1 //===-- Constants.cpp - Implement Constant nodes --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Constant* classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Constants.h" 14 #include "LLVMContextImpl.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/IR/BasicBlock.h" 19 #include "llvm/IR/ConstantFold.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/GlobalAlias.h" 24 #include "llvm/IR/GlobalIFunc.h" 25 #include "llvm/IR/GlobalValue.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/PatternMatch.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <algorithm> 34 35 using namespace llvm; 36 using namespace PatternMatch; 37 38 //===----------------------------------------------------------------------===// 39 // Constant Class 40 //===----------------------------------------------------------------------===// 41 42 bool Constant::isNegativeZeroValue() const { 43 // Floating point values have an explicit -0.0 value. 44 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 45 return CFP->isZero() && CFP->isNegative(); 46 47 // Equivalent for a vector of -0.0's. 48 if (getType()->isVectorTy()) 49 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 50 return SplatCFP->isNegativeZeroValue(); 51 52 // We've already handled true FP case; any other FP vectors can't represent -0.0. 53 if (getType()->isFPOrFPVectorTy()) 54 return false; 55 56 // Otherwise, just use +0.0. 57 return isNullValue(); 58 } 59 60 // Return true iff this constant is positive zero (floating point), negative 61 // zero (floating point), or a null value. 62 bool Constant::isZeroValue() const { 63 // Floating point values have an explicit -0.0 value. 64 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 65 return CFP->isZero(); 66 67 // Check for constant splat vectors of 1 values. 68 if (getType()->isVectorTy()) 69 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 70 return SplatCFP->isZero(); 71 72 // Otherwise, just use +0.0. 73 return isNullValue(); 74 } 75 76 bool Constant::isNullValue() const { 77 // 0 is null. 78 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 79 return CI->isZero(); 80 81 // +0.0 is null. 82 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 83 // ppc_fp128 determine isZero using high order double only 84 // Should check the bitwise value to make sure all bits are zero. 85 return CFP->isExactlyValue(+0.0); 86 87 // constant zero is zero for aggregates, cpnull is null for pointers, none for 88 // tokens. 89 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) || 90 isa<ConstantTokenNone>(this) || isa<ConstantTargetNone>(this); 91 } 92 93 bool Constant::isAllOnesValue() const { 94 // Check for -1 integers 95 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 96 return CI->isMinusOne(); 97 98 // Check for FP which are bitcasted from -1 integers 99 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 100 return CFP->getValueAPF().bitcastToAPInt().isAllOnes(); 101 102 // Check for constant splat vectors of 1 values. 103 if (getType()->isVectorTy()) 104 if (const auto *SplatVal = getSplatValue()) 105 return SplatVal->isAllOnesValue(); 106 107 return false; 108 } 109 110 bool Constant::isOneValue() const { 111 // Check for 1 integers 112 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 113 return CI->isOne(); 114 115 // Check for FP which are bitcasted from 1 integers 116 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 117 return CFP->getValueAPF().bitcastToAPInt().isOne(); 118 119 // Check for constant splat vectors of 1 values. 120 if (getType()->isVectorTy()) 121 if (const auto *SplatVal = getSplatValue()) 122 return SplatVal->isOneValue(); 123 124 return false; 125 } 126 127 bool Constant::isNotOneValue() const { 128 // Check for 1 integers 129 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 130 return !CI->isOneValue(); 131 132 // Check for FP which are bitcasted from 1 integers 133 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 134 return !CFP->getValueAPF().bitcastToAPInt().isOne(); 135 136 // Check that vectors don't contain 1 137 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 138 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 139 Constant *Elt = getAggregateElement(I); 140 if (!Elt || !Elt->isNotOneValue()) 141 return false; 142 } 143 return true; 144 } 145 146 // Check for splats that don't contain 1 147 if (getType()->isVectorTy()) 148 if (const auto *SplatVal = getSplatValue()) 149 return SplatVal->isNotOneValue(); 150 151 // It *may* contain 1, we can't tell. 152 return false; 153 } 154 155 bool Constant::isMinSignedValue() const { 156 // Check for INT_MIN integers 157 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 158 return CI->isMinValue(/*isSigned=*/true); 159 160 // Check for FP which are bitcasted from INT_MIN integers 161 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 162 return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); 163 164 // Check for splats of INT_MIN values. 165 if (getType()->isVectorTy()) 166 if (const auto *SplatVal = getSplatValue()) 167 return SplatVal->isMinSignedValue(); 168 169 return false; 170 } 171 172 bool Constant::isNotMinSignedValue() const { 173 // Check for INT_MIN integers 174 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 175 return !CI->isMinValue(/*isSigned=*/true); 176 177 // Check for FP which are bitcasted from INT_MIN integers 178 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 179 return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); 180 181 // Check that vectors don't contain INT_MIN 182 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 183 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 184 Constant *Elt = getAggregateElement(I); 185 if (!Elt || !Elt->isNotMinSignedValue()) 186 return false; 187 } 188 return true; 189 } 190 191 // Check for splats that aren't INT_MIN 192 if (getType()->isVectorTy()) 193 if (const auto *SplatVal = getSplatValue()) 194 return SplatVal->isNotMinSignedValue(); 195 196 // It *may* contain INT_MIN, we can't tell. 197 return false; 198 } 199 200 bool Constant::isFiniteNonZeroFP() const { 201 if (auto *CFP = dyn_cast<ConstantFP>(this)) 202 return CFP->getValueAPF().isFiniteNonZero(); 203 204 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 205 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 206 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I)); 207 if (!CFP || !CFP->getValueAPF().isFiniteNonZero()) 208 return false; 209 } 210 return true; 211 } 212 213 if (getType()->isVectorTy()) 214 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 215 return SplatCFP->isFiniteNonZeroFP(); 216 217 // It *may* contain finite non-zero, we can't tell. 218 return false; 219 } 220 221 bool Constant::isNormalFP() const { 222 if (auto *CFP = dyn_cast<ConstantFP>(this)) 223 return CFP->getValueAPF().isNormal(); 224 225 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 226 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 227 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I)); 228 if (!CFP || !CFP->getValueAPF().isNormal()) 229 return false; 230 } 231 return true; 232 } 233 234 if (getType()->isVectorTy()) 235 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 236 return SplatCFP->isNormalFP(); 237 238 // It *may* contain a normal fp value, we can't tell. 239 return false; 240 } 241 242 bool Constant::hasExactInverseFP() const { 243 if (auto *CFP = dyn_cast<ConstantFP>(this)) 244 return CFP->getValueAPF().getExactInverse(nullptr); 245 246 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 247 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 248 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I)); 249 if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr)) 250 return false; 251 } 252 return true; 253 } 254 255 if (getType()->isVectorTy()) 256 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 257 return SplatCFP->hasExactInverseFP(); 258 259 // It *may* have an exact inverse fp value, we can't tell. 260 return false; 261 } 262 263 bool Constant::isNaN() const { 264 if (auto *CFP = dyn_cast<ConstantFP>(this)) 265 return CFP->isNaN(); 266 267 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 268 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 269 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I)); 270 if (!CFP || !CFP->isNaN()) 271 return false; 272 } 273 return true; 274 } 275 276 if (getType()->isVectorTy()) 277 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 278 return SplatCFP->isNaN(); 279 280 // It *may* be NaN, we can't tell. 281 return false; 282 } 283 284 bool Constant::isElementWiseEqual(Value *Y) const { 285 // Are they fully identical? 286 if (this == Y) 287 return true; 288 289 // The input value must be a vector constant with the same type. 290 auto *VTy = dyn_cast<VectorType>(getType()); 291 if (!isa<Constant>(Y) || !VTy || VTy != Y->getType()) 292 return false; 293 294 // TODO: Compare pointer constants? 295 if (!(VTy->getElementType()->isIntegerTy() || 296 VTy->getElementType()->isFloatingPointTy())) 297 return false; 298 299 // They may still be identical element-wise (if they have `undef`s). 300 // Bitcast to integer to allow exact bitwise comparison for all types. 301 Type *IntTy = VectorType::getInteger(VTy); 302 Constant *C0 = ConstantExpr::getBitCast(const_cast<Constant *>(this), IntTy); 303 Constant *C1 = ConstantExpr::getBitCast(cast<Constant>(Y), IntTy); 304 Constant *CmpEq = ConstantExpr::getICmp(ICmpInst::ICMP_EQ, C0, C1); 305 return isa<UndefValue>(CmpEq) || match(CmpEq, m_One()); 306 } 307 308 static bool 309 containsUndefinedElement(const Constant *C, 310 function_ref<bool(const Constant *)> HasFn) { 311 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 312 if (HasFn(C)) 313 return true; 314 if (isa<ConstantAggregateZero>(C)) 315 return false; 316 if (isa<ScalableVectorType>(C->getType())) 317 return false; 318 319 for (unsigned i = 0, e = cast<FixedVectorType>(VTy)->getNumElements(); 320 i != e; ++i) { 321 if (Constant *Elem = C->getAggregateElement(i)) 322 if (HasFn(Elem)) 323 return true; 324 } 325 } 326 327 return false; 328 } 329 330 bool Constant::containsUndefOrPoisonElement() const { 331 return containsUndefinedElement( 332 this, [&](const auto *C) { return isa<UndefValue>(C); }); 333 } 334 335 bool Constant::containsPoisonElement() const { 336 return containsUndefinedElement( 337 this, [&](const auto *C) { return isa<PoisonValue>(C); }); 338 } 339 340 bool Constant::containsUndefElement() const { 341 return containsUndefinedElement(this, [&](const auto *C) { 342 return isa<UndefValue>(C) && !isa<PoisonValue>(C); 343 }); 344 } 345 346 bool Constant::containsConstantExpression() const { 347 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 348 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 349 if (isa<ConstantExpr>(getAggregateElement(i))) 350 return true; 351 } 352 return false; 353 } 354 355 /// Constructor to create a '0' constant of arbitrary type. 356 Constant *Constant::getNullValue(Type *Ty) { 357 switch (Ty->getTypeID()) { 358 case Type::IntegerTyID: 359 return ConstantInt::get(Ty, 0); 360 case Type::HalfTyID: 361 case Type::BFloatTyID: 362 case Type::FloatTyID: 363 case Type::DoubleTyID: 364 case Type::X86_FP80TyID: 365 case Type::FP128TyID: 366 case Type::PPC_FP128TyID: 367 return ConstantFP::get(Ty->getContext(), 368 APFloat::getZero(Ty->getFltSemantics())); 369 case Type::PointerTyID: 370 return ConstantPointerNull::get(cast<PointerType>(Ty)); 371 case Type::StructTyID: 372 case Type::ArrayTyID: 373 case Type::FixedVectorTyID: 374 case Type::ScalableVectorTyID: 375 return ConstantAggregateZero::get(Ty); 376 case Type::TokenTyID: 377 return ConstantTokenNone::get(Ty->getContext()); 378 case Type::TargetExtTyID: 379 return ConstantTargetNone::get(cast<TargetExtType>(Ty)); 380 default: 381 // Function, Label, or Opaque type? 382 llvm_unreachable("Cannot create a null constant of that type!"); 383 } 384 } 385 386 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { 387 Type *ScalarTy = Ty->getScalarType(); 388 389 // Create the base integer constant. 390 Constant *C = ConstantInt::get(Ty->getContext(), V); 391 392 // Convert an integer to a pointer, if necessary. 393 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy)) 394 C = ConstantExpr::getIntToPtr(C, PTy); 395 396 // Broadcast a scalar to a vector, if necessary. 397 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 398 C = ConstantVector::getSplat(VTy->getElementCount(), C); 399 400 return C; 401 } 402 403 Constant *Constant::getAllOnesValue(Type *Ty) { 404 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) 405 return ConstantInt::get(Ty->getContext(), 406 APInt::getAllOnes(ITy->getBitWidth())); 407 408 if (Ty->isFloatingPointTy()) { 409 APFloat FL = APFloat::getAllOnesValue(Ty->getFltSemantics()); 410 return ConstantFP::get(Ty->getContext(), FL); 411 } 412 413 VectorType *VTy = cast<VectorType>(Ty); 414 return ConstantVector::getSplat(VTy->getElementCount(), 415 getAllOnesValue(VTy->getElementType())); 416 } 417 418 Constant *Constant::getAggregateElement(unsigned Elt) const { 419 assert((getType()->isAggregateType() || getType()->isVectorTy()) && 420 "Must be an aggregate/vector constant"); 421 422 if (const auto *CC = dyn_cast<ConstantAggregate>(this)) 423 return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr; 424 425 if (const auto *CAZ = dyn_cast<ConstantAggregateZero>(this)) 426 return Elt < CAZ->getElementCount().getKnownMinValue() 427 ? CAZ->getElementValue(Elt) 428 : nullptr; 429 430 // FIXME: getNumElements() will fail for non-fixed vector types. 431 if (isa<ScalableVectorType>(getType())) 432 return nullptr; 433 434 if (const auto *PV = dyn_cast<PoisonValue>(this)) 435 return Elt < PV->getNumElements() ? PV->getElementValue(Elt) : nullptr; 436 437 if (const auto *UV = dyn_cast<UndefValue>(this)) 438 return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr; 439 440 if (const auto *CDS = dyn_cast<ConstantDataSequential>(this)) 441 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) 442 : nullptr; 443 444 return nullptr; 445 } 446 447 Constant *Constant::getAggregateElement(Constant *Elt) const { 448 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer"); 449 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) { 450 // Check if the constant fits into an uint64_t. 451 if (CI->getValue().getActiveBits() > 64) 452 return nullptr; 453 return getAggregateElement(CI->getZExtValue()); 454 } 455 return nullptr; 456 } 457 458 void Constant::destroyConstant() { 459 /// First call destroyConstantImpl on the subclass. This gives the subclass 460 /// a chance to remove the constant from any maps/pools it's contained in. 461 switch (getValueID()) { 462 default: 463 llvm_unreachable("Not a constant!"); 464 #define HANDLE_CONSTANT(Name) \ 465 case Value::Name##Val: \ 466 cast<Name>(this)->destroyConstantImpl(); \ 467 break; 468 #include "llvm/IR/Value.def" 469 } 470 471 // When a Constant is destroyed, there may be lingering 472 // references to the constant by other constants in the constant pool. These 473 // constants are implicitly dependent on the module that is being deleted, 474 // but they don't know that. Because we only find out when the CPV is 475 // deleted, we must now notify all of our users (that should only be 476 // Constants) that they are, in fact, invalid now and should be deleted. 