xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Constants.cpp (revision a90b9d0159070121c221b966469c3e36d912bf82)
1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Constant* classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Constants.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/ConstantFold.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/GlobalAlias.h"
24 #include "llvm/IR/GlobalIFunc.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/PatternMatch.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <algorithm>
34 
35 using namespace llvm;
36 using namespace PatternMatch;
37 
38 //===----------------------------------------------------------------------===//
39 //                              Constant Class
40 //===----------------------------------------------------------------------===//
41 
42 bool Constant::isNegativeZeroValue() const {
43   // Floating point values have an explicit -0.0 value.
44   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
45     return CFP->isZero() && CFP->isNegative();
46 
47   // Equivalent for a vector of -0.0's.
48   if (getType()->isVectorTy())
49     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
50       return SplatCFP->isNegativeZeroValue();
51 
52   // We've already handled true FP case; any other FP vectors can't represent -0.0.
53   if (getType()->isFPOrFPVectorTy())
54     return false;
55 
56   // Otherwise, just use +0.0.
57   return isNullValue();
58 }
59 
60 // Return true iff this constant is positive zero (floating point), negative
61 // zero (floating point), or a null value.
62 bool Constant::isZeroValue() const {
63   // Floating point values have an explicit -0.0 value.
64   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
65     return CFP->isZero();
66 
67   // Check for constant splat vectors of 1 values.
68   if (getType()->isVectorTy())
69     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
70       return SplatCFP->isZero();
71 
72   // Otherwise, just use +0.0.
73   return isNullValue();
74 }
75 
76 bool Constant::isNullValue() const {
77   // 0 is null.
78   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
79     return CI->isZero();
80 
81   // +0.0 is null.
82   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
83     // ppc_fp128 determine isZero using high order double only
84     // Should check the bitwise value to make sure all bits are zero.
85     return CFP->isExactlyValue(+0.0);
86 
87   // constant zero is zero for aggregates, cpnull is null for pointers, none for
88   // tokens.
89   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
90          isa<ConstantTokenNone>(this) || isa<ConstantTargetNone>(this);
91 }
92 
93 bool Constant::isAllOnesValue() const {
94   // Check for -1 integers
95   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
96     return CI->isMinusOne();
97 
98   // Check for FP which are bitcasted from -1 integers
99   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
100     return CFP->getValueAPF().bitcastToAPInt().isAllOnes();
101 
102   // Check for constant splat vectors of 1 values.
103   if (getType()->isVectorTy())
104     if (const auto *SplatVal = getSplatValue())
105       return SplatVal->isAllOnesValue();
106 
107   return false;
108 }
109 
110 bool Constant::isOneValue() const {
111   // Check for 1 integers
112   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
113     return CI->isOne();
114 
115   // Check for FP which are bitcasted from 1 integers
116   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
117     return CFP->getValueAPF().bitcastToAPInt().isOne();
118 
119   // Check for constant splat vectors of 1 values.
120   if (getType()->isVectorTy())
121     if (const auto *SplatVal = getSplatValue())
122       return SplatVal->isOneValue();
123 
124   return false;
125 }
126 
127 bool Constant::isNotOneValue() const {
128   // Check for 1 integers
129   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
130     return !CI->isOneValue();
131 
132   // Check for FP which are bitcasted from 1 integers
133   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
134     return !CFP->getValueAPF().bitcastToAPInt().isOne();
135 
136   // Check that vectors don't contain 1
137   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
138     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
139       Constant *Elt = getAggregateElement(I);
140       if (!Elt || !Elt->isNotOneValue())
141         return false;
142     }
143     return true;
144   }
145 
146   // Check for splats that don't contain 1
147   if (getType()->isVectorTy())
148     if (const auto *SplatVal = getSplatValue())
149       return SplatVal->isNotOneValue();
150 
151   // It *may* contain 1, we can't tell.
152   return false;
153 }
154 
155 bool Constant::isMinSignedValue() const {
156   // Check for INT_MIN integers
157   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
158     return CI->isMinValue(/*isSigned=*/true);
159 
160   // Check for FP which are bitcasted from INT_MIN integers
161   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
162     return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
163 
164   // Check for splats of INT_MIN values.
165   if (getType()->isVectorTy())
166     if (const auto *SplatVal = getSplatValue())
167       return SplatVal->isMinSignedValue();
168 
169   return false;
170 }
171 
172 bool Constant::isNotMinSignedValue() const {
173   // Check for INT_MIN integers
174   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
175     return !CI->isMinValue(/*isSigned=*/true);
176 
177   // Check for FP which are bitcasted from INT_MIN integers
178   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
179     return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
180 
181   // Check that vectors don't contain INT_MIN
182   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
183     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
184       Constant *Elt = getAggregateElement(I);
185       if (!Elt || !Elt->isNotMinSignedValue())
186         return false;
187     }
188     return true;
189   }
190 
191   // Check for splats that aren't INT_MIN
192   if (getType()->isVectorTy())
193     if (const auto *SplatVal = getSplatValue())
194       return SplatVal->isNotMinSignedValue();
195 
196   // It *may* contain INT_MIN, we can't tell.
197   return false;
198 }
199 
200 bool Constant::isFiniteNonZeroFP() const {
201   if (auto *CFP = dyn_cast<ConstantFP>(this))
202     return CFP->getValueAPF().isFiniteNonZero();
203 
204   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
205     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
206       auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
207       if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
208         return false;
209     }
210     return true;
211   }
212 
213   if (getType()->isVectorTy())
214     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
215       return SplatCFP->isFiniteNonZeroFP();
216 
217   // It *may* contain finite non-zero, we can't tell.
218   return false;
219 }
220 
221 bool Constant::isNormalFP() const {
222   if (auto *CFP = dyn_cast<ConstantFP>(this))
223     return CFP->getValueAPF().isNormal();
224 
225   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
226     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
227       auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
228       if (!CFP || !CFP->getValueAPF().isNormal())
229         return false;
230     }
231     return true;
232   }
233 
234   if (getType()->isVectorTy())
235     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
236       return SplatCFP->isNormalFP();
237 
238   // It *may* contain a normal fp value, we can't tell.
239   return false;
240 }
241 
242 bool Constant::hasExactInverseFP() const {
243   if (auto *CFP = dyn_cast<ConstantFP>(this))
244     return CFP->getValueAPF().getExactInverse(nullptr);
245 
246   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
247     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
248       auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
249       if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr))
250         return false;
251     }
252     return true;
253   }
254 
255   if (getType()->isVectorTy())
256     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
257       return SplatCFP->hasExactInverseFP();
258 
259   // It *may* have an exact inverse fp value, we can't tell.
260   return false;
261 }
262 
263 bool Constant::isNaN() const {
264   if (auto *CFP = dyn_cast<ConstantFP>(this))
265     return CFP->isNaN();
266 
267   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
268     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
269       auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
270       if (!CFP || !CFP->isNaN())
271         return false;
272     }
273     return true;
274   }
275 
276   if (getType()->isVectorTy())
277     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
278       return SplatCFP->isNaN();
279 
280   // It *may* be NaN, we can't tell.
281   return false;
282 }
283 
284 bool Constant::isElementWiseEqual(Value *Y) const {
285   // Are they fully identical?
286   if (this == Y)
287     return true;
288 
289   // The input value must be a vector constant with the same type.
290   auto *VTy = dyn_cast<VectorType>(getType());
291   if (!isa<Constant>(Y) || !VTy || VTy != Y->getType())
292     return false;
293 
294   // TODO: Compare pointer constants?
295   if (!(VTy->getElementType()->isIntegerTy() ||
296         VTy->getElementType()->isFloatingPointTy()))
297     return false;
298 
299   // They may still be identical element-wise (if they have `undef`s).
300   // Bitcast to integer to allow exact bitwise comparison for all types.
301   Type *IntTy = VectorType::getInteger(VTy);
302   Constant *C0 = ConstantExpr::getBitCast(const_cast<Constant *>(this), IntTy);
303   Constant *C1 = ConstantExpr::getBitCast(cast<Constant>(Y), IntTy);
304   Constant *CmpEq = ConstantExpr::getICmp(ICmpInst::ICMP_EQ, C0, C1);
305   return isa<UndefValue>(CmpEq) || match(CmpEq, m_One());
306 }
307 
308 static bool
309 containsUndefinedElement(const Constant *C,
310                          function_ref<bool(const Constant *)> HasFn) {
311   if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
312     if (HasFn(C))
313       return true;
314     if (isa<ConstantAggregateZero>(C))
315       return false;
316     if (isa<ScalableVectorType>(C->getType()))
317       return false;
318 
319     for (unsigned i = 0, e = cast<FixedVectorType>(VTy)->getNumElements();
320          i != e; ++i) {
321       if (Constant *Elem = C->getAggregateElement(i))
322         if (HasFn(Elem))
323           return true;
324     }
325   }
326 
327   return false;
328 }
329 
330 bool Constant::containsUndefOrPoisonElement() const {
331   return containsUndefinedElement(
332       this, [&](const auto *C) { return isa<UndefValue>(C); });
333 }
334 
335 bool Constant::containsPoisonElement() const {
336   return containsUndefinedElement(
337       this, [&](const auto *C) { return isa<PoisonValue>(C); });
338 }
339 
340 bool Constant::containsUndefElement() const {
341   return containsUndefinedElement(this, [&](const auto *C) {
342     return isa<UndefValue>(C) && !isa<PoisonValue>(C);
343   });
344 }
345 
346 bool Constant::containsConstantExpression() const {
347   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
348     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
349       if (isa<ConstantExpr>(getAggregateElement(i)))
350         return true;
351   }
352   return false;
353 }
354 
355 /// Constructor to create a '0' constant of arbitrary type.
356 Constant *Constant::getNullValue(Type *Ty) {
357   switch (Ty->getTypeID()) {
358   case Type::IntegerTyID:
359     return ConstantInt::get(Ty, 0);
360   case Type::HalfTyID:
361   case Type::BFloatTyID:
362   case Type::FloatTyID:
363   case Type::DoubleTyID:
364   case Type::X86_FP80TyID:
365   case Type::FP128TyID:
366   case Type::PPC_FP128TyID:
367     return ConstantFP::get(Ty->getContext(),
368                            APFloat::getZero(Ty->getFltSemantics()));
369   case Type::PointerTyID:
370     return ConstantPointerNull::get(cast<PointerType>(Ty));
371   case Type::StructTyID:
372   case Type::ArrayTyID:
373   case Type::FixedVectorTyID:
374   case Type::ScalableVectorTyID:
375     return ConstantAggregateZero::get(Ty);
376   case Type::TokenTyID:
377     return ConstantTokenNone::get(Ty->getContext());
378   case Type::TargetExtTyID:
379     return ConstantTargetNone::get(cast<TargetExtType>(Ty));
380   default:
381     // Function, Label, or Opaque type?
382     llvm_unreachable("Cannot create a null constant of that type!");
383   }
384 }
385 
386 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
387   Type *ScalarTy = Ty->getScalarType();
388 
389   // Create the base integer constant.
390   Constant *C = ConstantInt::get(Ty->getContext(), V);
391 
392   // Convert an integer to a pointer, if necessary.
393   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
394     C = ConstantExpr::getIntToPtr(C, PTy);
395 
396   // Broadcast a scalar to a vector, if necessary.
397   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
398     C = ConstantVector::getSplat(VTy->getElementCount(), C);
399 
400   return C;
401 }
402 
403 Constant *Constant::getAllOnesValue(Type *Ty) {
404   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
405     return ConstantInt::get(Ty->getContext(),
406                             APInt::getAllOnes(ITy->getBitWidth()));
407 
408   if (Ty->isFloatingPointTy()) {
409     APFloat FL = APFloat::getAllOnesValue(Ty->getFltSemantics());
410     return ConstantFP::get(Ty->getContext(), FL);
411   }
412 
413   VectorType *VTy = cast<VectorType>(Ty);
414   return ConstantVector::getSplat(VTy->getElementCount(),
415                                   getAllOnesValue(VTy->getElementType()));
416 }
417 
418 Constant *Constant::getAggregateElement(unsigned Elt) const {
419   assert((getType()->isAggregateType() || getType()->isVectorTy()) &&
420          "Must be an aggregate/vector constant");
421 
422   if (const auto *CC = dyn_cast<ConstantAggregate>(this))
423     return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr;
424 
425   if (const auto *CAZ = dyn_cast<ConstantAggregateZero>(this))
426     return Elt < CAZ->getElementCount().getKnownMinValue()
427                ? CAZ->getElementValue(Elt)
428                : nullptr;
429 
430   // FIXME: getNumElements() will fail for non-fixed vector types.
431   if (isa<ScalableVectorType>(getType()))
432     return nullptr;
433 
434   if (const auto *PV = dyn_cast<PoisonValue>(this))
435     return Elt < PV->getNumElements() ? PV->getElementValue(Elt) : nullptr;
436 
437   if (const auto *UV = dyn_cast<UndefValue>(this))
438     return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
439 
440   if (const auto *CDS = dyn_cast<ConstantDataSequential>(this))
441     return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
442                                        : nullptr;
443 
444   return nullptr;
445 }
446 
447 Constant *Constant::getAggregateElement(Constant *Elt) const {
448   assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
449   if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) {
450     // Check if the constant fits into an uint64_t.
451     if (CI->getValue().getActiveBits() > 64)
452       return nullptr;
453     return getAggregateElement(CI->getZExtValue());
454   }
455   return nullptr;
456 }
457 
458 void Constant::destroyConstant() {
459   /// First call destroyConstantImpl on the subclass.  This gives the subclass
460   /// a chance to remove the constant from any maps/pools it's contained in.
461   switch (getValueID()) {
462   default:
463     llvm_unreachable("Not a constant!");
464 #define HANDLE_CONSTANT(Name)                                                  \
465   case Value::Name##Val:                                                       \
466     cast<Name>(this)->destroyConstantImpl();                                   \
467     break;
468 #include "llvm/IR/Value.def"
469   }
470 
471   // When a Constant is destroyed, there may be lingering
472   // references to the constant by other constants in the constant pool.  These
473   // constants are implicitly dependent on the module that is being deleted,
474   // but they don't know that.  Because we only find out when the CPV is
475   // deleted, we must now notify all of our users (that should only be
476   // Constants) that they are, in fact, invalid now and should be deleted.
