1 //===-- Constants.cpp - Implement Constant nodes --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Constant* classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Constants.h" 14 #include "LLVMContextImpl.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/IR/BasicBlock.h" 19 #include "llvm/IR/ConstantFold.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/GlobalAlias.h" 24 #include "llvm/IR/GlobalIFunc.h" 25 #include "llvm/IR/GlobalValue.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/PatternMatch.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <algorithm> 34 35 using namespace llvm; 36 using namespace PatternMatch; 37 38 //===----------------------------------------------------------------------===// 39 // Constant Class 40 //===----------------------------------------------------------------------===// 41 42 bool Constant::isNegativeZeroValue() const { 43 // Floating point values have an explicit -0.0 value. 44 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 45 return CFP->isZero() && CFP->isNegative(); 46 47 // Equivalent for a vector of -0.0's. 48 if (getType()->isVectorTy()) 49 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 50 return SplatCFP->isNegativeZeroValue(); 51 52 // We've already handled true FP case; any other FP vectors can't represent -0.0. 53 if (getType()->isFPOrFPVectorTy()) 54 return false; 55 56 // Otherwise, just use +0.0. 57 return isNullValue(); 58 } 59 60 // Return true iff this constant is positive zero (floating point), negative 61 // zero (floating point), or a null value. 62 bool Constant::isZeroValue() const { 63 // Floating point values have an explicit -0.0 value. 64 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 65 return CFP->isZero(); 66 67 // Check for constant splat vectors of 1 values. 68 if (getType()->isVectorTy()) 69 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 70 return SplatCFP->isZero(); 71 72 // Otherwise, just use +0.0. 73 return isNullValue(); 74 } 75 76 bool Constant::isNullValue() const { 77 // 0 is null. 78 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 79 return CI->isZero(); 80 81 // +0.0 is null. 82 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 83 // ppc_fp128 determine isZero using high order double only 84 // Should check the bitwise value to make sure all bits are zero. 85 return CFP->isExactlyValue(+0.0); 86 87 // constant zero is zero for aggregates, cpnull is null for pointers, none for 88 // tokens. 89 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) || 90 isa<ConstantTokenNone>(this) || isa<ConstantTargetNone>(this); 91 } 92 93 bool Constant::isAllOnesValue() const { 94 // Check for -1 integers 95 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 96 return CI->isMinusOne(); 97 98 // Check for FP which are bitcasted from -1 integers 99 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 100 return CFP->getValueAPF().bitcastToAPInt().isAllOnes(); 101 102 // Check for constant splat vectors of 1 values. 103 if (getType()->isVectorTy()) 104 if (const auto *SplatVal = getSplatValue()) 105 return SplatVal->isAllOnesValue(); 106 107 return false; 108 } 109 110 bool Constant::isOneValue() const { 111 // Check for 1 integers 112 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 113 return CI->isOne(); 114 115 // Check for FP which are bitcasted from 1 integers 116 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 117 return CFP->getValueAPF().bitcastToAPInt().isOne(); 118 119 // Check for constant splat vectors of 1 values. 120 if (getType()->isVectorTy()) 121 if (const auto *SplatVal = getSplatValue()) 122 return SplatVal->isOneValue(); 123 124 return false; 125 } 126 127 bool Constant::isNotOneValue() const { 128 // Check for 1 integers 129 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 130 return !CI->isOneValue(); 131 132 // Check for FP which are bitcasted from 1 integers 133 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 134 return !CFP->getValueAPF().bitcastToAPInt().isOne(); 135 136 // Check that vectors don't contain 1 137 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 138 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 139 Constant *Elt = getAggregateElement(I); 140 if (!Elt || !Elt->isNotOneValue()) 141 return false; 142 } 143 return true; 144 } 145 146 // Check for splats that don't contain 1 147 if (getType()->isVectorTy()) 148 if (const auto *SplatVal = getSplatValue()) 149 return SplatVal->isNotOneValue(); 150 151 // It *may* contain 1, we can't tell. 152 return false; 153 } 154 155 bool Constant::isMinSignedValue() const { 156 // Check for INT_MIN integers 157 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 158 return CI->isMinValue(/*isSigned=*/true); 159 160 // Check for FP which are bitcasted from INT_MIN integers 161 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 162 return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); 163 164 // Check for splats of INT_MIN values. 165 if (getType()->isVectorTy()) 166 if (const auto *SplatVal = getSplatValue()) 167 return SplatVal->isMinSignedValue(); 168 169 return false; 170 } 171 172 bool Constant::isNotMinSignedValue() const { 173 // Check for INT_MIN integers 174 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 175 return !CI->isMinValue(/*isSigned=*/true); 176 177 // Check for FP which are bitcasted from INT_MIN integers 178 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 179 return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); 180 181 // Check that vectors don't contain INT_MIN 182 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 183 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 184 Constant *Elt = getAggregateElement(I); 185 if (!Elt || !Elt->isNotMinSignedValue()) 186 return false; 187 } 188 return true; 189 } 190 191 // Check for splats that aren't INT_MIN 192 if (getType()->isVectorTy()) 193 if (const auto *SplatVal = getSplatValue()) 194 return SplatVal->isNotMinSignedValue(); 195 196 // It *may* contain INT_MIN, we can't tell. 197 return false; 198 } 199 200 bool Constant::isFiniteNonZeroFP() const { 201 if (auto *CFP = dyn_cast<ConstantFP>(this)) 202 return CFP->getValueAPF().isFiniteNonZero(); 203 204 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 205 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 206 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I)); 207 if (!CFP || !CFP->getValueAPF().isFiniteNonZero()) 208 return false; 209 } 210 return true; 211 } 212 213 if (getType()->isVectorTy()) 214 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 215 return SplatCFP->isFiniteNonZeroFP(); 216 217 // It *may* contain finite non-zero, we can't tell. 218 return false; 219 } 220 221 bool Constant::isNormalFP() const { 222 if (auto *CFP = dyn_cast<ConstantFP>(this)) 223 return CFP->getValueAPF().isNormal(); 224 225 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 226 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 227 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I)); 228 if (!CFP || !CFP->getValueAPF().isNormal()) 229 return false; 230 } 231 return true; 232 } 233 234 if (getType()->isVectorTy()) 235 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 236 return SplatCFP->isNormalFP(); 237 238 // It *may* contain a normal fp value, we can't tell. 239 return false; 240 } 241 242 bool Constant::hasExactInverseFP() const { 243 if (auto *CFP = dyn_cast<ConstantFP>(this)) 244 return CFP->getValueAPF().getExactInverse(nullptr); 245 246 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 247 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 248 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I)); 249 if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr)) 250 return false; 251 } 252 return true; 253 } 254 255 if (getType()->isVectorTy()) 256 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 257 return SplatCFP->hasExactInverseFP(); 258 259 // It *may* have an exact inverse fp value, we can't tell. 260 return false; 261 } 262 263 bool Constant::isNaN() const { 264 if (auto *CFP = dyn_cast<ConstantFP>(this)) 265 return CFP->isNaN(); 266 267 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 268 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 269 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I)); 270 if (!CFP || !CFP->isNaN()) 271 return false; 272 } 273 return true; 274 } 275 276 if (getType()->isVectorTy()) 277 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 278 return SplatCFP->isNaN(); 279 280 // It *may* be NaN, we can't tell. 281 return false; 282 } 283 284 bool Constant::isElementWiseEqual(Value *Y) const { 285 // Are they fully identical? 286 if (this == Y) 287 return true; 288 289 // The input value must be a vector constant with the same type. 290 auto *VTy = dyn_cast<VectorType>(getType()); 291 if (!isa<Constant>(Y) || !VTy || VTy != Y->getType()) 292 return false; 293 294 // TODO: Compare pointer constants? 295 if (!(VTy->getElementType()->isIntegerTy() || 296 VTy->getElementType()->isFloatingPointTy())) 297 return false; 298 299 // They may still be identical element-wise (if they have `undef`s). 300 // Bitcast to integer to allow exact bitwise comparison for all types. 301 Type *IntTy = VectorType::getInteger(VTy); 302 Constant *C0 = ConstantExpr::getBitCast(const_cast<Constant *>(this), IntTy); 303 Constant *C1 = ConstantExpr::getBitCast(cast<Constant>(Y), IntTy); 304 Constant *CmpEq = ConstantExpr::getICmp(ICmpInst::ICMP_EQ, C0, C1); 305 return isa<UndefValue>(CmpEq) || match(CmpEq, m_One()); 306 } 307 308 static bool 309 containsUndefinedElement(const Constant *C, 310 function_ref<bool(const Constant *)> HasFn) { 311 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 312 if (HasFn(C)) 313 return true; 314 if (isa<ConstantAggregateZero>(C)) 315 return false; 316 if (isa<ScalableVectorType>(C->getType())) 317 return false; 318 319 for (unsigned i = 0, e = cast<FixedVectorType>(VTy)->getNumElements(); 320 i != e; ++i) { 321 if (Constant *Elem = C->getAggregateElement(i)) 322 if (HasFn(Elem)) 323 return true; 324 } 325 } 326 327 return false; 328 } 329 330 bool Constant::containsUndefOrPoisonElement() const { 331 return containsUndefinedElement( 332 this, [&](const auto *C) { return isa<UndefValue>(C); }); 333 } 334 335 bool Constant::containsPoisonElement() const { 336 return containsUndefinedElement( 337 this, [&](const auto *C) { return isa<PoisonValue>(C); }); 338 } 339 340 bool Constant::containsUndefElement() const { 341 return containsUndefinedElement(this, [&](const auto *C) { 342 return isa<UndefValue>(C) && !isa<PoisonValue>(C); 343 }); 344 } 345 346 bool Constant::containsConstantExpression() const { 347 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 348 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 349 if (isa<ConstantExpr>(getAggregateElement(i))) 350 return true; 351 } 352 return false; 353 } 354 355 /// Constructor to create a '0' constant of arbitrary type. 356 Constant *Constant::getNullValue(Type *Ty) { 357 switch (Ty->getTypeID()) { 358 case Type::IntegerTyID: 359 return ConstantInt::get(Ty, 0); 360 case Type::HalfTyID: 361 case Type::BFloatTyID: 362 case Type::FloatTyID: 363 case Type::DoubleTyID: 364 case Type::X86_FP80TyID: 365 case Type::FP128TyID: 366 case Type::PPC_FP128TyID: 367 return ConstantFP::get(Ty->getContext(), 368 APFloat::getZero(Ty->getFltSemantics())); 369 case Type::PointerTyID: 370 return ConstantPointerNull::get(cast<PointerType>(Ty)); 371 case Type::StructTyID: 372 case Type::ArrayTyID: 373 case Type::FixedVectorTyID: 374 case Type::ScalableVectorTyID: 375 return ConstantAggregateZero::get(Ty); 376 case Type::TokenTyID: 377 return ConstantTokenNone::get(Ty->getContext()); 378 case Type::TargetExtTyID: 379 return ConstantTargetNone::get(cast<TargetExtType>(Ty)); 380 default: 381 // Function, Label, or Opaque type? 382 llvm_unreachable("Cannot create a null constant of that type!"); 383 } 384 } 385 386 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { 387 Type *ScalarTy = Ty->getScalarType(); 388 389 // Create the base integer constant. 390 Constant *C = ConstantInt::get(Ty->getContext(), V); 391 392 // Convert an integer to a pointer, if necessary. 393 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy)) 394 C = ConstantExpr::getIntToPtr(C, PTy); 395 396 // Broadcast a scalar to a vector, if necessary. 397 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 398 C = ConstantVector::getSplat(VTy->getElementCount(), C); 399 400 return C; 401 } 402 403 Constant *Constant::getAllOnesValue(Type *Ty) { 404 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) 405 return ConstantInt::get(Ty->getContext(), 406 APInt::getAllOnes(ITy->getBitWidth())); 407 408 if (Ty->isFloatingPointTy()) { 409 APFloat FL = APFloat::getAllOnesValue(Ty->getFltSemantics()); 410 return ConstantFP::get(Ty->getContext(), FL); 411 } 412 413 VectorType *VTy = cast<VectorType>(Ty); 414 return ConstantVector::getSplat(VTy->getElementCount(), 415 getAllOnesValue(VTy->getElementType())); 416 } 417 418 Constant *Constant::getAggregateElement(unsigned Elt) const { 419 assert((getType()->isAggregateType() || getType()->isVectorTy()) && 420 "Must be an aggregate/vector constant"); 421 422 if (const auto *CC = dyn_cast<ConstantAggregate>(this)) 423 return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr; 424 425 if (const auto *CAZ = dyn_cast<ConstantAggregateZero>(this)) 426 return Elt < CAZ->getElementCount().getKnownMinValue() 427 ? CAZ->getElementValue(Elt) 428 : nullptr; 429 430 // FIXME: getNumElements() will fail for non-fixed vector types. 431 if (isa<ScalableVectorType>(getType())) 432 return nullptr; 433 434 if (const auto *PV = dyn_cast<PoisonValue>(this)) 435 return Elt < PV->getNumElements() ? PV->getElementValue(Elt) : nullptr; 436 437 if (const auto *UV = dyn_cast<UndefValue>(this)) 438 return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr; 439 440 if (const auto *CDS = dyn_cast<ConstantDataSequential>(this)) 441 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) 442 : nullptr; 443 444 return nullptr; 445 } 446 447 Constant *Constant::getAggregateElement(Constant *Elt) const { 448 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer"); 449 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) { 450 // Check if the constant fits into an uint64_t. 451 if (CI->getValue().getActiveBits() > 64) 452 return nullptr; 453 return getAggregateElement(CI->getZExtValue()); 454 } 455 return nullptr; 456 } 457 458 void Constant::destroyConstant() { 459 /// First call destroyConstantImpl on the subclass. This gives the subclass 460 /// a chance to remove the constant from any maps/pools it's contained in. 461 switch (getValueID()) { 462 default: 463 llvm_unreachable("Not a constant!"); 464 #define HANDLE_CONSTANT(Name) \ 465 case Value::Name##Val: \ 466 cast<Name>(this)->destroyConstantImpl(); \ 467 break; 468 #include "llvm/IR/Value.def" 469 } 470 471 // When a Constant is destroyed, there may be lingering 472 // references to the constant by other constants in the constant pool. These 473 // constants are implicitly dependent on the module that is being deleted, 474 // but they don't know that. Because we only find out when the CPV is 475 // deleted, we must now notify all of our users (that should only be 476 // Constants) that they are, in fact, invalid now and should be deleted. 