1 //===-- Constants.cpp - Implement Constant nodes --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Constant* classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Constants.h" 14 #include "ConstantFold.h" 15 #include "LLVMContextImpl.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringMap.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/GetElementPtrTypeIterator.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/ManagedStatic.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <algorithm> 32 33 using namespace llvm; 34 35 //===----------------------------------------------------------------------===// 36 // Constant Class 37 //===----------------------------------------------------------------------===// 38 39 bool Constant::isNegativeZeroValue() const { 40 // Floating point values have an explicit -0.0 value. 41 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 42 return CFP->isZero() && CFP->isNegative(); 43 44 // Equivalent for a vector of -0.0's. 45 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 46 if (CV->getElementType()->isFloatingPointTy() && CV->isSplat()) 47 if (CV->getElementAsAPFloat(0).isNegZero()) 48 return true; 49 50 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 51 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue())) 52 if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative()) 53 return true; 54 55 // We've already handled true FP case; any other FP vectors can't represent -0.0. 56 if (getType()->isFPOrFPVectorTy()) 57 return false; 58 59 // Otherwise, just use +0.0. 60 return isNullValue(); 61 } 62 63 // Return true iff this constant is positive zero (floating point), negative 64 // zero (floating point), or a null value. 65 bool Constant::isZeroValue() const { 66 // Floating point values have an explicit -0.0 value. 67 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 68 return CFP->isZero(); 69 70 // Equivalent for a vector of -0.0's. 71 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 72 if (CV->getElementType()->isFloatingPointTy() && CV->isSplat()) 73 if (CV->getElementAsAPFloat(0).isZero()) 74 return true; 75 76 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 77 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue())) 78 if (SplatCFP && SplatCFP->isZero()) 79 return true; 80 81 // Otherwise, just use +0.0. 82 return isNullValue(); 83 } 84 85 bool Constant::isNullValue() const { 86 // 0 is null. 87 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 88 return CI->isZero(); 89 90 // +0.0 is null. 91 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 92 return CFP->isZero() && !CFP->isNegative(); 93 94 // constant zero is zero for aggregates, cpnull is null for pointers, none for 95 // tokens. 96 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) || 97 isa<ConstantTokenNone>(this); 98 } 99 100 bool Constant::isAllOnesValue() const { 101 // Check for -1 integers 102 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 103 return CI->isMinusOne(); 104 105 // Check for FP which are bitcasted from -1 integers 106 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 107 return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue(); 108 109 // Check for constant vectors which are splats of -1 values. 110 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 111 if (Constant *Splat = CV->getSplatValue()) 112 return Splat->isAllOnesValue(); 113 114 // Check for constant vectors which are splats of -1 values. 115 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) { 116 if (CV->isSplat()) { 117 if (CV->getElementType()->isFloatingPointTy()) 118 return CV->getElementAsAPFloat(0).bitcastToAPInt().isAllOnesValue(); 119 return CV->getElementAsAPInt(0).isAllOnesValue(); 120 } 121 } 122 123 return false; 124 } 125 126 bool Constant::isOneValue() const { 127 // Check for 1 integers 128 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 129 return CI->isOne(); 130 131 // Check for FP which are bitcasted from 1 integers 132 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 133 return CFP->getValueAPF().bitcastToAPInt().isOneValue(); 134 135 // Check for constant vectors which are splats of 1 values. 136 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 137 if (Constant *Splat = CV->getSplatValue()) 138 return Splat->isOneValue(); 139 140 // Check for constant vectors which are splats of 1 values. 141 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) { 142 if (CV->isSplat()) { 143 if (CV->getElementType()->isFloatingPointTy()) 144 return CV->getElementAsAPFloat(0).bitcastToAPInt().isOneValue(); 145 return CV->getElementAsAPInt(0).isOneValue(); 146 } 147 } 148 149 return false; 150 } 151 152 bool Constant::isMinSignedValue() const { 153 // Check for INT_MIN integers 154 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 155 return CI->isMinValue(/*isSigned=*/true); 156 157 // Check for FP which are bitcasted from INT_MIN integers 158 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 159 return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); 160 161 // Check for constant vectors which are splats of INT_MIN values. 162 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 163 if (Constant *Splat = CV->getSplatValue()) 164 return Splat->isMinSignedValue(); 165 166 // Check for constant vectors which are splats of INT_MIN values. 167 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) { 168 if (CV->isSplat()) { 169 if (CV->getElementType()->isFloatingPointTy()) 170 return CV->getElementAsAPFloat(0).bitcastToAPInt().isMinSignedValue(); 171 return CV->getElementAsAPInt(0).isMinSignedValue(); 172 } 173 } 174 175 return false; 176 } 177 178 bool Constant::isNotMinSignedValue() const { 179 // Check for INT_MIN integers 180 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 181 return !CI->isMinValue(/*isSigned=*/true); 182 183 // Check for FP which are bitcasted from INT_MIN integers 184 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 185 return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); 186 187 // Check that vectors don't contain INT_MIN 188 if (this->getType()->isVectorTy()) { 189 unsigned NumElts = this->getType()->getVectorNumElements(); 190 for (unsigned i = 0; i != NumElts; ++i) { 191 Constant *Elt = this->getAggregateElement(i); 192 if (!Elt || !Elt->isNotMinSignedValue()) 193 return false; 194 } 195 return true; 196 } 197 198 // It *may* contain INT_MIN, we can't tell. 199 return false; 200 } 201 202 bool Constant::isFiniteNonZeroFP() const { 203 if (auto *CFP = dyn_cast<ConstantFP>(this)) 204 return CFP->getValueAPF().isFiniteNonZero(); 205 if (!getType()->isVectorTy()) 206 return false; 207 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) { 208 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i)); 209 if (!CFP || !CFP->getValueAPF().isFiniteNonZero()) 210 return false; 211 } 212 return true; 213 } 214 215 bool Constant::isNormalFP() const { 216 if (auto *CFP = dyn_cast<ConstantFP>(this)) 217 return CFP->getValueAPF().isNormal(); 218 if (!getType()->isVectorTy()) 219 return false; 220 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) { 221 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i)); 222 if (!CFP || !CFP->getValueAPF().isNormal()) 223 return false; 224 } 225 return true; 226 } 227 228 bool Constant::hasExactInverseFP() const { 229 if (auto *CFP = dyn_cast<ConstantFP>(this)) 230 return CFP->getValueAPF().getExactInverse(nullptr); 231 if (!getType()->isVectorTy()) 232 return false; 233 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) { 234 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i)); 235 if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr)) 236 return false; 237 } 238 return true; 239 } 240 241 bool Constant::isNaN() const { 242 if (auto *CFP = dyn_cast<ConstantFP>(this)) 243 return CFP->isNaN(); 244 if (!getType()->isVectorTy()) 245 return false; 246 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) { 247 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i)); 248 if (!CFP || !CFP->isNaN()) 249 return false; 250 } 251 return true; 252 } 253 254 bool Constant::isElementWiseEqual(Value *Y) const { 255 // Are they fully identical? 256 if (this == Y) 257 return true; 258 // They may still be identical element-wise (if they have `undef`s). 259 auto *Cy = dyn_cast<Constant>(Y); 260 if (!Cy) 261 return false; 262 return PatternMatch::match(ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_EQ, 263 const_cast<Constant *>(this), 264 Cy), 265 PatternMatch::m_One()); 266 } 267 268 bool Constant::containsUndefElement() const { 269 if (!getType()->isVectorTy()) 270 return false; 271 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) 272 if (isa<UndefValue>(getAggregateElement(i))) 273 return true; 274 275 return false; 276 } 277 278 bool Constant::containsConstantExpression() const { 279 if (!getType()->isVectorTy()) 280 return false; 281 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) 282 if (isa<ConstantExpr>(getAggregateElement(i))) 283 return true; 284 285 return false; 286 } 287 288 /// Constructor to create a '0' constant of arbitrary type. 289 Constant *Constant::getNullValue(Type *Ty) { 290 switch (Ty->getTypeID()) { 291 case Type::IntegerTyID: 292 return ConstantInt::get(Ty, 0); 293 case Type::HalfTyID: 294 return ConstantFP::get(Ty->getContext(), 295 APFloat::getZero(APFloat::IEEEhalf())); 296 case Type::FloatTyID: 297 return ConstantFP::get(Ty->getContext(), 298 APFloat::getZero(APFloat::IEEEsingle())); 299 case Type::DoubleTyID: 300 return ConstantFP::get(Ty->getContext(), 301 APFloat::getZero(APFloat::IEEEdouble())); 302 case Type::X86_FP80TyID: 303 return ConstantFP::get(Ty->getContext(), 304 APFloat::getZero(APFloat::x87DoubleExtended())); 305 case Type::FP128TyID: 306 return ConstantFP::get(Ty->getContext(), 307 APFloat::getZero(APFloat::IEEEquad())); 308 case Type::PPC_FP128TyID: 309 return ConstantFP::get(Ty->getContext(), 310 APFloat(APFloat::PPCDoubleDouble(), 311 APInt::getNullValue(128))); 312 case Type::PointerTyID: 313 return ConstantPointerNull::get(cast<PointerType>(Ty)); 314 case Type::StructTyID: 315 case Type::ArrayTyID: 316 case Type::VectorTyID: 317 return ConstantAggregateZero::get(Ty); 318 case Type::TokenTyID: 319 return ConstantTokenNone::get(Ty->getContext()); 320 default: 321 // Function, Label, or Opaque type? 322 llvm_unreachable("Cannot create a null constant of that type!"); 323 } 324 } 325 326 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { 327 Type *ScalarTy = Ty->getScalarType(); 328 329 // Create the base integer constant. 330 Constant *C = ConstantInt::get(Ty->getContext(), V); 331 332 // Convert an integer to a pointer, if necessary. 333 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy)) 334 C = ConstantExpr::getIntToPtr(C, PTy); 335 336 // Broadcast a scalar to a vector, if necessary. 337 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 338 C = ConstantVector::getSplat(VTy->getNumElements(), C); 339 340 return C; 341 } 342 343 Constant *Constant::getAllOnesValue(Type *Ty) { 344 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) 345 return ConstantInt::get(Ty->getContext(), 346 APInt::getAllOnesValue(ITy->getBitWidth())); 347 348 if (Ty->isFloatingPointTy()) { 349 APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(), 350 !Ty->isPPC_FP128Ty()); 351 return ConstantFP::get(Ty->getContext(), FL); 352 } 353 354 VectorType *VTy = cast<VectorType>(Ty); 355 return ConstantVector::getSplat(VTy->getNumElements(), 356 getAllOnesValue(VTy->getElementType())); 357 } 358 359 Constant *Constant::getAggregateElement(unsigned Elt) const { 360 if (const ConstantAggregate *CC = dyn_cast<ConstantAggregate>(this)) 361 return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr; 362 363 if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this)) 364 return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr; 365 366 if (const UndefValue *UV = dyn_cast<UndefValue>(this)) 367 return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr; 368 369 if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this)) 370 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) 371 : nullptr; 372 return nullptr; 373 } 374 375 Constant *Constant::getAggregateElement(Constant *Elt) const { 376 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer"); 377 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) { 378 // Check if the constant fits into an uint64_t. 379 if (CI->getValue().getActiveBits() > 64) 380 return nullptr; 381 return getAggregateElement(CI->getZExtValue()); 382 } 383 return nullptr; 384 } 385 386 void Constant::destroyConstant() { 387 /// First call destroyConstantImpl on the subclass. This gives the subclass 388 /// a chance to remove the constant from any maps/pools it's contained in. 389 switch (getValueID()) { 390 default: 391 llvm_unreachable("Not a constant!"); 392 #define HANDLE_CONSTANT(Name) \ 393 case Value::Name##Val: \ 394 cast<Name>(this)->destroyConstantImpl(); \ 395 break; 396 #include "llvm/IR/Value.def" 397 } 398 399 // When a Constant is destroyed, there may be lingering 400 // references to the constant by other constants in the constant pool. These 401 // constants are implicitly dependent on the module that is being deleted, 402 // but they don't know that. Because we only find out when the CPV is 403 // deleted, we must now notify all of our users (that should only be 404 // Constants) that they are, in fact, invalid now and should be deleted. 