xref: /freebsd/contrib/llvm-project/llvm/lib/IR/Constants.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Constant* classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Constants.h"
14 #include "ConstantFold.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/GetElementPtrTypeIterator.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>
32 
33 using namespace llvm;
34 using namespace PatternMatch;
35 
36 //===----------------------------------------------------------------------===//
37 //                              Constant Class
38 //===----------------------------------------------------------------------===//
39 
40 bool Constant::isNegativeZeroValue() const {
41   // Floating point values have an explicit -0.0 value.
42   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
43     return CFP->isZero() && CFP->isNegative();
44 
45   // Equivalent for a vector of -0.0's.
46   if (getType()->isVectorTy())
47     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
48       return SplatCFP->isNegativeZeroValue();
49 
50   // We've already handled true FP case; any other FP vectors can't represent -0.0.
51   if (getType()->isFPOrFPVectorTy())
52     return false;
53 
54   // Otherwise, just use +0.0.
55   return isNullValue();
56 }
57 
58 // Return true iff this constant is positive zero (floating point), negative
59 // zero (floating point), or a null value.
60 bool Constant::isZeroValue() const {
61   // Floating point values have an explicit -0.0 value.
62   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
63     return CFP->isZero();
64 
65   // Check for constant splat vectors of 1 values.
66   if (getType()->isVectorTy())
67     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
68       return SplatCFP->isZero();
69 
70   // Otherwise, just use +0.0.
71   return isNullValue();
72 }
73 
74 bool Constant::isNullValue() const {
75   // 0 is null.
76   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
77     return CI->isZero();
78 
79   // +0.0 is null.
80   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
81     // ppc_fp128 determine isZero using high order double only
82     // Should check the bitwise value to make sure all bits are zero.
83     return CFP->isExactlyValue(+0.0);
84 
85   // constant zero is zero for aggregates, cpnull is null for pointers, none for
86   // tokens.
87   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
88          isa<ConstantTokenNone>(this);
89 }
90 
91 bool Constant::isAllOnesValue() const {
92   // Check for -1 integers
93   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
94     return CI->isMinusOne();
95 
96   // Check for FP which are bitcasted from -1 integers
97   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
98     return CFP->getValueAPF().bitcastToAPInt().isAllOnes();
99 
100   // Check for constant splat vectors of 1 values.
101   if (getType()->isVectorTy())
102     if (const auto *SplatVal = getSplatValue())
103       return SplatVal->isAllOnesValue();
104 
105   return false;
106 }
107 
108 bool Constant::isOneValue() const {
109   // Check for 1 integers
110   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
111     return CI->isOne();
112 
113   // Check for FP which are bitcasted from 1 integers
114   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
115     return CFP->getValueAPF().bitcastToAPInt().isOne();
116 
117   // Check for constant splat vectors of 1 values.
118   if (getType()->isVectorTy())
119     if (const auto *SplatVal = getSplatValue())
120       return SplatVal->isOneValue();
121 
122   return false;
123 }
124 
125 bool Constant::isNotOneValue() const {
126   // Check for 1 integers
127   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
128     return !CI->isOneValue();
129 
130   // Check for FP which are bitcasted from 1 integers
131   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
132     return !CFP->getValueAPF().bitcastToAPInt().isOne();
133 
134   // Check that vectors don't contain 1
135   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
136     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
137       Constant *Elt = getAggregateElement(I);
138       if (!Elt || !Elt->isNotOneValue())
139         return false;
140     }
141     return true;
142   }
143 
144   // Check for splats that don't contain 1
145   if (getType()->isVectorTy())
146     if (const auto *SplatVal = getSplatValue())
147       return SplatVal->isNotOneValue();
148 
149   // It *may* contain 1, we can't tell.
150   return false;
151 }
152 
153 bool Constant::isMinSignedValue() const {
154   // Check for INT_MIN integers
155   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
156     return CI->isMinValue(/*isSigned=*/true);
157 
158   // Check for FP which are bitcasted from INT_MIN integers
159   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
160     return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
161 
162   // Check for splats of INT_MIN values.
163   if (getType()->isVectorTy())
164     if (const auto *SplatVal = getSplatValue())
165       return SplatVal->isMinSignedValue();
166 
167   return false;
168 }
169 
170 bool Constant::isNotMinSignedValue() const {
171   // Check for INT_MIN integers
172   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
173     return !CI->isMinValue(/*isSigned=*/true);
174 
175   // Check for FP which are bitcasted from INT_MIN integers
176   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
177     return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
178 
179   // Check that vectors don't contain INT_MIN
180   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
181     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
182       Constant *Elt = getAggregateElement(I);
183       if (!Elt || !Elt->isNotMinSignedValue())
184         return false;
185     }
186     return true;
187   }
188 
189   // Check for splats that aren't INT_MIN
190   if (getType()->isVectorTy())
191     if (const auto *SplatVal = getSplatValue())
192       return SplatVal->isNotMinSignedValue();
193 
194   // It *may* contain INT_MIN, we can't tell.
195   return false;
196 }
197 
198 bool Constant::isFiniteNonZeroFP() const {
199   if (auto *CFP = dyn_cast<ConstantFP>(this))
200     return CFP->getValueAPF().isFiniteNonZero();
201 
202   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
203     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
204       auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
205       if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
206         return false;
207     }
208     return true;
209   }
210 
211   if (getType()->isVectorTy())
212     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
213       return SplatCFP->isFiniteNonZeroFP();
214 
215   // It *may* contain finite non-zero, we can't tell.
216   return false;
217 }
218 
219 bool Constant::isNormalFP() const {
220   if (auto *CFP = dyn_cast<ConstantFP>(this))
221     return CFP->getValueAPF().isNormal();
222 
223   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
224     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
225       auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
226       if (!CFP || !CFP->getValueAPF().isNormal())
227         return false;
228     }
229     return true;
230   }
231 
232   if (getType()->isVectorTy())
233     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
234       return SplatCFP->isNormalFP();
235 
236   // It *may* contain a normal fp value, we can't tell.
237   return false;
238 }
239 
240 bool Constant::hasExactInverseFP() const {
241   if (auto *CFP = dyn_cast<ConstantFP>(this))
242     return CFP->getValueAPF().getExactInverse(nullptr);
243 
244   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
245     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
246       auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
247       if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr))
248         return false;
249     }
250     return true;
251   }
252 
253   if (getType()->isVectorTy())
254     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
255       return SplatCFP->hasExactInverseFP();
256 
257   // It *may* have an exact inverse fp value, we can't tell.
258   return false;
259 }
260 
261 bool Constant::isNaN() const {
262   if (auto *CFP = dyn_cast<ConstantFP>(this))
263     return CFP->isNaN();
264 
265   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
266     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
267       auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
268       if (!CFP || !CFP->isNaN())
269         return false;
270     }
271     return true;
272   }
273 
274   if (getType()->isVectorTy())
275     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
276       return SplatCFP->isNaN();
277 
278   // It *may* be NaN, we can't tell.
279   return false;
280 }
281 
282 bool Constant::isElementWiseEqual(Value *Y) const {
283   // Are they fully identical?
284   if (this == Y)
285     return true;
286 
287   // The input value must be a vector constant with the same type.
288   auto *VTy = dyn_cast<VectorType>(getType());
289   if (!isa<Constant>(Y) || !VTy || VTy != Y->getType())
290     return false;
291 
292   // TODO: Compare pointer constants?
293   if (!(VTy->getElementType()->isIntegerTy() ||
294         VTy->getElementType()->isFloatingPointTy()))
295     return false;
296 
297   // They may still be identical element-wise (if they have `undef`s).
298   // Bitcast to integer to allow exact bitwise comparison for all types.
299   Type *IntTy = VectorType::getInteger(VTy);
300   Constant *C0 = ConstantExpr::getBitCast(const_cast<Constant *>(this), IntTy);
301   Constant *C1 = ConstantExpr::getBitCast(cast<Constant>(Y), IntTy);
302   Constant *CmpEq = ConstantExpr::getICmp(ICmpInst::ICMP_EQ, C0, C1);
303   return isa<UndefValue>(CmpEq) || match(CmpEq, m_One());
304 }
305 
306 static bool
307 containsUndefinedElement(const Constant *C,
308                          function_ref<bool(const Constant *)> HasFn) {
309   if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
310     if (HasFn(C))
311       return true;
312     if (isa<ConstantAggregateZero>(C))
313       return false;
314     if (isa<ScalableVectorType>(C->getType()))
315       return false;
316 
317     for (unsigned i = 0, e = cast<FixedVectorType>(VTy)->getNumElements();
318          i != e; ++i) {
319       if (Constant *Elem = C->getAggregateElement(i))
320         if (HasFn(Elem))
321           return true;
322     }
323   }
324 
325   return false;
326 }
327 
328 bool Constant::containsUndefOrPoisonElement() const {
329   return containsUndefinedElement(
330       this, [&](const auto *C) { return isa<UndefValue>(C); });
331 }
332 
333 bool Constant::containsPoisonElement() const {
334   return containsUndefinedElement(
335       this, [&](const auto *C) { return isa<PoisonValue>(C); });
336 }
337 
338 bool Constant::containsConstantExpression() const {
339   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
340     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
341       if (isa<ConstantExpr>(getAggregateElement(i)))
342         return true;
343   }
344   return false;
345 }
346 
347 /// Constructor to create a '0' constant of arbitrary type.
348 Constant *Constant::getNullValue(Type *Ty) {
349   switch (Ty->getTypeID()) {
350   case Type::IntegerTyID:
351     return ConstantInt::get(Ty, 0);
352   case Type::HalfTyID:
353     return ConstantFP::get(Ty->getContext(),
354                            APFloat::getZero(APFloat::IEEEhalf()));
355   case Type::BFloatTyID:
356     return ConstantFP::get(Ty->getContext(),
357                            APFloat::getZero(APFloat::BFloat()));
358   case Type::FloatTyID:
359     return ConstantFP::get(Ty->getContext(),
360                            APFloat::getZero(APFloat::IEEEsingle()));
361   case Type::DoubleTyID:
362     return ConstantFP::get(Ty->getContext(),
363                            APFloat::getZero(APFloat::IEEEdouble()));
364   case Type::X86_FP80TyID:
365     return ConstantFP::get(Ty->getContext(),
366                            APFloat::getZero(APFloat::x87DoubleExtended()));
367   case Type::FP128TyID:
368     return ConstantFP::get(Ty->getContext(),
369                            APFloat::getZero(APFloat::IEEEquad()));
370   case Type::PPC_FP128TyID:
371     return ConstantFP::get(Ty->getContext(), APFloat(APFloat::PPCDoubleDouble(),
372                                                      APInt::getZero(128)));
373   case Type::PointerTyID:
374     return ConstantPointerNull::get(cast<PointerType>(Ty));
375   case Type::StructTyID:
376   case Type::ArrayTyID:
377   case Type::FixedVectorTyID:
378   case Type::ScalableVectorTyID:
379     return ConstantAggregateZero::get(Ty);
380   case Type::TokenTyID:
381     return ConstantTokenNone::get(Ty->getContext());
382   default:
383     // Function, Label, or Opaque type?
384     llvm_unreachable("Cannot create a null constant of that type!");
385   }
386 }
387 
388 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
389   Type *ScalarTy = Ty->getScalarType();
390 
391   // Create the base integer constant.
392   Constant *C = ConstantInt::get(Ty->getContext(), V);
393 
394   // Convert an integer to a pointer, if necessary.
395   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
396     C = ConstantExpr::getIntToPtr(C, PTy);
397 
398   // Broadcast a scalar to a vector, if necessary.