477 // 478 while (!use_empty()) { 479 Value *V = user_back(); 480 #ifndef NDEBUG // Only in -g mode... 481 if (!isa<Constant>(V)) { 482 dbgs() << "While deleting: " << *this 483 << "\n\nUse still stuck around after Def is destroyed: " << *V 484 << "\n\n"; 485 } 486 #endif 487 assert(isa<Constant>(V) && "References remain to Constant being destroyed"); 488 cast<Constant>(V)->destroyConstant(); 489 490 // The constant should remove itself from our use list... 491 assert((use_empty() || user_back() != V) && "Constant not removed!"); 492 } 493 494 // Value has no outstanding references it is safe to delete it now... 495 deleteConstant(this); 496 } 497 498 void llvm::deleteConstant(Constant *C) { 499 switch (C->getValueID()) { 500 case Constant::ConstantIntVal: 501 delete static_cast<ConstantInt *>(C); 502 break; 503 case Constant::ConstantFPVal: 504 delete static_cast<ConstantFP *>(C); 505 break; 506 case Constant::ConstantAggregateZeroVal: 507 delete static_cast<ConstantAggregateZero *>(C); 508 break; 509 case Constant::ConstantArrayVal: 510 delete static_cast<ConstantArray *>(C); 511 break; 512 case Constant::ConstantStructVal: 513 delete static_cast<ConstantStruct *>(C); 514 break; 515 case Constant::ConstantVectorVal: 516 delete static_cast<ConstantVector *>(C); 517 break; 518 case Constant::ConstantPointerNullVal: 519 delete static_cast<ConstantPointerNull *>(C); 520 break; 521 case Constant::ConstantDataArrayVal: 522 delete static_cast<ConstantDataArray *>(C); 523 break; 524 case Constant::ConstantDataVectorVal: 525 delete static_cast<ConstantDataVector *>(C); 526 break; 527 case Constant::ConstantTokenNoneVal: 528 delete static_cast<ConstantTokenNone *>(C); 529 break; 530 case Constant::BlockAddressVal: 531 delete static_cast<BlockAddress *>(C); 532 break; 533 case Constant::DSOLocalEquivalentVal: 534 delete static_cast<DSOLocalEquivalent *>(C); 535 break; 536 case Constant::NoCFIValueVal: 537 delete static_cast<NoCFIValue *>(C); 538 break; 539 case Constant::UndefValueVal: 540 delete static_cast<UndefValue *>(C); 541 break; 542 case Constant::PoisonValueVal: 543 delete static_cast<PoisonValue *>(C); 544 break; 545 case Constant::ConstantExprVal: 546 if (isa<CastConstantExpr>(C)) 547 delete static_cast<CastConstantExpr *>(C); 548 else if (isa<BinaryConstantExpr>(C)) 549 delete static_cast<BinaryConstantExpr *>(C); 550 else if (isa<ExtractElementConstantExpr>(C)) 551 delete static_cast<ExtractElementConstantExpr *>(C); 552 else if (isa<InsertElementConstantExpr>(C)) 553 delete static_cast<InsertElementConstantExpr *>(C); 554 else if (isa<ShuffleVectorConstantExpr>(C)) 555 delete static_cast<ShuffleVectorConstantExpr *>(C); 556 else if (isa<GetElementPtrConstantExpr>(C)) 557 delete static_cast<GetElementPtrConstantExpr *>(C); 558 else if (isa<CompareConstantExpr>(C)) 559 delete static_cast<CompareConstantExpr *>(C); 560 else 561 llvm_unreachable("Unexpected constant expr"); 562 break; 563 default: 564 llvm_unreachable("Unexpected constant"); 565 } 566 } 567 568 /// Check if C contains a GlobalValue for which Predicate is true. 569 static bool 570 ConstHasGlobalValuePredicate(const Constant *C, 571 bool (*Predicate)(const GlobalValue *)) { 572 SmallPtrSet<const Constant *, 8> Visited; 573 SmallVector<const Constant *, 8> WorkList; 574 WorkList.push_back(C); 575 Visited.insert(C); 576 577 while (!WorkList.empty()) { 578 const Constant *WorkItem = WorkList.pop_back_val(); 579 if (const auto *GV = dyn_cast<GlobalValue>(WorkItem)) 580 if (Predicate(GV)) 581 return true; 582 for (const Value *Op : WorkItem->operands()) { 583 const Constant *ConstOp = dyn_cast<Constant>(Op); 584 if (!ConstOp) 585 continue; 586 if (Visited.insert(ConstOp).second) 587 WorkList.push_back(ConstOp); 588 } 589 } 590 return false; 591 } 592 593 bool Constant::isThreadDependent() const { 594 auto DLLImportPredicate = [](const GlobalValue *GV) { 595 return GV->isThreadLocal(); 596 }; 597 return ConstHasGlobalValuePredicate(this, DLLImportPredicate); 598 } 599 600 bool Constant::isDLLImportDependent() const { 601 auto DLLImportPredicate = [](const GlobalValue *GV) { 602 return GV->hasDLLImportStorageClass(); 603 }; 604 return ConstHasGlobalValuePredicate(this, DLLImportPredicate); 605 } 606 607 bool Constant::isConstantUsed() const { 608 for (const User *U : users()) { 609 const Constant *UC = dyn_cast<Constant>(U); 610 if (!UC || isa<GlobalValue>(UC)) 611 return true; 612 613 if (UC->isConstantUsed()) 614 return true; 615 } 616 return false; 617 } 618 619 bool Constant::needsDynamicRelocation() const { 620 return getRelocationInfo() == GlobalRelocation; 621 } 622 623 bool Constant::needsRelocation() const { 624 return getRelocationInfo() != NoRelocation; 625 } 626 627 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const { 628 if (isa<GlobalValue>(this)) 629 return GlobalRelocation; // Global reference. 630 631 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this)) 632 return BA->getFunction()->getRelocationInfo(); 633 634 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) { 635 if (CE->getOpcode() == Instruction::Sub) { 636 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0)); 637 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1)); 638 if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt && 639 RHS->getOpcode() == Instruction::PtrToInt) { 640 Constant *LHSOp0 = LHS->getOperand(0); 641 Constant *RHSOp0 = RHS->getOperand(0); 642 643 // While raw uses of blockaddress need to be relocated, differences 644 // between two of them don't when they are for labels in the same 645 // function. This is a common idiom when creating a table for the 646 // indirect goto extension, so we handle it efficiently here. 647 if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) && 648 cast<BlockAddress>(LHSOp0)->getFunction() == 649 cast<BlockAddress>(RHSOp0)->getFunction()) 650 return NoRelocation; 651 652 // Relative pointers do not need to be dynamically relocated. 653 if (auto *RHSGV = 654 dyn_cast<GlobalValue>(RHSOp0->stripInBoundsConstantOffsets())) { 655 auto *LHS = LHSOp0->stripInBoundsConstantOffsets(); 656 if (auto *LHSGV = dyn_cast<GlobalValue>(LHS)) { 657 if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal()) 658 return LocalRelocation; 659 } else if (isa<DSOLocalEquivalent>(LHS)) { 660 if (RHSGV->isDSOLocal()) 661 return LocalRelocation; 662 } 663 } 664 } 665 } 666 } 667 668 PossibleRelocationsTy Result = NoRelocation; 669 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 670 Result = 671 std::max(cast<Constant>(getOperand(i))->getRelocationInfo(), Result); 672 673 return Result; 674 } 675 676 /// Return true if the specified constantexpr is dead. This involves 677 /// recursively traversing users of the constantexpr. 678 /// If RemoveDeadUsers is true, also remove dead users at the same time. 679 static bool constantIsDead(const Constant *C, bool RemoveDeadUsers) { 680 if (isa<GlobalValue>(C)) return false; // Cannot remove this 681 682 Value::const_user_iterator I = C->user_begin(), E = C->user_end(); 683 while (I != E) { 684 const Constant *User = dyn_cast<Constant>(*I); 685 if (!User) return false; // Non-constant usage; 686 if (!constantIsDead(User, RemoveDeadUsers)) 687 return false; // Constant wasn't dead 688 689 // Just removed User, so the iterator was invalidated. 690 // Since we return immediately upon finding a live user, we can always 691 // restart from user_begin(). 692 if (RemoveDeadUsers) 693 I = C->user_begin(); 694 else 695 ++I; 696 } 697 698 if (RemoveDeadUsers) { 699 // If C is only used by metadata, it should not be preserved but should 700 // have its uses replaced. 701 ReplaceableMetadataImpl::SalvageDebugInfo(*C); 702 const_cast<Constant *>(C)->destroyConstant(); 703 } 704 705 return true; 706 } 707 708 void Constant::removeDeadConstantUsers() const { 709 Value::const_user_iterator I = user_begin(), E = user_end(); 710 Value::const_user_iterator LastNonDeadUser = E; 711 while (I != E) { 712 const Constant *User = dyn_cast<Constant>(*I); 713 if (!User) { 714 LastNonDeadUser = I; 715 ++I; 716 continue; 717 } 718 719 if (!constantIsDead(User, /* RemoveDeadUsers= */ true)) { 720 // If the constant wasn't dead, remember that this was the last live use 721 // and move on to the next constant. 722 LastNonDeadUser = I; 723 ++I; 724 continue; 725 } 726 727 // If the constant was dead, then the iterator is invalidated. 728 if (LastNonDeadUser == E) 729 I = user_begin(); 730 else 731 I = std::next(LastNonDeadUser); 732 } 733 } 734 735 bool Constant::hasOneLiveUse() const { return hasNLiveUses(1); } 736 737 bool Constant::hasZeroLiveUses() const { return hasNLiveUses(0); } 738 739 bool Constant::hasNLiveUses(unsigned N) const { 740 unsigned NumUses = 0; 741 for (const Use &U : uses()) { 742 const Constant *User = dyn_cast<Constant>(U.getUser()); 743 if (!User || !constantIsDead(User, /* RemoveDeadUsers= */ false)) { 744 ++NumUses; 745 746 if (NumUses > N) 747 return false; 748 } 749 } 750 return NumUses == N; 751 } 752 753 Constant *Constant::replaceUndefsWith(Constant *C, Constant *Replacement) { 754 assert(C && Replacement && "Expected non-nullptr constant arguments"); 755 Type *Ty = C->getType(); 756 if (match(C, m_Undef())) { 757 assert(Ty == Replacement->getType() && "Expected matching types"); 758 return Replacement; 759 } 760 761 // Don't know how to deal with this constant. 762 auto *VTy = dyn_cast<FixedVectorType>(Ty); 763 if (!VTy) 764 return C; 765 766 unsigned NumElts = VTy->getNumElements(); 767 SmallVector<Constant *, 32> NewC(NumElts); 768 for (unsigned i = 0; i != NumElts; ++i) { 769 Constant *EltC = C->getAggregateElement(i); 770 assert((!EltC || EltC->getType() == Replacement->getType()) && 771 "Expected matching types"); 772 NewC[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC; 773 } 774 return ConstantVector::get(NewC); 775 } 776 777 Constant *Constant::mergeUndefsWith(Constant *C, Constant *Other) { 778 assert(C && Other && "Expected non-nullptr constant arguments"); 779 if (match(C, m_Undef())) 780 return C; 781 782 Type *Ty = C->getType(); 783 if (match(Other, m_Undef())) 784 return UndefValue::get(Ty); 785 786 auto *VTy = dyn_cast<FixedVectorType>(Ty); 787 if (!VTy) 788 return C; 789 790 Type *EltTy = VTy->getElementType(); 791 unsigned NumElts = VTy->getNumElements(); 792 assert(isa<FixedVectorType>(Other->getType()) && 793 cast<FixedVectorType>(Other->getType())->getNumElements() == NumElts && 794 "Type mismatch"); 795 796 bool FoundExtraUndef = false; 797 SmallVector<Constant *, 32> NewC(NumElts); 798 for (unsigned I = 0; I != NumElts; ++I) { 799 NewC[I] = C->getAggregateElement(I); 800 Constant *OtherEltC = Other->getAggregateElement(I); 801 assert(NewC[I] && OtherEltC && "Unknown vector element"); 802 if (!match(NewC[I], m_Undef()) && match(OtherEltC, m_Undef())) { 803 NewC[I] = UndefValue::get(EltTy); 804 FoundExtraUndef = true; 805 } 806 } 807 if (FoundExtraUndef) 808 return ConstantVector::get(NewC); 809 return C; 810 } 811 812 bool Constant::isManifestConstant() const { 813 if (isa<ConstantData>(this)) 814 return true; 815 if (isa<ConstantAggregate>(this) || isa<ConstantExpr>(this)) { 816 for (const Value *Op : operand_values()) 817 if (!cast<Constant>(Op)->isManifestConstant()) 818 return false; 819 return true; 820 } 821 return false; 822 } 823 824 //===----------------------------------------------------------------------===// 825 // ConstantInt 826 //===----------------------------------------------------------------------===// 827 828 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V) 829 : ConstantData(Ty, ConstantIntVal), Val(V) { 830 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); 831 } 832 833 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) { 834 LLVMContextImpl *pImpl = Context.pImpl; 835 if (!pImpl->TheTrueVal) 836 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1); 837 return pImpl->TheTrueVal; 838 } 839 840 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { 841 LLVMContextImpl *pImpl = Context.pImpl; 842 if (!pImpl->TheFalseVal) 843 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0); 844 return pImpl->TheFalseVal; 845 } 846 847 ConstantInt *ConstantInt::getBool(LLVMContext &Context, bool V) { 848 return V ? getTrue(Context) : getFalse(Context); 849 } 850 851 Constant *ConstantInt::getTrue(Type *Ty) { 852 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); 853 ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext()); 854 if (auto *VTy = dyn_cast<VectorType>(Ty)) 855 return ConstantVector::getSplat(VTy->getElementCount(), TrueC); 856 return TrueC; 857 } 858 859 Constant *ConstantInt::getFalse(Type *Ty) { 860 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); 861 ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext()); 862 if (auto *VTy = dyn_cast<VectorType>(Ty)) 863 return ConstantVector::getSplat(VTy->getElementCount(), FalseC); 864 return FalseC; 865 } 866 867 Constant *ConstantInt::getBool(Type *Ty, bool V) { 868 return V ? getTrue(Ty) : getFalse(Ty); 869 } 870 871 // Get a ConstantInt from an APInt. 872 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { 873 // get an existing value or the insertion position 874 LLVMContextImpl *pImpl = Context.pImpl; 875 std::unique_ptr<ConstantInt> &Slot = 876 V.isZero() ? pImpl->IntZeroConstants[V.getBitWidth()] 877 : V.isOne() ? pImpl->IntOneConstants[V.getBitWidth()] 878 : pImpl->IntConstants[V]; 879 if (!Slot) { 880 // Get the corresponding integer type for the bit width of the value. 881 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); 882 Slot.reset(new ConstantInt(ITy, V)); 883 } 884 assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth())); 885 return Slot.get(); 886 } 887 888 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { 889 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned); 890 891 // For vectors, broadcast the value. 