405 // 406 while (!use_empty()) { 407 Value *V = user_back(); 408 #ifndef NDEBUG // Only in -g mode... 409 if (!isa<Constant>(V)) { 410 dbgs() << "While deleting: " << *this 411 << "\n\nUse still stuck around after Def is destroyed: " << *V 412 << "\n\n"; 413 } 414 #endif 415 assert(isa<Constant>(V) && "References remain to Constant being destroyed"); 416 cast<Constant>(V)->destroyConstant(); 417 418 // The constant should remove itself from our use list... 419 assert((use_empty() || user_back() != V) && "Constant not removed!"); 420 } 421 422 // Value has no outstanding references it is safe to delete it now... 423 delete this; 424 } 425 426 static bool canTrapImpl(const Constant *C, 427 SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) { 428 assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); 429 // The only thing that could possibly trap are constant exprs. 430 const ConstantExpr *CE = dyn_cast<ConstantExpr>(C); 431 if (!CE) 432 return false; 433 434 // ConstantExpr traps if any operands can trap. 435 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { 436 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) { 437 if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps)) 438 return true; 439 } 440 } 441 442 // Otherwise, only specific operations can trap. 443 switch (CE->getOpcode()) { 444 default: 445 return false; 446 case Instruction::UDiv: 447 case Instruction::SDiv: 448 case Instruction::URem: 449 case Instruction::SRem: 450 // Div and rem can trap if the RHS is not known to be non-zero. 451 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue()) 452 return true; 453 return false; 454 } 455 } 456 457 bool Constant::canTrap() const { 458 SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps; 459 return canTrapImpl(this, NonTrappingOps); 460 } 461 462 /// Check if C contains a GlobalValue for which Predicate is true. 463 static bool 464 ConstHasGlobalValuePredicate(const Constant *C, 465 bool (*Predicate)(const GlobalValue *)) { 466 SmallPtrSet<const Constant *, 8> Visited; 467 SmallVector<const Constant *, 8> WorkList; 468 WorkList.push_back(C); 469 Visited.insert(C); 470 471 while (!WorkList.empty()) { 472 const Constant *WorkItem = WorkList.pop_back_val(); 473 if (const auto *GV = dyn_cast<GlobalValue>(WorkItem)) 474 if (Predicate(GV)) 475 return true; 476 for (const Value *Op : WorkItem->operands()) { 477 const Constant *ConstOp = dyn_cast<Constant>(Op); 478 if (!ConstOp) 479 continue; 480 if (Visited.insert(ConstOp).second) 481 WorkList.push_back(ConstOp); 482 } 483 } 484 return false; 485 } 486 487 bool Constant::isThreadDependent() const { 488 auto DLLImportPredicate = [](const GlobalValue *GV) { 489 return GV->isThreadLocal(); 490 }; 491 return ConstHasGlobalValuePredicate(this, DLLImportPredicate); 492 } 493 494 bool Constant::isDLLImportDependent() const { 495 auto DLLImportPredicate = [](const GlobalValue *GV) { 496 return GV->hasDLLImportStorageClass(); 497 }; 498 return ConstHasGlobalValuePredicate(this, DLLImportPredicate); 499 } 500 501 bool Constant::isConstantUsed() const { 502 for (const User *U : users()) { 503 const Constant *UC = dyn_cast<Constant>(U); 504 if (!UC || isa<GlobalValue>(UC)) 505 return true; 506 507 if (UC->isConstantUsed()) 508 return true; 509 } 510 return false; 511 } 512 513 bool Constant::needsRelocation() const { 514 if (isa<GlobalValue>(this)) 515 return true; // Global reference. 516 517 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this)) 518 return BA->getFunction()->needsRelocation(); 519 520 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) { 521 if (CE->getOpcode() == Instruction::Sub) { 522 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0)); 523 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1)); 524 if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt && 525 RHS->getOpcode() == Instruction::PtrToInt) { 526 Constant *LHSOp0 = LHS->getOperand(0); 527 Constant *RHSOp0 = RHS->getOperand(0); 528 529 // While raw uses of blockaddress need to be relocated, differences 530 // between two of them don't when they are for labels in the same 531 // function. This is a common idiom when creating a table for the 532 // indirect goto extension, so we handle it efficiently here. 533 if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) && 534 cast<BlockAddress>(LHSOp0)->getFunction() == 535 cast<BlockAddress>(RHSOp0)->getFunction()) 536 return false; 537 538 // Relative pointers do not need to be dynamically relocated. 539 if (auto *LHSGV = dyn_cast<GlobalValue>(LHSOp0->stripPointerCasts())) 540 if (auto *RHSGV = dyn_cast<GlobalValue>(RHSOp0->stripPointerCasts())) 541 if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal()) 542 return false; 543 } 544 } 545 } 546 547 bool Result = false; 548 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 549 Result |= cast<Constant>(getOperand(i))->needsRelocation(); 550 551 return Result; 552 } 553 554 /// If the specified constantexpr is dead, remove it. This involves recursively 555 /// eliminating any dead users of the constantexpr. 556 static bool removeDeadUsersOfConstant(const Constant *C) { 557 if (isa<GlobalValue>(C)) return false; // Cannot remove this 558 559 while (!C->use_empty()) { 560 const Constant *User = dyn_cast<Constant>(C->user_back()); 561 if (!User) return false; // Non-constant usage; 562 if (!removeDeadUsersOfConstant(User)) 563 return false; // Constant wasn't dead 564 } 565 566 const_cast<Constant*>(C)->destroyConstant(); 567 return true; 568 } 569 570 571 void Constant::removeDeadConstantUsers() const { 572 Value::const_user_iterator I = user_begin(), E = user_end(); 573 Value::const_user_iterator LastNonDeadUser = E; 574 while (I != E) { 575 const Constant *User = dyn_cast<Constant>(*I); 576 if (!User) { 577 LastNonDeadUser = I; 578 ++I; 579 continue; 580 } 581 582 if (!removeDeadUsersOfConstant(User)) { 583 // If the constant wasn't dead, remember that this was the last live use 584 // and move on to the next constant. 585 LastNonDeadUser = I; 586 ++I; 587 continue; 588 } 589 590 // If the constant was dead, then the iterator is invalidated. 591 if (LastNonDeadUser == E) 592 I = user_begin(); 593 else 594 I = std::next(LastNonDeadUser); 595 } 596 } 597 598 599 600 //===----------------------------------------------------------------------===// 601 // ConstantInt 602 //===----------------------------------------------------------------------===// 603 604 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V) 605 : ConstantData(Ty, ConstantIntVal), Val(V) { 606 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); 607 } 608 609 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) { 610 LLVMContextImpl *pImpl = Context.pImpl; 611 if (!pImpl->TheTrueVal) 612 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1); 613 return pImpl->TheTrueVal; 614 } 615 616 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { 617 LLVMContextImpl *pImpl = Context.pImpl; 618 if (!pImpl->TheFalseVal) 619 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0); 620 return pImpl->TheFalseVal; 621 } 622 623 Constant *ConstantInt::getTrue(Type *Ty) { 624 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); 625 ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext()); 626 if (auto *VTy = dyn_cast<VectorType>(Ty)) 627 return ConstantVector::getSplat(VTy->getNumElements(), TrueC); 628 return TrueC; 629 } 630 631 Constant *ConstantInt::getFalse(Type *Ty) { 632 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); 633 ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext()); 634 if (auto *VTy = dyn_cast<VectorType>(Ty)) 635 return ConstantVector::getSplat(VTy->getNumElements(), FalseC); 636 return FalseC; 637 } 638 639 // Get a ConstantInt from an APInt. 640 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { 641 // get an existing value or the insertion position 642 LLVMContextImpl *pImpl = Context.pImpl; 643 std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V]; 644 if (!Slot) { 645 // Get the corresponding integer type for the bit width of the value. 646 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); 647 Slot.reset(new ConstantInt(ITy, V)); 648 } 649 assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth())); 650 return Slot.get(); 651 } 652 653 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { 654 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned); 655 656 // For vectors, broadcast the value. 657 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 658 return ConstantVector::getSplat(VTy->getNumElements(), C); 659 660 return C; 661 } 662 663 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) { 664 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); 665 } 666 667 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) { 668 return get(Ty, V, true); 669 } 670 671 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) { 672 return get(Ty, V, true); 673 } 674 675 Constant *ConstantInt::get(Type *Ty, const APInt& V) { 676 ConstantInt *C = get(Ty->getContext(), V); 677 assert(C->getType() == Ty->getScalarType() && 678 "ConstantInt type doesn't match the type implied by its value!"); 679 680 // For vectors, broadcast the value. 681 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 682 return ConstantVector::getSplat(VTy->getNumElements(), C); 683 684 return C; 685 } 686 687 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) { 688 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); 689 } 690 691 /// Remove the constant from the constant table. 692 void ConstantInt::destroyConstantImpl() { 693 llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!"); 694 } 695 696 //===----------------------------------------------------------------------===// 697 // ConstantFP 698 //===----------------------------------------------------------------------===// 699 700 static const fltSemantics *TypeToFloatSemantics(Type *Ty) { 701 if (Ty->isHalfTy()) 702 return &APFloat::IEEEhalf(); 703 if (Ty->isFloatTy()) 704 return &APFloat::IEEEsingle(); 705 if (Ty->isDoubleTy()) 706 return &APFloat::IEEEdouble(); 707 if (Ty->isX86_FP80Ty()) 708 return &APFloat::x87DoubleExtended(); 709 else if (Ty->isFP128Ty()) 710 return &APFloat::IEEEquad(); 711 712 assert(Ty->isPPC_FP128Ty() && "Unknown FP format"); 713 return &APFloat::PPCDoubleDouble(); 714 } 715 716 Constant *ConstantFP::get(Type *Ty, double V) { 717 LLVMContext &Context = Ty->getContext(); 718 719 APFloat FV(V); 720 bool ignored; 721 FV.convert(*TypeToFloatSemantics(Ty->getScalarType()), 722 APFloat::rmNearestTiesToEven, &ignored); 723 Constant *C = get(Context, FV); 724 725 // For vectors, broadcast the value. 726 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 727 return ConstantVector::getSplat(VTy->getNumElements(), C); 728 729 return C; 730 } 731 732 Constant *ConstantFP::get(Type *Ty, const APFloat &V) { 733 ConstantFP *C = get(Ty->getContext(), V); 734 assert(C->getType() == Ty->getScalarType() && 735 "ConstantFP type doesn't match the type implied by its value!"); 736 737 // For vectors, broadcast the value. 738 if (auto *VTy = dyn_cast<VectorType>(Ty)) 739 return ConstantVector::getSplat(VTy->getNumElements(), C); 740 741 return C; 742 } 743 744 Constant *ConstantFP::get(Type *Ty, StringRef Str) { 745 LLVMContext &Context = Ty->getContext(); 746 747 APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str); 748 Constant *C = get(Context, FV); 749 750 // For vectors, broadcast the value. 751 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 752 return ConstantVector::getSplat(VTy->getNumElements(), C); 753 754 return C; 755 } 756 757 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) { 758 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType()); 759 APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload); 760 Constant *C = get(Ty->getContext(), NaN); 761 762 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 763 return ConstantVector::getSplat(VTy->getNumElements(), C); 764 765 return C; 766 } 767 768 Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) { 769 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType()); 770 APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload); 771 Constant *C = get(Ty->getContext(), NaN); 772 773 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 774 return ConstantVector::getSplat(VTy->getNumElements(), C); 775 776 return C; 777 } 778 779 Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) { 780 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType()); 781 APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload); 782 Constant *C = get(Ty->getContext(), NaN); 783 784 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 785 return ConstantVector::getSplat(VTy->getNumElements(), C); 786 787 return C; 788 } 789 790 Constant *ConstantFP::getNegativeZero(Type *Ty) { 791 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType()); 792 APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true); 793 Constant *C = get(Ty->getContext(), NegZero); 794 795 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 796 return ConstantVector::getSplat(VTy->getNumElements(), C); 797 798 return C; 799 } 800 801 802 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) { 803 if (Ty->isFPOrFPVectorTy()) 804 return getNegativeZero(Ty); 805 806 return Constant::getNullValue(Ty); 807 } 808 809 810 // ConstantFP accessors. 