1 //===-- Constants.cpp - Implement Constant nodes --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Constant* classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Constants.h" 14 #include "ConstantFold.h" 15 #include "LLVMContextImpl.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringMap.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/GetElementPtrTypeIterator.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/ManagedStatic.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <algorithm> 32 33 using namespace llvm; 34 using namespace PatternMatch; 35 36 //===----------------------------------------------------------------------===// 37 // Constant Class 38 //===----------------------------------------------------------------------===// 39 40 bool Constant::isNegativeZeroValue() const { 41 // Floating point values have an explicit -0.0 value. 42 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 43 return CFP->isZero() && CFP->isNegative(); 44 45 // Equivalent for a vector of -0.0's. 46 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 47 if (CV->getElementType()->isFloatingPointTy() && CV->isSplat()) 48 if (CV->getElementAsAPFloat(0).isNegZero()) 49 return true; 50 51 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 52 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue())) 53 if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative()) 54 return true; 55 56 // We've already handled true FP case; any other FP vectors can't represent -0.0. 57 if (getType()->isFPOrFPVectorTy()) 58 return false; 59 60 // Otherwise, just use +0.0. 61 return isNullValue(); 62 } 63 64 // Return true iff this constant is positive zero (floating point), negative 65 // zero (floating point), or a null value. 66 bool Constant::isZeroValue() const { 67 // Floating point values have an explicit -0.0 value. 68 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 69 return CFP->isZero(); 70 71 // Equivalent for a vector of -0.0's. 72 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 73 if (CV->getElementType()->isFloatingPointTy() && CV->isSplat()) 74 if (CV->getElementAsAPFloat(0).isZero()) 75 return true; 76 77 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 78 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue())) 79 if (SplatCFP && SplatCFP->isZero()) 80 return true; 81 82 // Otherwise, just use +0.0. 83 return isNullValue(); 84 } 85 86 bool Constant::isNullValue() const { 87 // 0 is null. 88 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 89 return CI->isZero(); 90 91 // +0.0 is null. 92 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 93 return CFP->isZero() && !CFP->isNegative(); 94 95 // constant zero is zero for aggregates, cpnull is null for pointers, none for 96 // tokens. 97 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) || 98 isa<ConstantTokenNone>(this); 99 } 100 101 bool Constant::isAllOnesValue() const { 102 // Check for -1 integers 103 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 104 return CI->isMinusOne(); 105 106 // Check for FP which are bitcasted from -1 integers 107 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 108 return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue(); 109 110 // Check for constant vectors which are splats of -1 values. 111 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 112 if (Constant *Splat = CV->getSplatValue()) 113 return Splat->isAllOnesValue(); 114 115 // Check for constant vectors which are splats of -1 values. 116 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) { 117 if (CV->isSplat()) { 118 if (CV->getElementType()->isFloatingPointTy()) 119 return CV->getElementAsAPFloat(0).bitcastToAPInt().isAllOnesValue(); 120 return CV->getElementAsAPInt(0).isAllOnesValue(); 121 } 122 } 123 124 return false; 125 } 126 127 bool Constant::isOneValue() const { 128 // Check for 1 integers 129 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 130 return CI->isOne(); 131 132 // Check for FP which are bitcasted from 1 integers 133 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 134 return CFP->getValueAPF().bitcastToAPInt().isOneValue(); 135 136 // Check for constant vectors which are splats of 1 values. 137 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 138 if (Constant *Splat = CV->getSplatValue()) 139 return Splat->isOneValue(); 140 141 // Check for constant vectors which are splats of 1 values. 142 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) { 143 if (CV->isSplat()) { 144 if (CV->getElementType()->isFloatingPointTy()) 145 return CV->getElementAsAPFloat(0).bitcastToAPInt().isOneValue(); 146 return CV->getElementAsAPInt(0).isOneValue(); 147 } 148 } 149 150 return false; 151 } 152 153 bool Constant::isNotOneValue() const { 154 // Check for 1 integers 155 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 156 return !CI->isOneValue(); 157 158 // Check for FP which are bitcasted from 1 integers 159 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 160 return !CFP->getValueAPF().bitcastToAPInt().isOneValue(); 161 162 // Check that vectors don't contain 1 163 if (this->getType()->isVectorTy()) { 164 unsigned NumElts = this->getType()->getVectorNumElements(); 165 for (unsigned i = 0; i != NumElts; ++i) { 166 Constant *Elt = this->getAggregateElement(i); 167 if (!Elt || !Elt->isNotOneValue()) 168 return false; 169 } 170 return true; 171 } 172 173 // It *may* contain 1, we can't tell. 174 return false; 175 } 176 177 bool Constant::isMinSignedValue() const { 178 // Check for INT_MIN integers 179 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 180 return CI->isMinValue(/*isSigned=*/true); 181 182 // Check for FP which are bitcasted from INT_MIN integers 183 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 184 return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); 185 186 // Check for constant vectors which are splats of INT_MIN values. 187 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 188 if (Constant *Splat = CV->getSplatValue()) 189 return Splat->isMinSignedValue(); 190 191 // Check for constant vectors which are splats of INT_MIN values. 192 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) { 193 if (CV->isSplat()) { 194 if (CV->getElementType()->isFloatingPointTy()) 195 return CV->getElementAsAPFloat(0).bitcastToAPInt().isMinSignedValue(); 196 return CV->getElementAsAPInt(0).isMinSignedValue(); 197 } 198 } 199 200 return false; 201 } 202 203 bool Constant::isNotMinSignedValue() const { 204 // Check for INT_MIN integers 205 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 206 return !CI->isMinValue(/*isSigned=*/true); 207 208 // Check for FP which are bitcasted from INT_MIN integers 209 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 210 return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); 211 212 // Check that vectors don't contain INT_MIN 213 if (this->getType()->isVectorTy()) { 214 unsigned NumElts = this->getType()->getVectorNumElements(); 215 for (unsigned i = 0; i != NumElts; ++i) { 216 Constant *Elt = this->getAggregateElement(i); 217 if (!Elt || !Elt->isNotMinSignedValue()) 218 return false; 219 } 220 return true; 221 } 222 223 // It *may* contain INT_MIN, we can't tell. 224 return false; 225 } 226 227 bool Constant::isFiniteNonZeroFP() const { 228 if (auto *CFP = dyn_cast<ConstantFP>(this)) 229 return CFP->getValueAPF().isFiniteNonZero(); 230 if (!getType()->isVectorTy()) 231 return false; 232 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) { 233 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i)); 234 if (!CFP || !CFP->getValueAPF().isFiniteNonZero()) 235 return false; 236 } 237 return true; 238 } 239 240 bool Constant::isNormalFP() const { 241 if (auto *CFP = dyn_cast<ConstantFP>(this)) 242 return CFP->getValueAPF().isNormal(); 243 if (!getType()->isVectorTy()) 244 return false; 245 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) { 246 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i)); 247 if (!CFP || !CFP->getValueAPF().isNormal()) 248 return false; 249 } 250 return true; 251 } 252 253 bool Constant::hasExactInverseFP() const { 254 if (auto *CFP = dyn_cast<ConstantFP>(this)) 255 return CFP->getValueAPF().getExactInverse(nullptr); 256 if (!getType()->isVectorTy()) 257 return false; 258 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) { 259 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i)); 260 if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr)) 261 return false; 262 } 263 return true; 264 } 265 266 bool Constant::isNaN() const { 267 if (auto *CFP = dyn_cast<ConstantFP>(this)) 268 return CFP->isNaN(); 269 if (!getType()->isVectorTy()) 270 return false; 271 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) { 272 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i)); 273 if (!CFP || !CFP->isNaN()) 274 return false; 275 } 276 return true; 277 } 278 279 bool Constant::isElementWiseEqual(Value *Y) const { 280 // Are they fully identical? 281 if (this == Y) 282 return true; 283 284 // The input value must be a vector constant with the same type. 285 Type *Ty = getType(); 286 if (!isa<Constant>(Y) || !Ty->isVectorTy() || Ty != Y->getType()) 287 return false; 288 289 // They may still be identical element-wise (if they have `undef`s). 290 // FIXME: This crashes on FP vector constants. 291 return match(ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_EQ, 292 const_cast<Constant *>(this), 293 cast<Constant>(Y)), 294 m_One()); 295 } 296 297 bool Constant::containsUndefElement() const { 298 if (!getType()->isVectorTy()) 299 return false; 300 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) 301 if (isa<UndefValue>(getAggregateElement(i))) 302 return true; 303 304 return false; 305 } 306 307 bool Constant::containsConstantExpression() const { 308 if (!getType()->isVectorTy()) 309 return false; 310 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) 311 if (isa<ConstantExpr>(getAggregateElement(i))) 312 return true; 313 314 return false; 315 } 316 317 /// Constructor to create a '0' constant of arbitrary type. 318 Constant *Constant::getNullValue(Type *Ty) { 319 switch (Ty->getTypeID()) { 320 case Type::IntegerTyID: 321 return ConstantInt::get(Ty, 0); 322 case Type::HalfTyID: 323 return ConstantFP::get(Ty->getContext(), 324 APFloat::getZero(APFloat::IEEEhalf())); 325 case Type::FloatTyID: 326 return ConstantFP::get(Ty->getContext(), 327 APFloat::getZero(APFloat::IEEEsingle())); 328 case Type::DoubleTyID: 329 return ConstantFP::get(Ty->getContext(), 330 APFloat::getZero(APFloat::IEEEdouble())); 331 case Type::X86_FP80TyID: 332 return ConstantFP::get(Ty->getContext(), 333 APFloat::getZero(APFloat::x87DoubleExtended())); 334 case Type::FP128TyID: 335 return ConstantFP::get(Ty->getContext(), 336 APFloat::getZero(APFloat::IEEEquad())); 337 case Type::PPC_FP128TyID: 338 return ConstantFP::get(Ty->getContext(), 339 APFloat(APFloat::PPCDoubleDouble(), 340 APInt::getNullValue(128))); 341 case Type::PointerTyID: 342 return ConstantPointerNull::get(cast<PointerType>(Ty)); 343 case Type::StructTyID: 344 case Type::ArrayTyID: 345 case Type::VectorTyID: 346 return ConstantAggregateZero::get(Ty); 347 case Type::TokenTyID: 348 return ConstantTokenNone::get(Ty->getContext()); 349 default: 350 // Function, Label, or Opaque type? 351 llvm_unreachable("Cannot create a null constant of that type!"); 352 } 353 } 354 355 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { 356 Type *ScalarTy = Ty->getScalarType(); 357 358 // Create the base integer constant. 359 Constant *C = ConstantInt::get(Ty->getContext(), V); 360 361 // Convert an integer to a pointer, if necessary. 362 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy)) 363 C = ConstantExpr::getIntToPtr(C, PTy); 364 365 // Broadcast a scalar to a vector, if necessary. 366 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 367 C = ConstantVector::getSplat(VTy->getNumElements(), C); 368 369 return C; 370 } 371 372 Constant *Constant::getAllOnesValue(Type *Ty) { 373 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) 374 return ConstantInt::get(Ty->getContext(), 375 APInt::getAllOnesValue(ITy->getBitWidth())); 376 377 if (Ty->isFloatingPointTy()) { 378 APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(), 379 !Ty->isPPC_FP128Ty()); 380 return ConstantFP::get(Ty->getContext(), FL); 381 } 382 383 VectorType *VTy = cast<VectorType>(Ty); 384 return ConstantVector::getSplat(VTy->getNumElements(), 385 getAllOnesValue(VTy->getElementType())); 386 } 387 388 Constant *Constant::getAggregateElement(unsigned Elt) const { 389 if (const ConstantAggregate *CC = dyn_cast<ConstantAggregate>(this)) 390 return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr; 391 392 if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this)) 393 return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr; 394 395 if (const UndefValue *UV = dyn_cast<UndefValue>(this)) 396 return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr; 397 398 if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this)) 399 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) 400 : nullptr; 401 return nullptr; 402 } 403 404 Constant *Constant::getAggregateElement(Constant *Elt) const { 405 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer"); 406 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) { 407 // Check if the constant fits into an uint64_t. 408 if (CI->getValue().getActiveBits() > 64) 409 return nullptr; 410 return getAggregateElement(CI->getZExtValue()); 411 } 412 return nullptr; 413 } 414 415 void Constant::destroyConstant() { 416 /// First call destroyConstantImpl on the subclass. This gives the subclass 417 /// a chance to remove the constant from any maps/pools it's contained in. 418 switch (getValueID()) { 419 default: 420 llvm_unreachable("Not a constant!"); 421 #define HANDLE_CONSTANT(Name) \ 422 case Value::Name##Val: \ 423 cast<Name>(this)->destroyConstantImpl(); \ 424 break; 425 #include "llvm/IR/Value.def" 426 } 427 428 // When a Constant is destroyed, there may be lingering 429 // references to the constant by other constants in the constant pool. These 430 // constants are implicitly dependent on the module that is being deleted, 431 // but they don't know that. Because we only find out when the CPV is 432 // deleted, we must now notify all of our users (that should only be 433 // Constants) that they are, in fact, invalid now and should be deleted. 