477   //
478   while (!use_empty()) {
479     Value *V = user_back();
480 #ifndef NDEBUG // Only in -g mode...
481     if (!isa<Constant>(V)) {
482       dbgs() << "While deleting: " << *this
483              << "\n\nUse still stuck around after Def is destroyed: " << *V
484              << "\n\n";
485     }
486 #endif
487     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
488     cast<Constant>(V)->destroyConstant();
489 
490     // The constant should remove itself from our use list...
491     assert((use_empty() || user_back() != V) && "Constant not removed!");
492   }
493 
494   // Value has no outstanding references it is safe to delete it now...
495   deleteConstant(this);
496 }
497 
498 void llvm::deleteConstant(Constant *C) {
499   switch (C->getValueID()) {
500   case Constant::ConstantIntVal:
501     delete static_cast<ConstantInt *>(C);
502     break;
503   case Constant::ConstantFPVal:
504     delete static_cast<ConstantFP *>(C);
505     break;
506   case Constant::ConstantAggregateZeroVal:
507     delete static_cast<ConstantAggregateZero *>(C);
508     break;
509   case Constant::ConstantArrayVal:
510     delete static_cast<ConstantArray *>(C);
511     break;
512   case Constant::ConstantStructVal:
513     delete static_cast<ConstantStruct *>(C);
514     break;
515   case Constant::ConstantVectorVal:
516     delete static_cast<ConstantVector *>(C);
517     break;
518   case Constant::ConstantPointerNullVal:
519     delete static_cast<ConstantPointerNull *>(C);
520     break;
521   case Constant::ConstantDataArrayVal:
522     delete static_cast<ConstantDataArray *>(C);
523     break;
524   case Constant::ConstantDataVectorVal:
525     delete static_cast<ConstantDataVector *>(C);
526     break;
527   case Constant::ConstantTokenNoneVal:
528     delete static_cast<ConstantTokenNone *>(C);
529     break;
530   case Constant::BlockAddressVal:
531     delete static_cast<BlockAddress *>(C);
532     break;
533   case Constant::DSOLocalEquivalentVal:
534     delete static_cast<DSOLocalEquivalent *>(C);
535     break;
536   case Constant::NoCFIValueVal:
537     delete static_cast<NoCFIValue *>(C);
538     break;
539   case Constant::UndefValueVal:
540     delete static_cast<UndefValue *>(C);
541     break;
542   case Constant::PoisonValueVal:
543     delete static_cast<PoisonValue *>(C);
544     break;
545   case Constant::ConstantExprVal:
546     if (isa<CastConstantExpr>(C))
547       delete static_cast<CastConstantExpr *>(C);
548     else if (isa<BinaryConstantExpr>(C))
549       delete static_cast<BinaryConstantExpr *>(C);
550     else if (isa<ExtractElementConstantExpr>(C))
551       delete static_cast<ExtractElementConstantExpr *>(C);
552     else if (isa<InsertElementConstantExpr>(C))
553       delete static_cast<InsertElementConstantExpr *>(C);
554     else if (isa<ShuffleVectorConstantExpr>(C))
555       delete static_cast<ShuffleVectorConstantExpr *>(C);
556     else if (isa<GetElementPtrConstantExpr>(C))
557       delete static_cast<GetElementPtrConstantExpr *>(C);
558     else if (isa<CompareConstantExpr>(C))
559       delete static_cast<CompareConstantExpr *>(C);
560     else
561       llvm_unreachable("Unexpected constant expr");
562     break;
563   default:
564     llvm_unreachable("Unexpected constant");
565   }
566 }
567 
568 /// Check if C contains a GlobalValue for which Predicate is true.
569 static bool
570 ConstHasGlobalValuePredicate(const Constant *C,
571                              bool (*Predicate)(const GlobalValue *)) {
572   SmallPtrSet<const Constant *, 8> Visited;
573   SmallVector<const Constant *, 8> WorkList;
574   WorkList.push_back(C);
575   Visited.insert(C);
576 
577   while (!WorkList.empty()) {
578     const Constant *WorkItem = WorkList.pop_back_val();
579     if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
580       if (Predicate(GV))
581         return true;
582     for (const Value *Op : WorkItem->operands()) {
583       const Constant *ConstOp = dyn_cast<Constant>(Op);
584       if (!ConstOp)
585         continue;
586       if (Visited.insert(ConstOp).second)
587         WorkList.push_back(ConstOp);
588     }
589   }
590   return false;
591 }
592 
593 bool Constant::isThreadDependent() const {
594   auto DLLImportPredicate = [](const GlobalValue *GV) {
595     return GV->isThreadLocal();
596   };
597   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
598 }
599 
600 bool Constant::isDLLImportDependent() const {
601   auto DLLImportPredicate = [](const GlobalValue *GV) {
602     return GV->hasDLLImportStorageClass();
603   };
604   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
605 }
606 
607 bool Constant::isConstantUsed() const {
608   for (const User *U : users()) {
609     const Constant *UC = dyn_cast<Constant>(U);
610     if (!UC || isa<GlobalValue>(UC))
611       return true;
612 
613     if (UC->isConstantUsed())
614       return true;
615   }
616   return false;
617 }
618 
619 bool Constant::needsDynamicRelocation() const {
620   return getRelocationInfo() == GlobalRelocation;
621 }
622 
623 bool Constant::needsRelocation() const {
624   return getRelocationInfo() != NoRelocation;
625 }
626 
627 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
628   if (isa<GlobalValue>(this))
629     return GlobalRelocation; // Global reference.
630 
631   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
632     return BA->getFunction()->getRelocationInfo();
633 
634   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) {
635     if (CE->getOpcode() == Instruction::Sub) {
636       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
637       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
638       if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
639           RHS->getOpcode() == Instruction::PtrToInt) {
640         Constant *LHSOp0 = LHS->getOperand(0);
641         Constant *RHSOp0 = RHS->getOperand(0);
642 
643         // While raw uses of blockaddress need to be relocated, differences
644         // between two of them don't when they are for labels in the same
645         // function.  This is a common idiom when creating a table for the
646         // indirect goto extension, so we handle it efficiently here.
647         if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) &&
648             cast<BlockAddress>(LHSOp0)->getFunction() ==
649                 cast<BlockAddress>(RHSOp0)->getFunction())
650           return NoRelocation;
651 
652         // Relative pointers do not need to be dynamically relocated.
653         if (auto *RHSGV =
654                 dyn_cast<GlobalValue>(RHSOp0->stripInBoundsConstantOffsets())) {
655           auto *LHS = LHSOp0->stripInBoundsConstantOffsets();
656           if (auto *LHSGV = dyn_cast<GlobalValue>(LHS)) {
657             if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal())
658               return LocalRelocation;
659           } else if (isa<DSOLocalEquivalent>(LHS)) {
660             if (RHSGV->isDSOLocal())
661               return LocalRelocation;
662           }
663         }
664       }
665     }
666   }
667 
668   PossibleRelocationsTy Result = NoRelocation;
669   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
670     Result =
671         std::max(cast<Constant>(getOperand(i))->getRelocationInfo(), Result);
672 
673   return Result;
674 }
675 
676 /// Return true if the specified constantexpr is dead. This involves
677 /// recursively traversing users of the constantexpr.
678 /// If RemoveDeadUsers is true, also remove dead users at the same time.
679 static bool constantIsDead(const Constant *C, bool RemoveDeadUsers) {
680   if (isa<GlobalValue>(C)) return false; // Cannot remove this
681 
682   Value::const_user_iterator I = C->user_begin(), E = C->user_end();
683   while (I != E) {
684     const Constant *User = dyn_cast<Constant>(*I);
685     if (!User) return false; // Non-constant usage;
686     if (!constantIsDead(User, RemoveDeadUsers))
687       return false; // Constant wasn't dead
688 
689     // Just removed User, so the iterator was invalidated.
690     // Since we return immediately upon finding a live user, we can always
691     // restart from user_begin().
692     if (RemoveDeadUsers)
693       I = C->user_begin();
694     else
695       ++I;
696   }
697 
698   if (RemoveDeadUsers) {
699     // If C is only used by metadata, it should not be preserved but should
700     // have its uses replaced.
701     ReplaceableMetadataImpl::SalvageDebugInfo(*C);
702     const_cast<Constant *>(C)->destroyConstant();
703   }
704 
705   return true;
706 }
707 
708 void Constant::removeDeadConstantUsers() const {
709   Value::const_user_iterator I = user_begin(), E = user_end();
710   Value::const_user_iterator LastNonDeadUser = E;
711   while (I != E) {
712     const Constant *User = dyn_cast<Constant>(*I);
713     if (!User) {
714       LastNonDeadUser = I;
715       ++I;
716       continue;
717     }
718 
719     if (!constantIsDead(User, /* RemoveDeadUsers= */ true)) {
720       // If the constant wasn't dead, remember that this was the last live use
721       // and move on to the next constant.
722       LastNonDeadUser = I;
723       ++I;
724       continue;
725     }
726 
727     // If the constant was dead, then the iterator is invalidated.
728     if (LastNonDeadUser == E)
729       I = user_begin();
730     else
731       I = std::next(LastNonDeadUser);
732   }
733 }
734 
735 bool Constant::hasOneLiveUse() const { return hasNLiveUses(1); }
736 
737 bool Constant::hasZeroLiveUses() const { return hasNLiveUses(0); }
738 
739 bool Constant::hasNLiveUses(unsigned N) const {
740   unsigned NumUses = 0;
741   for (const Use &U : uses()) {
742     const Constant *User = dyn_cast<Constant>(U.getUser());
743     if (!User || !constantIsDead(User, /* RemoveDeadUsers= */ false)) {
744       ++NumUses;
745 
746       if (NumUses > N)
747         return false;
748     }
749   }
750   return NumUses == N;
751 }
752 
753 Constant *Constant::replaceUndefsWith(Constant *C, Constant *Replacement) {
754   assert(C && Replacement && "Expected non-nullptr constant arguments");
755   Type *Ty = C->getType();
756   if (match(C, m_Undef())) {
757     assert(Ty == Replacement->getType() && "Expected matching types");
758     return Replacement;
759   }
760 
761   // Don't know how to deal with this constant.
762   auto *VTy = dyn_cast<FixedVectorType>(Ty);
763   if (!VTy)
764     return C;
765 
766   unsigned NumElts = VTy->getNumElements();
767   SmallVector<Constant *, 32> NewC(NumElts);
768   for (unsigned i = 0; i != NumElts; ++i) {
769     Constant *EltC = C->getAggregateElement(i);
770     assert((!EltC || EltC->getType() == Replacement->getType()) &&
771            "Expected matching types");
772     NewC[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC;
773   }
774   return ConstantVector::get(NewC);
775 }
776 
777 Constant *Constant::mergeUndefsWith(Constant *C, Constant *Other) {
778   assert(C && Other && "Expected non-nullptr constant arguments");
779   if (match(C, m_Undef()))
780     return C;
781 
782   Type *Ty = C->getType();
783   if (match(Other, m_Undef()))
784     return UndefValue::get(Ty);
785 
786   auto *VTy = dyn_cast<FixedVectorType>(Ty);
787   if (!VTy)
788     return C;
789 
790   Type *EltTy = VTy->getElementType();
791   unsigned NumElts = VTy->getNumElements();
792   assert(isa<FixedVectorType>(Other->getType()) &&
793          cast<FixedVectorType>(Other->getType())->getNumElements() == NumElts &&
794          "Type mismatch");
795 
796   bool FoundExtraUndef = false;
797   SmallVector<Constant *, 32> NewC(NumElts);
798   for (unsigned I = 0; I != NumElts; ++I) {
799     NewC[I] = C->getAggregateElement(I);
800     Constant *OtherEltC = Other->getAggregateElement(I);
801     assert(NewC[I] && OtherEltC && "Unknown vector element");
802     if (!match(NewC[I], m_Undef()) && match(OtherEltC, m_Undef())) {
803       NewC[I] = UndefValue::get(EltTy);
804       FoundExtraUndef = true;
805     }
806   }
807   if (FoundExtraUndef)
808     return ConstantVector::get(NewC);
809   return C;
810 }
811 
812 bool Constant::isManifestConstant() const {
813   if (isa<ConstantData>(this))
814     return true;
815   if (isa<ConstantAggregate>(this) || isa<ConstantExpr>(this)) {
816     for (const Value *Op : operand_values())
817       if (!cast<Constant>(Op)->isManifestConstant())
818         return false;
819     return true;
820   }
821   return false;
822 }
823 
824 //===----------------------------------------------------------------------===//
825 //                                ConstantInt
826 //===----------------------------------------------------------------------===//
827 
828 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V)
829     : ConstantData(Ty, ConstantIntVal), Val(V) {
830   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
831 }
832 
833 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
834   LLVMContextImpl *pImpl = Context.pImpl;
835   if (!pImpl->TheTrueVal)
836     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
837   return pImpl->TheTrueVal;
838 }
839 
840 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
841   LLVMContextImpl *pImpl = Context.pImpl;
842   if (!pImpl->TheFalseVal)
843     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
844   return pImpl->TheFalseVal;
845 }
846 
847 ConstantInt *ConstantInt::getBool(LLVMContext &Context, bool V) {
848   return V ? getTrue(Context) : getFalse(Context);
849 }
850 
851 Constant *ConstantInt::getTrue(Type *Ty) {
852   assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
853   ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext());
854   if (auto *VTy = dyn_cast<VectorType>(Ty))
855     return ConstantVector::getSplat(VTy->getElementCount(), TrueC);
856   return TrueC;
857 }
858 
859 Constant *ConstantInt::getFalse(Type *Ty) {
860   assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
861   ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext());
862   if (auto *VTy = dyn_cast<VectorType>(Ty))
863     return ConstantVector::getSplat(VTy->getElementCount(), FalseC);
864   return FalseC;
865 }
866 
867 Constant *ConstantInt::getBool(Type *Ty, bool V) {
868   return V ? getTrue(Ty) : getFalse(Ty);
869 }
870 
871 // Get a ConstantInt from an APInt.