399   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
400     C = ConstantVector::getSplat(VTy->getElementCount(), C);
401 
402   return C;
403 }
404 
405 Constant *Constant::getAllOnesValue(Type *Ty) {
406   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
407     return ConstantInt::get(Ty->getContext(),
408                             APInt::getAllOnes(ITy->getBitWidth()));
409 
410   if (Ty->isFloatingPointTy()) {
411     APFloat FL = APFloat::getAllOnesValue(Ty->getFltSemantics());
412     return ConstantFP::get(Ty->getContext(), FL);
413   }
414 
415   VectorType *VTy = cast<VectorType>(Ty);
416   return ConstantVector::getSplat(VTy->getElementCount(),
417                                   getAllOnesValue(VTy->getElementType()));
418 }
419 
420 Constant *Constant::getAggregateElement(unsigned Elt) const {
421   assert((getType()->isAggregateType() || getType()->isVectorTy()) &&
422          "Must be an aggregate/vector constant");
423 
424   if (const auto *CC = dyn_cast<ConstantAggregate>(this))
425     return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr;
426 
427   if (const auto *CAZ = dyn_cast<ConstantAggregateZero>(this))
428     return Elt < CAZ->getElementCount().getKnownMinValue()
429                ? CAZ->getElementValue(Elt)
430                : nullptr;
431 
432   // FIXME: getNumElements() will fail for non-fixed vector types.
433   if (isa<ScalableVectorType>(getType()))
434     return nullptr;
435 
436   if (const auto *PV = dyn_cast<PoisonValue>(this))
437     return Elt < PV->getNumElements() ? PV->getElementValue(Elt) : nullptr;
438 
439   if (const auto *UV = dyn_cast<UndefValue>(this))
440     return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
441 
442   if (const auto *CDS = dyn_cast<ConstantDataSequential>(this))
443     return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
444                                        : nullptr;
445 
446   return nullptr;
447 }
448 
449 Constant *Constant::getAggregateElement(Constant *Elt) const {
450   assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
451   if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) {
452     // Check if the constant fits into an uint64_t.
453     if (CI->getValue().getActiveBits() > 64)
454       return nullptr;
455     return getAggregateElement(CI->getZExtValue());
456   }
457   return nullptr;
458 }
459 
460 void Constant::destroyConstant() {
461   /// First call destroyConstantImpl on the subclass.  This gives the subclass
462   /// a chance to remove the constant from any maps/pools it's contained in.
463   switch (getValueID()) {
464   default:
465     llvm_unreachable("Not a constant!");
466 #define HANDLE_CONSTANT(Name)                                                  \
467   case Value::Name##Val:                                                       \
468     cast<Name>(this)->destroyConstantImpl();                                   \
469     break;
470 #include "llvm/IR/Value.def"
471   }
472 
473   // When a Constant is destroyed, there may be lingering
474   // references to the constant by other constants in the constant pool.  These
475   // constants are implicitly dependent on the module that is being deleted,
476   // but they don't know that.  Because we only find out when the CPV is
477   // deleted, we must now notify all of our users (that should only be
478   // Constants) that they are, in fact, invalid now and should be deleted.
479   //
480   while (!use_empty()) {
481     Value *V = user_back();
482 #ifndef NDEBUG // Only in -g mode...
483     if (!isa<Constant>(V)) {
484       dbgs() << "While deleting: " << *this
485              << "\n\nUse still stuck around after Def is destroyed: " << *V
486              << "\n\n";
487     }
488 #endif
489     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
490     cast<Constant>(V)->destroyConstant();
491 
492     // The constant should remove itself from our use list...
493     assert((use_empty() || user_back() != V) && "Constant not removed!");
494   }
495 
496   // Value has no outstanding references it is safe to delete it now...
497   deleteConstant(this);
498 }
499 
500 void llvm::deleteConstant(Constant *C) {
501   switch (C->getValueID()) {
502   case Constant::ConstantIntVal:
503     delete static_cast<ConstantInt *>(C);
504     break;
505   case Constant::ConstantFPVal:
506     delete static_cast<ConstantFP *>(C);
507     break;
508   case Constant::ConstantAggregateZeroVal:
509     delete static_cast<ConstantAggregateZero *>(C);
510     break;
511   case Constant::ConstantArrayVal:
512     delete static_cast<ConstantArray *>(C);
513     break;
514   case Constant::ConstantStructVal:
515     delete static_cast<ConstantStruct *>(C);
516     break;
517   case Constant::ConstantVectorVal:
518     delete static_cast<ConstantVector *>(C);
519     break;
520   case Constant::ConstantPointerNullVal:
521     delete static_cast<ConstantPointerNull *>(C);
522     break;
523   case Constant::ConstantDataArrayVal:
524     delete static_cast<ConstantDataArray *>(C);
525     break;
526   case Constant::ConstantDataVectorVal:
527     delete static_cast<ConstantDataVector *>(C);
528     break;
529   case Constant::ConstantTokenNoneVal:
530     delete static_cast<ConstantTokenNone *>(C);
531     break;
532   case Constant::BlockAddressVal:
533     delete static_cast<BlockAddress *>(C);
534     break;
535   case Constant::DSOLocalEquivalentVal:
536     delete static_cast<DSOLocalEquivalent *>(C);
537     break;
538   case Constant::UndefValueVal:
539     delete static_cast<UndefValue *>(C);
540     break;
541   case Constant::PoisonValueVal:
542     delete static_cast<PoisonValue *>(C);
543     break;
544   case Constant::ConstantExprVal:
545     if (isa<UnaryConstantExpr>(C))
546       delete static_cast<UnaryConstantExpr *>(C);
547     else if (isa<BinaryConstantExpr>(C))
548       delete static_cast<BinaryConstantExpr *>(C);
549     else if (isa<SelectConstantExpr>(C))
550       delete static_cast<SelectConstantExpr *>(C);
551     else if (isa<ExtractElementConstantExpr>(C))
552       delete static_cast<ExtractElementConstantExpr *>(C);
553     else if (isa<InsertElementConstantExpr>(C))
554       delete static_cast<InsertElementConstantExpr *>(C);
555     else if (isa<ShuffleVectorConstantExpr>(C))
556       delete static_cast<ShuffleVectorConstantExpr *>(C);
557     else if (isa<ExtractValueConstantExpr>(C))
558       delete static_cast<ExtractValueConstantExpr *>(C);
559     else if (isa<InsertValueConstantExpr>(C))
560       delete static_cast<InsertValueConstantExpr *>(C);
561     else if (isa<GetElementPtrConstantExpr>(C))
562       delete static_cast<GetElementPtrConstantExpr *>(C);
563     else if (isa<CompareConstantExpr>(C))
564       delete static_cast<CompareConstantExpr *>(C);
565     else
566       llvm_unreachable("Unexpected constant expr");
567     break;
568   default:
569     llvm_unreachable("Unexpected constant");
570   }
571 }
572 
573 static bool canTrapImpl(const Constant *C,
574                         SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
575   assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
576   // The only thing that could possibly trap are constant exprs.
577   const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
578   if (!CE)
579     return false;
580 
581   // ConstantExpr traps if any operands can trap.
582   for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
583     if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
584       if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
585         return true;
586     }
587   }
588 
589   // Otherwise, only specific operations can trap.
590   switch (CE->getOpcode()) {
591   default:
592     return false;
593   case Instruction::UDiv:
594   case Instruction::SDiv:
595   case Instruction::URem:
596   case Instruction::SRem:
597     // Div and rem can trap if the RHS is not known to be non-zero.
598     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
599       return true;
600     return false;
601   }
602 }
603 
604 bool Constant::canTrap() const {
605   SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
606   return canTrapImpl(this, NonTrappingOps);
607 }
608 
609 /// Check if C contains a GlobalValue for which Predicate is true.
610 static bool
611 ConstHasGlobalValuePredicate(const Constant *C,
612                              bool (*Predicate)(const GlobalValue *)) {
613   SmallPtrSet<const Constant *, 8> Visited;
614   SmallVector<const Constant *, 8> WorkList;
615   WorkList.push_back(C);
616   Visited.insert(C);
617 
618   while (!WorkList.empty()) {
619     const Constant *WorkItem = WorkList.pop_back_val();
620     if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
621       if (Predicate(GV))
622         return true;
623     for (const Value *Op : WorkItem->operands()) {
624       const Constant *ConstOp = dyn_cast<Constant>(Op);
625       if (!ConstOp)
626         continue;
627       if (Visited.insert(ConstOp).second)
628         WorkList.push_back(ConstOp);
629     }
630   }
631   return false;
632 }
633 
634 bool Constant::isThreadDependent() const {
635   auto DLLImportPredicate = [](const GlobalValue *GV) {
636     return GV->isThreadLocal();
637   };
638   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
639 }
640 
641 bool Constant::isDLLImportDependent() const {
642   auto DLLImportPredicate = [](const GlobalValue *GV) {
643     return GV->hasDLLImportStorageClass();
644   };
645   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
646 }
647 
648 bool Constant::isConstantUsed() const {
649   for (const User *U : users()) {
650     const Constant *UC = dyn_cast<Constant>(U);
651     if (!UC || isa<GlobalValue>(UC))
652       return true;
653 
654     if (UC->isConstantUsed())
655       return true;
656   }
657   return false;
658 }
659 
660 bool Constant::needsDynamicRelocation() const {
661   return getRelocationInfo() == GlobalRelocation;
662 }
663 
664 bool Constant::needsRelocation() const {
665   return getRelocationInfo() != NoRelocation;
666 }
667 
668 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
669   if (isa<GlobalValue>(this))
670     return GlobalRelocation; // Global reference.
671 
672   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
673     return BA->getFunction()->getRelocationInfo();
674 
675   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) {
676     if (CE->getOpcode() == Instruction::Sub) {
677       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
678       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
679       if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
680           RHS->getOpcode() == Instruction::PtrToInt) {
681         Constant *LHSOp0 = LHS->getOperand(0);
682         Constant *RHSOp0 = RHS->getOperand(0);
683 
684         // While raw uses of blockaddress need to be relocated, differences
685         // between two of them don't when they are for labels in the same
686         // function.  This is a common idiom when creating a table for the
687         // indirect goto extension, so we handle it efficiently here.
688         if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) &&
689             cast<BlockAddress>(LHSOp0)->getFunction() ==
690                 cast<BlockAddress>(RHSOp0)->getFunction())
691           return NoRelocation;
692 
693         // Relative pointers do not need to be dynamically relocated.
694         if (auto *RHSGV =
695                 dyn_cast<GlobalValue>(RHSOp0->stripInBoundsConstantOffsets())) {
696           auto *LHS = LHSOp0->stripInBoundsConstantOffsets();
697           if (auto *LHSGV = dyn_cast<GlobalValue>(LHS)) {
698             if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal())
699               return LocalRelocation;
700           } else if (isa<DSOLocalEquivalent>(LHS)) {
701             if (RHSGV->isDSOLocal())
702               return LocalRelocation;
703           }
704         }
705       }
706     }
707   }
708 
709   PossibleRelocationsTy Result = NoRelocation;
710   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
711     Result =
712         std::max(cast<Constant>(getOperand(i))->getRelocationInfo(), Result);
713 
714   return Result;
715 }
716 
717 /// Return true if the specified constantexpr is dead. This involves
718 /// recursively traversing users of the constantexpr.
719 /// If RemoveDeadUsers is true, also remove dead users at the same time.
720 static bool constantIsDead(const Constant *C, bool RemoveDeadUsers) {
721   if (isa<GlobalValue>(C)) return false; // Cannot remove this
722 
723   Value::const_user_iterator I = C->user_begin(), E = C->user_end();
724   while (I != E) {
725     const Constant *User = dyn_cast<Constant>(*I);
726     if (!User) return false; // Non-constant usage;
727     if (!constantIsDead(User, RemoveDeadUsers))
728       return false; // Constant wasn't dead
729 
730     // Just removed User, so the iterator was invalidated.
731     // Since we return immediately upon finding a live user, we can always
732     // restart from user_begin().
733     if (RemoveDeadUsers)
734       I = C->user_begin();
735     else
736       ++I;
737   }
738 
739   if (RemoveDeadUsers) {
740     // If C is only used by metadata, it should not be preserved but should
741     // have its uses replaced.