434 // 435 while (!use_empty()) { 436 Value *V = user_back(); 437 #ifndef NDEBUG // Only in -g mode... 438 if (!isa<Constant>(V)) { 439 dbgs() << "While deleting: " << *this 440 << "\n\nUse still stuck around after Def is destroyed: " << *V 441 << "\n\n"; 442 } 443 #endif 444 assert(isa<Constant>(V) && "References remain to Constant being destroyed"); 445 cast<Constant>(V)->destroyConstant(); 446 447 // The constant should remove itself from our use list... 448 assert((use_empty() || user_back() != V) && "Constant not removed!"); 449 } 450 451 // Value has no outstanding references it is safe to delete it now... 452 delete this; 453 } 454 455 static bool canTrapImpl(const Constant *C, 456 SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) { 457 assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); 458 // The only thing that could possibly trap are constant exprs. 459 const ConstantExpr *CE = dyn_cast<ConstantExpr>(C); 460 if (!CE) 461 return false; 462 463 // ConstantExpr traps if any operands can trap. 464 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { 465 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) { 466 if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps)) 467 return true; 468 } 469 } 470 471 // Otherwise, only specific operations can trap. 472 switch (CE->getOpcode()) { 473 default: 474 return false; 475 case Instruction::UDiv: 476 case Instruction::SDiv: 477 case Instruction::URem: 478 case Instruction::SRem: 479 // Div and rem can trap if the RHS is not known to be non-zero. 480 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue()) 481 return true; 482 return false; 483 } 484 } 485 486 bool Constant::canTrap() const { 487 SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps; 488 return canTrapImpl(this, NonTrappingOps); 489 } 490 491 /// Check if C contains a GlobalValue for which Predicate is true. 492 static bool 493 ConstHasGlobalValuePredicate(const Constant *C, 494 bool (*Predicate)(const GlobalValue *)) { 495 SmallPtrSet<const Constant *, 8> Visited; 496 SmallVector<const Constant *, 8> WorkList; 497 WorkList.push_back(C); 498 Visited.insert(C); 499 500 while (!WorkList.empty()) { 501 const Constant *WorkItem = WorkList.pop_back_val(); 502 if (const auto *GV = dyn_cast<GlobalValue>(WorkItem)) 503 if (Predicate(GV)) 504 return true; 505 for (const Value *Op : WorkItem->operands()) { 506 const Constant *ConstOp = dyn_cast<Constant>(Op); 507 if (!ConstOp) 508 continue; 509 if (Visited.insert(ConstOp).second) 510 WorkList.push_back(ConstOp); 511 } 512 } 513 return false; 514 } 515 516 bool Constant::isThreadDependent() const { 517 auto DLLImportPredicate = [](const GlobalValue *GV) { 518 return GV->isThreadLocal(); 519 }; 520 return ConstHasGlobalValuePredicate(this, DLLImportPredicate); 521 } 522 523 bool Constant::isDLLImportDependent() const { 524 auto DLLImportPredicate = [](const GlobalValue *GV) { 525 return GV->hasDLLImportStorageClass(); 526 }; 527 return ConstHasGlobalValuePredicate(this, DLLImportPredicate); 528 } 529 530 bool Constant::isConstantUsed() const { 531 for (const User *U : users()) { 532 const Constant *UC = dyn_cast<Constant>(U); 533 if (!UC || isa<GlobalValue>(UC)) 534 return true; 535 536 if (UC->isConstantUsed()) 537 return true; 538 } 539 return false; 540 } 541 542 bool Constant::needsRelocation() const { 543 if (isa<GlobalValue>(this)) 544 return true; // Global reference. 545 546 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this)) 547 return BA->getFunction()->needsRelocation(); 548 549 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) { 550 if (CE->getOpcode() == Instruction::Sub) { 551 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0)); 552 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1)); 553 if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt && 554 RHS->getOpcode() == Instruction::PtrToInt) { 555 Constant *LHSOp0 = LHS->getOperand(0); 556 Constant *RHSOp0 = RHS->getOperand(0); 557 558 // While raw uses of blockaddress need to be relocated, differences 559 // between two of them don't when they are for labels in the same 560 // function. This is a common idiom when creating a table for the 561 // indirect goto extension, so we handle it efficiently here. 562 if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) && 563 cast<BlockAddress>(LHSOp0)->getFunction() == 564 cast<BlockAddress>(RHSOp0)->getFunction()) 565 return false; 566 567 // Relative pointers do not need to be dynamically relocated. 568 if (auto *LHSGV = dyn_cast<GlobalValue>(LHSOp0->stripPointerCasts())) 569 if (auto *RHSGV = dyn_cast<GlobalValue>(RHSOp0->stripPointerCasts())) 570 if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal()) 571 return false; 572 } 573 } 574 } 575 576 bool Result = false; 577 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 578 Result |= cast<Constant>(getOperand(i))->needsRelocation(); 579 580 return Result; 581 } 582 583 /// If the specified constantexpr is dead, remove it. This involves recursively 584 /// eliminating any dead users of the constantexpr. 585 static bool removeDeadUsersOfConstant(const Constant *C) { 586 if (isa<GlobalValue>(C)) return false; // Cannot remove this 587 588 while (!C->use_empty()) { 589 const Constant *User = dyn_cast<Constant>(C->user_back()); 590 if (!User) return false; // Non-constant usage; 591 if (!removeDeadUsersOfConstant(User)) 592 return false; // Constant wasn't dead 593 } 594 595 const_cast<Constant*>(C)->destroyConstant(); 596 return true; 597 } 598 599 600 void Constant::removeDeadConstantUsers() const { 601 Value::const_user_iterator I = user_begin(), E = user_end(); 602 Value::const_user_iterator LastNonDeadUser = E; 603 while (I != E) { 604 const Constant *User = dyn_cast<Constant>(*I); 605 if (!User) { 606 LastNonDeadUser = I; 607 ++I; 608 continue; 609 } 610 611 if (!removeDeadUsersOfConstant(User)) { 612 // If the constant wasn't dead, remember that this was the last live use 613 // and move on to the next constant. 614 LastNonDeadUser = I; 615 ++I; 616 continue; 617 } 618 619 // If the constant was dead, then the iterator is invalidated. 620 if (LastNonDeadUser == E) 621 I = user_begin(); 622 else 623 I = std::next(LastNonDeadUser); 624 } 625 } 626 627 Constant *Constant::replaceUndefsWith(Constant *C, Constant *Replacement) { 628 assert(C && Replacement && "Expected non-nullptr constant arguments"); 629 Type *Ty = C->getType(); 630 if (match(C, m_Undef())) { 631 assert(Ty == Replacement->getType() && "Expected matching types"); 632 return Replacement; 633 } 634 635 // Don't know how to deal with this constant. 636 if (!Ty->isVectorTy()) 637 return C; 638 639 unsigned NumElts = Ty->getVectorNumElements(); 640 SmallVector<Constant *, 32> NewC(NumElts); 641 for (unsigned i = 0; i != NumElts; ++i) { 642 Constant *EltC = C->getAggregateElement(i); 643 assert((!EltC || EltC->getType() == Replacement->getType()) && 644 "Expected matching types"); 645 NewC[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC; 646 } 647 return ConstantVector::get(NewC); 648 } 649 650 651 //===----------------------------------------------------------------------===// 652 // ConstantInt 653 //===----------------------------------------------------------------------===// 654 655 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V) 656 : ConstantData(Ty, ConstantIntVal), Val(V) { 657 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); 658 } 659 660 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) { 661 LLVMContextImpl *pImpl = Context.pImpl; 662 if (!pImpl->TheTrueVal) 663 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1); 664 return pImpl->TheTrueVal; 665 } 666 667 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { 668 LLVMContextImpl *pImpl = Context.pImpl; 669 if (!pImpl->TheFalseVal) 670 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0); 671 return pImpl->TheFalseVal; 672 } 673 674 Constant *ConstantInt::getTrue(Type *Ty) { 675 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); 676 ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext()); 677 if (auto *VTy = dyn_cast<VectorType>(Ty)) 678 return ConstantVector::getSplat(VTy->getNumElements(), TrueC); 679 return TrueC; 680 } 681 682 Constant *ConstantInt::getFalse(Type *Ty) { 683 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); 684 ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext()); 685 if (auto *VTy = dyn_cast<VectorType>(Ty)) 686 return ConstantVector::getSplat(VTy->getNumElements(), FalseC); 687 return FalseC; 688 } 689 690 // Get a ConstantInt from an APInt. 691 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { 692 // get an existing value or the insertion position 693 LLVMContextImpl *pImpl = Context.pImpl; 694 std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V]; 695 if (!Slot) { 696 // Get the corresponding integer type for the bit width of the value. 697 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); 698 Slot.reset(new ConstantInt(ITy, V)); 699 } 700 assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth())); 701 return Slot.get(); 702 } 703 704 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { 705 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned); 706 707 // For vectors, broadcast the value. 708 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 709 return ConstantVector::getSplat(VTy->getNumElements(), C); 710 711 return C; 712 } 713 714 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) { 715 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); 716 } 717 718 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) { 719 return get(Ty, V, true); 720 } 721 722 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) { 723 return get(Ty, V, true); 724 } 725 726 Constant *ConstantInt::get(Type *Ty, const APInt& V) { 727 ConstantInt *C = get(Ty->getContext(), V); 728 assert(C->getType() == Ty->getScalarType() && 729 "ConstantInt type doesn't match the type implied by its value!"); 730 731 // For vectors, broadcast the value. 732 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 733 return ConstantVector::getSplat(VTy->getNumElements(), C); 734 735 return C; 736 } 737 738 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) { 739 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); 740 } 741 742 /// Remove the constant from the constant table. 743 void ConstantInt::destroyConstantImpl() { 744 llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!"); 745 } 746 747 //===----------------------------------------------------------------------===// 748 // ConstantFP 749 //===----------------------------------------------------------------------===// 750 751 static const fltSemantics *TypeToFloatSemantics(Type *Ty) { 752 if (Ty->isHalfTy()) 753 return &APFloat::IEEEhalf(); 754 if (Ty->isFloatTy()) 755 return &APFloat::IEEEsingle(); 756 if (Ty->isDoubleTy()) 757 return &APFloat::IEEEdouble(); 758 if (Ty->isX86_FP80Ty()) 759 return &APFloat::x87DoubleExtended(); 760 else if (Ty->isFP128Ty()) 761 return &APFloat::IEEEquad(); 762 763 assert(Ty->isPPC_FP128Ty() && "Unknown FP format"); 764 return &APFloat::PPCDoubleDouble(); 765 } 766 767 Constant *ConstantFP::get(Type *Ty, double V) { 768 LLVMContext &Context = Ty->getContext(); 769 770 APFloat FV(V); 771 bool ignored; 772 FV.convert(*TypeToFloatSemantics(Ty->getScalarType()), 773 APFloat::rmNearestTiesToEven, &ignored); 774 Constant *C = get(Context, FV); 775 776 // For vectors, broadcast the value. 777 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 778 return ConstantVector::getSplat(VTy->getNumElements(), C); 779 780 return C; 781 } 782 783 Constant *ConstantFP::get(Type *Ty, const APFloat &V) { 784 ConstantFP *C = get(Ty->getContext(), V); 785 assert(C->getType() == Ty->getScalarType() && 786 "ConstantFP type doesn't match the type implied by its value!"); 787 788 // For vectors, broadcast the value. 789 if (auto *VTy = dyn_cast<VectorType>(Ty)) 790 return ConstantVector::getSplat(VTy->getNumElements(), C); 791 792 return C; 793 } 794 795 Constant *ConstantFP::get(Type *Ty, StringRef Str) { 796 LLVMContext &Context = Ty->getContext(); 797 798 APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str); 799 Constant *C = get(Context, FV); 800 801 // For vectors, broadcast the value. 802 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 803 return ConstantVector::getSplat(VTy->getNumElements(), C); 804 805 return C; 806 } 807 808 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) { 809 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType()); 810 APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload); 811 Constant *C = get(Ty->getContext(), NaN); 812 813 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 814 return ConstantVector::getSplat(VTy->getNumElements(), C); 815 816 return C; 817 } 818 819 Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) { 820 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType()); 821 APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload); 822 Constant *C = get(Ty->getContext(), NaN); 823 824 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 825 return ConstantVector::getSplat(VTy->getNumElements(), C); 826 827 return C; 828 } 829 830 Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) { 831 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType()); 832 APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload); 833 Constant *C = get(Ty->getContext(), NaN); 834 835 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 836 return ConstantVector::getSplat(VTy->getNumElements(), C); 837 838 return C; 839 } 840 841 Constant *ConstantFP::getNegativeZero(Type *Ty) { 842 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType()); 843 APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true); 844 Constant *C = get(Ty->getContext(), NegZero); 845 846 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 847 return ConstantVector::getSplat(VTy->getNumElements(), C); 848 849 return C; 850 } 851 852 853 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) { 854 if (Ty->isFPOrFPVectorTy()) 855 return getNegativeZero(Ty); 856 857 return Constant::getNullValue(Ty); 858 } 859 860 861 // ConstantFP accessors. 