892 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 893 return ConstantVector::getSplat(VTy->getElementCount(), C); 894 895 return C; 896 } 897 898 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) { 899 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); 900 } 901 902 Constant *ConstantInt::get(Type *Ty, const APInt& V) { 903 ConstantInt *C = get(Ty->getContext(), V); 904 assert(C->getType() == Ty->getScalarType() && 905 "ConstantInt type doesn't match the type implied by its value!"); 906 907 // For vectors, broadcast the value. 908 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 909 return ConstantVector::getSplat(VTy->getElementCount(), C); 910 911 return C; 912 } 913 914 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) { 915 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); 916 } 917 918 /// Remove the constant from the constant table. 919 void ConstantInt::destroyConstantImpl() { 920 llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!"); 921 } 922 923 //===----------------------------------------------------------------------===// 924 // ConstantFP 925 //===----------------------------------------------------------------------===// 926 927 Constant *ConstantFP::get(Type *Ty, double V) { 928 LLVMContext &Context = Ty->getContext(); 929 930 APFloat FV(V); 931 bool ignored; 932 FV.convert(Ty->getScalarType()->getFltSemantics(), 933 APFloat::rmNearestTiesToEven, &ignored); 934 Constant *C = get(Context, FV); 935 936 // For vectors, broadcast the value. 937 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 938 return ConstantVector::getSplat(VTy->getElementCount(), C); 939 940 return C; 941 } 942 943 Constant *ConstantFP::get(Type *Ty, const APFloat &V) { 944 ConstantFP *C = get(Ty->getContext(), V); 945 assert(C->getType() == Ty->getScalarType() && 946 "ConstantFP type doesn't match the type implied by its value!"); 947 948 // For vectors, broadcast the value. 949 if (auto *VTy = dyn_cast<VectorType>(Ty)) 950 return ConstantVector::getSplat(VTy->getElementCount(), C); 951 952 return C; 953 } 954 955 Constant *ConstantFP::get(Type *Ty, StringRef Str) { 956 LLVMContext &Context = Ty->getContext(); 957 958 APFloat FV(Ty->getScalarType()->getFltSemantics(), Str); 959 Constant *C = get(Context, FV); 960 961 // For vectors, broadcast the value. 962 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 963 return ConstantVector::getSplat(VTy->getElementCount(), C); 964 965 return C; 966 } 967 968 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) { 969 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 970 APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload); 971 Constant *C = get(Ty->getContext(), NaN); 972 973 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 974 return ConstantVector::getSplat(VTy->getElementCount(), C); 975 976 return C; 977 } 978 979 Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) { 980 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 981 APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload); 982 Constant *C = get(Ty->getContext(), NaN); 983 984 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 985 return ConstantVector::getSplat(VTy->getElementCount(), C); 986 987 return C; 988 } 989 990 Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) { 991 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 992 APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload); 993 Constant *C = get(Ty->getContext(), NaN); 994 995 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 996 return ConstantVector::getSplat(VTy->getElementCount(), C); 997 998 return C; 999 } 1000 1001 Constant *ConstantFP::getZero(Type *Ty, bool Negative) { 1002 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 1003 APFloat NegZero = APFloat::getZero(Semantics, Negative); 1004 Constant *C = get(Ty->getContext(), NegZero); 1005 1006 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1007 return ConstantVector::getSplat(VTy->getElementCount(), C); 1008 1009 return C; 1010 } 1011 1012 1013 // ConstantFP accessors. 1014 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { 1015 LLVMContextImpl* pImpl = Context.pImpl; 1016 1017 std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V]; 1018 1019 if (!Slot) { 1020 Type *Ty = Type::getFloatingPointTy(Context, V.getSemantics()); 1021 Slot.reset(new ConstantFP(Ty, V)); 1022 } 1023 1024 return Slot.get(); 1025 } 1026 1027 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) { 1028 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 1029 Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative)); 1030 1031 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1032 return ConstantVector::getSplat(VTy->getElementCount(), C); 1033 1034 return C; 1035 } 1036 1037 ConstantFP::ConstantFP(Type *Ty, const APFloat &V) 1038 : ConstantData(Ty, ConstantFPVal), Val(V) { 1039 assert(&V.getSemantics() == &Ty->getFltSemantics() && 1040 "FP type Mismatch"); 1041 } 1042 1043 bool ConstantFP::isExactlyValue(const APFloat &V) const { 1044 return Val.bitwiseIsEqual(V); 1045 } 1046 1047 /// Remove the constant from the constant table. 1048 void ConstantFP::destroyConstantImpl() { 1049 llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!"); 1050 } 1051 1052 //===----------------------------------------------------------------------===// 1053 // ConstantAggregateZero Implementation 1054 //===----------------------------------------------------------------------===// 1055 1056 Constant *ConstantAggregateZero::getSequentialElement() const { 1057 if (auto *AT = dyn_cast<ArrayType>(getType())) 1058 return Constant::getNullValue(AT->getElementType()); 1059 return Constant::getNullValue(cast<VectorType>(getType())->getElementType()); 1060 } 1061 1062 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const { 1063 return Constant::getNullValue(getType()->getStructElementType(Elt)); 1064 } 1065 1066 Constant *ConstantAggregateZero::getElementValue(Constant *C) const { 1067 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1068 return getSequentialElement(); 1069 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 1070 } 1071 1072 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const { 1073 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1074 return getSequentialElement(); 1075 return getStructElement(Idx); 1076 } 1077 1078 ElementCount ConstantAggregateZero::getElementCount() const { 1079 Type *Ty = getType(); 1080 if (auto *AT = dyn_cast<ArrayType>(Ty)) 1081 return ElementCount::getFixed(AT->getNumElements()); 1082 if (auto *VT = dyn_cast<VectorType>(Ty)) 1083 return VT->getElementCount(); 1084 return ElementCount::getFixed(Ty->getStructNumElements()); 1085 } 1086 1087 //===----------------------------------------------------------------------===// 1088 // UndefValue Implementation 1089 //===----------------------------------------------------------------------===// 1090 1091 UndefValue *UndefValue::getSequentialElement() const { 1092 if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) 1093 return UndefValue::get(ATy->getElementType()); 1094 return UndefValue::get(cast<VectorType>(getType())->getElementType()); 1095 } 1096 1097 UndefValue *UndefValue::getStructElement(unsigned Elt) const { 1098 return UndefValue::get(getType()->getStructElementType(Elt)); 1099 } 1100 1101 UndefValue *UndefValue::getElementValue(Constant *C) const { 1102 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1103 return getSequentialElement(); 1104 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 1105 } 1106 1107 UndefValue *UndefValue::getElementValue(unsigned Idx) const { 1108 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1109 return getSequentialElement(); 1110 return getStructElement(Idx); 1111 } 1112 1113 unsigned UndefValue::getNumElements() const { 1114 Type *Ty = getType(); 1115 if (auto *AT = dyn_cast<ArrayType>(Ty)) 1116 return AT->getNumElements(); 1117 if (auto *VT = dyn_cast<VectorType>(Ty)) 1118 return cast<FixedVectorType>(VT)->getNumElements(); 1119 return Ty->getStructNumElements(); 1120 } 1121 1122 //===----------------------------------------------------------------------===// 1123 // PoisonValue Implementation 1124 //===----------------------------------------------------------------------===// 1125 1126 PoisonValue *PoisonValue::getSequentialElement() const { 1127 if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) 1128 return PoisonValue::get(ATy->getElementType()); 1129 return PoisonValue::get(cast<VectorType>(getType())->getElementType()); 1130 } 1131 1132 PoisonValue *PoisonValue::getStructElement(unsigned Elt) const { 1133 return PoisonValue::get(getType()->getStructElementType(Elt)); 1134 } 1135 1136 PoisonValue *PoisonValue::getElementValue(Constant *C) const { 1137 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1138 return getSequentialElement(); 1139 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 1140 } 1141 1142 PoisonValue *PoisonValue::getElementValue(unsigned Idx) const { 1143 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1144 return getSequentialElement(); 1145 return getStructElement(Idx); 1146 } 1147 1148 //===----------------------------------------------------------------------===// 1149 // ConstantXXX Classes 1150 //===----------------------------------------------------------------------===// 1151 1152 template <typename ItTy, typename EltTy> 1153 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) { 1154 for (; Start != End; ++Start) 1155 if (*Start != Elt) 1156 return false; 1157 return true; 1158 } 1159 1160 template <typename SequentialTy, typename ElementTy> 1161 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) { 1162 assert(!V.empty() && "Cannot get empty int sequence."); 1163 1164 SmallVector<ElementTy, 16> Elts; 1165 for (Constant *C : V) 1166 if (auto *CI = dyn_cast<ConstantInt>(C)) 1167 Elts.push_back(CI->getZExtValue()); 1168 else 1169 return nullptr; 1170 return SequentialTy::get(V[0]->getContext(), Elts); 1171 } 1172 1173 template <typename SequentialTy, typename ElementTy> 1174 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) { 1175 assert(!V.empty() && "Cannot get empty FP sequence."); 1176 1177 SmallVector<ElementTy, 16> Elts; 1178 for (Constant *C : V) 1179 if (auto *CFP = dyn_cast<ConstantFP>(C)) 1180 Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 1181 else 1182 return nullptr; 1183 return SequentialTy::getFP(V[0]->getType(), Elts); 1184 } 1185 1186 template <typename SequenceTy> 1187 static Constant *getSequenceIfElementsMatch(Constant *C, 1188 ArrayRef<Constant *> V) { 1189 // We speculatively build the elements here even if it turns out that there is 1190 // a constantexpr or something else weird, since it is so uncommon for that to 1191 // happen. 1192 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 1193 if (CI->getType()->isIntegerTy(8)) 1194 return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V); 1195 else if (CI->getType()->isIntegerTy(16)) 1196 return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V); 1197 else if (CI->getType()->isIntegerTy(32)) 1198 return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V); 1199 else if (CI->getType()->isIntegerTy(64)) 1200 return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V); 1201 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1202 if (CFP->getType()->isHalfTy() || CFP->getType()->isBFloatTy()) 1203 return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V); 1204 else if (CFP->getType()->isFloatTy()) 1205 return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V); 1206 else if (CFP->getType()->isDoubleTy()) 1207 return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V); 1208 } 1209 1210 return nullptr; 1211 } 1212 1213 ConstantAggregate::ConstantAggregate(Type *T, ValueTy VT, 1214 ArrayRef<Constant *> V) 1215 : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(), 1216 V.size()) { 1217 llvm::copy(V, op_begin()); 1218 1219 // Check that types match, unless this is an opaque struct. 1220 if (auto *ST = dyn_cast<StructType>(T)) { 1221 if (ST->isOpaque()) 1222 return; 1223 for (unsigned I = 0, E = V.size(); I != E; ++I) 1224 assert(V[I]->getType() == ST->getTypeAtIndex(I) && 1225 "Initializer for struct element doesn't match!"); 1226 } 1227 } 1228 1229 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) 1230 : ConstantAggregate(T, ConstantArrayVal, V) { 1231 assert(V.size() == T->getNumElements() && 1232 "Invalid initializer for constant array"); 1233 } 1234 1235 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) { 1236 if (Constant *C = getImpl(Ty, V)) 1237 return C; 1238 return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V); 1239 } 1240 1241 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) { 1242 // Empty arrays are canonicalized to ConstantAggregateZero. 1243 if (V.empty()) 1244 return ConstantAggregateZero::get(Ty); 1245 1246 for (Constant *C : V) { 1247 assert(C->getType() == Ty->getElementType() && 1248 "Wrong type in array element initializer"); 1249 (void)C; 1250 } 1251 1252 // If this is an all-zero array, return a ConstantAggregateZero object. If 1253 // all undef, return an UndefValue, if "all simple", then return a 1254 // ConstantDataArray. 1255 Constant *C = V[0]; 1256 if (isa<PoisonValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) 1257 return PoisonValue::get(Ty); 1258 1259 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) 1260 return UndefValue::get(Ty); 1261 1262 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C)) 1263 return ConstantAggregateZero::get(Ty); 1264 1265 // Check to see if all of the elements are ConstantFP or ConstantInt and if 1266 // the element type is compatible with ConstantDataVector. If so, use it. 1267 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) 1268 return getSequenceIfElementsMatch<ConstantDataArray>(C, V); 1269 1270 // Otherwise, we really do want to create a ConstantArray. 1271 return nullptr; 1272 } 1273 1274 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, 1275 ArrayRef<Constant*> V, 1276 bool Packed) { 1277 unsigned VecSize = V.size(); 1278 SmallVector<Type*, 16> EltTypes(VecSize); 1279 for (unsigned i = 0; i != VecSize; ++i) 1280 EltTypes[i] = V[i]->getType(); 1281 1282 return StructType::get(Context, EltTypes, Packed); 1283 } 1284 1285 1286 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V, 1287 bool Packed) { 1288 assert(!V.empty() && 1289 "ConstantStruct::getTypeForElements cannot be called on empty list"); 1290 return getTypeForElements(V[0]->getContext(), V, Packed); 1291 } 1292 1293 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V) 1294 : ConstantAggregate(T, ConstantStructVal, V) { 1295 assert((T->isOpaque() || V.size() == T->getNumElements()) && 1296 "Invalid initializer for constant struct"); 1297 } 1298 1299 // ConstantStruct accessors. 