1 //===-- Constants.cpp - Implement Constant nodes --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Constant* classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Constants.h" 14 #include "ConstantFold.h" 15 #include "LLVMContextImpl.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringMap.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/GetElementPtrTypeIterator.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/ManagedStatic.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <algorithm> 32 33 using namespace llvm; 34 using namespace PatternMatch; 35 36 //===----------------------------------------------------------------------===// 37 // Constant Class 38 //===----------------------------------------------------------------------===// 39 40 bool Constant::isNegativeZeroValue() const { 41 // Floating point values have an explicit -0.0 value. 42 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 43 return CFP->isZero() && CFP->isNegative(); 44 45 // Equivalent for a vector of -0.0's. 46 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 47 if (CV->getElementType()->isFloatingPointTy() && CV->isSplat()) 48 if (CV->getElementAsAPFloat(0).isNegZero()) 49 return true; 50 51 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 52 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue())) 53 if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative()) 54 return true; 55 56 // We've already handled true FP case; any other FP vectors can't represent -0.0. 57 if (getType()->isFPOrFPVectorTy()) 58 return false; 59 60 // Otherwise, just use +0.0. 61 return isNullValue(); 62 } 63 64 // Return true iff this constant is positive zero (floating point), negative 65 // zero (floating point), or a null value. 66 bool Constant::isZeroValue() const { 67 // Floating point values have an explicit -0.0 value. 68 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 69 return CFP->isZero(); 70 71 // Equivalent for a vector of -0.0's. 72 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 73 if (CV->getElementType()->isFloatingPointTy() && CV->isSplat()) 74 if (CV->getElementAsAPFloat(0).isZero()) 75 return true; 76 77 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 78 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue())) 79 if (SplatCFP && SplatCFP->isZero()) 80 return true; 81 82 // Otherwise, just use +0.0. 83 return isNullValue(); 84 } 85 86 bool Constant::isNullValue() const { 87 // 0 is null. 88 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 89 return CI->isZero(); 90 91 // +0.0 is null. 92 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 93 return CFP->isZero() && !CFP->isNegative(); 94 95 // constant zero is zero for aggregates, cpnull is null for pointers, none for 96 // tokens. 97 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) || 98 isa<ConstantTokenNone>(this); 99 } 100 101 bool Constant::isAllOnesValue() const { 102 // Check for -1 integers 103 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 104 return CI->isMinusOne(); 105 106 // Check for FP which are bitcasted from -1 integers 107 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 108 return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue(); 109 110 // Check for constant vectors which are splats of -1 values. 111 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 112 if (Constant *Splat = CV->getSplatValue()) 113 return Splat->isAllOnesValue(); 114 115 // Check for constant vectors which are splats of -1 values. 116 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) { 117 if (CV->isSplat()) { 118 if (CV->getElementType()->isFloatingPointTy()) 119 return CV->getElementAsAPFloat(0).bitcastToAPInt().isAllOnesValue(); 120 return CV->getElementAsAPInt(0).isAllOnesValue(); 121 } 122 } 123 124 return false; 125 } 126 127 bool Constant::isOneValue() const { 128 // Check for 1 integers 129 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 130 return CI->isOne(); 131 132 // Check for FP which are bitcasted from 1 integers 133 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 134 return CFP->getValueAPF().bitcastToAPInt().isOneValue(); 135 136 // Check for constant vectors which are splats of 1 values. 137 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 138 if (Constant *Splat = CV->getSplatValue()) 139 return Splat->isOneValue(); 140 141 // Check for constant vectors which are splats of 1 values. 142 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) { 143 if (CV->isSplat()) { 144 if (CV->getElementType()->isFloatingPointTy()) 145 return CV->getElementAsAPFloat(0).bitcastToAPInt().isOneValue(); 146 return CV->getElementAsAPInt(0).isOneValue(); 147 } 148 } 149 150 return false; 151 } 152 153 bool Constant::isNotOneValue() const { 154 // Check for 1 integers 155 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 156 return !CI->isOneValue(); 157 158 // Check for FP which are bitcasted from 1 integers 159 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 160 return !CFP->getValueAPF().bitcastToAPInt().isOneValue(); 161 162 // Check that vectors don't contain 1 163 if (auto *VTy = dyn_cast<VectorType>(this->getType())) { 164 unsigned NumElts = cast<FixedVectorType>(VTy)->getNumElements(); 165 for (unsigned i = 0; i != NumElts; ++i) { 166 Constant *Elt = this->getAggregateElement(i); 167 if (!Elt || !Elt->isNotOneValue()) 168 return false; 169 } 170 return true; 171 } 172 173 // It *may* contain 1, we can't tell. 174 return false; 175 } 176 177 bool Constant::isMinSignedValue() const { 178 // Check for INT_MIN integers 179 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 180 return CI->isMinValue(/*isSigned=*/true); 181 182 // Check for FP which are bitcasted from INT_MIN integers 183 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 184 return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); 185 186 // Check for constant vectors which are splats of INT_MIN values. 187 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 188 if (Constant *Splat = CV->getSplatValue()) 189 return Splat->isMinSignedValue(); 190 191 // Check for constant vectors which are splats of INT_MIN values. 192 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) { 193 if (CV->isSplat()) { 194 if (CV->getElementType()->isFloatingPointTy()) 195 return CV->getElementAsAPFloat(0).bitcastToAPInt().isMinSignedValue(); 196 return CV->getElementAsAPInt(0).isMinSignedValue(); 197 } 198 } 199 200 return false; 201 } 202 203 bool Constant::isNotMinSignedValue() const { 204 // Check for INT_MIN integers 205 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 206 return !CI->isMinValue(/*isSigned=*/true); 207 208 // Check for FP which are bitcasted from INT_MIN integers 209 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 210 return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); 211 212 // Check that vectors don't contain INT_MIN 213 if (auto *VTy = dyn_cast<VectorType>(this->getType())) { 214 unsigned NumElts = cast<FixedVectorType>(VTy)->getNumElements(); 215 for (unsigned i = 0; i != NumElts; ++i) { 216 Constant *Elt = this->getAggregateElement(i); 217 if (!Elt || !Elt->isNotMinSignedValue()) 218 return false; 219 } 220 return true; 221 } 222 223 // It *may* contain INT_MIN, we can't tell. 224 return false; 225 } 226 227 bool Constant::isFiniteNonZeroFP() const { 228 if (auto *CFP = dyn_cast<ConstantFP>(this)) 229 return CFP->getValueAPF().isFiniteNonZero(); 230 auto *VTy = dyn_cast<FixedVectorType>(getType()); 231 if (!VTy) 232 return false; 233 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 234 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i)); 235 if (!CFP || !CFP->getValueAPF().isFiniteNonZero()) 236 return false; 237 } 238 return true; 239 } 240 241 bool Constant::isNormalFP() const { 242 if (auto *CFP = dyn_cast<ConstantFP>(this)) 243 return CFP->getValueAPF().isNormal(); 244 auto *VTy = dyn_cast<FixedVectorType>(getType()); 245 if (!VTy) 246 return false; 247 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 248 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i)); 249 if (!CFP || !CFP->getValueAPF().isNormal()) 250 return false; 251 } 252 return true; 253 } 254 255 bool Constant::hasExactInverseFP() const { 256 if (auto *CFP = dyn_cast<ConstantFP>(this)) 257 return CFP->getValueAPF().getExactInverse(nullptr); 258 auto *VTy = dyn_cast<FixedVectorType>(getType()); 259 if (!VTy) 260 return false; 261 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 262 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i)); 263 if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr)) 264 return false; 265 } 266 return true; 267 } 268 269 bool Constant::isNaN() const { 270 if (auto *CFP = dyn_cast<ConstantFP>(this)) 271 return CFP->isNaN(); 272 auto *VTy = dyn_cast<FixedVectorType>(getType()); 273 if (!VTy) 274 return false; 275 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 276 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i)); 277 if (!CFP || !CFP->isNaN()) 278 return false; 279 } 280 return true; 281 } 282 283 bool Constant::isElementWiseEqual(Value *Y) const { 284 // Are they fully identical? 285 if (this == Y) 286 return true; 287 288 // The input value must be a vector constant with the same type. 289 auto *VTy = dyn_cast<VectorType>(getType()); 290 if (!isa<Constant>(Y) || !VTy || VTy != Y->getType()) 291 return false; 292 293 // TODO: Compare pointer constants? 294 if (!(VTy->getElementType()->isIntegerTy() || 295 VTy->getElementType()->isFloatingPointTy())) 296 return false; 297 298 // They may still be identical element-wise (if they have `undef`s). 299 // Bitcast to integer to allow exact bitwise comparison for all types. 300 Type *IntTy = VectorType::getInteger(VTy); 301 Constant *C0 = ConstantExpr::getBitCast(const_cast<Constant *>(this), IntTy); 302 Constant *C1 = ConstantExpr::getBitCast(cast<Constant>(Y), IntTy); 303 Constant *CmpEq = ConstantExpr::getICmp(ICmpInst::ICMP_EQ, C0, C1); 304 return isa<UndefValue>(CmpEq) || match(CmpEq, m_One()); 305 } 306 307 static bool 308 containsUndefinedElement(const Constant *C, 309 function_ref<bool(const Constant *)> HasFn) { 310 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 311 if (HasFn(C)) 312 return true; 313 if (isa<ConstantAggregateZero>(C)) 314 return false; 315 if (isa<ScalableVectorType>(C->getType())) 316 return false; 317 318 for (unsigned i = 0, e = cast<FixedVectorType>(VTy)->getNumElements(); 319 i != e; ++i) 320 if (HasFn(C->getAggregateElement(i))) 321 return true; 322 } 323 324 return false; 325 } 326 327 bool Constant::containsUndefOrPoisonElement() const { 328 return containsUndefinedElement( 329 this, [&](const auto *C) { return isa<UndefValue>(C); }); 330 } 331 332 bool Constant::containsPoisonElement() const { 333 return containsUndefinedElement( 334 this, [&](const auto *C) { return isa<PoisonValue>(C); }); 335 } 336 337 bool Constant::containsConstantExpression() const { 338 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 339 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 340 if (isa<ConstantExpr>(getAggregateElement(i))) 341 return true; 342 } 343 return false; 344 } 345 346 /// Constructor to create a '0' constant of arbitrary type. 347 Constant *Constant::getNullValue(Type *Ty) { 348 switch (Ty->getTypeID()) { 349 case Type::IntegerTyID: 350 return ConstantInt::get(Ty, 0); 351 case Type::HalfTyID: 352 return ConstantFP::get(Ty->getContext(), 353 APFloat::getZero(APFloat::IEEEhalf())); 354 case Type::BFloatTyID: 355 return ConstantFP::get(Ty->getContext(), 356 APFloat::getZero(APFloat::BFloat())); 357 case Type::FloatTyID: 358 return ConstantFP::get(Ty->getContext(), 359 APFloat::getZero(APFloat::IEEEsingle())); 360 case Type::DoubleTyID: 361 return ConstantFP::get(Ty->getContext(), 362 APFloat::getZero(APFloat::IEEEdouble())); 363 case Type::X86_FP80TyID: 364 return ConstantFP::get(Ty->getContext(), 365 APFloat::getZero(APFloat::x87DoubleExtended())); 366 case Type::FP128TyID: 367 return ConstantFP::get(Ty->getContext(), 368 APFloat::getZero(APFloat::IEEEquad())); 369 case Type::PPC_FP128TyID: 370 return ConstantFP::get(Ty->getContext(), 371 APFloat(APFloat::PPCDoubleDouble(), 372 APInt::getNullValue(128))); 373 case Type::PointerTyID: 374 return ConstantPointerNull::get(cast<PointerType>(Ty)); 375 case Type::StructTyID: 376 case Type::ArrayTyID: 377 case Type::FixedVectorTyID: 378 case Type::ScalableVectorTyID: 379 return ConstantAggregateZero::get(Ty); 380 case Type::TokenTyID: 381 return ConstantTokenNone::get(Ty->getContext()); 382 default: 383 // Function, Label, or Opaque type? 384 llvm_unreachable("Cannot create a null constant of that type!"); 385 } 386 } 387 388 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { 389 Type *ScalarTy = Ty->getScalarType(); 390 391 // Create the base integer constant. 392 Constant *C = ConstantInt::get(Ty->getContext(), V); 393 394 // Convert an integer to a pointer, if necessary. 395 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy)) 396 C = ConstantExpr::getIntToPtr(C, PTy); 397 398 // Broadcast a scalar to a vector, if necessary. 399 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 400 C = ConstantVector::getSplat(VTy->getElementCount(), C); 401 402 return C; 403 } 404 405 Constant *Constant::getAllOnesValue(Type *Ty) { 406 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) 407 return ConstantInt::get(Ty->getContext(), 408 APInt::getAllOnesValue(ITy->getBitWidth())); 409 410 if (Ty->isFloatingPointTy()) { 411 APFloat FL = APFloat::getAllOnesValue(Ty->getFltSemantics(), 412 Ty->getPrimitiveSizeInBits()); 413 return ConstantFP::get(Ty->getContext(), FL); 414 } 415 416 VectorType *VTy = cast<VectorType>(Ty); 417 return ConstantVector::getSplat(VTy->getElementCount(), 418 getAllOnesValue(VTy->getElementType())); 419 } 420 421 Constant *Constant::getAggregateElement(unsigned Elt) const { 422 if (const auto *CC = dyn_cast<ConstantAggregate>(this)) 423 return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr; 424 425 // FIXME: getNumElements() will fail for non-fixed vector types. 426 if (isa<ScalableVectorType>(getType())) 427 return nullptr; 428 429 if (const auto *CAZ = dyn_cast<ConstantAggregateZero>(this)) 430 return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr; 431 432 if (const auto *PV = dyn_cast<PoisonValue>(this)) 433 return Elt < PV->getNumElements() ? PV->getElementValue(Elt) : nullptr; 434 435 if (const auto *UV = dyn_cast<UndefValue>(this)) 436 return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr; 437 438 if (const auto *CDS = dyn_cast<ConstantDataSequential>(this)) 439 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) 440 : nullptr; 441 return nullptr; 442 } 443 444 Constant *Constant::getAggregateElement(Constant *Elt) const { 445 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer"); 446 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) { 447 // Check if the constant fits into an uint64_t. 448 if (CI->getValue().getActiveBits() > 64) 449 return nullptr; 450 return getAggregateElement(CI->getZExtValue()); 451 } 452 return nullptr; 453 } 454 455 void Constant::destroyConstant() { 456 /// First call destroyConstantImpl on the subclass. This gives the subclass 457 /// a chance to remove the constant from any maps/pools it's contained in. 458 switch (getValueID()) { 459 default: 460 llvm_unreachable("Not a constant!"); 461 #define HANDLE_CONSTANT(Name) \ 462 case Value::Name##Val: \ 463 cast<Name>(this)->destroyConstantImpl(); \ 464 break; 465 #include "llvm/IR/Value.def" 466 } 467 468 // When a Constant is destroyed, there may be lingering 469 // references to the constant by other constants in the constant pool. These 470 // constants are implicitly dependent on the module that is being deleted, 471 // but they don't know that. Because we only find out when the CPV is 472 // deleted, we must now notify all of our users (that should only be 473 // Constants) that they are, in fact, invalid now and should be deleted. 