862 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { 863 LLVMContextImpl* pImpl = Context.pImpl; 864 865 std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V]; 866 867 if (!Slot) { 868 Type *Ty; 869 if (&V.getSemantics() == &APFloat::IEEEhalf()) 870 Ty = Type::getHalfTy(Context); 871 else if (&V.getSemantics() == &APFloat::IEEEsingle()) 872 Ty = Type::getFloatTy(Context); 873 else if (&V.getSemantics() == &APFloat::IEEEdouble()) 874 Ty = Type::getDoubleTy(Context); 875 else if (&V.getSemantics() == &APFloat::x87DoubleExtended()) 876 Ty = Type::getX86_FP80Ty(Context); 877 else if (&V.getSemantics() == &APFloat::IEEEquad()) 878 Ty = Type::getFP128Ty(Context); 879 else { 880 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble() && 881 "Unknown FP format"); 882 Ty = Type::getPPC_FP128Ty(Context); 883 } 884 Slot.reset(new ConstantFP(Ty, V)); 885 } 886 887 return Slot.get(); 888 } 889 890 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) { 891 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType()); 892 Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative)); 893 894 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 895 return ConstantVector::getSplat(VTy->getNumElements(), C); 896 897 return C; 898 } 899 900 ConstantFP::ConstantFP(Type *Ty, const APFloat &V) 901 : ConstantData(Ty, ConstantFPVal), Val(V) { 902 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) && 903 "FP type Mismatch"); 904 } 905 906 bool ConstantFP::isExactlyValue(const APFloat &V) const { 907 return Val.bitwiseIsEqual(V); 908 } 909 910 /// Remove the constant from the constant table. 911 void ConstantFP::destroyConstantImpl() { 912 llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!"); 913 } 914 915 //===----------------------------------------------------------------------===// 916 // ConstantAggregateZero Implementation 917 //===----------------------------------------------------------------------===// 918 919 Constant *ConstantAggregateZero::getSequentialElement() const { 920 return Constant::getNullValue(getType()->getSequentialElementType()); 921 } 922 923 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const { 924 return Constant::getNullValue(getType()->getStructElementType(Elt)); 925 } 926 927 Constant *ConstantAggregateZero::getElementValue(Constant *C) const { 928 if (isa<SequentialType>(getType())) 929 return getSequentialElement(); 930 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 931 } 932 933 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const { 934 if (isa<SequentialType>(getType())) 935 return getSequentialElement(); 936 return getStructElement(Idx); 937 } 938 939 unsigned ConstantAggregateZero::getNumElements() const { 940 Type *Ty = getType(); 941 if (auto *AT = dyn_cast<ArrayType>(Ty)) 942 return AT->getNumElements(); 943 if (auto *VT = dyn_cast<VectorType>(Ty)) 944 return VT->getNumElements(); 945 return Ty->getStructNumElements(); 946 } 947 948 //===----------------------------------------------------------------------===// 949 // UndefValue Implementation 950 //===----------------------------------------------------------------------===// 951 952 UndefValue *UndefValue::getSequentialElement() const { 953 return UndefValue::get(getType()->getSequentialElementType()); 954 } 955 956 UndefValue *UndefValue::getStructElement(unsigned Elt) const { 957 return UndefValue::get(getType()->getStructElementType(Elt)); 958 } 959 960 UndefValue *UndefValue::getElementValue(Constant *C) const { 961 if (isa<SequentialType>(getType())) 962 return getSequentialElement(); 963 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 964 } 965 966 UndefValue *UndefValue::getElementValue(unsigned Idx) const { 967 if (isa<SequentialType>(getType())) 968 return getSequentialElement(); 969 return getStructElement(Idx); 970 } 971 972 unsigned UndefValue::getNumElements() const { 973 Type *Ty = getType(); 974 if (auto *ST = dyn_cast<SequentialType>(Ty)) 975 return ST->getNumElements(); 976 return Ty->getStructNumElements(); 977 } 978 979 //===----------------------------------------------------------------------===// 980 // ConstantXXX Classes 981 //===----------------------------------------------------------------------===// 982 983 template <typename ItTy, typename EltTy> 984 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) { 985 for (; Start != End; ++Start) 986 if (*Start != Elt) 987 return false; 988 return true; 989 } 990 991 template <typename SequentialTy, typename ElementTy> 992 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) { 993 assert(!V.empty() && "Cannot get empty int sequence."); 994 995 SmallVector<ElementTy, 16> Elts; 996 for (Constant *C : V) 997 if (auto *CI = dyn_cast<ConstantInt>(C)) 998 Elts.push_back(CI->getZExtValue()); 999 else 1000 return nullptr; 1001 return SequentialTy::get(V[0]->getContext(), Elts); 1002 } 1003 1004 template <typename SequentialTy, typename ElementTy> 1005 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) { 1006 assert(!V.empty() && "Cannot get empty FP sequence."); 1007 1008 SmallVector<ElementTy, 16> Elts; 1009 for (Constant *C : V) 1010 if (auto *CFP = dyn_cast<ConstantFP>(C)) 1011 Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 1012 else 1013 return nullptr; 1014 return SequentialTy::getFP(V[0]->getContext(), Elts); 1015 } 1016 1017 template <typename SequenceTy> 1018 static Constant *getSequenceIfElementsMatch(Constant *C, 1019 ArrayRef<Constant *> V) { 1020 // We speculatively build the elements here even if it turns out that there is 1021 // a constantexpr or something else weird, since it is so uncommon for that to 1022 // happen. 1023 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 1024 if (CI->getType()->isIntegerTy(8)) 1025 return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V); 1026 else if (CI->getType()->isIntegerTy(16)) 1027 return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V); 1028 else if (CI->getType()->isIntegerTy(32)) 1029 return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V); 1030 else if (CI->getType()->isIntegerTy(64)) 1031 return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V); 1032 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1033 if (CFP->getType()->isHalfTy()) 1034 return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V); 1035 else if (CFP->getType()->isFloatTy()) 1036 return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V); 1037 else if (CFP->getType()->isDoubleTy()) 1038 return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V); 1039 } 1040 1041 return nullptr; 1042 } 1043 1044 ConstantAggregate::ConstantAggregate(CompositeType *T, ValueTy VT, 1045 ArrayRef<Constant *> V) 1046 : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(), 1047 V.size()) { 1048 llvm::copy(V, op_begin()); 1049 1050 // Check that types match, unless this is an opaque struct. 1051 if (auto *ST = dyn_cast<StructType>(T)) 1052 if (ST->isOpaque()) 1053 return; 1054 for (unsigned I = 0, E = V.size(); I != E; ++I) 1055 assert(V[I]->getType() == T->getTypeAtIndex(I) && 1056 "Initializer for composite element doesn't match!"); 1057 } 1058 1059 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) 1060 : ConstantAggregate(T, ConstantArrayVal, V) { 1061 assert(V.size() == T->getNumElements() && 1062 "Invalid initializer for constant array"); 1063 } 1064 1065 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) { 1066 if (Constant *C = getImpl(Ty, V)) 1067 return C; 1068 return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V); 1069 } 1070 1071 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) { 1072 // Empty arrays are canonicalized to ConstantAggregateZero. 1073 if (V.empty()) 1074 return ConstantAggregateZero::get(Ty); 1075 1076 for (unsigned i = 0, e = V.size(); i != e; ++i) { 1077 assert(V[i]->getType() == Ty->getElementType() && 1078 "Wrong type in array element initializer"); 1079 } 1080 1081 // If this is an all-zero array, return a ConstantAggregateZero object. If 1082 // all undef, return an UndefValue, if "all simple", then return a 1083 // ConstantDataArray. 1084 Constant *C = V[0]; 1085 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) 1086 return UndefValue::get(Ty); 1087 1088 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C)) 1089 return ConstantAggregateZero::get(Ty); 1090 1091 // Check to see if all of the elements are ConstantFP or ConstantInt and if 1092 // the element type is compatible with ConstantDataVector. If so, use it. 1093 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) 1094 return getSequenceIfElementsMatch<ConstantDataArray>(C, V); 1095 1096 // Otherwise, we really do want to create a ConstantArray. 1097 return nullptr; 1098 } 1099 1100 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, 1101 ArrayRef<Constant*> V, 1102 bool Packed) { 1103 unsigned VecSize = V.size(); 1104 SmallVector<Type*, 16> EltTypes(VecSize); 1105 for (unsigned i = 0; i != VecSize; ++i) 1106 EltTypes[i] = V[i]->getType(); 1107 1108 return StructType::get(Context, EltTypes, Packed); 1109 } 1110 1111 1112 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V, 1113 bool Packed) { 1114 assert(!V.empty() && 1115 "ConstantStruct::getTypeForElements cannot be called on empty list"); 1116 return getTypeForElements(V[0]->getContext(), V, Packed); 1117 } 1118 1119 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V) 1120 : ConstantAggregate(T, ConstantStructVal, V) { 1121 assert((T->isOpaque() || V.size() == T->getNumElements()) && 1122 "Invalid initializer for constant struct"); 1123 } 1124 1125 // ConstantStruct accessors. 1126 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) { 1127 assert((ST->isOpaque() || ST->getNumElements() == V.size()) && 1128 "Incorrect # elements specified to ConstantStruct::get"); 1129 1130 // Create a ConstantAggregateZero value if all elements are zeros. 1131 bool isZero = true; 1132 bool isUndef = false; 1133 1134 if (!V.empty()) { 1135 isUndef = isa<UndefValue>(V[0]); 1136 isZero = V[0]->isNullValue(); 1137 if (isUndef || isZero) { 1138 for (unsigned i = 0, e = V.size(); i != e; ++i) { 1139 if (!V[i]->isNullValue()) 1140 isZero = false; 1141 if (!isa<UndefValue>(V[i])) 1142 isUndef = false; 1143 } 1144 } 1145 } 1146 if (isZero) 1147 return ConstantAggregateZero::get(ST); 1148 if (isUndef) 1149 return UndefValue::get(ST); 1150 1151 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); 1152 } 1153 1154 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V) 1155 : ConstantAggregate(T, ConstantVectorVal, V) { 1156 assert(V.size() == T->getNumElements() && 1157 "Invalid initializer for constant vector"); 1158 } 1159 1160 // ConstantVector accessors. 1161 Constant *ConstantVector::get(ArrayRef<Constant*> V) { 1162 if (Constant *C = getImpl(V)) 1163 return C; 1164 VectorType *Ty = VectorType::get(V.front()->getType(), V.size()); 1165 return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V); 1166 } 1167 1168 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) { 1169 assert(!V.empty() && "Vectors can't be empty"); 1170 VectorType *T = VectorType::get(V.front()->getType(), V.size()); 1171 1172 // If this is an all-undef or all-zero vector, return a 1173 // ConstantAggregateZero or UndefValue. 1174 Constant *C = V[0]; 1175 bool isZero = C->isNullValue(); 1176 bool isUndef = isa<UndefValue>(C); 1177 1178 if (isZero || isUndef) { 1179 for (unsigned i = 1, e = V.size(); i != e; ++i) 1180 if (V[i] != C) { 1181 isZero = isUndef = false; 1182 break; 1183 } 1184 } 1185 1186 if (isZero) 1187 return ConstantAggregateZero::get(T); 1188 if (isUndef) 1189 return UndefValue::get(T); 1190 1191 // Check to see if all of the elements are ConstantFP or ConstantInt and if 1192 // the element type is compatible with ConstantDataVector. If so, use it. 1193 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) 1194 return getSequenceIfElementsMatch<ConstantDataVector>(C, V); 1195 1196 // Otherwise, the element type isn't compatible with ConstantDataVector, or 1197 // the operand list contains a ConstantExpr or something else strange. 1198 return nullptr; 1199 } 1200 1201 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) { 1202 // If this splat is compatible with ConstantDataVector, use it instead of 1203 // ConstantVector. 1204 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) && 1205 ConstantDataSequential::isElementTypeCompatible(V->getType())) 1206 return ConstantDataVector::getSplat(NumElts, V); 1207 1208 SmallVector<Constant*, 32> Elts(NumElts, V); 1209 return get(Elts); 1210 } 1211 1212 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) { 1213 LLVMContextImpl *pImpl = Context.pImpl; 1214 if (!pImpl->TheNoneToken) 1215 pImpl->TheNoneToken.reset(new ConstantTokenNone(Context)); 1216 return pImpl->TheNoneToken.get(); 1217 } 1218 1219 /// Remove the constant from the constant table. 