1300 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) { 1301 assert((ST->isOpaque() || ST->getNumElements() == V.size()) && 1302 "Incorrect # elements specified to ConstantStruct::get"); 1303 1304 // Create a ConstantAggregateZero value if all elements are zeros. 1305 bool isZero = true; 1306 bool isUndef = false; 1307 bool isPoison = false; 1308 1309 if (!V.empty()) { 1310 isUndef = isa<UndefValue>(V[0]); 1311 isPoison = isa<PoisonValue>(V[0]); 1312 isZero = V[0]->isNullValue(); 1313 // PoisonValue inherits UndefValue, so its check is not necessary. 1314 if (isUndef || isZero) { 1315 for (Constant *C : V) { 1316 if (!C->isNullValue()) 1317 isZero = false; 1318 if (!isa<PoisonValue>(C)) 1319 isPoison = false; 1320 if (isa<PoisonValue>(C) || !isa<UndefValue>(C)) 1321 isUndef = false; 1322 } 1323 } 1324 } 1325 if (isZero) 1326 return ConstantAggregateZero::get(ST); 1327 if (isPoison) 1328 return PoisonValue::get(ST); 1329 if (isUndef) 1330 return UndefValue::get(ST); 1331 1332 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); 1333 } 1334 1335 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V) 1336 : ConstantAggregate(T, ConstantVectorVal, V) { 1337 assert(V.size() == cast<FixedVectorType>(T)->getNumElements() && 1338 "Invalid initializer for constant vector"); 1339 } 1340 1341 // ConstantVector accessors. 1342 Constant *ConstantVector::get(ArrayRef<Constant*> V) { 1343 if (Constant *C = getImpl(V)) 1344 return C; 1345 auto *Ty = FixedVectorType::get(V.front()->getType(), V.size()); 1346 return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V); 1347 } 1348 1349 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) { 1350 assert(!V.empty() && "Vectors can't be empty"); 1351 auto *T = FixedVectorType::get(V.front()->getType(), V.size()); 1352 1353 // If this is an all-undef or all-zero vector, return a 1354 // ConstantAggregateZero or UndefValue. 1355 Constant *C = V[0]; 1356 bool isZero = C->isNullValue(); 1357 bool isUndef = isa<UndefValue>(C); 1358 bool isPoison = isa<PoisonValue>(C); 1359 1360 if (isZero || isUndef) { 1361 for (unsigned i = 1, e = V.size(); i != e; ++i) 1362 if (V[i] != C) { 1363 isZero = isUndef = isPoison = false; 1364 break; 1365 } 1366 } 1367 1368 if (isZero) 1369 return ConstantAggregateZero::get(T); 1370 if (isPoison) 1371 return PoisonValue::get(T); 1372 if (isUndef) 1373 return UndefValue::get(T); 1374 1375 // Check to see if all of the elements are ConstantFP or ConstantInt and if 1376 // the element type is compatible with ConstantDataVector. If so, use it. 1377 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) 1378 return getSequenceIfElementsMatch<ConstantDataVector>(C, V); 1379 1380 // Otherwise, the element type isn't compatible with ConstantDataVector, or 1381 // the operand list contains a ConstantExpr or something else strange. 1382 return nullptr; 1383 } 1384 1385 Constant *ConstantVector::getSplat(ElementCount EC, Constant *V) { 1386 if (!EC.isScalable()) { 1387 // If this splat is compatible with ConstantDataVector, use it instead of 1388 // ConstantVector. 1389 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) && 1390 ConstantDataSequential::isElementTypeCompatible(V->getType())) 1391 return ConstantDataVector::getSplat(EC.getKnownMinValue(), V); 1392 1393 SmallVector<Constant *, 32> Elts(EC.getKnownMinValue(), V); 1394 return get(Elts); 1395 } 1396 1397 Type *VTy = VectorType::get(V->getType(), EC); 1398 1399 if (V->isNullValue()) 1400 return ConstantAggregateZero::get(VTy); 1401 else if (isa<UndefValue>(V)) 1402 return UndefValue::get(VTy); 1403 1404 Type *IdxTy = Type::getInt64Ty(VTy->getContext()); 1405 1406 // Move scalar into vector. 1407 Constant *PoisonV = PoisonValue::get(VTy); 1408 V = ConstantExpr::getInsertElement(PoisonV, V, ConstantInt::get(IdxTy, 0)); 1409 // Build shuffle mask to perform the splat. 1410 SmallVector<int, 8> Zeros(EC.getKnownMinValue(), 0); 1411 // Splat. 1412 return ConstantExpr::getShuffleVector(V, PoisonV, Zeros); 1413 } 1414 1415 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) { 1416 LLVMContextImpl *pImpl = Context.pImpl; 1417 if (!pImpl->TheNoneToken) 1418 pImpl->TheNoneToken.reset(new ConstantTokenNone(Context)); 1419 return pImpl->TheNoneToken.get(); 1420 } 1421 1422 /// Remove the constant from the constant table. 1423 void ConstantTokenNone::destroyConstantImpl() { 1424 llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!"); 1425 } 1426 1427 // Utility function for determining if a ConstantExpr is a CastOp or not. This 1428 // can't be inline because we don't want to #include Instruction.h into 1429 // Constant.h 1430 bool ConstantExpr::isCast() const { 1431 return Instruction::isCast(getOpcode()); 1432 } 1433 1434 bool ConstantExpr::isCompare() const { 1435 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; 1436 } 1437 1438 unsigned ConstantExpr::getPredicate() const { 1439 return cast<CompareConstantExpr>(this)->predicate; 1440 } 1441 1442 ArrayRef<int> ConstantExpr::getShuffleMask() const { 1443 return cast<ShuffleVectorConstantExpr>(this)->ShuffleMask; 1444 } 1445 1446 Constant *ConstantExpr::getShuffleMaskForBitcode() const { 1447 return cast<ShuffleVectorConstantExpr>(this)->ShuffleMaskForBitcode; 1448 } 1449 1450 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, 1451 bool OnlyIfReduced, Type *SrcTy) const { 1452 assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); 1453 1454 // If no operands changed return self. 1455 if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin())) 1456 return const_cast<ConstantExpr*>(this); 1457 1458 Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr; 1459 switch (getOpcode()) { 1460 case Instruction::Trunc: 1461 case Instruction::ZExt: 1462 case Instruction::SExt: 1463 case Instruction::FPTrunc: 1464 case Instruction::FPExt: 1465 case Instruction::UIToFP: 1466 case Instruction::SIToFP: 1467 case Instruction::FPToUI: 1468 case Instruction::FPToSI: 1469 case Instruction::PtrToInt: 1470 case Instruction::IntToPtr: 1471 case Instruction::BitCast: 1472 case Instruction::AddrSpaceCast: 1473 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced); 1474 case Instruction::InsertElement: 1475 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2], 1476 OnlyIfReducedTy); 1477 case Instruction::ExtractElement: 1478 return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy); 1479 case Instruction::ShuffleVector: 1480 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], getShuffleMask(), 1481 OnlyIfReducedTy); 1482 case Instruction::GetElementPtr: { 1483 auto *GEPO = cast<GEPOperator>(this); 1484 assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType())); 1485 return ConstantExpr::getGetElementPtr( 1486 SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1), 1487 GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy); 1488 } 1489 case Instruction::ICmp: 1490 case Instruction::FCmp: 1491 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1], 1492 OnlyIfReducedTy); 1493 default: 1494 assert(getNumOperands() == 2 && "Must be binary operator?"); 1495 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData, 1496 OnlyIfReducedTy); 1497 } 1498 } 1499 1500 1501 //===----------------------------------------------------------------------===// 1502 // isValueValidForType implementations 1503 1504 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { 1505 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay 1506 if (Ty->isIntegerTy(1)) 1507 return Val == 0 || Val == 1; 1508 return isUIntN(NumBits, Val); 1509 } 1510 1511 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) { 1512 unsigned NumBits = Ty->getIntegerBitWidth(); 1513 if (Ty->isIntegerTy(1)) 1514 return Val == 0 || Val == 1 || Val == -1; 1515 return isIntN(NumBits, Val); 1516 } 1517 1518 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { 1519 // convert modifies in place, so make a copy. 1520 APFloat Val2 = APFloat(Val); 1521 bool losesInfo; 1522 switch (Ty->getTypeID()) { 1523 default: 1524 return false; // These can't be represented as floating point! 1525 1526 // FIXME rounding mode needs to be more flexible 1527 case Type::HalfTyID: { 1528 if (&Val2.getSemantics() == &APFloat::IEEEhalf()) 1529 return true; 1530 Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo); 1531 return !losesInfo; 1532 } 1533 case Type::BFloatTyID: { 1534 if (&Val2.getSemantics() == &APFloat::BFloat()) 1535 return true; 1536 Val2.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, &losesInfo); 1537 return !losesInfo; 1538 } 1539 case Type::FloatTyID: { 1540 if (&Val2.getSemantics() == &APFloat::IEEEsingle()) 1541 return true; 1542 Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo); 1543 return !losesInfo; 1544 } 1545 case Type::DoubleTyID: { 1546 if (&Val2.getSemantics() == &APFloat::IEEEhalf() || 1547 &Val2.getSemantics() == &APFloat::BFloat() || 1548 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1549 &Val2.getSemantics() == &APFloat::IEEEdouble()) 1550 return true; 1551 Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo); 1552 return !losesInfo; 1553 } 1554 case Type::X86_FP80TyID: 1555 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1556 &Val2.getSemantics() == &APFloat::BFloat() || 1557 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1558 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1559 &Val2.getSemantics() == &APFloat::x87DoubleExtended(); 1560 case Type::FP128TyID: 1561 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1562 &Val2.getSemantics() == &APFloat::BFloat() || 1563 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1564 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1565 &Val2.getSemantics() == &APFloat::IEEEquad(); 1566 case Type::PPC_FP128TyID: 1567 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1568 &Val2.getSemantics() == &APFloat::BFloat() || 1569 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1570 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1571 &Val2.getSemantics() == &APFloat::PPCDoubleDouble(); 1572 } 1573 } 1574 1575 1576 //===----------------------------------------------------------------------===// 1577 // Factory Function Implementation 1578 1579 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) { 1580 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && 1581 "Cannot create an aggregate zero of non-aggregate type!"); 1582 1583 std::unique_ptr<ConstantAggregateZero> &Entry = 1584 Ty->getContext().pImpl->CAZConstants[Ty]; 1585 if (!Entry) 1586 Entry.reset(new ConstantAggregateZero(Ty)); 1587 1588 return Entry.get(); 1589 } 1590 1591 /// Remove the constant from the constant table. 1592 void ConstantAggregateZero::destroyConstantImpl() { 1593 getContext().pImpl->CAZConstants.erase(getType()); 1594 } 1595 1596 /// Remove the constant from the constant table. 1597 void ConstantArray::destroyConstantImpl() { 1598 getType()->getContext().pImpl->ArrayConstants.remove(this); 1599 } 1600 1601 1602 //---- ConstantStruct::get() implementation... 1603 // 1604 1605 /// Remove the constant from the constant table. 1606 void ConstantStruct::destroyConstantImpl() { 1607 getType()->getContext().pImpl->StructConstants.remove(this); 1608 } 1609 1610 /// Remove the constant from the constant table. 1611 void ConstantVector::destroyConstantImpl() { 1612 getType()->getContext().pImpl->VectorConstants.remove(this); 1613 } 1614 1615 Constant *Constant::getSplatValue(bool AllowUndefs) const { 1616 assert(this->getType()->isVectorTy() && "Only valid for vectors!"); 1617 if (isa<ConstantAggregateZero>(this)) 1618 return getNullValue(cast<VectorType>(getType())->getElementType()); 1619 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 1620 return CV->getSplatValue(); 1621 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 1622 return CV->getSplatValue(AllowUndefs); 1623 1624 // Check if this is a constant expression splat of the form returned by 1625 // ConstantVector::getSplat() 1626 const auto *Shuf = dyn_cast<ConstantExpr>(this); 1627 if (Shuf && Shuf->getOpcode() == Instruction::ShuffleVector && 1628 isa<UndefValue>(Shuf->getOperand(1))) { 1629 1630 const auto *IElt = dyn_cast<ConstantExpr>(Shuf->getOperand(0)); 1631 if (IElt && IElt->getOpcode() == Instruction::InsertElement && 1632 isa<UndefValue>(IElt->getOperand(0))) { 1633 1634 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1635 Constant *SplatVal = IElt->getOperand(1); 1636 ConstantInt *Index = dyn_cast<ConstantInt>(IElt->getOperand(2)); 1637 1638 if (Index && Index->getValue() == 0 && 1639 llvm::all_of(Mask, [](int I) { return I == 0; })) 1640 return SplatVal; 1641 } 1642 } 1643 1644 return nullptr; 1645 } 1646 1647 Constant *ConstantVector::getSplatValue(bool AllowUndefs) const { 1648 // Check out first element. 1649 Constant *Elt = getOperand(0); 1650 // Then make sure all remaining elements point to the same value. 1651 for (unsigned I = 1, E = getNumOperands(); I < E; ++I) { 1652 Constant *OpC = getOperand(I); 1653 if (OpC == Elt) 1654 continue; 1655 1656 // Strict mode: any mismatch is not a splat. 1657 if (!AllowUndefs) 1658 return nullptr; 1659 1660 // Allow undefs mode: ignore undefined elements. 1661 if (isa<UndefValue>(OpC)) 1662 continue; 1663 1664 // If we do not have a defined element yet, use the current operand. 1665 if (isa<UndefValue>(Elt)) 1666 Elt = OpC; 1667 1668 if (OpC != Elt) 1669 return nullptr; 1670 } 1671 return Elt; 1672 } 1673 1674 const APInt &Constant::getUniqueInteger() const { 1675 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 1676 return CI->getValue(); 1677 // Scalable vectors can use a ConstantExpr to build a splat. 1678 if (isa<ConstantExpr>(this)) 1679 return cast<ConstantInt>(this->getSplatValue())->getValue(); 1680 // For non-ConstantExpr we use getAggregateElement as a fast path to avoid 1681 // calling getSplatValue in release builds. 1682 assert(this->getSplatValue() && "Doesn't contain a unique integer!"); 1683 const Constant *C = this->getAggregateElement(0U); 1684 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!"); 1685 return cast<ConstantInt>(C)->getValue(); 1686 } 1687 1688 //---- ConstantPointerNull::get() implementation. 