474 // 475 while (!use_empty()) { 476 Value *V = user_back(); 477 #ifndef NDEBUG // Only in -g mode... 478 if (!isa<Constant>(V)) { 479 dbgs() << "While deleting: " << *this 480 << "\n\nUse still stuck around after Def is destroyed: " << *V 481 << "\n\n"; 482 } 483 #endif 484 assert(isa<Constant>(V) && "References remain to Constant being destroyed"); 485 cast<Constant>(V)->destroyConstant(); 486 487 // The constant should remove itself from our use list... 488 assert((use_empty() || user_back() != V) && "Constant not removed!"); 489 } 490 491 // Value has no outstanding references it is safe to delete it now... 492 deleteConstant(this); 493 } 494 495 void llvm::deleteConstant(Constant *C) { 496 switch (C->getValueID()) { 497 case Constant::ConstantIntVal: 498 delete static_cast<ConstantInt *>(C); 499 break; 500 case Constant::ConstantFPVal: 501 delete static_cast<ConstantFP *>(C); 502 break; 503 case Constant::ConstantAggregateZeroVal: 504 delete static_cast<ConstantAggregateZero *>(C); 505 break; 506 case Constant::ConstantArrayVal: 507 delete static_cast<ConstantArray *>(C); 508 break; 509 case Constant::ConstantStructVal: 510 delete static_cast<ConstantStruct *>(C); 511 break; 512 case Constant::ConstantVectorVal: 513 delete static_cast<ConstantVector *>(C); 514 break; 515 case Constant::ConstantPointerNullVal: 516 delete static_cast<ConstantPointerNull *>(C); 517 break; 518 case Constant::ConstantDataArrayVal: 519 delete static_cast<ConstantDataArray *>(C); 520 break; 521 case Constant::ConstantDataVectorVal: 522 delete static_cast<ConstantDataVector *>(C); 523 break; 524 case Constant::ConstantTokenNoneVal: 525 delete static_cast<ConstantTokenNone *>(C); 526 break; 527 case Constant::BlockAddressVal: 528 delete static_cast<BlockAddress *>(C); 529 break; 530 case Constant::DSOLocalEquivalentVal: 531 delete static_cast<DSOLocalEquivalent *>(C); 532 break; 533 case Constant::UndefValueVal: 534 delete static_cast<UndefValue *>(C); 535 break; 536 case Constant::PoisonValueVal: 537 delete static_cast<PoisonValue *>(C); 538 break; 539 case Constant::ConstantExprVal: 540 if (isa<UnaryConstantExpr>(C)) 541 delete static_cast<UnaryConstantExpr *>(C); 542 else if (isa<BinaryConstantExpr>(C)) 543 delete static_cast<BinaryConstantExpr *>(C); 544 else if (isa<SelectConstantExpr>(C)) 545 delete static_cast<SelectConstantExpr *>(C); 546 else if (isa<ExtractElementConstantExpr>(C)) 547 delete static_cast<ExtractElementConstantExpr *>(C); 548 else if (isa<InsertElementConstantExpr>(C)) 549 delete static_cast<InsertElementConstantExpr *>(C); 550 else if (isa<ShuffleVectorConstantExpr>(C)) 551 delete static_cast<ShuffleVectorConstantExpr *>(C); 552 else if (isa<ExtractValueConstantExpr>(C)) 553 delete static_cast<ExtractValueConstantExpr *>(C); 554 else if (isa<InsertValueConstantExpr>(C)) 555 delete static_cast<InsertValueConstantExpr *>(C); 556 else if (isa<GetElementPtrConstantExpr>(C)) 557 delete static_cast<GetElementPtrConstantExpr *>(C); 558 else if (isa<CompareConstantExpr>(C)) 559 delete static_cast<CompareConstantExpr *>(C); 560 else 561 llvm_unreachable("Unexpected constant expr"); 562 break; 563 default: 564 llvm_unreachable("Unexpected constant"); 565 } 566 } 567 568 static bool canTrapImpl(const Constant *C, 569 SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) { 570 assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); 571 // The only thing that could possibly trap are constant exprs. 572 const ConstantExpr *CE = dyn_cast<ConstantExpr>(C); 573 if (!CE) 574 return false; 575 576 // ConstantExpr traps if any operands can trap. 577 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { 578 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) { 579 if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps)) 580 return true; 581 } 582 } 583 584 // Otherwise, only specific operations can trap. 585 switch (CE->getOpcode()) { 586 default: 587 return false; 588 case Instruction::UDiv: 589 case Instruction::SDiv: 590 case Instruction::URem: 591 case Instruction::SRem: 592 // Div and rem can trap if the RHS is not known to be non-zero. 593 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue()) 594 return true; 595 return false; 596 } 597 } 598 599 bool Constant::canTrap() const { 600 SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps; 601 return canTrapImpl(this, NonTrappingOps); 602 } 603 604 /// Check if C contains a GlobalValue for which Predicate is true. 605 static bool 606 ConstHasGlobalValuePredicate(const Constant *C, 607 bool (*Predicate)(const GlobalValue *)) { 608 SmallPtrSet<const Constant *, 8> Visited; 609 SmallVector<const Constant *, 8> WorkList; 610 WorkList.push_back(C); 611 Visited.insert(C); 612 613 while (!WorkList.empty()) { 614 const Constant *WorkItem = WorkList.pop_back_val(); 615 if (const auto *GV = dyn_cast<GlobalValue>(WorkItem)) 616 if (Predicate(GV)) 617 return true; 618 for (const Value *Op : WorkItem->operands()) { 619 const Constant *ConstOp = dyn_cast<Constant>(Op); 620 if (!ConstOp) 621 continue; 622 if (Visited.insert(ConstOp).second) 623 WorkList.push_back(ConstOp); 624 } 625 } 626 return false; 627 } 628 629 bool Constant::isThreadDependent() const { 630 auto DLLImportPredicate = [](const GlobalValue *GV) { 631 return GV->isThreadLocal(); 632 }; 633 return ConstHasGlobalValuePredicate(this, DLLImportPredicate); 634 } 635 636 bool Constant::isDLLImportDependent() const { 637 auto DLLImportPredicate = [](const GlobalValue *GV) { 638 return GV->hasDLLImportStorageClass(); 639 }; 640 return ConstHasGlobalValuePredicate(this, DLLImportPredicate); 641 } 642 643 bool Constant::isConstantUsed() const { 644 for (const User *U : users()) { 645 const Constant *UC = dyn_cast<Constant>(U); 646 if (!UC || isa<GlobalValue>(UC)) 647 return true; 648 649 if (UC->isConstantUsed()) 650 return true; 651 } 652 return false; 653 } 654 655 bool Constant::needsRelocation() const { 656 if (isa<GlobalValue>(this)) 657 return true; // Global reference. 658 659 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this)) 660 return BA->getFunction()->needsRelocation(); 661 662 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) { 663 if (CE->getOpcode() == Instruction::Sub) { 664 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0)); 665 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1)); 666 if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt && 667 RHS->getOpcode() == Instruction::PtrToInt) { 668 Constant *LHSOp0 = LHS->getOperand(0); 669 Constant *RHSOp0 = RHS->getOperand(0); 670 671 // While raw uses of blockaddress need to be relocated, differences 672 // between two of them don't when they are for labels in the same 673 // function. This is a common idiom when creating a table for the 674 // indirect goto extension, so we handle it efficiently here. 675 if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) && 676 cast<BlockAddress>(LHSOp0)->getFunction() == 677 cast<BlockAddress>(RHSOp0)->getFunction()) 678 return false; 679 680 // Relative pointers do not need to be dynamically relocated. 681 if (auto *RHSGV = 682 dyn_cast<GlobalValue>(RHSOp0->stripInBoundsConstantOffsets())) { 683 auto *LHS = LHSOp0->stripInBoundsConstantOffsets(); 684 if (auto *LHSGV = dyn_cast<GlobalValue>(LHS)) { 685 if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal()) 686 return false; 687 } else if (isa<DSOLocalEquivalent>(LHS)) { 688 if (RHSGV->isDSOLocal()) 689 return false; 690 } 691 } 692 } 693 } 694 } 695 696 bool Result = false; 697 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 698 Result |= cast<Constant>(getOperand(i))->needsRelocation(); 699 700 return Result; 701 } 702 703 /// If the specified constantexpr is dead, remove it. This involves recursively 704 /// eliminating any dead users of the constantexpr. 705 static bool removeDeadUsersOfConstant(const Constant *C) { 706 if (isa<GlobalValue>(C)) return false; // Cannot remove this 707 708 while (!C->use_empty()) { 709 const Constant *User = dyn_cast<Constant>(C->user_back()); 710 if (!User) return false; // Non-constant usage; 711 if (!removeDeadUsersOfConstant(User)) 712 return false; // Constant wasn't dead 713 } 714 715 const_cast<Constant*>(C)->destroyConstant(); 716 return true; 717 } 718 719 720 void Constant::removeDeadConstantUsers() const { 721 Value::const_user_iterator I = user_begin(), E = user_end(); 722 Value::const_user_iterator LastNonDeadUser = E; 723 while (I != E) { 724 const Constant *User = dyn_cast<Constant>(*I); 725 if (!User) { 726 LastNonDeadUser = I; 727 ++I; 728 continue; 729 } 730 731 if (!removeDeadUsersOfConstant(User)) { 732 // If the constant wasn't dead, remember that this was the last live use 733 // and move on to the next constant. 734 LastNonDeadUser = I; 735 ++I; 736 continue; 737 } 738 739 // If the constant was dead, then the iterator is invalidated. 740 if (LastNonDeadUser == E) 741 I = user_begin(); 742 else 743 I = std::next(LastNonDeadUser); 744 } 745 } 746 747 Constant *Constant::replaceUndefsWith(Constant *C, Constant *Replacement) { 748 assert(C && Replacement && "Expected non-nullptr constant arguments"); 749 Type *Ty = C->getType(); 750 if (match(C, m_Undef())) { 751 assert(Ty == Replacement->getType() && "Expected matching types"); 752 return Replacement; 753 } 754 755 // Don't know how to deal with this constant. 756 auto *VTy = dyn_cast<FixedVectorType>(Ty); 757 if (!VTy) 758 return C; 759 760 unsigned NumElts = VTy->getNumElements(); 761 SmallVector<Constant *, 32> NewC(NumElts); 762 for (unsigned i = 0; i != NumElts; ++i) { 763 Constant *EltC = C->getAggregateElement(i); 764 assert((!EltC || EltC->getType() == Replacement->getType()) && 765 "Expected matching types"); 766 NewC[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC; 767 } 768 return ConstantVector::get(NewC); 769 } 770 771 Constant *Constant::mergeUndefsWith(Constant *C, Constant *Other) { 772 assert(C && Other && "Expected non-nullptr constant arguments"); 773 if (match(C, m_Undef())) 774 return C; 775 776 Type *Ty = C->getType(); 777 if (match(Other, m_Undef())) 778 return UndefValue::get(Ty); 779 780 auto *VTy = dyn_cast<FixedVectorType>(Ty); 781 if (!VTy) 782 return C; 783 784 Type *EltTy = VTy->getElementType(); 785 unsigned NumElts = VTy->getNumElements(); 786 assert(isa<FixedVectorType>(Other->getType()) && 787 cast<FixedVectorType>(Other->getType())->getNumElements() == NumElts && 788 "Type mismatch"); 789 790 bool FoundExtraUndef = false; 791 SmallVector<Constant *, 32> NewC(NumElts); 792 for (unsigned I = 0; I != NumElts; ++I) { 793 NewC[I] = C->getAggregateElement(I); 794 Constant *OtherEltC = Other->getAggregateElement(I); 795 assert(NewC[I] && OtherEltC && "Unknown vector element"); 796 if (!match(NewC[I], m_Undef()) && match(OtherEltC, m_Undef())) { 797 NewC[I] = UndefValue::get(EltTy); 798 FoundExtraUndef = true; 799 } 800 } 801 if (FoundExtraUndef) 802 return ConstantVector::get(NewC); 803 return C; 804 } 805 806 //===----------------------------------------------------------------------===// 807 // ConstantInt 808 //===----------------------------------------------------------------------===// 809 810 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V) 811 : ConstantData(Ty, ConstantIntVal), Val(V) { 812 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); 813 } 814 815 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) { 816 LLVMContextImpl *pImpl = Context.pImpl; 817 if (!pImpl->TheTrueVal) 818 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1); 819 return pImpl->TheTrueVal; 820 } 821 822 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { 823 LLVMContextImpl *pImpl = Context.pImpl; 824 if (!pImpl->TheFalseVal) 825 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0); 826 return pImpl->TheFalseVal; 827 } 828 829 ConstantInt *ConstantInt::getBool(LLVMContext &Context, bool V) { 830 return V ? getTrue(Context) : getFalse(Context); 831 } 832 833 Constant *ConstantInt::getTrue(Type *Ty) { 834 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); 835 ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext()); 836 if (auto *VTy = dyn_cast<VectorType>(Ty)) 837 return ConstantVector::getSplat(VTy->getElementCount(), TrueC); 838 return TrueC; 839 } 840 841 Constant *ConstantInt::getFalse(Type *Ty) { 842 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); 843 ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext()); 844 if (auto *VTy = dyn_cast<VectorType>(Ty)) 845 return ConstantVector::getSplat(VTy->getElementCount(), FalseC); 846 return FalseC; 847 } 848 849 Constant *ConstantInt::getBool(Type *Ty, bool V) { 850 return V ? getTrue(Ty) : getFalse(Ty); 851 } 852 853 // Get a ConstantInt from an APInt. 854 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { 855 // get an existing value or the insertion position 856 LLVMContextImpl *pImpl = Context.pImpl; 857 std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V]; 858 if (!Slot) { 859 // Get the corresponding integer type for the bit width of the value. 860 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); 861 Slot.reset(new ConstantInt(ITy, V)); 862 } 863 assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth())); 864 return Slot.get(); 865 } 866 867 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { 868 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned); 869 870 // For vectors, broadcast the value. 871 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 872 return ConstantVector::getSplat(VTy->getElementCount(), C); 873 874 return C; 875 } 876 877 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) { 878 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); 879 } 880 881 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) { 882 return get(Ty, V, true); 883 } 884 885 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) { 886 return get(Ty, V, true); 887 } 888 889 Constant *ConstantInt::get(Type *Ty, const APInt& V) { 890 ConstantInt *C = get(Ty->getContext(), V); 891 assert(C->getType() == Ty->getScalarType() && 892 "ConstantInt type doesn't match the type implied by its value!"); 893 894 // For vectors, broadcast the value. 895 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 896 return ConstantVector::getSplat(VTy->getElementCount(), C); 897 898 return C; 899 } 900 901 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) { 902 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); 903 } 904 905 /// Remove the constant from the constant table. 906 void ConstantInt::destroyConstantImpl() { 907 llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!"); 908 } 909 910 //===----------------------------------------------------------------------===// 911 // ConstantFP 912 //===----------------------------------------------------------------------===// 913 914 Constant *ConstantFP::get(Type *Ty, double V) { 915 LLVMContext &Context = Ty->getContext(); 916 917 APFloat FV(V); 918 bool ignored; 919 FV.convert(Ty->getScalarType()->getFltSemantics(), 920 APFloat::rmNearestTiesToEven, &ignored); 921 Constant *C = get(Context, FV); 922 923 // For vectors, broadcast the value. 924 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 925 return ConstantVector::getSplat(VTy->getElementCount(), C); 926 927 return C; 928 } 929 930 Constant *ConstantFP::get(Type *Ty, const APFloat &V) { 931 ConstantFP *C = get(Ty->getContext(), V); 932 assert(C->getType() == Ty->getScalarType() && 933 "ConstantFP type doesn't match the type implied by its value!"); 934 935 // For vectors, broadcast the value. 