811 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { 812 LLVMContextImpl* pImpl = Context.pImpl; 813 814 std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V]; 815 816 if (!Slot) { 817 Type *Ty; 818 if (&V.getSemantics() == &APFloat::IEEEhalf()) 819 Ty = Type::getHalfTy(Context); 820 else if (&V.getSemantics() == &APFloat::IEEEsingle()) 821 Ty = Type::getFloatTy(Context); 822 else if (&V.getSemantics() == &APFloat::IEEEdouble()) 823 Ty = Type::getDoubleTy(Context); 824 else if (&V.getSemantics() == &APFloat::x87DoubleExtended()) 825 Ty = Type::getX86_FP80Ty(Context); 826 else if (&V.getSemantics() == &APFloat::IEEEquad()) 827 Ty = Type::getFP128Ty(Context); 828 else { 829 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble() && 830 "Unknown FP format"); 831 Ty = Type::getPPC_FP128Ty(Context); 832 } 833 Slot.reset(new ConstantFP(Ty, V)); 834 } 835 836 return Slot.get(); 837 } 838 839 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) { 840 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType()); 841 Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative)); 842 843 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 844 return ConstantVector::getSplat(VTy->getNumElements(), C); 845 846 return C; 847 } 848 849 ConstantFP::ConstantFP(Type *Ty, const APFloat &V) 850 : ConstantData(Ty, ConstantFPVal), Val(V) { 851 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) && 852 "FP type Mismatch"); 853 } 854 855 bool ConstantFP::isExactlyValue(const APFloat &V) const { 856 return Val.bitwiseIsEqual(V); 857 } 858 859 /// Remove the constant from the constant table. 860 void ConstantFP::destroyConstantImpl() { 861 llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!"); 862 } 863 864 //===----------------------------------------------------------------------===// 865 // ConstantAggregateZero Implementation 866 //===----------------------------------------------------------------------===// 867 868 Constant *ConstantAggregateZero::getSequentialElement() const { 869 return Constant::getNullValue(getType()->getSequentialElementType()); 870 } 871 872 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const { 873 return Constant::getNullValue(getType()->getStructElementType(Elt)); 874 } 875 876 Constant *ConstantAggregateZero::getElementValue(Constant *C) const { 877 if (isa<SequentialType>(getType())) 878 return getSequentialElement(); 879 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 880 } 881 882 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const { 883 if (isa<SequentialType>(getType())) 884 return getSequentialElement(); 885 return getStructElement(Idx); 886 } 887 888 unsigned ConstantAggregateZero::getNumElements() const { 889 Type *Ty = getType(); 890 if (auto *AT = dyn_cast<ArrayType>(Ty)) 891 return AT->getNumElements(); 892 if (auto *VT = dyn_cast<VectorType>(Ty)) 893 return VT->getNumElements(); 894 return Ty->getStructNumElements(); 895 } 896 897 //===----------------------------------------------------------------------===// 898 // UndefValue Implementation 899 //===----------------------------------------------------------------------===// 900 901 UndefValue *UndefValue::getSequentialElement() const { 902 return UndefValue::get(getType()->getSequentialElementType()); 903 } 904 905 UndefValue *UndefValue::getStructElement(unsigned Elt) const { 906 return UndefValue::get(getType()->getStructElementType(Elt)); 907 } 908 909 UndefValue *UndefValue::getElementValue(Constant *C) const { 910 if (isa<SequentialType>(getType())) 911 return getSequentialElement(); 912 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 913 } 914 915 UndefValue *UndefValue::getElementValue(unsigned Idx) const { 916 if (isa<SequentialType>(getType())) 917 return getSequentialElement(); 918 return getStructElement(Idx); 919 } 920 921 unsigned UndefValue::getNumElements() const { 922 Type *Ty = getType(); 923 if (auto *ST = dyn_cast<SequentialType>(Ty)) 924 return ST->getNumElements(); 925 return Ty->getStructNumElements(); 926 } 927 928 //===----------------------------------------------------------------------===// 929 // ConstantXXX Classes 930 //===----------------------------------------------------------------------===// 931 932 template <typename ItTy, typename EltTy> 933 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) { 934 for (; Start != End; ++Start) 935 if (*Start != Elt) 936 return false; 937 return true; 938 } 939 940 template <typename SequentialTy, typename ElementTy> 941 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) { 942 assert(!V.empty() && "Cannot get empty int sequence."); 943 944 SmallVector<ElementTy, 16> Elts; 945 for (Constant *C : V) 946 if (auto *CI = dyn_cast<ConstantInt>(C)) 947 Elts.push_back(CI->getZExtValue()); 948 else 949 return nullptr; 950 return SequentialTy::get(V[0]->getContext(), Elts); 951 } 952 953 template <typename SequentialTy, typename ElementTy> 954 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) { 955 assert(!V.empty() && "Cannot get empty FP sequence."); 956 957 SmallVector<ElementTy, 16> Elts; 958 for (Constant *C : V) 959 if (auto *CFP = dyn_cast<ConstantFP>(C)) 960 Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 961 else 962 return nullptr; 963 return SequentialTy::getFP(V[0]->getContext(), Elts); 964 } 965 966 template <typename SequenceTy> 967 static Constant *getSequenceIfElementsMatch(Constant *C, 968 ArrayRef<Constant *> V) { 969 // We speculatively build the elements here even if it turns out that there is 970 // a constantexpr or something else weird, since it is so uncommon for that to 971 // happen. 972 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 973 if (CI->getType()->isIntegerTy(8)) 974 return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V); 975 else if (CI->getType()->isIntegerTy(16)) 976 return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V); 977 else if (CI->getType()->isIntegerTy(32)) 978 return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V); 979 else if (CI->getType()->isIntegerTy(64)) 980 return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V); 981 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 982 if (CFP->getType()->isHalfTy()) 983 return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V); 984 else if (CFP->getType()->isFloatTy()) 985 return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V); 986 else if (CFP->getType()->isDoubleTy()) 987 return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V); 988 } 989 990 return nullptr; 991 } 992 993 ConstantAggregate::ConstantAggregate(CompositeType *T, ValueTy VT, 994 ArrayRef<Constant *> V) 995 : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(), 996 V.size()) { 997 llvm::copy(V, op_begin()); 998 999 // Check that types match, unless this is an opaque struct. 1000 if (auto *ST = dyn_cast<StructType>(T)) 1001 if (ST->isOpaque()) 1002 return; 1003 for (unsigned I = 0, E = V.size(); I != E; ++I) 1004 assert(V[I]->getType() == T->getTypeAtIndex(I) && 1005 "Initializer for composite element doesn't match!"); 1006 } 1007 1008 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) 1009 : ConstantAggregate(T, ConstantArrayVal, V) { 1010 assert(V.size() == T->getNumElements() && 1011 "Invalid initializer for constant array"); 1012 } 1013 1014 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) { 1015 if (Constant *C = getImpl(Ty, V)) 1016 return C; 1017 return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V); 1018 } 1019 1020 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) { 1021 // Empty arrays are canonicalized to ConstantAggregateZero. 1022 if (V.empty()) 1023 return ConstantAggregateZero::get(Ty); 1024 1025 for (unsigned i = 0, e = V.size(); i != e; ++i) { 1026 assert(V[i]->getType() == Ty->getElementType() && 1027 "Wrong type in array element initializer"); 1028 } 1029 1030 // If this is an all-zero array, return a ConstantAggregateZero object. If 1031 // all undef, return an UndefValue, if "all simple", then return a 1032 // ConstantDataArray. 1033 Constant *C = V[0]; 1034 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) 1035 return UndefValue::get(Ty); 1036 1037 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C)) 1038 return ConstantAggregateZero::get(Ty); 1039 1040 // Check to see if all of the elements are ConstantFP or ConstantInt and if 1041 // the element type is compatible with ConstantDataVector. If so, use it. 1042 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) 1043 return getSequenceIfElementsMatch<ConstantDataArray>(C, V); 1044 1045 // Otherwise, we really do want to create a ConstantArray. 1046 return nullptr; 1047 } 1048 1049 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, 1050 ArrayRef<Constant*> V, 1051 bool Packed) { 1052 unsigned VecSize = V.size(); 1053 SmallVector<Type*, 16> EltTypes(VecSize); 1054 for (unsigned i = 0; i != VecSize; ++i) 1055 EltTypes[i] = V[i]->getType(); 1056 1057 return StructType::get(Context, EltTypes, Packed); 1058 } 1059 1060 1061 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V, 1062 bool Packed) { 1063 assert(!V.empty() && 1064 "ConstantStruct::getTypeForElements cannot be called on empty list"); 1065 return getTypeForElements(V[0]->getContext(), V, Packed); 1066 } 1067 1068 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V) 1069 : ConstantAggregate(T, ConstantStructVal, V) { 1070 assert((T->isOpaque() || V.size() == T->getNumElements()) && 1071 "Invalid initializer for constant struct"); 1072 } 1073 1074 // ConstantStruct accessors. 1075 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) { 1076 assert((ST->isOpaque() || ST->getNumElements() == V.size()) && 1077 "Incorrect # elements specified to ConstantStruct::get"); 1078 1079 // Create a ConstantAggregateZero value if all elements are zeros. 1080 bool isZero = true; 1081 bool isUndef = false; 1082 1083 if (!V.empty()) { 1084 isUndef = isa<UndefValue>(V[0]); 1085 isZero = V[0]->isNullValue(); 1086 if (isUndef || isZero) { 1087 for (unsigned i = 0, e = V.size(); i != e; ++i) { 1088 if (!V[i]->isNullValue()) 1089 isZero = false; 1090 if (!isa<UndefValue>(V[i])) 1091 isUndef = false; 1092 } 1093 } 1094 } 1095 if (isZero) 1096 return ConstantAggregateZero::get(ST); 1097 if (isUndef) 1098 return UndefValue::get(ST); 1099 1100 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); 1101 } 1102 1103 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V) 1104 : ConstantAggregate(T, ConstantVectorVal, V) { 1105 assert(V.size() == T->getNumElements() && 1106 "Invalid initializer for constant vector"); 1107 } 1108 1109 // ConstantVector accessors. 1110 Constant *ConstantVector::get(ArrayRef<Constant*> V) { 1111 if (Constant *C = getImpl(V)) 1112 return C; 1113 VectorType *Ty = VectorType::get(V.front()->getType(), V.size()); 1114 return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V); 1115 } 1116 1117 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) { 1118 assert(!V.empty() && "Vectors can't be empty"); 1119 VectorType *T = VectorType::get(V.front()->getType(), V.size()); 1120 1121 // If this is an all-undef or all-zero vector, return a 1122 // ConstantAggregateZero or UndefValue. 1123 Constant *C = V[0]; 1124 bool isZero = C->isNullValue(); 1125 bool isUndef = isa<UndefValue>(C); 1126 1127 if (isZero || isUndef) { 1128 for (unsigned i = 1, e = V.size(); i != e; ++i) 1129 if (V[i] != C) { 1130 isZero = isUndef = false; 1131 break; 1132 } 1133 } 1134 1135 if (isZero) 1136 return ConstantAggregateZero::get(T); 1137 if (isUndef) 1138 return UndefValue::get(T); 1139 1140 // Check to see if all of the elements are ConstantFP or ConstantInt and if 1141 // the element type is compatible with ConstantDataVector. If so, use it. 1142 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) 1143 return getSequenceIfElementsMatch<ConstantDataVector>(C, V); 1144 1145 // Otherwise, the element type isn't compatible with ConstantDataVector, or 1146 // the operand list contains a ConstantExpr or something else strange. 1147 return nullptr; 1148 } 1149 1150 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) { 1151 // If this splat is compatible with ConstantDataVector, use it instead of 1152 // ConstantVector. 1153 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) && 1154 ConstantDataSequential::isElementTypeCompatible(V->getType())) 1155 return ConstantDataVector::getSplat(NumElts, V); 1156 1157 SmallVector<Constant*, 32> Elts(NumElts, V); 1158 return get(Elts); 1159 } 1160 1161 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) { 1162 LLVMContextImpl *pImpl = Context.pImpl; 1163 if (!pImpl->TheNoneToken) 1164 pImpl->TheNoneToken.reset(new ConstantTokenNone(Context)); 1165 return pImpl->TheNoneToken.get(); 1166 } 1167 1168 /// Remove the constant from the constant table. 1169 void ConstantTokenNone::destroyConstantImpl() { 1170 llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!"); 1171 } 1172 1173 // Utility function for determining if a ConstantExpr is a CastOp or not. This 1174 // can't be inline because we don't want to #include Instruction.h into 1175 // Constant.h 1176 bool ConstantExpr::isCast() const { 1177 return Instruction::isCast(getOpcode()); 1178 } 1179 1180 bool ConstantExpr::isCompare() const { 1181 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; 1182 } 1183 1184 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const { 1185 if (getOpcode() != Instruction::GetElementPtr) return false; 1186 1187 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this); 1188 User::const_op_iterator OI = std::next(this->op_begin()); 1189 1190 // The remaining indices may be compile-time known integers within the bounds 1191 // of the corresponding notional static array types. 