1689 // 1690 1691 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { 1692 std::unique_ptr<ConstantPointerNull> &Entry = 1693 Ty->getContext().pImpl->CPNConstants[Ty]; 1694 if (!Entry) 1695 Entry.reset(new ConstantPointerNull(Ty)); 1696 1697 return Entry.get(); 1698 } 1699 1700 /// Remove the constant from the constant table. 1701 void ConstantPointerNull::destroyConstantImpl() { 1702 getContext().pImpl->CPNConstants.erase(getType()); 1703 } 1704 1705 //---- ConstantTargetNone::get() implementation. 1706 // 1707 1708 ConstantTargetNone *ConstantTargetNone::get(TargetExtType *Ty) { 1709 assert(Ty->hasProperty(TargetExtType::HasZeroInit) && 1710 "Target extension type not allowed to have a zeroinitializer"); 1711 std::unique_ptr<ConstantTargetNone> &Entry = 1712 Ty->getContext().pImpl->CTNConstants[Ty]; 1713 if (!Entry) 1714 Entry.reset(new ConstantTargetNone(Ty)); 1715 1716 return Entry.get(); 1717 } 1718 1719 /// Remove the constant from the constant table. 1720 void ConstantTargetNone::destroyConstantImpl() { 1721 getContext().pImpl->CTNConstants.erase(getType()); 1722 } 1723 1724 UndefValue *UndefValue::get(Type *Ty) { 1725 std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty]; 1726 if (!Entry) 1727 Entry.reset(new UndefValue(Ty)); 1728 1729 return Entry.get(); 1730 } 1731 1732 /// Remove the constant from the constant table. 1733 void UndefValue::destroyConstantImpl() { 1734 // Free the constant and any dangling references to it. 1735 if (getValueID() == UndefValueVal) { 1736 getContext().pImpl->UVConstants.erase(getType()); 1737 } else if (getValueID() == PoisonValueVal) { 1738 getContext().pImpl->PVConstants.erase(getType()); 1739 } 1740 llvm_unreachable("Not a undef or a poison!"); 1741 } 1742 1743 PoisonValue *PoisonValue::get(Type *Ty) { 1744 std::unique_ptr<PoisonValue> &Entry = Ty->getContext().pImpl->PVConstants[Ty]; 1745 if (!Entry) 1746 Entry.reset(new PoisonValue(Ty)); 1747 1748 return Entry.get(); 1749 } 1750 1751 /// Remove the constant from the constant table. 1752 void PoisonValue::destroyConstantImpl() { 1753 // Free the constant and any dangling references to it. 1754 getContext().pImpl->PVConstants.erase(getType()); 1755 } 1756 1757 BlockAddress *BlockAddress::get(BasicBlock *BB) { 1758 assert(BB->getParent() && "Block must have a parent"); 1759 return get(BB->getParent(), BB); 1760 } 1761 1762 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { 1763 BlockAddress *&BA = 1764 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; 1765 if (!BA) 1766 BA = new BlockAddress(F, BB); 1767 1768 assert(BA->getFunction() == F && "Basic block moved between functions"); 1769 return BA; 1770 } 1771 1772 BlockAddress::BlockAddress(Function *F, BasicBlock *BB) 1773 : Constant(PointerType::get(F->getContext(), F->getAddressSpace()), 1774 Value::BlockAddressVal, &Op<0>(), 2) { 1775 setOperand(0, F); 1776 setOperand(1, BB); 1777 BB->AdjustBlockAddressRefCount(1); 1778 } 1779 1780 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) { 1781 if (!BB->hasAddressTaken()) 1782 return nullptr; 1783 1784 const Function *F = BB->getParent(); 1785 assert(F && "Block must have a parent"); 1786 BlockAddress *BA = 1787 F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB)); 1788 assert(BA && "Refcount and block address map disagree!"); 1789 return BA; 1790 } 1791 1792 /// Remove the constant from the constant table. 1793 void BlockAddress::destroyConstantImpl() { 1794 getFunction()->getType()->getContext().pImpl 1795 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); 1796 getBasicBlock()->AdjustBlockAddressRefCount(-1); 1797 } 1798 1799 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) { 1800 // This could be replacing either the Basic Block or the Function. In either 1801 // case, we have to remove the map entry. 1802 Function *NewF = getFunction(); 1803 BasicBlock *NewBB = getBasicBlock(); 1804 1805 if (From == NewF) 1806 NewF = cast<Function>(To->stripPointerCasts()); 1807 else { 1808 assert(From == NewBB && "From does not match any operand"); 1809 NewBB = cast<BasicBlock>(To); 1810 } 1811 1812 // See if the 'new' entry already exists, if not, just update this in place 1813 // and return early. 1814 BlockAddress *&NewBA = 1815 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; 1816 if (NewBA) 1817 return NewBA; 1818 1819 getBasicBlock()->AdjustBlockAddressRefCount(-1); 1820 1821 // Remove the old entry, this can't cause the map to rehash (just a 1822 // tombstone will get added). 1823 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), 1824 getBasicBlock())); 1825 NewBA = this; 1826 setOperand(0, NewF); 1827 setOperand(1, NewBB); 1828 getBasicBlock()->AdjustBlockAddressRefCount(1); 1829 1830 // If we just want to keep the existing value, then return null. 1831 // Callers know that this means we shouldn't delete this value. 1832 return nullptr; 1833 } 1834 1835 DSOLocalEquivalent *DSOLocalEquivalent::get(GlobalValue *GV) { 1836 DSOLocalEquivalent *&Equiv = GV->getContext().pImpl->DSOLocalEquivalents[GV]; 1837 if (!Equiv) 1838 Equiv = new DSOLocalEquivalent(GV); 1839 1840 assert(Equiv->getGlobalValue() == GV && 1841 "DSOLocalFunction does not match the expected global value"); 1842 return Equiv; 1843 } 1844 1845 DSOLocalEquivalent::DSOLocalEquivalent(GlobalValue *GV) 1846 : Constant(GV->getType(), Value::DSOLocalEquivalentVal, &Op<0>(), 1) { 1847 setOperand(0, GV); 1848 } 1849 1850 /// Remove the constant from the constant table. 1851 void DSOLocalEquivalent::destroyConstantImpl() { 1852 const GlobalValue *GV = getGlobalValue(); 1853 GV->getContext().pImpl->DSOLocalEquivalents.erase(GV); 1854 } 1855 1856 Value *DSOLocalEquivalent::handleOperandChangeImpl(Value *From, Value *To) { 1857 assert(From == getGlobalValue() && "Changing value does not match operand."); 1858 assert(isa<Constant>(To) && "Can only replace the operands with a constant"); 1859 1860 // The replacement is with another global value. 1861 if (const auto *ToObj = dyn_cast<GlobalValue>(To)) { 1862 DSOLocalEquivalent *&NewEquiv = 1863 getContext().pImpl->DSOLocalEquivalents[ToObj]; 1864 if (NewEquiv) 1865 return llvm::ConstantExpr::getBitCast(NewEquiv, getType()); 1866 } 1867 1868 // If the argument is replaced with a null value, just replace this constant 1869 // with a null value. 1870 if (cast<Constant>(To)->isNullValue()) 1871 return To; 1872 1873 // The replacement could be a bitcast or an alias to another function. We can 1874 // replace it with a bitcast to the dso_local_equivalent of that function. 1875 auto *Func = cast<Function>(To->stripPointerCastsAndAliases()); 1876 DSOLocalEquivalent *&NewEquiv = getContext().pImpl->DSOLocalEquivalents[Func]; 1877 if (NewEquiv) 1878 return llvm::ConstantExpr::getBitCast(NewEquiv, getType()); 1879 1880 // Replace this with the new one. 1881 getContext().pImpl->DSOLocalEquivalents.erase(getGlobalValue()); 1882 NewEquiv = this; 1883 setOperand(0, Func); 1884 1885 if (Func->getType() != getType()) { 1886 // It is ok to mutate the type here because this constant should always 1887 // reflect the type of the function it's holding. 1888 mutateType(Func->getType()); 1889 } 1890 return nullptr; 1891 } 1892 1893 NoCFIValue *NoCFIValue::get(GlobalValue *GV) { 1894 NoCFIValue *&NC = GV->getContext().pImpl->NoCFIValues[GV]; 1895 if (!NC) 1896 NC = new NoCFIValue(GV); 1897 1898 assert(NC->getGlobalValue() == GV && 1899 "NoCFIValue does not match the expected global value"); 1900 return NC; 1901 } 1902 1903 NoCFIValue::NoCFIValue(GlobalValue *GV) 1904 : Constant(GV->getType(), Value::NoCFIValueVal, &Op<0>(), 1) { 1905 setOperand(0, GV); 1906 } 1907 1908 /// Remove the constant from the constant table. 1909 void NoCFIValue::destroyConstantImpl() { 1910 const GlobalValue *GV = getGlobalValue(); 1911 GV->getContext().pImpl->NoCFIValues.erase(GV); 1912 } 1913 1914 Value *NoCFIValue::handleOperandChangeImpl(Value *From, Value *To) { 1915 assert(From == getGlobalValue() && "Changing value does not match operand."); 1916 1917 GlobalValue *GV = dyn_cast<GlobalValue>(To->stripPointerCasts()); 1918 assert(GV && "Can only replace the operands with a global value"); 1919 1920 NoCFIValue *&NewNC = getContext().pImpl->NoCFIValues[GV]; 1921 if (NewNC) 1922 return llvm::ConstantExpr::getBitCast(NewNC, getType()); 1923 1924 getContext().pImpl->NoCFIValues.erase(getGlobalValue()); 1925 NewNC = this; 1926 setOperand(0, GV); 1927 1928 if (GV->getType() != getType()) 1929 mutateType(GV->getType()); 1930 1931 return nullptr; 1932 } 1933 1934 //---- ConstantExpr::get() implementations. 1935 // 1936 1937 /// This is a utility function to handle folding of casts and lookup of the 1938 /// cast in the ExprConstants map. It is used by the various get* methods below. 1939 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty, 1940 bool OnlyIfReduced = false) { 1941 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); 1942 // Fold a few common cases 1943 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) 1944 return FC; 1945 1946 if (OnlyIfReduced) 1947 return nullptr; 1948 1949 LLVMContextImpl *pImpl = Ty->getContext().pImpl; 1950 1951 // Look up the constant in the table first to ensure uniqueness. 1952 ConstantExprKeyType Key(opc, C); 1953 1954 return pImpl->ExprConstants.getOrCreate(Ty, Key); 1955 } 1956 1957 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty, 1958 bool OnlyIfReduced) { 1959 Instruction::CastOps opc = Instruction::CastOps(oc); 1960 assert(Instruction::isCast(opc) && "opcode out of range"); 1961 assert(isSupportedCastOp(opc) && 1962 "Cast opcode not supported as constant expression"); 1963 assert(C && Ty && "Null arguments to getCast"); 1964 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); 1965 1966 switch (opc) { 1967 default: 1968 llvm_unreachable("Invalid cast opcode"); 1969 case Instruction::Trunc: 1970 return getTrunc(C, Ty, OnlyIfReduced); 1971 case Instruction::PtrToInt: 1972 return getPtrToInt(C, Ty, OnlyIfReduced); 1973 case Instruction::IntToPtr: 1974 return getIntToPtr(C, Ty, OnlyIfReduced); 1975 case Instruction::BitCast: 1976 return getBitCast(C, Ty, OnlyIfReduced); 1977 case Instruction::AddrSpaceCast: 1978 return getAddrSpaceCast(C, Ty, OnlyIfReduced); 1979 } 1980 } 1981 1982 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) { 1983 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1984 return getBitCast(C, Ty); 1985 return getTrunc(C, Ty); 1986 } 1987 1988 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) { 1989 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 1990 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 1991 "Invalid cast"); 1992 1993 if (Ty->isIntOrIntVectorTy()) 1994 return getPtrToInt(S, Ty); 1995 1996 unsigned SrcAS = S->getType()->getPointerAddressSpace(); 1997 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace()) 1998 return getAddrSpaceCast(S, Ty); 1999 2000 return getBitCast(S, Ty); 2001 } 2002 2003 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S, 2004 Type *Ty) { 2005 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2006 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 2007 2008 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 2009 return getAddrSpaceCast(S, Ty); 2010 2011 return getBitCast(S, Ty); 2012 } 2013 2014 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { 2015 #ifndef NDEBUG 2016 bool fromVec = isa<VectorType>(C->getType()); 2017 bool toVec = isa<VectorType>(Ty); 2018 #endif 2019 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2020 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); 2021 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); 2022 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& 2023 "SrcTy must be larger than DestTy for Trunc!"); 2024 2025 return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced); 2026 } 2027 2028 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy, 2029 bool OnlyIfReduced) { 2030 assert(C->getType()->isPtrOrPtrVectorTy() && 2031 "PtrToInt source must be pointer or pointer vector"); 2032 assert(DstTy->isIntOrIntVectorTy() && 2033 "PtrToInt destination must be integer or integer vector"); 2034 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); 2035 if (isa<VectorType>(C->getType())) 2036 assert(cast<VectorType>(C->getType())->getElementCount() == 2037 cast<VectorType>(DstTy)->getElementCount() && 2038 "Invalid cast between a different number of vector elements"); 2039 return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced); 2040 } 2041 2042 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy, 2043 bool OnlyIfReduced) { 2044 assert(C->getType()->isIntOrIntVectorTy() && 2045 "IntToPtr source must be integer or integer vector"); 2046 assert(DstTy->isPtrOrPtrVectorTy() && 2047 "IntToPtr destination must be a pointer or pointer vector"); 2048 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); 2049 if (isa<VectorType>(C->getType())) 2050 assert(cast<VectorType>(C->getType())->getElementCount() == 2051 cast<VectorType>(DstTy)->getElementCount() && 2052 "Invalid cast between a different number of vector elements"); 2053 return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced); 2054 } 2055 2056 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy, 2057 bool OnlyIfReduced) { 2058 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && 2059 "Invalid constantexpr bitcast!"); 2060 2061 // It is common to ask for a bitcast of a value to its own type, handle this 2062 // speedily. 2063 if (C->getType() == DstTy) return C; 2064 2065 return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced); 2066 } 2067 2068 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy, 2069 bool OnlyIfReduced) { 2070 assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) && 2071 "Invalid constantexpr addrspacecast!"); 2072 return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced); 2073 } 2074 2075 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, 2076 unsigned Flags, Type *OnlyIfReducedTy) { 2077 // Check the operands for consistency first. 