477 // 478 while (!use_empty()) { 479 Value *V = user_back(); 480 #ifndef NDEBUG // Only in -g mode... 481 if (!isa<Constant>(V)) { 482 dbgs() << "While deleting: " << *this 483 << "\n\nUse still stuck around after Def is destroyed: " << *V 484 << "\n\n"; 485 } 486 #endif 487 assert(isa<Constant>(V) && "References remain to Constant being destroyed"); 488 cast<Constant>(V)->destroyConstant(); 489 490 // The constant should remove itself from our use list... 491 assert((use_empty() || user_back() != V) && "Constant not removed!"); 492 } 493 494 // Value has no outstanding references it is safe to delete it now... 495 deleteConstant(this); 496 } 497 498 void llvm::deleteConstant(Constant *C) { 499 switch (C->getValueID()) { 500 case Constant::ConstantIntVal: 501 delete static_cast<ConstantInt *>(C); 502 break; 503 case Constant::ConstantFPVal: 504 delete static_cast<ConstantFP *>(C); 505 break; 506 case Constant::ConstantAggregateZeroVal: 507 delete static_cast<ConstantAggregateZero *>(C); 508 break; 509 case Constant::ConstantArrayVal: 510 delete static_cast<ConstantArray *>(C); 511 break; 512 case Constant::ConstantStructVal: 513 delete static_cast<ConstantStruct *>(C); 514 break; 515 case Constant::ConstantVectorVal: 516 delete static_cast<ConstantVector *>(C); 517 break; 518 case Constant::ConstantPointerNullVal: 519 delete static_cast<ConstantPointerNull *>(C); 520 break; 521 case Constant::ConstantDataArrayVal: 522 delete static_cast<ConstantDataArray *>(C); 523 break; 524 case Constant::ConstantDataVectorVal: 525 delete static_cast<ConstantDataVector *>(C); 526 break; 527 case Constant::ConstantTokenNoneVal: 528 delete static_cast<ConstantTokenNone *>(C); 529 break; 530 case Constant::BlockAddressVal: 531 delete static_cast<BlockAddress *>(C); 532 break; 533 case Constant::DSOLocalEquivalentVal: 534 delete static_cast<DSOLocalEquivalent *>(C); 535 break; 536 case Constant::NoCFIValueVal: 537 delete static_cast<NoCFIValue *>(C); 538 break; 539 case Constant::UndefValueVal: 540 delete static_cast<UndefValue *>(C); 541 break; 542 case Constant::PoisonValueVal: 543 delete static_cast<PoisonValue *>(C); 544 break; 545 case Constant::ConstantExprVal: 546 if (isa<CastConstantExpr>(C)) 547 delete static_cast<CastConstantExpr *>(C); 548 else if (isa<BinaryConstantExpr>(C)) 549 delete static_cast<BinaryConstantExpr *>(C); 550 else if (isa<SelectConstantExpr>(C)) 551 delete static_cast<SelectConstantExpr *>(C); 552 else if (isa<ExtractElementConstantExpr>(C)) 553 delete static_cast<ExtractElementConstantExpr *>(C); 554 else if (isa<InsertElementConstantExpr>(C)) 555 delete static_cast<InsertElementConstantExpr *>(C); 556 else if (isa<ShuffleVectorConstantExpr>(C)) 557 delete static_cast<ShuffleVectorConstantExpr *>(C); 558 else if (isa<GetElementPtrConstantExpr>(C)) 559 delete static_cast<GetElementPtrConstantExpr *>(C); 560 else if (isa<CompareConstantExpr>(C)) 561 delete static_cast<CompareConstantExpr *>(C); 562 else 563 llvm_unreachable("Unexpected constant expr"); 564 break; 565 default: 566 llvm_unreachable("Unexpected constant"); 567 } 568 } 569 570 /// Check if C contains a GlobalValue for which Predicate is true. 571 static bool 572 ConstHasGlobalValuePredicate(const Constant *C, 573 bool (*Predicate)(const GlobalValue *)) { 574 SmallPtrSet<const Constant *, 8> Visited; 575 SmallVector<const Constant *, 8> WorkList; 576 WorkList.push_back(C); 577 Visited.insert(C); 578 579 while (!WorkList.empty()) { 580 const Constant *WorkItem = WorkList.pop_back_val(); 581 if (const auto *GV = dyn_cast<GlobalValue>(WorkItem)) 582 if (Predicate(GV)) 583 return true; 584 for (const Value *Op : WorkItem->operands()) { 585 const Constant *ConstOp = dyn_cast<Constant>(Op); 586 if (!ConstOp) 587 continue; 588 if (Visited.insert(ConstOp).second) 589 WorkList.push_back(ConstOp); 590 } 591 } 592 return false; 593 } 594 595 bool Constant::isThreadDependent() const { 596 auto DLLImportPredicate = [](const GlobalValue *GV) { 597 return GV->isThreadLocal(); 598 }; 599 return ConstHasGlobalValuePredicate(this, DLLImportPredicate); 600 } 601 602 bool Constant::isDLLImportDependent() const { 603 auto DLLImportPredicate = [](const GlobalValue *GV) { 604 return GV->hasDLLImportStorageClass(); 605 }; 606 return ConstHasGlobalValuePredicate(this, DLLImportPredicate); 607 } 608 609 bool Constant::isConstantUsed() const { 610 for (const User *U : users()) { 611 const Constant *UC = dyn_cast<Constant>(U); 612 if (!UC || isa<GlobalValue>(UC)) 613 return true; 614 615 if (UC->isConstantUsed()) 616 return true; 617 } 618 return false; 619 } 620 621 bool Constant::needsDynamicRelocation() const { 622 return getRelocationInfo() == GlobalRelocation; 623 } 624 625 bool Constant::needsRelocation() const { 626 return getRelocationInfo() != NoRelocation; 627 } 628 629 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const { 630 if (isa<GlobalValue>(this)) 631 return GlobalRelocation; // Global reference. 632 633 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this)) 634 return BA->getFunction()->getRelocationInfo(); 635 636 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) { 637 if (CE->getOpcode() == Instruction::Sub) { 638 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0)); 639 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1)); 640 if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt && 641 RHS->getOpcode() == Instruction::PtrToInt) { 642 Constant *LHSOp0 = LHS->getOperand(0); 643 Constant *RHSOp0 = RHS->getOperand(0); 644 645 // While raw uses of blockaddress need to be relocated, differences 646 // between two of them don't when they are for labels in the same 647 // function. This is a common idiom when creating a table for the 648 // indirect goto extension, so we handle it efficiently here. 649 if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) && 650 cast<BlockAddress>(LHSOp0)->getFunction() == 651 cast<BlockAddress>(RHSOp0)->getFunction()) 652 return NoRelocation; 653 654 // Relative pointers do not need to be dynamically relocated. 655 if (auto *RHSGV = 656 dyn_cast<GlobalValue>(RHSOp0->stripInBoundsConstantOffsets())) { 657 auto *LHS = LHSOp0->stripInBoundsConstantOffsets(); 658 if (auto *LHSGV = dyn_cast<GlobalValue>(LHS)) { 659 if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal()) 660 return LocalRelocation; 661 } else if (isa<DSOLocalEquivalent>(LHS)) { 662 if (RHSGV->isDSOLocal()) 663 return LocalRelocation; 664 } 665 } 666 } 667 } 668 } 669 670 PossibleRelocationsTy Result = NoRelocation; 671 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 672 Result = 673 std::max(cast<Constant>(getOperand(i))->getRelocationInfo(), Result); 674 675 return Result; 676 } 677 678 /// Return true if the specified constantexpr is dead. This involves 679 /// recursively traversing users of the constantexpr. 680 /// If RemoveDeadUsers is true, also remove dead users at the same time. 681 static bool constantIsDead(const Constant *C, bool RemoveDeadUsers) { 682 if (isa<GlobalValue>(C)) return false; // Cannot remove this 683 684 Value::const_user_iterator I = C->user_begin(), E = C->user_end(); 685 while (I != E) { 686 const Constant *User = dyn_cast<Constant>(*I); 687 if (!User) return false; // Non-constant usage; 688 if (!constantIsDead(User, RemoveDeadUsers)) 689 return false; // Constant wasn't dead 690 691 // Just removed User, so the iterator was invalidated. 692 // Since we return immediately upon finding a live user, we can always 693 // restart from user_begin(). 694 if (RemoveDeadUsers) 695 I = C->user_begin(); 696 else 697 ++I; 698 } 699 700 if (RemoveDeadUsers) { 701 // If C is only used by metadata, it should not be preserved but should 702 // have its uses replaced. 703 ReplaceableMetadataImpl::SalvageDebugInfo(*C); 704 const_cast<Constant *>(C)->destroyConstant(); 705 } 706 707 return true; 708 } 709 710 void Constant::removeDeadConstantUsers() const { 711 Value::const_user_iterator I = user_begin(), E = user_end(); 712 Value::const_user_iterator LastNonDeadUser = E; 713 while (I != E) { 714 const Constant *User = dyn_cast<Constant>(*I); 715 if (!User) { 716 LastNonDeadUser = I; 717 ++I; 718 continue; 719 } 720 721 if (!constantIsDead(User, /* RemoveDeadUsers= */ true)) { 722 // If the constant wasn't dead, remember that this was the last live use 723 // and move on to the next constant. 724 LastNonDeadUser = I; 725 ++I; 726 continue; 727 } 728 729 // If the constant was dead, then the iterator is invalidated. 730 if (LastNonDeadUser == E) 731 I = user_begin(); 732 else 733 I = std::next(LastNonDeadUser); 734 } 735 } 736 737 bool Constant::hasOneLiveUse() const { return hasNLiveUses(1); } 738 739 bool Constant::hasZeroLiveUses() const { return hasNLiveUses(0); } 740 741 bool Constant::hasNLiveUses(unsigned N) const { 742 unsigned NumUses = 0; 743 for (const Use &U : uses()) { 744 const Constant *User = dyn_cast<Constant>(U.getUser()); 745 if (!User || !constantIsDead(User, /* RemoveDeadUsers= */ false)) { 746 ++NumUses; 747 748 if (NumUses > N) 749 return false; 750 } 751 } 752 return NumUses == N; 753 } 754 755 Constant *Constant::replaceUndefsWith(Constant *C, Constant *Replacement) { 756 assert(C && Replacement && "Expected non-nullptr constant arguments"); 757 Type *Ty = C->getType(); 758 if (match(C, m_Undef())) { 759 assert(Ty == Replacement->getType() && "Expected matching types"); 760 return Replacement; 761 } 762 763 // Don't know how to deal with this constant. 764 auto *VTy = dyn_cast<FixedVectorType>(Ty); 765 if (!VTy) 766 return C; 767 768 unsigned NumElts = VTy->getNumElements(); 769 SmallVector<Constant *, 32> NewC(NumElts); 770 for (unsigned i = 0; i != NumElts; ++i) { 771 Constant *EltC = C->getAggregateElement(i); 772 assert((!EltC || EltC->getType() == Replacement->getType()) && 773 "Expected matching types"); 774 NewC[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC; 775 } 776 return ConstantVector::get(NewC); 777 } 778 779 Constant *Constant::mergeUndefsWith(Constant *C, Constant *Other) { 780 assert(C && Other && "Expected non-nullptr constant arguments"); 781 if (match(C, m_Undef())) 782 return C; 783 784 Type *Ty = C->getType(); 785 if (match(Other, m_Undef())) 786 return UndefValue::get(Ty); 787 788 auto *VTy = dyn_cast<FixedVectorType>(Ty); 789 if (!VTy) 790 return C; 791 792 Type *EltTy = VTy->getElementType(); 793 unsigned NumElts = VTy->getNumElements(); 794 assert(isa<FixedVectorType>(Other->getType()) && 795 cast<FixedVectorType>(Other->getType())->getNumElements() == NumElts && 796 "Type mismatch"); 797 798 bool FoundExtraUndef = false; 799 SmallVector<Constant *, 32> NewC(NumElts); 800 for (unsigned I = 0; I != NumElts; ++I) { 801 NewC[I] = C->getAggregateElement(I); 802 Constant *OtherEltC = Other->getAggregateElement(I); 803 assert(NewC[I] && OtherEltC && "Unknown vector element"); 804 if (!match(NewC[I], m_Undef()) && match(OtherEltC, m_Undef())) { 805 NewC[I] = UndefValue::get(EltTy); 806 FoundExtraUndef = true; 807 } 808 } 809 if (FoundExtraUndef) 810 return ConstantVector::get(NewC); 811 return C; 812 } 813 814 bool Constant::isManifestConstant() const { 815 if (isa<ConstantData>(this)) 816 return true; 817 if (isa<ConstantAggregate>(this) || isa<ConstantExpr>(this)) { 818 for (const Value *Op : operand_values()) 819 if (!cast<Constant>(Op)->isManifestConstant()) 820 return false; 821 return true; 822 } 823 return false; 824 } 825 826 //===----------------------------------------------------------------------===// 827 // ConstantInt 828 //===----------------------------------------------------------------------===// 829 830 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V) 831 : ConstantData(Ty, ConstantIntVal), Val(V) { 832 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); 833 } 834 835 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) { 836 LLVMContextImpl *pImpl = Context.pImpl; 837 if (!pImpl->TheTrueVal) 838 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1); 839 return pImpl->TheTrueVal; 840 } 841 842 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { 843 LLVMContextImpl *pImpl = Context.pImpl; 844 if (!pImpl->TheFalseVal) 845 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0); 846 return pImpl->TheFalseVal; 847 } 848 849 ConstantInt *ConstantInt::getBool(LLVMContext &Context, bool V) { 850 return V ? getTrue(Context) : getFalse(Context); 851 } 852 853 Constant *ConstantInt::getTrue(Type *Ty) { 854 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); 855 ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext()); 856 if (auto *VTy = dyn_cast<VectorType>(Ty)) 857 return ConstantVector::getSplat(VTy->getElementCount(), TrueC); 858 return TrueC; 859 } 860 861 Constant *ConstantInt::getFalse(Type *Ty) { 862 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); 863 ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext()); 864 if (auto *VTy = dyn_cast<VectorType>(Ty)) 865 return ConstantVector::getSplat(VTy->getElementCount(), FalseC); 866 return FalseC; 867 } 868 869 Constant *ConstantInt::getBool(Type *Ty, bool V) { 870 return V ? getTrue(Ty) : getFalse(Ty); 871 } 872 873 // Get a ConstantInt from an APInt. 874 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { 875 // get an existing value or the insertion position 876 LLVMContextImpl *pImpl = Context.pImpl; 877 std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V]; 878 if (!Slot) { 879 // Get the corresponding integer type for the bit width of the value. 880 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); 881 Slot.reset(new ConstantInt(ITy, V)); 882 } 883 assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth())); 884 return Slot.get(); 885 } 886 887 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { 888 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned); 889 890 // For vectors, broadcast the value. 891 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 892 return ConstantVector::getSplat(VTy->getElementCount(), C); 893 894 return C; 895 } 896 897 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) { 898 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); 899 } 900 901 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) { 902 return get(Ty, V, true); 903 } 904 905 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) { 906 return get(Ty, V, true); 907 } 908 909 Constant *ConstantInt::get(Type *Ty, const APInt& V) { 910 ConstantInt *C = get(Ty->getContext(), V); 911 assert(C->getType() == Ty->getScalarType() && 912 "ConstantInt type doesn't match the type implied by its value!"); 913 914 // For vectors, broadcast the value. 915 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 916 return ConstantVector::getSplat(VTy->getElementCount(), C); 917 918 return C; 919 } 920 921 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) { 922 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); 923 } 924 925 /// Remove the constant from the constant table. 926 void ConstantInt::destroyConstantImpl() { 927 llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!"); 928 } 929 930 //===----------------------------------------------------------------------===// 931 // ConstantFP 932 //===----------------------------------------------------------------------===// 933 934 Constant *ConstantFP::get(Type *Ty, double V) { 935 LLVMContext &Context = Ty->getContext(); 936 937 APFloat FV(V); 938 bool ignored; 939 FV.convert(Ty->getScalarType()->getFltSemantics(), 940 APFloat::rmNearestTiesToEven, &ignored); 941 Constant *C = get(Context, FV); 942 943 // For vectors, broadcast the value. 