2298 
2299   if (OnlyIfReducedTy == C1->getType())
2300     return nullptr;
2301 
2302   Constant *ArgVec[] = { C1, C2 };
2303   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
2304 
2305   LLVMContextImpl *pImpl = C1->getContext().pImpl;
2306   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
2307 }
2308 
2309 Constant *ConstantExpr::getSizeOf(Type* Ty) {
2310   // sizeof is implemented as: (i64) gep (Ty*)null, 1
2311   // Note that a non-inbounds gep is used, as null isn't within any object.
2312   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
2313   Constant *GEP = getGetElementPtr(
2314       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
2315   return getPtrToInt(GEP,
2316                      Type::getInt64Ty(Ty->getContext()));
2317 }
2318 
2319 Constant *ConstantExpr::getAlignOf(Type* Ty) {
2320   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
2321   // Note that a non-inbounds gep is used, as null isn't within any object.
2322   Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty);
2323   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
2324   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
2325   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
2326   Constant *Indices[2] = { Zero, One };
2327   Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
2328   return getPtrToInt(GEP,
2329                      Type::getInt64Ty(Ty->getContext()));
2330 }
2331 
2332 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
2333   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
2334                                            FieldNo));
2335 }
2336 
2337 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
2338   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
2339   // Note that a non-inbounds gep is used, as null isn't within any object.
2340   Constant *GEPIdx[] = {
2341     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
2342     FieldNo
2343   };
2344   Constant *GEP = getGetElementPtr(
2345       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
2346   return getPtrToInt(GEP,
2347                      Type::getInt64Ty(Ty->getContext()));
2348 }
2349 
2350 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
2351                                    Constant *C2, bool OnlyIfReduced) {
2352   assert(C1->getType() == C2->getType() && "Op types should be identical!");
2353 
2354   switch (Predicate) {
2355   default: llvm_unreachable("Invalid CmpInst predicate");
2356   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
2357   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
2358   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
2359   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
2360   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
2361   case CmpInst::FCMP_TRUE:
2362     return getFCmp(Predicate, C1, C2, OnlyIfReduced);
2363 
2364   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
2365   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
2366   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
2367   case CmpInst::ICMP_SLE:
2368     return getICmp(Predicate, C1, C2, OnlyIfReduced);
2369   }
2370 }
2371 
2372 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
2373                                   Type *OnlyIfReducedTy) {
2374   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
2375 
2376   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
2377     return SC;        // Fold common cases
2378 
2379   if (OnlyIfReducedTy == V1->getType())
2380     return nullptr;
2381 
2382   Constant *ArgVec[] = { C, V1, V2 };
2383   ConstantExprKeyType Key(Instruction::Select, ArgVec);
2384 
2385   LLVMContextImpl *pImpl = C->getContext().pImpl;
2386   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
2387 }
2388 
2389 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
2390                                          ArrayRef<Value *> Idxs, bool InBounds,
2391                                          Optional<unsigned> InRangeIndex,
2392                                          Type *OnlyIfReducedTy) {
2393   if (!Ty)
2394     Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType();
2395   else
2396     assert(Ty ==
2397            cast<PointerType>(C->getType()->getScalarType())->getElementType());
2398 
2399   if (Constant *FC =
2400           ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs))
2401     return FC;          // Fold a few common cases.
2402 
2403   // Get the result type of the getelementptr!
2404   Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
2405   assert(DestTy && "GEP indices invalid!");
2406   unsigned AS = C->getType()->getPointerAddressSpace();
2407   Type *ReqTy = DestTy->getPointerTo(AS);
2408 
2409   auto EltCount = ElementCount::getFixed(0);
2410   if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
2411     EltCount = VecTy->getElementCount();
2412   else
2413     for (auto Idx : Idxs)
2414       if (VectorType *VecTy = dyn_cast<VectorType>(Idx->getType()))
2415         EltCount = VecTy->getElementCount();
2416 
2417   if (EltCount.isNonZero())
2418     ReqTy = VectorType::get(ReqTy, EltCount);
2419 
2420   if (OnlyIfReducedTy == ReqTy)
2421     return nullptr;
2422 
2423   // Look up the constant in the table first to ensure uniqueness
2424   std::vector<Constant*> ArgVec;
2425   ArgVec.reserve(1 + Idxs.size());
2426   ArgVec.push_back(C);
2427   auto GTI = gep_type_begin(Ty, Idxs), GTE = gep_type_end(Ty, Idxs);
2428   for (; GTI != GTE; ++GTI) {
2429     auto *Idx = cast<Constant>(GTI.getOperand());
2430     assert(
2431         (!isa<VectorType>(Idx->getType()) ||
2432          cast<VectorType>(Idx->getType())->getElementCount() == EltCount) &&
2433         "getelementptr index type missmatch");
2434 
2435     if (GTI.isStruct() && Idx->getType()->isVectorTy()) {
2436       Idx = Idx->getSplatValue();
2437     } else if (GTI.isSequential() && EltCount.isNonZero() &&
2438                !Idx->getType()->isVectorTy()) {
2439       Idx = ConstantVector::getSplat(EltCount, Idx);
2440     }
2441     ArgVec.push_back(Idx);
2442   }
2443 
2444   unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0;
2445   if (InRangeIndex && *InRangeIndex < 63)
2446     SubClassOptionalData |= (*InRangeIndex + 1) << 1;
2447   const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
2448                                 SubClassOptionalData, None, None, Ty);
2449 
2450   LLVMContextImpl *pImpl = C->getContext().pImpl;
2451   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2452 }
2453 
2454 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
2455                                 Constant *RHS, bool OnlyIfReduced) {
2456   assert(LHS->getType() == RHS->getType());
2457   assert(CmpInst::isIntPredicate((CmpInst::Predicate)pred) &&
2458          "Invalid ICmp Predicate");
2459 
2460   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2461     return FC;          // Fold a few common cases...