1220 void ConstantTokenNone::destroyConstantImpl() { 1221 llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!"); 1222 } 1223 1224 // Utility function for determining if a ConstantExpr is a CastOp or not. This 1225 // can't be inline because we don't want to #include Instruction.h into 1226 // Constant.h 1227 bool ConstantExpr::isCast() const { 1228 return Instruction::isCast(getOpcode()); 1229 } 1230 1231 bool ConstantExpr::isCompare() const { 1232 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; 1233 } 1234 1235 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const { 1236 if (getOpcode() != Instruction::GetElementPtr) return false; 1237 1238 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this); 1239 User::const_op_iterator OI = std::next(this->op_begin()); 1240 1241 // The remaining indices may be compile-time known integers within the bounds 1242 // of the corresponding notional static array types. 1243 for (; GEPI != E; ++GEPI, ++OI) { 1244 if (isa<UndefValue>(*OI)) 1245 continue; 1246 auto *CI = dyn_cast<ConstantInt>(*OI); 1247 if (!CI || (GEPI.isBoundedSequential() && 1248 (CI->getValue().getActiveBits() > 64 || 1249 CI->getZExtValue() >= GEPI.getSequentialNumElements()))) 1250 return false; 1251 } 1252 1253 // All the indices checked out. 1254 return true; 1255 } 1256 1257 bool ConstantExpr::hasIndices() const { 1258 return getOpcode() == Instruction::ExtractValue || 1259 getOpcode() == Instruction::InsertValue; 1260 } 1261 1262 ArrayRef<unsigned> ConstantExpr::getIndices() const { 1263 if (const ExtractValueConstantExpr *EVCE = 1264 dyn_cast<ExtractValueConstantExpr>(this)) 1265 return EVCE->Indices; 1266 1267 return cast<InsertValueConstantExpr>(this)->Indices; 1268 } 1269 1270 unsigned ConstantExpr::getPredicate() const { 1271 return cast<CompareConstantExpr>(this)->predicate; 1272 } 1273 1274 Constant * 1275 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { 1276 assert(Op->getType() == getOperand(OpNo)->getType() && 1277 "Replacing operand with value of different type!"); 1278 if (getOperand(OpNo) == Op) 1279 return const_cast<ConstantExpr*>(this); 1280 1281 SmallVector<Constant*, 8> NewOps; 1282 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1283 NewOps.push_back(i == OpNo ? Op : getOperand(i)); 1284 1285 return getWithOperands(NewOps); 1286 } 1287 1288 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, 1289 bool OnlyIfReduced, Type *SrcTy) const { 1290 assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); 1291 1292 // If no operands changed return self. 1293 if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin())) 1294 return const_cast<ConstantExpr*>(this); 1295 1296 Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr; 1297 switch (getOpcode()) { 1298 case Instruction::Trunc: 1299 case Instruction::ZExt: 1300 case Instruction::SExt: 1301 case Instruction::FPTrunc: 1302 case Instruction::FPExt: 1303 case Instruction::UIToFP: 1304 case Instruction::SIToFP: 1305 case Instruction::FPToUI: 1306 case Instruction::FPToSI: 1307 case Instruction::PtrToInt: 1308 case Instruction::IntToPtr: 1309 case Instruction::BitCast: 1310 case Instruction::AddrSpaceCast: 1311 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced); 1312 case Instruction::Select: 1313 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy); 1314 case Instruction::InsertElement: 1315 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2], 1316 OnlyIfReducedTy); 1317 case Instruction::ExtractElement: 1318 return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy); 1319 case Instruction::InsertValue: 1320 return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(), 1321 OnlyIfReducedTy); 1322 case Instruction::ExtractValue: 1323 return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy); 1324 case Instruction::ShuffleVector: 1325 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2], 1326 OnlyIfReducedTy); 1327 case Instruction::GetElementPtr: { 1328 auto *GEPO = cast<GEPOperator>(this); 1329 assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType())); 1330 return ConstantExpr::getGetElementPtr( 1331 SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1), 1332 GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy); 1333 } 1334 case Instruction::ICmp: 1335 case Instruction::FCmp: 1336 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1], 1337 OnlyIfReducedTy); 1338 default: 1339 assert(getNumOperands() == 2 && "Must be binary operator?"); 1340 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData, 1341 OnlyIfReducedTy); 1342 } 1343 } 1344 1345 1346 //===----------------------------------------------------------------------===// 1347 // isValueValidForType implementations 1348 1349 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { 1350 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay 1351 if (Ty->isIntegerTy(1)) 1352 return Val == 0 || Val == 1; 1353 return isUIntN(NumBits, Val); 1354 } 1355 1356 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) { 1357 unsigned NumBits = Ty->getIntegerBitWidth(); 1358 if (Ty->isIntegerTy(1)) 1359 return Val == 0 || Val == 1 || Val == -1; 1360 return isIntN(NumBits, Val); 1361 } 1362 1363 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { 1364 // convert modifies in place, so make a copy. 1365 APFloat Val2 = APFloat(Val); 1366 bool losesInfo; 1367 switch (Ty->getTypeID()) { 1368 default: 1369 return false; // These can't be represented as floating point! 1370 1371 // FIXME rounding mode needs to be more flexible 1372 case Type::HalfTyID: { 1373 if (&Val2.getSemantics() == &APFloat::IEEEhalf()) 1374 return true; 1375 Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo); 1376 return !losesInfo; 1377 } 1378 case Type::FloatTyID: { 1379 if (&Val2.getSemantics() == &APFloat::IEEEsingle()) 1380 return true; 1381 Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo); 1382 return !losesInfo; 1383 } 1384 case Type::DoubleTyID: { 1385 if (&Val2.getSemantics() == &APFloat::IEEEhalf() || 1386 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1387 &Val2.getSemantics() == &APFloat::IEEEdouble()) 1388 return true; 1389 Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo); 1390 return !losesInfo; 1391 } 1392 case Type::X86_FP80TyID: 1393 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1394 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1395 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1396 &Val2.getSemantics() == &APFloat::x87DoubleExtended(); 1397 case Type::FP128TyID: 1398 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1399 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1400 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1401 &Val2.getSemantics() == &APFloat::IEEEquad(); 1402 case Type::PPC_FP128TyID: 1403 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1404 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1405 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1406 &Val2.getSemantics() == &APFloat::PPCDoubleDouble(); 1407 } 1408 } 1409 1410 1411 //===----------------------------------------------------------------------===// 1412 // Factory Function Implementation 1413 1414 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) { 1415 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && 1416 "Cannot create an aggregate zero of non-aggregate type!"); 1417 1418 std::unique_ptr<ConstantAggregateZero> &Entry = 1419 Ty->getContext().pImpl->CAZConstants[Ty]; 1420 if (!Entry) 1421 Entry.reset(new ConstantAggregateZero(Ty)); 1422 1423 return Entry.get(); 1424 } 1425 1426 /// Remove the constant from the constant table. 1427 void ConstantAggregateZero::destroyConstantImpl() { 1428 getContext().pImpl->CAZConstants.erase(getType()); 1429 } 1430 1431 /// Remove the constant from the constant table. 1432 void ConstantArray::destroyConstantImpl() { 1433 getType()->getContext().pImpl->ArrayConstants.remove(this); 1434 } 1435 1436 1437 //---- ConstantStruct::get() implementation... 1438 // 1439 1440 /// Remove the constant from the constant table. 1441 void ConstantStruct::destroyConstantImpl() { 1442 getType()->getContext().pImpl->StructConstants.remove(this); 1443 } 1444 1445 /// Remove the constant from the constant table. 1446 void ConstantVector::destroyConstantImpl() { 1447 getType()->getContext().pImpl->VectorConstants.remove(this); 1448 } 1449 1450 Constant *Constant::getSplatValue(bool AllowUndefs) const { 1451 assert(this->getType()->isVectorTy() && "Only valid for vectors!"); 1452 if (isa<ConstantAggregateZero>(this)) 1453 return getNullValue(this->getType()->getVectorElementType()); 1454 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 1455 return CV->getSplatValue(); 1456 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 1457 return CV->getSplatValue(AllowUndefs); 1458 return nullptr; 1459 } 1460 1461 Constant *ConstantVector::getSplatValue(bool AllowUndefs) const { 1462 // Check out first element. 1463 Constant *Elt = getOperand(0); 1464 // Then make sure all remaining elements point to the same value. 1465 for (unsigned I = 1, E = getNumOperands(); I < E; ++I) { 1466 Constant *OpC = getOperand(I); 1467 if (OpC == Elt) 1468 continue; 1469 1470 // Strict mode: any mismatch is not a splat. 1471 if (!AllowUndefs) 1472 return nullptr; 1473 1474 // Allow undefs mode: ignore undefined elements. 1475 if (isa<UndefValue>(OpC)) 1476 continue; 1477 1478 // If we do not have a defined element yet, use the current operand. 1479 if (isa<UndefValue>(Elt)) 1480 Elt = OpC; 1481 1482 if (OpC != Elt) 1483 return nullptr; 1484 } 1485 return Elt; 1486 } 1487 1488 const APInt &Constant::getUniqueInteger() const { 1489 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 1490 return CI->getValue(); 1491 assert(this->getSplatValue() && "Doesn't contain a unique integer!"); 1492 const Constant *C = this->getAggregateElement(0U); 1493 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!"); 1494 return cast<ConstantInt>(C)->getValue(); 1495 } 1496 1497 //---- ConstantPointerNull::get() implementation. 1498 // 1499 1500 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { 1501 std::unique_ptr<ConstantPointerNull> &Entry = 1502 Ty->getContext().pImpl->CPNConstants[Ty]; 1503 if (!Entry) 1504 Entry.reset(new ConstantPointerNull(Ty)); 1505 1506 return Entry.get(); 1507 } 1508 1509 /// Remove the constant from the constant table. 1510 void ConstantPointerNull::destroyConstantImpl() { 1511 getContext().pImpl->CPNConstants.erase(getType()); 1512 } 1513 1514 UndefValue *UndefValue::get(Type *Ty) { 1515 std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty]; 1516 if (!Entry) 1517 Entry.reset(new UndefValue(Ty)); 1518 1519 return Entry.get(); 1520 } 1521 1522 /// Remove the constant from the constant table. 1523 void UndefValue::destroyConstantImpl() { 1524 // Free the constant and any dangling references to it. 1525 getContext().pImpl->UVConstants.erase(getType()); 1526 } 1527 1528 BlockAddress *BlockAddress::get(BasicBlock *BB) { 1529 assert(BB->getParent() && "Block must have a parent"); 1530 return get(BB->getParent(), BB); 1531 } 1532 1533 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { 1534 BlockAddress *&BA = 1535 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; 1536 if (!BA) 1537 BA = new BlockAddress(F, BB); 1538 1539 assert(BA->getFunction() == F && "Basic block moved between functions"); 1540 return BA; 1541 } 1542 1543 BlockAddress::BlockAddress(Function *F, BasicBlock *BB) 1544 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal, 1545 &Op<0>(), 2) { 1546 setOperand(0, F); 1547 setOperand(1, BB); 1548 BB->AdjustBlockAddressRefCount(1); 1549 } 1550 1551 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) { 1552 if (!BB->hasAddressTaken()) 1553 return nullptr; 1554 1555 const Function *F = BB->getParent(); 1556 assert(F && "Block must have a parent"); 1557 BlockAddress *BA = 1558 F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB)); 1559 assert(BA && "Refcount and block address map disagree!"); 1560 return BA; 1561 } 1562 1563 /// Remove the constant from the constant table. 1564 void BlockAddress::destroyConstantImpl() { 1565 getFunction()->getType()->getContext().pImpl 1566 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); 1567 getBasicBlock()->AdjustBlockAddressRefCount(-1); 1568 } 1569 1570 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) { 1571 // This could be replacing either the Basic Block or the Function. In either 1572 // case, we have to remove the map entry. 1573 Function *NewF = getFunction(); 1574 BasicBlock *NewBB = getBasicBlock(); 1575 1576 if (From == NewF) 1577 NewF = cast<Function>(To->stripPointerCasts()); 1578 else { 1579 assert(From == NewBB && "From does not match any operand"); 1580 NewBB = cast<BasicBlock>(To); 1581 } 1582 1583 // See if the 'new' entry already exists, if not, just update this in place 1584 // and return early. 1585 BlockAddress *&NewBA = 1586 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; 1587 if (NewBA) 1588 return NewBA; 1589 1590 getBasicBlock()->AdjustBlockAddressRefCount(-1); 1591 1592 // Remove the old entry, this can't cause the map to rehash (just a 1593 // tombstone will get added). 1594 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), 1595 getBasicBlock())); 1596 NewBA = this; 1597 setOperand(0, NewF); 1598 setOperand(1, NewBB); 1599 getBasicBlock()->AdjustBlockAddressRefCount(1); 1600 1601 // If we just want to keep the existing value, then return null. 1602 // Callers know that this means we shouldn't delete this value. 1603 return nullptr; 1604 } 1605 1606 //---- ConstantExpr::get() implementations. 1607 // 1608 1609 /// This is a utility function to handle folding of casts and lookup of the 1610 /// cast in the ExprConstants map. It is used by the various get* methods below. 1611 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty, 1612 bool OnlyIfReduced = false) { 1613 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); 1614 // Fold a few common cases 1615 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) 1616 return FC; 1617 1618 if (OnlyIfReduced) 1619 return nullptr; 1620 1621 LLVMContextImpl *pImpl = Ty->getContext().pImpl; 1622 1623 // Look up the constant in the table first to ensure uniqueness. 