944 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 945 return ConstantVector::getSplat(VTy->getElementCount(), C); 946 947 return C; 948 } 949 950 Constant *ConstantFP::get(Type *Ty, const APFloat &V) { 951 ConstantFP *C = get(Ty->getContext(), V); 952 assert(C->getType() == Ty->getScalarType() && 953 "ConstantFP type doesn't match the type implied by its value!"); 954 955 // For vectors, broadcast the value. 956 if (auto *VTy = dyn_cast<VectorType>(Ty)) 957 return ConstantVector::getSplat(VTy->getElementCount(), C); 958 959 return C; 960 } 961 962 Constant *ConstantFP::get(Type *Ty, StringRef Str) { 963 LLVMContext &Context = Ty->getContext(); 964 965 APFloat FV(Ty->getScalarType()->getFltSemantics(), Str); 966 Constant *C = get(Context, FV); 967 968 // For vectors, broadcast the value. 969 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 970 return ConstantVector::getSplat(VTy->getElementCount(), C); 971 972 return C; 973 } 974 975 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) { 976 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 977 APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload); 978 Constant *C = get(Ty->getContext(), NaN); 979 980 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 981 return ConstantVector::getSplat(VTy->getElementCount(), C); 982 983 return C; 984 } 985 986 Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) { 987 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 988 APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload); 989 Constant *C = get(Ty->getContext(), NaN); 990 991 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 992 return ConstantVector::getSplat(VTy->getElementCount(), C); 993 994 return C; 995 } 996 997 Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) { 998 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 999 APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload); 1000 Constant *C = get(Ty->getContext(), NaN); 1001 1002 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1003 return ConstantVector::getSplat(VTy->getElementCount(), C); 1004 1005 return C; 1006 } 1007 1008 Constant *ConstantFP::getZero(Type *Ty, bool Negative) { 1009 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 1010 APFloat NegZero = APFloat::getZero(Semantics, Negative); 1011 Constant *C = get(Ty->getContext(), NegZero); 1012 1013 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1014 return ConstantVector::getSplat(VTy->getElementCount(), C); 1015 1016 return C; 1017 } 1018 1019 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) { 1020 if (Ty->isFPOrFPVectorTy()) 1021 return getNegativeZero(Ty); 1022 1023 return Constant::getNullValue(Ty); 1024 } 1025 1026 1027 // ConstantFP accessors. 1028 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { 1029 LLVMContextImpl* pImpl = Context.pImpl; 1030 1031 std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V]; 1032 1033 if (!Slot) { 1034 Type *Ty = Type::getFloatingPointTy(Context, V.getSemantics()); 1035 Slot.reset(new ConstantFP(Ty, V)); 1036 } 1037 1038 return Slot.get(); 1039 } 1040 1041 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) { 1042 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 1043 Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative)); 1044 1045 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1046 return ConstantVector::getSplat(VTy->getElementCount(), C); 1047 1048 return C; 1049 } 1050 1051 ConstantFP::ConstantFP(Type *Ty, const APFloat &V) 1052 : ConstantData(Ty, ConstantFPVal), Val(V) { 1053 assert(&V.getSemantics() == &Ty->getFltSemantics() && 1054 "FP type Mismatch"); 1055 } 1056 1057 bool ConstantFP::isExactlyValue(const APFloat &V) const { 1058 return Val.bitwiseIsEqual(V); 1059 } 1060 1061 /// Remove the constant from the constant table. 1062 void ConstantFP::destroyConstantImpl() { 1063 llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!"); 1064 } 1065 1066 //===----------------------------------------------------------------------===// 1067 // ConstantAggregateZero Implementation 1068 //===----------------------------------------------------------------------===// 1069 1070 Constant *ConstantAggregateZero::getSequentialElement() const { 1071 if (auto *AT = dyn_cast<ArrayType>(getType())) 1072 return Constant::getNullValue(AT->getElementType()); 1073 return Constant::getNullValue(cast<VectorType>(getType())->getElementType()); 1074 } 1075 1076 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const { 1077 return Constant::getNullValue(getType()->getStructElementType(Elt)); 1078 } 1079 1080 Constant *ConstantAggregateZero::getElementValue(Constant *C) const { 1081 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1082 return getSequentialElement(); 1083 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 1084 } 1085 1086 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const { 1087 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1088 return getSequentialElement(); 1089 return getStructElement(Idx); 1090 } 1091 1092 ElementCount ConstantAggregateZero::getElementCount() const { 1093 Type *Ty = getType(); 1094 if (auto *AT = dyn_cast<ArrayType>(Ty)) 1095 return ElementCount::getFixed(AT->getNumElements()); 1096 if (auto *VT = dyn_cast<VectorType>(Ty)) 1097 return VT->getElementCount(); 1098 return ElementCount::getFixed(Ty->getStructNumElements()); 1099 } 1100 1101 //===----------------------------------------------------------------------===// 1102 // UndefValue Implementation 1103 //===----------------------------------------------------------------------===// 1104 1105 UndefValue *UndefValue::getSequentialElement() const { 1106 if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) 1107 return UndefValue::get(ATy->getElementType()); 1108 return UndefValue::get(cast<VectorType>(getType())->getElementType()); 1109 } 1110 1111 UndefValue *UndefValue::getStructElement(unsigned Elt) const { 1112 return UndefValue::get(getType()->getStructElementType(Elt)); 1113 } 1114 1115 UndefValue *UndefValue::getElementValue(Constant *C) const { 1116 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1117 return getSequentialElement(); 1118 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 1119 } 1120 1121 UndefValue *UndefValue::getElementValue(unsigned Idx) const { 1122 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1123 return getSequentialElement(); 1124 return getStructElement(Idx); 1125 } 1126 1127 unsigned UndefValue::getNumElements() const { 1128 Type *Ty = getType(); 1129 if (auto *AT = dyn_cast<ArrayType>(Ty)) 1130 return AT->getNumElements(); 1131 if (auto *VT = dyn_cast<VectorType>(Ty)) 1132 return cast<FixedVectorType>(VT)->getNumElements(); 1133 return Ty->getStructNumElements(); 1134 } 1135 1136 //===----------------------------------------------------------------------===// 1137 // PoisonValue Implementation 1138 //===----------------------------------------------------------------------===// 1139 1140 PoisonValue *PoisonValue::getSequentialElement() const { 1141 if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) 1142 return PoisonValue::get(ATy->getElementType()); 1143 return PoisonValue::get(cast<VectorType>(getType())->getElementType()); 1144 } 1145 1146 PoisonValue *PoisonValue::getStructElement(unsigned Elt) const { 1147 return PoisonValue::get(getType()->getStructElementType(Elt)); 1148 } 1149 1150 PoisonValue *PoisonValue::getElementValue(Constant *C) const { 1151 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1152 return getSequentialElement(); 1153 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 1154 } 1155 1156 PoisonValue *PoisonValue::getElementValue(unsigned Idx) const { 1157 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1158 return getSequentialElement(); 1159 return getStructElement(Idx); 1160 } 1161 1162 //===----------------------------------------------------------------------===// 1163 // ConstantXXX Classes 1164 //===----------------------------------------------------------------------===// 1165 1166 template <typename ItTy, typename EltTy> 1167 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) { 1168 for (; Start != End; ++Start) 1169 if (*Start != Elt) 1170 return false; 1171 return true; 1172 } 1173 1174 template <typename SequentialTy, typename ElementTy> 1175 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) { 1176 assert(!V.empty() && "Cannot get empty int sequence."); 1177 1178 SmallVector<ElementTy, 16> Elts; 1179 for (Constant *C : V) 1180 if (auto *CI = dyn_cast<ConstantInt>(C)) 1181 Elts.push_back(CI->getZExtValue()); 1182 else 1183 return nullptr; 1184 return SequentialTy::get(V[0]->getContext(), Elts); 1185 } 1186 1187 template <typename SequentialTy, typename ElementTy> 1188 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) { 1189 assert(!V.empty() && "Cannot get empty FP sequence."); 1190 1191 SmallVector<ElementTy, 16> Elts; 1192 for (Constant *C : V) 1193 if (auto *CFP = dyn_cast<ConstantFP>(C)) 1194 Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 1195 else 1196 return nullptr; 1197 return SequentialTy::getFP(V[0]->getType(), Elts); 1198 } 1199 1200 template <typename SequenceTy> 1201 static Constant *getSequenceIfElementsMatch(Constant *C, 1202 ArrayRef<Constant *> V) { 1203 // We speculatively build the elements here even if it turns out that there is 1204 // a constantexpr or something else weird, since it is so uncommon for that to 1205 // happen. 1206 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 1207 if (CI->getType()->isIntegerTy(8)) 1208 return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V); 1209 else if (CI->getType()->isIntegerTy(16)) 1210 return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V); 1211 else if (CI->getType()->isIntegerTy(32)) 1212 return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V); 1213 else if (CI->getType()->isIntegerTy(64)) 1214 return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V); 1215 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1216 if (CFP->getType()->isHalfTy() || CFP->getType()->isBFloatTy()) 1217 return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V); 1218 else if (CFP->getType()->isFloatTy()) 1219 return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V); 1220 else if (CFP->getType()->isDoubleTy()) 1221 return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V); 1222 } 1223 1224 return nullptr; 1225 } 1226 1227 ConstantAggregate::ConstantAggregate(Type *T, ValueTy VT, 1228 ArrayRef<Constant *> V) 1229 : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(), 1230 V.size()) { 1231 llvm::copy(V, op_begin()); 1232 1233 // Check that types match, unless this is an opaque struct. 1234 if (auto *ST = dyn_cast<StructType>(T)) { 1235 if (ST->isOpaque()) 1236 return; 1237 for (unsigned I = 0, E = V.size(); I != E; ++I) 1238 assert(V[I]->getType() == ST->getTypeAtIndex(I) && 1239 "Initializer for struct element doesn't match!"); 1240 } 1241 } 1242 1243 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) 1244 : ConstantAggregate(T, ConstantArrayVal, V) { 1245 assert(V.size() == T->getNumElements() && 1246 "Invalid initializer for constant array"); 1247 } 1248 1249 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) { 1250 if (Constant *C = getImpl(Ty, V)) 1251 return C; 1252 return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V); 1253 } 1254 1255 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) { 1256 // Empty arrays are canonicalized to ConstantAggregateZero. 1257 if (V.empty()) 1258 return ConstantAggregateZero::get(Ty); 1259 1260 for (Constant *C : V) { 1261 assert(C->getType() == Ty->getElementType() && 1262 "Wrong type in array element initializer"); 1263 (void)C; 1264 } 1265 1266 // If this is an all-zero array, return a ConstantAggregateZero object. If 1267 // all undef, return an UndefValue, if "all simple", then return a 1268 // ConstantDataArray. 1269 Constant *C = V[0]; 1270 if (isa<PoisonValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) 1271 return PoisonValue::get(Ty); 1272 1273 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) 1274 return UndefValue::get(Ty); 1275 1276 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C)) 1277 return ConstantAggregateZero::get(Ty); 1278 1279 // Check to see if all of the elements are ConstantFP or ConstantInt and if 1280 // the element type is compatible with ConstantDataVector. If so, use it. 1281 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) 1282 return getSequenceIfElementsMatch<ConstantDataArray>(C, V); 1283 1284 // Otherwise, we really do want to create a ConstantArray. 1285 return nullptr; 1286 } 1287 1288 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, 1289 ArrayRef<Constant*> V, 1290 bool Packed) { 1291 unsigned VecSize = V.size(); 1292 SmallVector<Type*, 16> EltTypes(VecSize); 1293 for (unsigned i = 0; i != VecSize; ++i) 1294 EltTypes[i] = V[i]->getType(); 1295 1296 return StructType::get(Context, EltTypes, Packed); 1297 } 1298 1299 1300 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V, 1301 bool Packed) { 1302 assert(!V.empty() && 1303 "ConstantStruct::getTypeForElements cannot be called on empty list"); 1304 return getTypeForElements(V[0]->getContext(), V, Packed); 1305 } 1306 1307 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V) 1308 : ConstantAggregate(T, ConstantStructVal, V) { 1309 assert((T->isOpaque() || V.size() == T->getNumElements()) && 1310 "Invalid initializer for constant struct"); 1311 } 1312 1313 // ConstantStruct accessors. 1314 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) { 1315 assert((ST->isOpaque() || ST->getNumElements() == V.size()) && 1316 "Incorrect # elements specified to ConstantStruct::get"); 1317 1318 // Create a ConstantAggregateZero value if all elements are zeros. 1319 bool isZero = true; 1320 bool isUndef = false; 1321 bool isPoison = false; 1322 1323 if (!V.empty()) { 1324 isUndef = isa<UndefValue>(V[0]); 1325 isPoison = isa<PoisonValue>(V[0]); 1326 isZero = V[0]->isNullValue(); 1327 // PoisonValue inherits UndefValue, so its check is not necessary. 1328 if (isUndef || isZero) { 1329 for (Constant *C : V) { 1330 if (!C->isNullValue()) 1331 isZero = false; 1332 if (!isa<PoisonValue>(C)) 1333 isPoison = false; 1334 if (isa<PoisonValue>(C) || !isa<UndefValue>(C)) 1335 isUndef = false; 1336 } 1337 } 1338 } 1339 if (isZero) 1340 return ConstantAggregateZero::get(ST); 1341 if (isPoison) 1342 return PoisonValue::get(ST); 1343 if (isUndef) 1344 return UndefValue::get(ST); 1345 1346 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); 1347 } 1348 1349 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V) 1350 : ConstantAggregate(T, ConstantVectorVal, V) { 1351 assert(V.size() == cast<FixedVectorType>(T)->getNumElements() && 1352 "Invalid initializer for constant vector"); 1353 } 1354 1355 // ConstantVector accessors. 1356 Constant *ConstantVector::get(ArrayRef<Constant*> V) { 1357 if (Constant *C = getImpl(V)) 1358 return C; 1359 auto *Ty = FixedVectorType::get(V.front()->getType(), V.size()); 1360 return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V); 1361 } 1362 1363 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) { 1364 assert(!V.empty() && "Vectors can't be empty"); 1365 auto *T = FixedVectorType::get(V.front()->getType(), V.size()); 1366 1367 // If this is an all-undef or all-zero vector, return a 1368 // ConstantAggregateZero or UndefValue. 