742     if (C->isUsedByMetadata()) {
743       const_cast<Constant *>(C)->replaceAllUsesWith(
744           UndefValue::get(C->getType()));
745     }
746     const_cast<Constant *>(C)->destroyConstant();
747   }
748 
749   return true;
750 }
751 
752 void Constant::removeDeadConstantUsers() const {
753   Value::const_user_iterator I = user_begin(), E = user_end();
754   Value::const_user_iterator LastNonDeadUser = E;
755   while (I != E) {
756     const Constant *User = dyn_cast<Constant>(*I);
757     if (!User) {
758       LastNonDeadUser = I;
759       ++I;
760       continue;
761     }
762 
763     if (!constantIsDead(User, /* RemoveDeadUsers= */ true)) {
764       // If the constant wasn't dead, remember that this was the last live use
765       // and move on to the next constant.
766       LastNonDeadUser = I;
767       ++I;
768       continue;
769     }
770 
771     // If the constant was dead, then the iterator is invalidated.
772     if (LastNonDeadUser == E)
773       I = user_begin();
774     else
775       I = std::next(LastNonDeadUser);
776   }
777 }
778 
779 bool Constant::hasOneLiveUse() const {
780   unsigned NumUses = 0;
781   for (const Use &use : uses()) {
782     const Constant *User = dyn_cast<Constant>(use.getUser());
783     if (!User || !constantIsDead(User, /* RemoveDeadUsers= */ false)) {
784       ++NumUses;
785 
786       if (NumUses > 1)
787         return false;
788     }
789   }
790   return NumUses == 1;
791 }
792 
793 Constant *Constant::replaceUndefsWith(Constant *C, Constant *Replacement) {
794   assert(C && Replacement && "Expected non-nullptr constant arguments");
795   Type *Ty = C->getType();
796   if (match(C, m_Undef())) {
797     assert(Ty == Replacement->getType() && "Expected matching types");
798     return Replacement;
799   }
800 
801   // Don't know how to deal with this constant.
802   auto *VTy = dyn_cast<FixedVectorType>(Ty);
803   if (!VTy)
804     return C;
805 
806   unsigned NumElts = VTy->getNumElements();
807   SmallVector<Constant *, 32> NewC(NumElts);
808   for (unsigned i = 0; i != NumElts; ++i) {
809     Constant *EltC = C->getAggregateElement(i);
810     assert((!EltC || EltC->getType() == Replacement->getType()) &&
811            "Expected matching types");
812     NewC[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC;
813   }
814   return ConstantVector::get(NewC);
815 }
816 
817 Constant *Constant::mergeUndefsWith(Constant *C, Constant *Other) {
818   assert(C && Other && "Expected non-nullptr constant arguments");
819   if (match(C, m_Undef()))
820     return C;
821 
822   Type *Ty = C->getType();
823   if (match(Other, m_Undef()))
824     return UndefValue::get(Ty);
825 
826   auto *VTy = dyn_cast<FixedVectorType>(Ty);
827   if (!VTy)
828     return C;
829 
830   Type *EltTy = VTy->getElementType();
831   unsigned NumElts = VTy->getNumElements();
832   assert(isa<FixedVectorType>(Other->getType()) &&
833          cast<FixedVectorType>(Other->getType())->getNumElements() == NumElts &&
834          "Type mismatch");
835 
836   bool FoundExtraUndef = false;
837   SmallVector<Constant *, 32> NewC(NumElts);
838   for (unsigned I = 0; I != NumElts; ++I) {
839     NewC[I] = C->getAggregateElement(I);
840     Constant *OtherEltC = Other->getAggregateElement(I);
841     assert(NewC[I] && OtherEltC && "Unknown vector element");
842     if (!match(NewC[I], m_Undef()) && match(OtherEltC, m_Undef())) {
843       NewC[I] = UndefValue::get(EltTy);
844       FoundExtraUndef = true;
845     }
846   }
847   if (FoundExtraUndef)
848     return ConstantVector::get(NewC);
849   return C;
850 }
851 
852 bool Constant::isManifestConstant() const {
853   if (isa<ConstantData>(this))
854     return true;
855   if (isa<ConstantAggregate>(this) || isa<ConstantExpr>(this)) {
856     for (const Value *Op : operand_values())
857       if (!cast<Constant>(Op)->isManifestConstant())
858         return false;
859     return true;
860   }
861   return false;
862 }
863 
864 //===----------------------------------------------------------------------===//
865 //                                ConstantInt
866 //===----------------------------------------------------------------------===//
867 
868 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V)
869     : ConstantData(Ty, ConstantIntVal), Val(V) {
870   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
871 }
872 
873 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
874   LLVMContextImpl *pImpl = Context.pImpl;
875   if (!pImpl->TheTrueVal)
876     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
877   return pImpl->TheTrueVal;
878 }
879 
880 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
881   LLVMContextImpl *pImpl = Context.pImpl;
882   if (!pImpl->TheFalseVal)
883     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
884   return pImpl->TheFalseVal;
885 }
886 
887 ConstantInt *ConstantInt::getBool(LLVMContext &Context, bool V) {
888   return V ? getTrue(Context) : getFalse(Context);
889 }
890 
891 Constant *ConstantInt::getTrue(Type *Ty) {
892   assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
893   ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext());
894   if (auto *VTy = dyn_cast<VectorType>(Ty))
895     return ConstantVector::getSplat(VTy->getElementCount(), TrueC);
896   return TrueC;
897 }
898 
899 Constant *ConstantInt::getFalse(Type *Ty) {
900   assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
901   ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext());
902   if (auto *VTy = dyn_cast<VectorType>(Ty))
903     return ConstantVector::getSplat(VTy->getElementCount(), FalseC);
904   return FalseC;
905 }
906 
907 Constant *ConstantInt::getBool(Type *Ty, bool V) {
908   return V ? getTrue(Ty) : getFalse(Ty);
909 }
910 
911 // Get a ConstantInt from an APInt.
912 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
913   // get an existing value or the insertion position
914   LLVMContextImpl *pImpl = Context.pImpl;
915   std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V];
916   if (!Slot) {
917     // Get the corresponding integer type for the bit width of the value.
918     IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
919     Slot.reset(new ConstantInt(ITy, V));
920   }
921   assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
922   return Slot.get();
923 }
924 
925 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
926   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
927 
928   // For vectors, broadcast the value.
929   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
930     return ConstantVector::getSplat(VTy->getElementCount(), C);
931 
932   return C;
933 }
934 
935 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) {
936   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
937 }
938 
939 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
940   return get(Ty, V, true);
941 }
942 
943 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
944   return get(Ty, V, true);
945 }
946 
947 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
948   ConstantInt *C = get(Ty->getContext(), V);
949   assert(C->getType() == Ty->getScalarType() &&
950          "ConstantInt type doesn't match the type implied by its value!");
951 
952   // For vectors, broadcast the value.
953   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
954     return ConstantVector::getSplat(VTy->getElementCount(), C);
955 
956   return C;
957 }
958 
959 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) {
960   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
961 }
962 
963 /// Remove the constant from the constant table.
964 void ConstantInt::destroyConstantImpl() {
965   llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
966 }
967 
968 //===----------------------------------------------------------------------===//
969 //                                ConstantFP
970 //===----------------------------------------------------------------------===//
971 
972 Constant *ConstantFP::get(Type *Ty, double V) {
973   LLVMContext &Context = Ty->getContext();
974 
975   APFloat FV(V);
976   bool ignored;
977   FV.convert(Ty->getScalarType()->getFltSemantics(),
978              APFloat::rmNearestTiesToEven, &ignored);
979   Constant *C = get(Context, FV);
980 
981   // For vectors, broadcast the value.
982   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
983     return ConstantVector::getSplat(VTy->getElementCount(), C);
984 
985   return C;
986 }
987 
988 Constant *ConstantFP::get(Type *Ty, const APFloat &V) {
989   ConstantFP *C = get(Ty->getContext(), V);
990   assert(C->getType() == Ty->getScalarType() &&
991          "ConstantFP type doesn't match the type implied by its value!");
992 
993   // For vectors, broadcast the value.
994   if (auto *VTy = dyn_cast<VectorType>(Ty))
995     return ConstantVector::getSplat(VTy->getElementCount(), C);
996 
997   return C;
998 }
999 
1000 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
1001   LLVMContext &Context = Ty->getContext();
1002 
1003   APFloat FV(Ty->getScalarType()->getFltSemantics(), Str);
1004   Constant *C = get(Context, FV);
1005 
1006   // For vectors, broadcast the value.
1007   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1008     return ConstantVector::getSplat(VTy->getElementCount(), C);
1009 
1010   return C;
1011 }
1012 
1013 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) {
1014   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1015   APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload);
1016   Constant *C = get(Ty->getContext(), NaN);
1017 
1018   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1019     return ConstantVector::getSplat(VTy->getElementCount(), C);
1020 
1021   return C;
1022 }
1023 
1024 Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) {
1025   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1026   APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload);
1027   Constant *C = get(Ty->getContext(), NaN);
1028 
1029   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1030     return ConstantVector::getSplat(VTy->getElementCount(), C);
1031 
1032   return C;
1033 }
1034 
1035 Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) {
1036   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1037   APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload);
1038   Constant *C = get(Ty->getContext(), NaN);
1039 
1040   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1041     return ConstantVector::getSplat(VTy->getElementCount(), C);
1042 
1043   return C;
1044 }
1045 
1046 Constant *ConstantFP::getNegativeZero(Type *Ty) {
1047   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1048   APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
1049   Constant *C = get(Ty->getContext(), NegZero);
1050 
1051   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1052     return ConstantVector::getSplat(VTy->getElementCount(), C);
1053 
1054   return C;
1055 }
1056 
1057 
1058 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
1059   if (Ty->isFPOrFPVectorTy())
1060     return getNegativeZero(Ty);
1061 
1062   return Constant::getNullValue(Ty);
1063 }
1064 
1065 
1066 // ConstantFP accessors.
1067 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
1068   LLVMContextImpl* pImpl = Context.pImpl;
1069 
1070   std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V];
1071 
1072   if (!Slot) {
1073     Type *Ty = Type::getFloatingPointTy(Context, V.getSemantics());
1074     Slot.reset(new ConstantFP(Ty, V));
1075   }
1076 
1077   return Slot.get();
1078 }
1079 
1080 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
1081   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1082   Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
1083 
1084   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1085     return ConstantVector::getSplat(VTy->getElementCount(), C);
1086 
1087   return C;
1088 }
1089 
1090 ConstantFP::ConstantFP(Type *Ty, const APFloat &V)
1091     : ConstantData(Ty, ConstantFPVal), Val(V) {
1092   assert(&V.getSemantics() == &Ty->getFltSemantics() &&
1093          "FP type Mismatch");
1094 }
1095 
1096 bool ConstantFP::isExactlyValue(const APFloat &V) const {
1097   return Val.bitwiseIsEqual(V);
1098 }
1099 
1100 /// Remove the constant from the constant table.