1192 for (; GEPI != E; ++GEPI, ++OI) { 1193 if (isa<UndefValue>(*OI)) 1194 continue; 1195 auto *CI = dyn_cast<ConstantInt>(*OI); 1196 if (!CI || (GEPI.isBoundedSequential() && 1197 (CI->getValue().getActiveBits() > 64 || 1198 CI->getZExtValue() >= GEPI.getSequentialNumElements()))) 1199 return false; 1200 } 1201 1202 // All the indices checked out. 1203 return true; 1204 } 1205 1206 bool ConstantExpr::hasIndices() const { 1207 return getOpcode() == Instruction::ExtractValue || 1208 getOpcode() == Instruction::InsertValue; 1209 } 1210 1211 ArrayRef<unsigned> ConstantExpr::getIndices() const { 1212 if (const ExtractValueConstantExpr *EVCE = 1213 dyn_cast<ExtractValueConstantExpr>(this)) 1214 return EVCE->Indices; 1215 1216 return cast<InsertValueConstantExpr>(this)->Indices; 1217 } 1218 1219 unsigned ConstantExpr::getPredicate() const { 1220 return cast<CompareConstantExpr>(this)->predicate; 1221 } 1222 1223 Constant * 1224 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { 1225 assert(Op->getType() == getOperand(OpNo)->getType() && 1226 "Replacing operand with value of different type!"); 1227 if (getOperand(OpNo) == Op) 1228 return const_cast<ConstantExpr*>(this); 1229 1230 SmallVector<Constant*, 8> NewOps; 1231 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1232 NewOps.push_back(i == OpNo ? Op : getOperand(i)); 1233 1234 return getWithOperands(NewOps); 1235 } 1236 1237 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, 1238 bool OnlyIfReduced, Type *SrcTy) const { 1239 assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); 1240 1241 // If no operands changed return self. 1242 if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin())) 1243 return const_cast<ConstantExpr*>(this); 1244 1245 Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr; 1246 switch (getOpcode()) { 1247 case Instruction::Trunc: 1248 case Instruction::ZExt: 1249 case Instruction::SExt: 1250 case Instruction::FPTrunc: 1251 case Instruction::FPExt: 1252 case Instruction::UIToFP: 1253 case Instruction::SIToFP: 1254 case Instruction::FPToUI: 1255 case Instruction::FPToSI: 1256 case Instruction::PtrToInt: 1257 case Instruction::IntToPtr: 1258 case Instruction::BitCast: 1259 case Instruction::AddrSpaceCast: 1260 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced); 1261 case Instruction::Select: 1262 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy); 1263 case Instruction::InsertElement: 1264 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2], 1265 OnlyIfReducedTy); 1266 case Instruction::ExtractElement: 1267 return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy); 1268 case Instruction::InsertValue: 1269 return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(), 1270 OnlyIfReducedTy); 1271 case Instruction::ExtractValue: 1272 return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy); 1273 case Instruction::ShuffleVector: 1274 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2], 1275 OnlyIfReducedTy); 1276 case Instruction::GetElementPtr: { 1277 auto *GEPO = cast<GEPOperator>(this); 1278 assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType())); 1279 return ConstantExpr::getGetElementPtr( 1280 SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1), 1281 GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy); 1282 } 1283 case Instruction::ICmp: 1284 case Instruction::FCmp: 1285 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1], 1286 OnlyIfReducedTy); 1287 default: 1288 assert(getNumOperands() == 2 && "Must be binary operator?"); 1289 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData, 1290 OnlyIfReducedTy); 1291 } 1292 } 1293 1294 1295 //===----------------------------------------------------------------------===// 1296 // isValueValidForType implementations 1297 1298 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { 1299 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay 1300 if (Ty->isIntegerTy(1)) 1301 return Val == 0 || Val == 1; 1302 return isUIntN(NumBits, Val); 1303 } 1304 1305 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) { 1306 unsigned NumBits = Ty->getIntegerBitWidth(); 1307 if (Ty->isIntegerTy(1)) 1308 return Val == 0 || Val == 1 || Val == -1; 1309 return isIntN(NumBits, Val); 1310 } 1311 1312 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { 1313 // convert modifies in place, so make a copy. 1314 APFloat Val2 = APFloat(Val); 1315 bool losesInfo; 1316 switch (Ty->getTypeID()) { 1317 default: 1318 return false; // These can't be represented as floating point! 1319 1320 // FIXME rounding mode needs to be more flexible 1321 case Type::HalfTyID: { 1322 if (&Val2.getSemantics() == &APFloat::IEEEhalf()) 1323 return true; 1324 Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo); 1325 return !losesInfo; 1326 } 1327 case Type::FloatTyID: { 1328 if (&Val2.getSemantics() == &APFloat::IEEEsingle()) 1329 return true; 1330 Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo); 1331 return !losesInfo; 1332 } 1333 case Type::DoubleTyID: { 1334 if (&Val2.getSemantics() == &APFloat::IEEEhalf() || 1335 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1336 &Val2.getSemantics() == &APFloat::IEEEdouble()) 1337 return true; 1338 Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo); 1339 return !losesInfo; 1340 } 1341 case Type::X86_FP80TyID: 1342 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1343 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1344 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1345 &Val2.getSemantics() == &APFloat::x87DoubleExtended(); 1346 case Type::FP128TyID: 1347 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1348 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1349 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1350 &Val2.getSemantics() == &APFloat::IEEEquad(); 1351 case Type::PPC_FP128TyID: 1352 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1353 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1354 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1355 &Val2.getSemantics() == &APFloat::PPCDoubleDouble(); 1356 } 1357 } 1358 1359 1360 //===----------------------------------------------------------------------===// 1361 // Factory Function Implementation 1362 1363 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) { 1364 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && 1365 "Cannot create an aggregate zero of non-aggregate type!"); 1366 1367 std::unique_ptr<ConstantAggregateZero> &Entry = 1368 Ty->getContext().pImpl->CAZConstants[Ty]; 1369 if (!Entry) 1370 Entry.reset(new ConstantAggregateZero(Ty)); 1371 1372 return Entry.get(); 1373 } 1374 1375 /// Remove the constant from the constant table. 1376 void ConstantAggregateZero::destroyConstantImpl() { 1377 getContext().pImpl->CAZConstants.erase(getType()); 1378 } 1379 1380 /// Remove the constant from the constant table. 1381 void ConstantArray::destroyConstantImpl() { 1382 getType()->getContext().pImpl->ArrayConstants.remove(this); 1383 } 1384 1385 1386 //---- ConstantStruct::get() implementation... 1387 // 1388 1389 /// Remove the constant from the constant table. 1390 void ConstantStruct::destroyConstantImpl() { 1391 getType()->getContext().pImpl->StructConstants.remove(this); 1392 } 1393 1394 /// Remove the constant from the constant table. 1395 void ConstantVector::destroyConstantImpl() { 1396 getType()->getContext().pImpl->VectorConstants.remove(this); 1397 } 1398 1399 Constant *Constant::getSplatValue() const { 1400 assert(this->getType()->isVectorTy() && "Only valid for vectors!"); 1401 if (isa<ConstantAggregateZero>(this)) 1402 return getNullValue(this->getType()->getVectorElementType()); 1403 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 1404 return CV->getSplatValue(); 1405 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 1406 return CV->getSplatValue(); 1407 return nullptr; 1408 } 1409 1410 Constant *ConstantVector::getSplatValue() const { 1411 // Check out first element. 1412 Constant *Elt = getOperand(0); 1413 // Then make sure all remaining elements point to the same value. 1414 for (unsigned I = 1, E = getNumOperands(); I < E; ++I) 1415 if (getOperand(I) != Elt) 1416 return nullptr; 1417 return Elt; 1418 } 1419 1420 const APInt &Constant::getUniqueInteger() const { 1421 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 1422 return CI->getValue(); 1423 assert(this->getSplatValue() && "Doesn't contain a unique integer!"); 1424 const Constant *C = this->getAggregateElement(0U); 1425 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!"); 1426 return cast<ConstantInt>(C)->getValue(); 1427 } 1428 1429 //---- ConstantPointerNull::get() implementation. 1430 // 1431 1432 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { 1433 std::unique_ptr<ConstantPointerNull> &Entry = 1434 Ty->getContext().pImpl->CPNConstants[Ty]; 1435 if (!Entry) 1436 Entry.reset(new ConstantPointerNull(Ty)); 1437 1438 return Entry.get(); 1439 } 1440 1441 /// Remove the constant from the constant table. 1442 void ConstantPointerNull::destroyConstantImpl() { 1443 getContext().pImpl->CPNConstants.erase(getType()); 1444 } 1445 1446 UndefValue *UndefValue::get(Type *Ty) { 1447 std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty]; 1448 if (!Entry) 1449 Entry.reset(new UndefValue(Ty)); 1450 1451 return Entry.get(); 1452 } 1453 1454 /// Remove the constant from the constant table. 1455 void UndefValue::destroyConstantImpl() { 1456 // Free the constant and any dangling references to it. 1457 getContext().pImpl->UVConstants.erase(getType()); 1458 } 1459 1460 BlockAddress *BlockAddress::get(BasicBlock *BB) { 1461 assert(BB->getParent() && "Block must have a parent"); 1462 return get(BB->getParent(), BB); 1463 } 1464 1465 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { 1466 BlockAddress *&BA = 1467 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; 1468 if (!BA) 1469 BA = new BlockAddress(F, BB); 1470 1471 assert(BA->getFunction() == F && "Basic block moved between functions"); 1472 return BA; 1473 } 1474 1475 BlockAddress::BlockAddress(Function *F, BasicBlock *BB) 1476 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal, 1477 &Op<0>(), 2) { 1478 setOperand(0, F); 1479 setOperand(1, BB); 1480 BB->AdjustBlockAddressRefCount(1); 1481 } 1482 1483 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) { 1484 if (!BB->hasAddressTaken()) 1485 return nullptr; 1486 1487 const Function *F = BB->getParent(); 1488 assert(F && "Block must have a parent"); 1489 BlockAddress *BA = 1490 F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB)); 1491 assert(BA && "Refcount and block address map disagree!"); 1492 return BA; 1493 } 1494 1495 /// Remove the constant from the constant table. 1496 void BlockAddress::destroyConstantImpl() { 1497 getFunction()->getType()->getContext().pImpl 1498 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); 1499 getBasicBlock()->AdjustBlockAddressRefCount(-1); 1500 } 1501 1502 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) { 1503 // This could be replacing either the Basic Block or the Function. In either 1504 // case, we have to remove the map entry. 1505 Function *NewF = getFunction(); 1506 BasicBlock *NewBB = getBasicBlock(); 1507 1508 if (From == NewF) 1509 NewF = cast<Function>(To->stripPointerCasts()); 1510 else { 1511 assert(From == NewBB && "From does not match any operand"); 1512 NewBB = cast<BasicBlock>(To); 1513 } 1514 1515 // See if the 'new' entry already exists, if not, just update this in place 1516 // and return early. 1517 BlockAddress *&NewBA = 1518 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; 1519 if (NewBA) 1520 return NewBA; 1521 1522 getBasicBlock()->AdjustBlockAddressRefCount(-1); 1523 1524 // Remove the old entry, this can't cause the map to rehash (just a 1525 // tombstone will get added). 1526 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), 1527 getBasicBlock())); 1528 NewBA = this; 1529 setOperand(0, NewF); 1530 setOperand(1, NewBB); 1531 getBasicBlock()->AdjustBlockAddressRefCount(1); 1532 1533 // If we just want to keep the existing value, then return null. 1534 // Callers know that this means we shouldn't delete this value. 1535 return nullptr; 1536 } 1537 1538 //---- ConstantExpr::get() implementations. 1539 // 1540 1541 /// This is a utility function to handle folding of casts and lookup of the 1542 /// cast in the ExprConstants map. It is used by the various get* methods below. 1543 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty, 1544 bool OnlyIfReduced = false) { 1545 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); 1546 // Fold a few common cases 1547 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) 1548 return FC; 1549 1550 if (OnlyIfReduced) 1551 return nullptr; 1552 1553 LLVMContextImpl *pImpl = Ty->getContext().pImpl; 1554 1555 // Look up the constant in the table first to ensure uniqueness. 