1369 Constant *C = V[0]; 1370 bool isZero = C->isNullValue(); 1371 bool isUndef = isa<UndefValue>(C); 1372 bool isPoison = isa<PoisonValue>(C); 1373 1374 if (isZero || isUndef) { 1375 for (unsigned i = 1, e = V.size(); i != e; ++i) 1376 if (V[i] != C) { 1377 isZero = isUndef = isPoison = false; 1378 break; 1379 } 1380 } 1381 1382 if (isZero) 1383 return ConstantAggregateZero::get(T); 1384 if (isPoison) 1385 return PoisonValue::get(T); 1386 if (isUndef) 1387 return UndefValue::get(T); 1388 1389 // Check to see if all of the elements are ConstantFP or ConstantInt and if 1390 // the element type is compatible with ConstantDataVector. If so, use it. 1391 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) 1392 return getSequenceIfElementsMatch<ConstantDataVector>(C, V); 1393 1394 // Otherwise, the element type isn't compatible with ConstantDataVector, or 1395 // the operand list contains a ConstantExpr or something else strange. 1396 return nullptr; 1397 } 1398 1399 Constant *ConstantVector::getSplat(ElementCount EC, Constant *V) { 1400 if (!EC.isScalable()) { 1401 // If this splat is compatible with ConstantDataVector, use it instead of 1402 // ConstantVector. 1403 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) && 1404 ConstantDataSequential::isElementTypeCompatible(V->getType())) 1405 return ConstantDataVector::getSplat(EC.getKnownMinValue(), V); 1406 1407 SmallVector<Constant *, 32> Elts(EC.getKnownMinValue(), V); 1408 return get(Elts); 1409 } 1410 1411 Type *VTy = VectorType::get(V->getType(), EC); 1412 1413 if (V->isNullValue()) 1414 return ConstantAggregateZero::get(VTy); 1415 else if (isa<UndefValue>(V)) 1416 return UndefValue::get(VTy); 1417 1418 Type *IdxTy = Type::getInt64Ty(VTy->getContext()); 1419 1420 // Move scalar into vector. 1421 Constant *PoisonV = PoisonValue::get(VTy); 1422 V = ConstantExpr::getInsertElement(PoisonV, V, ConstantInt::get(IdxTy, 0)); 1423 // Build shuffle mask to perform the splat. 1424 SmallVector<int, 8> Zeros(EC.getKnownMinValue(), 0); 1425 // Splat. 1426 return ConstantExpr::getShuffleVector(V, PoisonV, Zeros); 1427 } 1428 1429 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) { 1430 LLVMContextImpl *pImpl = Context.pImpl; 1431 if (!pImpl->TheNoneToken) 1432 pImpl->TheNoneToken.reset(new ConstantTokenNone(Context)); 1433 return pImpl->TheNoneToken.get(); 1434 } 1435 1436 /// Remove the constant from the constant table. 1437 void ConstantTokenNone::destroyConstantImpl() { 1438 llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!"); 1439 } 1440 1441 // Utility function for determining if a ConstantExpr is a CastOp or not. This 1442 // can't be inline because we don't want to #include Instruction.h into 1443 // Constant.h 1444 bool ConstantExpr::isCast() const { 1445 return Instruction::isCast(getOpcode()); 1446 } 1447 1448 bool ConstantExpr::isCompare() const { 1449 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; 1450 } 1451 1452 unsigned ConstantExpr::getPredicate() const { 1453 return cast<CompareConstantExpr>(this)->predicate; 1454 } 1455 1456 ArrayRef<int> ConstantExpr::getShuffleMask() const { 1457 return cast<ShuffleVectorConstantExpr>(this)->ShuffleMask; 1458 } 1459 1460 Constant *ConstantExpr::getShuffleMaskForBitcode() const { 1461 return cast<ShuffleVectorConstantExpr>(this)->ShuffleMaskForBitcode; 1462 } 1463 1464 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, 1465 bool OnlyIfReduced, Type *SrcTy) const { 1466 assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); 1467 1468 // If no operands changed return self. 1469 if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin())) 1470 return const_cast<ConstantExpr*>(this); 1471 1472 Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr; 1473 switch (getOpcode()) { 1474 case Instruction::Trunc: 1475 case Instruction::ZExt: 1476 case Instruction::SExt: 1477 case Instruction::FPTrunc: 1478 case Instruction::FPExt: 1479 case Instruction::UIToFP: 1480 case Instruction::SIToFP: 1481 case Instruction::FPToUI: 1482 case Instruction::FPToSI: 1483 case Instruction::PtrToInt: 1484 case Instruction::IntToPtr: 1485 case Instruction::BitCast: 1486 case Instruction::AddrSpaceCast: 1487 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced); 1488 case Instruction::Select: 1489 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy); 1490 case Instruction::InsertElement: 1491 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2], 1492 OnlyIfReducedTy); 1493 case Instruction::ExtractElement: 1494 return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy); 1495 case Instruction::ShuffleVector: 1496 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], getShuffleMask(), 1497 OnlyIfReducedTy); 1498 case Instruction::GetElementPtr: { 1499 auto *GEPO = cast<GEPOperator>(this); 1500 assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType())); 1501 return ConstantExpr::getGetElementPtr( 1502 SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1), 1503 GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy); 1504 } 1505 case Instruction::ICmp: 1506 case Instruction::FCmp: 1507 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1], 1508 OnlyIfReducedTy); 1509 default: 1510 assert(getNumOperands() == 2 && "Must be binary operator?"); 1511 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData, 1512 OnlyIfReducedTy); 1513 } 1514 } 1515 1516 1517 //===----------------------------------------------------------------------===// 1518 // isValueValidForType implementations 1519 1520 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { 1521 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay 1522 if (Ty->isIntegerTy(1)) 1523 return Val == 0 || Val == 1; 1524 return isUIntN(NumBits, Val); 1525 } 1526 1527 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) { 1528 unsigned NumBits = Ty->getIntegerBitWidth(); 1529 if (Ty->isIntegerTy(1)) 1530 return Val == 0 || Val == 1 || Val == -1; 1531 return isIntN(NumBits, Val); 1532 } 1533 1534 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { 1535 // convert modifies in place, so make a copy. 1536 APFloat Val2 = APFloat(Val); 1537 bool losesInfo; 1538 switch (Ty->getTypeID()) { 1539 default: 1540 return false; // These can't be represented as floating point! 1541 1542 // FIXME rounding mode needs to be more flexible 1543 case Type::HalfTyID: { 1544 if (&Val2.getSemantics() == &APFloat::IEEEhalf()) 1545 return true; 1546 Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo); 1547 return !losesInfo; 1548 } 1549 case Type::BFloatTyID: { 1550 if (&Val2.getSemantics() == &APFloat::BFloat()) 1551 return true; 1552 Val2.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, &losesInfo); 1553 return !losesInfo; 1554 } 1555 case Type::FloatTyID: { 1556 if (&Val2.getSemantics() == &APFloat::IEEEsingle()) 1557 return true; 1558 Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo); 1559 return !losesInfo; 1560 } 1561 case Type::DoubleTyID: { 1562 if (&Val2.getSemantics() == &APFloat::IEEEhalf() || 1563 &Val2.getSemantics() == &APFloat::BFloat() || 1564 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1565 &Val2.getSemantics() == &APFloat::IEEEdouble()) 1566 return true; 1567 Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo); 1568 return !losesInfo; 1569 } 1570 case Type::X86_FP80TyID: 1571 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1572 &Val2.getSemantics() == &APFloat::BFloat() || 1573 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1574 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1575 &Val2.getSemantics() == &APFloat::x87DoubleExtended(); 1576 case Type::FP128TyID: 1577 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1578 &Val2.getSemantics() == &APFloat::BFloat() || 1579 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1580 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1581 &Val2.getSemantics() == &APFloat::IEEEquad(); 1582 case Type::PPC_FP128TyID: 1583 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1584 &Val2.getSemantics() == &APFloat::BFloat() || 1585 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1586 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1587 &Val2.getSemantics() == &APFloat::PPCDoubleDouble(); 1588 } 1589 } 1590 1591 1592 //===----------------------------------------------------------------------===// 1593 // Factory Function Implementation 1594 1595 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) { 1596 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && 1597 "Cannot create an aggregate zero of non-aggregate type!"); 1598 1599 std::unique_ptr<ConstantAggregateZero> &Entry = 1600 Ty->getContext().pImpl->CAZConstants[Ty]; 1601 if (!Entry) 1602 Entry.reset(new ConstantAggregateZero(Ty)); 1603 1604 return Entry.get(); 1605 } 1606 1607 /// Remove the constant from the constant table. 1608 void ConstantAggregateZero::destroyConstantImpl() { 1609 getContext().pImpl->CAZConstants.erase(getType()); 1610 } 1611 1612 /// Remove the constant from the constant table. 1613 void ConstantArray::destroyConstantImpl() { 1614 getType()->getContext().pImpl->ArrayConstants.remove(this); 1615 } 1616 1617 1618 //---- ConstantStruct::get() implementation... 1619 // 1620 1621 /// Remove the constant from the constant table. 1622 void ConstantStruct::destroyConstantImpl() { 1623 getType()->getContext().pImpl->StructConstants.remove(this); 1624 } 1625 1626 /// Remove the constant from the constant table. 1627 void ConstantVector::destroyConstantImpl() { 1628 getType()->getContext().pImpl->VectorConstants.remove(this); 1629 } 1630 1631 Constant *Constant::getSplatValue(bool AllowUndefs) const { 1632 assert(this->getType()->isVectorTy() && "Only valid for vectors!"); 1633 if (isa<ConstantAggregateZero>(this)) 1634 return getNullValue(cast<VectorType>(getType())->getElementType()); 1635 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 1636 return CV->getSplatValue(); 1637 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 1638 return CV->getSplatValue(AllowUndefs); 1639 1640 // Check if this is a constant expression splat of the form returned by 1641 // ConstantVector::getSplat() 1642 const auto *Shuf = dyn_cast<ConstantExpr>(this); 1643 if (Shuf && Shuf->getOpcode() == Instruction::ShuffleVector && 1644 isa<UndefValue>(Shuf->getOperand(1))) { 1645 1646 const auto *IElt = dyn_cast<ConstantExpr>(Shuf->getOperand(0)); 1647 if (IElt && IElt->getOpcode() == Instruction::InsertElement && 1648 isa<UndefValue>(IElt->getOperand(0))) { 1649 1650 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1651 Constant *SplatVal = IElt->getOperand(1); 1652 ConstantInt *Index = dyn_cast<ConstantInt>(IElt->getOperand(2)); 1653 1654 if (Index && Index->getValue() == 0 && 1655 llvm::all_of(Mask, [](int I) { return I == 0; })) 1656 return SplatVal; 1657 } 1658 } 1659 1660 return nullptr; 1661 } 1662 1663 Constant *ConstantVector::getSplatValue(bool AllowUndefs) const { 1664 // Check out first element. 1665 Constant *Elt = getOperand(0); 1666 // Then make sure all remaining elements point to the same value. 1667 for (unsigned I = 1, E = getNumOperands(); I < E; ++I) { 1668 Constant *OpC = getOperand(I); 1669 if (OpC == Elt) 1670 continue; 1671 1672 // Strict mode: any mismatch is not a splat. 1673 if (!AllowUndefs) 1674 return nullptr; 1675 1676 // Allow undefs mode: ignore undefined elements. 1677 if (isa<UndefValue>(OpC)) 1678 continue; 1679 1680 // If we do not have a defined element yet, use the current operand. 1681 if (isa<UndefValue>(Elt)) 1682 Elt = OpC; 1683 1684 if (OpC != Elt) 1685 return nullptr; 1686 } 1687 return Elt; 1688 } 1689 1690 const APInt &Constant::getUniqueInteger() const { 1691 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 1692 return CI->getValue(); 1693 // Scalable vectors can use a ConstantExpr to build a splat. 1694 if (isa<ConstantExpr>(this)) 1695 return cast<ConstantInt>(this->getSplatValue())->getValue(); 1696 // For non-ConstantExpr we use getAggregateElement as a fast path to avoid 1697 // calling getSplatValue in release builds. 1698 assert(this->getSplatValue() && "Doesn't contain a unique integer!"); 1699 const Constant *C = this->getAggregateElement(0U); 1700 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!"); 1701 return cast<ConstantInt>(C)->getValue(); 1702 } 1703 1704 //---- ConstantPointerNull::get() implementation. 1705 // 1706 1707 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { 1708 std::unique_ptr<ConstantPointerNull> &Entry = 1709 Ty->getContext().pImpl->CPNConstants[Ty]; 1710 if (!Entry) 1711 Entry.reset(new ConstantPointerNull(Ty)); 1712 1713 return Entry.get(); 1714 } 1715 1716 /// Remove the constant from the constant table. 1717 void ConstantPointerNull::destroyConstantImpl() { 1718 getContext().pImpl->CPNConstants.erase(getType()); 1719 } 1720 1721 //---- ConstantTargetNone::get() implementation. 1722 // 1723 1724 ConstantTargetNone *ConstantTargetNone::get(TargetExtType *Ty) { 1725 assert(Ty->hasProperty(TargetExtType::HasZeroInit) && 1726 "Target extension type not allowed to have a zeroinitializer"); 1727 std::unique_ptr<ConstantTargetNone> &Entry = 1728 Ty->getContext().pImpl->CTNConstants[Ty]; 1729 if (!Entry) 1730 Entry.reset(new ConstantTargetNone(Ty)); 1731 1732 return Entry.get(); 1733 } 1734 1735 /// Remove the constant from the constant table. 1736 void ConstantTargetNone::destroyConstantImpl() { 1737 getContext().pImpl->CTNConstants.erase(getType()); 1738 } 1739 1740 UndefValue *UndefValue::get(Type *Ty) { 1741 std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty]; 1742 if (!Entry) 1743 Entry.reset(new UndefValue(Ty)); 1744 1745 return Entry.get(); 1746 } 1747 1748 /// Remove the constant from the constant table. 1749 void UndefValue::destroyConstantImpl() { 1750 // Free the constant and any dangling references to it. 1751 if (getValueID() == UndefValueVal) { 1752 getContext().pImpl->UVConstants.erase(getType()); 1753 } else if (getValueID() == PoisonValueVal) { 1754 getContext().pImpl->PVConstants.erase(getType()); 1755 } 1756 llvm_unreachable("Not a undef or a poison!"); 1757 } 1758 1759 PoisonValue *PoisonValue::get(Type *Ty) { 1760 std::unique_ptr<PoisonValue> &Entry = Ty->getContext().pImpl->PVConstants[Ty]; 1761 if (!Entry) 1762 Entry.reset(new PoisonValue(Ty)); 1763 1764 return Entry.get(); 1765 } 1766 1767 /// Remove the constant from the constant table. 1768 void PoisonValue::destroyConstantImpl() { 1769 // Free the constant and any dangling references to it. 1770 getContext().pImpl->PVConstants.erase(getType()); 1771 } 1772 1773 BlockAddress *BlockAddress::get(BasicBlock *BB) { 1774 assert(BB->getParent() && "Block must have a parent"); 1775 return get(BB->getParent(), BB); 1776 } 1777 1778 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { 1779 BlockAddress *&BA = 1780 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; 1781 if (!BA) 1782 BA = new BlockAddress(F, BB); 1783 1784 assert(BA->getFunction() == F && "Basic block moved between functions"); 1785 return BA; 1786 } 1787 1788 BlockAddress::BlockAddress(Function *F, BasicBlock *BB) 1789 : Constant(Type::getInt8PtrTy(F->getContext(), F->getAddressSpace()), 1790 Value::BlockAddressVal, &Op<0>(), 2) { 1791 setOperand(0, F); 1792 setOperand(1, BB); 1793 BB->AdjustBlockAddressRefCount(1); 1794 } 1795 1796 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) { 1797 if (!BB->hasAddressTaken()) 1798 return nullptr; 1799 1800 const Function *F = BB->getParent(); 1801 assert(F && "Block must have a parent"); 1802 BlockAddress *BA = 1803 F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB)); 1804 assert(BA && "Refcount and block address map disagree!"); 1805 return BA; 1806 } 1807 1808 /// Remove the constant from the constant table. 1809 void BlockAddress::destroyConstantImpl() { 1810 getFunction()->getType()->getContext().pImpl 1811 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); 1812 getBasicBlock()->AdjustBlockAddressRefCount(-1); 1813 } 1814 1815 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) { 1816 // This could be replacing either the Basic Block or the Function. In either 1817 // case, we have to remove the map entry. 