1624 ConstantExprKeyType Key(opc, C); 1625 1626 return pImpl->ExprConstants.getOrCreate(Ty, Key); 1627 } 1628 1629 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty, 1630 bool OnlyIfReduced) { 1631 Instruction::CastOps opc = Instruction::CastOps(oc); 1632 assert(Instruction::isCast(opc) && "opcode out of range"); 1633 assert(C && Ty && "Null arguments to getCast"); 1634 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); 1635 1636 switch (opc) { 1637 default: 1638 llvm_unreachable("Invalid cast opcode"); 1639 case Instruction::Trunc: 1640 return getTrunc(C, Ty, OnlyIfReduced); 1641 case Instruction::ZExt: 1642 return getZExt(C, Ty, OnlyIfReduced); 1643 case Instruction::SExt: 1644 return getSExt(C, Ty, OnlyIfReduced); 1645 case Instruction::FPTrunc: 1646 return getFPTrunc(C, Ty, OnlyIfReduced); 1647 case Instruction::FPExt: 1648 return getFPExtend(C, Ty, OnlyIfReduced); 1649 case Instruction::UIToFP: 1650 return getUIToFP(C, Ty, OnlyIfReduced); 1651 case Instruction::SIToFP: 1652 return getSIToFP(C, Ty, OnlyIfReduced); 1653 case Instruction::FPToUI: 1654 return getFPToUI(C, Ty, OnlyIfReduced); 1655 case Instruction::FPToSI: 1656 return getFPToSI(C, Ty, OnlyIfReduced); 1657 case Instruction::PtrToInt: 1658 return getPtrToInt(C, Ty, OnlyIfReduced); 1659 case Instruction::IntToPtr: 1660 return getIntToPtr(C, Ty, OnlyIfReduced); 1661 case Instruction::BitCast: 1662 return getBitCast(C, Ty, OnlyIfReduced); 1663 case Instruction::AddrSpaceCast: 1664 return getAddrSpaceCast(C, Ty, OnlyIfReduced); 1665 } 1666 } 1667 1668 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) { 1669 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1670 return getBitCast(C, Ty); 1671 return getZExt(C, Ty); 1672 } 1673 1674 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) { 1675 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1676 return getBitCast(C, Ty); 1677 return getSExt(C, Ty); 1678 } 1679 1680 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) { 1681 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1682 return getBitCast(C, Ty); 1683 return getTrunc(C, Ty); 1684 } 1685 1686 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) { 1687 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 1688 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 1689 "Invalid cast"); 1690 1691 if (Ty->isIntOrIntVectorTy()) 1692 return getPtrToInt(S, Ty); 1693 1694 unsigned SrcAS = S->getType()->getPointerAddressSpace(); 1695 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace()) 1696 return getAddrSpaceCast(S, Ty); 1697 1698 return getBitCast(S, Ty); 1699 } 1700 1701 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S, 1702 Type *Ty) { 1703 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 1704 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 1705 1706 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 1707 return getAddrSpaceCast(S, Ty); 1708 1709 return getBitCast(S, Ty); 1710 } 1711 1712 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) { 1713 assert(C->getType()->isIntOrIntVectorTy() && 1714 Ty->isIntOrIntVectorTy() && "Invalid cast"); 1715 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 1716 unsigned DstBits = Ty->getScalarSizeInBits(); 1717 Instruction::CastOps opcode = 1718 (SrcBits == DstBits ? Instruction::BitCast : 1719 (SrcBits > DstBits ? Instruction::Trunc : 1720 (isSigned ? Instruction::SExt : Instruction::ZExt))); 1721 return getCast(opcode, C, Ty); 1722 } 1723 1724 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) { 1725 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 1726 "Invalid cast"); 1727 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 1728 unsigned DstBits = Ty->getScalarSizeInBits(); 1729 if (SrcBits == DstBits) 1730 return C; // Avoid a useless cast 1731 Instruction::CastOps opcode = 1732 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); 1733 return getCast(opcode, C, Ty); 1734 } 1735 1736 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { 1737 #ifndef NDEBUG 1738 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1739 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1740 #endif 1741 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1742 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); 1743 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); 1744 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& 1745 "SrcTy must be larger than DestTy for Trunc!"); 1746 1747 return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced); 1748 } 1749 1750 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) { 1751 #ifndef NDEBUG 1752 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1753 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1754 #endif 1755 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1756 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral"); 1757 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer"); 1758 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 1759 "SrcTy must be smaller than DestTy for SExt!"); 1760 1761 return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced); 1762 } 1763 1764 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) { 1765 #ifndef NDEBUG 1766 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1767 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1768 #endif 1769 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1770 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral"); 1771 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer"); 1772 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 1773 "SrcTy must be smaller than DestTy for ZExt!"); 1774 1775 return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced); 1776 } 1777 1778 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { 1779 #ifndef NDEBUG 1780 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1781 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1782 #endif 1783 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1784 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 1785 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& 1786 "This is an illegal floating point truncation!"); 1787 return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced); 1788 } 1789 1790 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) { 1791 #ifndef NDEBUG 1792 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1793 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1794 #endif 1795 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1796 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 1797 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 1798 "This is an illegal floating point extension!"); 1799 return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced); 1800 } 1801 1802 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { 1803 #ifndef NDEBUG 1804 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1805 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1806 #endif 1807 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1808 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && 1809 "This is an illegal uint to floating point cast!"); 1810 return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced); 1811 } 1812 1813 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { 1814 #ifndef NDEBUG 1815 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1816 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1817 #endif 1818 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1819 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && 1820 "This is an illegal sint to floating point cast!"); 1821 return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced); 1822 } 1823 1824 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) { 1825 #ifndef NDEBUG 1826 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1827 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1828 #endif 1829 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1830 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && 1831 "This is an illegal floating point to uint cast!"); 1832 return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced); 1833 } 1834 1835 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) { 1836 #ifndef NDEBUG 1837 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1838 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1839 #endif 1840 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1841 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && 1842 "This is an illegal floating point to sint cast!"); 1843 return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced); 1844 } 1845 1846 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy, 1847 bool OnlyIfReduced) { 1848 assert(C->getType()->isPtrOrPtrVectorTy() && 1849 "PtrToInt source must be pointer or pointer vector"); 1850 assert(DstTy->isIntOrIntVectorTy() && 1851 "PtrToInt destination must be integer or integer vector"); 1852 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); 1853 if (isa<VectorType>(C->getType())) 1854 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&& 1855 "Invalid cast between a different number of vector elements"); 1856 return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced); 1857 } 1858 1859 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy, 1860 bool OnlyIfReduced) { 1861 assert(C->getType()->isIntOrIntVectorTy() && 1862 "IntToPtr source must be integer or integer vector"); 1863 assert(DstTy->isPtrOrPtrVectorTy() && 1864 "IntToPtr destination must be a pointer or pointer vector"); 1865 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); 1866 if (isa<VectorType>(C->getType())) 1867 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&& 1868 "Invalid cast between a different number of vector elements"); 1869 return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced); 1870 } 1871 1872 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy, 1873 bool OnlyIfReduced) { 1874 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && 1875 "Invalid constantexpr bitcast!"); 1876 1877 // It is common to ask for a bitcast of a value to its own type, handle this 1878 // speedily. 1879 if (C->getType() == DstTy) return C; 1880 1881 return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced); 1882 } 1883 1884 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy, 1885 bool OnlyIfReduced) { 1886 assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) && 1887 "Invalid constantexpr addrspacecast!"); 1888 1889 // Canonicalize addrspacecasts between different pointer types by first 1890 // bitcasting the pointer type and then converting the address space. 1891 PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType()); 1892 PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType()); 1893 Type *DstElemTy = DstScalarTy->getElementType(); 1894 if (SrcScalarTy->getElementType() != DstElemTy) { 1895 Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace()); 1896 if (VectorType *VT = dyn_cast<VectorType>(DstTy)) { 1897 // Handle vectors of pointers. 1898 MidTy = VectorType::get(MidTy, VT->getNumElements()); 1899 } 1900 C = getBitCast(C, MidTy); 1901 } 1902 return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced); 1903 } 1904 1905 Constant *ConstantExpr::get(unsigned Opcode, Constant *C, unsigned Flags, 1906 Type *OnlyIfReducedTy) { 1907 // Check the operands for consistency first. 1908 assert(Instruction::isUnaryOp(Opcode) && 1909 "Invalid opcode in unary constant expression"); 1910 1911 #ifndef NDEBUG 1912 switch (Opcode) { 1913 case Instruction::FNeg: 1914 assert(C->getType()->isFPOrFPVectorTy() && 1915 "Tried to create a floating-point operation on a " 1916 "non-floating-point type!"); 1917 break; 1918 default: 1919 break; 1920 } 1921 #endif 1922 1923 if (Constant *FC = ConstantFoldUnaryInstruction(Opcode, C)) 1924 return FC; 1925 1926 if (OnlyIfReducedTy == C->getType()) 1927 return nullptr; 1928 1929 Constant *ArgVec[] = { C }; 1930 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags); 1931 1932 LLVMContextImpl *pImpl = C->getContext().pImpl; 1933 return pImpl->ExprConstants.getOrCreate(C->getType(), Key); 1934 } 1935 1936 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, 1937 unsigned Flags, Type *OnlyIfReducedTy) { 1938 // Check the operands for consistency first. 1939 assert(Instruction::isBinaryOp(Opcode) && 1940 "Invalid opcode in binary constant expression"); 1941 assert(C1->getType() == C2->getType() && 1942 "Operand types in binary constant expression should match"); 1943 1944 #ifndef NDEBUG 1945 switch (Opcode) { 1946 case Instruction::Add: 1947 case Instruction::Sub: 1948 case Instruction::Mul: 1949 case Instruction::UDiv: 1950 case Instruction::SDiv: 1951 case Instruction::URem: 1952 case Instruction::SRem: 1953 assert(C1->getType()->isIntOrIntVectorTy() && 1954 "Tried to create an integer operation on a non-integer type!"); 1955 break; 1956 case Instruction::FAdd: 1957 case Instruction::FSub: 1958 case Instruction::FMul: 1959 case Instruction::FDiv: 1960 case Instruction::FRem: 1961 assert(C1->getType()->isFPOrFPVectorTy() && 1962 "Tried to create a floating-point operation on a " 1963 "non-floating-point type!"); 1964 break; 1965 case Instruction::And: 1966 case Instruction::Or: 1967 case Instruction::Xor: 1968 assert(C1->getType()->isIntOrIntVectorTy() && 1969 "Tried to create a logical operation on a non-integral type!"); 1970 break; 1971 case Instruction::Shl: 1972 case Instruction::LShr: 1973 case Instruction::AShr: 1974 assert(C1->getType()->isIntOrIntVectorTy() && 1975 "Tried to create a shift operation on a non-integer type!"); 1976 break; 1977 default: 1978 break; 1979 } 1980 #endif 1981 1982 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) 1983 return FC; 1984 1985 if (OnlyIfReducedTy == C1->getType()) 1986 return nullptr; 1987 1988 Constant *ArgVec[] = { C1, C2 }; 1989 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags); 1990 1991 LLVMContextImpl *pImpl = C1->getContext().pImpl; 1992 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key); 1993 } 1994 1995 Constant *ConstantExpr::getSizeOf(Type* Ty) { 1996 // sizeof is implemented as: (i64) gep (Ty*)null, 1 1997 // Note that a non-inbounds gep is used, as null isn't within any object. 