1556 ConstantExprKeyType Key(opc, C); 1557 1558 return pImpl->ExprConstants.getOrCreate(Ty, Key); 1559 } 1560 1561 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty, 1562 bool OnlyIfReduced) { 1563 Instruction::CastOps opc = Instruction::CastOps(oc); 1564 assert(Instruction::isCast(opc) && "opcode out of range"); 1565 assert(C && Ty && "Null arguments to getCast"); 1566 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); 1567 1568 switch (opc) { 1569 default: 1570 llvm_unreachable("Invalid cast opcode"); 1571 case Instruction::Trunc: 1572 return getTrunc(C, Ty, OnlyIfReduced); 1573 case Instruction::ZExt: 1574 return getZExt(C, Ty, OnlyIfReduced); 1575 case Instruction::SExt: 1576 return getSExt(C, Ty, OnlyIfReduced); 1577 case Instruction::FPTrunc: 1578 return getFPTrunc(C, Ty, OnlyIfReduced); 1579 case Instruction::FPExt: 1580 return getFPExtend(C, Ty, OnlyIfReduced); 1581 case Instruction::UIToFP: 1582 return getUIToFP(C, Ty, OnlyIfReduced); 1583 case Instruction::SIToFP: 1584 return getSIToFP(C, Ty, OnlyIfReduced); 1585 case Instruction::FPToUI: 1586 return getFPToUI(C, Ty, OnlyIfReduced); 1587 case Instruction::FPToSI: 1588 return getFPToSI(C, Ty, OnlyIfReduced); 1589 case Instruction::PtrToInt: 1590 return getPtrToInt(C, Ty, OnlyIfReduced); 1591 case Instruction::IntToPtr: 1592 return getIntToPtr(C, Ty, OnlyIfReduced); 1593 case Instruction::BitCast: 1594 return getBitCast(C, Ty, OnlyIfReduced); 1595 case Instruction::AddrSpaceCast: 1596 return getAddrSpaceCast(C, Ty, OnlyIfReduced); 1597 } 1598 } 1599 1600 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) { 1601 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1602 return getBitCast(C, Ty); 1603 return getZExt(C, Ty); 1604 } 1605 1606 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) { 1607 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1608 return getBitCast(C, Ty); 1609 return getSExt(C, Ty); 1610 } 1611 1612 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) { 1613 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1614 return getBitCast(C, Ty); 1615 return getTrunc(C, Ty); 1616 } 1617 1618 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) { 1619 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 1620 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 1621 "Invalid cast"); 1622 1623 if (Ty->isIntOrIntVectorTy()) 1624 return getPtrToInt(S, Ty); 1625 1626 unsigned SrcAS = S->getType()->getPointerAddressSpace(); 1627 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace()) 1628 return getAddrSpaceCast(S, Ty); 1629 1630 return getBitCast(S, Ty); 1631 } 1632 1633 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S, 1634 Type *Ty) { 1635 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 1636 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 1637 1638 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 1639 return getAddrSpaceCast(S, Ty); 1640 1641 return getBitCast(S, Ty); 1642 } 1643 1644 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) { 1645 assert(C->getType()->isIntOrIntVectorTy() && 1646 Ty->isIntOrIntVectorTy() && "Invalid cast"); 1647 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 1648 unsigned DstBits = Ty->getScalarSizeInBits(); 1649 Instruction::CastOps opcode = 1650 (SrcBits == DstBits ? Instruction::BitCast : 1651 (SrcBits > DstBits ? Instruction::Trunc : 1652 (isSigned ? Instruction::SExt : Instruction::ZExt))); 1653 return getCast(opcode, C, Ty); 1654 } 1655 1656 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) { 1657 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 1658 "Invalid cast"); 1659 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 1660 unsigned DstBits = Ty->getScalarSizeInBits(); 1661 if (SrcBits == DstBits) 1662 return C; // Avoid a useless cast 1663 Instruction::CastOps opcode = 1664 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); 1665 return getCast(opcode, C, Ty); 1666 } 1667 1668 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { 1669 #ifndef NDEBUG 1670 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1671 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1672 #endif 1673 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1674 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); 1675 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); 1676 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& 1677 "SrcTy must be larger than DestTy for Trunc!"); 1678 1679 return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced); 1680 } 1681 1682 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) { 1683 #ifndef NDEBUG 1684 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1685 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1686 #endif 1687 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1688 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral"); 1689 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer"); 1690 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 1691 "SrcTy must be smaller than DestTy for SExt!"); 1692 1693 return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced); 1694 } 1695 1696 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) { 1697 #ifndef NDEBUG 1698 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1699 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1700 #endif 1701 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1702 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral"); 1703 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer"); 1704 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 1705 "SrcTy must be smaller than DestTy for ZExt!"); 1706 1707 return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced); 1708 } 1709 1710 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { 1711 #ifndef NDEBUG 1712 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1713 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1714 #endif 1715 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1716 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 1717 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& 1718 "This is an illegal floating point truncation!"); 1719 return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced); 1720 } 1721 1722 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) { 1723 #ifndef NDEBUG 1724 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1725 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1726 #endif 1727 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1728 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 1729 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 1730 "This is an illegal floating point extension!"); 1731 return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced); 1732 } 1733 1734 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { 1735 #ifndef NDEBUG 1736 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1737 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1738 #endif 1739 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1740 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && 1741 "This is an illegal uint to floating point cast!"); 1742 return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced); 1743 } 1744 1745 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { 1746 #ifndef NDEBUG 1747 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1748 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1749 #endif 1750 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1751 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && 1752 "This is an illegal sint to floating point cast!"); 1753 return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced); 1754 } 1755 1756 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) { 1757 #ifndef NDEBUG 1758 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1759 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1760 #endif 1761 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1762 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && 1763 "This is an illegal floating point to uint cast!"); 1764 return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced); 1765 } 1766 1767 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) { 1768 #ifndef NDEBUG 1769 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1770 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1771 #endif 1772 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1773 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && 1774 "This is an illegal floating point to sint cast!"); 1775 return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced); 1776 } 1777 1778 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy, 1779 bool OnlyIfReduced) { 1780 assert(C->getType()->isPtrOrPtrVectorTy() && 1781 "PtrToInt source must be pointer or pointer vector"); 1782 assert(DstTy->isIntOrIntVectorTy() && 1783 "PtrToInt destination must be integer or integer vector"); 1784 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); 1785 if (isa<VectorType>(C->getType())) 1786 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&& 1787 "Invalid cast between a different number of vector elements"); 1788 return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced); 1789 } 1790 1791 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy, 1792 bool OnlyIfReduced) { 1793 assert(C->getType()->isIntOrIntVectorTy() && 1794 "IntToPtr source must be integer or integer vector"); 1795 assert(DstTy->isPtrOrPtrVectorTy() && 1796 "IntToPtr destination must be a pointer or pointer vector"); 1797 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); 1798 if (isa<VectorType>(C->getType())) 1799 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&& 1800 "Invalid cast between a different number of vector elements"); 1801 return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced); 1802 } 1803 1804 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy, 1805 bool OnlyIfReduced) { 1806 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && 1807 "Invalid constantexpr bitcast!"); 1808 1809 // It is common to ask for a bitcast of a value to its own type, handle this 1810 // speedily. 1811 if (C->getType() == DstTy) return C; 1812 1813 return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced); 1814 } 1815 1816 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy, 1817 bool OnlyIfReduced) { 1818 assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) && 1819 "Invalid constantexpr addrspacecast!"); 1820 1821 // Canonicalize addrspacecasts between different pointer types by first 1822 // bitcasting the pointer type and then converting the address space. 1823 PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType()); 1824 PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType()); 1825 Type *DstElemTy = DstScalarTy->getElementType(); 1826 if (SrcScalarTy->getElementType() != DstElemTy) { 1827 Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace()); 1828 if (VectorType *VT = dyn_cast<VectorType>(DstTy)) { 1829 // Handle vectors of pointers. 1830 MidTy = VectorType::get(MidTy, VT->getNumElements()); 1831 } 1832 C = getBitCast(C, MidTy); 1833 } 1834 return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced); 1835 } 1836 1837 Constant *ConstantExpr::get(unsigned Opcode, Constant *C, unsigned Flags, 1838 Type *OnlyIfReducedTy) { 1839 // Check the operands for consistency first. 1840 assert(Instruction::isUnaryOp(Opcode) && 1841 "Invalid opcode in unary constant expression"); 1842 1843 #ifndef NDEBUG 1844 switch (Opcode) { 1845 case Instruction::FNeg: 1846 assert(C->getType()->isFPOrFPVectorTy() && 1847 "Tried to create a floating-point operation on a " 1848 "non-floating-point type!"); 1849 break; 1850 default: 1851 break; 1852 } 1853 #endif 1854 1855 if (Constant *FC = ConstantFoldUnaryInstruction(Opcode, C)) 1856 return FC; 1857 1858 if (OnlyIfReducedTy == C->getType()) 1859 return nullptr; 1860 1861 Constant *ArgVec[] = { C }; 1862 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags); 1863 1864 LLVMContextImpl *pImpl = C->getContext().pImpl; 1865 return pImpl->ExprConstants.getOrCreate(C->getType(), Key); 1866 } 1867 1868 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, 1869 unsigned Flags, Type *OnlyIfReducedTy) { 1870 // Check the operands for consistency first. 1871 assert(Instruction::isBinaryOp(Opcode) && 1872 "Invalid opcode in binary constant expression"); 1873 assert(C1->getType() == C2->getType() && 1874 "Operand types in binary constant expression should match"); 1875 1876 #ifndef NDEBUG 1877 switch (Opcode) { 1878 case Instruction::Add: 1879 case Instruction::Sub: 1880 case Instruction::Mul: 1881 case Instruction::UDiv: 1882 case Instruction::SDiv: 1883 case Instruction::URem: 1884 case Instruction::SRem: 1885 assert(C1->getType()->isIntOrIntVectorTy() && 1886 "Tried to create an integer operation on a non-integer type!"); 1887 break; 1888 case Instruction::FAdd: 1889 case Instruction::FSub: 1890 case Instruction::FMul: 1891 case Instruction::FDiv: 1892 case Instruction::FRem: 1893 assert(C1->getType()->isFPOrFPVectorTy() && 1894 "Tried to create a floating-point operation on a " 1895 "non-floating-point type!"); 1896 break; 1897 case Instruction::And: 1898 case Instruction::Or: 1899 case Instruction::Xor: 1900 assert(C1->getType()->isIntOrIntVectorTy() && 1901 "Tried to create a logical operation on a non-integral type!"); 1902 break; 1903 case Instruction::Shl: 1904 case Instruction::LShr: 1905 case Instruction::AShr: 1906 assert(C1->getType()->isIntOrIntVectorTy() && 1907 "Tried to create a shift operation on a non-integer type!"); 1908 break; 1909 default: 1910 break; 1911 } 1912 #endif 1913 1914 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) 1915 return FC; 1916 1917 if (OnlyIfReducedTy == C1->getType()) 1918 return nullptr; 1919 1920 Constant *ArgVec[] = { C1, C2 }; 1921 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags); 1922 1923 LLVMContextImpl *pImpl = C1->getContext().pImpl; 1924 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key); 1925 } 1926 1927 Constant *ConstantExpr::getSizeOf(Type* Ty) { 1928 // sizeof is implemented as: (i64) gep (Ty*)null, 1 1929 // Note that a non-inbounds gep is used, as null isn't within any object. 1930 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); 1931 Constant *GEP = getGetElementPtr( 1932 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); 1933 return getPtrToInt(GEP, 1934 Type::getInt64Ty(Ty->getContext())); 1935 } 1936 1937 Constant *ConstantExpr::getAlignOf(Type* Ty) { 1938 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 1939 // Note that a non-inbounds gep is used, as null isn't within any object. 