1818 Function *NewF = getFunction(); 1819 BasicBlock *NewBB = getBasicBlock(); 1820 1821 if (From == NewF) 1822 NewF = cast<Function>(To->stripPointerCasts()); 1823 else { 1824 assert(From == NewBB && "From does not match any operand"); 1825 NewBB = cast<BasicBlock>(To); 1826 } 1827 1828 // See if the 'new' entry already exists, if not, just update this in place 1829 // and return early. 1830 BlockAddress *&NewBA = 1831 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; 1832 if (NewBA) 1833 return NewBA; 1834 1835 getBasicBlock()->AdjustBlockAddressRefCount(-1); 1836 1837 // Remove the old entry, this can't cause the map to rehash (just a 1838 // tombstone will get added). 1839 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), 1840 getBasicBlock())); 1841 NewBA = this; 1842 setOperand(0, NewF); 1843 setOperand(1, NewBB); 1844 getBasicBlock()->AdjustBlockAddressRefCount(1); 1845 1846 // If we just want to keep the existing value, then return null. 1847 // Callers know that this means we shouldn't delete this value. 1848 return nullptr; 1849 } 1850 1851 DSOLocalEquivalent *DSOLocalEquivalent::get(GlobalValue *GV) { 1852 DSOLocalEquivalent *&Equiv = GV->getContext().pImpl->DSOLocalEquivalents[GV]; 1853 if (!Equiv) 1854 Equiv = new DSOLocalEquivalent(GV); 1855 1856 assert(Equiv->getGlobalValue() == GV && 1857 "DSOLocalFunction does not match the expected global value"); 1858 return Equiv; 1859 } 1860 1861 DSOLocalEquivalent::DSOLocalEquivalent(GlobalValue *GV) 1862 : Constant(GV->getType(), Value::DSOLocalEquivalentVal, &Op<0>(), 1) { 1863 setOperand(0, GV); 1864 } 1865 1866 /// Remove the constant from the constant table. 1867 void DSOLocalEquivalent::destroyConstantImpl() { 1868 const GlobalValue *GV = getGlobalValue(); 1869 GV->getContext().pImpl->DSOLocalEquivalents.erase(GV); 1870 } 1871 1872 Value *DSOLocalEquivalent::handleOperandChangeImpl(Value *From, Value *To) { 1873 assert(From == getGlobalValue() && "Changing value does not match operand."); 1874 assert(isa<Constant>(To) && "Can only replace the operands with a constant"); 1875 1876 // The replacement is with another global value. 1877 if (const auto *ToObj = dyn_cast<GlobalValue>(To)) { 1878 DSOLocalEquivalent *&NewEquiv = 1879 getContext().pImpl->DSOLocalEquivalents[ToObj]; 1880 if (NewEquiv) 1881 return llvm::ConstantExpr::getBitCast(NewEquiv, getType()); 1882 } 1883 1884 // If the argument is replaced with a null value, just replace this constant 1885 // with a null value. 1886 if (cast<Constant>(To)->isNullValue()) 1887 return To; 1888 1889 // The replacement could be a bitcast or an alias to another function. We can 1890 // replace it with a bitcast to the dso_local_equivalent of that function. 1891 auto *Func = cast<Function>(To->stripPointerCastsAndAliases()); 1892 DSOLocalEquivalent *&NewEquiv = getContext().pImpl->DSOLocalEquivalents[Func]; 1893 if (NewEquiv) 1894 return llvm::ConstantExpr::getBitCast(NewEquiv, getType()); 1895 1896 // Replace this with the new one. 1897 getContext().pImpl->DSOLocalEquivalents.erase(getGlobalValue()); 1898 NewEquiv = this; 1899 setOperand(0, Func); 1900 1901 if (Func->getType() != getType()) { 1902 // It is ok to mutate the type here because this constant should always 1903 // reflect the type of the function it's holding. 1904 mutateType(Func->getType()); 1905 } 1906 return nullptr; 1907 } 1908 1909 NoCFIValue *NoCFIValue::get(GlobalValue *GV) { 1910 NoCFIValue *&NC = GV->getContext().pImpl->NoCFIValues[GV]; 1911 if (!NC) 1912 NC = new NoCFIValue(GV); 1913 1914 assert(NC->getGlobalValue() == GV && 1915 "NoCFIValue does not match the expected global value"); 1916 return NC; 1917 } 1918 1919 NoCFIValue::NoCFIValue(GlobalValue *GV) 1920 : Constant(GV->getType(), Value::NoCFIValueVal, &Op<0>(), 1) { 1921 setOperand(0, GV); 1922 } 1923 1924 /// Remove the constant from the constant table. 1925 void NoCFIValue::destroyConstantImpl() { 1926 const GlobalValue *GV = getGlobalValue(); 1927 GV->getContext().pImpl->NoCFIValues.erase(GV); 1928 } 1929 1930 Value *NoCFIValue::handleOperandChangeImpl(Value *From, Value *To) { 1931 assert(From == getGlobalValue() && "Changing value does not match operand."); 1932 1933 GlobalValue *GV = dyn_cast<GlobalValue>(To->stripPointerCasts()); 1934 assert(GV && "Can only replace the operands with a global value"); 1935 1936 NoCFIValue *&NewNC = getContext().pImpl->NoCFIValues[GV]; 1937 if (NewNC) 1938 return llvm::ConstantExpr::getBitCast(NewNC, getType()); 1939 1940 getContext().pImpl->NoCFIValues.erase(getGlobalValue()); 1941 NewNC = this; 1942 setOperand(0, GV); 1943 1944 if (GV->getType() != getType()) 1945 mutateType(GV->getType()); 1946 1947 return nullptr; 1948 } 1949 1950 //---- ConstantExpr::get() implementations. 1951 // 1952 1953 /// This is a utility function to handle folding of casts and lookup of the 1954 /// cast in the ExprConstants map. It is used by the various get* methods below. 1955 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty, 1956 bool OnlyIfReduced = false) { 1957 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); 1958 // Fold a few common cases 1959 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) 1960 return FC; 1961 1962 if (OnlyIfReduced) 1963 return nullptr; 1964 1965 LLVMContextImpl *pImpl = Ty->getContext().pImpl; 1966 1967 // Look up the constant in the table first to ensure uniqueness. 1968 ConstantExprKeyType Key(opc, C); 1969 1970 return pImpl->ExprConstants.getOrCreate(Ty, Key); 1971 } 1972 1973 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty, 1974 bool OnlyIfReduced) { 1975 Instruction::CastOps opc = Instruction::CastOps(oc); 1976 assert(Instruction::isCast(opc) && "opcode out of range"); 1977 assert(C && Ty && "Null arguments to getCast"); 1978 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); 1979 1980 switch (opc) { 1981 default: 1982 llvm_unreachable("Invalid cast opcode"); 1983 case Instruction::Trunc: 1984 return getTrunc(C, Ty, OnlyIfReduced); 1985 case Instruction::ZExt: 1986 return getZExt(C, Ty, OnlyIfReduced); 1987 case Instruction::SExt: 1988 return getSExt(C, Ty, OnlyIfReduced); 1989 case Instruction::FPTrunc: 1990 return getFPTrunc(C, Ty, OnlyIfReduced); 1991 case Instruction::FPExt: 1992 return getFPExtend(C, Ty, OnlyIfReduced); 1993 case Instruction::UIToFP: 1994 return getUIToFP(C, Ty, OnlyIfReduced); 1995 case Instruction::SIToFP: 1996 return getSIToFP(C, Ty, OnlyIfReduced); 1997 case Instruction::FPToUI: 1998 return getFPToUI(C, Ty, OnlyIfReduced); 1999 case Instruction::FPToSI: 2000 return getFPToSI(C, Ty, OnlyIfReduced); 2001 case Instruction::PtrToInt: 2002 return getPtrToInt(C, Ty, OnlyIfReduced); 2003 case Instruction::IntToPtr: 2004 return getIntToPtr(C, Ty, OnlyIfReduced); 2005 case Instruction::BitCast: 2006 return getBitCast(C, Ty, OnlyIfReduced); 2007 case Instruction::AddrSpaceCast: 2008 return getAddrSpaceCast(C, Ty, OnlyIfReduced); 2009 } 2010 } 2011 2012 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) { 2013 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2014 return getBitCast(C, Ty); 2015 return getZExt(C, Ty); 2016 } 2017 2018 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) { 2019 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2020 return getBitCast(C, Ty); 2021 return getSExt(C, Ty); 2022 } 2023 2024 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) { 2025 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2026 return getBitCast(C, Ty); 2027 return getTrunc(C, Ty); 2028 } 2029 2030 Constant *ConstantExpr::getSExtOrTrunc(Constant *C, Type *Ty) { 2031 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 2032 "Can only sign extend/truncate integers!"); 2033 Type *CTy = C->getType(); 2034 if (CTy->getScalarSizeInBits() < Ty->getScalarSizeInBits()) 2035 return getSExt(C, Ty); 2036 if (CTy->getScalarSizeInBits() > Ty->getScalarSizeInBits()) 2037 return getTrunc(C, Ty); 2038 return C; 2039 } 2040 2041 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) { 2042 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2043 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 2044 "Invalid cast"); 2045 2046 if (Ty->isIntOrIntVectorTy()) 2047 return getPtrToInt(S, Ty); 2048 2049 unsigned SrcAS = S->getType()->getPointerAddressSpace(); 2050 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace()) 2051 return getAddrSpaceCast(S, Ty); 2052 2053 return getBitCast(S, Ty); 2054 } 2055 2056 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S, 2057 Type *Ty) { 2058 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2059 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 2060 2061 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 2062 return getAddrSpaceCast(S, Ty); 2063 2064 return getBitCast(S, Ty); 2065 } 2066 2067 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) { 2068 assert(C->getType()->isIntOrIntVectorTy() && 2069 Ty->isIntOrIntVectorTy() && "Invalid cast"); 2070 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2071 unsigned DstBits = Ty->getScalarSizeInBits(); 2072 Instruction::CastOps opcode = 2073 (SrcBits == DstBits ? Instruction::BitCast : 2074 (SrcBits > DstBits ? Instruction::Trunc : 2075 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2076 return getCast(opcode, C, Ty); 2077 } 2078 2079 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) { 2080 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2081 "Invalid cast"); 2082 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2083 unsigned DstBits = Ty->getScalarSizeInBits(); 2084 if (SrcBits == DstBits) 2085 return C; // Avoid a useless cast 2086 Instruction::CastOps opcode = 2087 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); 2088 return getCast(opcode, C, Ty); 2089 } 2090 2091 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { 2092 #ifndef NDEBUG 2093 bool fromVec = isa<VectorType>(C->getType()); 2094 bool toVec = isa<VectorType>(Ty); 2095 #endif 2096 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2097 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); 2098 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); 2099 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& 2100 "SrcTy must be larger than DestTy for Trunc!"); 2101 2102 return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced); 2103 } 2104 2105 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) { 2106 #ifndef NDEBUG 2107 bool fromVec = isa<VectorType>(C->getType()); 2108 bool toVec = isa<VectorType>(Ty); 2109 #endif 2110 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2111 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral"); 2112 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer"); 2113 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 2114 "SrcTy must be smaller than DestTy for SExt!"); 2115 2116 return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced); 2117 } 2118 2119 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) { 2120 #ifndef NDEBUG 2121 bool fromVec = isa<VectorType>(C->getType()); 2122 bool toVec = isa<VectorType>(Ty); 2123 #endif 2124 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2125 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral"); 2126 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer"); 2127 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 2128 "SrcTy must be smaller than DestTy for ZExt!"); 2129 2130 return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced); 2131 } 2132 2133 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { 2134 #ifndef NDEBUG 2135 bool fromVec = isa<VectorType>(C->getType()); 2136 bool toVec = isa<VectorType>(Ty); 2137 #endif 2138 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2139 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2140 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& 2141 "This is an illegal floating point truncation!"); 2142 return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced); 2143 } 2144 2145 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) { 2146 #ifndef NDEBUG 2147 bool fromVec = isa<VectorType>(C->getType()); 2148 bool toVec = isa<VectorType>(Ty); 2149 #endif 2150 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2151 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2152 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 2153 "This is an illegal floating point extension!"); 2154 return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced); 2155 } 2156 2157 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { 2158 #ifndef NDEBUG 2159 bool fromVec = isa<VectorType>(C->getType()); 2160 bool toVec = isa<VectorType>(Ty); 2161 #endif 2162 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2163 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && 2164 "This is an illegal uint to floating point cast!"); 2165 return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced); 2166 } 2167 2168 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { 2169 #ifndef NDEBUG 2170 bool fromVec = isa<VectorType>(C->getType()); 2171 bool toVec = isa<VectorType>(Ty); 2172 #endif 2173 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2174 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && 2175 "This is an illegal sint to floating point cast!"); 2176 return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced); 2177 } 2178 2179 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) { 2180 #ifndef NDEBUG 2181 bool fromVec = isa<VectorType>(C->getType()); 2182 bool toVec = isa<VectorType>(Ty); 2183 #endif 2184 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2185 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && 2186 "This is an illegal floating point to uint cast!"); 2187 return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced); 2188 } 2189 2190 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) { 2191 #ifndef NDEBUG 2192 bool fromVec = isa<VectorType>(C->getType()); 2193 bool toVec = isa<VectorType>(Ty); 2194 #endif 2195 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2196 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && 2197 "This is an illegal floating point to sint cast!"); 2198 return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced); 2199 } 2200 2201 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy, 2202 bool OnlyIfReduced) { 2203 assert(C->getType()->isPtrOrPtrVectorTy() && 2204 "PtrToInt source must be pointer or pointer vector"); 2205 assert(DstTy->isIntOrIntVectorTy() && 2206 "PtrToInt destination must be integer or integer vector"); 2207 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); 2208 if (isa<VectorType>(C->getType())) 2209 assert(cast<VectorType>(C->getType())->getElementCount() == 2210 cast<VectorType>(DstTy)->getElementCount() && 2211 "Invalid cast between a different number of vector elements"); 2212 return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced); 2213 } 2214 2215 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy, 2216 bool OnlyIfReduced) { 2217 assert(C->getType()->isIntOrIntVectorTy() && 2218 "IntToPtr source must be integer or integer vector"); 2219 assert(DstTy->isPtrOrPtrVectorTy() && 2220 "IntToPtr destination must be a pointer or pointer vector"); 2221 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); 2222 if (isa<VectorType>(C->getType())) 2223 assert(cast<VectorType>(C->getType())->getElementCount() == 2224 cast<VectorType>(DstTy)->getElementCount() && 2225 "Invalid cast between a different number of vector elements"); 2226 return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced); 2227 } 2228 2229 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy, 2230 bool OnlyIfReduced) { 2231 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && 2232 "Invalid constantexpr bitcast!"); 2233 2234 // It is common to ask for a bitcast of a value to its own type, handle this 2235 // speedily. 