872 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
873   // get an existing value or the insertion position
874   LLVMContextImpl *pImpl = Context.pImpl;
875   std::unique_ptr<ConstantInt> &Slot =
876       V.isZero()  ? pImpl->IntZeroConstants[V.getBitWidth()]
877       : V.isOne() ? pImpl->IntOneConstants[V.getBitWidth()]
878                   : pImpl->IntConstants[V];
879   if (!Slot) {
880     // Get the corresponding integer type for the bit width of the value.
881     IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
882     Slot.reset(new ConstantInt(ITy, V));
883   }
884   assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
885   return Slot.get();
886 }
887 
888 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
889   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
890 
891   // For vectors, broadcast the value.
892   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
893     return ConstantVector::getSplat(VTy->getElementCount(), C);
894 
895   return C;
896 }
897 
898 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) {
899   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
900 }
901 
902 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
903   ConstantInt *C = get(Ty->getContext(), V);
904   assert(C->getType() == Ty->getScalarType() &&
905          "ConstantInt type doesn't match the type implied by its value!");
906 
907   // For vectors, broadcast the value.
908   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
909     return ConstantVector::getSplat(VTy->getElementCount(), C);
910 
911   return C;
912 }
913 
914 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) {
915   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
916 }
917 
918 /// Remove the constant from the constant table.
919 void ConstantInt::destroyConstantImpl() {
920   llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
921 }
922 
923 //===----------------------------------------------------------------------===//
924 //                                ConstantFP
925 //===----------------------------------------------------------------------===//
926 
927 Constant *ConstantFP::get(Type *Ty, double V) {
928   LLVMContext &Context = Ty->getContext();
929 
930   APFloat FV(V);
931   bool ignored;
932   FV.convert(Ty->getScalarType()->getFltSemantics(),
933              APFloat::rmNearestTiesToEven, &ignored);
934   Constant *C = get(Context, FV);
935 
936   // For vectors, broadcast the value.
937   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
938     return ConstantVector::getSplat(VTy->getElementCount(), C);
939 
940   return C;
941 }
942 
943 Constant *ConstantFP::get(Type *Ty, const APFloat &V) {
944   ConstantFP *C = get(Ty->getContext(), V);
945   assert(C->getType() == Ty->getScalarType() &&
946          "ConstantFP type doesn't match the type implied by its value!");
947 
948   // For vectors, broadcast the value.
949   if (auto *VTy = dyn_cast<VectorType>(Ty))
950     return ConstantVector::getSplat(VTy->getElementCount(), C);
951 
952   return C;
953 }
954 
955 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
956   LLVMContext &Context = Ty->getContext();
957 
958   APFloat FV(Ty->getScalarType()->getFltSemantics(), Str);
959   Constant *C = get(Context, FV);
960 
961   // For vectors, broadcast the value.
962   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
963     return ConstantVector::getSplat(VTy->getElementCount(), C);
964 
965   return C;
966 }
967 
968 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) {
969   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
970   APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload);
971   Constant *C = get(Ty->getContext(), NaN);
972 
973   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
974     return ConstantVector::getSplat(VTy->getElementCount(), C);
975 
976   return C;
977 }
978 
979 Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) {
980   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
981   APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload);
982   Constant *C = get(Ty->getContext(), NaN);
983 
984   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
985     return ConstantVector::getSplat(VTy->getElementCount(), C);
986 
987   return C;
988 }
989 
990 Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) {
991   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
992   APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload);
993   Constant *C = get(Ty->getContext(), NaN);
994 
995   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
996     return ConstantVector::getSplat(VTy->getElementCount(), C);
997 
998   return C;
999 }
1000 
1001 Constant *ConstantFP::getZero(Type *Ty, bool Negative) {
1002   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1003   APFloat NegZero = APFloat::getZero(Semantics, Negative);
1004   Constant *C = get(Ty->getContext(), NegZero);
1005 
1006   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1007     return ConstantVector::getSplat(VTy->getElementCount(), C);
1008 
1009   return C;
1010 }
1011 
1012 
1013 // ConstantFP accessors.
1014 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
1015   LLVMContextImpl* pImpl = Context.pImpl;
1016 
1017   std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V];
1018 
1019   if (!Slot) {
1020     Type *Ty = Type::getFloatingPointTy(Context, V.getSemantics());
1021     Slot.reset(new ConstantFP(Ty, V));
1022   }
1023 
1024   return Slot.get();
1025 }
1026 
1027 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
1028   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1029   Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
1030 
1031   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1032     return ConstantVector::getSplat(VTy->getElementCount(), C);
1033 
1034   return C;
1035 }
1036 
1037 ConstantFP::ConstantFP(Type *Ty, const APFloat &V)
1038     : ConstantData(Ty, ConstantFPVal), Val(V) {
1039   assert(&V.getSemantics() == &Ty->getFltSemantics() &&
1040          "FP type Mismatch");
1041 }
1042 
1043 bool ConstantFP::isExactlyValue(const APFloat &V) const {
1044   return Val.bitwiseIsEqual(V);
1045 }
1046 
1047 /// Remove the constant from the constant table.
1048 void ConstantFP::destroyConstantImpl() {
1049   llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!");
1050 }
1051 
1052 //===----------------------------------------------------------------------===//
1053 //                   ConstantAggregateZero Implementation
1054 //===----------------------------------------------------------------------===//
1055 
1056 Constant *ConstantAggregateZero::getSequentialElement() const {
1057   if (auto *AT = dyn_cast<ArrayType>(getType()))
1058     return Constant::getNullValue(AT->getElementType());
1059   return Constant::getNullValue(cast<VectorType>(getType())->getElementType());
1060 }
1061 
1062 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
1063   return Constant::getNullValue(getType()->getStructElementType(Elt));
1064 }
1065 
1066 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
1067   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1068     return getSequentialElement();
1069   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1070 }
1071 
1072 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
1073   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1074     return getSequentialElement();
1075   return getStructElement(Idx);
1076 }
1077 
1078 ElementCount ConstantAggregateZero::getElementCount() const {
1079   Type *Ty = getType();
1080   if (auto *AT = dyn_cast<ArrayType>(Ty))
1081     return ElementCount::getFixed(AT->getNumElements());
1082   if (auto *VT = dyn_cast<VectorType>(Ty))
1083     return VT->getElementCount();
1084   return ElementCount::getFixed(Ty->getStructNumElements());
1085 }
1086 
1087 //===----------------------------------------------------------------------===//
1088 //                         UndefValue Implementation
1089 //===----------------------------------------------------------------------===//
1090 
1091 UndefValue *UndefValue::getSequentialElement() const {
1092   if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
1093     return UndefValue::get(ATy->getElementType());
1094   return UndefValue::get(cast<VectorType>(getType())->getElementType());
1095 }
1096 
1097 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
1098   return UndefValue::get(getType()->getStructElementType(Elt));
1099 }
1100 
1101 UndefValue *UndefValue::getElementValue(Constant *C) const {
1102   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1103     return getSequentialElement();
1104   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1105 }
1106 
1107 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
1108   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1109     return getSequentialElement();
1110   return getStructElement(Idx);
1111 }
1112 
1113 unsigned UndefValue::getNumElements() const {
1114   Type *Ty = getType();
1115   if (auto *AT = dyn_cast<ArrayType>(Ty))
1116     return AT->getNumElements();
1117   if (auto *VT = dyn_cast<VectorType>(Ty))
1118     return cast<FixedVectorType>(VT)->getNumElements();
1119   return Ty->getStructNumElements();
1120 }
1121 
1122 //===----------------------------------------------------------------------===//
1123 //                         PoisonValue Implementation
1124 //===----------------------------------------------------------------------===//
1125 
1126 PoisonValue *PoisonValue::getSequentialElement() const {
1127   if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
1128     return PoisonValue::get(ATy->getElementType());
1129   return PoisonValue::get(cast<VectorType>(getType())->getElementType());
1130 }
1131 
1132 PoisonValue *PoisonValue::getStructElement(unsigned Elt) const {
1133   return PoisonValue::get(getType()->getStructElementType(Elt));
1134 }
1135 
1136 PoisonValue *PoisonValue::getElementValue(Constant *C) const {
1137   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1138     return getSequentialElement();
1139   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1140 }
1141 
1142 PoisonValue *PoisonValue::getElementValue(unsigned Idx) const {
1143   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1144     return getSequentialElement();
1145   return getStructElement(Idx);
1146 }
1147 
1148 //===----------------------------------------------------------------------===//
1149 //                            ConstantXXX Classes
1150 //===----------------------------------------------------------------------===//
1151 
1152 template <typename ItTy, typename EltTy>
1153 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
1154   for (; Start != End; ++Start)
1155     if (*Start != Elt)
1156       return false;
1157   return true;
1158 }
1159 
1160 template <typename SequentialTy, typename ElementTy>
1161 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
1162   assert(!V.empty() && "Cannot get empty int sequence.");
1163 
1164   SmallVector<ElementTy, 16> Elts;
1165   for (Constant *C : V)
1166     if (auto *CI = dyn_cast<ConstantInt>(C))
1167       Elts.push_back(CI->getZExtValue());
1168     else
1169       return nullptr;
1170   return SequentialTy::get(V[0]->getContext(), Elts);
1171 }
1172 
1173 template <typename SequentialTy, typename ElementTy>
1174 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
1175   assert(!V.empty() && "Cannot get empty FP sequence.");
1176 
1177   SmallVector<ElementTy, 16> Elts;
1178   for (Constant *C : V)
1179     if (auto *CFP = dyn_cast<ConstantFP>(C))
1180       Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
1181     else
1182       return nullptr;
1183   return SequentialTy::getFP(V[0]->getType(), Elts);
1184 }
1185 
1186 template <typename SequenceTy>
1187 static Constant *getSequenceIfElementsMatch(Constant *C,
1188                                             ArrayRef<Constant *> V) {
1189   // We speculatively build the elements here even if it turns out that there is
1190   // a constantexpr or something else weird, since it is so uncommon for that to
1191   // happen.
1192   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1193     if (CI->getType()->isIntegerTy(8))
1194       return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
1195     else if (CI->getType()->isIntegerTy(16))
1196       return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1197     else if (CI->getType()->isIntegerTy(32))
1198       return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1199     else if (CI->getType()->isIntegerTy(64))
1200       return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1201   } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1202     if (CFP->getType()->isHalfTy() || CFP->getType()->isBFloatTy())
1203       return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1204     else if (CFP->getType()->isFloatTy())
1205       return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1206     else if (CFP->getType()->isDoubleTy())
1207       return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1208   }
1209 
1210   return nullptr;
1211 }
1212 
1213 ConstantAggregate::ConstantAggregate(Type *T, ValueTy VT,
1214                                      ArrayRef<Constant *> V)
1215     : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(),
1216                V.size()) {
1217   llvm::copy(V, op_begin());
1218 
1219   // Check that types match, unless this is an opaque struct.
1220   if (auto *ST = dyn_cast<StructType>(T)) {
1221     if (ST->isOpaque())
1222       return;
1223     for (unsigned I = 0, E = V.size(); I != E; ++I)
1224       assert(V[I]->getType() == ST->getTypeAtIndex(I) &&
1225              "Initializer for struct element doesn't match!");
1226   }
1227 }
1228 
1229 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
1230     : ConstantAggregate(T, ConstantArrayVal, V) {
1231   assert(V.size() == T->getNumElements() &&
1232          "Invalid initializer for constant array");
1233 }
1234 
1235 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
1236   if (Constant *C = getImpl(Ty, V))
1237     return C;
1238   return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
1239 }
1240 
1241 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
1242   // Empty arrays are canonicalized to ConstantAggregateZero.
1243   if (V.empty())
1244     return ConstantAggregateZero::get(Ty);
1245 
1246   for (Constant *C : V) {
1247     assert(C->getType() == Ty->getElementType() &&
1248            "Wrong type in array element initializer");
1249     (void)C;
1250   }
1251 
1252   // If this is an all-zero array, return a ConstantAggregateZero object.  If
1253   // all undef, return an UndefValue, if "all simple", then return a
1254   // ConstantDataArray.
1255   Constant *C = V[0];
1256   if (isa<PoisonValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
1257     return PoisonValue::get(Ty);
1258 
1259   if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
1260     return UndefValue::get(Ty);
1261 
1262   if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
1263     return ConstantAggregateZero::get(Ty);
1264 
1265   // Check to see if all of the elements are ConstantFP or ConstantInt and if
1266   // the element type is compatible with ConstantDataVector.  If so, use it.
1267   if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1268     return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
1269 
1270   // Otherwise, we really do want to create a ConstantArray.
1271   return nullptr;
1272 }
1273 
1274 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
1275                                                ArrayRef<Constant*> V,
1276                                                bool Packed) {
1277   unsigned VecSize = V.size();
1278   SmallVector<Type*, 16> EltTypes(VecSize);
1279   for (unsigned i = 0; i != VecSize; ++i)
1280     EltTypes[i] = V[i]->getType();
1281 
1282   return StructType::get(Context, EltTypes, Packed);
1283 }
1284 
1285 
1286 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
1287                                                bool Packed) {
1288   assert(!V.empty() &&
1289          "ConstantStruct::getTypeForElements cannot be called on empty list");
1290   return getTypeForElements(V[0]->getContext(), V, Packed);
1291 }
1292 
1293 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
1294     : ConstantAggregate(T, ConstantStructVal, V) {
1295   assert((T->isOpaque() || V.size() == T->getNumElements()) &&
1296          "Invalid initializer for constant struct");
1297 }
1298 
1299 // ConstantStruct accessors.
1300 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
1301   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
1302          "Incorrect # elements specified to ConstantStruct::get");
1303 
1304   // Create a ConstantAggregateZero value if all elements are zeros.
1305   bool isZero = true;
1306   bool isUndef = false;
1307   bool isPoison = false;
1308 
1309   if (!V.empty()) {
1310     isUndef = isa<UndefValue>(V[0]);
1311     isPoison = isa<PoisonValue>(V[0]);
1312     isZero = V[0]->isNullValue();
1313     // PoisonValue inherits UndefValue, so its check is not necessary.