1940 Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty); 1941 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0)); 1942 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); 1943 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); 1944 Constant *Indices[2] = { Zero, One }; 1945 Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices); 1946 return getPtrToInt(GEP, 1947 Type::getInt64Ty(Ty->getContext())); 1948 } 1949 1950 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) { 1951 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()), 1952 FieldNo)); 1953 } 1954 1955 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) { 1956 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo 1957 // Note that a non-inbounds gep is used, as null isn't within any object. 1958 Constant *GEPIdx[] = { 1959 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0), 1960 FieldNo 1961 }; 1962 Constant *GEP = getGetElementPtr( 1963 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); 1964 return getPtrToInt(GEP, 1965 Type::getInt64Ty(Ty->getContext())); 1966 } 1967 1968 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1, 1969 Constant *C2, bool OnlyIfReduced) { 1970 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 1971 1972 switch (Predicate) { 1973 default: llvm_unreachable("Invalid CmpInst predicate"); 1974 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: 1975 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: 1976 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: 1977 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: 1978 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: 1979 case CmpInst::FCMP_TRUE: 1980 return getFCmp(Predicate, C1, C2, OnlyIfReduced); 1981 1982 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: 1983 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: 1984 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: 1985 case CmpInst::ICMP_SLE: 1986 return getICmp(Predicate, C1, C2, OnlyIfReduced); 1987 } 1988 } 1989 1990 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2, 1991 Type *OnlyIfReducedTy) { 1992 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); 1993 1994 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) 1995 return SC; // Fold common cases 1996 1997 if (OnlyIfReducedTy == V1->getType()) 1998 return nullptr; 1999 2000 Constant *ArgVec[] = { C, V1, V2 }; 2001 ConstantExprKeyType Key(Instruction::Select, ArgVec); 2002 2003 LLVMContextImpl *pImpl = C->getContext().pImpl; 2004 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key); 2005 } 2006 2007 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C, 2008 ArrayRef<Value *> Idxs, bool InBounds, 2009 Optional<unsigned> InRangeIndex, 2010 Type *OnlyIfReducedTy) { 2011 if (!Ty) 2012 Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType(); 2013 else 2014 assert(Ty == 2015 cast<PointerType>(C->getType()->getScalarType())->getElementType()); 2016 2017 if (Constant *FC = 2018 ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs)) 2019 return FC; // Fold a few common cases. 2020 2021 // Get the result type of the getelementptr! 2022 Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs); 2023 assert(DestTy && "GEP indices invalid!"); 2024 unsigned AS = C->getType()->getPointerAddressSpace(); 2025 Type *ReqTy = DestTy->getPointerTo(AS); 2026 2027 unsigned NumVecElts = 0; 2028 if (C->getType()->isVectorTy()) 2029 NumVecElts = C->getType()->getVectorNumElements(); 2030 else for (auto Idx : Idxs) 2031 if (Idx->getType()->isVectorTy()) 2032 NumVecElts = Idx->getType()->getVectorNumElements(); 2033 2034 if (NumVecElts) 2035 ReqTy = VectorType::get(ReqTy, NumVecElts); 2036 2037 if (OnlyIfReducedTy == ReqTy) 2038 return nullptr; 2039 2040 // Look up the constant in the table first to ensure uniqueness 2041 std::vector<Constant*> ArgVec; 2042 ArgVec.reserve(1 + Idxs.size()); 2043 ArgVec.push_back(C); 2044 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { 2045 assert((!Idxs[i]->getType()->isVectorTy() || 2046 Idxs[i]->getType()->getVectorNumElements() == NumVecElts) && 2047 "getelementptr index type missmatch"); 2048 2049 Constant *Idx = cast<Constant>(Idxs[i]); 2050 if (NumVecElts && !Idxs[i]->getType()->isVectorTy()) 2051 Idx = ConstantVector::getSplat(NumVecElts, Idx); 2052 ArgVec.push_back(Idx); 2053 } 2054 2055 unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0; 2056 if (InRangeIndex && *InRangeIndex < 63) 2057 SubClassOptionalData |= (*InRangeIndex + 1) << 1; 2058 const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0, 2059 SubClassOptionalData, None, Ty); 2060 2061 LLVMContextImpl *pImpl = C->getContext().pImpl; 2062 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2063 } 2064 2065 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS, 2066 Constant *RHS, bool OnlyIfReduced) { 2067 assert(LHS->getType() == RHS->getType()); 2068 assert(CmpInst::isIntPredicate((CmpInst::Predicate)pred) && 2069 "Invalid ICmp Predicate"); 2070 2071 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) 2072 return FC; // Fold a few common cases... 2073 2074 if (OnlyIfReduced) 2075 return nullptr; 2076 2077 // Look up the constant in the table first to ensure uniqueness 2078 Constant *ArgVec[] = { LHS, RHS }; 2079 // Get the key type with both the opcode and predicate 2080 const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred); 2081 2082 Type *ResultTy = Type::getInt1Ty(LHS->getContext()); 2083 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) 2084 ResultTy = VectorType::get(ResultTy, VT->getNumElements()); 2085 2086 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; 2087 return pImpl->ExprConstants.getOrCreate(ResultTy, Key); 2088 } 2089 2090 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, 2091 Constant *RHS, bool OnlyIfReduced) { 2092 assert(LHS->getType() == RHS->getType()); 2093 assert(CmpInst::isFPPredicate((CmpInst::Predicate)pred) && 2094 "Invalid FCmp Predicate"); 2095 2096 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) 2097 return FC; // Fold a few common cases... 2098 2099 if (OnlyIfReduced) 2100 return nullptr; 2101 2102 // Look up the constant in the table first to ensure uniqueness 2103 Constant *ArgVec[] = { LHS, RHS }; 2104 // Get the key type with both the opcode and predicate 2105 const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred); 2106 2107 Type *ResultTy = Type::getInt1Ty(LHS->getContext()); 2108 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) 2109 ResultTy = VectorType::get(ResultTy, VT->getNumElements()); 2110 2111 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; 2112 return pImpl->ExprConstants.getOrCreate(ResultTy, Key); 2113 } 2114 2115 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx, 2116 Type *OnlyIfReducedTy) { 2117 assert(Val->getType()->isVectorTy() && 2118 "Tried to create extractelement operation on non-vector type!"); 2119 assert(Idx->getType()->isIntegerTy() && 2120 "Extractelement index must be an integer type!"); 2121 2122 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) 2123 return FC; // Fold a few common cases. 2124 2125 Type *ReqTy = Val->getType()->getVectorElementType(); 2126 if (OnlyIfReducedTy == ReqTy) 2127 return nullptr; 2128 2129 // Look up the constant in the table first to ensure uniqueness 2130 Constant *ArgVec[] = { Val, Idx }; 2131 const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec); 2132 2133 LLVMContextImpl *pImpl = Val->getContext().pImpl; 2134 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2135 } 2136 2137 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 2138 Constant *Idx, Type *OnlyIfReducedTy) { 2139 assert(Val->getType()->isVectorTy() && 2140 "Tried to create insertelement operation on non-vector type!"); 2141 assert(Elt->getType() == Val->getType()->getVectorElementType() && 2142 "Insertelement types must match!"); 2143 assert(Idx->getType()->isIntegerTy() && 2144 "Insertelement index must be i32 type!"); 2145 2146 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) 2147 return FC; // Fold a few common cases. 2148 2149 if (OnlyIfReducedTy == Val->getType()) 2150 return nullptr; 2151 2152 // Look up the constant in the table first to ensure uniqueness 2153 Constant *ArgVec[] = { Val, Elt, Idx }; 2154 const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec); 2155 2156 LLVMContextImpl *pImpl = Val->getContext().pImpl; 2157 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key); 2158 } 2159 2160 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, 2161 Constant *Mask, Type *OnlyIfReducedTy) { 2162 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && 2163 "Invalid shuffle vector constant expr operands!"); 2164 2165 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) 2166 return FC; // Fold a few common cases. 2167 2168 unsigned NElts = Mask->getType()->getVectorNumElements(); 2169 Type *EltTy = V1->getType()->getVectorElementType(); 2170 Type *ShufTy = VectorType::get(EltTy, NElts); 2171 2172 if (OnlyIfReducedTy == ShufTy) 2173 return nullptr; 2174 2175 // Look up the constant in the table first to ensure uniqueness 2176 Constant *ArgVec[] = { V1, V2, Mask }; 2177 const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec); 2178 2179 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl; 2180 return pImpl->ExprConstants.getOrCreate(ShufTy, Key); 2181 } 2182 2183 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val, 2184 ArrayRef<unsigned> Idxs, 2185 Type *OnlyIfReducedTy) { 2186 assert(Agg->getType()->isFirstClassType() && 2187 "Non-first-class type for constant insertvalue expression"); 2188 2189 assert(ExtractValueInst::getIndexedType(Agg->getType(), 2190 Idxs) == Val->getType() && 2191 "insertvalue indices invalid!"); 2192 Type *ReqTy = Val->getType(); 2193 2194 if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs)) 2195 return FC; 2196 2197 if (OnlyIfReducedTy == ReqTy) 2198 return nullptr; 2199 2200 Constant *ArgVec[] = { Agg, Val }; 2201 const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs); 2202 2203 LLVMContextImpl *pImpl = Agg->getContext().pImpl; 2204 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2205 } 2206 2207 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs, 2208 Type *OnlyIfReducedTy) { 2209 assert(Agg->getType()->isFirstClassType() && 2210 "Tried to create extractelement operation on non-first-class type!"); 2211 2212 Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs); 2213 (void)ReqTy; 2214 assert(ReqTy && "extractvalue indices invalid!"); 2215 2216 assert(Agg->getType()->isFirstClassType() && 2217 "Non-first-class type for constant extractvalue expression"); 2218 if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs)) 2219 return FC; 2220 2221 if (OnlyIfReducedTy == ReqTy) 2222 return nullptr; 2223 2224 Constant *ArgVec[] = { Agg }; 2225 const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs); 2226 2227 LLVMContextImpl *pImpl = Agg->getContext().pImpl; 2228 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2229 } 2230 2231 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) { 2232 assert(C->getType()->isIntOrIntVectorTy() && 2233 "Cannot NEG a nonintegral value!"); 2234 return getSub(ConstantFP::getZeroValueForNegation(C->getType()), 2235 C, HasNUW, HasNSW); 2236 } 2237 2238 Constant *ConstantExpr::getFNeg(Constant *C) { 2239 assert(C->getType()->isFPOrFPVectorTy() && 2240 "Cannot FNEG a non-floating-point value!"); 2241 return get(Instruction::FNeg, C); 2242 } 2243 2244 Constant *ConstantExpr::getNot(Constant *C) { 2245 assert(C->getType()->isIntOrIntVectorTy() && 2246 "Cannot NOT a nonintegral value!"); 2247 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); 2248 } 2249 2250 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2, 2251 bool HasNUW, bool HasNSW) { 2252 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2253 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2254 return get(Instruction::Add, C1, C2, Flags); 2255 } 2256 2257 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) { 2258 return get(Instruction::FAdd, C1, C2); 2259 } 2260 2261 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2, 2262 bool HasNUW, bool HasNSW) { 2263 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2264 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2265 return get(Instruction::Sub, C1, C2, Flags); 2266 } 2267 2268 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) { 2269 return get(Instruction::FSub, C1, C2); 2270 } 2271 2272 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2, 2273 bool HasNUW, bool HasNSW) { 2274 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2275 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2276 return get(Instruction::Mul, C1, C2, Flags); 2277 } 2278 2279 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) { 2280 return get(Instruction::FMul, C1, C2); 2281 } 2282 2283 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) { 2284 return get(Instruction::UDiv, C1, C2, 2285 isExact ? PossiblyExactOperator::IsExact : 0); 2286 } 2287 2288 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) { 2289 return get(Instruction::SDiv, C1, C2, 2290 isExact ? PossiblyExactOperator::IsExact : 0); 2291 } 2292 2293 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) { 2294 return get(Instruction::FDiv, C1, C2); 2295 } 2296 2297 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) { 2298 return get(Instruction::URem, C1, C2); 2299 } 2300 2301 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) { 2302 return get(Instruction::SRem, C1, C2); 2303 } 2304 2305 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) { 2306 return get(Instruction::FRem, C1, C2); 2307 } 2308 2309 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { 2310 return get(Instruction::And, C1, C2); 2311 } 2312 2313 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { 2314 return get(Instruction::Or, C1, C2); 2315 } 2316 2317 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { 2318 return get(Instruction::Xor, C1, C2); 2319 } 2320 2321 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2, 2322 bool HasNUW, bool HasNSW) { 2323 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2324 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2325 return get(Instruction::Shl, C1, C2, Flags); 2326 } 2327 2328 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) { 2329 return get(Instruction::LShr, C1, C2, 2330 isExact ? PossiblyExactOperator::IsExact : 0); 2331 } 2332 2333 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) { 2334 return get(Instruction::AShr, C1, C2, 2335 isExact ? PossiblyExactOperator::IsExact : 0); 2336 } 2337 2338 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty, 2339 bool AllowRHSConstant) { 2340 assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed"); 2341 2342 // Commutative opcodes: it does not matter if AllowRHSConstant is set. 2343 if (Instruction::isCommutative(Opcode)) { 2344 switch (Opcode) { 2345 case Instruction::Add: // X + 0 = X 2346 case Instruction::Or: // X | 0 = X 2347 case Instruction::Xor: // X ^ 0 = X 2348 return Constant::getNullValue(Ty); 2349 case Instruction::Mul: // X * 1 = X 2350 return ConstantInt::get(Ty, 1); 2351 case Instruction::And: // X & -1 = X 2352 return Constant::getAllOnesValue(Ty); 2353 case Instruction::FAdd: // X + -0.0 = X 2354 // TODO: If the fadd has 'nsz', should we return +0.0? 