2078 assert(Instruction::isBinaryOp(Opcode) && 2079 "Invalid opcode in binary constant expression"); 2080 assert(isSupportedBinOp(Opcode) && 2081 "Binop not supported as constant expression"); 2082 assert(C1->getType() == C2->getType() && 2083 "Operand types in binary constant expression should match"); 2084 2085 #ifndef NDEBUG 2086 switch (Opcode) { 2087 case Instruction::Add: 2088 case Instruction::Sub: 2089 case Instruction::Mul: 2090 assert(C1->getType()->isIntOrIntVectorTy() && 2091 "Tried to create an integer operation on a non-integer type!"); 2092 break; 2093 case Instruction::And: 2094 case Instruction::Or: 2095 case Instruction::Xor: 2096 assert(C1->getType()->isIntOrIntVectorTy() && 2097 "Tried to create a logical operation on a non-integral type!"); 2098 break; 2099 case Instruction::Shl: 2100 case Instruction::LShr: 2101 case Instruction::AShr: 2102 assert(C1->getType()->isIntOrIntVectorTy() && 2103 "Tried to create a shift operation on a non-integer type!"); 2104 break; 2105 default: 2106 break; 2107 } 2108 #endif 2109 2110 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) 2111 return FC; 2112 2113 if (OnlyIfReducedTy == C1->getType()) 2114 return nullptr; 2115 2116 Constant *ArgVec[] = { C1, C2 }; 2117 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags); 2118 2119 LLVMContextImpl *pImpl = C1->getContext().pImpl; 2120 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key); 2121 } 2122 2123 bool ConstantExpr::isDesirableBinOp(unsigned Opcode) { 2124 switch (Opcode) { 2125 case Instruction::UDiv: 2126 case Instruction::SDiv: 2127 case Instruction::URem: 2128 case Instruction::SRem: 2129 case Instruction::FAdd: 2130 case Instruction::FSub: 2131 case Instruction::FMul: 2132 case Instruction::FDiv: 2133 case Instruction::FRem: 2134 case Instruction::And: 2135 case Instruction::Or: 2136 case Instruction::LShr: 2137 case Instruction::AShr: 2138 return false; 2139 case Instruction::Add: 2140 case Instruction::Sub: 2141 case Instruction::Mul: 2142 case Instruction::Shl: 2143 case Instruction::Xor: 2144 return true; 2145 default: 2146 llvm_unreachable("Argument must be binop opcode"); 2147 } 2148 } 2149 2150 bool ConstantExpr::isSupportedBinOp(unsigned Opcode) { 2151 switch (Opcode) { 2152 case Instruction::UDiv: 2153 case Instruction::SDiv: 2154 case Instruction::URem: 2155 case Instruction::SRem: 2156 case Instruction::FAdd: 2157 case Instruction::FSub: 2158 case Instruction::FMul: 2159 case Instruction::FDiv: 2160 case Instruction::FRem: 2161 case Instruction::And: 2162 case Instruction::Or: 2163 case Instruction::LShr: 2164 case Instruction::AShr: 2165 return false; 2166 case Instruction::Add: 2167 case Instruction::Sub: 2168 case Instruction::Mul: 2169 case Instruction::Shl: 2170 case Instruction::Xor: 2171 return true; 2172 default: 2173 llvm_unreachable("Argument must be binop opcode"); 2174 } 2175 } 2176 2177 bool ConstantExpr::isDesirableCastOp(unsigned Opcode) { 2178 switch (Opcode) { 2179 case Instruction::ZExt: 2180 case Instruction::SExt: 2181 case Instruction::FPTrunc: 2182 case Instruction::FPExt: 2183 case Instruction::UIToFP: 2184 case Instruction::SIToFP: 2185 case Instruction::FPToUI: 2186 case Instruction::FPToSI: 2187 return false; 2188 case Instruction::Trunc: 2189 case Instruction::PtrToInt: 2190 case Instruction::IntToPtr: 2191 case Instruction::BitCast: 2192 case Instruction::AddrSpaceCast: 2193 return true; 2194 default: 2195 llvm_unreachable("Argument must be cast opcode"); 2196 } 2197 } 2198 2199 bool ConstantExpr::isSupportedCastOp(unsigned Opcode) { 2200 switch (Opcode) { 2201 case Instruction::ZExt: 2202 case Instruction::SExt: 2203 case Instruction::FPTrunc: 2204 case Instruction::FPExt: 2205 case Instruction::UIToFP: 2206 case Instruction::SIToFP: 2207 case Instruction::FPToUI: 2208 case Instruction::FPToSI: 2209 return false; 2210 case Instruction::Trunc: 2211 case Instruction::PtrToInt: 2212 case Instruction::IntToPtr: 2213 case Instruction::BitCast: 2214 case Instruction::AddrSpaceCast: 2215 return true; 2216 default: 2217 llvm_unreachable("Argument must be cast opcode"); 2218 } 2219 } 2220 2221 Constant *ConstantExpr::getSizeOf(Type* Ty) { 2222 // sizeof is implemented as: (i64) gep (Ty*)null, 1 2223 // Note that a non-inbounds gep is used, as null isn't within any object. 2224 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); 2225 Constant *GEP = getGetElementPtr( 2226 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); 2227 return getPtrToInt(GEP, 2228 Type::getInt64Ty(Ty->getContext())); 2229 } 2230 2231 Constant *ConstantExpr::getAlignOf(Type* Ty) { 2232 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 2233 // Note that a non-inbounds gep is used, as null isn't within any object. 2234 Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty); 2235 Constant *NullPtr = Constant::getNullValue(PointerType::getUnqual(AligningTy->getContext())); 2236 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); 2237 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); 2238 Constant *Indices[2] = { Zero, One }; 2239 Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices); 2240 return getPtrToInt(GEP, 2241 Type::getInt64Ty(Ty->getContext())); 2242 } 2243 2244 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1, 2245 Constant *C2, bool OnlyIfReduced) { 2246 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 2247 2248 switch (Predicate) { 2249 default: llvm_unreachable("Invalid CmpInst predicate"); 2250 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: 2251 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: 2252 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: 2253 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: 2254 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: 2255 case CmpInst::FCMP_TRUE: 2256 return getFCmp(Predicate, C1, C2, OnlyIfReduced); 2257 2258 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: 2259 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: 2260 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: 2261 case CmpInst::ICMP_SLE: 2262 return getICmp(Predicate, C1, C2, OnlyIfReduced); 2263 } 2264 } 2265 2266 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C, 2267 ArrayRef<Value *> Idxs, bool InBounds, 2268 std::optional<unsigned> InRangeIndex, 2269 Type *OnlyIfReducedTy) { 2270 assert(Ty && "Must specify element type"); 2271 assert(isSupportedGetElementPtr(Ty) && "Element type is unsupported!"); 2272 2273 if (Constant *FC = 2274 ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs)) 2275 return FC; // Fold a few common cases. 2276 2277 assert(GetElementPtrInst::getIndexedType(Ty, Idxs) && 2278 "GEP indices invalid!");; 2279 2280 // Get the result type of the getelementptr! 2281 Type *ReqTy = GetElementPtrInst::getGEPReturnType(C, Idxs); 2282 if (OnlyIfReducedTy == ReqTy) 2283 return nullptr; 2284 2285 auto EltCount = ElementCount::getFixed(0); 2286 if (VectorType *VecTy = dyn_cast<VectorType>(ReqTy)) 2287 EltCount = VecTy->getElementCount(); 2288 2289 // Look up the constant in the table first to ensure uniqueness 2290 std::vector<Constant*> ArgVec; 2291 ArgVec.reserve(1 + Idxs.size()); 2292 ArgVec.push_back(C); 2293 auto GTI = gep_type_begin(Ty, Idxs), GTE = gep_type_end(Ty, Idxs); 2294 for (; GTI != GTE; ++GTI) { 2295 auto *Idx = cast<Constant>(GTI.getOperand()); 2296 assert( 2297 (!isa<VectorType>(Idx->getType()) || 2298 cast<VectorType>(Idx->getType())->getElementCount() == EltCount) && 2299 "getelementptr index type missmatch"); 2300 2301 if (GTI.isStruct() && Idx->getType()->isVectorTy()) { 2302 Idx = Idx->getSplatValue(); 2303 } else if (GTI.isSequential() && EltCount.isNonZero() && 2304 !Idx->getType()->isVectorTy()) { 2305 Idx = ConstantVector::getSplat(EltCount, Idx); 2306 } 2307 ArgVec.push_back(Idx); 2308 } 2309 2310 unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0; 2311 if (InRangeIndex && *InRangeIndex < 63) 2312 SubClassOptionalData |= (*InRangeIndex + 1) << 1; 2313 const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0, 2314 SubClassOptionalData, std::nullopt, Ty); 2315 2316 LLVMContextImpl *pImpl = C->getContext().pImpl; 2317 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2318 } 2319 2320 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS, 2321 Constant *RHS, bool OnlyIfReduced) { 2322 auto Predicate = static_cast<CmpInst::Predicate>(pred); 2323 assert(LHS->getType() == RHS->getType()); 2324 assert(CmpInst::isIntPredicate(Predicate) && "Invalid ICmp Predicate"); 2325 2326 if (Constant *FC = ConstantFoldCompareInstruction(Predicate, LHS, RHS)) 2327 return FC; // Fold a few common cases... 2328 2329 if (OnlyIfReduced) 2330 return nullptr; 2331 2332 // Look up the constant in the table first to ensure uniqueness 2333 Constant *ArgVec[] = { LHS, RHS }; 2334 // Get the key type with both the opcode and predicate 2335 const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, Predicate); 2336 2337 Type *ResultTy = Type::getInt1Ty(LHS->getContext()); 2338 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) 2339 ResultTy = VectorType::get(ResultTy, VT->getElementCount()); 2340 2341 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; 2342 return pImpl->ExprConstants.getOrCreate(ResultTy, Key); 2343 } 2344 2345 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, 2346 Constant *RHS, bool OnlyIfReduced) { 2347 auto Predicate = static_cast<CmpInst::Predicate>(pred); 2348 assert(LHS->getType() == RHS->getType()); 2349 assert(CmpInst::isFPPredicate(Predicate) && "Invalid FCmp Predicate"); 2350 2351 if (Constant *FC = ConstantFoldCompareInstruction(Predicate, LHS, RHS)) 2352 return FC; // Fold a few common cases... 2353 2354 if (OnlyIfReduced) 2355 return nullptr; 2356 2357 // Look up the constant in the table first to ensure uniqueness 2358 Constant *ArgVec[] = { LHS, RHS }; 2359 // Get the key type with both the opcode and predicate 2360 const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, Predicate); 2361 2362 Type *ResultTy = Type::getInt1Ty(LHS->getContext()); 2363 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) 2364 ResultTy = VectorType::get(ResultTy, VT->getElementCount()); 2365 2366 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; 2367 return pImpl->ExprConstants.getOrCreate(ResultTy, Key); 2368 } 2369 2370 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx, 2371 Type *OnlyIfReducedTy) { 2372 assert(Val->getType()->isVectorTy() && 2373 "Tried to create extractelement operation on non-vector type!"); 2374 assert(Idx->getType()->isIntegerTy() && 2375 "Extractelement index must be an integer type!"); 2376 2377 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) 2378 return FC; // Fold a few common cases. 2379 2380 Type *ReqTy = cast<VectorType>(Val->getType())->getElementType(); 2381 if (OnlyIfReducedTy == ReqTy) 2382 return nullptr; 2383 2384 // Look up the constant in the table first to ensure uniqueness 2385 Constant *ArgVec[] = { Val, Idx }; 2386 const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec); 2387 2388 LLVMContextImpl *pImpl = Val->getContext().pImpl; 2389 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2390 } 2391 2392 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 2393 Constant *Idx, Type *OnlyIfReducedTy) { 2394 assert(Val->getType()->isVectorTy() && 2395 "Tried to create insertelement operation on non-vector type!"); 2396 assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() && 2397 "Insertelement types must match!"); 2398 assert(Idx->getType()->isIntegerTy() && 2399 "Insertelement index must be i32 type!"); 2400 2401 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) 2402 return FC; // Fold a few common cases. 2403 2404 if (OnlyIfReducedTy == Val->getType()) 2405 return nullptr; 2406 2407 // Look up the constant in the table first to ensure uniqueness 2408 Constant *ArgVec[] = { Val, Elt, Idx }; 2409 const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec); 2410 2411 LLVMContextImpl *pImpl = Val->getContext().pImpl; 2412 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key); 2413 } 2414 2415 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, 2416 ArrayRef<int> Mask, 2417 Type *OnlyIfReducedTy) { 2418 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && 2419 "Invalid shuffle vector constant expr operands!"); 2420 2421 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) 2422 return FC; // Fold a few common cases. 2423 2424 unsigned NElts = Mask.size(); 2425 auto V1VTy = cast<VectorType>(V1->getType()); 2426 Type *EltTy = V1VTy->getElementType(); 2427 bool TypeIsScalable = isa<ScalableVectorType>(V1VTy); 2428 Type *ShufTy = VectorType::get(EltTy, NElts, TypeIsScalable); 2429 2430 if (OnlyIfReducedTy == ShufTy) 2431 return nullptr; 2432 2433 // Look up the constant in the table first to ensure uniqueness 2434 Constant *ArgVec[] = {V1, V2}; 2435 ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec, 0, 0, Mask); 2436 2437 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl; 2438 return pImpl->ExprConstants.getOrCreate(ShufTy, Key); 2439 } 2440 2441 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) { 2442 assert(C->getType()->isIntOrIntVectorTy() && 2443 "Cannot NEG a nonintegral value!"); 2444 return getSub(ConstantInt::get(C->getType(), 0), C, HasNUW, HasNSW); 2445 } 2446 2447 Constant *ConstantExpr::getNot(Constant *C) { 2448 assert(C->getType()->isIntOrIntVectorTy() && 2449 "Cannot NOT a nonintegral value!"); 2450 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); 2451 } 2452 2453 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2, 2454 bool HasNUW, bool HasNSW) { 2455 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2456 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2457 return get(Instruction::Add, C1, C2, Flags); 2458 } 2459 2460 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2, 2461 bool HasNUW, bool HasNSW) { 2462 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2463 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2464 return get(Instruction::Sub, C1, C2, Flags); 2465 } 2466 2467 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2, 2468 bool HasNUW, bool HasNSW) { 2469 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2470 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2471 return get(Instruction::Mul, C1, C2, Flags); 2472 } 2473 2474 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { 2475 return get(Instruction::Xor, C1, C2); 2476 } 2477 2478 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2, 2479 bool HasNUW, bool HasNSW) { 2480 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2481 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2482 return get(Instruction::Shl, C1, C2, Flags); 2483 } 2484 2485 Constant *ConstantExpr::getExactLogBase2(Constant *C) { 2486 Type *Ty = C->getType(); 2487 const APInt *IVal; 2488 if (match(C, m_APInt(IVal)) && IVal->isPowerOf2()) 2489 return ConstantInt::get(Ty, IVal->logBase2()); 2490 2491 // FIXME: We can extract pow of 2 of splat constant for scalable vectors. 