1314     if (isUndef || isZero) {
1315       for (Constant *C : V) {
1316         if (!C->isNullValue())
1317           isZero = false;
1318         if (!isa<PoisonValue>(C))
1319           isPoison = false;
1320         if (isa<PoisonValue>(C) || !isa<UndefValue>(C))
1321           isUndef = false;
1322       }
1323     }
1324   }
1325   if (isZero)
1326     return ConstantAggregateZero::get(ST);
1327   if (isPoison)
1328     return PoisonValue::get(ST);
1329   if (isUndef)
1330     return UndefValue::get(ST);
1331 
1332   return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1333 }
1334 
1335 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
1336     : ConstantAggregate(T, ConstantVectorVal, V) {
1337   assert(V.size() == cast<FixedVectorType>(T)->getNumElements() &&
1338          "Invalid initializer for constant vector");
1339 }
1340 
1341 // ConstantVector accessors.
1342 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
1343   if (Constant *C = getImpl(V))
1344     return C;
1345   auto *Ty = FixedVectorType::get(V.front()->getType(), V.size());
1346   return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1347 }
1348 
1349 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1350   assert(!V.empty() && "Vectors can't be empty");
1351   auto *T = FixedVectorType::get(V.front()->getType(), V.size());
1352 
1353   // If this is an all-undef or all-zero vector, return a
1354   // ConstantAggregateZero or UndefValue.
1355   Constant *C = V[0];
1356   bool isZero = C->isNullValue();
1357   bool isUndef = isa<UndefValue>(C);
1358   bool isPoison = isa<PoisonValue>(C);
1359 
1360   if (isZero || isUndef) {
1361     for (unsigned i = 1, e = V.size(); i != e; ++i)
1362       if (V[i] != C) {
1363         isZero = isUndef = isPoison = false;
1364         break;
1365       }
1366   }
1367 
1368   if (isZero)
1369     return ConstantAggregateZero::get(T);
1370   if (isPoison)
1371     return PoisonValue::get(T);
1372   if (isUndef)
1373     return UndefValue::get(T);
1374 
1375   // Check to see if all of the elements are ConstantFP or ConstantInt and if
1376   // the element type is compatible with ConstantDataVector.  If so, use it.
1377   if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1378     return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
1379 
1380   // Otherwise, the element type isn't compatible with ConstantDataVector, or
1381   // the operand list contains a ConstantExpr or something else strange.
1382   return nullptr;
1383 }
1384 
1385 Constant *ConstantVector::getSplat(ElementCount EC, Constant *V) {
1386   if (!EC.isScalable()) {
1387     // If this splat is compatible with ConstantDataVector, use it instead of
1388     // ConstantVector.
1389     if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1390         ConstantDataSequential::isElementTypeCompatible(V->getType()))
1391       return ConstantDataVector::getSplat(EC.getKnownMinValue(), V);
1392 
1393     SmallVector<Constant *, 32> Elts(EC.getKnownMinValue(), V);
1394     return get(Elts);
1395   }
1396 
1397   Type *VTy = VectorType::get(V->getType(), EC);
1398 
1399   if (V->isNullValue())
1400     return ConstantAggregateZero::get(VTy);
1401   else if (isa<UndefValue>(V))
1402     return UndefValue::get(VTy);
1403 
1404   Type *IdxTy = Type::getInt64Ty(VTy->getContext());
1405 
1406   // Move scalar into vector.
1407   Constant *PoisonV = PoisonValue::get(VTy);
1408   V = ConstantExpr::getInsertElement(PoisonV, V, ConstantInt::get(IdxTy, 0));
1409   // Build shuffle mask to perform the splat.
1410   SmallVector<int, 8> Zeros(EC.getKnownMinValue(), 0);
1411   // Splat.
1412   return ConstantExpr::getShuffleVector(V, PoisonV, Zeros);
1413 }
1414 
1415 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
1416   LLVMContextImpl *pImpl = Context.pImpl;
1417   if (!pImpl->TheNoneToken)
1418     pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
1419   return pImpl->TheNoneToken.get();
1420 }
1421 
1422 /// Remove the constant from the constant table.
1423 void ConstantTokenNone::destroyConstantImpl() {
1424   llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
1425 }
1426 
1427 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1428 // can't be inline because we don't want to #include Instruction.h into
1429 // Constant.h
1430 bool ConstantExpr::isCast() const {
1431   return Instruction::isCast(getOpcode());
1432 }
1433 
1434 bool ConstantExpr::isCompare() const {
1435   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1436 }
1437 
1438 unsigned ConstantExpr::getPredicate() const {
1439   return cast<CompareConstantExpr>(this)->predicate;
1440 }
1441 
1442 ArrayRef<int> ConstantExpr::getShuffleMask() const {
1443   return cast<ShuffleVectorConstantExpr>(this)->ShuffleMask;
1444 }
1445 
1446 Constant *ConstantExpr::getShuffleMaskForBitcode() const {
1447   return cast<ShuffleVectorConstantExpr>(this)->ShuffleMaskForBitcode;
1448 }
1449 
1450 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1451                                         bool OnlyIfReduced, Type *SrcTy) const {
1452   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1453 
1454   // If no operands changed return self.
1455   if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1456     return const_cast<ConstantExpr*>(this);
1457 
1458   Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1459   switch (getOpcode()) {
1460   case Instruction::Trunc:
1461   case Instruction::ZExt:
1462   case Instruction::SExt:
1463   case Instruction::FPTrunc:
1464   case Instruction::FPExt:
1465   case Instruction::UIToFP:
1466   case Instruction::SIToFP:
1467   case Instruction::FPToUI:
1468   case Instruction::FPToSI:
1469   case Instruction::PtrToInt:
1470   case Instruction::IntToPtr:
1471   case Instruction::BitCast:
1472   case Instruction::AddrSpaceCast:
1473     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1474   case Instruction::InsertElement:
1475     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1476                                           OnlyIfReducedTy);
1477   case Instruction::ExtractElement:
1478     return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1479   case Instruction::ShuffleVector:
1480     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], getShuffleMask(),
1481                                           OnlyIfReducedTy);
1482   case Instruction::GetElementPtr: {
1483     auto *GEPO = cast<GEPOperator>(this);
1484     assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
1485     return ConstantExpr::getGetElementPtr(
1486         SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
1487         GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy);
1488   }
1489   case Instruction::ICmp:
1490   case Instruction::FCmp:
1491     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1492                                     OnlyIfReducedTy);
1493   default:
1494     assert(getNumOperands() == 2 && "Must be binary operator?");
1495     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1496                              OnlyIfReducedTy);
1497   }
1498 }
1499 
1500 
1501 //===----------------------------------------------------------------------===//
1502 //                      isValueValidForType implementations
1503 
1504 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1505   unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1506   if (Ty->isIntegerTy(1))
1507     return Val == 0 || Val == 1;
1508   return isUIntN(NumBits, Val);
1509 }
1510 
1511 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1512   unsigned NumBits = Ty->getIntegerBitWidth();
1513   if (Ty->isIntegerTy(1))
1514     return Val == 0 || Val == 1 || Val == -1;
1515   return isIntN(NumBits, Val);
1516 }
1517 
1518 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1519   // convert modifies in place, so make a copy.
1520   APFloat Val2 = APFloat(Val);
1521   bool losesInfo;
1522   switch (Ty->getTypeID()) {
1523   default:
1524     return false;         // These can't be represented as floating point!
1525 
1526   // FIXME rounding mode needs to be more flexible
1527   case Type::HalfTyID: {
1528     if (&Val2.getSemantics() == &APFloat::IEEEhalf())
1529       return true;
1530     Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo);
1531     return !losesInfo;
1532   }
1533   case Type::BFloatTyID: {
1534     if (&Val2.getSemantics() == &APFloat::BFloat())
1535       return true;
1536     Val2.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, &losesInfo);
1537     return !losesInfo;
1538   }
1539   case Type::FloatTyID: {
1540     if (&Val2.getSemantics() == &APFloat::IEEEsingle())
1541       return true;
1542     Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo);
1543     return !losesInfo;
1544   }
1545   case Type::DoubleTyID: {
1546     if (&Val2.getSemantics() == &APFloat::IEEEhalf() ||
1547         &Val2.getSemantics() == &APFloat::BFloat() ||
1548         &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1549         &Val2.getSemantics() == &APFloat::IEEEdouble())
1550       return true;
1551     Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo);
1552     return !losesInfo;
1553   }
1554   case Type::X86_FP80TyID:
1555     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1556            &Val2.getSemantics() == &APFloat::BFloat() ||
1557            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1558            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1559            &Val2.getSemantics() == &APFloat::x87DoubleExtended();
1560   case Type::FP128TyID:
1561     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1562            &Val2.getSemantics() == &APFloat::BFloat() ||
1563            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1564            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1565            &Val2.getSemantics() == &APFloat::IEEEquad();
1566   case Type::PPC_FP128TyID:
1567     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1568            &Val2.getSemantics() == &APFloat::BFloat() ||
1569            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1570            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1571            &Val2.getSemantics() == &APFloat::PPCDoubleDouble();
1572   }
1573 }
1574 
1575 
1576 //===----------------------------------------------------------------------===//
1577 //                      Factory Function Implementation
1578 
1579 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1580   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1581          "Cannot create an aggregate zero of non-aggregate type!");
1582 
1583   std::unique_ptr<ConstantAggregateZero> &Entry =
1584       Ty->getContext().pImpl->CAZConstants[Ty];
1585   if (!Entry)
1586     Entry.reset(new ConstantAggregateZero(Ty));
1587 
1588   return Entry.get();
1589 }
1590 
1591 /// Remove the constant from the constant table.
1592 void ConstantAggregateZero::destroyConstantImpl() {
1593   getContext().pImpl->CAZConstants.erase(getType());
1594 }
1595 
1596 /// Remove the constant from the constant table.
1597 void ConstantArray::destroyConstantImpl() {
1598   getType()->getContext().pImpl->ArrayConstants.remove(this);
1599 }
1600 
1601 
1602 //---- ConstantStruct::get() implementation...
1603 //
1604 
1605 /// Remove the constant from the constant table.
1606 void ConstantStruct::destroyConstantImpl() {
1607   getType()->getContext().pImpl->StructConstants.remove(this);
1608 }
1609 
1610 /// Remove the constant from the constant table.
1611 void ConstantVector::destroyConstantImpl() {
1612   getType()->getContext().pImpl->VectorConstants.remove(this);
1613 }
1614 
1615 Constant *Constant::getSplatValue(bool AllowUndefs) const {
1616   assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1617   if (isa<ConstantAggregateZero>(this))
1618     return getNullValue(cast<VectorType>(getType())->getElementType());
1619   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1620     return CV->getSplatValue();
1621   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1622     return CV->getSplatValue(AllowUndefs);
1623 
1624   // Check if this is a constant expression splat of the form returned by
1625   // ConstantVector::getSplat()
1626   const auto *Shuf = dyn_cast<ConstantExpr>(this);
1627   if (Shuf && Shuf->getOpcode() == Instruction::ShuffleVector &&
1628       isa<UndefValue>(Shuf->getOperand(1))) {
1629 
1630     const auto *IElt = dyn_cast<ConstantExpr>(Shuf->getOperand(0));
1631     if (IElt && IElt->getOpcode() == Instruction::InsertElement &&
1632         isa<UndefValue>(IElt->getOperand(0))) {
1633 
1634       ArrayRef<int> Mask = Shuf->getShuffleMask();
1635       Constant *SplatVal = IElt->getOperand(1);
1636       ConstantInt *Index = dyn_cast<ConstantInt>(IElt->getOperand(2));
1637 
1638       if (Index && Index->getValue() == 0 &&
1639           llvm::all_of(Mask, [](int I) { return I == 0; }))
1640         return SplatVal;
1641     }
1642   }
1643 
1644   return nullptr;
1645 }
1646 
1647 Constant *ConstantVector::getSplatValue(bool AllowUndefs) const {
1648   // Check out first element.
1649   Constant *Elt = getOperand(0);
1650   // Then make sure all remaining elements point to the same value.
1651   for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
1652     Constant *OpC = getOperand(I);
1653     if (OpC == Elt)
1654       continue;
1655 
1656     // Strict mode: any mismatch is not a splat.
1657     if (!AllowUndefs)
1658       return nullptr;
1659 
1660     // Allow undefs mode: ignore undefined elements.
1661     if (isa<UndefValue>(OpC))
1662       continue;
1663 
1664     // If we do not have a defined element yet, use the current operand.
1665     if (isa<UndefValue>(Elt))
1666       Elt = OpC;
1667 
1668     if (OpC != Elt)
1669       return nullptr;
1670   }
1671   return Elt;
1672 }
1673 
1674 const APInt &Constant::getUniqueInteger() const {
1675   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1676     return CI->getValue();
1677   // Scalable vectors can use a ConstantExpr to build a splat.
1678   if (isa<ConstantExpr>(this))
1679     return cast<ConstantInt>(this->getSplatValue())->getValue();
1680   // For non-ConstantExpr we use getAggregateElement as a fast path to avoid
1681   // calling getSplatValue in release builds.
1682   assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1683   const Constant *C = this->getAggregateElement(0U);
1684   assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1685   return cast<ConstantInt>(C)->getValue();
1686 }
1687 
1688 //---- ConstantPointerNull::get() implementation.
1689 //
1690 
1691 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1692   std::unique_ptr<ConstantPointerNull> &Entry =
1693       Ty->getContext().pImpl->CPNConstants[Ty];
1694   if (!Entry)
1695     Entry.reset(new ConstantPointerNull(Ty));
1696 
1697   return Entry.get();
1698 }
1699 
1700 /// Remove the constant from the constant table.
1701 void ConstantPointerNull::destroyConstantImpl() {
1702   getContext().pImpl->CPNConstants.erase(getType());
1703 }
1704 
1705 //---- ConstantTargetNone::get() implementation.
1706 //
1707 
1708 ConstantTargetNone *ConstantTargetNone::get(TargetExtType *Ty) {
1709   assert(Ty->hasProperty(TargetExtType::HasZeroInit) &&
1710          "Target extension type not allowed to have a zeroinitializer");
1711   std::unique_ptr<ConstantTargetNone> &Entry =
1712       Ty->getContext().pImpl->CTNConstants[Ty];
1713   if (!Entry)
1714     Entry.reset(new ConstantTargetNone(Ty));
1715 
1716   return Entry.get();
1717 }
1718 
1719 /// Remove the constant from the constant table.