2462 
2463   if (OnlyIfReduced)
2464     return nullptr;
2465 
2466   // Look up the constant in the table first to ensure uniqueness
2467   Constant *ArgVec[] = { LHS, RHS };
2468   // Get the key type with both the opcode and predicate
2469   const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
2470 
2471   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2472   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2473     ResultTy = VectorType::get(ResultTy, VT->getElementCount());
2474 
2475   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2476   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2477 }
2478 
2479 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
2480                                 Constant *RHS, bool OnlyIfReduced) {
2481   assert(LHS->getType() == RHS->getType());
2482   assert(CmpInst::isFPPredicate((CmpInst::Predicate)pred) &&
2483          "Invalid FCmp Predicate");
2484 
2485   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2486     return FC;          // Fold a few common cases...
2487 
2488   if (OnlyIfReduced)
2489     return nullptr;
2490 
2491   // Look up the constant in the table first to ensure uniqueness
2492   Constant *ArgVec[] = { LHS, RHS };
2493   // Get the key type with both the opcode and predicate
2494   const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
2495 
2496   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2497   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2498     ResultTy = VectorType::get(ResultTy, VT->getElementCount());
2499 
2500   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2501   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2502 }
2503 
2504 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
2505                                           Type *OnlyIfReducedTy) {
2506   assert(Val->getType()->isVectorTy() &&
2507          "Tried to create extractelement operation on non-vector type!");
2508   assert(Idx->getType()->isIntegerTy() &&
2509          "Extractelement index must be an integer type!");
2510 
2511   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2512     return FC;          // Fold a few common cases.
2513 
2514   Type *ReqTy = cast<VectorType>(Val->getType())->getElementType();
2515   if (OnlyIfReducedTy == ReqTy)
2516     return nullptr;
2517 
2518   // Look up the constant in the table first to ensure uniqueness
2519   Constant *ArgVec[] = { Val, Idx };
2520   const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2521 
2522   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2523   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2524 }
2525 
2526 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2527                                          Constant *Idx, Type *OnlyIfReducedTy) {
2528   assert(Val->getType()->isVectorTy() &&
2529          "Tried to create insertelement operation on non-vector type!");
2530   assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() &&
2531          "Insertelement types must match!");
2532   assert(Idx->getType()->isIntegerTy() &&
2533          "Insertelement index must be i32 type!");
2534 
2535   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2536     return FC;          // Fold a few common cases.
2537 
2538   if (OnlyIfReducedTy == Val->getType())
2539     return nullptr;
2540 
2541   // Look up the constant in the table first to ensure uniqueness
2542   Constant *ArgVec[] = { Val, Elt, Idx };
2543   const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2544 
2545   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2546   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2547 }
2548 
2549 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2550                                          ArrayRef<int> Mask,
2551                                          Type *OnlyIfReducedTy) {
2552   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2553          "Invalid shuffle vector constant expr operands!");
2554 
2555   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2556     return FC;          // Fold a few common cases.
2557 
2558   unsigned NElts = Mask.size();
2559   auto V1VTy = cast<VectorType>(V1->getType());
2560   Type *EltTy = V1VTy->getElementType();
2561   bool TypeIsScalable = isa<ScalableVectorType>(V1VTy);
2562   Type *ShufTy = VectorType::get(EltTy, NElts, TypeIsScalable);
2563 
2564   if (OnlyIfReducedTy == ShufTy)
2565     return nullptr;
2566 
2567   // Look up the constant in the table first to ensure uniqueness
2568   Constant *ArgVec[] = {V1, V2};
2569   ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec, 0, 0, None, Mask);
2570 
2571   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2572   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2573 }
2574 
2575 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2576                                        ArrayRef<unsigned> Idxs,
2577                                        Type *OnlyIfReducedTy) {
2578   assert(Agg->getType()->isFirstClassType() &&
2579          "Non-first-class type for constant insertvalue expression");
2580 
2581   assert(ExtractValueInst::getIndexedType(Agg->getType(),
2582                                           Idxs) == Val->getType() &&
2583          "insertvalue indices invalid!");
2584   Type *ReqTy = Val->getType();
2585 
2586   if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2587     return FC;
2588 
2589   if (OnlyIfReducedTy == ReqTy)
2590     return nullptr;
2591 
2592   Constant *ArgVec[] = { Agg, Val };
2593   const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2594 
2595   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2596   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2597 }
2598 
2599 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
2600                                         Type *OnlyIfReducedTy) {
2601   assert(Agg->getType()->isFirstClassType() &&
2602          "Tried to create extractelement operation on non-first-class type!");
2603 
2604   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2605   (void)ReqTy;
2606   assert(ReqTy && "extractvalue indices invalid!");
2607 
2608   assert(Agg->getType()->isFirstClassType() &&
2609          "Non-first-class type for constant extractvalue expression");
2610   if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2611     return FC;