1101 void ConstantFP::destroyConstantImpl() {
1102   llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!");
1103 }
1104 
1105 //===----------------------------------------------------------------------===//
1106 //                   ConstantAggregateZero Implementation
1107 //===----------------------------------------------------------------------===//
1108 
1109 Constant *ConstantAggregateZero::getSequentialElement() const {
1110   if (auto *AT = dyn_cast<ArrayType>(getType()))
1111     return Constant::getNullValue(AT->getElementType());
1112   return Constant::getNullValue(cast<VectorType>(getType())->getElementType());
1113 }
1114 
1115 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
1116   return Constant::getNullValue(getType()->getStructElementType(Elt));
1117 }
1118 
1119 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
1120   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1121     return getSequentialElement();
1122   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1123 }
1124 
1125 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
1126   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1127     return getSequentialElement();
1128   return getStructElement(Idx);
1129 }
1130 
1131 ElementCount ConstantAggregateZero::getElementCount() const {
1132   Type *Ty = getType();
1133   if (auto *AT = dyn_cast<ArrayType>(Ty))
1134     return ElementCount::getFixed(AT->getNumElements());
1135   if (auto *VT = dyn_cast<VectorType>(Ty))
1136     return VT->getElementCount();
1137   return ElementCount::getFixed(Ty->getStructNumElements());
1138 }
1139 
1140 //===----------------------------------------------------------------------===//
1141 //                         UndefValue Implementation
1142 //===----------------------------------------------------------------------===//
1143 
1144 UndefValue *UndefValue::getSequentialElement() const {
1145   if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
1146     return UndefValue::get(ATy->getElementType());
1147   return UndefValue::get(cast<VectorType>(getType())->getElementType());
1148 }
1149 
1150 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
1151   return UndefValue::get(getType()->getStructElementType(Elt));
1152 }
1153 
1154 UndefValue *UndefValue::getElementValue(Constant *C) const {
1155   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1156     return getSequentialElement();
1157   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1158 }
1159 
1160 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
1161   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1162     return getSequentialElement();
1163   return getStructElement(Idx);
1164 }
1165 
1166 unsigned UndefValue::getNumElements() const {
1167   Type *Ty = getType();
1168   if (auto *AT = dyn_cast<ArrayType>(Ty))
1169     return AT->getNumElements();
1170   if (auto *VT = dyn_cast<VectorType>(Ty))
1171     return cast<FixedVectorType>(VT)->getNumElements();
1172   return Ty->getStructNumElements();
1173 }
1174 
1175 //===----------------------------------------------------------------------===//
1176 //                         PoisonValue Implementation
1177 //===----------------------------------------------------------------------===//
1178 
1179 PoisonValue *PoisonValue::getSequentialElement() const {
1180   if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
1181     return PoisonValue::get(ATy->getElementType());
1182   return PoisonValue::get(cast<VectorType>(getType())->getElementType());
1183 }
1184 
1185 PoisonValue *PoisonValue::getStructElement(unsigned Elt) const {
1186   return PoisonValue::get(getType()->getStructElementType(Elt));
1187 }
1188 
1189 PoisonValue *PoisonValue::getElementValue(Constant *C) const {
1190   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1191     return getSequentialElement();
1192   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1193 }
1194 
1195 PoisonValue *PoisonValue::getElementValue(unsigned Idx) const {
1196   if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1197     return getSequentialElement();
1198   return getStructElement(Idx);
1199 }
1200 
1201 //===----------------------------------------------------------------------===//
1202 //                            ConstantXXX Classes
1203 //===----------------------------------------------------------------------===//
1204 
1205 template <typename ItTy, typename EltTy>
1206 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
1207   for (; Start != End; ++Start)
1208     if (*Start != Elt)
1209       return false;
1210   return true;
1211 }
1212 
1213 template <typename SequentialTy, typename ElementTy>
1214 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
1215   assert(!V.empty() && "Cannot get empty int sequence.");
1216 
1217   SmallVector<ElementTy, 16> Elts;
1218   for (Constant *C : V)
1219     if (auto *CI = dyn_cast<ConstantInt>(C))
1220       Elts.push_back(CI->getZExtValue());
1221     else
1222       return nullptr;
1223   return SequentialTy::get(V[0]->getContext(), Elts);
1224 }
1225 
1226 template <typename SequentialTy, typename ElementTy>
1227 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
1228   assert(!V.empty() && "Cannot get empty FP sequence.");
1229 
1230   SmallVector<ElementTy, 16> Elts;
1231   for (Constant *C : V)
1232     if (auto *CFP = dyn_cast<ConstantFP>(C))
1233       Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
1234     else
1235       return nullptr;
1236   return SequentialTy::getFP(V[0]->getType(), Elts);
1237 }
1238 
1239 template <typename SequenceTy>
1240 static Constant *getSequenceIfElementsMatch(Constant *C,
1241                                             ArrayRef<Constant *> V) {
1242   // We speculatively build the elements here even if it turns out that there is
1243   // a constantexpr or something else weird, since it is so uncommon for that to
1244   // happen.
1245   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1246     if (CI->getType()->isIntegerTy(8))
1247       return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
1248     else if (CI->getType()->isIntegerTy(16))
1249       return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1250     else if (CI->getType()->isIntegerTy(32))
1251       return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1252     else if (CI->getType()->isIntegerTy(64))
1253       return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1254   } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1255     if (CFP->getType()->isHalfTy() || CFP->getType()->isBFloatTy())
1256       return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1257     else if (CFP->getType()->isFloatTy())
1258       return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1259     else if (CFP->getType()->isDoubleTy())
1260       return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1261   }
1262 
1263   return nullptr;
1264 }
1265 
1266 ConstantAggregate::ConstantAggregate(Type *T, ValueTy VT,
1267                                      ArrayRef<Constant *> V)
1268     : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(),
1269                V.size()) {
1270   llvm::copy(V, op_begin());
1271 
1272   // Check that types match, unless this is an opaque struct.
1273   if (auto *ST = dyn_cast<StructType>(T)) {
1274     if (ST->isOpaque())
1275       return;
1276     for (unsigned I = 0, E = V.size(); I != E; ++I)
1277       assert(V[I]->getType() == ST->getTypeAtIndex(I) &&
1278              "Initializer for struct element doesn't match!");
1279   }
1280 }
1281 
1282 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
1283     : ConstantAggregate(T, ConstantArrayVal, V) {
1284   assert(V.size() == T->getNumElements() &&
1285          "Invalid initializer for constant array");
1286 }
1287 
1288 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
1289   if (Constant *C = getImpl(Ty, V))
1290     return C;
1291   return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
1292 }
1293 
1294 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
1295   // Empty arrays are canonicalized to ConstantAggregateZero.
1296   if (V.empty())
1297     return ConstantAggregateZero::get(Ty);
1298 
1299   for (unsigned i = 0, e = V.size(); i != e; ++i) {
1300     assert(V[i]->getType() == Ty->getElementType() &&
1301            "Wrong type in array element initializer");
1302   }
1303 
1304   // If this is an all-zero array, return a ConstantAggregateZero object.  If
1305   // all undef, return an UndefValue, if "all simple", then return a
1306   // ConstantDataArray.
1307   Constant *C = V[0];
1308   if (isa<PoisonValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
1309     return PoisonValue::get(Ty);
1310 
1311   if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
1312     return UndefValue::get(Ty);
1313 
1314   if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
1315     return ConstantAggregateZero::get(Ty);
1316 
1317   // Check to see if all of the elements are ConstantFP or ConstantInt and if
1318   // the element type is compatible with ConstantDataVector.  If so, use it.
1319   if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1320     return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
1321 
1322   // Otherwise, we really do want to create a ConstantArray.
1323   return nullptr;
1324 }
1325 
1326 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
1327                                                ArrayRef<Constant*> V,
1328                                                bool Packed) {
1329   unsigned VecSize = V.size();
1330   SmallVector<Type*, 16> EltTypes(VecSize);
1331   for (unsigned i = 0; i != VecSize; ++i)
1332     EltTypes[i] = V[i]->getType();
1333 
1334   return StructType::get(Context, EltTypes, Packed);
1335 }
1336 
1337 
1338 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
1339                                                bool Packed) {
1340   assert(!V.empty() &&
1341          "ConstantStruct::getTypeForElements cannot be called on empty list");
1342   return getTypeForElements(V[0]->getContext(), V, Packed);
1343 }
1344 
1345 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
1346     : ConstantAggregate(T, ConstantStructVal, V) {
1347   assert((T->isOpaque() || V.size() == T->getNumElements()) &&
1348          "Invalid initializer for constant struct");
1349 }
1350 
1351 // ConstantStruct accessors.
1352 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
1353   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
1354          "Incorrect # elements specified to ConstantStruct::get");
1355 
1356   // Create a ConstantAggregateZero value if all elements are zeros.
1357   bool isZero = true;
1358   bool isUndef = false;
1359   bool isPoison = false;
1360 
1361   if (!V.empty()) {
1362     isUndef = isa<UndefValue>(V[0]);
1363     isPoison = isa<PoisonValue>(V[0]);
1364     isZero = V[0]->isNullValue();
1365     // PoisonValue inherits UndefValue, so its check is not necessary.
1366     if (isUndef || isZero) {
1367       for (unsigned i = 0, e = V.size(); i != e; ++i) {
1368         if (!V[i]->isNullValue())
1369           isZero = false;
1370         if (!isa<PoisonValue>(V[i]))
1371           isPoison = false;
1372         if (isa<PoisonValue>(V[i]) || !isa<UndefValue>(V[i]))
1373           isUndef = false;
1374       }
1375     }
1376   }
1377   if (isZero)
1378     return ConstantAggregateZero::get(ST);
1379   if (isPoison)
1380     return PoisonValue::get(ST);
1381   if (isUndef)
1382     return UndefValue::get(ST);
1383 
1384   return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1385 }
1386 
1387 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
1388     : ConstantAggregate(T, ConstantVectorVal, V) {
1389   assert(V.size() == cast<FixedVectorType>(T)->getNumElements() &&
1390          "Invalid initializer for constant vector");
1391 }
1392 
1393 // ConstantVector accessors.
1394 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
1395   if (Constant *C = getImpl(V))
1396     return C;
1397   auto *Ty = FixedVectorType::get(V.front()->getType(), V.size());
1398   return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1399 }
1400 
1401 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1402   assert(!V.empty() && "Vectors can't be empty");
1403   auto *T = FixedVectorType::get(V.front()->getType(), V.size());
1404 
1405   // If this is an all-undef or all-zero vector, return a
1406   // ConstantAggregateZero or UndefValue.
1407   Constant *C = V[0];
1408   bool isZero = C->isNullValue();
1409   bool isUndef = isa<UndefValue>(C);
1410   bool isPoison = isa<PoisonValue>(C);
1411 
1412   if (isZero || isUndef) {
1413     for (unsigned i = 1, e = V.size(); i != e; ++i)
1414       if (V[i] != C) {
1415         isZero = isUndef = isPoison = false;
1416         break;
1417       }
1418   }
1419 
1420   if (isZero)
1421     return ConstantAggregateZero::get(T);
1422   if (isPoison)
1423     return PoisonValue::get(T);
1424   if (isUndef)
1425     return UndefValue::get(T);
1426 
1427   // Check to see if all of the elements are ConstantFP or ConstantInt and if
1428   // the element type is compatible with ConstantDataVector.  If so, use it.
1429   if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1430     return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
1431 
1432   // Otherwise, the element type isn't compatible with ConstantDataVector, or
1433   // the operand list contains a ConstantExpr or something else strange.
1434   return nullptr;
1435 }
1436 
1437 Constant *ConstantVector::getSplat(ElementCount EC, Constant *V) {
1438   if (!EC.isScalable()) {
1439     // If this splat is compatible with ConstantDataVector, use it instead of
1440     // ConstantVector.
1441     if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1442         ConstantDataSequential::isElementTypeCompatible(V->getType()))
1443       return ConstantDataVector::getSplat(EC.getKnownMinValue(), V);
1444 
1445     SmallVector<Constant *, 32> Elts(EC.getKnownMinValue(), V);
1446     return get(Elts);
1447   }
1448 
1449   Type *VTy = VectorType::get(V->getType(), EC);
1450 
1451   if (V->isNullValue())
1452     return ConstantAggregateZero::get(VTy);
1453   else if (isa<UndefValue>(V))
1454     return UndefValue::get(VTy);
1455 
1456   Type *I32Ty = Type::getInt32Ty(VTy->getContext());
1457 
1458   // Move scalar into vector.
1459   Constant *PoisonV = PoisonValue::get(VTy);
1460   V = ConstantExpr::getInsertElement(PoisonV, V, ConstantInt::get(I32Ty, 0));
1461   // Build shuffle mask to perform the splat.
1462   SmallVector<int, 8> Zeros(EC.getKnownMinValue(), 0);
1463   // Splat.
1464   return ConstantExpr::getShuffleVector(V, PoisonV, Zeros);
1465 }
1466 
1467 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
1468   LLVMContextImpl *pImpl = Context.pImpl;
1469   if (!pImpl->TheNoneToken)
1470     pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
1471   return pImpl->TheNoneToken.get();
1472 }
1473 
1474 /// Remove the constant from the constant table.