936 if (auto *VTy = dyn_cast<VectorType>(Ty)) 937 return ConstantVector::getSplat(VTy->getElementCount(), C); 938 939 return C; 940 } 941 942 Constant *ConstantFP::get(Type *Ty, StringRef Str) { 943 LLVMContext &Context = Ty->getContext(); 944 945 APFloat FV(Ty->getScalarType()->getFltSemantics(), Str); 946 Constant *C = get(Context, FV); 947 948 // For vectors, broadcast the value. 949 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 950 return ConstantVector::getSplat(VTy->getElementCount(), C); 951 952 return C; 953 } 954 955 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) { 956 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 957 APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload); 958 Constant *C = get(Ty->getContext(), NaN); 959 960 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 961 return ConstantVector::getSplat(VTy->getElementCount(), C); 962 963 return C; 964 } 965 966 Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) { 967 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 968 APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload); 969 Constant *C = get(Ty->getContext(), NaN); 970 971 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 972 return ConstantVector::getSplat(VTy->getElementCount(), C); 973 974 return C; 975 } 976 977 Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) { 978 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 979 APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload); 980 Constant *C = get(Ty->getContext(), NaN); 981 982 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 983 return ConstantVector::getSplat(VTy->getElementCount(), C); 984 985 return C; 986 } 987 988 Constant *ConstantFP::getNegativeZero(Type *Ty) { 989 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 990 APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true); 991 Constant *C = get(Ty->getContext(), NegZero); 992 993 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 994 return ConstantVector::getSplat(VTy->getElementCount(), C); 995 996 return C; 997 } 998 999 1000 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) { 1001 if (Ty->isFPOrFPVectorTy()) 1002 return getNegativeZero(Ty); 1003 1004 return Constant::getNullValue(Ty); 1005 } 1006 1007 1008 // ConstantFP accessors. 1009 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { 1010 LLVMContextImpl* pImpl = Context.pImpl; 1011 1012 std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V]; 1013 1014 if (!Slot) { 1015 Type *Ty = Type::getFloatingPointTy(Context, V.getSemantics()); 1016 Slot.reset(new ConstantFP(Ty, V)); 1017 } 1018 1019 return Slot.get(); 1020 } 1021 1022 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) { 1023 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 1024 Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative)); 1025 1026 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1027 return ConstantVector::getSplat(VTy->getElementCount(), C); 1028 1029 return C; 1030 } 1031 1032 ConstantFP::ConstantFP(Type *Ty, const APFloat &V) 1033 : ConstantData(Ty, ConstantFPVal), Val(V) { 1034 assert(&V.getSemantics() == &Ty->getFltSemantics() && 1035 "FP type Mismatch"); 1036 } 1037 1038 bool ConstantFP::isExactlyValue(const APFloat &V) const { 1039 return Val.bitwiseIsEqual(V); 1040 } 1041 1042 /// Remove the constant from the constant table. 1043 void ConstantFP::destroyConstantImpl() { 1044 llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!"); 1045 } 1046 1047 //===----------------------------------------------------------------------===// 1048 // ConstantAggregateZero Implementation 1049 //===----------------------------------------------------------------------===// 1050 1051 Constant *ConstantAggregateZero::getSequentialElement() const { 1052 if (auto *AT = dyn_cast<ArrayType>(getType())) 1053 return Constant::getNullValue(AT->getElementType()); 1054 return Constant::getNullValue(cast<VectorType>(getType())->getElementType()); 1055 } 1056 1057 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const { 1058 return Constant::getNullValue(getType()->getStructElementType(Elt)); 1059 } 1060 1061 Constant *ConstantAggregateZero::getElementValue(Constant *C) const { 1062 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1063 return getSequentialElement(); 1064 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 1065 } 1066 1067 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const { 1068 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1069 return getSequentialElement(); 1070 return getStructElement(Idx); 1071 } 1072 1073 unsigned ConstantAggregateZero::getNumElements() const { 1074 Type *Ty = getType(); 1075 if (auto *AT = dyn_cast<ArrayType>(Ty)) 1076 return AT->getNumElements(); 1077 if (auto *VT = dyn_cast<VectorType>(Ty)) 1078 return cast<FixedVectorType>(VT)->getNumElements(); 1079 return Ty->getStructNumElements(); 1080 } 1081 1082 //===----------------------------------------------------------------------===// 1083 // UndefValue Implementation 1084 //===----------------------------------------------------------------------===// 1085 1086 UndefValue *UndefValue::getSequentialElement() const { 1087 if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) 1088 return UndefValue::get(ATy->getElementType()); 1089 return UndefValue::get(cast<VectorType>(getType())->getElementType()); 1090 } 1091 1092 UndefValue *UndefValue::getStructElement(unsigned Elt) const { 1093 return UndefValue::get(getType()->getStructElementType(Elt)); 1094 } 1095 1096 UndefValue *UndefValue::getElementValue(Constant *C) const { 1097 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1098 return getSequentialElement(); 1099 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 1100 } 1101 1102 UndefValue *UndefValue::getElementValue(unsigned Idx) const { 1103 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1104 return getSequentialElement(); 1105 return getStructElement(Idx); 1106 } 1107 1108 unsigned UndefValue::getNumElements() const { 1109 Type *Ty = getType(); 1110 if (auto *AT = dyn_cast<ArrayType>(Ty)) 1111 return AT->getNumElements(); 1112 if (auto *VT = dyn_cast<VectorType>(Ty)) 1113 return cast<FixedVectorType>(VT)->getNumElements(); 1114 return Ty->getStructNumElements(); 1115 } 1116 1117 //===----------------------------------------------------------------------===// 1118 // PoisonValue Implementation 1119 //===----------------------------------------------------------------------===// 1120 1121 PoisonValue *PoisonValue::getSequentialElement() const { 1122 if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) 1123 return PoisonValue::get(ATy->getElementType()); 1124 return PoisonValue::get(cast<VectorType>(getType())->getElementType()); 1125 } 1126 1127 PoisonValue *PoisonValue::getStructElement(unsigned Elt) const { 1128 return PoisonValue::get(getType()->getStructElementType(Elt)); 1129 } 1130 1131 PoisonValue *PoisonValue::getElementValue(Constant *C) const { 1132 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1133 return getSequentialElement(); 1134 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 1135 } 1136 1137 PoisonValue *PoisonValue::getElementValue(unsigned Idx) const { 1138 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1139 return getSequentialElement(); 1140 return getStructElement(Idx); 1141 } 1142 1143 //===----------------------------------------------------------------------===// 1144 // ConstantXXX Classes 1145 //===----------------------------------------------------------------------===// 1146 1147 template <typename ItTy, typename EltTy> 1148 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) { 1149 for (; Start != End; ++Start) 1150 if (*Start != Elt) 1151 return false; 1152 return true; 1153 } 1154 1155 template <typename SequentialTy, typename ElementTy> 1156 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) { 1157 assert(!V.empty() && "Cannot get empty int sequence."); 1158 1159 SmallVector<ElementTy, 16> Elts; 1160 for (Constant *C : V) 1161 if (auto *CI = dyn_cast<ConstantInt>(C)) 1162 Elts.push_back(CI->getZExtValue()); 1163 else 1164 return nullptr; 1165 return SequentialTy::get(V[0]->getContext(), Elts); 1166 } 1167 1168 template <typename SequentialTy, typename ElementTy> 1169 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) { 1170 assert(!V.empty() && "Cannot get empty FP sequence."); 1171 1172 SmallVector<ElementTy, 16> Elts; 1173 for (Constant *C : V) 1174 if (auto *CFP = dyn_cast<ConstantFP>(C)) 1175 Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 1176 else 1177 return nullptr; 1178 return SequentialTy::getFP(V[0]->getType(), Elts); 1179 } 1180 1181 template <typename SequenceTy> 1182 static Constant *getSequenceIfElementsMatch(Constant *C, 1183 ArrayRef<Constant *> V) { 1184 // We speculatively build the elements here even if it turns out that there is 1185 // a constantexpr or something else weird, since it is so uncommon for that to 1186 // happen. 1187 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 1188 if (CI->getType()->isIntegerTy(8)) 1189 return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V); 1190 else if (CI->getType()->isIntegerTy(16)) 1191 return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V); 1192 else if (CI->getType()->isIntegerTy(32)) 1193 return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V); 1194 else if (CI->getType()->isIntegerTy(64)) 1195 return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V); 1196 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1197 if (CFP->getType()->isHalfTy() || CFP->getType()->isBFloatTy()) 1198 return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V); 1199 else if (CFP->getType()->isFloatTy()) 1200 return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V); 1201 else if (CFP->getType()->isDoubleTy()) 1202 return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V); 1203 } 1204 1205 return nullptr; 1206 } 1207 1208 ConstantAggregate::ConstantAggregate(Type *T, ValueTy VT, 1209 ArrayRef<Constant *> V) 1210 : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(), 1211 V.size()) { 1212 llvm::copy(V, op_begin()); 1213 1214 // Check that types match, unless this is an opaque struct. 1215 if (auto *ST = dyn_cast<StructType>(T)) { 1216 if (ST->isOpaque()) 1217 return; 1218 for (unsigned I = 0, E = V.size(); I != E; ++I) 1219 assert(V[I]->getType() == ST->getTypeAtIndex(I) && 1220 "Initializer for struct element doesn't match!"); 1221 } 1222 } 1223 1224 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) 1225 : ConstantAggregate(T, ConstantArrayVal, V) { 1226 assert(V.size() == T->getNumElements() && 1227 "Invalid initializer for constant array"); 1228 } 1229 1230 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) { 1231 if (Constant *C = getImpl(Ty, V)) 1232 return C; 1233 return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V); 1234 } 1235 1236 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) { 1237 // Empty arrays are canonicalized to ConstantAggregateZero. 1238 if (V.empty()) 1239 return ConstantAggregateZero::get(Ty); 1240 1241 for (unsigned i = 0, e = V.size(); i != e; ++i) { 1242 assert(V[i]->getType() == Ty->getElementType() && 1243 "Wrong type in array element initializer"); 1244 } 1245 1246 // If this is an all-zero array, return a ConstantAggregateZero object. If 1247 // all undef, return an UndefValue, if "all simple", then return a 1248 // ConstantDataArray. 1249 Constant *C = V[0]; 1250 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) 1251 return UndefValue::get(Ty); 1252 1253 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C)) 1254 return ConstantAggregateZero::get(Ty); 1255 1256 // Check to see if all of the elements are ConstantFP or ConstantInt and if 1257 // the element type is compatible with ConstantDataVector. If so, use it. 1258 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) 1259 return getSequenceIfElementsMatch<ConstantDataArray>(C, V); 1260 1261 // Otherwise, we really do want to create a ConstantArray. 1262 return nullptr; 1263 } 1264 1265 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, 1266 ArrayRef<Constant*> V, 1267 bool Packed) { 1268 unsigned VecSize = V.size(); 1269 SmallVector<Type*, 16> EltTypes(VecSize); 1270 for (unsigned i = 0; i != VecSize; ++i) 1271 EltTypes[i] = V[i]->getType(); 1272 1273 return StructType::get(Context, EltTypes, Packed); 1274 } 1275 1276 1277 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V, 1278 bool Packed) { 1279 assert(!V.empty() && 1280 "ConstantStruct::getTypeForElements cannot be called on empty list"); 1281 return getTypeForElements(V[0]->getContext(), V, Packed); 1282 } 1283 1284 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V) 1285 : ConstantAggregate(T, ConstantStructVal, V) { 1286 assert((T->isOpaque() || V.size() == T->getNumElements()) && 1287 "Invalid initializer for constant struct"); 1288 } 1289 1290 // ConstantStruct accessors. 1291 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) { 1292 assert((ST->isOpaque() || ST->getNumElements() == V.size()) && 1293 "Incorrect # elements specified to ConstantStruct::get"); 1294 1295 // Create a ConstantAggregateZero value if all elements are zeros. 1296 bool isZero = true; 1297 bool isUndef = false; 1298 1299 if (!V.empty()) { 1300 isUndef = isa<UndefValue>(V[0]); 1301 isZero = V[0]->isNullValue(); 1302 if (isUndef || isZero) { 1303 for (unsigned i = 0, e = V.size(); i != e; ++i) { 1304 if (!V[i]->isNullValue()) 1305 isZero = false; 1306 if (!isa<UndefValue>(V[i])) 1307 isUndef = false; 1308 } 1309 } 1310 } 1311 if (isZero) 1312 return ConstantAggregateZero::get(ST); 1313 if (isUndef) 1314 return UndefValue::get(ST); 1315 1316 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); 1317 } 1318 1319 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V) 1320 : ConstantAggregate(T, ConstantVectorVal, V) { 1321 assert(V.size() == cast<FixedVectorType>(T)->getNumElements() && 1322 "Invalid initializer for constant vector"); 1323 } 1324 1325 // ConstantVector accessors. 1326 Constant *ConstantVector::get(ArrayRef<Constant*> V) { 1327 if (Constant *C = getImpl(V)) 1328 return C; 1329 auto *Ty = FixedVectorType::get(V.front()->getType(), V.size()); 1330 return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V); 1331 } 1332 1333 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) { 1334 assert(!V.empty() && "Vectors can't be empty"); 1335 auto *T = FixedVectorType::get(V.front()->getType(), V.size()); 1336 1337 // If this is an all-undef or all-zero vector, return a 1338 // ConstantAggregateZero or UndefValue. 1339 Constant *C = V[0]; 1340 bool isZero = C->isNullValue(); 1341 bool isUndef = isa<UndefValue>(C); 1342 bool isPoison = isa<PoisonValue>(C); 1343 1344 if (isZero || isUndef) { 1345 for (unsigned i = 1, e = V.size(); i != e; ++i) 1346 if (V[i] != C) { 1347 isZero = isUndef = isPoison = false; 1348 break; 1349 } 1350 } 1351 1352 if (isZero) 1353 return ConstantAggregateZero::get(T); 1354 if (isPoison) 1355 return PoisonValue::get(T); 1356 if (isUndef) 1357 return UndefValue::get(T); 1358 1359 // Check to see if all of the elements are ConstantFP or ConstantInt and if 1360 // the element type is compatible with ConstantDataVector. If so, use it. 1361 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) 1362 return getSequenceIfElementsMatch<ConstantDataVector>(C, V); 1363 1364 // Otherwise, the element type isn't compatible with ConstantDataVector, or 1365 // the operand list contains a ConstantExpr or something else strange. 1366 return nullptr; 1367 } 1368 1369 Constant *ConstantVector::getSplat(ElementCount EC, Constant *V) { 1370 if (!EC.isScalable()) { 1371 // If this splat is compatible with ConstantDataVector, use it instead of 1372 // ConstantVector. 