2612 
2613   if (OnlyIfReducedTy == ReqTy)
2614     return nullptr;
2615 
2616   Constant *ArgVec[] = { Agg };
2617   const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2618 
2619   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2620   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2621 }
2622 
2623 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2624   assert(C->getType()->isIntOrIntVectorTy() &&
2625          "Cannot NEG a nonintegral value!");
2626   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2627                 C, HasNUW, HasNSW);
2628 }
2629 
2630 Constant *ConstantExpr::getFNeg(Constant *C) {
2631   assert(C->getType()->isFPOrFPVectorTy() &&
2632          "Cannot FNEG a non-floating-point value!");
2633   return get(Instruction::FNeg, C);
2634 }
2635 
2636 Constant *ConstantExpr::getNot(Constant *C) {
2637   assert(C->getType()->isIntOrIntVectorTy() &&
2638          "Cannot NOT a nonintegral value!");
2639   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2640 }
2641 
2642 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2643                                bool HasNUW, bool HasNSW) {
2644   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2645                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2646   return get(Instruction::Add, C1, C2, Flags);
2647 }
2648 
2649 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2650   return get(Instruction::FAdd, C1, C2);
2651 }
2652 
2653 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2654                                bool HasNUW, bool HasNSW) {
2655   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2656                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2657   return get(Instruction::Sub, C1, C2, Flags);
2658 }
2659 
2660 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2661   return get(Instruction::FSub, C1, C2);
2662 }
2663 
2664 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2665                                bool HasNUW, bool HasNSW) {
2666   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2667                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2668   return get(Instruction::Mul, C1, C2, Flags);
2669 }
2670 
2671 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2672   return get(Instruction::FMul, C1, C2);
2673 }
2674 
2675 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2676   return get(Instruction::UDiv, C1, C2,
2677              isExact ? PossiblyExactOperator::IsExact : 0);
2678 }
2679 
2680 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2681   return get(Instruction::SDiv, C1, C2,
2682              isExact ? PossiblyExactOperator::IsExact : 0);
2683 }
2684 
2685 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2686   return get(Instruction::FDiv, C1, C2);
2687 }
2688 
2689 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2690   return get(Instruction::URem, C1, C2);
2691 }
2692 
2693 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2694   return get(Instruction::SRem, C1, C2);
2695 }
2696 
2697 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2698   return get(Instruction::FRem, C1, C2);
2699 }
2700 
2701 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2702   return get(Instruction::And, C1, C2);
2703 }
2704 
2705 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2706   return get(Instruction::Or, C1, C2);
2707 }
2708 
2709 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2710   return get(Instruction::Xor, C1, C2);
2711 }
2712 
2713 Constant *ConstantExpr::getUMin(Constant *C1, Constant *C2) {
2714   Constant *Cmp = ConstantExpr::getICmp(CmpInst::ICMP_ULT, C1, C2);
2715   return getSelect(Cmp, C1, C2);
2716 }
2717 
2718 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2719                                bool HasNUW, bool HasNSW) {
2720   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2721                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2722   return get(Instruction::Shl, C1, C2, Flags);
2723 }
2724 
2725 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2726   return get(Instruction::LShr, C1, C2,
2727              isExact ? PossiblyExactOperator::IsExact : 0);
2728 }
2729 
2730 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2731   return get(Instruction::AShr, C1, C2,
2732              isExact ? PossiblyExactOperator::IsExact : 0);
2733 }
2734 
2735 Constant *ConstantExpr::getExactLogBase2(Constant *C) {
2736   Type *Ty = C->getType();
2737   const APInt *IVal;
2738   if (match(C, m_APInt(IVal)) && IVal->isPowerOf2())
2739     return ConstantInt::get(Ty, IVal->logBase2());
2740 
2741   // FIXME: We can extract pow of 2 of splat constant for scalable vectors.
2742   auto *VecTy = dyn_cast<FixedVectorType>(Ty);
2743   if (!VecTy)
2744     return nullptr;
2745 
2746   SmallVector<Constant *, 4> Elts;
2747   for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) {
2748     Constant *Elt = C->getAggregateElement(I);
2749     if (!Elt)
2750       return nullptr;
2751     // Note that log2(iN undef) is *NOT* iN undef, because log2(iN undef) u< N.
2752     if (isa<UndefValue>(Elt)) {
2753       Elts.push_back(Constant::getNullValue(Ty->getScalarType()));
2754       continue;
2755     }
2756     if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
2757       return nullptr;
2758     Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2()));
2759   }
2760 
2761   return ConstantVector::get(Elts);
2762 }
2763 
2764 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty,
2765                                          bool AllowRHSConstant) {
2766   assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed");
2767 
2768   // Commutative opcodes: it does not matter if AllowRHSConstant is set.
2769   if (Instruction::isCommutative(Opcode)) {
2770     switch (Opcode) {
2771       case Instruction::Add: // X + 0 = X
2772       case Instruction::Or:  // X | 0 = X
2773       case Instruction::Xor: // X ^ 0 = X
2774         return Constant::getNullValue(Ty);
2775       case Instruction::Mul: // X * 1 = X
2776         return ConstantInt::get(Ty, 1);
2777       case Instruction::And: // X & -1 = X
2778         return Constant::getAllOnesValue(Ty);
2779       case Instruction::FAdd: // X + -0.0 = X
2780         // TODO: If the fadd has 'nsz', should we return +0.0?