1720 void ConstantTargetNone::destroyConstantImpl() {
1721   getContext().pImpl->CTNConstants.erase(getType());
1722 }
1723 
1724 UndefValue *UndefValue::get(Type *Ty) {
1725   std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty];
1726   if (!Entry)
1727     Entry.reset(new UndefValue(Ty));
1728 
1729   return Entry.get();
1730 }
1731 
1732 /// Remove the constant from the constant table.
1733 void UndefValue::destroyConstantImpl() {
1734   // Free the constant and any dangling references to it.
1735   if (getValueID() == UndefValueVal) {
1736     getContext().pImpl->UVConstants.erase(getType());
1737   } else if (getValueID() == PoisonValueVal) {
1738     getContext().pImpl->PVConstants.erase(getType());
1739   }
1740   llvm_unreachable("Not a undef or a poison!");
1741 }
1742 
1743 PoisonValue *PoisonValue::get(Type *Ty) {
1744   std::unique_ptr<PoisonValue> &Entry = Ty->getContext().pImpl->PVConstants[Ty];
1745   if (!Entry)
1746     Entry.reset(new PoisonValue(Ty));
1747 
1748   return Entry.get();
1749 }
1750 
1751 /// Remove the constant from the constant table.
1752 void PoisonValue::destroyConstantImpl() {
1753   // Free the constant and any dangling references to it.
1754   getContext().pImpl->PVConstants.erase(getType());
1755 }
1756 
1757 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1758   assert(BB->getParent() && "Block must have a parent");
1759   return get(BB->getParent(), BB);
1760 }
1761 
1762 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1763   BlockAddress *&BA =
1764     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1765   if (!BA)
1766     BA = new BlockAddress(F, BB);
1767 
1768   assert(BA->getFunction() == F && "Basic block moved between functions");
1769   return BA;
1770 }
1771 
1772 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1773     : Constant(PointerType::get(F->getContext(), F->getAddressSpace()),
1774                Value::BlockAddressVal, &Op<0>(), 2) {
1775   setOperand(0, F);
1776   setOperand(1, BB);
1777   BB->AdjustBlockAddressRefCount(1);
1778 }
1779 
1780 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1781   if (!BB->hasAddressTaken())
1782     return nullptr;
1783 
1784   const Function *F = BB->getParent();
1785   assert(F && "Block must have a parent");
1786   BlockAddress *BA =
1787       F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1788   assert(BA && "Refcount and block address map disagree!");
1789   return BA;
1790 }
1791 
1792 /// Remove the constant from the constant table.
1793 void BlockAddress::destroyConstantImpl() {
1794   getFunction()->getType()->getContext().pImpl
1795     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1796   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1797 }
1798 
1799 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) {
1800   // This could be replacing either the Basic Block or the Function.  In either
1801   // case, we have to remove the map entry.
1802   Function *NewF = getFunction();
1803   BasicBlock *NewBB = getBasicBlock();
1804 
1805   if (From == NewF)
1806     NewF = cast<Function>(To->stripPointerCasts());
1807   else {
1808     assert(From == NewBB && "From does not match any operand");
1809     NewBB = cast<BasicBlock>(To);
1810   }
1811 
1812   // See if the 'new' entry already exists, if not, just update this in place
1813   // and return early.
1814   BlockAddress *&NewBA =
1815     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1816   if (NewBA)
1817     return NewBA;
1818 
1819   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1820 
1821   // Remove the old entry, this can't cause the map to rehash (just a
1822   // tombstone will get added).
1823   getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1824                                                           getBasicBlock()));
1825   NewBA = this;
1826   setOperand(0, NewF);
1827   setOperand(1, NewBB);
1828   getBasicBlock()->AdjustBlockAddressRefCount(1);
1829 
1830   // If we just want to keep the existing value, then return null.
1831   // Callers know that this means we shouldn't delete this value.
1832   return nullptr;
1833 }
1834 
1835 DSOLocalEquivalent *DSOLocalEquivalent::get(GlobalValue *GV) {
1836   DSOLocalEquivalent *&Equiv = GV->getContext().pImpl->DSOLocalEquivalents[GV];
1837   if (!Equiv)
1838     Equiv = new DSOLocalEquivalent(GV);
1839 
1840   assert(Equiv->getGlobalValue() == GV &&
1841          "DSOLocalFunction does not match the expected global value");
1842   return Equiv;
1843 }
1844 
1845 DSOLocalEquivalent::DSOLocalEquivalent(GlobalValue *GV)
1846     : Constant(GV->getType(), Value::DSOLocalEquivalentVal, &Op<0>(), 1) {
1847   setOperand(0, GV);
1848 }
1849 
1850 /// Remove the constant from the constant table.
1851 void DSOLocalEquivalent::destroyConstantImpl() {
1852   const GlobalValue *GV = getGlobalValue();
1853   GV->getContext().pImpl->DSOLocalEquivalents.erase(GV);
1854 }
1855 
1856 Value *DSOLocalEquivalent::handleOperandChangeImpl(Value *From, Value *To) {
1857   assert(From == getGlobalValue() && "Changing value does not match operand.");
1858   assert(isa<Constant>(To) && "Can only replace the operands with a constant");
1859 
1860   // The replacement is with another global value.
1861   if (const auto *ToObj = dyn_cast<GlobalValue>(To)) {
1862     DSOLocalEquivalent *&NewEquiv =
1863         getContext().pImpl->DSOLocalEquivalents[ToObj];
1864     if (NewEquiv)
1865       return llvm::ConstantExpr::getBitCast(NewEquiv, getType());
1866   }
1867 
1868   // If the argument is replaced with a null value, just replace this constant
1869   // with a null value.
1870   if (cast<Constant>(To)->isNullValue())
1871     return To;
1872 
1873   // The replacement could be a bitcast or an alias to another function. We can
1874   // replace it with a bitcast to the dso_local_equivalent of that function.
1875   auto *Func = cast<Function>(To->stripPointerCastsAndAliases());
1876   DSOLocalEquivalent *&NewEquiv = getContext().pImpl->DSOLocalEquivalents[Func];
1877   if (NewEquiv)
1878     return llvm::ConstantExpr::getBitCast(NewEquiv, getType());
1879 
1880   // Replace this with the new one.
1881   getContext().pImpl->DSOLocalEquivalents.erase(getGlobalValue());
1882   NewEquiv = this;
1883   setOperand(0, Func);
1884 
1885   if (Func->getType() != getType()) {
1886     // It is ok to mutate the type here because this constant should always
1887     // reflect the type of the function it's holding.
1888     mutateType(Func->getType());
1889   }
1890   return nullptr;
1891 }
1892 
1893 NoCFIValue *NoCFIValue::get(GlobalValue *GV) {
1894   NoCFIValue *&NC = GV->getContext().pImpl->NoCFIValues[GV];
1895   if (!NC)
1896     NC = new NoCFIValue(GV);
1897 
1898   assert(NC->getGlobalValue() == GV &&
1899          "NoCFIValue does not match the expected global value");
1900   return NC;
1901 }
1902 
1903 NoCFIValue::NoCFIValue(GlobalValue *GV)
1904     : Constant(GV->getType(), Value::NoCFIValueVal, &Op<0>(), 1) {
1905   setOperand(0, GV);
1906 }
1907 
1908 /// Remove the constant from the constant table.
1909 void NoCFIValue::destroyConstantImpl() {
1910   const GlobalValue *GV = getGlobalValue();
1911   GV->getContext().pImpl->NoCFIValues.erase(GV);
1912 }
1913 
1914 Value *NoCFIValue::handleOperandChangeImpl(Value *From, Value *To) {
1915   assert(From == getGlobalValue() && "Changing value does not match operand.");
1916 
1917   GlobalValue *GV = dyn_cast<GlobalValue>(To->stripPointerCasts());
1918   assert(GV && "Can only replace the operands with a global value");
1919 
1920   NoCFIValue *&NewNC = getContext().pImpl->NoCFIValues[GV];
1921   if (NewNC)
1922     return llvm::ConstantExpr::getBitCast(NewNC, getType());
1923 
1924   getContext().pImpl->NoCFIValues.erase(getGlobalValue());
1925   NewNC = this;
1926   setOperand(0, GV);
1927 
1928   if (GV->getType() != getType())
1929     mutateType(GV->getType());
1930 
1931   return nullptr;
1932 }
1933 
1934 //---- ConstantExpr::get() implementations.
1935 //
1936 
1937 /// This is a utility function to handle folding of casts and lookup of the
1938 /// cast in the ExprConstants map. It is used by the various get* methods below.
1939 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1940                                bool OnlyIfReduced = false) {
1941   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1942   // Fold a few common cases
1943   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1944     return FC;
1945 
1946   if (OnlyIfReduced)
1947     return nullptr;
1948 
1949   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1950 
1951   // Look up the constant in the table first to ensure uniqueness.
1952   ConstantExprKeyType Key(opc, C);
1953 
1954   return pImpl->ExprConstants.getOrCreate(Ty, Key);
1955 }
1956 
1957 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
1958                                 bool OnlyIfReduced) {
1959   Instruction::CastOps opc = Instruction::CastOps(oc);
1960   assert(Instruction::isCast(opc) && "opcode out of range");
1961   assert(isSupportedCastOp(opc) &&
1962          "Cast opcode not supported as constant expression");
1963   assert(C && Ty && "Null arguments to getCast");
1964   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1965 
1966   switch (opc) {
1967   default:
1968     llvm_unreachable("Invalid cast opcode");
1969   case Instruction::Trunc:
1970     return getTrunc(C, Ty, OnlyIfReduced);
1971   case Instruction::PtrToInt:
1972     return getPtrToInt(C, Ty, OnlyIfReduced);
1973   case Instruction::IntToPtr:
1974     return getIntToPtr(C, Ty, OnlyIfReduced);
1975   case Instruction::BitCast:
1976     return getBitCast(C, Ty, OnlyIfReduced);
1977   case Instruction::AddrSpaceCast:
1978     return getAddrSpaceCast(C, Ty, OnlyIfReduced);
1979   }
1980 }
1981 
1982 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1983   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1984     return getBitCast(C, Ty);
1985   return getTrunc(C, Ty);
1986 }
1987 
1988 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1989   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1990   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1991           "Invalid cast");
1992 
1993   if (Ty->isIntOrIntVectorTy())
1994     return getPtrToInt(S, Ty);
1995 
1996   unsigned SrcAS = S->getType()->getPointerAddressSpace();
1997   if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1998     return getAddrSpaceCast(S, Ty);
1999 
2000   return getBitCast(S, Ty);
2001 }
2002 
2003 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
2004                                                          Type *Ty) {
2005   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2006   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2007 
2008   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2009     return getAddrSpaceCast(S, Ty);
2010 
2011   return getBitCast(S, Ty);
2012 }
2013 
2014 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
2015 #ifndef NDEBUG
2016   bool fromVec = isa<VectorType>(C->getType());
2017   bool toVec = isa<VectorType>(Ty);
2018 #endif
2019   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2020   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
2021   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
2022   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
2023          "SrcTy must be larger than DestTy for Trunc!");
2024 
2025   return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
2026 }
2027 
2028 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
2029                                     bool OnlyIfReduced) {
2030   assert(C->getType()->isPtrOrPtrVectorTy() &&
2031          "PtrToInt source must be pointer or pointer vector");
2032   assert(DstTy->isIntOrIntVectorTy() &&
2033          "PtrToInt destination must be integer or integer vector");
2034   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
2035   if (isa<VectorType>(C->getType()))
2036     assert(cast<VectorType>(C->getType())->getElementCount() ==
2037                cast<VectorType>(DstTy)->getElementCount() &&
2038            "Invalid cast between a different number of vector elements");
2039   return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
2040 }
2041 
2042 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
2043                                     bool OnlyIfReduced) {
2044   assert(C->getType()->isIntOrIntVectorTy() &&
2045          "IntToPtr source must be integer or integer vector");
2046   assert(DstTy->isPtrOrPtrVectorTy() &&
2047          "IntToPtr destination must be a pointer or pointer vector");
2048   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
2049   if (isa<VectorType>(C->getType()))
2050     assert(cast<VectorType>(C->getType())->getElementCount() ==
2051                cast<VectorType>(DstTy)->getElementCount() &&
2052            "Invalid cast between a different number of vector elements");
2053   return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
2054 }
2055 
2056 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
2057                                    bool OnlyIfReduced) {
2058   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
2059          "Invalid constantexpr bitcast!");
2060 
2061   // It is common to ask for a bitcast of a value to its own type, handle this
2062   // speedily.
2063   if (C->getType() == DstTy) return C;
2064 
2065   return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
2066 }
2067 
2068 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
2069                                          bool OnlyIfReduced) {
2070   assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
2071          "Invalid constantexpr addrspacecast!");
2072   return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
2073 }
2074 
2075 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
2076                             unsigned Flags, Type *OnlyIfReducedTy) {
2077   // Check the operands for consistency first.