1475 void ConstantTokenNone::destroyConstantImpl() {
1476   llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
1477 }
1478 
1479 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1480 // can't be inline because we don't want to #include Instruction.h into
1481 // Constant.h
1482 bool ConstantExpr::isCast() const {
1483   return Instruction::isCast(getOpcode());
1484 }
1485 
1486 bool ConstantExpr::isCompare() const {
1487   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1488 }
1489 
1490 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1491   if (getOpcode() != Instruction::GetElementPtr) return false;
1492 
1493   gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1494   User::const_op_iterator OI = std::next(this->op_begin());
1495 
1496   // The remaining indices may be compile-time known integers within the bounds
1497   // of the corresponding notional static array types.
1498   for (; GEPI != E; ++GEPI, ++OI) {
1499     if (isa<UndefValue>(*OI))
1500       continue;
1501     auto *CI = dyn_cast<ConstantInt>(*OI);
1502     if (!CI || (GEPI.isBoundedSequential() &&
1503                 (CI->getValue().getActiveBits() > 64 ||
1504                  CI->getZExtValue() >= GEPI.getSequentialNumElements())))
1505       return false;
1506   }
1507 
1508   // All the indices checked out.
1509   return true;
1510 }
1511 
1512 bool ConstantExpr::hasIndices() const {
1513   return getOpcode() == Instruction::ExtractValue ||
1514          getOpcode() == Instruction::InsertValue;
1515 }
1516 
1517 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1518   if (const ExtractValueConstantExpr *EVCE =
1519         dyn_cast<ExtractValueConstantExpr>(this))
1520     return EVCE->Indices;
1521 
1522   return cast<InsertValueConstantExpr>(this)->Indices;
1523 }
1524 
1525 unsigned ConstantExpr::getPredicate() const {
1526   return cast<CompareConstantExpr>(this)->predicate;
1527 }
1528 
1529 ArrayRef<int> ConstantExpr::getShuffleMask() const {
1530   return cast<ShuffleVectorConstantExpr>(this)->ShuffleMask;
1531 }
1532 
1533 Constant *ConstantExpr::getShuffleMaskForBitcode() const {
1534   return cast<ShuffleVectorConstantExpr>(this)->ShuffleMaskForBitcode;
1535 }
1536 
1537 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1538                                         bool OnlyIfReduced, Type *SrcTy) const {
1539   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1540 
1541   // If no operands changed return self.
1542   if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1543     return const_cast<ConstantExpr*>(this);
1544 
1545   Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1546   switch (getOpcode()) {
1547   case Instruction::Trunc:
1548   case Instruction::ZExt:
1549   case Instruction::SExt:
1550   case Instruction::FPTrunc:
1551   case Instruction::FPExt:
1552   case Instruction::UIToFP:
1553   case Instruction::SIToFP:
1554   case Instruction::FPToUI:
1555   case Instruction::FPToSI:
1556   case Instruction::PtrToInt:
1557   case Instruction::IntToPtr:
1558   case Instruction::BitCast:
1559   case Instruction::AddrSpaceCast:
1560     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1561   case Instruction::Select:
1562     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
1563   case Instruction::InsertElement:
1564     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1565                                           OnlyIfReducedTy);
1566   case Instruction::ExtractElement:
1567     return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1568   case Instruction::InsertValue:
1569     return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
1570                                         OnlyIfReducedTy);
1571   case Instruction::ExtractValue:
1572     return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
1573   case Instruction::FNeg:
1574     return ConstantExpr::getFNeg(Ops[0]);
1575   case Instruction::ShuffleVector:
1576     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], getShuffleMask(),
1577                                           OnlyIfReducedTy);
1578   case Instruction::GetElementPtr: {
1579     auto *GEPO = cast<GEPOperator>(this);
1580     assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
1581     return ConstantExpr::getGetElementPtr(
1582         SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
1583         GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy);
1584   }
1585   case Instruction::ICmp:
1586   case Instruction::FCmp:
1587     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1588                                     OnlyIfReducedTy);
1589   default:
1590     assert(getNumOperands() == 2 && "Must be binary operator?");
1591     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1592                              OnlyIfReducedTy);
1593   }
1594 }
1595 
1596 
1597 //===----------------------------------------------------------------------===//
1598 //                      isValueValidForType implementations
1599 
1600 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1601   unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1602   if (Ty->isIntegerTy(1))
1603     return Val == 0 || Val == 1;
1604   return isUIntN(NumBits, Val);
1605 }
1606 
1607 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1608   unsigned NumBits = Ty->getIntegerBitWidth();
1609   if (Ty->isIntegerTy(1))
1610     return Val == 0 || Val == 1 || Val == -1;
1611   return isIntN(NumBits, Val);
1612 }
1613 
1614 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1615   // convert modifies in place, so make a copy.
1616   APFloat Val2 = APFloat(Val);
1617   bool losesInfo;
1618   switch (Ty->getTypeID()) {
1619   default:
1620     return false;         // These can't be represented as floating point!
1621 
1622   // FIXME rounding mode needs to be more flexible
1623   case Type::HalfTyID: {
1624     if (&Val2.getSemantics() == &APFloat::IEEEhalf())
1625       return true;
1626     Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo);
1627     return !losesInfo;
1628   }
1629   case Type::BFloatTyID: {
1630     if (&Val2.getSemantics() == &APFloat::BFloat())
1631       return true;
1632     Val2.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, &losesInfo);
1633     return !losesInfo;
1634   }
1635   case Type::FloatTyID: {
1636     if (&Val2.getSemantics() == &APFloat::IEEEsingle())
1637       return true;
1638     Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo);
1639     return !losesInfo;
1640   }
1641   case Type::DoubleTyID: {
1642     if (&Val2.getSemantics() == &APFloat::IEEEhalf() ||
1643         &Val2.getSemantics() == &APFloat::BFloat() ||
1644         &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1645         &Val2.getSemantics() == &APFloat::IEEEdouble())
1646       return true;
1647     Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo);
1648     return !losesInfo;
1649   }
1650   case Type::X86_FP80TyID:
1651     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1652            &Val2.getSemantics() == &APFloat::BFloat() ||
1653            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1654            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1655            &Val2.getSemantics() == &APFloat::x87DoubleExtended();
1656   case Type::FP128TyID:
1657     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1658            &Val2.getSemantics() == &APFloat::BFloat() ||
1659            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1660            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1661            &Val2.getSemantics() == &APFloat::IEEEquad();
1662   case Type::PPC_FP128TyID:
1663     return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1664            &Val2.getSemantics() == &APFloat::BFloat() ||
1665            &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1666            &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1667            &Val2.getSemantics() == &APFloat::PPCDoubleDouble();
1668   }
1669 }
1670 
1671 
1672 //===----------------------------------------------------------------------===//
1673 //                      Factory Function Implementation
1674 
1675 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1676   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1677          "Cannot create an aggregate zero of non-aggregate type!");
1678 
1679   std::unique_ptr<ConstantAggregateZero> &Entry =
1680       Ty->getContext().pImpl->CAZConstants[Ty];
1681   if (!Entry)
1682     Entry.reset(new ConstantAggregateZero(Ty));
1683 
1684   return Entry.get();
1685 }
1686 
1687 /// Remove the constant from the constant table.
1688 void ConstantAggregateZero::destroyConstantImpl() {
1689   getContext().pImpl->CAZConstants.erase(getType());
1690 }
1691 
1692 /// Remove the constant from the constant table.
1693 void ConstantArray::destroyConstantImpl() {
1694   getType()->getContext().pImpl->ArrayConstants.remove(this);
1695 }
1696 
1697 
1698 //---- ConstantStruct::get() implementation...
1699 //
1700 
1701 /// Remove the constant from the constant table.
1702 void ConstantStruct::destroyConstantImpl() {
1703   getType()->getContext().pImpl->StructConstants.remove(this);
1704 }
1705 
1706 /// Remove the constant from the constant table.
1707 void ConstantVector::destroyConstantImpl() {
1708   getType()->getContext().pImpl->VectorConstants.remove(this);
1709 }
1710 
1711 Constant *Constant::getSplatValue(bool AllowUndefs) const {
1712   assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1713   if (isa<ConstantAggregateZero>(this))
1714     return getNullValue(cast<VectorType>(getType())->getElementType());
1715   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1716     return CV->getSplatValue();
1717   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1718     return CV->getSplatValue(AllowUndefs);
1719 
1720   // Check if this is a constant expression splat of the form returned by
1721   // ConstantVector::getSplat()
1722   const auto *Shuf = dyn_cast<ConstantExpr>(this);
1723   if (Shuf && Shuf->getOpcode() == Instruction::ShuffleVector &&
1724       isa<UndefValue>(Shuf->getOperand(1))) {
1725 
1726     const auto *IElt = dyn_cast<ConstantExpr>(Shuf->getOperand(0));
1727     if (IElt && IElt->getOpcode() == Instruction::InsertElement &&
1728         isa<UndefValue>(IElt->getOperand(0))) {
1729 
1730       ArrayRef<int> Mask = Shuf->getShuffleMask();
1731       Constant *SplatVal = IElt->getOperand(1);
1732       ConstantInt *Index = dyn_cast<ConstantInt>(IElt->getOperand(2));
1733 
1734       if (Index && Index->getValue() == 0 &&
1735           llvm::all_of(Mask, [](int I) { return I == 0; }))
1736         return SplatVal;
1737     }
1738   }
1739 
1740   return nullptr;
1741 }
1742 
1743 Constant *ConstantVector::getSplatValue(bool AllowUndefs) const {
1744   // Check out first element.
1745   Constant *Elt = getOperand(0);
1746   // Then make sure all remaining elements point to the same value.
1747   for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
1748     Constant *OpC = getOperand(I);
1749     if (OpC == Elt)
1750       continue;
1751 
1752     // Strict mode: any mismatch is not a splat.
1753     if (!AllowUndefs)
1754       return nullptr;
1755 
1756     // Allow undefs mode: ignore undefined elements.
1757     if (isa<UndefValue>(OpC))
1758       continue;
1759 
1760     // If we do not have a defined element yet, use the current operand.
1761     if (isa<UndefValue>(Elt))
1762       Elt = OpC;
1763 
1764     if (OpC != Elt)
1765       return nullptr;
1766   }
1767   return Elt;
1768 }
1769 
1770 const APInt &Constant::getUniqueInteger() const {
1771   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1772     return CI->getValue();
1773   assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1774   const Constant *C = this->getAggregateElement(0U);
1775   assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1776   return cast<ConstantInt>(C)->getValue();
1777 }
1778 
1779 //---- ConstantPointerNull::get() implementation.
1780 //
1781 
1782 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1783   std::unique_ptr<ConstantPointerNull> &Entry =
1784       Ty->getContext().pImpl->CPNConstants[Ty];
1785   if (!Entry)
1786     Entry.reset(new ConstantPointerNull(Ty));
1787 
1788   return Entry.get();
1789 }
1790 
1791 /// Remove the constant from the constant table.
1792 void ConstantPointerNull::destroyConstantImpl() {
1793   getContext().pImpl->CPNConstants.erase(getType());
1794 }
1795 
1796 UndefValue *UndefValue::get(Type *Ty) {
1797   std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty];
1798   if (!Entry)
1799     Entry.reset(new UndefValue(Ty));
1800 
1801   return Entry.get();
1802 }
1803 
1804 /// Remove the constant from the constant table.
1805 void UndefValue::destroyConstantImpl() {
1806   // Free the constant and any dangling references to it.
1807   if (getValueID() == UndefValueVal) {
1808     getContext().pImpl->UVConstants.erase(getType());
1809   } else if (getValueID() == PoisonValueVal) {
1810     getContext().pImpl->PVConstants.erase(getType());
1811   }
1812   llvm_unreachable("Not a undef or a poison!");
1813 }
1814 
1815 PoisonValue *PoisonValue::get(Type *Ty) {
1816   std::unique_ptr<PoisonValue> &Entry = Ty->getContext().pImpl->PVConstants[Ty];
1817   if (!Entry)
1818     Entry.reset(new PoisonValue(Ty));
1819 
1820   return Entry.get();
1821 }
1822 
1823 /// Remove the constant from the constant table.
1824 void PoisonValue::destroyConstantImpl() {
1825   // Free the constant and any dangling references to it.