2781         return ConstantFP::getNegativeZero(Ty);
2782       case Instruction::FMul: // X * 1.0 = X
2783         return ConstantFP::get(Ty, 1.0);
2784       default:
2785         llvm_unreachable("Every commutative binop has an identity constant");
2786     }
2787   }
2788 
2789   // Non-commutative opcodes: AllowRHSConstant must be set.
2790   if (!AllowRHSConstant)
2791     return nullptr;
2792 
2793   switch (Opcode) {
2794     case Instruction::Sub:  // X - 0 = X
2795     case Instruction::Shl:  // X << 0 = X
2796     case Instruction::LShr: // X >>u 0 = X
2797     case Instruction::AShr: // X >> 0 = X
2798     case Instruction::FSub: // X - 0.0 = X
2799       return Constant::getNullValue(Ty);
2800     case Instruction::SDiv: // X / 1 = X
2801     case Instruction::UDiv: // X /u 1 = X
2802       return ConstantInt::get(Ty, 1);
2803     case Instruction::FDiv: // X / 1.0 = X
2804       return ConstantFP::get(Ty, 1.0);
2805     default:
2806       return nullptr;
2807   }
2808 }
2809 
2810 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2811   switch (Opcode) {
2812   default:
2813     // Doesn't have an absorber.
2814     return nullptr;
2815 
2816   case Instruction::Or:
2817     return Constant::getAllOnesValue(Ty);
2818 
2819   case Instruction::And:
2820   case Instruction::Mul:
2821     return Constant::getNullValue(Ty);
2822   }
2823 }
2824 
2825 /// Remove the constant from the constant table.
2826 void ConstantExpr::destroyConstantImpl() {
2827   getType()->getContext().pImpl->ExprConstants.remove(this);
2828 }
2829 
2830 const char *ConstantExpr::getOpcodeName() const {
2831   return Instruction::getOpcodeName(getOpcode());
2832 }
2833 
2834 GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2835     Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
2836     : ConstantExpr(DestTy, Instruction::GetElementPtr,
2837                    OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
2838                        (IdxList.size() + 1),
2839                    IdxList.size() + 1),
2840       SrcElementTy(SrcElementTy),
2841       ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) {
2842   Op<0>() = C;
2843   Use *OperandList = getOperandList();
2844   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2845     OperandList[i+1] = IdxList[i];
2846 }
2847 
2848 Type *GetElementPtrConstantExpr::getSourceElementType() const {
2849   return SrcElementTy;
2850 }
2851 
2852 Type *GetElementPtrConstantExpr::getResultElementType() const {
2853   return ResElementTy;
2854 }
2855 
2856 //===----------------------------------------------------------------------===//
2857 //                       ConstantData* implementations
2858 
2859 Type *ConstantDataSequential::getElementType() const {
2860   if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
2861     return ATy->getElementType();
2862   return cast<VectorType>(getType())->getElementType();
2863 }
2864 
2865 StringRef ConstantDataSequential::getRawDataValues() const {
2866   return StringRef(DataElements, getNumElements()*getElementByteSize());
2867 }
2868 
2869 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
2870   if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2871     return true;
2872   if (auto *IT = dyn_cast<IntegerType>(Ty)) {
2873     switch (IT->getBitWidth()) {
2874     case 8:
2875     case 16:
2876     case 32:
2877     case 64:
2878       return true;
2879     default: break;
2880     }
2881   }
2882   return false;
2883 }
2884 
2885 unsigned ConstantDataSequential::getNumElements() const {
2886   if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2887     return AT->getNumElements();
2888   return cast<FixedVectorType>(getType())->getNumElements();
2889 }
2890 
2891 
2892 uint64_t ConstantDataSequential::getElementByteSize() const {
2893   return getElementType()->getPrimitiveSizeInBits()/8;
2894 }
2895 
2896 /// Return the start of the specified element.
2897 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2898   assert(Elt < getNumElements() && "Invalid Elt");
2899   return DataElements+Elt*getElementByteSize();
2900 }
2901 
2902 
2903 /// Return true if the array is empty or all zeros.
2904 static bool isAllZeros(StringRef Arr) {
2905   for (char I : Arr)
2906     if (I != 0)
2907       return false;
2908   return true;
2909 }
2910 
2911 /// This is the underlying implementation of all of the
2912 /// ConstantDataSequential::get methods.  They all thunk down to here, providing
2913 /// the correct element type.  We take the bytes in as a StringRef because
2914 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2915 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2916 #ifndef NDEBUG
2917   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2918     assert(isElementTypeCompatible(ATy->getElementType()));
2919   else
2920     assert(isElementTypeCompatible(cast<VectorType>(Ty)->getElementType()));
2921 #endif
2922   // If the elements are all zero or there are no elements, return a CAZ, which
2923   // is more dense and canonical.
2924   if (isAllZeros(Elements))
2925     return ConstantAggregateZero::get(Ty);
2926 
2927   // Do a lookup to see if we have already formed one of these.
2928   auto &Slot =
2929       *Ty->getContext()
2930            .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
2931            .first;
2932 
2933   // The bucket can point to a linked list of different CDS's that have the same
2934   // body but different types.  For example, 0,0,0,1 could be a 4 element array
2935   // of i8, or a 1-element array of i32.  They'll both end up in the same
2936   /// StringMap bucket, linked up by their Next pointers.  Walk the list.