1373 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) && 1374 ConstantDataSequential::isElementTypeCompatible(V->getType())) 1375 return ConstantDataVector::getSplat(EC.getKnownMinValue(), V); 1376 1377 SmallVector<Constant *, 32> Elts(EC.getKnownMinValue(), V); 1378 return get(Elts); 1379 } 1380 1381 Type *VTy = VectorType::get(V->getType(), EC); 1382 1383 if (V->isNullValue()) 1384 return ConstantAggregateZero::get(VTy); 1385 else if (isa<UndefValue>(V)) 1386 return UndefValue::get(VTy); 1387 1388 Type *I32Ty = Type::getInt32Ty(VTy->getContext()); 1389 1390 // Move scalar into vector. 1391 Constant *UndefV = UndefValue::get(VTy); 1392 V = ConstantExpr::getInsertElement(UndefV, V, ConstantInt::get(I32Ty, 0)); 1393 // Build shuffle mask to perform the splat. 1394 SmallVector<int, 8> Zeros(EC.getKnownMinValue(), 0); 1395 // Splat. 1396 return ConstantExpr::getShuffleVector(V, UndefV, Zeros); 1397 } 1398 1399 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) { 1400 LLVMContextImpl *pImpl = Context.pImpl; 1401 if (!pImpl->TheNoneToken) 1402 pImpl->TheNoneToken.reset(new ConstantTokenNone(Context)); 1403 return pImpl->TheNoneToken.get(); 1404 } 1405 1406 /// Remove the constant from the constant table. 1407 void ConstantTokenNone::destroyConstantImpl() { 1408 llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!"); 1409 } 1410 1411 // Utility function for determining if a ConstantExpr is a CastOp or not. This 1412 // can't be inline because we don't want to #include Instruction.h into 1413 // Constant.h 1414 bool ConstantExpr::isCast() const { 1415 return Instruction::isCast(getOpcode()); 1416 } 1417 1418 bool ConstantExpr::isCompare() const { 1419 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; 1420 } 1421 1422 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const { 1423 if (getOpcode() != Instruction::GetElementPtr) return false; 1424 1425 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this); 1426 User::const_op_iterator OI = std::next(this->op_begin()); 1427 1428 // The remaining indices may be compile-time known integers within the bounds 1429 // of the corresponding notional static array types. 1430 for (; GEPI != E; ++GEPI, ++OI) { 1431 if (isa<UndefValue>(*OI)) 1432 continue; 1433 auto *CI = dyn_cast<ConstantInt>(*OI); 1434 if (!CI || (GEPI.isBoundedSequential() && 1435 (CI->getValue().getActiveBits() > 64 || 1436 CI->getZExtValue() >= GEPI.getSequentialNumElements()))) 1437 return false; 1438 } 1439 1440 // All the indices checked out. 1441 return true; 1442 } 1443 1444 bool ConstantExpr::hasIndices() const { 1445 return getOpcode() == Instruction::ExtractValue || 1446 getOpcode() == Instruction::InsertValue; 1447 } 1448 1449 ArrayRef<unsigned> ConstantExpr::getIndices() const { 1450 if (const ExtractValueConstantExpr *EVCE = 1451 dyn_cast<ExtractValueConstantExpr>(this)) 1452 return EVCE->Indices; 1453 1454 return cast<InsertValueConstantExpr>(this)->Indices; 1455 } 1456 1457 unsigned ConstantExpr::getPredicate() const { 1458 return cast<CompareConstantExpr>(this)->predicate; 1459 } 1460 1461 ArrayRef<int> ConstantExpr::getShuffleMask() const { 1462 return cast<ShuffleVectorConstantExpr>(this)->ShuffleMask; 1463 } 1464 1465 Constant *ConstantExpr::getShuffleMaskForBitcode() const { 1466 return cast<ShuffleVectorConstantExpr>(this)->ShuffleMaskForBitcode; 1467 } 1468 1469 Constant * 1470 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { 1471 assert(Op->getType() == getOperand(OpNo)->getType() && 1472 "Replacing operand with value of different type!"); 1473 if (getOperand(OpNo) == Op) 1474 return const_cast<ConstantExpr*>(this); 1475 1476 SmallVector<Constant*, 8> NewOps; 1477 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1478 NewOps.push_back(i == OpNo ? Op : getOperand(i)); 1479 1480 return getWithOperands(NewOps); 1481 } 1482 1483 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, 1484 bool OnlyIfReduced, Type *SrcTy) const { 1485 assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); 1486 1487 // If no operands changed return self. 1488 if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin())) 1489 return const_cast<ConstantExpr*>(this); 1490 1491 Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr; 1492 switch (getOpcode()) { 1493 case Instruction::Trunc: 1494 case Instruction::ZExt: 1495 case Instruction::SExt: 1496 case Instruction::FPTrunc: 1497 case Instruction::FPExt: 1498 case Instruction::UIToFP: 1499 case Instruction::SIToFP: 1500 case Instruction::FPToUI: 1501 case Instruction::FPToSI: 1502 case Instruction::PtrToInt: 1503 case Instruction::IntToPtr: 1504 case Instruction::BitCast: 1505 case Instruction::AddrSpaceCast: 1506 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced); 1507 case Instruction::Select: 1508 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy); 1509 case Instruction::InsertElement: 1510 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2], 1511 OnlyIfReducedTy); 1512 case Instruction::ExtractElement: 1513 return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy); 1514 case Instruction::InsertValue: 1515 return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(), 1516 OnlyIfReducedTy); 1517 case Instruction::ExtractValue: 1518 return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy); 1519 case Instruction::FNeg: 1520 return ConstantExpr::getFNeg(Ops[0]); 1521 case Instruction::ShuffleVector: 1522 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], getShuffleMask(), 1523 OnlyIfReducedTy); 1524 case Instruction::GetElementPtr: { 1525 auto *GEPO = cast<GEPOperator>(this); 1526 assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType())); 1527 return ConstantExpr::getGetElementPtr( 1528 SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1), 1529 GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy); 1530 } 1531 case Instruction::ICmp: 1532 case Instruction::FCmp: 1533 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1], 1534 OnlyIfReducedTy); 1535 default: 1536 assert(getNumOperands() == 2 && "Must be binary operator?"); 1537 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData, 1538 OnlyIfReducedTy); 1539 } 1540 } 1541 1542 1543 //===----------------------------------------------------------------------===// 1544 // isValueValidForType implementations 1545 1546 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { 1547 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay 1548 if (Ty->isIntegerTy(1)) 1549 return Val == 0 || Val == 1; 1550 return isUIntN(NumBits, Val); 1551 } 1552 1553 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) { 1554 unsigned NumBits = Ty->getIntegerBitWidth(); 1555 if (Ty->isIntegerTy(1)) 1556 return Val == 0 || Val == 1 || Val == -1; 1557 return isIntN(NumBits, Val); 1558 } 1559 1560 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { 1561 // convert modifies in place, so make a copy. 1562 APFloat Val2 = APFloat(Val); 1563 bool losesInfo; 1564 switch (Ty->getTypeID()) { 1565 default: 1566 return false; // These can't be represented as floating point! 1567 1568 // FIXME rounding mode needs to be more flexible 1569 case Type::HalfTyID: { 1570 if (&Val2.getSemantics() == &APFloat::IEEEhalf()) 1571 return true; 1572 Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo); 1573 return !losesInfo; 1574 } 1575 case Type::BFloatTyID: { 1576 if (&Val2.getSemantics() == &APFloat::BFloat()) 1577 return true; 1578 Val2.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, &losesInfo); 1579 return !losesInfo; 1580 } 1581 case Type::FloatTyID: { 1582 if (&Val2.getSemantics() == &APFloat::IEEEsingle()) 1583 return true; 1584 Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo); 1585 return !losesInfo; 1586 } 1587 case Type::DoubleTyID: { 1588 if (&Val2.getSemantics() == &APFloat::IEEEhalf() || 1589 &Val2.getSemantics() == &APFloat::BFloat() || 1590 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1591 &Val2.getSemantics() == &APFloat::IEEEdouble()) 1592 return true; 1593 Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo); 1594 return !losesInfo; 1595 } 1596 case Type::X86_FP80TyID: 1597 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1598 &Val2.getSemantics() == &APFloat::BFloat() || 1599 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1600 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1601 &Val2.getSemantics() == &APFloat::x87DoubleExtended(); 1602 case Type::FP128TyID: 1603 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1604 &Val2.getSemantics() == &APFloat::BFloat() || 1605 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1606 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1607 &Val2.getSemantics() == &APFloat::IEEEquad(); 1608 case Type::PPC_FP128TyID: 1609 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1610 &Val2.getSemantics() == &APFloat::BFloat() || 1611 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1612 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1613 &Val2.getSemantics() == &APFloat::PPCDoubleDouble(); 1614 } 1615 } 1616 1617 1618 //===----------------------------------------------------------------------===// 1619 // Factory Function Implementation 1620 1621 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) { 1622 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && 1623 "Cannot create an aggregate zero of non-aggregate type!"); 1624 1625 std::unique_ptr<ConstantAggregateZero> &Entry = 1626 Ty->getContext().pImpl->CAZConstants[Ty]; 1627 if (!Entry) 1628 Entry.reset(new ConstantAggregateZero(Ty)); 1629 1630 return Entry.get(); 1631 } 1632 1633 /// Remove the constant from the constant table. 1634 void ConstantAggregateZero::destroyConstantImpl() { 1635 getContext().pImpl->CAZConstants.erase(getType()); 1636 } 1637 1638 /// Remove the constant from the constant table. 1639 void ConstantArray::destroyConstantImpl() { 1640 getType()->getContext().pImpl->ArrayConstants.remove(this); 1641 } 1642 1643 1644 //---- ConstantStruct::get() implementation... 1645 // 1646 1647 /// Remove the constant from the constant table. 1648 void ConstantStruct::destroyConstantImpl() { 1649 getType()->getContext().pImpl->StructConstants.remove(this); 1650 } 1651 1652 /// Remove the constant from the constant table. 1653 void ConstantVector::destroyConstantImpl() { 1654 getType()->getContext().pImpl->VectorConstants.remove(this); 1655 } 1656 1657 Constant *Constant::getSplatValue(bool AllowUndefs) const { 1658 assert(this->getType()->isVectorTy() && "Only valid for vectors!"); 1659 if (isa<ConstantAggregateZero>(this)) 1660 return getNullValue(cast<VectorType>(getType())->getElementType()); 1661 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 1662 return CV->getSplatValue(); 1663 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 1664 return CV->getSplatValue(AllowUndefs); 1665 1666 // Check if this is a constant expression splat of the form returned by 1667 // ConstantVector::getSplat() 1668 const auto *Shuf = dyn_cast<ConstantExpr>(this); 1669 if (Shuf && Shuf->getOpcode() == Instruction::ShuffleVector && 1670 isa<UndefValue>(Shuf->getOperand(1))) { 1671 1672 const auto *IElt = dyn_cast<ConstantExpr>(Shuf->getOperand(0)); 1673 if (IElt && IElt->getOpcode() == Instruction::InsertElement && 1674 isa<UndefValue>(IElt->getOperand(0))) { 1675 1676 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1677 Constant *SplatVal = IElt->getOperand(1); 1678 ConstantInt *Index = dyn_cast<ConstantInt>(IElt->getOperand(2)); 1679 1680 if (Index && Index->getValue() == 0 && 1681 llvm::all_of(Mask, [](int I) { return I == 0; })) 1682 return SplatVal; 1683 } 1684 } 1685 1686 return nullptr; 1687 } 1688 1689 Constant *ConstantVector::getSplatValue(bool AllowUndefs) const { 1690 // Check out first element. 1691 Constant *Elt = getOperand(0); 1692 // Then make sure all remaining elements point to the same value. 1693 for (unsigned I = 1, E = getNumOperands(); I < E; ++I) { 1694 Constant *OpC = getOperand(I); 1695 if (OpC == Elt) 1696 continue; 1697 1698 // Strict mode: any mismatch is not a splat. 1699 if (!AllowUndefs) 1700 return nullptr; 1701 1702 // Allow undefs mode: ignore undefined elements. 1703 if (isa<UndefValue>(OpC)) 1704 continue; 1705 1706 // If we do not have a defined element yet, use the current operand. 1707 if (isa<UndefValue>(Elt)) 1708 Elt = OpC; 1709 1710 if (OpC != Elt) 1711 return nullptr; 1712 } 1713 return Elt; 1714 } 1715 1716 const APInt &Constant::getUniqueInteger() const { 1717 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 1718 return CI->getValue(); 1719 assert(this->getSplatValue() && "Doesn't contain a unique integer!"); 1720 const Constant *C = this->getAggregateElement(0U); 1721 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!"); 1722 return cast<ConstantInt>(C)->getValue(); 1723 } 1724 1725 //---- ConstantPointerNull::get() implementation. 1726 // 1727 1728 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { 1729 std::unique_ptr<ConstantPointerNull> &Entry = 1730 Ty->getContext().pImpl->CPNConstants[Ty]; 1731 if (!Entry) 1732 Entry.reset(new ConstantPointerNull(Ty)); 1733 1734 return Entry.get(); 1735 } 1736 1737 /// Remove the constant from the constant table. 1738 void ConstantPointerNull::destroyConstantImpl() { 1739 getContext().pImpl->CPNConstants.erase(getType()); 1740 } 1741 1742 UndefValue *UndefValue::get(Type *Ty) { 1743 std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty]; 1744 if (!Entry) 1745 Entry.reset(new UndefValue(Ty)); 1746 1747 return Entry.get(); 1748 } 1749 1750 /// Remove the constant from the constant table. 1751 void UndefValue::destroyConstantImpl() { 1752 // Free the constant and any dangling references to it. 1753 if (getValueID() == UndefValueVal) { 1754 getContext().pImpl->UVConstants.erase(getType()); 1755 } else if (getValueID() == PoisonValueVal) { 1756 getContext().pImpl->PVConstants.erase(getType()); 1757 } 1758 llvm_unreachable("Not a undef or a poison!"); 1759 } 1760 1761 PoisonValue *PoisonValue::get(Type *Ty) { 1762 std::unique_ptr<PoisonValue> &Entry = Ty->getContext().pImpl->PVConstants[Ty]; 1763 if (!Entry) 1764 Entry.reset(new PoisonValue(Ty)); 1765 1766 return Entry.get(); 1767 } 1768 1769 /// Remove the constant from the constant table. 1770 void PoisonValue::destroyConstantImpl() { 1771 // Free the constant and any dangling references to it. 1772 getContext().pImpl->PVConstants.erase(getType()); 1773 } 1774 1775 BlockAddress *BlockAddress::get(BasicBlock *BB) { 1776 assert(BB->getParent() && "Block must have a parent"); 1777 return get(BB->getParent(), BB); 1778 } 1779 1780 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { 1781 BlockAddress *&BA = 1782 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; 1783 if (!BA) 1784 BA = new BlockAddress(F, BB); 1785 1786 assert(BA->getFunction() == F && "Basic block moved between functions"); 1787 return BA; 1788 } 1789 1790 BlockAddress::BlockAddress(Function *F, BasicBlock *BB) 1791 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal, 1792 &Op<0>(), 2) { 1793 setOperand(0, F); 1794 setOperand(1, BB); 1795 BB->AdjustBlockAddressRefCount(1); 1796 } 1797 1798 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) { 1799 if (!BB->hasAddressTaken()) 1800 return nullptr; 1801 1802 const Function *F = BB->getParent(); 1803 assert(F && "Block must have a parent"); 1804 BlockAddress *BA = 1805 F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB)); 1806 assert(BA && "Refcount and block address map disagree!"); 1807 return BA; 1808 } 1809 1810 /// Remove the constant from the constant table. 