1826   getContext().pImpl->PVConstants.erase(getType());
1827 }
1828 
1829 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1830   assert(BB->getParent() && "Block must have a parent");
1831   return get(BB->getParent(), BB);
1832 }
1833 
1834 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1835   BlockAddress *&BA =
1836     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1837   if (!BA)
1838     BA = new BlockAddress(F, BB);
1839 
1840   assert(BA->getFunction() == F && "Basic block moved between functions");
1841   return BA;
1842 }
1843 
1844 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1845     : Constant(Type::getInt8PtrTy(F->getContext(), F->getAddressSpace()),
1846                Value::BlockAddressVal, &Op<0>(), 2) {
1847   setOperand(0, F);
1848   setOperand(1, BB);
1849   BB->AdjustBlockAddressRefCount(1);
1850 }
1851 
1852 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1853   if (!BB->hasAddressTaken())
1854     return nullptr;
1855 
1856   const Function *F = BB->getParent();
1857   assert(F && "Block must have a parent");
1858   BlockAddress *BA =
1859       F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1860   assert(BA && "Refcount and block address map disagree!");
1861   return BA;
1862 }
1863 
1864 /// Remove the constant from the constant table.
1865 void BlockAddress::destroyConstantImpl() {
1866   getFunction()->getType()->getContext().pImpl
1867     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1868   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1869 }
1870 
1871 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) {
1872   // This could be replacing either the Basic Block or the Function.  In either
1873   // case, we have to remove the map entry.
1874   Function *NewF = getFunction();
1875   BasicBlock *NewBB = getBasicBlock();
1876 
1877   if (From == NewF)
1878     NewF = cast<Function>(To->stripPointerCasts());
1879   else {
1880     assert(From == NewBB && "From does not match any operand");
1881     NewBB = cast<BasicBlock>(To);
1882   }
1883 
1884   // See if the 'new' entry already exists, if not, just update this in place
1885   // and return early.
1886   BlockAddress *&NewBA =
1887     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1888   if (NewBA)
1889     return NewBA;
1890 
1891   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1892 
1893   // Remove the old entry, this can't cause the map to rehash (just a
1894   // tombstone will get added).
1895   getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1896                                                           getBasicBlock()));
1897   NewBA = this;
1898   setOperand(0, NewF);
1899   setOperand(1, NewBB);
1900   getBasicBlock()->AdjustBlockAddressRefCount(1);
1901 
1902   // If we just want to keep the existing value, then return null.
1903   // Callers know that this means we shouldn't delete this value.
1904   return nullptr;
1905 }
1906 
1907 DSOLocalEquivalent *DSOLocalEquivalent::get(GlobalValue *GV) {
1908   DSOLocalEquivalent *&Equiv = GV->getContext().pImpl->DSOLocalEquivalents[GV];
1909   if (!Equiv)
1910     Equiv = new DSOLocalEquivalent(GV);
1911 
1912   assert(Equiv->getGlobalValue() == GV &&
1913          "DSOLocalFunction does not match the expected global value");
1914   return Equiv;
1915 }
1916 
1917 DSOLocalEquivalent::DSOLocalEquivalent(GlobalValue *GV)
1918     : Constant(GV->getType(), Value::DSOLocalEquivalentVal, &Op<0>(), 1) {
1919   setOperand(0, GV);
1920 }
1921 
1922 /// Remove the constant from the constant table.
1923 void DSOLocalEquivalent::destroyConstantImpl() {
1924   const GlobalValue *GV = getGlobalValue();
1925   GV->getContext().pImpl->DSOLocalEquivalents.erase(GV);
1926 }
1927 
1928 Value *DSOLocalEquivalent::handleOperandChangeImpl(Value *From, Value *To) {
1929   assert(From == getGlobalValue() && "Changing value does not match operand.");
1930   assert(isa<Constant>(To) && "Can only replace the operands with a constant");
1931 
1932   // The replacement is with another global value.
1933   if (const auto *ToObj = dyn_cast<GlobalValue>(To)) {
1934     DSOLocalEquivalent *&NewEquiv =
1935         getContext().pImpl->DSOLocalEquivalents[ToObj];
1936     if (NewEquiv)
1937       return llvm::ConstantExpr::getBitCast(NewEquiv, getType());
1938   }
1939 
1940   // If the argument is replaced with a null value, just replace this constant
1941   // with a null value.
1942   if (cast<Constant>(To)->isNullValue())
1943     return To;
1944 
1945   // The replacement could be a bitcast or an alias to another function. We can
1946   // replace it with a bitcast to the dso_local_equivalent of that function.
1947   auto *Func = cast<Function>(To->stripPointerCastsAndAliases());
1948   DSOLocalEquivalent *&NewEquiv = getContext().pImpl->DSOLocalEquivalents[Func];
1949   if (NewEquiv)
1950     return llvm::ConstantExpr::getBitCast(NewEquiv, getType());
1951 
1952   // Replace this with the new one.
1953   getContext().pImpl->DSOLocalEquivalents.erase(getGlobalValue());
1954   NewEquiv = this;
1955   setOperand(0, Func);
1956 
1957   if (Func->getType() != getType()) {
1958     // It is ok to mutate the type here because this constant should always
1959     // reflect the type of the function it's holding.
1960     mutateType(Func->getType());
1961   }
1962   return nullptr;
1963 }
1964 
1965 //---- ConstantExpr::get() implementations.
1966 //
1967 
1968 /// This is a utility function to handle folding of casts and lookup of the
1969 /// cast in the ExprConstants map. It is used by the various get* methods below.
1970 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1971                                bool OnlyIfReduced = false) {
1972   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1973   // Fold a few common cases
1974   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1975     return FC;
1976 
1977   if (OnlyIfReduced)
1978     return nullptr;
1979 
1980   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1981 
1982   // Look up the constant in the table first to ensure uniqueness.
1983   ConstantExprKeyType Key(opc, C);
1984 
1985   return pImpl->ExprConstants.getOrCreate(Ty, Key);
1986 }
1987 
1988 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
1989                                 bool OnlyIfReduced) {
1990   Instruction::CastOps opc = Instruction::CastOps(oc);
1991   assert(Instruction::isCast(opc) && "opcode out of range");
1992   assert(C && Ty && "Null arguments to getCast");
1993   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1994 
1995   switch (opc) {
1996   default:
1997     llvm_unreachable("Invalid cast opcode");
1998   case Instruction::Trunc:
1999     return getTrunc(C, Ty, OnlyIfReduced);
2000   case Instruction::ZExt:
2001     return getZExt(C, Ty, OnlyIfReduced);
2002   case Instruction::SExt:
2003     return getSExt(C, Ty, OnlyIfReduced);
2004   case Instruction::FPTrunc:
2005     return getFPTrunc(C, Ty, OnlyIfReduced);
2006   case Instruction::FPExt:
2007     return getFPExtend(C, Ty, OnlyIfReduced);
2008   case Instruction::UIToFP:
2009     return getUIToFP(C, Ty, OnlyIfReduced);
2010   case Instruction::SIToFP:
2011     return getSIToFP(C, Ty, OnlyIfReduced);
2012   case Instruction::FPToUI:
2013     return getFPToUI(C, Ty, OnlyIfReduced);
2014   case Instruction::FPToSI:
2015     return getFPToSI(C, Ty, OnlyIfReduced);
2016   case Instruction::PtrToInt:
2017     return getPtrToInt(C, Ty, OnlyIfReduced);
2018   case Instruction::IntToPtr:
2019     return getIntToPtr(C, Ty, OnlyIfReduced);
2020   case Instruction::BitCast:
2021     return getBitCast(C, Ty, OnlyIfReduced);
2022   case Instruction::AddrSpaceCast:
2023     return getAddrSpaceCast(C, Ty, OnlyIfReduced);
2024   }
2025 }
2026 
2027 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
2028   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2029     return getBitCast(C, Ty);
2030   return getZExt(C, Ty);
2031 }
2032 
2033 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
2034   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2035     return getBitCast(C, Ty);
2036   return getSExt(C, Ty);
2037 }
2038 
2039 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
2040   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2041     return getBitCast(C, Ty);
2042   return getTrunc(C, Ty);
2043 }
2044 
2045 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
2046   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2047   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2048           "Invalid cast");
2049 
2050   if (Ty->isIntOrIntVectorTy())
2051     return getPtrToInt(S, Ty);
2052 
2053   unsigned SrcAS = S->getType()->getPointerAddressSpace();
2054   if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
2055     return getAddrSpaceCast(S, Ty);
2056 
2057   return getBitCast(S, Ty);
2058 }
2059 
2060 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
2061                                                          Type *Ty) {
2062   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2063   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2064 
2065   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2066     return getAddrSpaceCast(S, Ty);
2067 
2068   return getBitCast(S, Ty);
2069 }
2070 
2071 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) {
2072   assert(C->getType()->isIntOrIntVectorTy() &&
2073          Ty->isIntOrIntVectorTy() && "Invalid cast");
2074   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2075   unsigned DstBits = Ty->getScalarSizeInBits();
2076   Instruction::CastOps opcode =
2077     (SrcBits == DstBits ? Instruction::BitCast :
2078      (SrcBits > DstBits ? Instruction::Trunc :
2079       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2080   return getCast(opcode, C, Ty);
2081 }
2082 
2083 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
2084   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2085          "Invalid cast");
2086   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2087   unsigned DstBits = Ty->getScalarSizeInBits();
2088   if (SrcBits == DstBits)
2089     return C; // Avoid a useless cast
2090   Instruction::CastOps opcode =
2091     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
2092   return getCast(opcode, C, Ty);
2093 }
2094 
2095 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
2096 #ifndef NDEBUG
2097   bool fromVec = isa<VectorType>(C->getType());
2098   bool toVec = isa<VectorType>(Ty);
2099 #endif
2100   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2101   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
2102   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
2103   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
2104          "SrcTy must be larger than DestTy for Trunc!");
2105 
2106   return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
2107 }
2108 
2109 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
2110 #ifndef NDEBUG
2111   bool fromVec = isa<VectorType>(C->getType());
2112   bool toVec = isa<VectorType>(Ty);
2113 #endif
2114   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2115   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
2116   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
2117   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
2118          "SrcTy must be smaller than DestTy for SExt!");
2119 
2120   return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
2121 }
2122 
2123 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
2124 #ifndef NDEBUG
2125   bool fromVec = isa<VectorType>(C->getType());
2126   bool toVec = isa<VectorType>(Ty);
2127 #endif
2128   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2129   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
2130   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
2131   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
2132          "SrcTy must be smaller than DestTy for ZExt!");
2133 
2134   return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
2135 }
2136 
2137 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
2138 #ifndef NDEBUG
2139   bool fromVec = isa<VectorType>(C->getType());
2140   bool toVec = isa<VectorType>(Ty);
2141 #endif
2142   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2143   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2144          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
2145          "This is an illegal floating point truncation!");
2146   return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
2147 }
2148 
2149 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
2150 #ifndef NDEBUG
2151   bool fromVec = isa<VectorType>(C->getType());
2152   bool toVec = isa<VectorType>(Ty);
2153 #endif
2154   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2155   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2156          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
2157          "This is an illegal floating point extension!");
2158   return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
2159 }
2160 
2161 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
2162 #ifndef NDEBUG
2163   bool fromVec = isa<VectorType>(C->getType());
2164   bool toVec = isa<VectorType>(Ty);
2165 #endif
2166   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2167   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
2168          "This is an illegal uint to floating point cast!");
2169   return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
2170 }
2171 
2172 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
2173 #ifndef NDEBUG
2174   bool fromVec = isa<VectorType>(C->getType());
2175   bool toVec = isa<VectorType>(Ty);
2176 #endif
2177   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2178   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
2179          "This is an illegal sint to floating point cast!");
2180   return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
2181 }
2182 
2183 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
2184 #ifndef NDEBUG
2185   bool fromVec = isa<VectorType>(C->getType());
2186   bool toVec = isa<VectorType>(Ty);
2187 #endif
2188   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2189   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
2190          "This is an illegal floating point to uint cast!");
2191   return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
2192 }
2193 
2194 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
2195 #ifndef NDEBUG
2196   bool fromVec = isa<VectorType>(C->getType());
2197   bool toVec = isa<VectorType>(Ty);
2198 #endif
2199   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2200   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
2201          "This is an illegal floating point to sint cast!");
2202   return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
2203 }
2204 
2205 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
2206                                     bool OnlyIfReduced) {
2207   assert(C->getType()->isPtrOrPtrVectorTy() &&
2208          "PtrToInt source must be pointer or pointer vector");
2209   assert(DstTy->isIntOrIntVectorTy() &&
2210          "PtrToInt destination must be integer or integer vector");
2211   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
2212   if (isa<VectorType>(C->getType()))
2213     assert(cast<FixedVectorType>(C->getType())->getNumElements() ==
2214                cast<FixedVectorType>(DstTy)->getNumElements() &&
2215            "Invalid cast between a different number of vector elements");
2216   return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
2217 }
2218 
2219 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
2220                                     bool OnlyIfReduced) {
2221   assert(C->getType()->isIntOrIntVectorTy() &&
2222          "IntToPtr source must be integer or integer vector");
2223   assert(DstTy->isPtrOrPtrVectorTy() &&
2224          "IntToPtr destination must be a pointer or pointer vector");
2225   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
2226   if (isa<VectorType>(C->getType()))
2227     assert(cast<VectorType>(C->getType())->getElementCount() ==
2228                cast<VectorType>(DstTy)->getElementCount() &&
2229            "Invalid cast between a different number of vector elements");
2230   return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
2231 }
2232 
2233 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
2234                                    bool OnlyIfReduced) {
2235   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
2236          "Invalid constantexpr bitcast!");
2237 
2238   // It is common to ask for a bitcast of a value to its own type, handle this
2239   // speedily.