2355 return ConstantFP::getNegativeZero(Ty); 2356 case Instruction::FMul: // X * 1.0 = X 2357 return ConstantFP::get(Ty, 1.0); 2358 default: 2359 llvm_unreachable("Every commutative binop has an identity constant"); 2360 } 2361 } 2362 2363 // Non-commutative opcodes: AllowRHSConstant must be set. 2364 if (!AllowRHSConstant) 2365 return nullptr; 2366 2367 switch (Opcode) { 2368 case Instruction::Sub: // X - 0 = X 2369 case Instruction::Shl: // X << 0 = X 2370 case Instruction::LShr: // X >>u 0 = X 2371 case Instruction::AShr: // X >> 0 = X 2372 case Instruction::FSub: // X - 0.0 = X 2373 return Constant::getNullValue(Ty); 2374 case Instruction::SDiv: // X / 1 = X 2375 case Instruction::UDiv: // X /u 1 = X 2376 return ConstantInt::get(Ty, 1); 2377 case Instruction::FDiv: // X / 1.0 = X 2378 return ConstantFP::get(Ty, 1.0); 2379 default: 2380 return nullptr; 2381 } 2382 } 2383 2384 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) { 2385 switch (Opcode) { 2386 default: 2387 // Doesn't have an absorber. 2388 return nullptr; 2389 2390 case Instruction::Or: 2391 return Constant::getAllOnesValue(Ty); 2392 2393 case Instruction::And: 2394 case Instruction::Mul: 2395 return Constant::getNullValue(Ty); 2396 } 2397 } 2398 2399 /// Remove the constant from the constant table. 2400 void ConstantExpr::destroyConstantImpl() { 2401 getType()->getContext().pImpl->ExprConstants.remove(this); 2402 } 2403 2404 const char *ConstantExpr::getOpcodeName() const { 2405 return Instruction::getOpcodeName(getOpcode()); 2406 } 2407 2408 GetElementPtrConstantExpr::GetElementPtrConstantExpr( 2409 Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy) 2410 : ConstantExpr(DestTy, Instruction::GetElementPtr, 2411 OperandTraits<GetElementPtrConstantExpr>::op_end(this) - 2412 (IdxList.size() + 1), 2413 IdxList.size() + 1), 2414 SrcElementTy(SrcElementTy), 2415 ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) { 2416 Op<0>() = C; 2417 Use *OperandList = getOperandList(); 2418 for (unsigned i = 0, E = IdxList.size(); i != E; ++i) 2419 OperandList[i+1] = IdxList[i]; 2420 } 2421 2422 Type *GetElementPtrConstantExpr::getSourceElementType() const { 2423 return SrcElementTy; 2424 } 2425 2426 Type *GetElementPtrConstantExpr::getResultElementType() const { 2427 return ResElementTy; 2428 } 2429 2430 //===----------------------------------------------------------------------===// 2431 // ConstantData* implementations 2432 2433 Type *ConstantDataSequential::getElementType() const { 2434 return getType()->getElementType(); 2435 } 2436 2437 StringRef ConstantDataSequential::getRawDataValues() const { 2438 return StringRef(DataElements, getNumElements()*getElementByteSize()); 2439 } 2440 2441 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) { 2442 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) return true; 2443 if (auto *IT = dyn_cast<IntegerType>(Ty)) { 2444 switch (IT->getBitWidth()) { 2445 case 8: 2446 case 16: 2447 case 32: 2448 case 64: 2449 return true; 2450 default: break; 2451 } 2452 } 2453 return false; 2454 } 2455 2456 unsigned ConstantDataSequential::getNumElements() const { 2457 if (ArrayType *AT = dyn_cast<ArrayType>(getType())) 2458 return AT->getNumElements(); 2459 return getType()->getVectorNumElements(); 2460 } 2461 2462 2463 uint64_t ConstantDataSequential::getElementByteSize() const { 2464 return getElementType()->getPrimitiveSizeInBits()/8; 2465 } 2466 2467 /// Return the start of the specified element. 2468 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const { 2469 assert(Elt < getNumElements() && "Invalid Elt"); 2470 return DataElements+Elt*getElementByteSize(); 2471 } 2472 2473 2474 /// Return true if the array is empty or all zeros. 2475 static bool isAllZeros(StringRef Arr) { 2476 for (char I : Arr) 2477 if (I != 0) 2478 return false; 2479 return true; 2480 } 2481 2482 /// This is the underlying implementation of all of the 2483 /// ConstantDataSequential::get methods. They all thunk down to here, providing 2484 /// the correct element type. We take the bytes in as a StringRef because 2485 /// we *want* an underlying "char*" to avoid TBAA type punning violations. 2486 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) { 2487 assert(isElementTypeCompatible(Ty->getSequentialElementType())); 2488 // If the elements are all zero or there are no elements, return a CAZ, which 2489 // is more dense and canonical. 2490 if (isAllZeros(Elements)) 2491 return ConstantAggregateZero::get(Ty); 2492 2493 // Do a lookup to see if we have already formed one of these. 2494 auto &Slot = 2495 *Ty->getContext() 2496 .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr)) 2497 .first; 2498 2499 // The bucket can point to a linked list of different CDS's that have the same 2500 // body but different types. For example, 0,0,0,1 could be a 4 element array 2501 // of i8, or a 1-element array of i32. They'll both end up in the same 2502 /// StringMap bucket, linked up by their Next pointers. Walk the list. 2503 ConstantDataSequential **Entry = &Slot.second; 2504 for (ConstantDataSequential *Node = *Entry; Node; 2505 Entry = &Node->Next, Node = *Entry) 2506 if (Node->getType() == Ty) 2507 return Node; 2508 2509 // Okay, we didn't get a hit. Create a node of the right class, link it in, 2510 // and return it. 2511 if (isa<ArrayType>(Ty)) 2512 return *Entry = new ConstantDataArray(Ty, Slot.first().data()); 2513 2514 assert(isa<VectorType>(Ty)); 2515 return *Entry = new ConstantDataVector(Ty, Slot.first().data()); 2516 } 2517 2518 void ConstantDataSequential::destroyConstantImpl() { 2519 // Remove the constant from the StringMap. 2520 StringMap<ConstantDataSequential*> &CDSConstants = 2521 getType()->getContext().pImpl->CDSConstants; 2522 2523 StringMap<ConstantDataSequential*>::iterator Slot = 2524 CDSConstants.find(getRawDataValues()); 2525 2526 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table"); 2527 2528 ConstantDataSequential **Entry = &Slot->getValue(); 2529 2530 // Remove the entry from the hash table. 2531 if (!(*Entry)->Next) { 2532 // If there is only one value in the bucket (common case) it must be this 2533 // entry, and removing the entry should remove the bucket completely. 2534 assert((*Entry) == this && "Hash mismatch in ConstantDataSequential"); 2535 getContext().pImpl->CDSConstants.erase(Slot); 2536 } else { 2537 // Otherwise, there are multiple entries linked off the bucket, unlink the 2538 // node we care about but keep the bucket around. 2539 for (ConstantDataSequential *Node = *Entry; ; 2540 Entry = &Node->Next, Node = *Entry) { 2541 assert(Node && "Didn't find entry in its uniquing hash table!"); 2542 // If we found our entry, unlink it from the list and we're done. 2543 if (Node == this) { 2544 *Entry = Node->Next; 2545 break; 2546 } 2547 } 2548 } 2549 2550 // If we were part of a list, make sure that we don't delete the list that is 2551 // still owned by the uniquing map. 2552 Next = nullptr; 2553 } 2554 2555 /// getFP() constructors - Return a constant with array type with an element 2556 /// count and element type of float with precision matching the number of 2557 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits, 2558 /// double for 64bits) Note that this can return a ConstantAggregateZero 2559 /// object. 2560 Constant *ConstantDataArray::getFP(LLVMContext &Context, 2561 ArrayRef<uint16_t> Elts) { 2562 Type *Ty = ArrayType::get(Type::getHalfTy(Context), Elts.size()); 2563 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2564 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 2565 } 2566 Constant *ConstantDataArray::getFP(LLVMContext &Context, 2567 ArrayRef<uint32_t> Elts) { 2568 Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size()); 2569 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2570 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 2571 } 2572 Constant *ConstantDataArray::getFP(LLVMContext &Context, 2573 ArrayRef<uint64_t> Elts) { 2574 Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size()); 2575 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2576 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 2577 } 2578 2579 Constant *ConstantDataArray::getString(LLVMContext &Context, 2580 StringRef Str, bool AddNull) { 2581 if (!AddNull) { 2582 const uint8_t *Data = Str.bytes_begin(); 2583 return get(Context, makeArrayRef(Data, Str.size())); 2584 } 2585 2586 SmallVector<uint8_t, 64> ElementVals; 2587 ElementVals.append(Str.begin(), Str.end()); 2588 ElementVals.push_back(0); 2589 return get(Context, ElementVals); 2590 } 2591 2592 /// get() constructors - Return a constant with vector type with an element 2593 /// count and element type matching the ArrayRef passed in. Note that this 2594 /// can return a ConstantAggregateZero object. 2595 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){ 2596 Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size()); 2597 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2598 return getImpl(StringRef(Data, Elts.size() * 1), Ty); 2599 } 2600 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ 2601 Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size()); 2602 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2603 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 2604 } 2605 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ 2606 Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size()); 2607 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2608 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 2609 } 2610 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ 2611 Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size()); 2612 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2613 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 2614 } 2615 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) { 2616 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size()); 2617 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2618 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 2619 } 2620 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) { 2621 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size()); 2622 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2623 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 2624 } 2625 2626 /// getFP() constructors - Return a constant with vector type with an element 2627 /// count and element type of float with the precision matching the number of 2628 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits, 2629 /// double for 64bits) Note that this can return a ConstantAggregateZero 2630 /// object. 