1998 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); 1999 Constant *GEP = getGetElementPtr( 2000 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); 2001 return getPtrToInt(GEP, 2002 Type::getInt64Ty(Ty->getContext())); 2003 } 2004 2005 Constant *ConstantExpr::getAlignOf(Type* Ty) { 2006 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 2007 // Note that a non-inbounds gep is used, as null isn't within any object. 2008 Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty); 2009 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0)); 2010 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); 2011 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); 2012 Constant *Indices[2] = { Zero, One }; 2013 Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices); 2014 return getPtrToInt(GEP, 2015 Type::getInt64Ty(Ty->getContext())); 2016 } 2017 2018 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) { 2019 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()), 2020 FieldNo)); 2021 } 2022 2023 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) { 2024 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo 2025 // Note that a non-inbounds gep is used, as null isn't within any object. 2026 Constant *GEPIdx[] = { 2027 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0), 2028 FieldNo 2029 }; 2030 Constant *GEP = getGetElementPtr( 2031 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); 2032 return getPtrToInt(GEP, 2033 Type::getInt64Ty(Ty->getContext())); 2034 } 2035 2036 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1, 2037 Constant *C2, bool OnlyIfReduced) { 2038 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 2039 2040 switch (Predicate) { 2041 default: llvm_unreachable("Invalid CmpInst predicate"); 2042 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: 2043 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: 2044 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: 2045 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: 2046 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: 2047 case CmpInst::FCMP_TRUE: 2048 return getFCmp(Predicate, C1, C2, OnlyIfReduced); 2049 2050 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: 2051 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: 2052 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: 2053 case CmpInst::ICMP_SLE: 2054 return getICmp(Predicate, C1, C2, OnlyIfReduced); 2055 } 2056 } 2057 2058 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2, 2059 Type *OnlyIfReducedTy) { 2060 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); 2061 2062 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) 2063 return SC; // Fold common cases 2064 2065 if (OnlyIfReducedTy == V1->getType()) 2066 return nullptr; 2067 2068 Constant *ArgVec[] = { C, V1, V2 }; 2069 ConstantExprKeyType Key(Instruction::Select, ArgVec); 2070 2071 LLVMContextImpl *pImpl = C->getContext().pImpl; 2072 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key); 2073 } 2074 2075 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C, 2076 ArrayRef<Value *> Idxs, bool InBounds, 2077 Optional<unsigned> InRangeIndex, 2078 Type *OnlyIfReducedTy) { 2079 if (!Ty) 2080 Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType(); 2081 else 2082 assert(Ty == 2083 cast<PointerType>(C->getType()->getScalarType())->getElementType()); 2084 2085 if (Constant *FC = 2086 ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs)) 2087 return FC; // Fold a few common cases. 2088 2089 // Get the result type of the getelementptr! 2090 Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs); 2091 assert(DestTy && "GEP indices invalid!"); 2092 unsigned AS = C->getType()->getPointerAddressSpace(); 2093 Type *ReqTy = DestTy->getPointerTo(AS); 2094 2095 unsigned NumVecElts = 0; 2096 if (C->getType()->isVectorTy()) 2097 NumVecElts = C->getType()->getVectorNumElements(); 2098 else for (auto Idx : Idxs) 2099 if (Idx->getType()->isVectorTy()) 2100 NumVecElts = Idx->getType()->getVectorNumElements(); 2101 2102 if (NumVecElts) 2103 ReqTy = VectorType::get(ReqTy, NumVecElts); 2104 2105 if (OnlyIfReducedTy == ReqTy) 2106 return nullptr; 2107 2108 // Look up the constant in the table first to ensure uniqueness 2109 std::vector<Constant*> ArgVec; 2110 ArgVec.reserve(1 + Idxs.size()); 2111 ArgVec.push_back(C); 2112 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { 2113 assert((!Idxs[i]->getType()->isVectorTy() || 2114 Idxs[i]->getType()->getVectorNumElements() == NumVecElts) && 2115 "getelementptr index type missmatch"); 2116 2117 Constant *Idx = cast<Constant>(Idxs[i]); 2118 if (NumVecElts && !Idxs[i]->getType()->isVectorTy()) 2119 Idx = ConstantVector::getSplat(NumVecElts, Idx); 2120 ArgVec.push_back(Idx); 2121 } 2122 2123 unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0; 2124 if (InRangeIndex && *InRangeIndex < 63) 2125 SubClassOptionalData |= (*InRangeIndex + 1) << 1; 2126 const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0, 2127 SubClassOptionalData, None, Ty); 2128 2129 LLVMContextImpl *pImpl = C->getContext().pImpl; 2130 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2131 } 2132 2133 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS, 2134 Constant *RHS, bool OnlyIfReduced) { 2135 assert(LHS->getType() == RHS->getType()); 2136 assert(CmpInst::isIntPredicate((CmpInst::Predicate)pred) && 2137 "Invalid ICmp Predicate"); 2138 2139 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) 2140 return FC; // Fold a few common cases... 2141 2142 if (OnlyIfReduced) 2143 return nullptr; 2144 2145 // Look up the constant in the table first to ensure uniqueness 2146 Constant *ArgVec[] = { LHS, RHS }; 2147 // Get the key type with both the opcode and predicate 2148 const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred); 2149 2150 Type *ResultTy = Type::getInt1Ty(LHS->getContext()); 2151 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) 2152 ResultTy = VectorType::get(ResultTy, VT->getNumElements()); 2153 2154 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; 2155 return pImpl->ExprConstants.getOrCreate(ResultTy, Key); 2156 } 2157 2158 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, 2159 Constant *RHS, bool OnlyIfReduced) { 2160 assert(LHS->getType() == RHS->getType()); 2161 assert(CmpInst::isFPPredicate((CmpInst::Predicate)pred) && 2162 "Invalid FCmp Predicate"); 2163 2164 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) 2165 return FC; // Fold a few common cases... 2166 2167 if (OnlyIfReduced) 2168 return nullptr; 2169 2170 // Look up the constant in the table first to ensure uniqueness 2171 Constant *ArgVec[] = { LHS, RHS }; 2172 // Get the key type with both the opcode and predicate 2173 const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred); 2174 2175 Type *ResultTy = Type::getInt1Ty(LHS->getContext()); 2176 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) 2177 ResultTy = VectorType::get(ResultTy, VT->getNumElements()); 2178 2179 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; 2180 return pImpl->ExprConstants.getOrCreate(ResultTy, Key); 2181 } 2182 2183 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx, 2184 Type *OnlyIfReducedTy) { 2185 assert(Val->getType()->isVectorTy() && 2186 "Tried to create extractelement operation on non-vector type!"); 2187 assert(Idx->getType()->isIntegerTy() && 2188 "Extractelement index must be an integer type!"); 2189 2190 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) 2191 return FC; // Fold a few common cases. 2192 2193 Type *ReqTy = Val->getType()->getVectorElementType(); 2194 if (OnlyIfReducedTy == ReqTy) 2195 return nullptr; 2196 2197 // Look up the constant in the table first to ensure uniqueness 2198 Constant *ArgVec[] = { Val, Idx }; 2199 const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec); 2200 2201 LLVMContextImpl *pImpl = Val->getContext().pImpl; 2202 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2203 } 2204 2205 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 2206 Constant *Idx, Type *OnlyIfReducedTy) { 2207 assert(Val->getType()->isVectorTy() && 2208 "Tried to create insertelement operation on non-vector type!"); 2209 assert(Elt->getType() == Val->getType()->getVectorElementType() && 2210 "Insertelement types must match!"); 2211 assert(Idx->getType()->isIntegerTy() && 2212 "Insertelement index must be i32 type!"); 2213 2214 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) 2215 return FC; // Fold a few common cases. 2216 2217 if (OnlyIfReducedTy == Val->getType()) 2218 return nullptr; 2219 2220 // Look up the constant in the table first to ensure uniqueness 2221 Constant *ArgVec[] = { Val, Elt, Idx }; 2222 const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec); 2223 2224 LLVMContextImpl *pImpl = Val->getContext().pImpl; 2225 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key); 2226 } 2227 2228 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, 2229 Constant *Mask, Type *OnlyIfReducedTy) { 2230 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && 2231 "Invalid shuffle vector constant expr operands!"); 2232 2233 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) 2234 return FC; // Fold a few common cases. 2235 2236 ElementCount NElts = Mask->getType()->getVectorElementCount(); 2237 Type *EltTy = V1->getType()->getVectorElementType(); 2238 Type *ShufTy = VectorType::get(EltTy, NElts); 2239 2240 if (OnlyIfReducedTy == ShufTy) 2241 return nullptr; 2242 2243 // Look up the constant in the table first to ensure uniqueness 2244 Constant *ArgVec[] = { V1, V2, Mask }; 2245 const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec); 2246 2247 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl; 2248 return pImpl->ExprConstants.getOrCreate(ShufTy, Key); 2249 } 2250 2251 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val, 2252 ArrayRef<unsigned> Idxs, 2253 Type *OnlyIfReducedTy) { 2254 assert(Agg->getType()->isFirstClassType() && 2255 "Non-first-class type for constant insertvalue expression"); 2256 2257 assert(ExtractValueInst::getIndexedType(Agg->getType(), 2258 Idxs) == Val->getType() && 2259 "insertvalue indices invalid!"); 2260 Type *ReqTy = Val->getType(); 2261 2262 if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs)) 2263 return FC; 2264 2265 if (OnlyIfReducedTy == ReqTy) 2266 return nullptr; 2267 2268 Constant *ArgVec[] = { Agg, Val }; 2269 const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs); 2270 2271 LLVMContextImpl *pImpl = Agg->getContext().pImpl; 2272 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2273 } 2274 2275 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs, 2276 Type *OnlyIfReducedTy) { 2277 assert(Agg->getType()->isFirstClassType() && 2278 "Tried to create extractelement operation on non-first-class type!"); 2279 2280 Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs); 2281 (void)ReqTy; 2282 assert(ReqTy && "extractvalue indices invalid!"); 2283 2284 assert(Agg->getType()->isFirstClassType() && 2285 "Non-first-class type for constant extractvalue expression"); 2286 if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs)) 2287 return FC; 2288 2289 if (OnlyIfReducedTy == ReqTy) 2290 return nullptr; 2291 2292 Constant *ArgVec[] = { Agg }; 2293 const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs); 2294 2295 LLVMContextImpl *pImpl = Agg->getContext().pImpl; 2296 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2297 } 2298 2299 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) { 2300 assert(C->getType()->isIntOrIntVectorTy() && 2301 "Cannot NEG a nonintegral value!"); 2302 return getSub(ConstantFP::getZeroValueForNegation(C->getType()), 2303 C, HasNUW, HasNSW); 2304 } 2305 2306 Constant *ConstantExpr::getFNeg(Constant *C) { 2307 assert(C->getType()->isFPOrFPVectorTy() && 2308 "Cannot FNEG a non-floating-point value!"); 2309 return get(Instruction::FNeg, C); 2310 } 2311 2312 Constant *ConstantExpr::getNot(Constant *C) { 2313 assert(C->getType()->isIntOrIntVectorTy() && 2314 "Cannot NOT a nonintegral value!"); 2315 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); 2316 } 2317 2318 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2, 2319 bool HasNUW, bool HasNSW) { 2320 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2321 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2322 return get(Instruction::Add, C1, C2, Flags); 2323 } 2324 2325 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) { 2326 return get(Instruction::FAdd, C1, C2); 2327 } 2328 2329 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2, 2330 bool HasNUW, bool HasNSW) { 2331 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2332 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2333 return get(Instruction::Sub, C1, C2, Flags); 2334 } 2335 2336 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) { 2337 return get(Instruction::FSub, C1, C2); 2338 } 2339 2340 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2, 2341 bool HasNUW, bool HasNSW) { 2342 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2343 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2344 return get(Instruction::Mul, C1, C2, Flags); 2345 } 2346 2347 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) { 2348 return get(Instruction::FMul, C1, C2); 2349 } 2350 2351 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) { 2352 return get(Instruction::UDiv, C1, C2, 2353 isExact ? PossiblyExactOperator::IsExact : 0); 2354 } 2355 2356 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) { 2357 return get(Instruction::SDiv, C1, C2, 