2240   if (C->getType() == DstTy) return C;
2241 
2242   return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
2243 }
2244 
2245 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
2246                                          bool OnlyIfReduced) {
2247   assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
2248          "Invalid constantexpr addrspacecast!");
2249 
2250   // Canonicalize addrspacecasts between different pointer types by first
2251   // bitcasting the pointer type and then converting the address space.
2252   PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
2253   PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
2254   if (!SrcScalarTy->hasSameElementTypeAs(DstScalarTy)) {
2255     Type *MidTy = PointerType::getWithSamePointeeType(
2256         DstScalarTy, SrcScalarTy->getAddressSpace());
2257     if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
2258       // Handle vectors of pointers.
2259       MidTy = FixedVectorType::get(MidTy,
2260                                    cast<FixedVectorType>(VT)->getNumElements());
2261     }
2262     C = getBitCast(C, MidTy);
2263   }
2264   return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
2265 }
2266 
2267 Constant *ConstantExpr::get(unsigned Opcode, Constant *C, unsigned Flags,
2268                             Type *OnlyIfReducedTy) {
2269   // Check the operands for consistency first.
2270   assert(Instruction::isUnaryOp(Opcode) &&
2271          "Invalid opcode in unary constant expression");
2272 
2273 #ifndef NDEBUG
2274   switch (Opcode) {
2275   case Instruction::FNeg:
2276     assert(C->getType()->isFPOrFPVectorTy() &&
2277            "Tried to create a floating-point operation on a "
2278            "non-floating-point type!");
2279     break;
2280   default:
2281     break;
2282   }
2283 #endif
2284 
2285   if (Constant *FC = ConstantFoldUnaryInstruction(Opcode, C))
2286     return FC;
2287 
2288   if (OnlyIfReducedTy == C->getType())
2289     return nullptr;
2290 
2291   Constant *ArgVec[] = { C };
2292   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
2293 
2294   LLVMContextImpl *pImpl = C->getContext().pImpl;
2295   return pImpl->ExprConstants.getOrCreate(C->getType(), Key);
2296 }
2297 
2298 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
2299                             unsigned Flags, Type *OnlyIfReducedTy) {
2300   // Check the operands for consistency first.
2301   assert(Instruction::isBinaryOp(Opcode) &&
2302          "Invalid opcode in binary constant expression");
2303   assert(C1->getType() == C2->getType() &&
2304          "Operand types in binary constant expression should match");
2305 
2306 #ifndef NDEBUG
2307   switch (Opcode) {
2308   case Instruction::Add:
2309   case Instruction::Sub:
2310   case Instruction::Mul:
2311   case Instruction::UDiv:
2312   case Instruction::SDiv:
2313   case Instruction::URem:
2314   case Instruction::SRem:
2315     assert(C1->getType()->isIntOrIntVectorTy() &&
2316            "Tried to create an integer operation on a non-integer type!");
2317     break;
2318   case Instruction::FAdd:
2319   case Instruction::FSub:
2320   case Instruction::FMul:
2321   case Instruction::FDiv:
2322   case Instruction::FRem:
2323     assert(C1->getType()->isFPOrFPVectorTy() &&
2324            "Tried to create a floating-point operation on a "
2325            "non-floating-point type!");
2326     break;
2327   case Instruction::And:
2328   case Instruction::Or:
2329   case Instruction::Xor:
2330     assert(C1->getType()->isIntOrIntVectorTy() &&
2331            "Tried to create a logical operation on a non-integral type!");
2332     break;
2333   case Instruction::Shl:
2334   case Instruction::LShr:
2335   case Instruction::AShr:
2336     assert(C1->getType()->isIntOrIntVectorTy() &&
2337            "Tried to create a shift operation on a non-integer type!");
2338     break;
2339   default:
2340     break;
2341   }
2342 #endif
2343 
2344   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
2345     return FC;
2346 
2347   if (OnlyIfReducedTy == C1->getType())
2348     return nullptr;
2349 
2350   Constant *ArgVec[] = { C1, C2 };
2351   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
2352 
2353   LLVMContextImpl *pImpl = C1->getContext().pImpl;
2354   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
2355 }
2356 
2357 Constant *ConstantExpr::getSizeOf(Type* Ty) {
2358   // sizeof is implemented as: (i64) gep (Ty*)null, 1
2359   // Note that a non-inbounds gep is used, as null isn't within any object.
2360   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
2361   Constant *GEP = getGetElementPtr(
2362       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
2363   return getPtrToInt(GEP,
2364                      Type::getInt64Ty(Ty->getContext()));
2365 }
2366 
2367 Constant *ConstantExpr::getAlignOf(Type* Ty) {
2368   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
2369   // Note that a non-inbounds gep is used, as null isn't within any object.
2370   Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty);
2371   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
2372   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
2373   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
2374   Constant *Indices[2] = { Zero, One };
2375   Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
2376   return getPtrToInt(GEP,
2377                      Type::getInt64Ty(Ty->getContext()));
2378 }
2379 
2380 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
2381   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
2382                                            FieldNo));
2383 }
2384 
2385 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
2386   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
2387   // Note that a non-inbounds gep is used, as null isn't within any object.
2388   Constant *GEPIdx[] = {
2389     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
2390     FieldNo
2391   };
2392   Constant *GEP = getGetElementPtr(
2393       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
2394   return getPtrToInt(GEP,
2395                      Type::getInt64Ty(Ty->getContext()));
2396 }
2397 
2398 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
2399                                    Constant *C2, bool OnlyIfReduced) {
2400   assert(C1->getType() == C2->getType() && "Op types should be identical!");
2401 
2402   switch (Predicate) {
2403   default: llvm_unreachable("Invalid CmpInst predicate");
2404   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
2405   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
2406   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
2407   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
2408   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
2409   case CmpInst::FCMP_TRUE:
2410     return getFCmp(Predicate, C1, C2, OnlyIfReduced);
2411 
2412   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
2413   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
2414   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
2415   case CmpInst::ICMP_SLE:
2416     return getICmp(Predicate, C1, C2, OnlyIfReduced);
2417   }
2418 }
2419 
2420 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
2421                                   Type *OnlyIfReducedTy) {
2422   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
2423 
2424   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
2425     return SC;        // Fold common cases
2426 
2427   if (OnlyIfReducedTy == V1->getType())
2428     return nullptr;
2429 
2430   Constant *ArgVec[] = { C, V1, V2 };
2431   ConstantExprKeyType Key(Instruction::Select, ArgVec);
2432 
2433   LLVMContextImpl *pImpl = C->getContext().pImpl;
2434   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
2435 }
2436 
2437 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
2438                                          ArrayRef<Value *> Idxs, bool InBounds,
2439                                          Optional<unsigned> InRangeIndex,
2440                                          Type *OnlyIfReducedTy) {
2441   PointerType *OrigPtrTy = cast<PointerType>(C->getType()->getScalarType());
2442   assert(Ty && "Must specify element type");
2443   assert(OrigPtrTy->isOpaqueOrPointeeTypeMatches(Ty));
2444 
2445   if (Constant *FC =
2446           ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs))
2447     return FC;          // Fold a few common cases.
2448 
2449   // Get the result type of the getelementptr!
2450   Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
2451   assert(DestTy && "GEP indices invalid!");
2452   unsigned AS = OrigPtrTy->getAddressSpace();
2453   Type *ReqTy = OrigPtrTy->isOpaque()
2454       ? PointerType::get(OrigPtrTy->getContext(), AS)
2455       : DestTy->getPointerTo(AS);
2456 
2457   auto EltCount = ElementCount::getFixed(0);
2458   if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
2459     EltCount = VecTy->getElementCount();
2460   else
2461     for (auto Idx : Idxs)
2462       if (VectorType *VecTy = dyn_cast<VectorType>(Idx->getType()))
2463         EltCount = VecTy->getElementCount();
2464 
2465   if (EltCount.isNonZero())
2466     ReqTy = VectorType::get(ReqTy, EltCount);
2467 
2468   if (OnlyIfReducedTy == ReqTy)
2469     return nullptr;
2470 
2471   // Look up the constant in the table first to ensure uniqueness
2472   std::vector<Constant*> ArgVec;
2473   ArgVec.reserve(1 + Idxs.size());
2474   ArgVec.push_back(C);
2475   auto GTI = gep_type_begin(Ty, Idxs), GTE = gep_type_end(Ty, Idxs);
2476   for (; GTI != GTE; ++GTI) {
2477     auto *Idx = cast<Constant>(GTI.getOperand());
2478     assert(
2479         (!isa<VectorType>(Idx->getType()) ||
2480          cast<VectorType>(Idx->getType())->getElementCount() == EltCount) &&
2481         "getelementptr index type missmatch");
2482 
2483     if (GTI.isStruct() && Idx->getType()->isVectorTy()) {
2484       Idx = Idx->getSplatValue();
2485     } else if (GTI.isSequential() && EltCount.isNonZero() &&
2486                !Idx->getType()->isVectorTy()) {
2487       Idx = ConstantVector::getSplat(EltCount, Idx);
2488     }
2489     ArgVec.push_back(Idx);
2490   }
2491 
2492   unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0;
2493   if (InRangeIndex && *InRangeIndex < 63)
2494     SubClassOptionalData |= (*InRangeIndex + 1) << 1;
2495   const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
2496                                 SubClassOptionalData, None, None, Ty);
2497 
2498   LLVMContextImpl *pImpl = C->getContext().pImpl;
2499   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2500 }
2501 
2502 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
2503                                 Constant *RHS, bool OnlyIfReduced) {
2504   assert(LHS->getType() == RHS->getType());
2505   assert(CmpInst::isIntPredicate((CmpInst::Predicate)pred) &&
2506          "Invalid ICmp Predicate");
2507 
2508   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2509     return FC;          // Fold a few common cases...
2510 
2511   if (OnlyIfReduced)
2512     return nullptr;
2513 
2514   // Look up the constant in the table first to ensure uniqueness
2515   Constant *ArgVec[] = { LHS, RHS };
2516   // Get the key type with both the opcode and predicate
2517   const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
2518 
2519   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2520   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2521     ResultTy = VectorType::get(ResultTy, VT->getElementCount());
2522 
2523   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2524   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2525 }
2526 
2527 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
2528                                 Constant *RHS, bool OnlyIfReduced) {
2529   assert(LHS->getType() == RHS->getType());
2530   assert(CmpInst::isFPPredicate((CmpInst::Predicate)pred) &&
2531          "Invalid FCmp Predicate");
2532 
2533   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2534     return FC;          // Fold a few common cases...