2937   std::unique_ptr<ConstantDataSequential> *Entry = &Slot.second;
2938   for (; *Entry; Entry = &(*Entry)->Next)
2939     if ((*Entry)->getType() == Ty)
2940       return Entry->get();
2941 
2942   // Okay, we didn't get a hit.  Create a node of the right class, link it in,
2943   // and return it.
2944   if (isa<ArrayType>(Ty)) {
2945     // Use reset because std::make_unique can't access the constructor.
2946     Entry->reset(new ConstantDataArray(Ty, Slot.first().data()));
2947     return Entry->get();
2948   }
2949 
2950   assert(isa<VectorType>(Ty));
2951   // Use reset because std::make_unique can't access the constructor.
2952   Entry->reset(new ConstantDataVector(Ty, Slot.first().data()));
2953   return Entry->get();
2954 }
2955 
2956 void ConstantDataSequential::destroyConstantImpl() {
2957   // Remove the constant from the StringMap.
2958   StringMap<std::unique_ptr<ConstantDataSequential>> &CDSConstants =
2959       getType()->getContext().pImpl->CDSConstants;
2960 
2961   auto Slot = CDSConstants.find(getRawDataValues());
2962 
2963   assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2964 
2965   std::unique_ptr<ConstantDataSequential> *Entry = &Slot->getValue();
2966 
2967   // Remove the entry from the hash table.
2968   if (!(*Entry)->Next) {
2969     // If there is only one value in the bucket (common case) it must be this
2970     // entry, and removing the entry should remove the bucket completely.
2971     assert(Entry->get() == this && "Hash mismatch in ConstantDataSequential");
2972     getContext().pImpl->CDSConstants.erase(Slot);
2973     return;
2974   }
2975 
2976   // Otherwise, there are multiple entries linked off the bucket, unlink the
2977   // node we care about but keep the bucket around.
2978   while (true) {
2979     std::unique_ptr<ConstantDataSequential> &Node = *Entry;
2980     assert(Node && "Didn't find entry in its uniquing hash table!");
2981     // If we found our entry, unlink it from the list and we're done.
2982     if (Node.get() == this) {
2983       Node = std::move(Node->Next);
2984       return;
2985     }
2986 
2987     Entry = &Node->Next;
2988   }
2989 }
2990 
2991 /// getFP() constructors - Return a constant of array type with a float
2992 /// element type taken from argument `ElementType', and count taken from
2993 /// argument `Elts'.  The amount of bits of the contained type must match the
2994 /// number of bits of the type contained in the passed in ArrayRef.
2995 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
2996 /// that this can return a ConstantAggregateZero object.
2997 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint16_t> Elts) {
2998   assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
2999          "Element type is not a 16-bit float type");
3000   Type *Ty = ArrayType::get(ElementType, Elts.size());
3001   const char *Data = reinterpret_cast<const char *>(Elts.data());
3002   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
3003 }
3004 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint32_t> Elts) {
3005   assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type");
3006   Type *Ty = ArrayType::get(ElementType, Elts.size());
3007   const char *Data = reinterpret_cast<const char *>(Elts.data());
3008   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
3009 }
3010 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint64_t> Elts) {
3011   assert(ElementType->isDoubleTy() &&
3012          "Element type is not a 64-bit float type");
3013   Type *Ty = ArrayType::get(ElementType, Elts.size());
3014   const char *Data = reinterpret_cast<const char *>(Elts.data());
3015   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
3016 }
3017 
3018 Constant *ConstantDataArray::getString(LLVMContext &Context,
3019                                        StringRef Str, bool AddNull) {
3020   if (!AddNull) {
3021     const uint8_t *Data = Str.bytes_begin();
3022     return get(Context, makeArrayRef(Data, Str.size()));
3023   }
3024 
3025   SmallVector<uint8_t, 64> ElementVals;
3026   ElementVals.append(Str.begin(), Str.end());
3027   ElementVals.push_back(0);
3028   return get(Context, ElementVals);
3029 }
3030 
3031 /// get() constructors - Return a constant with vector type with an element
3032 /// count and element type matching the ArrayRef passed in.  Note that this
3033 /// can return a ConstantAggregateZero object.
3034 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
3035   auto *Ty = FixedVectorType::get(Type::getInt8Ty(Context), Elts.size());
3036   const char *Data = reinterpret_cast<const char *>(Elts.data());
3037   return getImpl(StringRef(Data, Elts.size() * 1), Ty);
3038 }
3039 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
3040   auto *Ty = FixedVectorType::get(Type::getInt16Ty(Context), Elts.size());
3041   const char *Data = reinterpret_cast<const char *>(Elts.data());
3042   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
3043 }
3044 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
3045   auto *Ty = FixedVectorType::get(Type::getInt32Ty(Context), Elts.size());
3046   const char *Data = reinterpret_cast<const char *>(Elts.data());
3047   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
3048 }
3049 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
3050   auto *Ty = FixedVectorType::get(Type::getInt64Ty(Context), Elts.size());
3051   const char *Data = reinterpret_cast<const char *>(Elts.data());
3052   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
3053 }
3054 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
3055   auto *Ty = FixedVectorType::get(Type::getFloatTy(Context), Elts.size());
3056   const char *Data = reinterpret_cast<const char *>(Elts.data());
3057   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
3058 }
3059 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
3060   auto *Ty = FixedVectorType::get(Type::getDoubleTy(Context), Elts.size());
3061   const char *Data = reinterpret_cast<const char *>(Elts.data());
3062   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
3063 }
3064 
3065 /// getFP() constructors - Return a constant of vector type with a float
3066 /// element type taken from argument `ElementType', and count taken from
3067 /// argument `Elts'.  The amount of bits of the contained type must match the
3068 /// number of bits of the type contained in the passed in ArrayRef.