2358 isExact ? PossiblyExactOperator::IsExact : 0); 2359 } 2360 2361 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) { 2362 return get(Instruction::FDiv, C1, C2); 2363 } 2364 2365 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) { 2366 return get(Instruction::URem, C1, C2); 2367 } 2368 2369 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) { 2370 return get(Instruction::SRem, C1, C2); 2371 } 2372 2373 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) { 2374 return get(Instruction::FRem, C1, C2); 2375 } 2376 2377 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { 2378 return get(Instruction::And, C1, C2); 2379 } 2380 2381 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { 2382 return get(Instruction::Or, C1, C2); 2383 } 2384 2385 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { 2386 return get(Instruction::Xor, C1, C2); 2387 } 2388 2389 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2, 2390 bool HasNUW, bool HasNSW) { 2391 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2392 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2393 return get(Instruction::Shl, C1, C2, Flags); 2394 } 2395 2396 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) { 2397 return get(Instruction::LShr, C1, C2, 2398 isExact ? PossiblyExactOperator::IsExact : 0); 2399 } 2400 2401 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) { 2402 return get(Instruction::AShr, C1, C2, 2403 isExact ? PossiblyExactOperator::IsExact : 0); 2404 } 2405 2406 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty, 2407 bool AllowRHSConstant) { 2408 assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed"); 2409 2410 // Commutative opcodes: it does not matter if AllowRHSConstant is set. 2411 if (Instruction::isCommutative(Opcode)) { 2412 switch (Opcode) { 2413 case Instruction::Add: // X + 0 = X 2414 case Instruction::Or: // X | 0 = X 2415 case Instruction::Xor: // X ^ 0 = X 2416 return Constant::getNullValue(Ty); 2417 case Instruction::Mul: // X * 1 = X 2418 return ConstantInt::get(Ty, 1); 2419 case Instruction::And: // X & -1 = X 2420 return Constant::getAllOnesValue(Ty); 2421 case Instruction::FAdd: // X + -0.0 = X 2422 // TODO: If the fadd has 'nsz', should we return +0.0? 2423 return ConstantFP::getNegativeZero(Ty); 2424 case Instruction::FMul: // X * 1.0 = X 2425 return ConstantFP::get(Ty, 1.0); 2426 default: 2427 llvm_unreachable("Every commutative binop has an identity constant"); 2428 } 2429 } 2430 2431 // Non-commutative opcodes: AllowRHSConstant must be set. 2432 if (!AllowRHSConstant) 2433 return nullptr; 2434 2435 switch (Opcode) { 2436 case Instruction::Sub: // X - 0 = X 2437 case Instruction::Shl: // X << 0 = X 2438 case Instruction::LShr: // X >>u 0 = X 2439 case Instruction::AShr: // X >> 0 = X 2440 case Instruction::FSub: // X - 0.0 = X 2441 return Constant::getNullValue(Ty); 2442 case Instruction::SDiv: // X / 1 = X 2443 case Instruction::UDiv: // X /u 1 = X 2444 return ConstantInt::get(Ty, 1); 2445 case Instruction::FDiv: // X / 1.0 = X 2446 return ConstantFP::get(Ty, 1.0); 2447 default: 2448 return nullptr; 2449 } 2450 } 2451 2452 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) { 2453 switch (Opcode) { 2454 default: 2455 // Doesn't have an absorber. 2456 return nullptr; 2457 2458 case Instruction::Or: 2459 return Constant::getAllOnesValue(Ty); 2460 2461 case Instruction::And: 2462 case Instruction::Mul: 2463 return Constant::getNullValue(Ty); 2464 } 2465 } 2466 2467 /// Remove the constant from the constant table. 2468 void ConstantExpr::destroyConstantImpl() { 2469 getType()->getContext().pImpl->ExprConstants.remove(this); 2470 } 2471 2472 const char *ConstantExpr::getOpcodeName() const { 2473 return Instruction::getOpcodeName(getOpcode()); 2474 } 2475 2476 GetElementPtrConstantExpr::GetElementPtrConstantExpr( 2477 Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy) 2478 : ConstantExpr(DestTy, Instruction::GetElementPtr, 2479 OperandTraits<GetElementPtrConstantExpr>::op_end(this) - 2480 (IdxList.size() + 1), 2481 IdxList.size() + 1), 2482 SrcElementTy(SrcElementTy), 2483 ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) { 2484 Op<0>() = C; 2485 Use *OperandList = getOperandList(); 2486 for (unsigned i = 0, E = IdxList.size(); i != E; ++i) 2487 OperandList[i+1] = IdxList[i]; 2488 } 2489 2490 Type *GetElementPtrConstantExpr::getSourceElementType() const { 2491 return SrcElementTy; 2492 } 2493 2494 Type *GetElementPtrConstantExpr::getResultElementType() const { 2495 return ResElementTy; 2496 } 2497 2498 //===----------------------------------------------------------------------===// 2499 // ConstantData* implementations 2500 2501 Type *ConstantDataSequential::getElementType() const { 2502 return getType()->getElementType(); 2503 } 2504 2505 StringRef ConstantDataSequential::getRawDataValues() const { 2506 return StringRef(DataElements, getNumElements()*getElementByteSize()); 2507 } 2508 2509 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) { 2510 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) return true; 2511 if (auto *IT = dyn_cast<IntegerType>(Ty)) { 2512 switch (IT->getBitWidth()) { 2513 case 8: 2514 case 16: 2515 case 32: 2516 case 64: 2517 return true; 2518 default: break; 2519 } 2520 } 2521 return false; 2522 } 2523 2524 unsigned ConstantDataSequential::getNumElements() const { 2525 if (ArrayType *AT = dyn_cast<ArrayType>(getType())) 2526 return AT->getNumElements(); 2527 return getType()->getVectorNumElements(); 2528 } 2529 2530 2531 uint64_t ConstantDataSequential::getElementByteSize() const { 2532 return getElementType()->getPrimitiveSizeInBits()/8; 2533 } 2534 2535 /// Return the start of the specified element. 2536 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const { 2537 assert(Elt < getNumElements() && "Invalid Elt"); 2538 return DataElements+Elt*getElementByteSize(); 2539 } 2540 2541 2542 /// Return true if the array is empty or all zeros. 2543 static bool isAllZeros(StringRef Arr) { 2544 for (char I : Arr) 2545 if (I != 0) 2546 return false; 2547 return true; 2548 } 2549 2550 /// This is the underlying implementation of all of the 2551 /// ConstantDataSequential::get methods. They all thunk down to here, providing 2552 /// the correct element type. We take the bytes in as a StringRef because 2553 /// we *want* an underlying "char*" to avoid TBAA type punning violations. 2554 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) { 2555 assert(isElementTypeCompatible(Ty->getSequentialElementType())); 2556 // If the elements are all zero or there are no elements, return a CAZ, which 2557 // is more dense and canonical. 2558 if (isAllZeros(Elements)) 2559 return ConstantAggregateZero::get(Ty); 2560 2561 // Do a lookup to see if we have already formed one of these. 2562 auto &Slot = 2563 *Ty->getContext() 2564 .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr)) 2565 .first; 2566 2567 // The bucket can point to a linked list of different CDS's that have the same 2568 // body but different types. For example, 0,0,0,1 could be a 4 element array 2569 // of i8, or a 1-element array of i32. They'll both end up in the same 2570 /// StringMap bucket, linked up by their Next pointers. Walk the list. 2571 ConstantDataSequential **Entry = &Slot.second; 2572 for (ConstantDataSequential *Node = *Entry; Node; 2573 Entry = &Node->Next, Node = *Entry) 2574 if (Node->getType() == Ty) 2575 return Node; 2576 2577 // Okay, we didn't get a hit. Create a node of the right class, link it in, 2578 // and return it. 2579 if (isa<ArrayType>(Ty)) 2580 return *Entry = new ConstantDataArray(Ty, Slot.first().data()); 2581 2582 assert(isa<VectorType>(Ty)); 2583 return *Entry = new ConstantDataVector(Ty, Slot.first().data()); 2584 } 2585 2586 void ConstantDataSequential::destroyConstantImpl() { 2587 // Remove the constant from the StringMap. 2588 StringMap<ConstantDataSequential*> &CDSConstants = 2589 getType()->getContext().pImpl->CDSConstants; 2590 2591 StringMap<ConstantDataSequential*>::iterator Slot = 2592 CDSConstants.find(getRawDataValues()); 2593 2594 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table"); 2595 2596 ConstantDataSequential **Entry = &Slot->getValue(); 2597 2598 // Remove the entry from the hash table. 2599 if (!(*Entry)->Next) { 2600 // If there is only one value in the bucket (common case) it must be this 2601 // entry, and removing the entry should remove the bucket completely. 2602 assert((*Entry) == this && "Hash mismatch in ConstantDataSequential"); 2603 getContext().pImpl->CDSConstants.erase(Slot); 2604 } else { 2605 // Otherwise, there are multiple entries linked off the bucket, unlink the 2606 // node we care about but keep the bucket around. 2607 for (ConstantDataSequential *Node = *Entry; ; 2608 Entry = &Node->Next, Node = *Entry) { 2609 assert(Node && "Didn't find entry in its uniquing hash table!"); 2610 // If we found our entry, unlink it from the list and we're done. 2611 if (Node == this) { 2612 *Entry = Node->Next; 2613 break; 2614 } 2615 } 2616 } 2617 2618 // If we were part of a list, make sure that we don't delete the list that is 2619 // still owned by the uniquing map. 2620 Next = nullptr; 2621 } 2622 2623 /// getFP() constructors - Return a constant with array type with an element 2624 /// count and element type of float with precision matching the number of 2625 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits, 2626 /// double for 64bits) Note that this can return a ConstantAggregateZero 2627 /// object. 2628 Constant *ConstantDataArray::getFP(LLVMContext &Context, 2629 ArrayRef<uint16_t> Elts) { 2630 Type *Ty = ArrayType::get(Type::getHalfTy(Context), Elts.size()); 2631 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2632 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 2633 } 2634 Constant *ConstantDataArray::getFP(LLVMContext &Context, 2635 ArrayRef<uint32_t> Elts) { 2636 Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size()); 2637 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2638 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 2639 } 2640 Constant *ConstantDataArray::getFP(LLVMContext &Context, 2641 ArrayRef<uint64_t> Elts) { 2642 Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size()); 2643 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2644 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 2645 } 2646 2647 Constant *ConstantDataArray::getString(LLVMContext &Context, 2648 StringRef Str, bool AddNull) { 2649 if (!AddNull) { 2650 const uint8_t *Data = Str.bytes_begin(); 2651 return get(Context, makeArrayRef(Data, Str.size())); 2652 } 2653 2654 SmallVector<uint8_t, 64> ElementVals; 2655 ElementVals.append(Str.begin(), Str.end()); 2656 ElementVals.push_back(0); 2657 return get(Context, ElementVals); 2658 } 2659 2660 /// get() constructors - Return a constant with vector type with an element 2661 /// count and element type matching the ArrayRef passed in. Note that this 2662 /// can return a ConstantAggregateZero object. 2663 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){ 2664 Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size()); 2665 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2666 return getImpl(StringRef(Data, Elts.size() * 1), Ty); 2667 } 2668 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ 2669 Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size()); 2670 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2671 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 2672 } 2673 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ 2674 Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size()); 2675 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2676 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 2677 } 2678 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ 2679 Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size()); 2680 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2681 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 2682 } 2683 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) { 2684 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size()); 2685 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2686 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 2687 } 2688 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) { 2689 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size()); 2690 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2691 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 2692 } 2693 2694 /// getFP() constructors - Return a constant with vector type with an element 2695 /// count and element type of float with the precision matching the number of 2696 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits, 2697 /// double for 64bits) Note that this can return a ConstantAggregateZero 2698 /// object. 