1811 void BlockAddress::destroyConstantImpl() { 1812 getFunction()->getType()->getContext().pImpl 1813 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); 1814 getBasicBlock()->AdjustBlockAddressRefCount(-1); 1815 } 1816 1817 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) { 1818 // This could be replacing either the Basic Block or the Function. In either 1819 // case, we have to remove the map entry. 1820 Function *NewF = getFunction(); 1821 BasicBlock *NewBB = getBasicBlock(); 1822 1823 if (From == NewF) 1824 NewF = cast<Function>(To->stripPointerCasts()); 1825 else { 1826 assert(From == NewBB && "From does not match any operand"); 1827 NewBB = cast<BasicBlock>(To); 1828 } 1829 1830 // See if the 'new' entry already exists, if not, just update this in place 1831 // and return early. 1832 BlockAddress *&NewBA = 1833 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; 1834 if (NewBA) 1835 return NewBA; 1836 1837 getBasicBlock()->AdjustBlockAddressRefCount(-1); 1838 1839 // Remove the old entry, this can't cause the map to rehash (just a 1840 // tombstone will get added). 1841 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), 1842 getBasicBlock())); 1843 NewBA = this; 1844 setOperand(0, NewF); 1845 setOperand(1, NewBB); 1846 getBasicBlock()->AdjustBlockAddressRefCount(1); 1847 1848 // If we just want to keep the existing value, then return null. 1849 // Callers know that this means we shouldn't delete this value. 1850 return nullptr; 1851 } 1852 1853 DSOLocalEquivalent *DSOLocalEquivalent::get(GlobalValue *GV) { 1854 DSOLocalEquivalent *&Equiv = GV->getContext().pImpl->DSOLocalEquivalents[GV]; 1855 if (!Equiv) 1856 Equiv = new DSOLocalEquivalent(GV); 1857 1858 assert(Equiv->getGlobalValue() == GV && 1859 "DSOLocalFunction does not match the expected global value"); 1860 return Equiv; 1861 } 1862 1863 DSOLocalEquivalent::DSOLocalEquivalent(GlobalValue *GV) 1864 : Constant(GV->getType(), Value::DSOLocalEquivalentVal, &Op<0>(), 1) { 1865 setOperand(0, GV); 1866 } 1867 1868 /// Remove the constant from the constant table. 1869 void DSOLocalEquivalent::destroyConstantImpl() { 1870 const GlobalValue *GV = getGlobalValue(); 1871 GV->getContext().pImpl->DSOLocalEquivalents.erase(GV); 1872 } 1873 1874 Value *DSOLocalEquivalent::handleOperandChangeImpl(Value *From, Value *To) { 1875 assert(From == getGlobalValue() && "Changing value does not match operand."); 1876 assert(isa<Constant>(To) && "Can only replace the operands with a constant"); 1877 1878 // The replacement is with another global value. 1879 if (const auto *ToObj = dyn_cast<GlobalValue>(To)) { 1880 DSOLocalEquivalent *&NewEquiv = 1881 getContext().pImpl->DSOLocalEquivalents[ToObj]; 1882 if (NewEquiv) 1883 return llvm::ConstantExpr::getBitCast(NewEquiv, getType()); 1884 } 1885 1886 // If the argument is replaced with a null value, just replace this constant 1887 // with a null value. 1888 if (cast<Constant>(To)->isNullValue()) 1889 return To; 1890 1891 // The replacement could be a bitcast or an alias to another function. We can 1892 // replace it with a bitcast to the dso_local_equivalent of that function. 1893 auto *Func = cast<Function>(To->stripPointerCastsAndAliases()); 1894 DSOLocalEquivalent *&NewEquiv = getContext().pImpl->DSOLocalEquivalents[Func]; 1895 if (NewEquiv) 1896 return llvm::ConstantExpr::getBitCast(NewEquiv, getType()); 1897 1898 // Replace this with the new one. 1899 getContext().pImpl->DSOLocalEquivalents.erase(getGlobalValue()); 1900 NewEquiv = this; 1901 setOperand(0, Func); 1902 return nullptr; 1903 } 1904 1905 //---- ConstantExpr::get() implementations. 1906 // 1907 1908 /// This is a utility function to handle folding of casts and lookup of the 1909 /// cast in the ExprConstants map. It is used by the various get* methods below. 1910 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty, 1911 bool OnlyIfReduced = false) { 1912 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); 1913 // Fold a few common cases 1914 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) 1915 return FC; 1916 1917 if (OnlyIfReduced) 1918 return nullptr; 1919 1920 LLVMContextImpl *pImpl = Ty->getContext().pImpl; 1921 1922 // Look up the constant in the table first to ensure uniqueness. 1923 ConstantExprKeyType Key(opc, C); 1924 1925 return pImpl->ExprConstants.getOrCreate(Ty, Key); 1926 } 1927 1928 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty, 1929 bool OnlyIfReduced) { 1930 Instruction::CastOps opc = Instruction::CastOps(oc); 1931 assert(Instruction::isCast(opc) && "opcode out of range"); 1932 assert(C && Ty && "Null arguments to getCast"); 1933 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); 1934 1935 switch (opc) { 1936 default: 1937 llvm_unreachable("Invalid cast opcode"); 1938 case Instruction::Trunc: 1939 return getTrunc(C, Ty, OnlyIfReduced); 1940 case Instruction::ZExt: 1941 return getZExt(C, Ty, OnlyIfReduced); 1942 case Instruction::SExt: 1943 return getSExt(C, Ty, OnlyIfReduced); 1944 case Instruction::FPTrunc: 1945 return getFPTrunc(C, Ty, OnlyIfReduced); 1946 case Instruction::FPExt: 1947 return getFPExtend(C, Ty, OnlyIfReduced); 1948 case Instruction::UIToFP: 1949 return getUIToFP(C, Ty, OnlyIfReduced); 1950 case Instruction::SIToFP: 1951 return getSIToFP(C, Ty, OnlyIfReduced); 1952 case Instruction::FPToUI: 1953 return getFPToUI(C, Ty, OnlyIfReduced); 1954 case Instruction::FPToSI: 1955 return getFPToSI(C, Ty, OnlyIfReduced); 1956 case Instruction::PtrToInt: 1957 return getPtrToInt(C, Ty, OnlyIfReduced); 1958 case Instruction::IntToPtr: 1959 return getIntToPtr(C, Ty, OnlyIfReduced); 1960 case Instruction::BitCast: 1961 return getBitCast(C, Ty, OnlyIfReduced); 1962 case Instruction::AddrSpaceCast: 1963 return getAddrSpaceCast(C, Ty, OnlyIfReduced); 1964 } 1965 } 1966 1967 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) { 1968 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1969 return getBitCast(C, Ty); 1970 return getZExt(C, Ty); 1971 } 1972 1973 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) { 1974 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1975 return getBitCast(C, Ty); 1976 return getSExt(C, Ty); 1977 } 1978 1979 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) { 1980 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1981 return getBitCast(C, Ty); 1982 return getTrunc(C, Ty); 1983 } 1984 1985 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) { 1986 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 1987 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 1988 "Invalid cast"); 1989 1990 if (Ty->isIntOrIntVectorTy()) 1991 return getPtrToInt(S, Ty); 1992 1993 unsigned SrcAS = S->getType()->getPointerAddressSpace(); 1994 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace()) 1995 return getAddrSpaceCast(S, Ty); 1996 1997 return getBitCast(S, Ty); 1998 } 1999 2000 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S, 2001 Type *Ty) { 2002 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2003 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 2004 2005 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 2006 return getAddrSpaceCast(S, Ty); 2007 2008 return getBitCast(S, Ty); 2009 } 2010 2011 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) { 2012 assert(C->getType()->isIntOrIntVectorTy() && 2013 Ty->isIntOrIntVectorTy() && "Invalid cast"); 2014 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2015 unsigned DstBits = Ty->getScalarSizeInBits(); 2016 Instruction::CastOps opcode = 2017 (SrcBits == DstBits ? Instruction::BitCast : 2018 (SrcBits > DstBits ? Instruction::Trunc : 2019 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2020 return getCast(opcode, C, Ty); 2021 } 2022 2023 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) { 2024 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2025 "Invalid cast"); 2026 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2027 unsigned DstBits = Ty->getScalarSizeInBits(); 2028 if (SrcBits == DstBits) 2029 return C; // Avoid a useless cast 2030 Instruction::CastOps opcode = 2031 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); 2032 return getCast(opcode, C, Ty); 2033 } 2034 2035 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { 2036 #ifndef NDEBUG 2037 bool fromVec = isa<VectorType>(C->getType()); 2038 bool toVec = isa<VectorType>(Ty); 2039 #endif 2040 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2041 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); 2042 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); 2043 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& 2044 "SrcTy must be larger than DestTy for Trunc!"); 2045 2046 return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced); 2047 } 2048 2049 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) { 2050 #ifndef NDEBUG 2051 bool fromVec = isa<VectorType>(C->getType()); 2052 bool toVec = isa<VectorType>(Ty); 2053 #endif 2054 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2055 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral"); 2056 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer"); 2057 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 2058 "SrcTy must be smaller than DestTy for SExt!"); 2059 2060 return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced); 2061 } 2062 2063 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) { 2064 #ifndef NDEBUG 2065 bool fromVec = isa<VectorType>(C->getType()); 2066 bool toVec = isa<VectorType>(Ty); 2067 #endif 2068 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2069 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral"); 2070 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer"); 2071 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 2072 "SrcTy must be smaller than DestTy for ZExt!"); 2073 2074 return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced); 2075 } 2076 2077 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { 2078 #ifndef NDEBUG 2079 bool fromVec = isa<VectorType>(C->getType()); 2080 bool toVec = isa<VectorType>(Ty); 2081 #endif 2082 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2083 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2084 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& 2085 "This is an illegal floating point truncation!"); 2086 return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced); 2087 } 2088 2089 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) { 2090 #ifndef NDEBUG 2091 bool fromVec = isa<VectorType>(C->getType()); 2092 bool toVec = isa<VectorType>(Ty); 2093 #endif 2094 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2095 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2096 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 2097 "This is an illegal floating point extension!"); 2098 return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced); 2099 } 2100 2101 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { 2102 #ifndef NDEBUG 2103 bool fromVec = isa<VectorType>(C->getType()); 2104 bool toVec = isa<VectorType>(Ty); 2105 #endif 2106 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2107 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && 2108 "This is an illegal uint to floating point cast!"); 2109 return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced); 2110 } 2111 2112 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { 2113 #ifndef NDEBUG 2114 bool fromVec = isa<VectorType>(C->getType()); 2115 bool toVec = isa<VectorType>(Ty); 2116 #endif 2117 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2118 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && 2119 "This is an illegal sint to floating point cast!"); 2120 return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced); 2121 } 2122 2123 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) { 2124 #ifndef NDEBUG 2125 bool fromVec = isa<VectorType>(C->getType()); 2126 bool toVec = isa<VectorType>(Ty); 2127 #endif 2128 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2129 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && 2130 "This is an illegal floating point to uint cast!"); 2131 return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced); 2132 } 2133 2134 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) { 2135 #ifndef NDEBUG 2136 bool fromVec = isa<VectorType>(C->getType()); 2137 bool toVec = isa<VectorType>(Ty); 2138 #endif 2139 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2140 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && 2141 "This is an illegal floating point to sint cast!"); 2142 return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced); 2143 } 2144 2145 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy, 2146 bool OnlyIfReduced) { 2147 assert(C->getType()->isPtrOrPtrVectorTy() && 2148 "PtrToInt source must be pointer or pointer vector"); 2149 assert(DstTy->isIntOrIntVectorTy() && 2150 "PtrToInt destination must be integer or integer vector"); 2151 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); 2152 if (isa<VectorType>(C->getType())) 2153 assert(cast<FixedVectorType>(C->getType())->getNumElements() == 2154 cast<FixedVectorType>(DstTy)->getNumElements() && 2155 "Invalid cast between a different number of vector elements"); 2156 return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced); 2157 } 2158 2159 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy, 2160 bool OnlyIfReduced) { 2161 assert(C->getType()->isIntOrIntVectorTy() && 2162 "IntToPtr source must be integer or integer vector"); 2163 assert(DstTy->isPtrOrPtrVectorTy() && 2164 "IntToPtr destination must be a pointer or pointer vector"); 2165 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); 2166 if (isa<VectorType>(C->getType())) 2167 assert(cast<VectorType>(C->getType())->getElementCount() == 2168 cast<VectorType>(DstTy)->getElementCount() && 2169 "Invalid cast between a different number of vector elements"); 2170 return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced); 2171 } 2172 2173 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy, 2174 bool OnlyIfReduced) { 2175 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && 2176 "Invalid constantexpr bitcast!"); 2177 2178 // It is common to ask for a bitcast of a value to its own type, handle this 2179 // speedily. 2180 if (C->getType() == DstTy) return C; 2181 2182 return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced); 2183 } 2184 2185 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy, 2186 bool OnlyIfReduced) { 2187 assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) && 2188 "Invalid constantexpr addrspacecast!"); 2189 2190 // Canonicalize addrspacecasts between different pointer types by first 2191 // bitcasting the pointer type and then converting the address space. 2192 PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType()); 2193 PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType()); 2194 Type *DstElemTy = DstScalarTy->getElementType(); 2195 if (SrcScalarTy->getElementType() != DstElemTy) { 2196 Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace()); 2197 if (VectorType *VT = dyn_cast<VectorType>(DstTy)) { 2198 // Handle vectors of pointers. 2199 MidTy = FixedVectorType::get(MidTy, 2200 cast<FixedVectorType>(VT)->getNumElements()); 2201 } 2202 C = getBitCast(C, MidTy); 2203 } 2204 return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced); 2205 } 2206 2207 Constant *ConstantExpr::get(unsigned Opcode, Constant *C, unsigned Flags, 2208 Type *OnlyIfReducedTy) { 2209 // Check the operands for consistency first. 