3069 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
3070 /// that this can return a ConstantAggregateZero object.
3071 Constant *ConstantDataVector::getFP(Type *ElementType,
3072                                     ArrayRef<uint16_t> Elts) {
3073   assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
3074          "Element type is not a 16-bit float type");
3075   auto *Ty = FixedVectorType::get(ElementType, Elts.size());
3076   const char *Data = reinterpret_cast<const char *>(Elts.data());
3077   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
3078 }
3079 Constant *ConstantDataVector::getFP(Type *ElementType,
3080                                     ArrayRef<uint32_t> Elts) {
3081   assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type");
3082   auto *Ty = FixedVectorType::get(ElementType, Elts.size());
3083   const char *Data = reinterpret_cast<const char *>(Elts.data());
3084   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
3085 }
3086 Constant *ConstantDataVector::getFP(Type *ElementType,
3087                                     ArrayRef<uint64_t> Elts) {
3088   assert(ElementType->isDoubleTy() &&
3089          "Element type is not a 64-bit float type");
3090   auto *Ty = FixedVectorType::get(ElementType, Elts.size());
3091   const char *Data = reinterpret_cast<const char *>(Elts.data());
3092   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
3093 }
3094 
3095 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
3096   assert(isElementTypeCompatible(V->getType()) &&
3097          "Element type not compatible with ConstantData");
3098   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
3099     if (CI->getType()->isIntegerTy(8)) {
3100       SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
3101       return get(V->getContext(), Elts);
3102     }
3103     if (CI->getType()->isIntegerTy(16)) {
3104       SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
3105       return get(V->getContext(), Elts);
3106     }
3107     if (CI->getType()->isIntegerTy(32)) {
3108       SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
3109       return get(V->getContext(), Elts);
3110     }
3111     assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
3112     SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
3113     return get(V->getContext(), Elts);
3114   }
3115 
3116   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3117     if (CFP->getType()->isHalfTy()) {
3118       SmallVector<uint16_t, 16> Elts(
3119           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3120       return getFP(V->getType(), Elts);
3121     }
3122     if (CFP->getType()->isBFloatTy()) {
3123       SmallVector<uint16_t, 16> Elts(
3124           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3125       return getFP(V->getType(), Elts);
3126     }
3127     if (CFP->getType()->isFloatTy()) {
3128       SmallVector<uint32_t, 16> Elts(
3129           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3130       return getFP(V->getType(), Elts);
3131     }
3132     if (CFP->getType()->isDoubleTy()) {
3133       SmallVector<uint64_t, 16> Elts(
3134           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3135       return getFP(V->getType(), Elts);
3136     }
3137   }
3138   return ConstantVector::getSplat(ElementCount::getFixed(NumElts), V);
3139 }
3140 
3141 
3142 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
3143   assert(isa<IntegerType>(getElementType()) &&
3144          "Accessor can only be used when element is an integer");
3145   const char *EltPtr = getElementPointer(Elt);
3146 
3147   // The data is stored in host byte order, make sure to cast back to the right
3148   // type to load with the right endianness.
3149   switch (getElementType()->getIntegerBitWidth()) {
3150   default: llvm_unreachable("Invalid bitwidth for CDS");
3151   case 8:
3152     return *reinterpret_cast<const uint8_t *>(EltPtr);
3153   case 16:
3154     return *reinterpret_cast<const uint16_t *>(EltPtr);
3155   case 32:
3156     return *reinterpret_cast<const uint32_t *>(EltPtr);
3157   case 64:
3158     return *reinterpret_cast<const uint64_t *>(EltPtr);
3159   }
3160 }
3161 
3162 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const {
3163   assert(isa<IntegerType>(getElementType()) &&
3164          "Accessor can only be used when element is an integer");
3165   const char *EltPtr = getElementPointer(Elt);
3166 
3167   // The data is stored in host byte order, make sure to cast back to the right
3168   // type to load with the right endianness.