2699 Constant *ConstantDataVector::getFP(LLVMContext &Context, 2700 ArrayRef<uint16_t> Elts) { 2701 Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size()); 2702 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2703 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 2704 } 2705 Constant *ConstantDataVector::getFP(LLVMContext &Context, 2706 ArrayRef<uint32_t> Elts) { 2707 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size()); 2708 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2709 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 2710 } 2711 Constant *ConstantDataVector::getFP(LLVMContext &Context, 2712 ArrayRef<uint64_t> Elts) { 2713 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size()); 2714 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2715 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 2716 } 2717 2718 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) { 2719 assert(isElementTypeCompatible(V->getType()) && 2720 "Element type not compatible with ConstantData"); 2721 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2722 if (CI->getType()->isIntegerTy(8)) { 2723 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue()); 2724 return get(V->getContext(), Elts); 2725 } 2726 if (CI->getType()->isIntegerTy(16)) { 2727 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue()); 2728 return get(V->getContext(), Elts); 2729 } 2730 if (CI->getType()->isIntegerTy(32)) { 2731 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue()); 2732 return get(V->getContext(), Elts); 2733 } 2734 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type"); 2735 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue()); 2736 return get(V->getContext(), Elts); 2737 } 2738 2739 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2740 if (CFP->getType()->isHalfTy()) { 2741 SmallVector<uint16_t, 16> Elts( 2742 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 2743 return getFP(V->getContext(), Elts); 2744 } 2745 if (CFP->getType()->isFloatTy()) { 2746 SmallVector<uint32_t, 16> Elts( 2747 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 2748 return getFP(V->getContext(), Elts); 2749 } 2750 if (CFP->getType()->isDoubleTy()) { 2751 SmallVector<uint64_t, 16> Elts( 2752 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 2753 return getFP(V->getContext(), Elts); 2754 } 2755 } 2756 return ConstantVector::getSplat(NumElts, V); 2757 } 2758 2759 2760 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { 2761 assert(isa<IntegerType>(getElementType()) && 2762 "Accessor can only be used when element is an integer"); 2763 const char *EltPtr = getElementPointer(Elt); 2764 2765 // The data is stored in host byte order, make sure to cast back to the right 2766 // type to load with the right endianness. 2767 switch (getElementType()->getIntegerBitWidth()) { 2768 default: llvm_unreachable("Invalid bitwidth for CDS"); 2769 case 8: 2770 return *reinterpret_cast<const uint8_t *>(EltPtr); 2771 case 16: 2772 return *reinterpret_cast<const uint16_t *>(EltPtr); 2773 case 32: 2774 return *reinterpret_cast<const uint32_t *>(EltPtr); 2775 case 64: 2776 return *reinterpret_cast<const uint64_t *>(EltPtr); 2777 } 2778 } 2779 2780 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const { 2781 assert(isa<IntegerType>(getElementType()) && 2782 "Accessor can only be used when element is an integer"); 2783 const char *EltPtr = getElementPointer(Elt); 2784 2785 // The data is stored in host byte order, make sure to cast back to the right 2786 // type to load with the right endianness. 2787 switch (getElementType()->getIntegerBitWidth()) { 2788 default: llvm_unreachable("Invalid bitwidth for CDS"); 2789 case 8: { 2790 auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr); 2791 return APInt(8, EltVal); 2792 } 2793 case 16: { 2794 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 2795 return APInt(16, EltVal); 2796 } 2797 case 32: { 2798 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr); 2799 return APInt(32, EltVal); 2800 } 2801 case 64: { 2802 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr); 2803 return APInt(64, EltVal); 2804 } 2805 } 2806 } 2807 2808 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { 2809 const char *EltPtr = getElementPointer(Elt); 2810 2811 switch (getElementType()->getTypeID()) { 2812 default: 2813 llvm_unreachable("Accessor can only be used when element is float/double!"); 2814 case Type::HalfTyID: { 2815 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 2816 return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal)); 2817 } 2818 case Type::FloatTyID: { 2819 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr); 2820 return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal)); 2821 } 2822 case Type::DoubleTyID: { 2823 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr); 2824 return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal)); 2825 } 2826 } 2827 } 2828 2829 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { 2830 assert(getElementType()->isFloatTy() && 2831 "Accessor can only be used when element is a 'float'"); 2832 return *reinterpret_cast<const float *>(getElementPointer(Elt)); 2833 } 2834 2835 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { 2836 assert(getElementType()->isDoubleTy() && 2837 "Accessor can only be used when element is a 'float'"); 2838 return *reinterpret_cast<const double *>(getElementPointer(Elt)); 2839 } 2840 2841 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { 2842 if (getElementType()->isHalfTy() || getElementType()->isFloatTy() || 2843 getElementType()->isDoubleTy()) 2844 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt)); 2845 2846 return ConstantInt::get(getElementType(), getElementAsInteger(Elt)); 2847 } 2848 2849 bool ConstantDataSequential::isString(unsigned CharSize) const { 2850 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize); 2851 } 2852 2853 bool ConstantDataSequential::isCString() const { 2854 if (!isString()) 2855 return false; 2856 2857 StringRef Str = getAsString(); 2858 2859 // The last value must be nul. 2860 if (Str.back() != 0) return false; 2861 2862 // Other elements must be non-nul. 2863 return Str.drop_back().find(0) == StringRef::npos; 2864 } 2865 2866 bool ConstantDataVector::isSplat() const { 2867 const char *Base = getRawDataValues().data(); 2868 2869 // Compare elements 1+ to the 0'th element. 2870 unsigned EltSize = getElementByteSize(); 2871 for (unsigned i = 1, e = getNumElements(); i != e; ++i) 2872 if (memcmp(Base, Base+i*EltSize, EltSize)) 2873 return false; 2874 2875 return true; 2876 } 2877 2878 Constant *ConstantDataVector::getSplatValue() const { 2879 // If they're all the same, return the 0th one as a representative. 2880 return isSplat() ? getElementAsConstant(0) : nullptr; 2881 } 2882 2883 //===----------------------------------------------------------------------===// 2884 // handleOperandChange implementations 2885 2886 /// Update this constant array to change uses of 2887 /// 'From' to be uses of 'To'. This must update the uniquing data structures 2888 /// etc. 2889 /// 2890 /// Note that we intentionally replace all uses of From with To here. Consider 2891 /// a large array that uses 'From' 1000 times. By handling this case all here, 2892 /// ConstantArray::handleOperandChange is only invoked once, and that 2893 /// single invocation handles all 1000 uses. Handling them one at a time would 2894 /// work, but would be really slow because it would have to unique each updated 2895 /// array instance. 2896 /// 2897 void Constant::handleOperandChange(Value *From, Value *To) { 2898 Value *Replacement = nullptr; 2899 switch (getValueID()) { 2900 default: 2901 llvm_unreachable("Not a constant!"); 2902 #define HANDLE_CONSTANT(Name) \ 2903 case Value::Name##Val: \ 2904 Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \ 2905 break; 2906 #include "llvm/IR/Value.def" 2907 } 2908 2909 // If handleOperandChangeImpl returned nullptr, then it handled 2910 // replacing itself and we don't want to delete or replace anything else here. 2911 if (!Replacement) 2912 return; 2913 2914 // I do need to replace this with an existing value. 2915 assert(Replacement != this && "I didn't contain From!"); 2916 2917 // Everyone using this now uses the replacement. 2918 replaceAllUsesWith(Replacement); 2919 2920 // Delete the old constant! 2921 destroyConstant(); 2922 } 2923 2924 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) { 2925 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 2926 Constant *ToC = cast<Constant>(To); 2927 2928 SmallVector<Constant*, 8> Values; 2929 Values.reserve(getNumOperands()); // Build replacement array. 2930 2931 // Fill values with the modified operands of the constant array. Also, 2932 // compute whether this turns into an all-zeros array. 2933 unsigned NumUpdated = 0; 2934 2935 // Keep track of whether all the values in the array are "ToC". 2936 bool AllSame = true; 2937 Use *OperandList = getOperandList(); 2938 unsigned OperandNo = 0; 2939 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { 2940 Constant *Val = cast<Constant>(O->get()); 2941 if (Val == From) { 2942 OperandNo = (O - OperandList); 2943 Val = ToC; 2944 ++NumUpdated; 2945 } 2946 Values.push_back(Val); 2947 AllSame &= Val == ToC; 2948 } 2949 2950 if (AllSame && ToC->isNullValue()) 2951 return ConstantAggregateZero::get(getType()); 2952 2953 if (AllSame && isa<UndefValue>(ToC)) 2954 return UndefValue::get(getType()); 2955 2956 // Check for any other type of constant-folding. 2957 if (Constant *C = getImpl(getType(), Values)) 2958 return C; 2959 2960 // Update to the new value. 2961 return getContext().pImpl->ArrayConstants.replaceOperandsInPlace( 2962 Values, this, From, ToC, NumUpdated, OperandNo); 2963 } 2964 2965 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) { 2966 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 2967 Constant *ToC = cast<Constant>(To); 2968 2969 Use *OperandList = getOperandList(); 2970 2971 SmallVector<Constant*, 8> Values; 2972 Values.reserve(getNumOperands()); // Build replacement struct. 2973 2974 // Fill values with the modified operands of the constant struct. Also, 2975 // compute whether this turns into an all-zeros struct. 2976 unsigned NumUpdated = 0; 2977 bool AllSame = true; 2978 unsigned OperandNo = 0; 2979 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) { 2980 Constant *Val = cast<Constant>(O->get()); 2981 if (Val == From) { 2982 OperandNo = (O - OperandList); 2983 Val = ToC; 2984 ++NumUpdated; 2985 } 2986 Values.push_back(Val); 2987 AllSame &= Val == ToC; 2988 } 2989 2990 if (AllSame && ToC->isNullValue()) 2991 return ConstantAggregateZero::get(getType()); 2992 2993 if (AllSame && isa<UndefValue>(ToC)) 2994 return UndefValue::get(getType()); 2995 2996 // Update to the new value. 2997 return getContext().pImpl->StructConstants.replaceOperandsInPlace( 2998 Values, this, From, ToC, NumUpdated, OperandNo); 2999 } 3000 3001 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) { 3002 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3003 Constant *ToC = cast<Constant>(To); 3004 3005 SmallVector<Constant*, 8> Values; 3006 Values.reserve(getNumOperands()); // Build replacement array... 3007 unsigned NumUpdated = 0; 3008 unsigned OperandNo = 0; 3009 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 3010 Constant *Val = getOperand(i); 3011 if (Val == From) { 3012 OperandNo = i; 3013 ++NumUpdated; 3014 Val = ToC; 3015 } 3016 Values.push_back(Val); 3017 } 3018 3019 if (Constant *C = getImpl(Values)) 3020 return C; 3021 3022 // Update to the new value. 3023 return getContext().pImpl->VectorConstants.replaceOperandsInPlace( 3024 Values, this, From, ToC, NumUpdated, OperandNo); 3025 } 3026 3027 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) { 3028 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); 3029 Constant *To = cast<Constant>(ToV); 3030 3031 SmallVector<Constant*, 8> NewOps; 3032 unsigned NumUpdated = 0; 3033 unsigned OperandNo = 0; 3034 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 3035 Constant *Op = getOperand(i); 3036 if (Op == From) { 3037 OperandNo = i; 3038 ++NumUpdated; 3039 Op = To; 3040 } 3041 NewOps.push_back(Op); 3042 } 3043 assert(NumUpdated && "I didn't contain From!"); 3044 3045 if (Constant *C = getWithOperands(NewOps, getType(), true)) 3046 return C; 3047 3048 // Update to the new value. 3049 return getContext().pImpl->ExprConstants.replaceOperandsInPlace( 3050 NewOps, this, From, To, NumUpdated, OperandNo); 3051 } 3052 3053 Instruction *ConstantExpr::getAsInstruction() const { 3054 SmallVector<Value *, 4> ValueOperands(op_begin(), op_end()); 3055 ArrayRef<Value*> Ops(ValueOperands); 3056 3057 switch (getOpcode()) { 3058 case Instruction::Trunc: 3059 case Instruction::ZExt: 3060 case Instruction::SExt: 3061 case Instruction::FPTrunc: 3062 case Instruction::FPExt: 3063 case Instruction::UIToFP: 3064 case Instruction::SIToFP: 3065 case Instruction::FPToUI: 3066 case Instruction::FPToSI: 3067 case Instruction::PtrToInt: 3068 case Instruction::IntToPtr: 3069 case Instruction::BitCast: 3070 case Instruction::AddrSpaceCast: 3071 return CastInst::Create((Instruction::CastOps)getOpcode(), 3072 Ops[0], getType()); 3073 case Instruction::Select: 3074 return SelectInst::Create(Ops[0], Ops[1], Ops[2]); 3075 case Instruction::InsertElement: 3076 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]); 3077 case Instruction::ExtractElement: 3078 return ExtractElementInst::Create(Ops[0], Ops[1]); 3079 case Instruction::InsertValue: 3080 return InsertValueInst::Create(Ops[0], Ops[1], getIndices()); 3081 case Instruction::ExtractValue: 3082 return ExtractValueInst::Create(Ops[0], getIndices()); 3083 case Instruction::ShuffleVector: 3084 return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]); 3085 3086 case Instruction::GetElementPtr: { 3087 const auto *GO = cast<GEPOperator>(this); 3088 if (GO->isInBounds()) 3089 return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(), 3090 Ops[0], Ops.slice(1)); 3091 return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0], 3092 Ops.slice(1)); 3093 } 3094 case Instruction::ICmp: 3095 case Instruction::FCmp: 3096 return CmpInst::Create((Instruction::OtherOps)getOpcode(), 3097 (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]); 3098 case Instruction::FNeg: 3099 return UnaryOperator::Create((Instruction::UnaryOps)getOpcode(), Ops[0]); 3100 default: 3101 assert(getNumOperands() == 2 && "Must be binary operator?"); 3102 BinaryOperator *BO = 3103 BinaryOperator::Create((Instruction::BinaryOps)getOpcode(), 3104 Ops[0], Ops[1]); 3105 if (isa<OverflowingBinaryOperator>(BO)) { 3106 BO->setHasNoUnsignedWrap(SubclassOptionalData & 3107 OverflowingBinaryOperator::NoUnsignedWrap); 3108 BO->setHasNoSignedWrap(SubclassOptionalData & 3109 OverflowingBinaryOperator::NoSignedWrap); 3110 } 3111 if (isa<PossiblyExactOperator>(BO)) 3112 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact); 3113 return BO; 3114 } 3115 } 3116