2492 auto *VecTy = dyn_cast<FixedVectorType>(Ty); 2493 if (!VecTy) 2494 return nullptr; 2495 2496 SmallVector<Constant *, 4> Elts; 2497 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 2498 Constant *Elt = C->getAggregateElement(I); 2499 if (!Elt) 2500 return nullptr; 2501 // Note that log2(iN undef) is *NOT* iN undef, because log2(iN undef) u< N. 2502 if (isa<UndefValue>(Elt)) { 2503 Elts.push_back(Constant::getNullValue(Ty->getScalarType())); 2504 continue; 2505 } 2506 if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2()) 2507 return nullptr; 2508 Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2())); 2509 } 2510 2511 return ConstantVector::get(Elts); 2512 } 2513 2514 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty, 2515 bool AllowRHSConstant, bool NSZ) { 2516 assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed"); 2517 2518 // Commutative opcodes: it does not matter if AllowRHSConstant is set. 2519 if (Instruction::isCommutative(Opcode)) { 2520 switch (Opcode) { 2521 case Instruction::Add: // X + 0 = X 2522 case Instruction::Or: // X | 0 = X 2523 case Instruction::Xor: // X ^ 0 = X 2524 return Constant::getNullValue(Ty); 2525 case Instruction::Mul: // X * 1 = X 2526 return ConstantInt::get(Ty, 1); 2527 case Instruction::And: // X & -1 = X 2528 return Constant::getAllOnesValue(Ty); 2529 case Instruction::FAdd: // X + -0.0 = X 2530 return ConstantFP::getZero(Ty, !NSZ); 2531 case Instruction::FMul: // X * 1.0 = X 2532 return ConstantFP::get(Ty, 1.0); 2533 default: 2534 llvm_unreachable("Every commutative binop has an identity constant"); 2535 } 2536 } 2537 2538 // Non-commutative opcodes: AllowRHSConstant must be set. 2539 if (!AllowRHSConstant) 2540 return nullptr; 2541 2542 switch (Opcode) { 2543 case Instruction::Sub: // X - 0 = X 2544 case Instruction::Shl: // X << 0 = X 2545 case Instruction::LShr: // X >>u 0 = X 2546 case Instruction::AShr: // X >> 0 = X 2547 case Instruction::FSub: // X - 0.0 = X 2548 return Constant::getNullValue(Ty); 2549 case Instruction::SDiv: // X / 1 = X 2550 case Instruction::UDiv: // X /u 1 = X 2551 return ConstantInt::get(Ty, 1); 2552 case Instruction::FDiv: // X / 1.0 = X 2553 return ConstantFP::get(Ty, 1.0); 2554 default: 2555 return nullptr; 2556 } 2557 } 2558 2559 Constant *ConstantExpr::getIntrinsicIdentity(Intrinsic::ID ID, Type *Ty) { 2560 switch (ID) { 2561 case Intrinsic::umax: 2562 return Constant::getNullValue(Ty); 2563 case Intrinsic::umin: 2564 return Constant::getAllOnesValue(Ty); 2565 case Intrinsic::smax: 2566 return Constant::getIntegerValue( 2567 Ty, APInt::getSignedMinValue(Ty->getIntegerBitWidth())); 2568 case Intrinsic::smin: 2569 return Constant::getIntegerValue( 2570 Ty, APInt::getSignedMaxValue(Ty->getIntegerBitWidth())); 2571 default: 2572 return nullptr; 2573 } 2574 } 2575 2576 Constant *ConstantExpr::getIdentity(Instruction *I, Type *Ty, 2577 bool AllowRHSConstant, bool NSZ) { 2578 if (I->isBinaryOp()) 2579 return getBinOpIdentity(I->getOpcode(), Ty, AllowRHSConstant, NSZ); 2580 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2581 return getIntrinsicIdentity(II->getIntrinsicID(), Ty); 2582 return nullptr; 2583 } 2584 2585 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) { 2586 switch (Opcode) { 2587 default: 2588 // Doesn't have an absorber. 2589 return nullptr; 2590 2591 case Instruction::Or: 2592 return Constant::getAllOnesValue(Ty); 2593 2594 case Instruction::And: 2595 case Instruction::Mul: 2596 return Constant::getNullValue(Ty); 2597 } 2598 } 2599 2600 /// Remove the constant from the constant table. 2601 void ConstantExpr::destroyConstantImpl() { 2602 getType()->getContext().pImpl->ExprConstants.remove(this); 2603 } 2604 2605 const char *ConstantExpr::getOpcodeName() const { 2606 return Instruction::getOpcodeName(getOpcode()); 2607 } 2608 2609 GetElementPtrConstantExpr::GetElementPtrConstantExpr( 2610 Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy) 2611 : ConstantExpr(DestTy, Instruction::GetElementPtr, 2612 OperandTraits<GetElementPtrConstantExpr>::op_end(this) - 2613 (IdxList.size() + 1), 2614 IdxList.size() + 1), 2615 SrcElementTy(SrcElementTy), 2616 ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) { 2617 Op<0>() = C; 2618 Use *OperandList = getOperandList(); 2619 for (unsigned i = 0, E = IdxList.size(); i != E; ++i) 2620 OperandList[i+1] = IdxList[i]; 2621 } 2622 2623 Type *GetElementPtrConstantExpr::getSourceElementType() const { 2624 return SrcElementTy; 2625 } 2626 2627 Type *GetElementPtrConstantExpr::getResultElementType() const { 2628 return ResElementTy; 2629 } 2630 2631 //===----------------------------------------------------------------------===// 2632 // ConstantData* implementations 2633 2634 Type *ConstantDataSequential::getElementType() const { 2635 if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) 2636 return ATy->getElementType(); 2637 return cast<VectorType>(getType())->getElementType(); 2638 } 2639 2640 StringRef ConstantDataSequential::getRawDataValues() const { 2641 return StringRef(DataElements, getNumElements()*getElementByteSize()); 2642 } 2643 2644 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) { 2645 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || Ty->isDoubleTy()) 2646 return true; 2647 if (auto *IT = dyn_cast<IntegerType>(Ty)) { 2648 switch (IT->getBitWidth()) { 2649 case 8: 2650 case 16: 2651 case 32: 2652 case 64: 2653 return true; 2654 default: break; 2655 } 2656 } 2657 return false; 2658 } 2659 2660 unsigned ConstantDataSequential::getNumElements() const { 2661 if (ArrayType *AT = dyn_cast<ArrayType>(getType())) 2662 return AT->getNumElements(); 2663 return cast<FixedVectorType>(getType())->getNumElements(); 2664 } 2665 2666 2667 uint64_t ConstantDataSequential::getElementByteSize() const { 2668 return getElementType()->getPrimitiveSizeInBits()/8; 2669 } 2670 2671 /// Return the start of the specified element. 2672 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const { 2673 assert(Elt < getNumElements() && "Invalid Elt"); 2674 return DataElements+Elt*getElementByteSize(); 2675 } 2676 2677 2678 /// Return true if the array is empty or all zeros. 2679 static bool isAllZeros(StringRef Arr) { 2680 for (char I : Arr) 2681 if (I != 0) 2682 return false; 2683 return true; 2684 } 2685 2686 /// This is the underlying implementation of all of the 2687 /// ConstantDataSequential::get methods. They all thunk down to here, providing 2688 /// the correct element type. We take the bytes in as a StringRef because 2689 /// we *want* an underlying "char*" to avoid TBAA type punning violations. 2690 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) { 2691 #ifndef NDEBUG 2692 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) 2693 assert(isElementTypeCompatible(ATy->getElementType())); 2694 else 2695 assert(isElementTypeCompatible(cast<VectorType>(Ty)->getElementType())); 2696 #endif 2697 // If the elements are all zero or there are no elements, return a CAZ, which 2698 // is more dense and canonical. 2699 if (isAllZeros(Elements)) 2700 return ConstantAggregateZero::get(Ty); 2701 2702 // Do a lookup to see if we have already formed one of these. 2703 auto &Slot = 2704 *Ty->getContext() 2705 .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr)) 2706 .first; 2707 2708 // The bucket can point to a linked list of different CDS's that have the same 2709 // body but different types. For example, 0,0,0,1 could be a 4 element array 2710 // of i8, or a 1-element array of i32. They'll both end up in the same 2711 /// StringMap bucket, linked up by their Next pointers. Walk the list. 2712 std::unique_ptr<ConstantDataSequential> *Entry = &Slot.second; 2713 for (; *Entry; Entry = &(*Entry)->Next) 2714 if ((*Entry)->getType() == Ty) 2715 return Entry->get(); 2716 2717 // Okay, we didn't get a hit. Create a node of the right class, link it in, 2718 // and return it. 2719 if (isa<ArrayType>(Ty)) { 2720 // Use reset because std::make_unique can't access the constructor. 2721 Entry->reset(new ConstantDataArray(Ty, Slot.first().data())); 2722 return Entry->get(); 2723 } 2724 2725 assert(isa<VectorType>(Ty)); 2726 // Use reset because std::make_unique can't access the constructor. 2727 Entry->reset(new ConstantDataVector(Ty, Slot.first().data())); 2728 return Entry->get(); 2729 } 2730 2731 void ConstantDataSequential::destroyConstantImpl() { 2732 // Remove the constant from the StringMap. 2733 StringMap<std::unique_ptr<ConstantDataSequential>> &CDSConstants = 2734 getType()->getContext().pImpl->CDSConstants; 2735 2736 auto Slot = CDSConstants.find(getRawDataValues()); 2737 2738 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table"); 2739 2740 std::unique_ptr<ConstantDataSequential> *Entry = &Slot->getValue(); 2741 2742 // Remove the entry from the hash table. 2743 if (!(*Entry)->Next) { 2744 // If there is only one value in the bucket (common case) it must be this 2745 // entry, and removing the entry should remove the bucket completely. 2746 assert(Entry->get() == this && "Hash mismatch in ConstantDataSequential"); 2747 getContext().pImpl->CDSConstants.erase(Slot); 2748 return; 2749 } 2750 2751 // Otherwise, there are multiple entries linked off the bucket, unlink the 2752 // node we care about but keep the bucket around. 2753 while (true) { 2754 std::unique_ptr<ConstantDataSequential> &Node = *Entry; 2755 assert(Node && "Didn't find entry in its uniquing hash table!"); 2756 // If we found our entry, unlink it from the list and we're done. 2757 if (Node.get() == this) { 2758 Node = std::move(Node->Next); 2759 return; 2760 } 2761 2762 Entry = &Node->Next; 2763 } 2764 } 2765 2766 /// getFP() constructors - Return a constant of array type with a float 2767 /// element type taken from argument `ElementType', and count taken from 2768 /// argument `Elts'. The amount of bits of the contained type must match the 2769 /// number of bits of the type contained in the passed in ArrayRef. 2770 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note 2771 /// that this can return a ConstantAggregateZero object. 2772 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint16_t> Elts) { 2773 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) && 2774 "Element type is not a 16-bit float type"); 2775 Type *Ty = ArrayType::get(ElementType, Elts.size()); 2776 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2777 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 2778 } 2779 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint32_t> Elts) { 2780 assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type"); 2781 Type *Ty = ArrayType::get(ElementType, Elts.size()); 2782 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2783 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 2784 } 2785 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint64_t> Elts) { 2786 assert(ElementType->isDoubleTy() && 2787 "Element type is not a 64-bit float type"); 2788 Type *Ty = ArrayType::get(ElementType, Elts.size()); 2789 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2790 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 2791 } 2792 2793 Constant *ConstantDataArray::getString(LLVMContext &Context, 2794 StringRef Str, bool AddNull) { 2795 if (!AddNull) { 2796 const uint8_t *Data = Str.bytes_begin(); 2797 return get(Context, ArrayRef(Data, Str.size())); 2798 } 2799 2800 SmallVector<uint8_t, 64> ElementVals; 2801 ElementVals.append(Str.begin(), Str.end()); 2802 ElementVals.push_back(0); 2803 return get(Context, ElementVals); 2804 } 2805 2806 /// get() constructors - Return a constant with vector type with an element 2807 /// count and element type matching the ArrayRef passed in. Note that this 2808 /// can return a ConstantAggregateZero object. 2809 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){ 2810 auto *Ty = FixedVectorType::get(Type::getInt8Ty(Context), Elts.size()); 2811 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2812 return getImpl(StringRef(Data, Elts.size() * 1), Ty); 2813 } 2814 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ 2815 auto *Ty = FixedVectorType::get(Type::getInt16Ty(Context), Elts.size()); 2816 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2817 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 2818 } 2819 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ 2820 auto *Ty = FixedVectorType::get(Type::getInt32Ty(Context), Elts.size()); 2821 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2822 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 2823 } 2824 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ 2825 auto *Ty = FixedVectorType::get(Type::getInt64Ty(Context), Elts.size()); 2826 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2827 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 2828 } 2829 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) { 2830 auto *Ty = FixedVectorType::get(Type::getFloatTy(Context), Elts.size()); 2831 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2832 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 2833 } 2834 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) { 2835 auto *Ty = FixedVectorType::get(Type::getDoubleTy(Context), Elts.size()); 2836 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2837 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 2838 } 2839 2840 /// getFP() constructors - Return a constant of vector type with a float 2841 /// element type taken from argument `ElementType', and count taken from 2842 /// argument `Elts'. The amount of bits of the contained type must match the 2843 /// number of bits of the type contained in the passed in ArrayRef. 2844 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note 2845 /// that this can return a ConstantAggregateZero object. 