2210 assert(Instruction::isUnaryOp(Opcode) && 2211 "Invalid opcode in unary constant expression"); 2212 2213 #ifndef NDEBUG 2214 switch (Opcode) { 2215 case Instruction::FNeg: 2216 assert(C->getType()->isFPOrFPVectorTy() && 2217 "Tried to create a floating-point operation on a " 2218 "non-floating-point type!"); 2219 break; 2220 default: 2221 break; 2222 } 2223 #endif 2224 2225 if (Constant *FC = ConstantFoldUnaryInstruction(Opcode, C)) 2226 return FC; 2227 2228 if (OnlyIfReducedTy == C->getType()) 2229 return nullptr; 2230 2231 Constant *ArgVec[] = { C }; 2232 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags); 2233 2234 LLVMContextImpl *pImpl = C->getContext().pImpl; 2235 return pImpl->ExprConstants.getOrCreate(C->getType(), Key); 2236 } 2237 2238 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, 2239 unsigned Flags, Type *OnlyIfReducedTy) { 2240 // Check the operands for consistency first. 2241 assert(Instruction::isBinaryOp(Opcode) && 2242 "Invalid opcode in binary constant expression"); 2243 assert(C1->getType() == C2->getType() && 2244 "Operand types in binary constant expression should match"); 2245 2246 #ifndef NDEBUG 2247 switch (Opcode) { 2248 case Instruction::Add: 2249 case Instruction::Sub: 2250 case Instruction::Mul: 2251 case Instruction::UDiv: 2252 case Instruction::SDiv: 2253 case Instruction::URem: 2254 case Instruction::SRem: 2255 assert(C1->getType()->isIntOrIntVectorTy() && 2256 "Tried to create an integer operation on a non-integer type!"); 2257 break; 2258 case Instruction::FAdd: 2259 case Instruction::FSub: 2260 case Instruction::FMul: 2261 case Instruction::FDiv: 2262 case Instruction::FRem: 2263 assert(C1->getType()->isFPOrFPVectorTy() && 2264 "Tried to create a floating-point operation on a " 2265 "non-floating-point type!"); 2266 break; 2267 case Instruction::And: 2268 case Instruction::Or: 2269 case Instruction::Xor: 2270 assert(C1->getType()->isIntOrIntVectorTy() && 2271 "Tried to create a logical operation on a non-integral type!"); 2272 break; 2273 case Instruction::Shl: 2274 case Instruction::LShr: 2275 case Instruction::AShr: 2276 assert(C1->getType()->isIntOrIntVectorTy() && 2277 "Tried to create a shift operation on a non-integer type!"); 2278 break; 2279 default: 2280 break; 2281 } 2282 #endif 2283 2284 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) 2285 return FC; 2286 2287 if (OnlyIfReducedTy == C1->getType()) 2288 return nullptr; 2289 2290 Constant *ArgVec[] = { C1, C2 }; 2291 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags); 2292 2293 LLVMContextImpl *pImpl = C1->getContext().pImpl; 2294 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key); 2295 } 2296 2297 Constant *ConstantExpr::getSizeOf(Type* Ty) { 2298 // sizeof is implemented as: (i64) gep (Ty*)null, 1 2299 // Note that a non-inbounds gep is used, as null isn't within any object. 2300 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); 2301 Constant *GEP = getGetElementPtr( 2302 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); 2303 return getPtrToInt(GEP, 2304 Type::getInt64Ty(Ty->getContext())); 2305 } 2306 2307 Constant *ConstantExpr::getAlignOf(Type* Ty) { 2308 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 2309 // Note that a non-inbounds gep is used, as null isn't within any object. 2310 Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty); 2311 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0)); 2312 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); 2313 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); 2314 Constant *Indices[2] = { Zero, One }; 2315 Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices); 2316 return getPtrToInt(GEP, 2317 Type::getInt64Ty(Ty->getContext())); 2318 } 2319 2320 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) { 2321 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()), 2322 FieldNo)); 2323 } 2324 2325 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) { 2326 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo 2327 // Note that a non-inbounds gep is used, as null isn't within any object. 2328 Constant *GEPIdx[] = { 2329 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0), 2330 FieldNo 2331 }; 2332 Constant *GEP = getGetElementPtr( 2333 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); 2334 return getPtrToInt(GEP, 2335 Type::getInt64Ty(Ty->getContext())); 2336 } 2337 2338 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1, 2339 Constant *C2, bool OnlyIfReduced) { 2340 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 2341 2342 switch (Predicate) { 2343 default: llvm_unreachable("Invalid CmpInst predicate"); 2344 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: 2345 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: 2346 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: 2347 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: 2348 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: 2349 case CmpInst::FCMP_TRUE: 2350 return getFCmp(Predicate, C1, C2, OnlyIfReduced); 2351 2352 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: 2353 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: 2354 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: 2355 case CmpInst::ICMP_SLE: 2356 return getICmp(Predicate, C1, C2, OnlyIfReduced); 2357 } 2358 } 2359 2360 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2, 2361 Type *OnlyIfReducedTy) { 2362 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); 2363 2364 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) 2365 return SC; // Fold common cases 2366 2367 if (OnlyIfReducedTy == V1->getType()) 2368 return nullptr; 2369 2370 Constant *ArgVec[] = { C, V1, V2 }; 2371 ConstantExprKeyType Key(Instruction::Select, ArgVec); 2372 2373 LLVMContextImpl *pImpl = C->getContext().pImpl; 2374 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key); 2375 } 2376 2377 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C, 2378 ArrayRef<Value *> Idxs, bool InBounds, 2379 Optional<unsigned> InRangeIndex, 2380 Type *OnlyIfReducedTy) { 2381 if (!Ty) 2382 Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType(); 2383 else 2384 assert(Ty == 2385 cast<PointerType>(C->getType()->getScalarType())->getElementType()); 2386 2387 if (Constant *FC = 2388 ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs)) 2389 return FC; // Fold a few common cases. 2390 2391 // Get the result type of the getelementptr! 2392 Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs); 2393 assert(DestTy && "GEP indices invalid!"); 2394 unsigned AS = C->getType()->getPointerAddressSpace(); 2395 Type *ReqTy = DestTy->getPointerTo(AS); 2396 2397 auto EltCount = ElementCount::getFixed(0); 2398 if (VectorType *VecTy = dyn_cast<VectorType>(C->getType())) 2399 EltCount = VecTy->getElementCount(); 2400 else 2401 for (auto Idx : Idxs) 2402 if (VectorType *VecTy = dyn_cast<VectorType>(Idx->getType())) 2403 EltCount = VecTy->getElementCount(); 2404 2405 if (EltCount.isNonZero()) 2406 ReqTy = VectorType::get(ReqTy, EltCount); 2407 2408 if (OnlyIfReducedTy == ReqTy) 2409 return nullptr; 2410 2411 // Look up the constant in the table first to ensure uniqueness 2412 std::vector<Constant*> ArgVec; 2413 ArgVec.reserve(1 + Idxs.size()); 2414 ArgVec.push_back(C); 2415 auto GTI = gep_type_begin(Ty, Idxs), GTE = gep_type_end(Ty, Idxs); 2416 for (; GTI != GTE; ++GTI) { 2417 auto *Idx = cast<Constant>(GTI.getOperand()); 2418 assert( 2419 (!isa<VectorType>(Idx->getType()) || 2420 cast<VectorType>(Idx->getType())->getElementCount() == EltCount) && 2421 "getelementptr index type missmatch"); 2422 2423 if (GTI.isStruct() && Idx->getType()->isVectorTy()) { 2424 Idx = Idx->getSplatValue(); 2425 } else if (GTI.isSequential() && EltCount.isNonZero() && 2426 !Idx->getType()->isVectorTy()) { 2427 Idx = ConstantVector::getSplat(EltCount, Idx); 2428 } 2429 ArgVec.push_back(Idx); 2430 } 2431 2432 unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0; 2433 if (InRangeIndex && *InRangeIndex < 63) 2434 SubClassOptionalData |= (*InRangeIndex + 1) << 1; 2435 const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0, 2436 SubClassOptionalData, None, None, Ty); 2437 2438 LLVMContextImpl *pImpl = C->getContext().pImpl; 2439 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2440 } 2441 2442 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS, 2443 Constant *RHS, bool OnlyIfReduced) { 2444 assert(LHS->getType() == RHS->getType()); 2445 assert(CmpInst::isIntPredicate((CmpInst::Predicate)pred) && 2446 "Invalid ICmp Predicate"); 2447 2448 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) 2449 return FC; // Fold a few common cases... 2450 2451 if (OnlyIfReduced) 2452 return nullptr; 2453 2454 // Look up the constant in the table first to ensure uniqueness 2455 Constant *ArgVec[] = { LHS, RHS }; 2456 // Get the key type with both the opcode and predicate 2457 const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred); 2458 2459 Type *ResultTy = Type::getInt1Ty(LHS->getContext()); 2460 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) 2461 ResultTy = VectorType::get(ResultTy, VT->getElementCount()); 2462 2463 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; 2464 return pImpl->ExprConstants.getOrCreate(ResultTy, Key); 2465 } 2466 2467 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, 2468 Constant *RHS, bool OnlyIfReduced) { 2469 assert(LHS->getType() == RHS->getType()); 2470 assert(CmpInst::isFPPredicate((CmpInst::Predicate)pred) && 2471 "Invalid FCmp Predicate"); 2472 2473 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) 2474 return FC; // Fold a few common cases... 2475 2476 if (OnlyIfReduced) 2477 return nullptr; 2478 2479 // Look up the constant in the table first to ensure uniqueness 2480 Constant *ArgVec[] = { LHS, RHS }; 2481 // Get the key type with both the opcode and predicate 2482 const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred); 2483 2484 Type *ResultTy = Type::getInt1Ty(LHS->getContext()); 2485 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) 2486 ResultTy = VectorType::get(ResultTy, VT->getElementCount()); 2487 2488 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; 2489 return pImpl->ExprConstants.getOrCreate(ResultTy, Key); 2490 } 2491 2492 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx, 2493 Type *OnlyIfReducedTy) { 2494 assert(Val->getType()->isVectorTy() && 2495 "Tried to create extractelement operation on non-vector type!"); 2496 assert(Idx->getType()->isIntegerTy() && 2497 "Extractelement index must be an integer type!"); 2498 2499 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) 2500 return FC; // Fold a few common cases. 2501 2502 Type *ReqTy = cast<VectorType>(Val->getType())->getElementType(); 2503 if (OnlyIfReducedTy == ReqTy) 2504 return nullptr; 2505 2506 // Look up the constant in the table first to ensure uniqueness 2507 Constant *ArgVec[] = { Val, Idx }; 2508 const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec); 2509 2510 LLVMContextImpl *pImpl = Val->getContext().pImpl; 2511 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2512 } 2513 2514 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 2515 Constant *Idx, Type *OnlyIfReducedTy) { 2516 assert(Val->getType()->isVectorTy() && 2517 "Tried to create insertelement operation on non-vector type!"); 2518 assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() && 2519 "Insertelement types must match!"); 2520 assert(Idx->getType()->isIntegerTy() && 2521 "Insertelement index must be i32 type!"); 2522 2523 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) 2524 return FC; // Fold a few common cases. 2525 2526 if (OnlyIfReducedTy == Val->getType()) 2527 return nullptr; 2528 2529 // Look up the constant in the table first to ensure uniqueness 2530 Constant *ArgVec[] = { Val, Elt, Idx }; 2531 const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec); 2532 2533 LLVMContextImpl *pImpl = Val->getContext().pImpl; 2534 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key); 2535 } 2536 2537 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, 2538 ArrayRef<int> Mask, 2539 Type *OnlyIfReducedTy) { 2540 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && 2541 "Invalid shuffle vector constant expr operands!"); 2542 2543 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) 2544 return FC; // Fold a few common cases. 2545 2546 unsigned NElts = Mask.size(); 2547 auto V1VTy = cast<VectorType>(V1->getType()); 2548 Type *EltTy = V1VTy->getElementType(); 2549 bool TypeIsScalable = isa<ScalableVectorType>(V1VTy); 2550 Type *ShufTy = VectorType::get(EltTy, NElts, TypeIsScalable); 2551 2552 if (OnlyIfReducedTy == ShufTy) 2553 return nullptr; 2554 2555 // Look up the constant in the table first to ensure uniqueness 2556 Constant *ArgVec[] = {V1, V2}; 2557 ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec, 0, 0, None, Mask); 2558 2559 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl; 2560 return pImpl->ExprConstants.getOrCreate(ShufTy, Key); 2561 } 2562 2563 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val, 2564 ArrayRef<unsigned> Idxs, 2565 Type *OnlyIfReducedTy) { 2566 assert(Agg->getType()->isFirstClassType() && 2567 "Non-first-class type for constant insertvalue expression"); 2568 2569 assert(ExtractValueInst::getIndexedType(Agg->getType(), 2570 Idxs) == Val->getType() && 2571 "insertvalue indices invalid!"); 2572 Type *ReqTy = Val->getType(); 2573 2574 if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs)) 2575 return FC; 2576 2577 if (OnlyIfReducedTy == ReqTy) 2578 return nullptr; 2579 2580 Constant *ArgVec[] = { Agg, Val }; 2581 const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs); 2582 2583 LLVMContextImpl *pImpl = Agg->getContext().pImpl; 2584 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2585 } 2586 2587 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs, 2588 Type *OnlyIfReducedTy) { 2589 assert(Agg->getType()->isFirstClassType() && 2590 "Tried to create extractelement operation on non-first-class type!"); 2591 2592 Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs); 2593 (void)ReqTy; 2594 assert(ReqTy && "extractvalue indices invalid!"); 2595 2596 assert(Agg->getType()->isFirstClassType() && 2597 "Non-first-class type for constant extractvalue expression"); 2598 if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs)) 2599 return FC; 2600 2601 if (OnlyIfReducedTy == ReqTy) 2602 return nullptr; 2603 2604 Constant *ArgVec[] = { Agg }; 2605 const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs); 2606 2607 LLVMContextImpl *pImpl = Agg->getContext().pImpl; 2608 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2609 } 2610 2611 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) { 2612 assert(C->getType()->isIntOrIntVectorTy() && 2613 "Cannot NEG a nonintegral value!"); 2614 return getSub(ConstantFP::getZeroValueForNegation(C->getType()), 2615 C, HasNUW, HasNSW); 2616 } 2617 2618 Constant *ConstantExpr::getFNeg(Constant *C) { 2619 assert(C->getType()->isFPOrFPVectorTy() && 2620 "Cannot FNEG a non-floating-point value!"); 2621 return get(Instruction::FNeg, C); 2622 } 2623 2624 Constant *ConstantExpr::getNot(Constant *C) { 2625 assert(C->getType()->isIntOrIntVectorTy() && 2626 "Cannot NOT a nonintegral value!"); 2627 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); 2628 } 2629 2630 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2, 2631 bool HasNUW, bool HasNSW) { 2632 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2633 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2634 return get(Instruction::Add, C1, C2, Flags); 2635 } 2636 2637 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) { 2638 return get(Instruction::FAdd, C1, C2); 2639 } 2640 2641 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2, 2642 bool HasNUW, bool HasNSW) { 2643 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2644 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2645 return get(Instruction::Sub, C1, C2, Flags); 2646 } 2647 