2078   assert(Instruction::isBinaryOp(Opcode) &&
2079          "Invalid opcode in binary constant expression");
2080   assert(isSupportedBinOp(Opcode) &&
2081          "Binop not supported as constant expression");
2082   assert(C1->getType() == C2->getType() &&
2083          "Operand types in binary constant expression should match");
2084 
2085 #ifndef NDEBUG
2086   switch (Opcode) {
2087   case Instruction::Add:
2088   case Instruction::Sub:
2089   case Instruction::Mul:
2090     assert(C1->getType()->isIntOrIntVectorTy() &&
2091            "Tried to create an integer operation on a non-integer type!");
2092     break;
2093   case Instruction::And:
2094   case Instruction::Or:
2095   case Instruction::Xor:
2096     assert(C1->getType()->isIntOrIntVectorTy() &&
2097            "Tried to create a logical operation on a non-integral type!");
2098     break;
2099   case Instruction::Shl:
2100   case Instruction::LShr:
2101   case Instruction::AShr:
2102     assert(C1->getType()->isIntOrIntVectorTy() &&
2103            "Tried to create a shift operation on a non-integer type!");
2104     break;
2105   default:
2106     break;
2107   }
2108 #endif
2109 
2110   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
2111     return FC;
2112 
2113   if (OnlyIfReducedTy == C1->getType())
2114     return nullptr;
2115 
2116   Constant *ArgVec[] = { C1, C2 };
2117   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
2118 
2119   LLVMContextImpl *pImpl = C1->getContext().pImpl;
2120   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
2121 }
2122 
2123 bool ConstantExpr::isDesirableBinOp(unsigned Opcode) {
2124   switch (Opcode) {
2125   case Instruction::UDiv:
2126   case Instruction::SDiv:
2127   case Instruction::URem:
2128   case Instruction::SRem:
2129   case Instruction::FAdd:
2130   case Instruction::FSub:
2131   case Instruction::FMul:
2132   case Instruction::FDiv:
2133   case Instruction::FRem:
2134   case Instruction::And:
2135   case Instruction::Or:
2136   case Instruction::LShr:
2137   case Instruction::AShr:
2138     return false;
2139   case Instruction::Add:
2140   case Instruction::Sub:
2141   case Instruction::Mul:
2142   case Instruction::Shl:
2143   case Instruction::Xor:
2144     return true;
2145   default:
2146     llvm_unreachable("Argument must be binop opcode");
2147   }
2148 }
2149 
2150 bool ConstantExpr::isSupportedBinOp(unsigned Opcode) {
2151   switch (Opcode) {
2152   case Instruction::UDiv:
2153   case Instruction::SDiv:
2154   case Instruction::URem:
2155   case Instruction::SRem:
2156   case Instruction::FAdd:
2157   case Instruction::FSub:
2158   case Instruction::FMul:
2159   case Instruction::FDiv:
2160   case Instruction::FRem:
2161   case Instruction::And:
2162   case Instruction::Or:
2163   case Instruction::LShr:
2164   case Instruction::AShr:
2165     return false;
2166   case Instruction::Add:
2167   case Instruction::Sub:
2168   case Instruction::Mul:
2169   case Instruction::Shl:
2170   case Instruction::Xor:
2171     return true;
2172   default:
2173     llvm_unreachable("Argument must be binop opcode");
2174   }
2175 }
2176 
2177 bool ConstantExpr::isDesirableCastOp(unsigned Opcode) {
2178   switch (Opcode) {
2179   case Instruction::ZExt:
2180   case Instruction::SExt:
2181   case Instruction::FPTrunc:
2182   case Instruction::FPExt:
2183   case Instruction::UIToFP:
2184   case Instruction::SIToFP:
2185   case Instruction::FPToUI:
2186   case Instruction::FPToSI:
2187     return false;
2188   case Instruction::Trunc:
2189   case Instruction::PtrToInt:
2190   case Instruction::IntToPtr:
2191   case Instruction::BitCast:
2192   case Instruction::AddrSpaceCast:
2193     return true;
2194   default:
2195     llvm_unreachable("Argument must be cast opcode");
2196   }
2197 }
2198 
2199 bool ConstantExpr::isSupportedCastOp(unsigned Opcode) {
2200   switch (Opcode) {
2201   case Instruction::ZExt:
2202   case Instruction::SExt:
2203   case Instruction::FPTrunc:
2204   case Instruction::FPExt:
2205   case Instruction::UIToFP:
2206   case Instruction::SIToFP:
2207   case Instruction::FPToUI:
2208   case Instruction::FPToSI:
2209     return false;
2210   case Instruction::Trunc:
2211   case Instruction::PtrToInt:
2212   case Instruction::IntToPtr:
2213   case Instruction::BitCast:
2214   case Instruction::AddrSpaceCast:
2215     return true;
2216   default:
2217     llvm_unreachable("Argument must be cast opcode");
2218   }
2219 }
2220 
2221 Constant *ConstantExpr::getSizeOf(Type* Ty) {
2222   // sizeof is implemented as: (i64) gep (Ty*)null, 1
2223   // Note that a non-inbounds gep is used, as null isn't within any object.
2224   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
2225   Constant *GEP = getGetElementPtr(
2226       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
2227   return getPtrToInt(GEP,
2228                      Type::getInt64Ty(Ty->getContext()));
2229 }
2230 
2231 Constant *ConstantExpr::getAlignOf(Type* Ty) {
2232   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
2233   // Note that a non-inbounds gep is used, as null isn't within any object.
2234   Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty);
2235   Constant *NullPtr = Constant::getNullValue(PointerType::getUnqual(AligningTy->getContext()));
2236   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
2237   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
2238   Constant *Indices[2] = { Zero, One };
2239   Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
2240   return getPtrToInt(GEP,
2241                      Type::getInt64Ty(Ty->getContext()));
2242 }
2243 
2244 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
2245                                    Constant *C2, bool OnlyIfReduced) {
2246   assert(C1->getType() == C2->getType() && "Op types should be identical!");
2247 
2248   switch (Predicate) {
2249   default: llvm_unreachable("Invalid CmpInst predicate");
2250   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
2251   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
2252   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
2253   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
2254   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
2255   case CmpInst::FCMP_TRUE:
2256     return getFCmp(Predicate, C1, C2, OnlyIfReduced);
2257 
2258   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
2259   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
2260   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
2261   case CmpInst::ICMP_SLE:
2262     return getICmp(Predicate, C1, C2, OnlyIfReduced);
2263   }
2264 }
2265 
2266 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
2267                                          ArrayRef<Value *> Idxs, bool InBounds,
2268                                          std::optional<unsigned> InRangeIndex,
2269                                          Type *OnlyIfReducedTy) {
2270   assert(Ty && "Must specify element type");
2271   assert(isSupportedGetElementPtr(Ty) && "Element type is unsupported!");
2272 
2273   if (Constant *FC =
2274           ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs))
2275     return FC;          // Fold a few common cases.
2276 
2277   assert(GetElementPtrInst::getIndexedType(Ty, Idxs) &&
2278          "GEP indices invalid!");;
2279 
2280   // Get the result type of the getelementptr!
2281   Type *ReqTy = GetElementPtrInst::getGEPReturnType(C, Idxs);
2282   if (OnlyIfReducedTy == ReqTy)
2283     return nullptr;
2284 
2285   auto EltCount = ElementCount::getFixed(0);
2286   if (VectorType *VecTy = dyn_cast<VectorType>(ReqTy))
2287     EltCount = VecTy->getElementCount();
2288 
2289   // Look up the constant in the table first to ensure uniqueness
2290   std::vector<Constant*> ArgVec;
2291   ArgVec.reserve(1 + Idxs.size());
2292   ArgVec.push_back(C);
2293   auto GTI = gep_type_begin(Ty, Idxs), GTE = gep_type_end(Ty, Idxs);
2294   for (; GTI != GTE; ++GTI) {
2295     auto *Idx = cast<Constant>(GTI.getOperand());
2296     assert(
2297         (!isa<VectorType>(Idx->getType()) ||
2298          cast<VectorType>(Idx->getType())->getElementCount() == EltCount) &&
2299         "getelementptr index type missmatch");
2300 
2301     if (GTI.isStruct() && Idx->getType()->isVectorTy()) {
2302       Idx = Idx->getSplatValue();
2303     } else if (GTI.isSequential() && EltCount.isNonZero() &&
2304                !Idx->getType()->isVectorTy()) {
2305       Idx = ConstantVector::getSplat(EltCount, Idx);
2306     }
2307     ArgVec.push_back(Idx);
2308   }
2309 
2310   unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0;
2311   if (InRangeIndex && *InRangeIndex < 63)
2312     SubClassOptionalData |= (*InRangeIndex + 1) << 1;
2313   const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
2314                                 SubClassOptionalData, std::nullopt, Ty);
2315 
2316   LLVMContextImpl *pImpl = C->getContext().pImpl;
2317   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2318 }
2319 
2320 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
2321                                 Constant *RHS, bool OnlyIfReduced) {
2322   auto Predicate = static_cast<CmpInst::Predicate>(pred);
2323   assert(LHS->getType() == RHS->getType());
2324   assert(CmpInst::isIntPredicate(Predicate) && "Invalid ICmp Predicate");
2325 
2326   if (Constant *FC = ConstantFoldCompareInstruction(Predicate, LHS, RHS))
2327     return FC;          // Fold a few common cases...
2328 
2329   if (OnlyIfReduced)
2330     return nullptr;
2331 
2332   // Look up the constant in the table first to ensure uniqueness
2333   Constant *ArgVec[] = { LHS, RHS };
2334   // Get the key type with both the opcode and predicate
2335   const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, Predicate);
2336 
2337   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2338   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2339     ResultTy = VectorType::get(ResultTy, VT->getElementCount());
2340 
2341   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2342   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2343 }
2344 
2345 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
2346                                 Constant *RHS, bool OnlyIfReduced) {
2347   auto Predicate = static_cast<CmpInst::Predicate>(pred);
2348   assert(LHS->getType() == RHS->getType());
2349   assert(CmpInst::isFPPredicate(Predicate) && "Invalid FCmp Predicate");
2350 
2351   if (Constant *FC = ConstantFoldCompareInstruction(Predicate, LHS, RHS))
2352     return FC;          // Fold a few common cases...
2353 
2354   if (OnlyIfReduced)
2355     return nullptr;
2356 
2357   // Look up the constant in the table first to ensure uniqueness
2358   Constant *ArgVec[] = { LHS, RHS };
2359   // Get the key type with both the opcode and predicate
2360   const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, Predicate);
2361 
2362   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2363   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2364     ResultTy = VectorType::get(ResultTy, VT->getElementCount());
2365 
2366   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2367   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2368 }
2369 
2370 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
2371                                           Type *OnlyIfReducedTy) {
2372   assert(Val->getType()->isVectorTy() &&
2373          "Tried to create extractelement operation on non-vector type!");
2374   assert(Idx->getType()->isIntegerTy() &&
2375          "Extractelement index must be an integer type!");
2376 
2377   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2378     return FC;          // Fold a few common cases.
2379 
2380   Type *ReqTy = cast<VectorType>(Val->getType())->getElementType();
2381   if (OnlyIfReducedTy == ReqTy)
2382     return nullptr;
2383 
2384   // Look up the constant in the table first to ensure uniqueness
2385   Constant *ArgVec[] = { Val, Idx };
2386   const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2387 
2388   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2389   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2390 }
2391 
2392 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2393                                          Constant *Idx, Type *OnlyIfReducedTy) {
2394   assert(Val->getType()->isVectorTy() &&
2395          "Tried to create insertelement operation on non-vector type!");
2396   assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() &&
2397          "Insertelement types must match!");
2398   assert(Idx->getType()->isIntegerTy() &&
2399          "Insertelement index must be i32 type!");
2400 
2401   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2402     return FC;          // Fold a few common cases.
2403 
2404   if (OnlyIfReducedTy == Val->getType())
2405     return nullptr;
2406 
2407   // Look up the constant in the table first to ensure uniqueness
2408   Constant *ArgVec[] = { Val, Elt, Idx };
2409   const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2410 
2411   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2412   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2413 }
2414 
2415 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2416                                          ArrayRef<int> Mask,
2417                                          Type *OnlyIfReducedTy) {
2418   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2419          "Invalid shuffle vector constant expr operands!");
2420 
2421   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2422     return FC;          // Fold a few common cases.
2423 
2424   unsigned NElts = Mask.size();
2425   auto V1VTy = cast<VectorType>(V1->getType());
2426   Type *EltTy = V1VTy->getElementType();
2427   bool TypeIsScalable = isa<ScalableVectorType>(V1VTy);
2428   Type *ShufTy = VectorType::get(EltTy, NElts, TypeIsScalable);
2429 
2430   if (OnlyIfReducedTy == ShufTy)
2431     return nullptr;
2432 
2433   // Look up the constant in the table first to ensure uniqueness
2434   Constant *ArgVec[] = {V1, V2};
2435   ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec, 0, 0, Mask);
2436 
2437   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2438   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2439 }
2440 
2441 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2442   assert(C->getType()->isIntOrIntVectorTy() &&
2443          "Cannot NEG a nonintegral value!");
2444   return getSub(ConstantInt::get(C->getType(), 0), C, HasNUW, HasNSW);
2445 }
2446 
2447 Constant *ConstantExpr::getNot(Constant *C) {
2448   assert(C->getType()->isIntOrIntVectorTy() &&
2449          "Cannot NOT a nonintegral value!");
2450   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2451 }
2452 
2453 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2454                                bool HasNUW, bool HasNSW) {
2455   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2456                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2457   return get(Instruction::Add, C1, C2, Flags);
2458 }
2459 
2460 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2461                                bool HasNUW, bool HasNSW) {
2462   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2463                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2464   return get(Instruction::Sub, C1, C2, Flags);
2465 }
2466 
2467 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2468                                bool HasNUW, bool HasNSW) {
2469   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2470                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2471   return get(Instruction::Mul, C1, C2, Flags);
2472 }
2473 
2474 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2475   return get(Instruction::Xor, C1, C2);
2476 }
2477 
2478 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2479                                bool HasNUW, bool HasNSW) {
2480   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2481                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2482   return get(Instruction::Shl, C1, C2, Flags);
2483 }
2484 
2485 Constant *ConstantExpr::getExactLogBase2(Constant *C) {
2486   Type *Ty = C->getType();
2487   const APInt *IVal;
2488   if (match(C, m_APInt(IVal)) && IVal->isPowerOf2())
2489     return ConstantInt::get(Ty, IVal->logBase2());
2490 
2491   // FIXME: We can extract pow of 2 of splat constant for scalable vectors.
2492   auto *VecTy = dyn_cast<FixedVectorType>(Ty);
2493   if (!VecTy)
2494     return nullptr;
2495 
2496   SmallVector<Constant *, 4> Elts;
2497   for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) {
2498     Constant *Elt = C->getAggregateElement(I);
2499     if (!Elt)
2500       return nullptr;
2501     // Note that log2(iN undef) is *NOT* iN undef, because log2(iN undef) u< N.