2846 Constant *ConstantDataVector::getFP(Type *ElementType, 2847 ArrayRef<uint16_t> Elts) { 2848 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) && 2849 "Element type is not a 16-bit float type"); 2850 auto *Ty = FixedVectorType::get(ElementType, Elts.size()); 2851 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2852 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 2853 } 2854 Constant *ConstantDataVector::getFP(Type *ElementType, 2855 ArrayRef<uint32_t> Elts) { 2856 assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type"); 2857 auto *Ty = FixedVectorType::get(ElementType, Elts.size()); 2858 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2859 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 2860 } 2861 Constant *ConstantDataVector::getFP(Type *ElementType, 2862 ArrayRef<uint64_t> Elts) { 2863 assert(ElementType->isDoubleTy() && 2864 "Element type is not a 64-bit float type"); 2865 auto *Ty = FixedVectorType::get(ElementType, Elts.size()); 2866 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2867 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 2868 } 2869 2870 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) { 2871 assert(isElementTypeCompatible(V->getType()) && 2872 "Element type not compatible with ConstantData"); 2873 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2874 if (CI->getType()->isIntegerTy(8)) { 2875 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue()); 2876 return get(V->getContext(), Elts); 2877 } 2878 if (CI->getType()->isIntegerTy(16)) { 2879 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue()); 2880 return get(V->getContext(), Elts); 2881 } 2882 if (CI->getType()->isIntegerTy(32)) { 2883 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue()); 2884 return get(V->getContext(), Elts); 2885 } 2886 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type"); 2887 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue()); 2888 return get(V->getContext(), Elts); 2889 } 2890 2891 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2892 if (CFP->getType()->isHalfTy()) { 2893 SmallVector<uint16_t, 16> Elts( 2894 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 2895 return getFP(V->getType(), Elts); 2896 } 2897 if (CFP->getType()->isBFloatTy()) { 2898 SmallVector<uint16_t, 16> Elts( 2899 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 2900 return getFP(V->getType(), Elts); 2901 } 2902 if (CFP->getType()->isFloatTy()) { 2903 SmallVector<uint32_t, 16> Elts( 2904 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 2905 return getFP(V->getType(), Elts); 2906 } 2907 if (CFP->getType()->isDoubleTy()) { 2908 SmallVector<uint64_t, 16> Elts( 2909 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 2910 return getFP(V->getType(), Elts); 2911 } 2912 } 2913 return ConstantVector::getSplat(ElementCount::getFixed(NumElts), V); 2914 } 2915 2916 2917 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { 2918 assert(isa<IntegerType>(getElementType()) && 2919 "Accessor can only be used when element is an integer"); 2920 const char *EltPtr = getElementPointer(Elt); 2921 2922 // The data is stored in host byte order, make sure to cast back to the right 2923 // type to load with the right endianness. 2924 switch (getElementType()->getIntegerBitWidth()) { 2925 default: llvm_unreachable("Invalid bitwidth for CDS"); 2926 case 8: 2927 return *reinterpret_cast<const uint8_t *>(EltPtr); 2928 case 16: 2929 return *reinterpret_cast<const uint16_t *>(EltPtr); 2930 case 32: 2931 return *reinterpret_cast<const uint32_t *>(EltPtr); 2932 case 64: 2933 return *reinterpret_cast<const uint64_t *>(EltPtr); 2934 } 2935 } 2936 2937 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const { 2938 assert(isa<IntegerType>(getElementType()) && 2939 "Accessor can only be used when element is an integer"); 2940 const char *EltPtr = getElementPointer(Elt); 2941 2942 // The data is stored in host byte order, make sure to cast back to the right 2943 // type to load with the right endianness. 2944 switch (getElementType()->getIntegerBitWidth()) { 2945 default: llvm_unreachable("Invalid bitwidth for CDS"); 2946 case 8: { 2947 auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr); 2948 return APInt(8, EltVal); 2949 } 2950 case 16: { 2951 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 2952 return APInt(16, EltVal); 2953 } 2954 case 32: { 2955 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr); 2956 return APInt(32, EltVal); 2957 } 2958 case 64: { 2959 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr); 2960 return APInt(64, EltVal); 2961 } 2962 } 2963 } 2964 2965 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { 2966 const char *EltPtr = getElementPointer(Elt); 2967 2968 switch (getElementType()->getTypeID()) { 2969 default: 2970 llvm_unreachable("Accessor can only be used when element is float/double!"); 2971 case Type::HalfTyID: { 2972 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 2973 return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal)); 2974 } 2975 case Type::BFloatTyID: { 2976 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 2977 return APFloat(APFloat::BFloat(), APInt(16, EltVal)); 2978 } 2979 case Type::FloatTyID: { 2980 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr); 2981 return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal)); 2982 } 2983 case Type::DoubleTyID: { 2984 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr); 2985 return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal)); 2986 } 2987 } 2988 } 2989 2990 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { 2991 assert(getElementType()->isFloatTy() && 2992 "Accessor can only be used when element is a 'float'"); 2993 return *reinterpret_cast<const float *>(getElementPointer(Elt)); 2994 } 2995 2996 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { 2997 assert(getElementType()->isDoubleTy() && 2998 "Accessor can only be used when element is a 'float'"); 2999 return *reinterpret_cast<const double *>(getElementPointer(Elt)); 3000 } 3001 3002 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { 3003 if (getElementType()->isHalfTy() || getElementType()->isBFloatTy() || 3004 getElementType()->isFloatTy() || getElementType()->isDoubleTy()) 3005 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt)); 3006 3007 return ConstantInt::get(getElementType(), getElementAsInteger(Elt)); 3008 } 3009 3010 bool ConstantDataSequential::isString(unsigned CharSize) const { 3011 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize); 3012 } 3013 3014 bool ConstantDataSequential::isCString() const { 3015 if (!isString()) 3016 return false; 3017 3018 StringRef Str = getAsString(); 3019 3020 // The last value must be nul. 3021 if (Str.back() != 0) return false; 3022 3023 // Other elements must be non-nul. 3024 return !Str.drop_back().contains(0); 3025 } 3026 3027 bool ConstantDataVector::isSplatData() const { 3028 const char *Base = getRawDataValues().data(); 3029 3030 // Compare elements 1+ to the 0'th element. 3031 unsigned EltSize = getElementByteSize(); 3032 for (unsigned i = 1, e = getNumElements(); i != e; ++i) 3033 if (memcmp(Base, Base+i*EltSize, EltSize)) 3034 return false; 3035 3036 return true; 3037 } 3038 3039 bool ConstantDataVector::isSplat() const { 3040 if (!IsSplatSet) { 3041 IsSplatSet = true; 3042 IsSplat = isSplatData(); 3043 } 3044 return IsSplat; 3045 } 3046 3047 Constant *ConstantDataVector::getSplatValue() const { 3048 // If they're all the same, return the 0th one as a representative. 3049 return isSplat() ? getElementAsConstant(0) : nullptr; 3050 } 3051 3052 //===----------------------------------------------------------------------===// 3053 // handleOperandChange implementations 3054 3055 /// Update this constant array to change uses of 3056 /// 'From' to be uses of 'To'. This must update the uniquing data structures 3057 /// etc. 3058 /// 3059 /// Note that we intentionally replace all uses of From with To here. Consider 3060 /// a large array that uses 'From' 1000 times. By handling this case all here, 3061 /// ConstantArray::handleOperandChange is only invoked once, and that 3062 /// single invocation handles all 1000 uses. Handling them one at a time would 3063 /// work, but would be really slow because it would have to unique each updated 3064 /// array instance. 3065 /// 3066 void Constant::handleOperandChange(Value *From, Value *To) { 3067 Value *Replacement = nullptr; 3068 switch (getValueID()) { 3069 default: 3070 llvm_unreachable("Not a constant!"); 3071 #define HANDLE_CONSTANT(Name) \ 3072 case Value::Name##Val: \ 3073 Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \ 3074 break; 3075 #include "llvm/IR/Value.def" 3076 } 3077 3078 // If handleOperandChangeImpl returned nullptr, then it handled 3079 // replacing itself and we don't want to delete or replace anything else here. 3080 if (!Replacement) 3081 return; 3082 3083 // I do need to replace this with an existing value. 3084 assert(Replacement != this && "I didn't contain From!"); 3085 3086 // Everyone using this now uses the replacement. 3087 replaceAllUsesWith(Replacement); 3088 3089 // Delete the old constant! 3090 destroyConstant(); 3091 } 3092 3093 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) { 3094 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3095 Constant *ToC = cast<Constant>(To); 3096 3097 SmallVector<Constant*, 8> Values; 3098 Values.reserve(getNumOperands()); // Build replacement array. 3099 3100 // Fill values with the modified operands of the constant array. Also, 3101 // compute whether this turns into an all-zeros array. 3102 unsigned NumUpdated = 0; 3103 3104 // Keep track of whether all the values in the array are "ToC". 3105 bool AllSame = true; 3106 Use *OperandList = getOperandList(); 3107 unsigned OperandNo = 0; 3108 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { 3109 Constant *Val = cast<Constant>(O->get()); 3110 if (Val == From) { 3111 OperandNo = (O - OperandList); 3112 Val = ToC; 3113 ++NumUpdated; 3114 } 3115 Values.push_back(Val); 3116 AllSame &= Val == ToC; 3117 } 3118 3119 if (AllSame && ToC->isNullValue()) 3120 return ConstantAggregateZero::get(getType()); 3121 3122 if (AllSame && isa<UndefValue>(ToC)) 3123 return UndefValue::get(getType()); 3124 3125 // Check for any other type of constant-folding. 3126 if (Constant *C = getImpl(getType(), Values)) 3127 return C; 3128 3129 // Update to the new value. 3130 return getContext().pImpl->ArrayConstants.replaceOperandsInPlace( 3131 Values, this, From, ToC, NumUpdated, OperandNo); 3132 } 3133 3134 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) { 3135 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3136 Constant *ToC = cast<Constant>(To); 3137 3138 Use *OperandList = getOperandList(); 3139 3140 SmallVector<Constant*, 8> Values; 3141 Values.reserve(getNumOperands()); // Build replacement struct. 3142 3143 // Fill values with the modified operands of the constant struct. Also, 3144 // compute whether this turns into an all-zeros struct. 3145 unsigned NumUpdated = 0; 3146 bool AllSame = true; 3147 unsigned OperandNo = 0; 3148 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) { 3149 Constant *Val = cast<Constant>(O->get()); 3150 if (Val == From) { 3151 OperandNo = (O - OperandList); 3152 Val = ToC; 3153 ++NumUpdated; 3154 } 3155 Values.push_back(Val); 3156 AllSame &= Val == ToC; 3157 } 3158 3159 if (AllSame && ToC->isNullValue()) 3160 return ConstantAggregateZero::get(getType()); 3161 3162 if (AllSame && isa<UndefValue>(ToC)) 3163 return UndefValue::get(getType()); 3164 3165 // Update to the new value. 3166 return getContext().pImpl->StructConstants.replaceOperandsInPlace( 3167 Values, this, From, ToC, NumUpdated, OperandNo); 3168 } 3169 3170 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) { 3171 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3172 Constant *ToC = cast<Constant>(To); 3173 3174 SmallVector<Constant*, 8> Values; 3175 Values.reserve(getNumOperands()); // Build replacement array... 3176 unsigned NumUpdated = 0; 3177 unsigned OperandNo = 0; 3178 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 3179 Constant *Val = getOperand(i); 3180 if (Val == From) { 3181 OperandNo = i; 3182 ++NumUpdated; 3183 Val = ToC; 3184 } 3185 Values.push_back(Val); 3186 } 3187 3188 if (Constant *C = getImpl(Values)) 3189 return C; 3190 3191 // Update to the new value. 3192 return getContext().pImpl->VectorConstants.replaceOperandsInPlace( 3193 Values, this, From, ToC, NumUpdated, OperandNo); 3194 } 3195 3196 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) { 3197 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); 3198 Constant *To = cast<Constant>(ToV); 3199 3200 SmallVector<Constant*, 8> NewOps; 3201 unsigned NumUpdated = 0; 3202 unsigned OperandNo = 0; 3203 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 3204 Constant *Op = getOperand(i); 3205 if (Op == From) { 3206 OperandNo = i; 3207 ++NumUpdated; 3208 Op = To; 3209 } 3210 NewOps.push_back(Op); 3211 } 3212 assert(NumUpdated && "I didn't contain From!"); 3213 3214 if (Constant *C = getWithOperands(NewOps, getType(), true)) 3215 return C; 3216 3217 // Update to the new value. 3218 return getContext().pImpl->ExprConstants.replaceOperandsInPlace( 3219 NewOps, this, From, To, NumUpdated, OperandNo); 3220 } 3221 3222 Instruction *ConstantExpr::getAsInstruction(Instruction *InsertBefore) const { 3223 SmallVector<Value *, 4> ValueOperands(operands()); 3224 ArrayRef<Value*> Ops(ValueOperands); 3225 3226 switch (getOpcode()) { 3227 case Instruction::Trunc: 3228 case Instruction::ZExt: 3229 case Instruction::SExt: 3230 case Instruction::FPTrunc: 3231 case Instruction::FPExt: 3232 case Instruction::UIToFP: 3233 case Instruction::SIToFP: 3234 case Instruction::FPToUI: 3235 case Instruction::FPToSI: 3236 case Instruction::PtrToInt: 3237 case Instruction::IntToPtr: 3238 case Instruction::BitCast: 3239 case Instruction::AddrSpaceCast: 3240 return CastInst::Create((Instruction::CastOps)getOpcode(), Ops[0], 3241 getType(), "", InsertBefore); 3242 case Instruction::InsertElement: 3243 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "", InsertBefore); 3244 case Instruction::ExtractElement: 3245 return ExtractElementInst::Create(Ops[0], Ops[1], "", InsertBefore); 3246 case Instruction::ShuffleVector: 3247 return new ShuffleVectorInst(Ops[0], Ops[1], getShuffleMask(), "", 3248 InsertBefore); 3249 3250 case Instruction::GetElementPtr: { 3251 const auto *GO = cast<GEPOperator>(this); 3252 if (GO->isInBounds()) 3253 return GetElementPtrInst::CreateInBounds( 3254 GO->getSourceElementType(), Ops[0], Ops.slice(1), "", InsertBefore); 3255 return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0], 3256 Ops.slice(1), "", InsertBefore); 3257 } 3258 case Instruction::ICmp: 3259 case Instruction::FCmp: 3260 return CmpInst::Create((Instruction::OtherOps)getOpcode(), 3261 (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1], 3262 "", InsertBefore); 3263 default: 3264 assert(getNumOperands() == 2 && "Must be binary operator?"); 3265 BinaryOperator *BO = BinaryOperator::Create( 3266 (Instruction::BinaryOps)getOpcode(), Ops[0], Ops[1], "", InsertBefore); 3267 if (isa<OverflowingBinaryOperator>(BO)) { 3268 BO->setHasNoUnsignedWrap(SubclassOptionalData & 3269 OverflowingBinaryOperator::NoUnsignedWrap); 3270 BO->setHasNoSignedWrap(SubclassOptionalData & 3271 OverflowingBinaryOperator::NoSignedWrap); 3272 } 3273 if (isa<PossiblyExactOperator>(BO)) 3274 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact); 3275 return BO; 3276 } 3277 } 3278