2648 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) { 2649 return get(Instruction::FSub, C1, C2); 2650 } 2651 2652 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2, 2653 bool HasNUW, bool HasNSW) { 2654 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2655 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2656 return get(Instruction::Mul, C1, C2, Flags); 2657 } 2658 2659 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) { 2660 return get(Instruction::FMul, C1, C2); 2661 } 2662 2663 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) { 2664 return get(Instruction::UDiv, C1, C2, 2665 isExact ? PossiblyExactOperator::IsExact : 0); 2666 } 2667 2668 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) { 2669 return get(Instruction::SDiv, C1, C2, 2670 isExact ? PossiblyExactOperator::IsExact : 0); 2671 } 2672 2673 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) { 2674 return get(Instruction::FDiv, C1, C2); 2675 } 2676 2677 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) { 2678 return get(Instruction::URem, C1, C2); 2679 } 2680 2681 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) { 2682 return get(Instruction::SRem, C1, C2); 2683 } 2684 2685 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) { 2686 return get(Instruction::FRem, C1, C2); 2687 } 2688 2689 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { 2690 return get(Instruction::And, C1, C2); 2691 } 2692 2693 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { 2694 return get(Instruction::Or, C1, C2); 2695 } 2696 2697 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { 2698 return get(Instruction::Xor, C1, C2); 2699 } 2700 2701 Constant *ConstantExpr::getUMin(Constant *C1, Constant *C2) { 2702 Constant *Cmp = ConstantExpr::getICmp(CmpInst::ICMP_ULT, C1, C2); 2703 return getSelect(Cmp, C1, C2); 2704 } 2705 2706 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2, 2707 bool HasNUW, bool HasNSW) { 2708 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2709 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2710 return get(Instruction::Shl, C1, C2, Flags); 2711 } 2712 2713 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) { 2714 return get(Instruction::LShr, C1, C2, 2715 isExact ? PossiblyExactOperator::IsExact : 0); 2716 } 2717 2718 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) { 2719 return get(Instruction::AShr, C1, C2, 2720 isExact ? PossiblyExactOperator::IsExact : 0); 2721 } 2722 2723 Constant *ConstantExpr::getExactLogBase2(Constant *C) { 2724 Type *Ty = C->getType(); 2725 const APInt *IVal; 2726 if (match(C, m_APInt(IVal)) && IVal->isPowerOf2()) 2727 return ConstantInt::get(Ty, IVal->logBase2()); 2728 2729 // FIXME: We can extract pow of 2 of splat constant for scalable vectors. 2730 auto *VecTy = dyn_cast<FixedVectorType>(Ty); 2731 if (!VecTy) 2732 return nullptr; 2733 2734 SmallVector<Constant *, 4> Elts; 2735 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 2736 Constant *Elt = C->getAggregateElement(I); 2737 if (!Elt) 2738 return nullptr; 2739 // Note that log2(iN undef) is *NOT* iN undef, because log2(iN undef) u< N. 2740 if (isa<UndefValue>(Elt)) { 2741 Elts.push_back(Constant::getNullValue(Ty->getScalarType())); 2742 continue; 2743 } 2744 if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2()) 2745 return nullptr; 2746 Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2())); 2747 } 2748 2749 return ConstantVector::get(Elts); 2750 } 2751 2752 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty, 2753 bool AllowRHSConstant) { 2754 assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed"); 2755 2756 // Commutative opcodes: it does not matter if AllowRHSConstant is set. 2757 if (Instruction::isCommutative(Opcode)) { 2758 switch (Opcode) { 2759 case Instruction::Add: // X + 0 = X 2760 case Instruction::Or: // X | 0 = X 2761 case Instruction::Xor: // X ^ 0 = X 2762 return Constant::getNullValue(Ty); 2763 case Instruction::Mul: // X * 1 = X 2764 return ConstantInt::get(Ty, 1); 2765 case Instruction::And: // X & -1 = X 2766 return Constant::getAllOnesValue(Ty); 2767 case Instruction::FAdd: // X + -0.0 = X 2768 // TODO: If the fadd has 'nsz', should we return +0.0? 2769 return ConstantFP::getNegativeZero(Ty); 2770 case Instruction::FMul: // X * 1.0 = X 2771 return ConstantFP::get(Ty, 1.0); 2772 default: 2773 llvm_unreachable("Every commutative binop has an identity constant"); 2774 } 2775 } 2776 2777 // Non-commutative opcodes: AllowRHSConstant must be set. 2778 if (!AllowRHSConstant) 2779 return nullptr; 2780 2781 switch (Opcode) { 2782 case Instruction::Sub: // X - 0 = X 2783 case Instruction::Shl: // X << 0 = X 2784 case Instruction::LShr: // X >>u 0 = X 2785 case Instruction::AShr: // X >> 0 = X 2786 case Instruction::FSub: // X - 0.0 = X 2787 return Constant::getNullValue(Ty); 2788 case Instruction::SDiv: // X / 1 = X 2789 case Instruction::UDiv: // X /u 1 = X 2790 return ConstantInt::get(Ty, 1); 2791 case Instruction::FDiv: // X / 1.0 = X 2792 return ConstantFP::get(Ty, 1.0); 2793 default: 2794 return nullptr; 2795 } 2796 } 2797 2798 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) { 2799 switch (Opcode) { 2800 default: 2801 // Doesn't have an absorber. 2802 return nullptr; 2803 2804 case Instruction::Or: 2805 return Constant::getAllOnesValue(Ty); 2806 2807 case Instruction::And: 2808 case Instruction::Mul: 2809 return Constant::getNullValue(Ty); 2810 } 2811 } 2812 2813 /// Remove the constant from the constant table. 2814 void ConstantExpr::destroyConstantImpl() { 2815 getType()->getContext().pImpl->ExprConstants.remove(this); 2816 } 2817 2818 const char *ConstantExpr::getOpcodeName() const { 2819 return Instruction::getOpcodeName(getOpcode()); 2820 } 2821 2822 GetElementPtrConstantExpr::GetElementPtrConstantExpr( 2823 Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy) 2824 : ConstantExpr(DestTy, Instruction::GetElementPtr, 2825 OperandTraits<GetElementPtrConstantExpr>::op_end(this) - 2826 (IdxList.size() + 1), 2827 IdxList.size() + 1), 2828 SrcElementTy(SrcElementTy), 2829 ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) { 2830 Op<0>() = C; 2831 Use *OperandList = getOperandList(); 2832 for (unsigned i = 0, E = IdxList.size(); i != E; ++i) 2833 OperandList[i+1] = IdxList[i]; 2834 } 2835 2836 Type *GetElementPtrConstantExpr::getSourceElementType() const { 2837 return SrcElementTy; 2838 } 2839 2840 Type *GetElementPtrConstantExpr::getResultElementType() const { 2841 return ResElementTy; 2842 } 2843 2844 //===----------------------------------------------------------------------===// 2845 // ConstantData* implementations 2846 2847 Type *ConstantDataSequential::getElementType() const { 2848 if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) 2849 return ATy->getElementType(); 2850 return cast<VectorType>(getType())->getElementType(); 2851 } 2852 2853 StringRef ConstantDataSequential::getRawDataValues() const { 2854 return StringRef(DataElements, getNumElements()*getElementByteSize()); 2855 } 2856 2857 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) { 2858 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || Ty->isDoubleTy()) 2859 return true; 2860 if (auto *IT = dyn_cast<IntegerType>(Ty)) { 2861 switch (IT->getBitWidth()) { 2862 case 8: 2863 case 16: 2864 case 32: 2865 case 64: 2866 return true; 2867 default: break; 2868 } 2869 } 2870 return false; 2871 } 2872 2873 unsigned ConstantDataSequential::getNumElements() const { 2874 if (ArrayType *AT = dyn_cast<ArrayType>(getType())) 2875 return AT->getNumElements(); 2876 return cast<FixedVectorType>(getType())->getNumElements(); 2877 } 2878 2879 2880 uint64_t ConstantDataSequential::getElementByteSize() const { 2881 return getElementType()->getPrimitiveSizeInBits()/8; 2882 } 2883 2884 /// Return the start of the specified element. 2885 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const { 2886 assert(Elt < getNumElements() && "Invalid Elt"); 2887 return DataElements+Elt*getElementByteSize(); 2888 } 2889 2890 2891 /// Return true if the array is empty or all zeros. 2892 static bool isAllZeros(StringRef Arr) { 2893 for (char I : Arr) 2894 if (I != 0) 2895 return false; 2896 return true; 2897 } 2898 2899 /// This is the underlying implementation of all of the 2900 /// ConstantDataSequential::get methods. They all thunk down to here, providing 2901 /// the correct element type. We take the bytes in as a StringRef because 2902 /// we *want* an underlying "char*" to avoid TBAA type punning violations. 2903 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) { 2904 #ifndef NDEBUG 2905 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) 2906 assert(isElementTypeCompatible(ATy->getElementType())); 2907 else 2908 assert(isElementTypeCompatible(cast<VectorType>(Ty)->getElementType())); 2909 #endif 2910 // If the elements are all zero or there are no elements, return a CAZ, which 2911 // is more dense and canonical. 2912 if (isAllZeros(Elements)) 2913 return ConstantAggregateZero::get(Ty); 2914 2915 // Do a lookup to see if we have already formed one of these. 2916 auto &Slot = 2917 *Ty->getContext() 2918 .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr)) 2919 .first; 2920 2921 // The bucket can point to a linked list of different CDS's that have the same 2922 // body but different types. For example, 0,0,0,1 could be a 4 element array 2923 // of i8, or a 1-element array of i32. They'll both end up in the same 2924 /// StringMap bucket, linked up by their Next pointers. Walk the list. 2925 std::unique_ptr<ConstantDataSequential> *Entry = &Slot.second; 2926 for (; *Entry; Entry = &(*Entry)->Next) 2927 if ((*Entry)->getType() == Ty) 2928 return Entry->get(); 2929 2930 // Okay, we didn't get a hit. Create a node of the right class, link it in, 2931 // and return it. 2932 if (isa<ArrayType>(Ty)) { 2933 // Use reset because std::make_unique can't access the constructor. 2934 Entry->reset(new ConstantDataArray(Ty, Slot.first().data())); 2935 return Entry->get(); 2936 } 2937 2938 assert(isa<VectorType>(Ty)); 2939 // Use reset because std::make_unique can't access the constructor. 2940 Entry->reset(new ConstantDataVector(Ty, Slot.first().data())); 2941 return Entry->get(); 2942 } 2943 2944 void ConstantDataSequential::destroyConstantImpl() { 2945 // Remove the constant from the StringMap. 2946 StringMap<std::unique_ptr<ConstantDataSequential>> &CDSConstants = 2947 getType()->getContext().pImpl->CDSConstants; 2948 2949 auto Slot = CDSConstants.find(getRawDataValues()); 2950 2951 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table"); 2952 2953 std::unique_ptr<ConstantDataSequential> *Entry = &Slot->getValue(); 2954 2955 // Remove the entry from the hash table. 2956 if (!(*Entry)->Next) { 2957 // If there is only one value in the bucket (common case) it must be this 2958 // entry, and removing the entry should remove the bucket completely. 2959 assert(Entry->get() == this && "Hash mismatch in ConstantDataSequential"); 2960 getContext().pImpl->CDSConstants.erase(Slot); 2961 return; 2962 } 2963 2964 // Otherwise, there are multiple entries linked off the bucket, unlink the 2965 // node we care about but keep the bucket around. 2966 while (true) { 2967 std::unique_ptr<ConstantDataSequential> &Node = *Entry; 2968 assert(Node && "Didn't find entry in its uniquing hash table!"); 2969 // If we found our entry, unlink it from the list and we're done. 2970 if (Node.get() == this) { 2971 Node = std::move(Node->Next); 2972 return; 2973 } 2974 2975 Entry = &Node->Next; 2976 } 2977 } 2978 2979 /// getFP() constructors - Return a constant of array type with a float 2980 /// element type taken from argument `ElementType', and count taken from 2981 /// argument `Elts'. The amount of bits of the contained type must match the 2982 /// number of bits of the type contained in the passed in ArrayRef. 2983 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note 2984 /// that this can return a ConstantAggregateZero object. 2985 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint16_t> Elts) { 2986 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) && 2987 "Element type is not a 16-bit float type"); 2988 Type *Ty = ArrayType::get(ElementType, Elts.size()); 2989 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2990 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 2991 } 2992 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint32_t> Elts) { 2993 assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type"); 2994 Type *Ty = ArrayType::get(ElementType, Elts.size()); 2995 const char *Data = reinterpret_cast<const char *>(Elts.data()); 2996 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 2997 } 2998 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint64_t> Elts) { 2999 assert(ElementType->isDoubleTy() && 3000 "Element type is not a 64-bit float type"); 3001 Type *Ty = ArrayType::get(ElementType, Elts.size()); 3002 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3003 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 3004 } 3005 3006 Constant *ConstantDataArray::getString(LLVMContext &Context, 3007 StringRef Str, bool AddNull) { 3008 if (!AddNull) { 3009 const uint8_t *Data = Str.bytes_begin(); 3010 return get(Context, makeArrayRef(Data, Str.size())); 3011 } 3012 3013 SmallVector<uint8_t, 64> ElementVals; 3014 ElementVals.append(Str.begin(), Str.end()); 3015 ElementVals.push_back(0); 3016 return get(Context, ElementVals); 3017 } 3018 3019 /// get() constructors - Return a constant with vector type with an element 3020 /// count and element type matching the ArrayRef passed in. Note that this 3021 /// can return a ConstantAggregateZero object. 3022 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){ 3023 auto *Ty = FixedVectorType::get(Type::getInt8Ty(Context), Elts.size()); 3024 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3025 return getImpl(StringRef(Data, Elts.size() * 1), Ty); 3026 } 3027 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ 3028 auto *Ty = FixedVectorType::get(Type::getInt16Ty(Context), Elts.size()); 3029 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3030 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 3031 } 3032 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ 3033 auto *Ty = FixedVectorType::get(Type::getInt32Ty(Context), Elts.size()); 3034 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3035 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 3036 } 3037 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ 3038 auto *Ty = FixedVectorType::get(Type::getInt64Ty(Context), Elts.size()); 3039 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3040 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 3041 } 3042 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) { 3043 auto *Ty = FixedVectorType::get(Type::getFloatTy(Context), Elts.size()); 3044 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3045 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 3046 } 3047 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) { 3048 auto *Ty = FixedVectorType::get(Type::getDoubleTy(Context), Elts.size()); 3049 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3050 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 3051 } 3052 3053 /// getFP() constructors - Return a constant of vector type with a float 3054 /// element type taken from argument `ElementType', and count taken from 3055 /// argument `Elts'. The amount of bits of the contained type must match the 3056 /// number of bits of the type contained in the passed in ArrayRef. 3057 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note 3058 /// that this can return a ConstantAggregateZero object. 