2236 if (C->getType() == DstTy) return C; 2237 2238 return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced); 2239 } 2240 2241 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy, 2242 bool OnlyIfReduced) { 2243 assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) && 2244 "Invalid constantexpr addrspacecast!"); 2245 2246 // Canonicalize addrspacecasts between different pointer types by first 2247 // bitcasting the pointer type and then converting the address space. 2248 PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType()); 2249 PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType()); 2250 if (!SrcScalarTy->hasSameElementTypeAs(DstScalarTy)) { 2251 Type *MidTy = PointerType::getWithSamePointeeType( 2252 DstScalarTy, SrcScalarTy->getAddressSpace()); 2253 if (VectorType *VT = dyn_cast<VectorType>(DstTy)) { 2254 // Handle vectors of pointers. 2255 MidTy = FixedVectorType::get(MidTy, 2256 cast<FixedVectorType>(VT)->getNumElements()); 2257 } 2258 C = getBitCast(C, MidTy); 2259 } 2260 return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced); 2261 } 2262 2263 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, 2264 unsigned Flags, Type *OnlyIfReducedTy) { 2265 // Check the operands for consistency first. 2266 assert(Instruction::isBinaryOp(Opcode) && 2267 "Invalid opcode in binary constant expression"); 2268 assert(isSupportedBinOp(Opcode) && 2269 "Binop not supported as constant expression"); 2270 assert(C1->getType() == C2->getType() && 2271 "Operand types in binary constant expression should match"); 2272 2273 #ifndef NDEBUG 2274 switch (Opcode) { 2275 case Instruction::Add: 2276 case Instruction::Sub: 2277 case Instruction::Mul: 2278 case Instruction::UDiv: 2279 case Instruction::SDiv: 2280 case Instruction::URem: 2281 case Instruction::SRem: 2282 assert(C1->getType()->isIntOrIntVectorTy() && 2283 "Tried to create an integer operation on a non-integer type!"); 2284 break; 2285 case Instruction::FAdd: 2286 case Instruction::FSub: 2287 case Instruction::FMul: 2288 case Instruction::FDiv: 2289 case Instruction::FRem: 2290 assert(C1->getType()->isFPOrFPVectorTy() && 2291 "Tried to create a floating-point operation on a " 2292 "non-floating-point type!"); 2293 break; 2294 case Instruction::And: 2295 case Instruction::Or: 2296 case Instruction::Xor: 2297 assert(C1->getType()->isIntOrIntVectorTy() && 2298 "Tried to create a logical operation on a non-integral type!"); 2299 break; 2300 case Instruction::Shl: 2301 case Instruction::LShr: 2302 case Instruction::AShr: 2303 assert(C1->getType()->isIntOrIntVectorTy() && 2304 "Tried to create a shift operation on a non-integer type!"); 2305 break; 2306 default: 2307 break; 2308 } 2309 #endif 2310 2311 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) 2312 return FC; 2313 2314 if (OnlyIfReducedTy == C1->getType()) 2315 return nullptr; 2316 2317 Constant *ArgVec[] = { C1, C2 }; 2318 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags); 2319 2320 LLVMContextImpl *pImpl = C1->getContext().pImpl; 2321 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key); 2322 } 2323 2324 bool ConstantExpr::isDesirableBinOp(unsigned Opcode) { 2325 switch (Opcode) { 2326 case Instruction::UDiv: 2327 case Instruction::SDiv: 2328 case Instruction::URem: 2329 case Instruction::SRem: 2330 case Instruction::FAdd: 2331 case Instruction::FSub: 2332 case Instruction::FMul: 2333 case Instruction::FDiv: 2334 case Instruction::FRem: 2335 return false; 2336 case Instruction::Add: 2337 case Instruction::Sub: 2338 case Instruction::Mul: 2339 case Instruction::Shl: 2340 case Instruction::LShr: 2341 case Instruction::AShr: 2342 case Instruction::And: 2343 case Instruction::Or: 2344 case Instruction::Xor: 2345 return true; 2346 default: 2347 llvm_unreachable("Argument must be binop opcode"); 2348 } 2349 } 2350 2351 bool ConstantExpr::isSupportedBinOp(unsigned Opcode) { 2352 switch (Opcode) { 2353 case Instruction::UDiv: 2354 case Instruction::SDiv: 2355 case Instruction::URem: 2356 case Instruction::SRem: 2357 case Instruction::FAdd: 2358 case Instruction::FSub: 2359 case Instruction::FMul: 2360 case Instruction::FDiv: 2361 case Instruction::FRem: 2362 return false; 2363 case Instruction::Add: 2364 case Instruction::Sub: 2365 case Instruction::Mul: 2366 case Instruction::Shl: 2367 case Instruction::LShr: 2368 case Instruction::AShr: 2369 case Instruction::And: 2370 case Instruction::Or: 2371 case Instruction::Xor: 2372 return true; 2373 default: 2374 llvm_unreachable("Argument must be binop opcode"); 2375 } 2376 } 2377 2378 Constant *ConstantExpr::getSizeOf(Type* Ty) { 2379 // sizeof is implemented as: (i64) gep (Ty*)null, 1 2380 // Note that a non-inbounds gep is used, as null isn't within any object. 2381 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); 2382 Constant *GEP = getGetElementPtr( 2383 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); 2384 return getPtrToInt(GEP, 2385 Type::getInt64Ty(Ty->getContext())); 2386 } 2387 2388 Constant *ConstantExpr::getAlignOf(Type* Ty) { 2389 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 2390 // Note that a non-inbounds gep is used, as null isn't within any object. 2391 Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty); 2392 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0)); 2393 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); 2394 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); 2395 Constant *Indices[2] = { Zero, One }; 2396 Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices); 2397 return getPtrToInt(GEP, 2398 Type::getInt64Ty(Ty->getContext())); 2399 } 2400 2401 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) { 2402 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()), 2403 FieldNo)); 2404 } 2405 2406 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) { 2407 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo 2408 // Note that a non-inbounds gep is used, as null isn't within any object. 2409 Constant *GEPIdx[] = { 2410 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0), 2411 FieldNo 2412 }; 2413 Constant *GEP = getGetElementPtr( 2414 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); 2415 return getPtrToInt(GEP, 2416 Type::getInt64Ty(Ty->getContext())); 2417 } 2418 2419 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1, 2420 Constant *C2, bool OnlyIfReduced) { 2421 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 2422 2423 switch (Predicate) { 2424 default: llvm_unreachable("Invalid CmpInst predicate"); 2425 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: 2426 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: 2427 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: 2428 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: 2429 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: 2430 case CmpInst::FCMP_TRUE: 2431 return getFCmp(Predicate, C1, C2, OnlyIfReduced); 2432 2433 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: 2434 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: 2435 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: 2436 case CmpInst::ICMP_SLE: 2437 return getICmp(Predicate, C1, C2, OnlyIfReduced); 2438 } 2439 } 2440 2441 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2, 2442 Type *OnlyIfReducedTy) { 2443 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); 2444 2445 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) 2446 return SC; // Fold common cases 2447 2448 if (OnlyIfReducedTy == V1->getType()) 2449 return nullptr; 2450 2451 Constant *ArgVec[] = { C, V1, V2 }; 2452 ConstantExprKeyType Key(Instruction::Select, ArgVec); 2453 2454 LLVMContextImpl *pImpl = C->getContext().pImpl; 2455 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key); 2456 } 2457 2458 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C, 2459 ArrayRef<Value *> Idxs, bool InBounds, 2460 std::optional<unsigned> InRangeIndex, 2461 Type *OnlyIfReducedTy) { 2462 PointerType *OrigPtrTy = cast<PointerType>(C->getType()->getScalarType()); 2463 assert(Ty && "Must specify element type"); 2464 assert(OrigPtrTy->isOpaqueOrPointeeTypeMatches(Ty)); 2465 2466 if (Constant *FC = 2467 ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs)) 2468 return FC; // Fold a few common cases. 2469 2470 // Get the result type of the getelementptr! 2471 Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs); 2472 assert(DestTy && "GEP indices invalid!"); 2473 unsigned AS = OrigPtrTy->getAddressSpace(); 2474 Type *ReqTy = OrigPtrTy->isOpaque() 2475 ? PointerType::get(OrigPtrTy->getContext(), AS) 2476 : DestTy->getPointerTo(AS); 2477 2478 auto EltCount = ElementCount::getFixed(0); 2479 if (VectorType *VecTy = dyn_cast<VectorType>(C->getType())) 2480 EltCount = VecTy->getElementCount(); 2481 else 2482 for (auto *Idx : Idxs) 2483 if (VectorType *VecTy = dyn_cast<VectorType>(Idx->getType())) 2484 EltCount = VecTy->getElementCount(); 2485 2486 if (EltCount.isNonZero()) 2487 ReqTy = VectorType::get(ReqTy, EltCount); 2488 2489 if (OnlyIfReducedTy == ReqTy) 2490 return nullptr; 2491 2492 // Look up the constant in the table first to ensure uniqueness 2493 std::vector<Constant*> ArgVec; 2494 ArgVec.reserve(1 + Idxs.size()); 2495 ArgVec.push_back(C); 2496 auto GTI = gep_type_begin(Ty, Idxs), GTE = gep_type_end(Ty, Idxs); 2497 for (; GTI != GTE; ++GTI) { 2498 auto *Idx = cast<Constant>(GTI.getOperand()); 2499 assert( 2500 (!isa<VectorType>(Idx->getType()) || 2501 cast<VectorType>(Idx->getType())->getElementCount() == EltCount) && 2502 "getelementptr index type missmatch"); 2503 2504 if (GTI.isStruct() && Idx->getType()->isVectorTy()) { 2505 Idx = Idx->getSplatValue(); 2506 } else if (GTI.isSequential() && EltCount.isNonZero() && 2507 !Idx->getType()->isVectorTy()) { 2508 Idx = ConstantVector::getSplat(EltCount, Idx); 2509 } 2510 ArgVec.push_back(Idx); 2511 } 2512 2513 unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0; 2514 if (InRangeIndex && *InRangeIndex < 63) 2515 SubClassOptionalData |= (*InRangeIndex + 1) << 1; 2516 const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0, 2517 SubClassOptionalData, std::nullopt, Ty); 2518 2519 LLVMContextImpl *pImpl = C->getContext().pImpl; 2520 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2521 } 2522 2523 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS, 2524 Constant *RHS, bool OnlyIfReduced) { 2525 auto Predicate = static_cast<CmpInst::Predicate>(pred); 2526 assert(LHS->getType() == RHS->getType()); 2527 assert(CmpInst::isIntPredicate(Predicate) && "Invalid ICmp Predicate"); 2528 2529 if (Constant *FC = ConstantFoldCompareInstruction(Predicate, LHS, RHS)) 2530 return FC; // Fold a few common cases... 2531 2532 if (OnlyIfReduced) 2533 return nullptr; 2534 2535 // Look up the constant in the table first to ensure uniqueness 2536 Constant *ArgVec[] = { LHS, RHS }; 2537 // Get the key type with both the opcode and predicate 2538 const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, Predicate); 2539 2540 Type *ResultTy = Type::getInt1Ty(LHS->getContext()); 2541 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) 2542 ResultTy = VectorType::get(ResultTy, VT->getElementCount()); 2543 2544 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; 2545 return pImpl->ExprConstants.getOrCreate(ResultTy, Key); 2546 } 2547 2548 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, 2549 Constant *RHS, bool OnlyIfReduced) { 2550 auto Predicate = static_cast<CmpInst::Predicate>(pred); 2551 assert(LHS->getType() == RHS->getType()); 2552 assert(CmpInst::isFPPredicate(Predicate) && "Invalid FCmp Predicate"); 2553 2554 if (Constant *FC = ConstantFoldCompareInstruction(Predicate, LHS, RHS)) 2555 return FC; // Fold a few common cases... 2556 2557 if (OnlyIfReduced) 2558 return nullptr; 2559 2560 // Look up the constant in the table first to ensure uniqueness 2561 Constant *ArgVec[] = { LHS, RHS }; 2562 // Get the key type with both the opcode and predicate 2563 const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, Predicate); 2564 2565 Type *ResultTy = Type::getInt1Ty(LHS->getContext()); 2566 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) 2567 ResultTy = VectorType::get(ResultTy, VT->getElementCount()); 2568 2569 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; 2570 return pImpl->ExprConstants.getOrCreate(ResultTy, Key); 2571 } 2572 2573 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx, 2574 Type *OnlyIfReducedTy) { 2575 assert(Val->getType()->isVectorTy() && 2576 "Tried to create extractelement operation on non-vector type!"); 2577 assert(Idx->getType()->isIntegerTy() && 2578 "Extractelement index must be an integer type!"); 2579 2580 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) 2581 return FC; // Fold a few common cases. 2582 2583 Type *ReqTy = cast<VectorType>(Val->getType())->getElementType(); 2584 if (OnlyIfReducedTy == ReqTy) 2585 return nullptr; 2586 2587 // Look up the constant in the table first to ensure uniqueness 2588 Constant *ArgVec[] = { Val, Idx }; 2589 const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec); 2590 2591 LLVMContextImpl *pImpl = Val->getContext().pImpl; 2592 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2593 } 2594 2595 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 2596 Constant *Idx, Type *OnlyIfReducedTy) { 2597 assert(Val->getType()->isVectorTy() && 2598 "Tried to create insertelement operation on non-vector type!"); 2599 assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() && 2600 "Insertelement types must match!"); 2601 assert(Idx->getType()->isIntegerTy() && 2602 "Insertelement index must be i32 type!"); 2603 2604 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) 2605 return FC; // Fold a few common cases. 2606 2607 if (OnlyIfReducedTy == Val->getType()) 2608 return nullptr; 2609 2610 // Look up the constant in the table first to ensure uniqueness 2611 Constant *ArgVec[] = { Val, Elt, Idx }; 2612 const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec); 2613 2614 LLVMContextImpl *pImpl = Val->getContext().pImpl; 2615 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key); 2616 } 2617 2618 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, 2619 ArrayRef<int> Mask, 2620 Type *OnlyIfReducedTy) { 2621 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && 2622 "Invalid shuffle vector constant expr operands!"); 2623 2624 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) 2625 return FC; // Fold a few common cases. 