2631 Constant *ConstantDataVector::getFP(LLVMContext &Context, 2632 ArrayRef<uint16_t> Elts) { 2633 Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size()); 2634 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2635 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 2636 } 2637 Constant *ConstantDataVector::getFP(LLVMContext &Context, 2638 ArrayRef<uint32_t> Elts) { 2639 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size()); 2640 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2641 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 2642 } 2643 Constant *ConstantDataVector::getFP(LLVMContext &Context, 2644 ArrayRef<uint64_t> Elts) { 2645 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size()); 2646 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2647 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 2648 } 2649 2650 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) { 2651 assert(isElementTypeCompatible(V->getType()) && 2652 "Element type not compatible with ConstantData"); 2653 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2654 if (CI->getType()->isIntegerTy(8)) { 2655 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue()); 2656 return get(V->getContext(), Elts); 2657 } 2658 if (CI->getType()->isIntegerTy(16)) { 2659 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue()); 2660 return get(V->getContext(), Elts); 2661 } 2662 if (CI->getType()->isIntegerTy(32)) { 2663 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue()); 2664 return get(V->getContext(), Elts); 2665 } 2666 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type"); 2667 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue()); 2668 return get(V->getContext(), Elts); 2669 } 2670 2671 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2672 if (CFP->getType()->isHalfTy()) { 2673 SmallVector<uint16_t, 16> Elts( 2674 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 2675 return getFP(V->getContext(), Elts); 2676 } 2677 if (CFP->getType()->isFloatTy()) { 2678 SmallVector<uint32_t, 16> Elts( 2679 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 2680 return getFP(V->getContext(), Elts); 2681 } 2682 if (CFP->getType()->isDoubleTy()) { 2683 SmallVector<uint64_t, 16> Elts( 2684 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 2685 return getFP(V->getContext(), Elts); 2686 } 2687 } 2688 return ConstantVector::getSplat(NumElts, V); 2689 } 2690 2691 2692 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { 2693 assert(isa<IntegerType>(getElementType()) && 2694 "Accessor can only be used when element is an integer"); 2695 const char *EltPtr = getElementPointer(Elt); 2696 2697 // The data is stored in host byte order, make sure to cast back to the right 2698 // type to load with the right endianness. 2699 switch (getElementType()->getIntegerBitWidth()) { 2700 default: llvm_unreachable("Invalid bitwidth for CDS"); 2701 case 8: 2702 return *reinterpret_cast<const uint8_t *>(EltPtr); 2703 case 16: 2704 return *reinterpret_cast<const uint16_t *>(EltPtr); 2705 case 32: 2706 return *reinterpret_cast<const uint32_t *>(EltPtr); 2707 case 64: 2708 return *reinterpret_cast<const uint64_t *>(EltPtr); 2709 } 2710 } 2711 2712 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const { 2713 assert(isa<IntegerType>(getElementType()) && 2714 "Accessor can only be used when element is an integer"); 2715 const char *EltPtr = getElementPointer(Elt); 2716 2717 // The data is stored in host byte order, make sure to cast back to the right 2718 // type to load with the right endianness. 2719 switch (getElementType()->getIntegerBitWidth()) { 2720 default: llvm_unreachable("Invalid bitwidth for CDS"); 2721 case 8: { 2722 auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr); 2723 return APInt(8, EltVal); 2724 } 2725 case 16: { 2726 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 2727 return APInt(16, EltVal); 2728 } 2729 case 32: { 2730 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr); 2731 return APInt(32, EltVal); 2732 } 2733 case 64: { 2734 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr); 2735 return APInt(64, EltVal); 2736 } 2737 } 2738 } 2739 2740 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { 2741 const char *EltPtr = getElementPointer(Elt); 2742 2743 switch (getElementType()->getTypeID()) { 2744 default: 2745 llvm_unreachable("Accessor can only be used when element is float/double!"); 2746 case Type::HalfTyID: { 2747 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 2748 return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal)); 2749 } 2750 case Type::FloatTyID: { 2751 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr); 2752 return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal)); 2753 } 2754 case Type::DoubleTyID: { 2755 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr); 2756 return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal)); 2757 } 2758 } 2759 } 2760 2761 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { 2762 assert(getElementType()->isFloatTy() && 2763 "Accessor can only be used when element is a 'float'"); 2764 return *reinterpret_cast<const float *>(getElementPointer(Elt)); 2765 } 2766 2767 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { 2768 assert(getElementType()->isDoubleTy() && 2769 "Accessor can only be used when element is a 'float'"); 2770 return *reinterpret_cast<const double *>(getElementPointer(Elt)); 2771 } 2772 2773 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { 2774 if (getElementType()->isHalfTy() || getElementType()->isFloatTy() || 2775 getElementType()->isDoubleTy()) 2776 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt)); 2777 2778 return ConstantInt::get(getElementType(), getElementAsInteger(Elt)); 2779 } 2780 2781 bool ConstantDataSequential::isString(unsigned CharSize) const { 2782 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize); 2783 } 2784 2785 bool ConstantDataSequential::isCString() const { 2786 if (!isString()) 2787 return false; 2788 2789 StringRef Str = getAsString(); 2790 2791 // The last value must be nul. 2792 if (Str.back() != 0) return false; 2793 2794 // Other elements must be non-nul. 2795 return Str.drop_back().find(0) == StringRef::npos; 2796 } 2797 2798 bool ConstantDataVector::isSplat() const { 2799 const char *Base = getRawDataValues().data(); 2800 2801 // Compare elements 1+ to the 0'th element. 2802 unsigned EltSize = getElementByteSize(); 2803 for (unsigned i = 1, e = getNumElements(); i != e; ++i) 2804 if (memcmp(Base, Base+i*EltSize, EltSize)) 2805 return false; 2806 2807 return true; 2808 } 2809 2810 Constant *ConstantDataVector::getSplatValue() const { 2811 // If they're all the same, return the 0th one as a representative. 2812 return isSplat() ? getElementAsConstant(0) : nullptr; 2813 } 2814 2815 //===----------------------------------------------------------------------===// 2816 // handleOperandChange implementations 2817 2818 /// Update this constant array to change uses of 2819 /// 'From' to be uses of 'To'. This must update the uniquing data structures 2820 /// etc. 2821 /// 2822 /// Note that we intentionally replace all uses of From with To here. Consider 2823 /// a large array that uses 'From' 1000 times. By handling this case all here, 2824 /// ConstantArray::handleOperandChange is only invoked once, and that 2825 /// single invocation handles all 1000 uses. Handling them one at a time would 2826 /// work, but would be really slow because it would have to unique each updated 2827 /// array instance. 2828 /// 2829 void Constant::handleOperandChange(Value *From, Value *To) { 2830 Value *Replacement = nullptr; 2831 switch (getValueID()) { 2832 default: 2833 llvm_unreachable("Not a constant!"); 2834 #define HANDLE_CONSTANT(Name) \ 2835 case Value::Name##Val: \ 2836 Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \ 2837 break; 2838 #include "llvm/IR/Value.def" 2839 } 2840 2841 // If handleOperandChangeImpl returned nullptr, then it handled 2842 // replacing itself and we don't want to delete or replace anything else here. 2843 if (!Replacement) 2844 return; 2845 2846 // I do need to replace this with an existing value. 2847 assert(Replacement != this && "I didn't contain From!"); 2848 2849 // Everyone using this now uses the replacement. 2850 replaceAllUsesWith(Replacement); 2851 2852 // Delete the old constant! 2853 destroyConstant(); 2854 } 2855 2856 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) { 2857 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 2858 Constant *ToC = cast<Constant>(To); 2859 2860 SmallVector<Constant*, 8> Values; 2861 Values.reserve(getNumOperands()); // Build replacement array. 2862 2863 // Fill values with the modified operands of the constant array. Also, 2864 // compute whether this turns into an all-zeros array. 2865 unsigned NumUpdated = 0; 2866 2867 // Keep track of whether all the values in the array are "ToC". 2868 bool AllSame = true; 2869 Use *OperandList = getOperandList(); 2870 unsigned OperandNo = 0; 2871 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { 2872 Constant *Val = cast<Constant>(O->get()); 2873 if (Val == From) { 2874 OperandNo = (O - OperandList); 2875 Val = ToC; 2876 ++NumUpdated; 2877 } 2878 Values.push_back(Val); 2879 AllSame &= Val == ToC; 2880 } 2881 2882 if (AllSame && ToC->isNullValue()) 2883 return ConstantAggregateZero::get(getType()); 2884 2885 if (AllSame && isa<UndefValue>(ToC)) 2886 return UndefValue::get(getType()); 2887 2888 // Check for any other type of constant-folding. 2889 if (Constant *C = getImpl(getType(), Values)) 2890 return C; 2891 2892 // Update to the new value. 2893 return getContext().pImpl->ArrayConstants.replaceOperandsInPlace( 2894 Values, this, From, ToC, NumUpdated, OperandNo); 2895 } 2896 2897 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) { 2898 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 2899 Constant *ToC = cast<Constant>(To); 2900 2901 Use *OperandList = getOperandList(); 2902 2903 SmallVector<Constant*, 8> Values; 2904 Values.reserve(getNumOperands()); // Build replacement struct. 2905 2906 // Fill values with the modified operands of the constant struct. Also, 2907 // compute whether this turns into an all-zeros struct. 2908 unsigned NumUpdated = 0; 2909 bool AllSame = true; 2910 unsigned OperandNo = 0; 2911 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) { 2912 Constant *Val = cast<Constant>(O->get()); 2913 if (Val == From) { 2914 OperandNo = (O - OperandList); 2915 Val = ToC; 2916 ++NumUpdated; 2917 } 2918 Values.push_back(Val); 2919 AllSame &= Val == ToC; 2920 } 2921 2922 if (AllSame && ToC->isNullValue()) 2923 return ConstantAggregateZero::get(getType()); 2924 2925 if (AllSame && isa<UndefValue>(ToC)) 2926 return UndefValue::get(getType()); 2927 2928 // Update to the new value. 2929 return getContext().pImpl->StructConstants.replaceOperandsInPlace( 2930 Values, this, From, ToC, NumUpdated, OperandNo); 2931 } 2932 2933 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) { 2934 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 2935 Constant *ToC = cast<Constant>(To); 2936 2937 SmallVector<Constant*, 8> Values; 2938 Values.reserve(getNumOperands()); // Build replacement array... 2939 unsigned NumUpdated = 0; 2940 unsigned OperandNo = 0; 2941 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2942 Constant *Val = getOperand(i); 2943 if (Val == From) { 2944 OperandNo = i; 2945 ++NumUpdated; 2946 Val = ToC; 2947 } 2948 Values.push_back(Val); 2949 } 2950 2951 if (Constant *C = getImpl(Values)) 2952 return C; 2953 2954 // Update to the new value. 2955 return getContext().pImpl->VectorConstants.replaceOperandsInPlace( 2956 Values, this, From, ToC, NumUpdated, OperandNo); 2957 } 2958 2959 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) { 2960 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); 2961 Constant *To = cast<Constant>(ToV); 2962 2963 SmallVector<Constant*, 8> NewOps; 2964 unsigned NumUpdated = 0; 2965 unsigned OperandNo = 0; 2966 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2967 Constant *Op = getOperand(i); 2968 if (Op == From) { 2969 OperandNo = i; 2970 ++NumUpdated; 2971 Op = To; 2972 } 2973 NewOps.push_back(Op); 2974 } 2975 assert(NumUpdated && "I didn't contain From!"); 2976 2977 if (Constant *C = getWithOperands(NewOps, getType(), true)) 2978 return C; 2979 2980 // Update to the new value. 2981 return getContext().pImpl->ExprConstants.replaceOperandsInPlace( 2982 NewOps, this, From, To, NumUpdated, OperandNo); 2983 } 2984 2985 Instruction *ConstantExpr::getAsInstruction() { 2986 SmallVector<Value *, 4> ValueOperands(op_begin(), op_end()); 2987 ArrayRef<Value*> Ops(ValueOperands); 2988 2989 switch (getOpcode()) { 2990 case Instruction::Trunc: 2991 case Instruction::ZExt: 2992 case Instruction::SExt: 2993 case Instruction::FPTrunc: 2994 case Instruction::FPExt: 2995 case Instruction::UIToFP: 2996 case Instruction::SIToFP: 2997 case Instruction::FPToUI: 2998 case Instruction::FPToSI: 2999 case Instruction::PtrToInt: 3000 case Instruction::IntToPtr: 3001 case Instruction::BitCast: 3002 case Instruction::AddrSpaceCast: 3003 return CastInst::Create((Instruction::CastOps)getOpcode(), 3004 Ops[0], getType()); 3005 case Instruction::Select: 3006 return SelectInst::Create(Ops[0], Ops[1], Ops[2]); 3007 case Instruction::InsertElement: 3008 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]); 3009 case Instruction::ExtractElement: 3010 return ExtractElementInst::Create(Ops[0], Ops[1]); 3011 case Instruction::InsertValue: 3012 return InsertValueInst::Create(Ops[0], Ops[1], getIndices()); 3013 case Instruction::ExtractValue: 3014 return ExtractValueInst::Create(Ops[0], getIndices()); 3015 case Instruction::ShuffleVector: 3016 return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]); 3017 3018 case Instruction::GetElementPtr: { 3019 const auto *GO = cast<GEPOperator>(this); 3020 if (GO->isInBounds()) 3021 return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(), 3022 Ops[0], Ops.slice(1)); 3023 return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0], 3024 Ops.slice(1)); 3025 } 3026 case Instruction::ICmp: 3027 case Instruction::FCmp: 3028 return CmpInst::Create((Instruction::OtherOps)getOpcode(), 3029 (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]); 3030 case Instruction::FNeg: 3031 return UnaryOperator::Create((Instruction::UnaryOps)getOpcode(), Ops[0]); 3032 default: 3033 assert(getNumOperands() == 2 && "Must be binary operator?"); 3034 BinaryOperator *BO = 3035 BinaryOperator::Create((Instruction::BinaryOps)getOpcode(), 3036 Ops[0], Ops[1]); 3037 if (isa<OverflowingBinaryOperator>(BO)) { 3038 BO->setHasNoUnsignedWrap(SubclassOptionalData & 3039 OverflowingBinaryOperator::NoUnsignedWrap); 3040 BO->setHasNoSignedWrap(SubclassOptionalData & 3041 OverflowingBinaryOperator::NoSignedWrap); 3042 } 3043 if (isa<PossiblyExactOperator>(BO)) 3044 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact); 3045 return BO; 3046 } 3047 } 3048