3059 Constant *ConstantDataVector::getFP(Type *ElementType, 3060 ArrayRef<uint16_t> Elts) { 3061 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) && 3062 "Element type is not a 16-bit float type"); 3063 auto *Ty = FixedVectorType::get(ElementType, Elts.size()); 3064 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3065 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 3066 } 3067 Constant *ConstantDataVector::getFP(Type *ElementType, 3068 ArrayRef<uint32_t> Elts) { 3069 assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type"); 3070 auto *Ty = FixedVectorType::get(ElementType, Elts.size()); 3071 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3072 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 3073 } 3074 Constant *ConstantDataVector::getFP(Type *ElementType, 3075 ArrayRef<uint64_t> Elts) { 3076 assert(ElementType->isDoubleTy() && 3077 "Element type is not a 64-bit float type"); 3078 auto *Ty = FixedVectorType::get(ElementType, Elts.size()); 3079 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3080 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 3081 } 3082 3083 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) { 3084 assert(isElementTypeCompatible(V->getType()) && 3085 "Element type not compatible with ConstantData"); 3086 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 3087 if (CI->getType()->isIntegerTy(8)) { 3088 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue()); 3089 return get(V->getContext(), Elts); 3090 } 3091 if (CI->getType()->isIntegerTy(16)) { 3092 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue()); 3093 return get(V->getContext(), Elts); 3094 } 3095 if (CI->getType()->isIntegerTy(32)) { 3096 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue()); 3097 return get(V->getContext(), Elts); 3098 } 3099 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type"); 3100 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue()); 3101 return get(V->getContext(), Elts); 3102 } 3103 3104 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3105 if (CFP->getType()->isHalfTy()) { 3106 SmallVector<uint16_t, 16> Elts( 3107 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 3108 return getFP(V->getType(), Elts); 3109 } 3110 if (CFP->getType()->isBFloatTy()) { 3111 SmallVector<uint16_t, 16> Elts( 3112 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 3113 return getFP(V->getType(), Elts); 3114 } 3115 if (CFP->getType()->isFloatTy()) { 3116 SmallVector<uint32_t, 16> Elts( 3117 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 3118 return getFP(V->getType(), Elts); 3119 } 3120 if (CFP->getType()->isDoubleTy()) { 3121 SmallVector<uint64_t, 16> Elts( 3122 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 3123 return getFP(V->getType(), Elts); 3124 } 3125 } 3126 return ConstantVector::getSplat(ElementCount::getFixed(NumElts), V); 3127 } 3128 3129 3130 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { 3131 assert(isa<IntegerType>(getElementType()) && 3132 "Accessor can only be used when element is an integer"); 3133 const char *EltPtr = getElementPointer(Elt); 3134 3135 // The data is stored in host byte order, make sure to cast back to the right 3136 // type to load with the right endianness. 3137 switch (getElementType()->getIntegerBitWidth()) { 3138 default: llvm_unreachable("Invalid bitwidth for CDS"); 3139 case 8: 3140 return *reinterpret_cast<const uint8_t *>(EltPtr); 3141 case 16: 3142 return *reinterpret_cast<const uint16_t *>(EltPtr); 3143 case 32: 3144 return *reinterpret_cast<const uint32_t *>(EltPtr); 3145 case 64: 3146 return *reinterpret_cast<const uint64_t *>(EltPtr); 3147 } 3148 } 3149 3150 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const { 3151 assert(isa<IntegerType>(getElementType()) && 3152 "Accessor can only be used when element is an integer"); 3153 const char *EltPtr = getElementPointer(Elt); 3154 3155 // The data is stored in host byte order, make sure to cast back to the right 3156 // type to load with the right endianness. 3157 switch (getElementType()->getIntegerBitWidth()) { 3158 default: llvm_unreachable("Invalid bitwidth for CDS"); 3159 case 8: { 3160 auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr); 3161 return APInt(8, EltVal); 3162 } 3163 case 16: { 3164 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 3165 return APInt(16, EltVal); 3166 } 3167 case 32: { 3168 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr); 3169 return APInt(32, EltVal); 3170 } 3171 case 64: { 3172 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr); 3173 return APInt(64, EltVal); 3174 } 3175 } 3176 } 3177 3178 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { 3179 const char *EltPtr = getElementPointer(Elt); 3180 3181 switch (getElementType()->getTypeID()) { 3182 default: 3183 llvm_unreachable("Accessor can only be used when element is float/double!"); 3184 case Type::HalfTyID: { 3185 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 3186 return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal)); 3187 } 3188 case Type::BFloatTyID: { 3189 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 3190 return APFloat(APFloat::BFloat(), APInt(16, EltVal)); 3191 } 3192 case Type::FloatTyID: { 3193 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr); 3194 return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal)); 3195 } 3196 case Type::DoubleTyID: { 3197 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr); 3198 return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal)); 3199 } 3200 } 3201 } 3202 3203 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { 3204 assert(getElementType()->isFloatTy() && 3205 "Accessor can only be used when element is a 'float'"); 3206 return *reinterpret_cast<const float *>(getElementPointer(Elt)); 3207 } 3208 3209 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { 3210 assert(getElementType()->isDoubleTy() && 3211 "Accessor can only be used when element is a 'float'"); 3212 return *reinterpret_cast<const double *>(getElementPointer(Elt)); 3213 } 3214 3215 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { 3216 if (getElementType()->isHalfTy() || getElementType()->isBFloatTy() || 3217 getElementType()->isFloatTy() || getElementType()->isDoubleTy()) 3218 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt)); 3219 3220 return ConstantInt::get(getElementType(), getElementAsInteger(Elt)); 3221 } 3222 3223 bool ConstantDataSequential::isString(unsigned CharSize) const { 3224 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize); 3225 } 3226 3227 bool ConstantDataSequential::isCString() const { 3228 if (!isString()) 3229 return false; 3230 3231 StringRef Str = getAsString(); 3232 3233 // The last value must be nul. 3234 if (Str.back() != 0) return false; 3235 3236 // Other elements must be non-nul. 3237 return Str.drop_back().find(0) == StringRef::npos; 3238 } 3239 3240 bool ConstantDataVector::isSplatData() const { 3241 const char *Base = getRawDataValues().data(); 3242 3243 // Compare elements 1+ to the 0'th element. 3244 unsigned EltSize = getElementByteSize(); 3245 for (unsigned i = 1, e = getNumElements(); i != e; ++i) 3246 if (memcmp(Base, Base+i*EltSize, EltSize)) 3247 return false; 3248 3249 return true; 3250 } 3251 3252 bool ConstantDataVector::isSplat() const { 3253 if (!IsSplatSet) { 3254 IsSplatSet = true; 3255 IsSplat = isSplatData(); 3256 } 3257 return IsSplat; 3258 } 3259 3260 Constant *ConstantDataVector::getSplatValue() const { 3261 // If they're all the same, return the 0th one as a representative. 3262 return isSplat() ? getElementAsConstant(0) : nullptr; 3263 } 3264 3265 //===----------------------------------------------------------------------===// 3266 // handleOperandChange implementations 3267 3268 /// Update this constant array to change uses of 3269 /// 'From' to be uses of 'To'. This must update the uniquing data structures 3270 /// etc. 3271 /// 3272 /// Note that we intentionally replace all uses of From with To here. Consider 3273 /// a large array that uses 'From' 1000 times. By handling this case all here, 3274 /// ConstantArray::handleOperandChange is only invoked once, and that 3275 /// single invocation handles all 1000 uses. Handling them one at a time would 3276 /// work, but would be really slow because it would have to unique each updated 3277 /// array instance. 3278 /// 3279 void Constant::handleOperandChange(Value *From, Value *To) { 3280 Value *Replacement = nullptr; 3281 switch (getValueID()) { 3282 default: 3283 llvm_unreachable("Not a constant!"); 3284 #define HANDLE_CONSTANT(Name) \ 3285 case Value::Name##Val: \ 3286 Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \ 3287 break; 3288 #include "llvm/IR/Value.def" 3289 } 3290 3291 // If handleOperandChangeImpl returned nullptr, then it handled 3292 // replacing itself and we don't want to delete or replace anything else here. 3293 if (!Replacement) 3294 return; 3295 3296 // I do need to replace this with an existing value. 3297 assert(Replacement != this && "I didn't contain From!"); 3298 3299 // Everyone using this now uses the replacement. 3300 replaceAllUsesWith(Replacement); 3301 3302 // Delete the old constant! 3303 destroyConstant(); 3304 } 3305 3306 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) { 3307 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3308 Constant *ToC = cast<Constant>(To); 3309 3310 SmallVector<Constant*, 8> Values; 3311 Values.reserve(getNumOperands()); // Build replacement array. 3312 3313 // Fill values with the modified operands of the constant array. Also, 3314 // compute whether this turns into an all-zeros array. 3315 unsigned NumUpdated = 0; 3316 3317 // Keep track of whether all the values in the array are "ToC". 3318 bool AllSame = true; 3319 Use *OperandList = getOperandList(); 3320 unsigned OperandNo = 0; 3321 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { 3322 Constant *Val = cast<Constant>(O->get()); 3323 if (Val == From) { 3324 OperandNo = (O - OperandList); 3325 Val = ToC; 3326 ++NumUpdated; 3327 } 3328 Values.push_back(Val); 3329 AllSame &= Val == ToC; 3330 } 3331 3332 if (AllSame && ToC->isNullValue()) 3333 return ConstantAggregateZero::get(getType()); 3334 3335 if (AllSame && isa<UndefValue>(ToC)) 3336 return UndefValue::get(getType()); 3337 3338 // Check for any other type of constant-folding. 3339 if (Constant *C = getImpl(getType(), Values)) 3340 return C; 3341 3342 // Update to the new value. 3343 return getContext().pImpl->ArrayConstants.replaceOperandsInPlace( 3344 Values, this, From, ToC, NumUpdated, OperandNo); 3345 } 3346 3347 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) { 3348 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3349 Constant *ToC = cast<Constant>(To); 3350 3351 Use *OperandList = getOperandList(); 3352 3353 SmallVector<Constant*, 8> Values; 3354 Values.reserve(getNumOperands()); // Build replacement struct. 3355 3356 // Fill values with the modified operands of the constant struct. Also, 3357 // compute whether this turns into an all-zeros struct. 3358 unsigned NumUpdated = 0; 3359 bool AllSame = true; 3360 unsigned OperandNo = 0; 3361 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) { 3362 Constant *Val = cast<Constant>(O->get()); 3363 if (Val == From) { 3364 OperandNo = (O - OperandList); 3365 Val = ToC; 3366 ++NumUpdated; 3367 } 3368 Values.push_back(Val); 3369 AllSame &= Val == ToC; 3370 } 3371 3372 if (AllSame && ToC->isNullValue()) 3373 return ConstantAggregateZero::get(getType()); 3374 3375 if (AllSame && isa<UndefValue>(ToC)) 3376 return UndefValue::get(getType()); 3377 3378 // Update to the new value. 3379 return getContext().pImpl->StructConstants.replaceOperandsInPlace( 3380 Values, this, From, ToC, NumUpdated, OperandNo); 3381 } 3382 3383 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) { 3384 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3385 Constant *ToC = cast<Constant>(To); 3386 3387 SmallVector<Constant*, 8> Values; 3388 Values.reserve(getNumOperands()); // Build replacement array... 3389 unsigned NumUpdated = 0; 3390 unsigned OperandNo = 0; 3391 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 3392 Constant *Val = getOperand(i); 3393 if (Val == From) { 3394 OperandNo = i; 3395 ++NumUpdated; 3396 Val = ToC; 3397 } 3398 Values.push_back(Val); 3399 } 3400 3401 if (Constant *C = getImpl(Values)) 3402 return C; 3403 3404 // Update to the new value. 3405 return getContext().pImpl->VectorConstants.replaceOperandsInPlace( 3406 Values, this, From, ToC, NumUpdated, OperandNo); 3407 } 3408 3409 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) { 3410 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); 3411 Constant *To = cast<Constant>(ToV); 3412 3413 SmallVector<Constant*, 8> NewOps; 3414 unsigned NumUpdated = 0; 3415 unsigned OperandNo = 0; 3416 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 3417 Constant *Op = getOperand(i); 3418 if (Op == From) { 3419 OperandNo = i; 3420 ++NumUpdated; 3421 Op = To; 3422 } 3423 NewOps.push_back(Op); 3424 } 3425 assert(NumUpdated && "I didn't contain From!"); 3426 3427 if (Constant *C = getWithOperands(NewOps, getType(), true)) 3428 return C; 3429 3430 // Update to the new value. 3431 return getContext().pImpl->ExprConstants.replaceOperandsInPlace( 3432 NewOps, this, From, To, NumUpdated, OperandNo); 3433 } 3434 3435 Instruction *ConstantExpr::getAsInstruction() const { 3436 SmallVector<Value *, 4> ValueOperands(operands()); 3437 ArrayRef<Value*> Ops(ValueOperands); 3438 3439 switch (getOpcode()) { 3440 case Instruction::Trunc: 3441 case Instruction::ZExt: 3442 case Instruction::SExt: 3443 case Instruction::FPTrunc: 3444 case Instruction::FPExt: 3445 case Instruction::UIToFP: 3446 case Instruction::SIToFP: 3447 case Instruction::FPToUI: 3448 case Instruction::FPToSI: 3449 case Instruction::PtrToInt: 3450 case Instruction::IntToPtr: 3451 case Instruction::BitCast: 3452 case Instruction::AddrSpaceCast: 3453 return CastInst::Create((Instruction::CastOps)getOpcode(), 3454 Ops[0], getType()); 3455 case Instruction::Select: 3456 return SelectInst::Create(Ops[0], Ops[1], Ops[2]); 3457 case Instruction::InsertElement: 3458 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]); 3459 case Instruction::ExtractElement: 3460 return ExtractElementInst::Create(Ops[0], Ops[1]); 3461 case Instruction::InsertValue: 3462 return InsertValueInst::Create(Ops[0], Ops[1], getIndices()); 3463 case Instruction::ExtractValue: 3464 return ExtractValueInst::Create(Ops[0], getIndices()); 3465 case Instruction::ShuffleVector: 3466 return new ShuffleVectorInst(Ops[0], Ops[1], getShuffleMask()); 3467 3468 case Instruction::GetElementPtr: { 3469 const auto *GO = cast<GEPOperator>(this); 3470 if (GO->isInBounds()) 3471 return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(), 3472 Ops[0], Ops.slice(1)); 3473 return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0], 3474 Ops.slice(1)); 3475 } 3476 case Instruction::ICmp: 3477 case Instruction::FCmp: 3478 return CmpInst::Create((Instruction::OtherOps)getOpcode(), 3479 (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]); 3480 case Instruction::FNeg: 3481 return UnaryOperator::Create((Instruction::UnaryOps)getOpcode(), Ops[0]); 3482 default: 3483 assert(getNumOperands() == 2 && "Must be binary operator?"); 3484 BinaryOperator *BO = 3485 BinaryOperator::Create((Instruction::BinaryOps)getOpcode(), 3486 Ops[0], Ops[1]); 3487 if (isa<OverflowingBinaryOperator>(BO)) { 3488 BO->setHasNoUnsignedWrap(SubclassOptionalData & 3489 OverflowingBinaryOperator::NoUnsignedWrap); 3490 BO->setHasNoSignedWrap(SubclassOptionalData & 3491 OverflowingBinaryOperator::NoSignedWrap); 3492 } 3493 if (isa<PossiblyExactOperator>(BO)) 3494 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact); 3495 return BO; 3496 } 3497 } 3498