2626 2627 unsigned NElts = Mask.size(); 2628 auto V1VTy = cast<VectorType>(V1->getType()); 2629 Type *EltTy = V1VTy->getElementType(); 2630 bool TypeIsScalable = isa<ScalableVectorType>(V1VTy); 2631 Type *ShufTy = VectorType::get(EltTy, NElts, TypeIsScalable); 2632 2633 if (OnlyIfReducedTy == ShufTy) 2634 return nullptr; 2635 2636 // Look up the constant in the table first to ensure uniqueness 2637 Constant *ArgVec[] = {V1, V2}; 2638 ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec, 0, 0, Mask); 2639 2640 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl; 2641 return pImpl->ExprConstants.getOrCreate(ShufTy, Key); 2642 } 2643 2644 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) { 2645 assert(C->getType()->isIntOrIntVectorTy() && 2646 "Cannot NEG a nonintegral value!"); 2647 return getSub(ConstantFP::getZeroValueForNegation(C->getType()), 2648 C, HasNUW, HasNSW); 2649 } 2650 2651 Constant *ConstantExpr::getNot(Constant *C) { 2652 assert(C->getType()->isIntOrIntVectorTy() && 2653 "Cannot NOT a nonintegral value!"); 2654 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); 2655 } 2656 2657 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2, 2658 bool HasNUW, bool HasNSW) { 2659 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2660 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2661 return get(Instruction::Add, C1, C2, Flags); 2662 } 2663 2664 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2, 2665 bool HasNUW, bool HasNSW) { 2666 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2667 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2668 return get(Instruction::Sub, C1, C2, Flags); 2669 } 2670 2671 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2, 2672 bool HasNUW, bool HasNSW) { 2673 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2674 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2675 return get(Instruction::Mul, C1, C2, Flags); 2676 } 2677 2678 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { 2679 return get(Instruction::And, C1, C2); 2680 } 2681 2682 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { 2683 return get(Instruction::Or, C1, C2); 2684 } 2685 2686 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { 2687 return get(Instruction::Xor, C1, C2); 2688 } 2689 2690 Constant *ConstantExpr::getUMin(Constant *C1, Constant *C2) { 2691 Constant *Cmp = ConstantExpr::getICmp(CmpInst::ICMP_ULT, C1, C2); 2692 return getSelect(Cmp, C1, C2); 2693 } 2694 2695 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2, 2696 bool HasNUW, bool HasNSW) { 2697 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2698 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2699 return get(Instruction::Shl, C1, C2, Flags); 2700 } 2701 2702 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) { 2703 return get(Instruction::LShr, C1, C2, 2704 isExact ? PossiblyExactOperator::IsExact : 0); 2705 } 2706 2707 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) { 2708 return get(Instruction::AShr, C1, C2, 2709 isExact ? PossiblyExactOperator::IsExact : 0); 2710 } 2711 2712 Constant *ConstantExpr::getExactLogBase2(Constant *C) { 2713 Type *Ty = C->getType(); 2714 const APInt *IVal; 2715 if (match(C, m_APInt(IVal)) && IVal->isPowerOf2()) 2716 return ConstantInt::get(Ty, IVal->logBase2()); 2717 2718 // FIXME: We can extract pow of 2 of splat constant for scalable vectors. 2719 auto *VecTy = dyn_cast<FixedVectorType>(Ty); 2720 if (!VecTy) 2721 return nullptr; 2722 2723 SmallVector<Constant *, 4> Elts; 2724 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 2725 Constant *Elt = C->getAggregateElement(I); 2726 if (!Elt) 2727 return nullptr; 2728 // Note that log2(iN undef) is *NOT* iN undef, because log2(iN undef) u< N. 2729 if (isa<UndefValue>(Elt)) { 2730 Elts.push_back(Constant::getNullValue(Ty->getScalarType())); 2731 continue; 2732 } 2733 if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2()) 2734 return nullptr; 2735 Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2())); 2736 } 2737 2738 return ConstantVector::get(Elts); 2739 } 2740 2741 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty, 2742 bool AllowRHSConstant, bool NSZ) { 2743 assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed"); 2744 2745 // Commutative opcodes: it does not matter if AllowRHSConstant is set. 2746 if (Instruction::isCommutative(Opcode)) { 2747 switch (Opcode) { 2748 case Instruction::Add: // X + 0 = X 2749 case Instruction::Or: // X | 0 = X 2750 case Instruction::Xor: // X ^ 0 = X 2751 return Constant::getNullValue(Ty); 2752 case Instruction::Mul: // X * 1 = X 2753 return ConstantInt::get(Ty, 1); 2754 case Instruction::And: // X & -1 = X 2755 return Constant::getAllOnesValue(Ty); 2756 case Instruction::FAdd: // X + -0.0 = X 2757 return ConstantFP::getZero(Ty, !NSZ); 2758 case Instruction::FMul: // X * 1.0 = X 2759 return ConstantFP::get(Ty, 1.0); 2760 default: 2761 llvm_unreachable("Every commutative binop has an identity constant"); 2762 } 2763 } 2764 2765 // Non-commutative opcodes: AllowRHSConstant must be set. 2766 if (!AllowRHSConstant) 2767 return nullptr; 2768 2769 switch (Opcode) { 2770 case Instruction::Sub: // X - 0 = X 2771 case Instruction::Shl: // X << 0 = X 2772 case Instruction::LShr: // X >>u 0 = X 2773 case Instruction::AShr: // X >> 0 = X 2774 case Instruction::FSub: // X - 0.0 = X 2775 return Constant::getNullValue(Ty); 2776 case Instruction::SDiv: // X / 1 = X 2777 case Instruction::UDiv: // X /u 1 = X 2778 return ConstantInt::get(Ty, 1); 2779 case Instruction::FDiv: // X / 1.0 = X 2780 return ConstantFP::get(Ty, 1.0); 2781 default: 2782 return nullptr; 2783 } 2784 } 2785 2786 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) { 2787 switch (Opcode) { 2788 default: 2789 // Doesn't have an absorber. 2790 return nullptr; 2791 2792 case Instruction::Or: 2793 return Constant::getAllOnesValue(Ty); 2794 2795 case Instruction::And: 2796 case Instruction::Mul: 2797 return Constant::getNullValue(Ty); 2798 } 2799 } 2800 2801 /// Remove the constant from the constant table. 2802 void ConstantExpr::destroyConstantImpl() { 2803 getType()->getContext().pImpl->ExprConstants.remove(this); 2804 } 2805 2806 const char *ConstantExpr::getOpcodeName() const { 2807 return Instruction::getOpcodeName(getOpcode()); 2808 } 2809 2810 GetElementPtrConstantExpr::GetElementPtrConstantExpr( 2811 Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy) 2812 : ConstantExpr(DestTy, Instruction::GetElementPtr, 2813 OperandTraits<GetElementPtrConstantExpr>::op_end(this) - 2814 (IdxList.size() + 1), 2815 IdxList.size() + 1), 2816 SrcElementTy(SrcElementTy), 2817 ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) { 2818 Op<0>() = C; 2819 Use *OperandList = getOperandList(); 2820 for (unsigned i = 0, E = IdxList.size(); i != E; ++i) 2821 OperandList[i+1] = IdxList[i]; 2822 } 2823 2824 Type *GetElementPtrConstantExpr::getSourceElementType() const { 2825 return SrcElementTy; 2826 } 2827 2828 Type *GetElementPtrConstantExpr::getResultElementType() const { 2829 return ResElementTy; 2830 } 2831 2832 //===----------------------------------------------------------------------===// 2833 // ConstantData* implementations 2834 2835 Type *ConstantDataSequential::getElementType() const { 2836 if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) 2837 return ATy->getElementType(); 2838 return cast<VectorType>(getType())->getElementType(); 2839 } 2840 2841 StringRef ConstantDataSequential::getRawDataValues() const { 2842 return StringRef(DataElements, getNumElements()*getElementByteSize()); 2843 } 2844 2845 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) { 2846 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || Ty->isDoubleTy()) 2847 return true; 2848 if (auto *IT = dyn_cast<IntegerType>(Ty)) { 2849 switch (IT->getBitWidth()) { 2850 case 8: 2851 case 16: 2852 case 32: 2853 case 64: 2854 return true; 2855 default: break; 2856 } 2857 } 2858 return false; 2859 } 2860 2861 unsigned ConstantDataSequential::getNumElements() const { 2862 if (ArrayType *AT = dyn_cast<ArrayType>(getType())) 2863 return AT->getNumElements(); 2864 return cast<FixedVectorType>(getType())->getNumElements(); 2865 } 2866 2867 2868 uint64_t ConstantDataSequential::getElementByteSize() const { 2869 return getElementType()->getPrimitiveSizeInBits()/8; 2870 } 2871 2872 /// Return the start of the specified element. 2873 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const { 2874 assert(Elt < getNumElements() && "Invalid Elt"); 2875 return DataElements+Elt*getElementByteSize(); 2876 } 2877 2878 2879 /// Return true if the array is empty or all zeros. 2880 static bool isAllZeros(StringRef Arr) { 2881 for (char I : Arr) 2882 if (I != 0) 2883 return false; 2884 return true; 2885 } 2886 2887 /// This is the underlying implementation of all of the 2888 /// ConstantDataSequential::get methods. They all thunk down to here, providing 2889 /// the correct element type. We take the bytes in as a StringRef because 2890 /// we *want* an underlying "char*" to avoid TBAA type punning violations. 2891 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) { 2892 #ifndef NDEBUG 2893 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) 2894 assert(isElementTypeCompatible(ATy->getElementType())); 2895 else 2896 assert(isElementTypeCompatible(cast<VectorType>(Ty)->getElementType())); 2897 #endif 2898 // If the elements are all zero or there are no elements, return a CAZ, which 2899 // is more dense and canonical. 2900 if (isAllZeros(Elements)) 2901 return ConstantAggregateZero::get(Ty); 2902 2903 // Do a lookup to see if we have already formed one of these. 2904 auto &Slot = 2905 *Ty->getContext() 2906 .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr)) 2907 .first; 2908 2909 // The bucket can point to a linked list of different CDS's that have the same 2910 // body but different types. For example, 0,0,0,1 could be a 4 element array 2911 // of i8, or a 1-element array of i32. They'll both end up in the same 2912 /// StringMap bucket, linked up by their Next pointers. Walk the list. 2913 std::unique_ptr<ConstantDataSequential> *Entry = &Slot.second; 2914 for (; *Entry; Entry = &(*Entry)->Next) 2915 if ((*Entry)->getType() == Ty) 2916 return Entry->get(); 2917 2918 // Okay, we didn't get a hit. Create a node of the right class, link it in, 2919 // and return it. 2920 if (isa<ArrayType>(Ty)) { 2921 // Use reset because std::make_unique can't access the constructor. 2922 Entry->reset(new ConstantDataArray(Ty, Slot.first().data())); 2923 return Entry->get(); 2924 } 2925 2926 assert(isa<VectorType>(Ty)); 2927 // Use reset because std::make_unique can't access the constructor. 2928 Entry->reset(new ConstantDataVector(Ty, Slot.first().data())); 2929 return Entry->get(); 2930 } 2931 2932 void ConstantDataSequential::destroyConstantImpl() { 2933 // Remove the constant from the StringMap. 2934 StringMap<std::unique_ptr<ConstantDataSequential>> &CDSConstants = 2935 getType()->getContext().pImpl->CDSConstants; 2936 2937 auto Slot = CDSConstants.find(getRawDataValues()); 2938 2939 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table"); 2940 2941 std::unique_ptr<ConstantDataSequential> *Entry = &Slot->getValue(); 2942 2943 // Remove the entry from the hash table. 2944 if (!(*Entry)->Next) { 2945 // If there is only one value in the bucket (common case) it must be this 2946 // entry, and removing the entry should remove the bucket completely. 2947 assert(Entry->get() == this && "Hash mismatch in ConstantDataSequential"); 2948 getContext().pImpl->CDSConstants.erase(Slot); 2949 return; 2950 } 2951 2952 // Otherwise, there are multiple entries linked off the bucket, unlink the 2953 // node we care about but keep the bucket around. 2954 while (true) { 2955 std::unique_ptr<ConstantDataSequential> &Node = *Entry; 2956 assert(Node && "Didn't find entry in its uniquing hash table!"); 2957 // If we found our entry, unlink it from the list and we're done. 2958 if (Node.get() == this) { 2959 Node = std::move(Node->Next); 2960 return; 2961 } 2962 2963 Entry = &Node->Next; 2964 } 2965 } 2966 2967 /// getFP() constructors - Return a constant of array type with a float 2968 /// element type taken from argument `ElementType', and count taken from 2969 /// argument `Elts'. The amount of bits of the contained type must match the 2970 /// number of bits of the type contained in the passed in ArrayRef. 2971 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note 2972 /// that this can return a ConstantAggregateZero object. 2973 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint16_t> Elts) { 2974 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) && 2975 "Element type is not a 16-bit float type"); 2976 Type *Ty = ArrayType::get(ElementType, Elts.size()); 2977 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2978 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 2979 } 2980 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint32_t> Elts) { 2981 assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type"); 2982 Type *Ty = ArrayType::get(ElementType, Elts.size()); 2983 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2984 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 2985 } 2986 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint64_t> Elts) { 2987 assert(ElementType->isDoubleTy() && 2988 "Element type is not a 64-bit float type"); 2989 Type *Ty = ArrayType::get(ElementType, Elts.size()); 2990 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2991 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 2992 } 2993 2994 Constant *ConstantDataArray::getString(LLVMContext &Context, 2995 StringRef Str, bool AddNull) { 2996 if (!AddNull) { 2997 const uint8_t *Data = Str.bytes_begin(); 2998 return get(Context, ArrayRef(Data, Str.size())); 2999 } 3000 3001 SmallVector<uint8_t, 64> ElementVals; 3002 ElementVals.append(Str.begin(), Str.end()); 3003 ElementVals.push_back(0); 3004 return get(Context, ElementVals); 3005 } 3006 3007 /// get() constructors - Return a constant with vector type with an element 3008 /// count and element type matching the ArrayRef passed in. Note that this 3009 /// can return a ConstantAggregateZero object. 3010 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){ 3011 auto *Ty = FixedVectorType::get(Type::getInt8Ty(Context), Elts.size()); 3012 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3013 return getImpl(StringRef(Data, Elts.size() * 1), Ty); 3014 } 3015 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ 3016 auto *Ty = FixedVectorType::get(Type::getInt16Ty(Context), Elts.size()); 3017 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3018 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 3019 } 3020 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ 3021 auto *Ty = FixedVectorType::get(Type::getInt32Ty(Context), Elts.size()); 3022 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3023 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 3024 } 3025 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ 3026 auto *Ty = FixedVectorType::get(Type::getInt64Ty(Context), Elts.size()); 3027 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3028 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 3029 } 3030 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) { 3031 auto *Ty = FixedVectorType::get(Type::getFloatTy(Context), Elts.size()); 3032 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3033 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 3034 } 3035 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) { 3036 auto *Ty = FixedVectorType::get(Type::getDoubleTy(Context), Elts.size()); 3037 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3038 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 3039 } 3040 3041 /// getFP() constructors - Return a constant of vector type with a float 3042 /// element type taken from argument `ElementType', and count taken from 3043 /// argument `Elts'. The amount of bits of the contained type must match the 3044 /// number of bits of the type contained in the passed in ArrayRef. 3045 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note 3046 /// that this can return a ConstantAggregateZero object. 