2502     if (isa<UndefValue>(Elt)) {
2503       Elts.push_back(Constant::getNullValue(Ty->getScalarType()));
2504       continue;
2505     }
2506     if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
2507       return nullptr;
2508     Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2()));
2509   }
2510 
2511   return ConstantVector::get(Elts);
2512 }
2513 
2514 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty,
2515                                          bool AllowRHSConstant, bool NSZ) {
2516   assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed");
2517 
2518   // Commutative opcodes: it does not matter if AllowRHSConstant is set.
2519   if (Instruction::isCommutative(Opcode)) {
2520     switch (Opcode) {
2521       case Instruction::Add: // X + 0 = X
2522       case Instruction::Or:  // X | 0 = X
2523       case Instruction::Xor: // X ^ 0 = X
2524         return Constant::getNullValue(Ty);
2525       case Instruction::Mul: // X * 1 = X
2526         return ConstantInt::get(Ty, 1);
2527       case Instruction::And: // X & -1 = X
2528         return Constant::getAllOnesValue(Ty);
2529       case Instruction::FAdd: // X + -0.0 = X
2530         return ConstantFP::getZero(Ty, !NSZ);
2531       case Instruction::FMul: // X * 1.0 = X
2532         return ConstantFP::get(Ty, 1.0);
2533       default:
2534         llvm_unreachable("Every commutative binop has an identity constant");
2535     }
2536   }
2537 
2538   // Non-commutative opcodes: AllowRHSConstant must be set.
2539   if (!AllowRHSConstant)
2540     return nullptr;
2541 
2542   switch (Opcode) {
2543     case Instruction::Sub:  // X - 0 = X
2544     case Instruction::Shl:  // X << 0 = X
2545     case Instruction::LShr: // X >>u 0 = X
2546     case Instruction::AShr: // X >> 0 = X
2547     case Instruction::FSub: // X - 0.0 = X
2548       return Constant::getNullValue(Ty);
2549     case Instruction::SDiv: // X / 1 = X
2550     case Instruction::UDiv: // X /u 1 = X
2551       return ConstantInt::get(Ty, 1);
2552     case Instruction::FDiv: // X / 1.0 = X
2553       return ConstantFP::get(Ty, 1.0);
2554     default:
2555       return nullptr;
2556   }
2557 }
2558 
2559 Constant *ConstantExpr::getIntrinsicIdentity(Intrinsic::ID ID, Type *Ty) {
2560   switch (ID) {
2561   case Intrinsic::umax:
2562     return Constant::getNullValue(Ty);
2563   case Intrinsic::umin:
2564     return Constant::getAllOnesValue(Ty);
2565   case Intrinsic::smax:
2566     return Constant::getIntegerValue(
2567         Ty, APInt::getSignedMinValue(Ty->getIntegerBitWidth()));
2568   case Intrinsic::smin:
2569     return Constant::getIntegerValue(
2570         Ty, APInt::getSignedMaxValue(Ty->getIntegerBitWidth()));
2571   default:
2572     return nullptr;
2573   }
2574 }
2575 
2576 Constant *ConstantExpr::getIdentity(Instruction *I, Type *Ty,
2577                                     bool AllowRHSConstant, bool NSZ) {
2578   if (I->isBinaryOp())
2579     return getBinOpIdentity(I->getOpcode(), Ty, AllowRHSConstant, NSZ);
2580   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2581     return getIntrinsicIdentity(II->getIntrinsicID(), Ty);
2582   return nullptr;
2583 }
2584 
2585 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2586   switch (Opcode) {
2587   default:
2588     // Doesn't have an absorber.
2589     return nullptr;
2590 
2591   case Instruction::Or:
2592     return Constant::getAllOnesValue(Ty);
2593 
2594   case Instruction::And:
2595   case Instruction::Mul:
2596     return Constant::getNullValue(Ty);
2597   }
2598 }
2599 
2600 /// Remove the constant from the constant table.
2601 void ConstantExpr::destroyConstantImpl() {
2602   getType()->getContext().pImpl->ExprConstants.remove(this);
2603 }
2604 
2605 const char *ConstantExpr::getOpcodeName() const {
2606   return Instruction::getOpcodeName(getOpcode());
2607 }
2608 
2609 GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2610     Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
2611     : ConstantExpr(DestTy, Instruction::GetElementPtr,
2612                    OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
2613                        (IdxList.size() + 1),
2614                    IdxList.size() + 1),
2615       SrcElementTy(SrcElementTy),
2616       ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) {
2617   Op<0>() = C;
2618   Use *OperandList = getOperandList();
2619   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2620     OperandList[i+1] = IdxList[i];
2621 }
2622 
2623 Type *GetElementPtrConstantExpr::getSourceElementType() const {
2624   return SrcElementTy;
2625 }
2626 
2627 Type *GetElementPtrConstantExpr::getResultElementType() const {
2628   return ResElementTy;
2629 }
2630 
2631 //===----------------------------------------------------------------------===//
2632 //                       ConstantData* implementations
2633 
2634 Type *ConstantDataSequential::getElementType() const {
2635   if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
2636     return ATy->getElementType();
2637   return cast<VectorType>(getType())->getElementType();
2638 }
2639 
2640 StringRef ConstantDataSequential::getRawDataValues() const {
2641   return StringRef(DataElements, getNumElements()*getElementByteSize());
2642 }
2643 
2644 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
2645   if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2646     return true;
2647   if (auto *IT = dyn_cast<IntegerType>(Ty)) {
2648     switch (IT->getBitWidth()) {
2649     case 8:
2650     case 16:
2651     case 32:
2652     case 64:
2653       return true;
2654     default: break;
2655     }
2656   }
2657   return false;
2658 }
2659 
2660 unsigned ConstantDataSequential::getNumElements() const {
2661   if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2662     return AT->getNumElements();
2663   return cast<FixedVectorType>(getType())->getNumElements();
2664 }
2665 
2666 
2667 uint64_t ConstantDataSequential::getElementByteSize() const {
2668   return getElementType()->getPrimitiveSizeInBits()/8;
2669 }
2670 
2671 /// Return the start of the specified element.
2672 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2673   assert(Elt < getNumElements() && "Invalid Elt");
2674   return DataElements+Elt*getElementByteSize();
2675 }
2676 
2677 
2678 /// Return true if the array is empty or all zeros.
2679 static bool isAllZeros(StringRef Arr) {
2680   for (char I : Arr)
2681     if (I != 0)
2682       return false;
2683   return true;
2684 }
2685 
2686 /// This is the underlying implementation of all of the
2687 /// ConstantDataSequential::get methods.  They all thunk down to here, providing
2688 /// the correct element type.  We take the bytes in as a StringRef because
2689 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2690 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2691 #ifndef NDEBUG
2692   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2693     assert(isElementTypeCompatible(ATy->getElementType()));
2694   else
2695     assert(isElementTypeCompatible(cast<VectorType>(Ty)->getElementType()));
2696 #endif
2697   // If the elements are all zero or there are no elements, return a CAZ, which
2698   // is more dense and canonical.
2699   if (isAllZeros(Elements))
2700     return ConstantAggregateZero::get(Ty);
2701 
2702   // Do a lookup to see if we have already formed one of these.
2703   auto &Slot =
2704       *Ty->getContext()
2705            .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
2706            .first;
2707 
2708   // The bucket can point to a linked list of different CDS's that have the same
2709   // body but different types.  For example, 0,0,0,1 could be a 4 element array
2710   // of i8, or a 1-element array of i32.  They'll both end up in the same
2711   /// StringMap bucket, linked up by their Next pointers.  Walk the list.
2712   std::unique_ptr<ConstantDataSequential> *Entry = &Slot.second;
2713   for (; *Entry; Entry = &(*Entry)->Next)
2714     if ((*Entry)->getType() == Ty)
2715       return Entry->get();
2716 
2717   // Okay, we didn't get a hit.  Create a node of the right class, link it in,
2718   // and return it.
2719   if (isa<ArrayType>(Ty)) {
2720     // Use reset because std::make_unique can't access the constructor.
2721     Entry->reset(new ConstantDataArray(Ty, Slot.first().data()));
2722     return Entry->get();
2723   }
2724 
2725   assert(isa<VectorType>(Ty));
2726   // Use reset because std::make_unique can't access the constructor.
2727   Entry->reset(new ConstantDataVector(Ty, Slot.first().data()));
2728   return Entry->get();
2729 }
2730 
2731 void ConstantDataSequential::destroyConstantImpl() {
2732   // Remove the constant from the StringMap.
2733   StringMap<std::unique_ptr<ConstantDataSequential>> &CDSConstants =
2734       getType()->getContext().pImpl->CDSConstants;
2735 
2736   auto Slot = CDSConstants.find(getRawDataValues());
2737 
2738   assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2739 
2740   std::unique_ptr<ConstantDataSequential> *Entry = &Slot->getValue();
2741 
2742   // Remove the entry from the hash table.
2743   if (!(*Entry)->Next) {
2744     // If there is only one value in the bucket (common case) it must be this
2745     // entry, and removing the entry should remove the bucket completely.
2746     assert(Entry->get() == this && "Hash mismatch in ConstantDataSequential");
2747     getContext().pImpl->CDSConstants.erase(Slot);
2748     return;
2749   }
2750 
2751   // Otherwise, there are multiple entries linked off the bucket, unlink the
2752   // node we care about but keep the bucket around.
2753   while (true) {
2754     std::unique_ptr<ConstantDataSequential> &Node = *Entry;
2755     assert(Node && "Didn't find entry in its uniquing hash table!");
2756     // If we found our entry, unlink it from the list and we're done.
2757     if (Node.get() == this) {
2758       Node = std::move(Node->Next);
2759       return;
2760     }
2761 
2762     Entry = &Node->Next;
2763   }
2764 }
2765 
2766 /// getFP() constructors - Return a constant of array type with a float
2767 /// element type taken from argument `ElementType', and count taken from
2768 /// argument `Elts'.  The amount of bits of the contained type must match the
2769 /// number of bits of the type contained in the passed in ArrayRef.
2770 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
2771 /// that this can return a ConstantAggregateZero object.
2772 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint16_t> Elts) {
2773   assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
2774          "Element type is not a 16-bit float type");
2775   Type *Ty = ArrayType::get(ElementType, Elts.size());
2776   const char *Data = reinterpret_cast<const char *>(Elts.data());
2777   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2778 }
2779 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint32_t> Elts) {
2780   assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type");
2781   Type *Ty = ArrayType::get(ElementType, Elts.size());
2782   const char *Data = reinterpret_cast<const char *>(Elts.data());
2783   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2784 }
2785 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint64_t> Elts) {
2786   assert(ElementType->isDoubleTy() &&
2787          "Element type is not a 64-bit float type");
2788   Type *Ty = ArrayType::get(ElementType, Elts.size());
2789   const char *Data = reinterpret_cast<const char *>(Elts.data());
2790   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2791 }
2792 
2793 Constant *ConstantDataArray::getString(LLVMContext &Context,
2794                                        StringRef Str, bool AddNull) {
2795   if (!AddNull) {
2796     const uint8_t *Data = Str.bytes_begin();
2797     return get(Context, ArrayRef(Data, Str.size()));
2798   }
2799 
2800   SmallVector<uint8_t, 64> ElementVals;
2801   ElementVals.append(Str.begin(), Str.end());
2802   ElementVals.push_back(0);
2803   return get(Context, ElementVals);
2804 }
2805 
2806 /// get() constructors - Return a constant with vector type with an element
2807 /// count and element type matching the ArrayRef passed in.  Note that this
2808 /// can return a ConstantAggregateZero object.
2809 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2810   auto *Ty = FixedVectorType::get(Type::getInt8Ty(Context), Elts.size());
2811   const char *Data = reinterpret_cast<const char *>(Elts.data());
2812   return getImpl(StringRef(Data, Elts.size() * 1), Ty);
2813 }
2814 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2815   auto *Ty = FixedVectorType::get(Type::getInt16Ty(Context), Elts.size());
2816   const char *Data = reinterpret_cast<const char *>(Elts.data());
2817   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2818 }
2819 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2820   auto *Ty = FixedVectorType::get(Type::getInt32Ty(Context), Elts.size());
2821   const char *Data = reinterpret_cast<const char *>(Elts.data());
2822   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2823 }
2824 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2825   auto *Ty = FixedVectorType::get(Type::getInt64Ty(Context), Elts.size());
2826   const char *Data = reinterpret_cast<const char *>(Elts.data());
2827   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2828 }
2829 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2830   auto *Ty = FixedVectorType::get(Type::getFloatTy(Context), Elts.size());
2831   const char *Data = reinterpret_cast<const char *>(Elts.data());
2832   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2833 }
2834 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2835   auto *Ty = FixedVectorType::get(Type::getDoubleTy(Context), Elts.size());
2836   const char *Data = reinterpret_cast<const char *>(Elts.data());
2837   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2838 }
2839 
2840 /// getFP() constructors - Return a constant of vector type with a float
2841 /// element type taken from argument `ElementType', and count taken from
2842 /// argument `Elts'.  The amount of bits of the contained type must match the
2843 /// number of bits of the type contained in the passed in ArrayRef.
2844 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
2845 /// that this can return a ConstantAggregateZero object.