3169   switch (getElementType()->getIntegerBitWidth()) {
3170   default: llvm_unreachable("Invalid bitwidth for CDS");
3171   case 8: {
3172     auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr);
3173     return APInt(8, EltVal);
3174   }
3175   case 16: {
3176     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3177     return APInt(16, EltVal);
3178   }
3179   case 32: {
3180     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
3181     return APInt(32, EltVal);
3182   }
3183   case 64: {
3184     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
3185     return APInt(64, EltVal);
3186   }
3187   }
3188 }
3189 
3190 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
3191   const char *EltPtr = getElementPointer(Elt);
3192 
3193   switch (getElementType()->getTypeID()) {
3194   default:
3195     llvm_unreachable("Accessor can only be used when element is float/double!");
3196   case Type::HalfTyID: {
3197     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3198     return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal));
3199   }
3200   case Type::BFloatTyID: {
3201     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3202     return APFloat(APFloat::BFloat(), APInt(16, EltVal));
3203   }
3204   case Type::FloatTyID: {
3205     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
3206     return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal));
3207   }
3208   case Type::DoubleTyID: {
3209     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
3210     return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal));
3211   }
3212   }
3213 }
3214 
3215 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
3216   assert(getElementType()->isFloatTy() &&
3217          "Accessor can only be used when element is a 'float'");
3218   return *reinterpret_cast<const float *>(getElementPointer(Elt));
3219 }
3220 
3221 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
3222   assert(getElementType()->isDoubleTy() &&
3223          "Accessor can only be used when element is a 'float'");
3224   return *reinterpret_cast<const double *>(getElementPointer(Elt));
3225 }
3226 
3227 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
3228   if (getElementType()->isHalfTy() || getElementType()->isBFloatTy() ||
3229       getElementType()->isFloatTy() || getElementType()->isDoubleTy())
3230     return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
3231 
3232   return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
3233 }
3234 
3235 bool ConstantDataSequential::isString(unsigned CharSize) const {
3236   return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize);
3237 }
3238 
3239 bool ConstantDataSequential::isCString() const {
3240   if (!isString())
3241     return false;
3242 
3243   StringRef Str = getAsString();
3244 
3245   // The last value must be nul.
3246   if (Str.back() != 0) return false;
3247 
3248   // Other elements must be non-nul.
3249   return Str.drop_back().find(0) == StringRef::npos;
3250 }
3251 
3252 bool ConstantDataVector::isSplatData() const {
3253   const char *Base = getRawDataValues().data();
3254 
3255   // Compare elements 1+ to the 0'th element.
3256   unsigned EltSize = getElementByteSize();
3257   for (unsigned i = 1, e = getNumElements(); i != e; ++i)
3258     if (memcmp(Base, Base+i*EltSize, EltSize))
3259       return false;
3260 
3261   return true;
3262 }
3263 
3264 bool ConstantDataVector::isSplat() const {
3265   if (!IsSplatSet) {
3266     IsSplatSet = true;
3267     IsSplat = isSplatData();
3268   }
3269   return IsSplat;
3270 }
3271 
3272 Constant *ConstantDataVector::getSplatValue() const {
3273   // If they're all the same, return the 0th one as a representative.
3274   return isSplat() ? getElementAsConstant(0) : nullptr;
3275 }
3276 
3277 //===----------------------------------------------------------------------===//
3278 //                handleOperandChange implementations
3279 
3280 /// Update this constant array to change uses of
3281 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
3282 /// etc.
3283 ///
3284 /// Note that we intentionally replace all uses of From with To here.  Consider
3285 /// a large array that uses 'From' 1000 times.  By handling this case all here,
3286 /// ConstantArray::handleOperandChange is only invoked once, and that
3287 /// single invocation handles all 1000 uses.  Handling them one at a time would
3288 /// work, but would be really slow because it would have to unique each updated
3289 /// array instance.
3290 ///
3291 void Constant::handleOperandChange(Value *From, Value *To) {
3292   Value *Replacement = nullptr;
3293   switch (getValueID()) {
3294   default:
3295     llvm_unreachable("Not a constant!");
3296 #define HANDLE_CONSTANT(Name)                                                  \
3297   case Value::Name##Val:                                                       \
3298     Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To);         \
3299     break;
3300 #include "llvm/IR/Value.def"
3301   }
3302 
3303   // If handleOperandChangeImpl returned nullptr, then it handled
3304   // replacing itself and we don't want to delete or replace anything else here.
3305   if (!Replacement)
3306     return;
3307 
3308   // I do need to replace this with an existing value.
3309   assert(Replacement != this && "I didn't contain From!");
3310 
3311   // Everyone using this now uses the replacement.
3312   replaceAllUsesWith(Replacement);
3313 
3314   // Delete the old constant!
3315   destroyConstant();
3316 }
3317 
3318 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) {
3319   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3320   Constant *ToC = cast<Constant>(To);
3321 
3322   SmallVector<Constant*, 8> Values;
3323   Values.reserve(getNumOperands());  // Build replacement array.
3324 
3325   // Fill values with the modified operands of the constant array.  Also,
3326   // compute whether this turns into an all-zeros array.
3327   unsigned NumUpdated = 0;
3328 
3329   // Keep track of whether all the values in the array are "ToC".
3330   bool AllSame = true;
3331   Use *OperandList = getOperandList();
3332   unsigned OperandNo = 0;
3333   for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
3334     Constant *Val = cast<Constant>(O->get());
3335     if (Val == From) {
3336       OperandNo = (O - OperandList);
3337       Val = ToC;
3338       ++NumUpdated;
3339     }
3340     Values.push_back(Val);
3341     AllSame &= Val == ToC;
3342   }
3343 
3344   if (AllSame && ToC->isNullValue())
3345     return ConstantAggregateZero::get(getType());
3346 
3347   if (AllSame && isa<UndefValue>(ToC))
3348     return UndefValue::get(getType());
3349 
3350   // Check for any other type of constant-folding.
3351   if (Constant *C = getImpl(getType(), Values))
3352     return C;
3353 
3354   // Update to the new value.
3355   return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
3356       Values, this, From, ToC, NumUpdated, OperandNo);
3357 }
3358 
3359 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) {
3360   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3361   Constant *ToC = cast<Constant>(To);
3362 
3363   Use *OperandList = getOperandList();
3364 
3365   SmallVector<Constant*, 8> Values;
3366   Values.reserve(getNumOperands());  // Build replacement struct.
3367 
3368   // Fill values with the modified operands of the constant struct.  Also,
3369   // compute whether this turns into an all-zeros struct.