3047 Constant *ConstantDataVector::getFP(Type *ElementType, 3048 ArrayRef<uint16_t> Elts) { 3049 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) && 3050 "Element type is not a 16-bit float type"); 3051 auto *Ty = FixedVectorType::get(ElementType, Elts.size()); 3052 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3053 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 3054 } 3055 Constant *ConstantDataVector::getFP(Type *ElementType, 3056 ArrayRef<uint32_t> Elts) { 3057 assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type"); 3058 auto *Ty = FixedVectorType::get(ElementType, Elts.size()); 3059 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3060 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 3061 } 3062 Constant *ConstantDataVector::getFP(Type *ElementType, 3063 ArrayRef<uint64_t> Elts) { 3064 assert(ElementType->isDoubleTy() && 3065 "Element type is not a 64-bit float type"); 3066 auto *Ty = FixedVectorType::get(ElementType, Elts.size()); 3067 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3068 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 3069 } 3070 3071 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) { 3072 assert(isElementTypeCompatible(V->getType()) && 3073 "Element type not compatible with ConstantData"); 3074 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 3075 if (CI->getType()->isIntegerTy(8)) { 3076 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue()); 3077 return get(V->getContext(), Elts); 3078 } 3079 if (CI->getType()->isIntegerTy(16)) { 3080 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue()); 3081 return get(V->getContext(), Elts); 3082 } 3083 if (CI->getType()->isIntegerTy(32)) { 3084 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue()); 3085 return get(V->getContext(), Elts); 3086 } 3087 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type"); 3088 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue()); 3089 return get(V->getContext(), Elts); 3090 } 3091 3092 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3093 if (CFP->getType()->isHalfTy()) { 3094 SmallVector<uint16_t, 16> Elts( 3095 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 3096 return getFP(V->getType(), Elts); 3097 } 3098 if (CFP->getType()->isBFloatTy()) { 3099 SmallVector<uint16_t, 16> Elts( 3100 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 3101 return getFP(V->getType(), Elts); 3102 } 3103 if (CFP->getType()->isFloatTy()) { 3104 SmallVector<uint32_t, 16> Elts( 3105 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 3106 return getFP(V->getType(), Elts); 3107 } 3108 if (CFP->getType()->isDoubleTy()) { 3109 SmallVector<uint64_t, 16> Elts( 3110 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 3111 return getFP(V->getType(), Elts); 3112 } 3113 } 3114 return ConstantVector::getSplat(ElementCount::getFixed(NumElts), V); 3115 } 3116 3117 3118 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { 3119 assert(isa<IntegerType>(getElementType()) && 3120 "Accessor can only be used when element is an integer"); 3121 const char *EltPtr = getElementPointer(Elt); 3122 3123 // The data is stored in host byte order, make sure to cast back to the right 3124 // type to load with the right endianness. 3125 switch (getElementType()->getIntegerBitWidth()) { 3126 default: llvm_unreachable("Invalid bitwidth for CDS"); 3127 case 8: 3128 return *reinterpret_cast<const uint8_t *>(EltPtr); 3129 case 16: 3130 return *reinterpret_cast<const uint16_t *>(EltPtr); 3131 case 32: 3132 return *reinterpret_cast<const uint32_t *>(EltPtr); 3133 case 64: 3134 return *reinterpret_cast<const uint64_t *>(EltPtr); 3135 } 3136 } 3137 3138 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const { 3139 assert(isa<IntegerType>(getElementType()) && 3140 "Accessor can only be used when element is an integer"); 3141 const char *EltPtr = getElementPointer(Elt); 3142 3143 // The data is stored in host byte order, make sure to cast back to the right 3144 // type to load with the right endianness. 3145 switch (getElementType()->getIntegerBitWidth()) { 3146 default: llvm_unreachable("Invalid bitwidth for CDS"); 3147 case 8: { 3148 auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr); 3149 return APInt(8, EltVal); 3150 } 3151 case 16: { 3152 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 3153 return APInt(16, EltVal); 3154 } 3155 case 32: { 3156 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr); 3157 return APInt(32, EltVal); 3158 } 3159 case 64: { 3160 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr); 3161 return APInt(64, EltVal); 3162 } 3163 } 3164 } 3165 3166 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { 3167 const char *EltPtr = getElementPointer(Elt); 3168 3169 switch (getElementType()->getTypeID()) { 3170 default: 3171 llvm_unreachable("Accessor can only be used when element is float/double!"); 3172 case Type::HalfTyID: { 3173 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 3174 return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal)); 3175 } 3176 case Type::BFloatTyID: { 3177 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 3178 return APFloat(APFloat::BFloat(), APInt(16, EltVal)); 3179 } 3180 case Type::FloatTyID: { 3181 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr); 3182 return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal)); 3183 } 3184 case Type::DoubleTyID: { 3185 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr); 3186 return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal)); 3187 } 3188 } 3189 } 3190 3191 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { 3192 assert(getElementType()->isFloatTy() && 3193 "Accessor can only be used when element is a 'float'"); 3194 return *reinterpret_cast<const float *>(getElementPointer(Elt)); 3195 } 3196 3197 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { 3198 assert(getElementType()->isDoubleTy() && 3199 "Accessor can only be used when element is a 'float'"); 3200 return *reinterpret_cast<const double *>(getElementPointer(Elt)); 3201 } 3202 3203 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { 3204 if (getElementType()->isHalfTy() || getElementType()->isBFloatTy() || 3205 getElementType()->isFloatTy() || getElementType()->isDoubleTy()) 3206 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt)); 3207 3208 return ConstantInt::get(getElementType(), getElementAsInteger(Elt)); 3209 } 3210 3211 bool ConstantDataSequential::isString(unsigned CharSize) const { 3212 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize); 3213 } 3214 3215 bool ConstantDataSequential::isCString() const { 3216 if (!isString()) 3217 return false; 3218 3219 StringRef Str = getAsString(); 3220 3221 // The last value must be nul. 3222 if (Str.back() != 0) return false; 3223 3224 // Other elements must be non-nul. 3225 return !Str.drop_back().contains(0); 3226 } 3227 3228 bool ConstantDataVector::isSplatData() const { 3229 const char *Base = getRawDataValues().data(); 3230 3231 // Compare elements 1+ to the 0'th element. 3232 unsigned EltSize = getElementByteSize(); 3233 for (unsigned i = 1, e = getNumElements(); i != e; ++i) 3234 if (memcmp(Base, Base+i*EltSize, EltSize)) 3235 return false; 3236 3237 return true; 3238 } 3239 3240 bool ConstantDataVector::isSplat() const { 3241 if (!IsSplatSet) { 3242 IsSplatSet = true; 3243 IsSplat = isSplatData(); 3244 } 3245 return IsSplat; 3246 } 3247 3248 Constant *ConstantDataVector::getSplatValue() const { 3249 // If they're all the same, return the 0th one as a representative. 3250 return isSplat() ? getElementAsConstant(0) : nullptr; 3251 } 3252 3253 //===----------------------------------------------------------------------===// 3254 // handleOperandChange implementations 3255 3256 /// Update this constant array to change uses of 3257 /// 'From' to be uses of 'To'. This must update the uniquing data structures 3258 /// etc. 3259 /// 3260 /// Note that we intentionally replace all uses of From with To here. Consider 3261 /// a large array that uses 'From' 1000 times. By handling this case all here, 3262 /// ConstantArray::handleOperandChange is only invoked once, and that 3263 /// single invocation handles all 1000 uses. Handling them one at a time would 3264 /// work, but would be really slow because it would have to unique each updated 3265 /// array instance. 3266 /// 3267 void Constant::handleOperandChange(Value *From, Value *To) { 3268 Value *Replacement = nullptr; 3269 switch (getValueID()) { 3270 default: 3271 llvm_unreachable("Not a constant!"); 3272 #define HANDLE_CONSTANT(Name) \ 3273 case Value::Name##Val: \ 3274 Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \ 3275 break; 3276 #include "llvm/IR/Value.def" 3277 } 3278 3279 // If handleOperandChangeImpl returned nullptr, then it handled 3280 // replacing itself and we don't want to delete or replace anything else here. 3281 if (!Replacement) 3282 return; 3283 3284 // I do need to replace this with an existing value. 3285 assert(Replacement != this && "I didn't contain From!"); 3286 3287 // Everyone using this now uses the replacement. 3288 replaceAllUsesWith(Replacement); 3289 3290 // Delete the old constant! 3291 destroyConstant(); 3292 } 3293 3294 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) { 3295 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3296 Constant *ToC = cast<Constant>(To); 3297 3298 SmallVector<Constant*, 8> Values; 3299 Values.reserve(getNumOperands()); // Build replacement array. 3300 3301 // Fill values with the modified operands of the constant array. Also, 3302 // compute whether this turns into an all-zeros array. 3303 unsigned NumUpdated = 0; 3304 3305 // Keep track of whether all the values in the array are "ToC". 3306 bool AllSame = true; 3307 Use *OperandList = getOperandList(); 3308 unsigned OperandNo = 0; 3309 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { 3310 Constant *Val = cast<Constant>(O->get()); 3311 if (Val == From) { 3312 OperandNo = (O - OperandList); 3313 Val = ToC; 3314 ++NumUpdated; 3315 } 3316 Values.push_back(Val); 3317 AllSame &= Val == ToC; 3318 } 3319 3320 if (AllSame && ToC->isNullValue()) 3321 return ConstantAggregateZero::get(getType()); 3322 3323 if (AllSame && isa<UndefValue>(ToC)) 3324 return UndefValue::get(getType()); 3325 3326 // Check for any other type of constant-folding. 3327 if (Constant *C = getImpl(getType(), Values)) 3328 return C; 3329 3330 // Update to the new value. 3331 return getContext().pImpl->ArrayConstants.replaceOperandsInPlace( 3332 Values, this, From, ToC, NumUpdated, OperandNo); 3333 } 3334 3335 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) { 3336 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3337 Constant *ToC = cast<Constant>(To); 3338 3339 Use *OperandList = getOperandList(); 3340 3341 SmallVector<Constant*, 8> Values; 3342 Values.reserve(getNumOperands()); // Build replacement struct. 3343 3344 // Fill values with the modified operands of the constant struct. Also, 3345 // compute whether this turns into an all-zeros struct. 3346 unsigned NumUpdated = 0; 3347 bool AllSame = true; 3348 unsigned OperandNo = 0; 3349 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) { 3350 Constant *Val = cast<Constant>(O->get()); 3351 if (Val == From) { 3352 OperandNo = (O - OperandList); 3353 Val = ToC; 3354 ++NumUpdated; 3355 } 3356 Values.push_back(Val); 3357 AllSame &= Val == ToC; 3358 } 3359 3360 if (AllSame && ToC->isNullValue()) 3361 return ConstantAggregateZero::get(getType()); 3362 3363 if (AllSame && isa<UndefValue>(ToC)) 3364 return UndefValue::get(getType()); 3365 3366 // Update to the new value. 3367 return getContext().pImpl->StructConstants.replaceOperandsInPlace( 3368 Values, this, From, ToC, NumUpdated, OperandNo); 3369 } 3370 3371 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) { 3372 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3373 Constant *ToC = cast<Constant>(To); 3374 3375 SmallVector<Constant*, 8> Values; 3376 Values.reserve(getNumOperands()); // Build replacement array... 3377 unsigned NumUpdated = 0; 3378 unsigned OperandNo = 0; 3379 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 3380 Constant *Val = getOperand(i); 3381 if (Val == From) { 3382 OperandNo = i; 3383 ++NumUpdated; 3384 Val = ToC; 3385 } 3386 Values.push_back(Val); 3387 } 3388 3389 if (Constant *C = getImpl(Values)) 3390 return C; 3391 3392 // Update to the new value. 3393 return getContext().pImpl->VectorConstants.replaceOperandsInPlace( 3394 Values, this, From, ToC, NumUpdated, OperandNo); 3395 } 3396 3397 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) { 3398 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); 3399 Constant *To = cast<Constant>(ToV); 3400 3401 SmallVector<Constant*, 8> NewOps; 3402 unsigned NumUpdated = 0; 3403 unsigned OperandNo = 0; 3404 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 3405 Constant *Op = getOperand(i); 3406 if (Op == From) { 3407 OperandNo = i; 3408 ++NumUpdated; 3409 Op = To; 3410 } 3411 NewOps.push_back(Op); 3412 } 3413 assert(NumUpdated && "I didn't contain From!"); 3414 3415 if (Constant *C = getWithOperands(NewOps, getType(), true)) 3416 return C; 3417 3418 // Update to the new value. 3419 return getContext().pImpl->ExprConstants.replaceOperandsInPlace( 3420 NewOps, this, From, To, NumUpdated, OperandNo); 3421 } 3422 3423 Instruction *ConstantExpr::getAsInstruction(Instruction *InsertBefore) const { 3424 SmallVector<Value *, 4> ValueOperands(operands()); 3425 ArrayRef<Value*> Ops(ValueOperands); 3426 3427 switch (getOpcode()) { 3428 case Instruction::Trunc: 3429 case Instruction::ZExt: 3430 case Instruction::SExt: 3431 case Instruction::FPTrunc: 3432 case Instruction::FPExt: 3433 case Instruction::UIToFP: 3434 case Instruction::SIToFP: 3435 case Instruction::FPToUI: 3436 case Instruction::FPToSI: 3437 case Instruction::PtrToInt: 3438 case Instruction::IntToPtr: 3439 case Instruction::BitCast: 3440 case Instruction::AddrSpaceCast: 3441 return CastInst::Create((Instruction::CastOps)getOpcode(), Ops[0], 3442 getType(), "", InsertBefore); 3443 case Instruction::Select: 3444 return SelectInst::Create(Ops[0], Ops[1], Ops[2], "", InsertBefore); 3445 case Instruction::InsertElement: 3446 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "", InsertBefore); 3447 case Instruction::ExtractElement: 3448 return ExtractElementInst::Create(Ops[0], Ops[1], "", InsertBefore); 3449 case Instruction::ShuffleVector: 3450 return new ShuffleVectorInst(Ops[0], Ops[1], getShuffleMask(), "", 3451 InsertBefore); 3452 3453 case Instruction::GetElementPtr: { 3454 const auto *GO = cast<GEPOperator>(this); 3455 if (GO->isInBounds()) 3456 return GetElementPtrInst::CreateInBounds( 3457 GO->getSourceElementType(), Ops[0], Ops.slice(1), "", InsertBefore); 3458 return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0], 3459 Ops.slice(1), "", InsertBefore); 3460 } 3461 case Instruction::ICmp: 3462 case Instruction::FCmp: 3463 return CmpInst::Create((Instruction::OtherOps)getOpcode(), 3464 (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1], 3465 "", InsertBefore); 3466 default: 3467 assert(getNumOperands() == 2 && "Must be binary operator?"); 3468 BinaryOperator *BO = BinaryOperator::Create( 3469 (Instruction::BinaryOps)getOpcode(), Ops[0], Ops[1], "", InsertBefore); 3470 if (isa<OverflowingBinaryOperator>(BO)) { 3471 BO->setHasNoUnsignedWrap(SubclassOptionalData & 3472 OverflowingBinaryOperator::NoUnsignedWrap); 3473 BO->setHasNoSignedWrap(SubclassOptionalData & 3474 OverflowingBinaryOperator::NoSignedWrap); 3475 } 3476 if (isa<PossiblyExactOperator>(BO)) 3477 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact); 3478 return BO; 3479 } 3480 } 3481