2846 Constant *ConstantDataVector::getFP(Type *ElementType,
2847                                     ArrayRef<uint16_t> Elts) {
2848   assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
2849          "Element type is not a 16-bit float type");
2850   auto *Ty = FixedVectorType::get(ElementType, Elts.size());
2851   const char *Data = reinterpret_cast<const char *>(Elts.data());
2852   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2853 }
2854 Constant *ConstantDataVector::getFP(Type *ElementType,
2855                                     ArrayRef<uint32_t> Elts) {
2856   assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type");
2857   auto *Ty = FixedVectorType::get(ElementType, Elts.size());
2858   const char *Data = reinterpret_cast<const char *>(Elts.data());
2859   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2860 }
2861 Constant *ConstantDataVector::getFP(Type *ElementType,
2862                                     ArrayRef<uint64_t> Elts) {
2863   assert(ElementType->isDoubleTy() &&
2864          "Element type is not a 64-bit float type");
2865   auto *Ty = FixedVectorType::get(ElementType, Elts.size());
2866   const char *Data = reinterpret_cast<const char *>(Elts.data());
2867   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2868 }
2869 
2870 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2871   assert(isElementTypeCompatible(V->getType()) &&
2872          "Element type not compatible with ConstantData");
2873   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2874     if (CI->getType()->isIntegerTy(8)) {
2875       SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2876       return get(V->getContext(), Elts);
2877     }
2878     if (CI->getType()->isIntegerTy(16)) {
2879       SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2880       return get(V->getContext(), Elts);
2881     }
2882     if (CI->getType()->isIntegerTy(32)) {
2883       SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2884       return get(V->getContext(), Elts);
2885     }
2886     assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2887     SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2888     return get(V->getContext(), Elts);
2889   }
2890 
2891   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2892     if (CFP->getType()->isHalfTy()) {
2893       SmallVector<uint16_t, 16> Elts(
2894           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2895       return getFP(V->getType(), Elts);
2896     }
2897     if (CFP->getType()->isBFloatTy()) {
2898       SmallVector<uint16_t, 16> Elts(
2899           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2900       return getFP(V->getType(), Elts);
2901     }
2902     if (CFP->getType()->isFloatTy()) {
2903       SmallVector<uint32_t, 16> Elts(
2904           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2905       return getFP(V->getType(), Elts);
2906     }
2907     if (CFP->getType()->isDoubleTy()) {
2908       SmallVector<uint64_t, 16> Elts(
2909           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2910       return getFP(V->getType(), Elts);
2911     }
2912   }
2913   return ConstantVector::getSplat(ElementCount::getFixed(NumElts), V);
2914 }
2915 
2916 
2917 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2918   assert(isa<IntegerType>(getElementType()) &&
2919          "Accessor can only be used when element is an integer");
2920   const char *EltPtr = getElementPointer(Elt);
2921 
2922   // The data is stored in host byte order, make sure to cast back to the right
2923   // type to load with the right endianness.
2924   switch (getElementType()->getIntegerBitWidth()) {
2925   default: llvm_unreachable("Invalid bitwidth for CDS");
2926   case 8:
2927     return *reinterpret_cast<const uint8_t *>(EltPtr);
2928   case 16:
2929     return *reinterpret_cast<const uint16_t *>(EltPtr);
2930   case 32:
2931     return *reinterpret_cast<const uint32_t *>(EltPtr);
2932   case 64:
2933     return *reinterpret_cast<const uint64_t *>(EltPtr);
2934   }
2935 }
2936 
2937 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const {
2938   assert(isa<IntegerType>(getElementType()) &&
2939          "Accessor can only be used when element is an integer");
2940   const char *EltPtr = getElementPointer(Elt);
2941 
2942   // The data is stored in host byte order, make sure to cast back to the right
2943   // type to load with the right endianness.
2944   switch (getElementType()->getIntegerBitWidth()) {
2945   default: llvm_unreachable("Invalid bitwidth for CDS");
2946   case 8: {
2947     auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr);
2948     return APInt(8, EltVal);
2949   }
2950   case 16: {
2951     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
2952     return APInt(16, EltVal);
2953   }
2954   case 32: {
2955     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
2956     return APInt(32, EltVal);
2957   }
2958   case 64: {
2959     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
2960     return APInt(64, EltVal);
2961   }
2962   }
2963 }
2964 
2965 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2966   const char *EltPtr = getElementPointer(Elt);
2967 
2968   switch (getElementType()->getTypeID()) {
2969   default:
2970     llvm_unreachable("Accessor can only be used when element is float/double!");
2971   case Type::HalfTyID: {
2972     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
2973     return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal));
2974   }
2975   case Type::BFloatTyID: {
2976     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
2977     return APFloat(APFloat::BFloat(), APInt(16, EltVal));
2978   }
2979   case Type::FloatTyID: {
2980     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
2981     return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal));
2982   }
2983   case Type::DoubleTyID: {
2984     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
2985     return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal));
2986   }
2987   }
2988 }
2989 
2990 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2991   assert(getElementType()->isFloatTy() &&
2992          "Accessor can only be used when element is a 'float'");
2993   return *reinterpret_cast<const float *>(getElementPointer(Elt));
2994 }
2995 
2996 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2997   assert(getElementType()->isDoubleTy() &&
2998          "Accessor can only be used when element is a 'float'");
2999   return *reinterpret_cast<const double *>(getElementPointer(Elt));
3000 }
3001 
3002 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
3003   if (getElementType()->isHalfTy() || getElementType()->isBFloatTy() ||
3004       getElementType()->isFloatTy() || getElementType()->isDoubleTy())
3005     return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
3006 
3007   return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
3008 }
3009 
3010 bool ConstantDataSequential::isString(unsigned CharSize) const {
3011   return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize);
3012 }
3013 
3014 bool ConstantDataSequential::isCString() const {
3015   if (!isString())
3016     return false;
3017 
3018   StringRef Str = getAsString();
3019 
3020   // The last value must be nul.
3021   if (Str.back() != 0) return false;
3022 
3023   // Other elements must be non-nul.
3024   return !Str.drop_back().contains(0);
3025 }
3026 
3027 bool ConstantDataVector::isSplatData() const {
3028   const char *Base = getRawDataValues().data();
3029 
3030   // Compare elements 1+ to the 0'th element.
3031   unsigned EltSize = getElementByteSize();
3032   for (unsigned i = 1, e = getNumElements(); i != e; ++i)
3033     if (memcmp(Base, Base+i*EltSize, EltSize))
3034       return false;
3035 
3036   return true;
3037 }
3038 
3039 bool ConstantDataVector::isSplat() const {
3040   if (!IsSplatSet) {
3041     IsSplatSet = true;
3042     IsSplat = isSplatData();
3043   }
3044   return IsSplat;
3045 }
3046 
3047 Constant *ConstantDataVector::getSplatValue() const {
3048   // If they're all the same, return the 0th one as a representative.
3049   return isSplat() ? getElementAsConstant(0) : nullptr;
3050 }
3051 
3052 //===----------------------------------------------------------------------===//
3053 //                handleOperandChange implementations
3054 
3055 /// Update this constant array to change uses of
3056 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
3057 /// etc.
3058 ///
3059 /// Note that we intentionally replace all uses of From with To here.  Consider
3060 /// a large array that uses 'From' 1000 times.  By handling this case all here,
3061 /// ConstantArray::handleOperandChange is only invoked once, and that
3062 /// single invocation handles all 1000 uses.  Handling them one at a time would
3063 /// work, but would be really slow because it would have to unique each updated
3064 /// array instance.
3065 ///
3066 void Constant::handleOperandChange(Value *From, Value *To) {
3067   Value *Replacement = nullptr;
3068   switch (getValueID()) {
3069   default:
3070     llvm_unreachable("Not a constant!");
3071 #define HANDLE_CONSTANT(Name)                                                  \
3072   case Value::Name##Val:                                                       \
3073     Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To);         \
3074     break;
3075 #include "llvm/IR/Value.def"
3076   }
3077 
3078   // If handleOperandChangeImpl returned nullptr, then it handled
3079   // replacing itself and we don't want to delete or replace anything else here.
3080   if (!Replacement)
3081     return;
3082 
3083   // I do need to replace this with an existing value.
3084   assert(Replacement != this && "I didn't contain From!");
3085 
3086   // Everyone using this now uses the replacement.
3087   replaceAllUsesWith(Replacement);
3088 
3089   // Delete the old constant!
3090   destroyConstant();
3091 }
3092 
3093 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) {
3094   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3095   Constant *ToC = cast<Constant>(To);
3096 
3097   SmallVector<Constant*, 8> Values;
3098   Values.reserve(getNumOperands());  // Build replacement array.
3099 
3100   // Fill values with the modified operands of the constant array.  Also,
3101   // compute whether this turns into an all-zeros array.
3102   unsigned NumUpdated = 0;
3103 
3104   // Keep track of whether all the values in the array are "ToC".
3105   bool AllSame = true;
3106   Use *OperandList = getOperandList();
3107   unsigned OperandNo = 0;
3108   for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
3109     Constant *Val = cast<Constant>(O->get());
3110     if (Val == From) {
3111       OperandNo = (O - OperandList);
3112       Val = ToC;
3113       ++NumUpdated;
3114     }
3115     Values.push_back(Val);
3116     AllSame &= Val == ToC;
3117   }
3118 
3119   if (AllSame && ToC->isNullValue())
3120     return ConstantAggregateZero::get(getType());
3121 
3122   if (AllSame && isa<UndefValue>(ToC))
3123     return UndefValue::get(getType());
3124 
3125   // Check for any other type of constant-folding.
3126   if (Constant *C = getImpl(getType(), Values))
3127     return C;
3128 
3129   // Update to the new value.
3130   return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
3131       Values, this, From, ToC, NumUpdated, OperandNo);
3132 }
3133 
3134 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) {
3135   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3136   Constant *ToC = cast<Constant>(To);
3137 
3138   Use *OperandList = getOperandList();
3139 
3140   SmallVector<Constant*, 8> Values;
3141   Values.reserve(getNumOperands());  // Build replacement struct.
3142 
3143   // Fill values with the modified operands of the constant struct.  Also,
3144   // compute whether this turns into an all-zeros struct.
3145   unsigned NumUpdated = 0;
3146   bool AllSame = true;
3147   unsigned OperandNo = 0;
3148   for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) {
3149     Constant *Val = cast<Constant>(O->get());
3150     if (Val == From) {
3151       OperandNo = (O - OperandList);
3152       Val = ToC;
3153       ++NumUpdated;
3154     }
3155     Values.push_back(Val);
3156     AllSame &= Val == ToC;
3157   }
3158 
3159   if (AllSame && ToC->isNullValue())
3160     return ConstantAggregateZero::get(getType());
3161 
3162   if (AllSame && isa<UndefValue>(ToC))
3163     return UndefValue::get(getType());
3164 
3165   // Update to the new value.
3166   return getContext().pImpl->StructConstants.replaceOperandsInPlace(
3167       Values, this, From, ToC, NumUpdated, OperandNo);
3168 }
3169 
3170 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) {
3171   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3172   Constant *ToC = cast<Constant>(To);
3173 
3174   SmallVector<Constant*, 8> Values;
3175   Values.reserve(getNumOperands());  // Build replacement array...
3176   unsigned NumUpdated = 0;
3177   unsigned OperandNo = 0;
3178   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3179     Constant *Val = getOperand(i);
3180     if (Val == From) {
3181       OperandNo = i;
3182       ++NumUpdated;
3183       Val = ToC;
3184     }
3185     Values.push_back(Val);
3186   }
3187 
3188   if (Constant *C = getImpl(Values))
3189     return C;
3190 
3191   // Update to the new value.
3192   return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
3193       Values, this, From, ToC, NumUpdated, OperandNo);
3194 }
3195 
3196 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) {
3197   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
3198   Constant *To = cast<Constant>(ToV);
3199 
3200   SmallVector<Constant*, 8> NewOps;
3201   unsigned NumUpdated = 0;
3202   unsigned OperandNo = 0;
3203   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3204     Constant *Op = getOperand(i);
3205     if (Op == From) {
3206       OperandNo = i;
3207       ++NumUpdated;
3208       Op = To;
3209     }
3210     NewOps.push_back(Op);
3211   }
3212   assert(NumUpdated && "I didn't contain From!");
3213 
3214   if (Constant *C = getWithOperands(NewOps, getType(), true))
3215     return C;
3216 
3217   // Update to the new value.
3218   return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
3219       NewOps, this, From, To, NumUpdated, OperandNo);
3220 }
3221 
3222 Instruction *ConstantExpr::getAsInstruction(Instruction *InsertBefore) const {
3223   SmallVector<Value *, 4> ValueOperands(operands());
3224   ArrayRef<Value*> Ops(ValueOperands);
3225 
3226   switch (getOpcode()) {
3227   case Instruction::Trunc:
3228   case Instruction::ZExt:
3229   case Instruction::SExt:
3230   case Instruction::FPTrunc:
3231   case Instruction::FPExt:
3232   case Instruction::UIToFP:
3233   case Instruction::SIToFP:
3234   case Instruction::FPToUI:
3235   case Instruction::FPToSI:
3236   case Instruction::PtrToInt:
3237   case Instruction::IntToPtr:
3238   case Instruction::BitCast:
3239   case Instruction::AddrSpaceCast:
3240     return CastInst::Create((Instruction::CastOps)getOpcode(), Ops[0],
3241                             getType(), "", InsertBefore);
3242   case Instruction::InsertElement:
3243     return InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "", InsertBefore);
3244   case Instruction::ExtractElement:
3245     return ExtractElementInst::Create(Ops[0], Ops[1], "", InsertBefore);
3246   case Instruction::ShuffleVector:
3247     return new ShuffleVectorInst(Ops[0], Ops[1], getShuffleMask(), "",
3248                                  InsertBefore);
3249 
3250   case Instruction::GetElementPtr: {
3251     const auto *GO = cast<GEPOperator>(this);
3252     if (GO->isInBounds())
3253       return GetElementPtrInst::CreateInBounds(
3254           GO->getSourceElementType(), Ops[0], Ops.slice(1), "", InsertBefore);
3255     return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
3256                                      Ops.slice(1), "", InsertBefore);
3257   }
3258   case Instruction::ICmp:
3259   case Instruction::FCmp:
3260     return CmpInst::Create((Instruction::OtherOps)getOpcode(),
3261                            (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1],
3262                            "", InsertBefore);
3263   default:
3264     assert(getNumOperands() == 2 && "Must be binary operator?");
3265     BinaryOperator *BO = BinaryOperator::Create(
3266         (Instruction::BinaryOps)getOpcode(), Ops[0], Ops[1], "", InsertBefore);
3267     if (isa<OverflowingBinaryOperator>(BO)) {
3268       BO->setHasNoUnsignedWrap(SubclassOptionalData &
3269                                OverflowingBinaryOperator::NoUnsignedWrap);
3270       BO->setHasNoSignedWrap(SubclassOptionalData &
3271                              OverflowingBinaryOperator::NoSignedWrap);
3272     }
3273     if (isa<PossiblyExactOperator>(BO))
3274       BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
3275     return BO;
3276   }
3277 }
3278