3370   unsigned NumUpdated = 0;
3371   bool AllSame = true;
3372   unsigned OperandNo = 0;
3373   for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) {
3374     Constant *Val = cast<Constant>(O->get());
3375     if (Val == From) {
3376       OperandNo = (O - OperandList);
3377       Val = ToC;
3378       ++NumUpdated;
3379     }
3380     Values.push_back(Val);
3381     AllSame &= Val == ToC;
3382   }
3383 
3384   if (AllSame && ToC->isNullValue())
3385     return ConstantAggregateZero::get(getType());
3386 
3387   if (AllSame && isa<UndefValue>(ToC))
3388     return UndefValue::get(getType());
3389 
3390   // Update to the new value.
3391   return getContext().pImpl->StructConstants.replaceOperandsInPlace(
3392       Values, this, From, ToC, NumUpdated, OperandNo);
3393 }
3394 
3395 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) {
3396   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3397   Constant *ToC = cast<Constant>(To);
3398 
3399   SmallVector<Constant*, 8> Values;
3400   Values.reserve(getNumOperands());  // Build replacement array...
3401   unsigned NumUpdated = 0;
3402   unsigned OperandNo = 0;
3403   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3404     Constant *Val = getOperand(i);
3405     if (Val == From) {
3406       OperandNo = i;
3407       ++NumUpdated;
3408       Val = ToC;
3409     }
3410     Values.push_back(Val);
3411   }
3412 
3413   if (Constant *C = getImpl(Values))
3414     return C;
3415 
3416   // Update to the new value.
3417   return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
3418       Values, this, From, ToC, NumUpdated, OperandNo);
3419 }
3420 
3421 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) {
3422   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
3423   Constant *To = cast<Constant>(ToV);
3424 
3425   SmallVector<Constant*, 8> NewOps;
3426   unsigned NumUpdated = 0;
3427   unsigned OperandNo = 0;
3428   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3429     Constant *Op = getOperand(i);
3430     if (Op == From) {
3431       OperandNo = i;
3432       ++NumUpdated;
3433       Op = To;
3434     }
3435     NewOps.push_back(Op);
3436   }
3437   assert(NumUpdated && "I didn't contain From!");
3438 
3439   if (Constant *C = getWithOperands(NewOps, getType(), true))
3440     return C;
3441 
3442   // Update to the new value.
3443   return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
3444       NewOps, this, From, To, NumUpdated, OperandNo);
3445 }
3446 
3447 Instruction *ConstantExpr::getAsInstruction() const {
3448   SmallVector<Value *, 4> ValueOperands(operands());
3449   ArrayRef<Value*> Ops(ValueOperands);
3450 
3451   switch (getOpcode()) {
3452   case Instruction::Trunc:
3453   case Instruction::ZExt:
3454   case Instruction::SExt:
3455   case Instruction::FPTrunc:
3456   case Instruction::FPExt:
3457   case Instruction::UIToFP:
3458   case Instruction::SIToFP:
3459   case Instruction::FPToUI:
3460   case Instruction::FPToSI:
3461   case Instruction::PtrToInt:
3462   case Instruction::IntToPtr:
3463   case Instruction::BitCast:
3464   case Instruction::AddrSpaceCast:
3465     return CastInst::Create((Instruction::CastOps)getOpcode(),
3466                             Ops[0], getType());
3467   case Instruction::Select:
3468     return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
3469   case Instruction::InsertElement:
3470     return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
3471   case Instruction::ExtractElement:
3472     return ExtractElementInst::Create(Ops[0], Ops[1]);
3473   case Instruction::InsertValue:
3474     return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
3475   case Instruction::ExtractValue:
3476     return ExtractValueInst::Create(Ops[0], getIndices());
3477   case Instruction::ShuffleVector:
3478     return new ShuffleVectorInst(Ops[0], Ops[1], getShuffleMask());
3479 
3480   case Instruction::GetElementPtr: {
3481     const auto *GO = cast<GEPOperator>(this);
3482     if (GO->isInBounds())
3483       return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
3484                                                Ops[0], Ops.slice(1));
3485     return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
3486                                      Ops.slice(1));
3487   }
3488   case Instruction::ICmp:
3489   case Instruction::FCmp:
3490     return CmpInst::Create((Instruction::OtherOps)getOpcode(),
3491                            (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]);
3492   case Instruction::FNeg:
3493     return UnaryOperator::Create((Instruction::UnaryOps)getOpcode(), Ops[0]);
3494   default:
3495     assert(getNumOperands() == 2 && "Must be binary operator?");
3496     BinaryOperator *BO =
3497       BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
3498                              Ops[0], Ops[1]);
3499     if (isa<OverflowingBinaryOperator>(BO)) {
3500       BO->setHasNoUnsignedWrap(SubclassOptionalData &
3501                                OverflowingBinaryOperator::NoUnsignedWrap);
3502       BO->setHasNoSignedWrap(SubclassOptionalData &
3503                              OverflowingBinaryOperator::NoSignedWrap);
3504     }
3505     if (isa<PossiblyExactOperator>(BO))
3506       BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
3507     return BO;
3508   }
3509 }
3510