2535 
2536   if (OnlyIfReduced)
2537     return nullptr;
2538 
2539   // Look up the constant in the table first to ensure uniqueness
2540   Constant *ArgVec[] = { LHS, RHS };
2541   // Get the key type with both the opcode and predicate
2542   const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
2543 
2544   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2545   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2546     ResultTy = VectorType::get(ResultTy, VT->getElementCount());
2547 
2548   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2549   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2550 }
2551 
2552 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
2553                                           Type *OnlyIfReducedTy) {
2554   assert(Val->getType()->isVectorTy() &&
2555          "Tried to create extractelement operation on non-vector type!");
2556   assert(Idx->getType()->isIntegerTy() &&
2557          "Extractelement index must be an integer type!");
2558 
2559   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2560     return FC;          // Fold a few common cases.
2561 
2562   Type *ReqTy = cast<VectorType>(Val->getType())->getElementType();
2563   if (OnlyIfReducedTy == ReqTy)
2564     return nullptr;
2565 
2566   // Look up the constant in the table first to ensure uniqueness
2567   Constant *ArgVec[] = { Val, Idx };
2568   const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2569 
2570   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2571   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2572 }
2573 
2574 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2575                                          Constant *Idx, Type *OnlyIfReducedTy) {
2576   assert(Val->getType()->isVectorTy() &&
2577          "Tried to create insertelement operation on non-vector type!");
2578   assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() &&
2579          "Insertelement types must match!");
2580   assert(Idx->getType()->isIntegerTy() &&
2581          "Insertelement index must be i32 type!");
2582 
2583   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2584     return FC;          // Fold a few common cases.
2585 
2586   if (OnlyIfReducedTy == Val->getType())
2587     return nullptr;
2588 
2589   // Look up the constant in the table first to ensure uniqueness
2590   Constant *ArgVec[] = { Val, Elt, Idx };
2591   const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2592 
2593   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2594   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2595 }
2596 
2597 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2598                                          ArrayRef<int> Mask,
2599                                          Type *OnlyIfReducedTy) {
2600   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2601          "Invalid shuffle vector constant expr operands!");
2602 
2603   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2604     return FC;          // Fold a few common cases.
2605 
2606   unsigned NElts = Mask.size();
2607   auto V1VTy = cast<VectorType>(V1->getType());
2608   Type *EltTy = V1VTy->getElementType();
2609   bool TypeIsScalable = isa<ScalableVectorType>(V1VTy);
2610   Type *ShufTy = VectorType::get(EltTy, NElts, TypeIsScalable);
2611 
2612   if (OnlyIfReducedTy == ShufTy)
2613     return nullptr;
2614 
2615   // Look up the constant in the table first to ensure uniqueness
2616   Constant *ArgVec[] = {V1, V2};
2617   ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec, 0, 0, None, Mask);
2618 
2619   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2620   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2621 }
2622 
2623 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2624                                        ArrayRef<unsigned> Idxs,
2625                                        Type *OnlyIfReducedTy) {
2626   assert(Agg->getType()->isFirstClassType() &&
2627          "Non-first-class type for constant insertvalue expression");
2628 
2629   assert(ExtractValueInst::getIndexedType(Agg->getType(),
2630                                           Idxs) == Val->getType() &&
2631          "insertvalue indices invalid!");
2632   Type *ReqTy = Val->getType();
2633 
2634   if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2635     return FC;
2636 
2637   if (OnlyIfReducedTy == ReqTy)
2638     return nullptr;
2639 
2640   Constant *ArgVec[] = { Agg, Val };
2641   const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2642 
2643   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2644   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2645 }
2646 
2647 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
2648                                         Type *OnlyIfReducedTy) {
2649   assert(Agg->getType()->isFirstClassType() &&
2650          "Tried to create extractelement operation on non-first-class type!");
2651 
2652   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2653   (void)ReqTy;
2654   assert(ReqTy && "extractvalue indices invalid!");
2655 
2656   assert(Agg->getType()->isFirstClassType() &&
2657          "Non-first-class type for constant extractvalue expression");
2658   if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2659     return FC;
2660 
2661   if (OnlyIfReducedTy == ReqTy)
2662     return nullptr;
2663 
2664   Constant *ArgVec[] = { Agg };
2665   const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2666 
2667   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2668   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2669 }
2670 
2671 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2672   assert(C->getType()->isIntOrIntVectorTy() &&
2673          "Cannot NEG a nonintegral value!");
2674   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2675                 C, HasNUW, HasNSW);
2676 }
2677 
2678 Constant *ConstantExpr::getFNeg(Constant *C) {
2679   assert(C->getType()->isFPOrFPVectorTy() &&
2680          "Cannot FNEG a non-floating-point value!");
2681   return get(Instruction::FNeg, C);
2682 }
2683 
2684 Constant *ConstantExpr::getNot(Constant *C) {
2685   assert(C->getType()->isIntOrIntVectorTy() &&
2686          "Cannot NOT a nonintegral value!");
2687   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2688 }
2689 
2690 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2691                                bool HasNUW, bool HasNSW) {
2692   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2693                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2694   return get(Instruction::Add, C1, C2, Flags);
2695 }
2696 
2697 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2698   return get(Instruction::FAdd, C1, C2);
2699 }
2700 
2701 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2702                                bool HasNUW, bool HasNSW) {
2703   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2704                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2705   return get(Instruction::Sub, C1, C2, Flags);
2706 }
2707 
2708 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2709   return get(Instruction::FSub, C1, C2);
2710 }
2711 
2712 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2713                                bool HasNUW, bool HasNSW) {
2714   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2715                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2716   return get(Instruction::Mul, C1, C2, Flags);
2717 }
2718 
2719 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2720   return get(Instruction::FMul, C1, C2);
2721 }
2722 
2723 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2724   return get(Instruction::UDiv, C1, C2,
2725              isExact ? PossiblyExactOperator::IsExact : 0);
2726 }
2727 
2728 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2729   return get(Instruction::SDiv, C1, C2,
2730              isExact ? PossiblyExactOperator::IsExact : 0);
2731 }
2732 
2733 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2734   return get(Instruction::FDiv, C1, C2);
2735 }
2736 
2737 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2738   return get(Instruction::URem, C1, C2);
2739 }
2740 
2741 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2742   return get(Instruction::SRem, C1, C2);
2743 }
2744 
2745 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2746   return get(Instruction::FRem, C1, C2);
2747 }
2748 
2749 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2750   return get(Instruction::And, C1, C2);
2751 }
2752 
2753 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2754   return get(Instruction::Or, C1, C2);
2755 }
2756 
2757 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2758   return get(Instruction::Xor, C1, C2);
2759 }
2760 
2761 Constant *ConstantExpr::getUMin(Constant *C1, Constant *C2) {
2762   Constant *Cmp = ConstantExpr::getICmp(CmpInst::ICMP_ULT, C1, C2);
2763   return getSelect(Cmp, C1, C2);
2764 }
2765 
2766 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2767                                bool HasNUW, bool HasNSW) {
2768   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2769                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2770   return get(Instruction::Shl, C1, C2, Flags);
2771 }
2772 
2773 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2774   return get(Instruction::LShr, C1, C2,
2775              isExact ? PossiblyExactOperator::IsExact : 0);
2776 }
2777 
2778 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2779   return get(Instruction::AShr, C1, C2,
2780              isExact ? PossiblyExactOperator::IsExact : 0);
2781 }
2782 
2783 Constant *ConstantExpr::getExactLogBase2(Constant *C) {
2784   Type *Ty = C->getType();
2785   const APInt *IVal;
2786   if (match(C, m_APInt(IVal)) && IVal->isPowerOf2())
2787     return ConstantInt::get(Ty, IVal->logBase2());
2788 
2789   // FIXME: We can extract pow of 2 of splat constant for scalable vectors.
2790   auto *VecTy = dyn_cast<FixedVectorType>(Ty);
2791   if (!VecTy)
2792     return nullptr;
2793 
2794   SmallVector<Constant *, 4> Elts;
2795   for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) {
2796     Constant *Elt = C->getAggregateElement(I);
2797     if (!Elt)
2798       return nullptr;
2799     // Note that log2(iN undef) is *NOT* iN undef, because log2(iN undef) u< N.
2800     if (isa<UndefValue>(Elt)) {
2801       Elts.push_back(Constant::getNullValue(Ty->getScalarType()));
2802       continue;
2803     }
2804     if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
2805       return nullptr;
2806     Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2()));
2807   }
2808 
2809   return ConstantVector::get(Elts);
2810 }
2811 
2812 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty,
2813                                          bool AllowRHSConstant) {
2814   assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed");
2815 
2816   // Commutative opcodes: it does not matter if AllowRHSConstant is set.
2817   if (Instruction::isCommutative(Opcode)) {
2818     switch (Opcode) {
2819       case Instruction::Add: // X + 0 = X
2820       case Instruction::Or:  // X | 0 = X
2821       case Instruction::Xor: // X ^ 0 = X
2822         return Constant::getNullValue(Ty);
2823       case Instruction::Mul: // X * 1 = X
2824         return ConstantInt::get(Ty, 1);
2825       case Instruction::And: // X & -1 = X
2826         return Constant::getAllOnesValue(Ty);
2827       case Instruction::FAdd: // X + -0.0 = X
2828         // TODO: If the fadd has 'nsz', should we return +0.0?
2829         return ConstantFP::getNegativeZero(Ty);
2830       case Instruction::FMul: // X * 1.0 = X
2831         return ConstantFP::get(Ty, 1.0);
2832       default:
2833         llvm_unreachable("Every commutative binop has an identity constant");
2834     }
2835   }
2836 
2837   // Non-commutative opcodes: AllowRHSConstant must be set.
2838   if (!AllowRHSConstant)
2839     return nullptr;
2840 
2841   switch (Opcode) {
2842     case Instruction::Sub:  // X - 0 = X
2843     case Instruction::Shl:  // X << 0 = X
2844     case Instruction::LShr: // X >>u 0 = X
2845     case Instruction::AShr: // X >> 0 = X
2846     case Instruction::FSub: // X - 0.0 = X
2847       return Constant::getNullValue(Ty);
2848     case Instruction::SDiv: // X / 1 = X
2849     case Instruction::UDiv: // X /u 1 = X
2850       return ConstantInt::get(Ty, 1);
2851     case Instruction::FDiv: // X / 1.0 = X
2852       return ConstantFP::get(Ty, 1.0);
2853     default:
2854       return nullptr;
2855   }
2856 }
2857 
2858 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2859   switch (Opcode) {
2860   default:
2861     // Doesn't have an absorber.
2862     return nullptr;
2863 
2864   case Instruction::Or:
2865     return Constant::getAllOnesValue(Ty);
2866 
2867   case Instruction::And:
2868   case Instruction::Mul:
2869     return Constant::getNullValue(Ty);
2870   }
2871 }
2872 
2873 /// Remove the constant from the constant table.
2874 void ConstantExpr::destroyConstantImpl() {
2875   getType()->getContext().pImpl->ExprConstants.remove(this);
2876 }
2877 
2878 const char *ConstantExpr::getOpcodeName() const {
2879   return Instruction::getOpcodeName(getOpcode());
2880 }
2881 
2882 GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2883     Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
2884     : ConstantExpr(DestTy, Instruction::GetElementPtr,
2885                    OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
2886                        (IdxList.size() + 1),
2887                    IdxList.size() + 1),
2888       SrcElementTy(SrcElementTy),
2889       ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) {
2890   Op<0>() = C;
2891   Use *OperandList = getOperandList();
2892   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2893     OperandList[i+1] = IdxList[i];
2894 }
2895 
2896 Type *GetElementPtrConstantExpr::getSourceElementType() const {
2897   return SrcElementTy;
2898 }
2899 
2900 Type *GetElementPtrConstantExpr::getResultElementType() const {
2901   return ResElementTy;
2902 }
2903 
2904 //===----------------------------------------------------------------------===//
2905 //                       ConstantData* implementations
2906 
2907 Type *ConstantDataSequential::getElementType() const {
2908   if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
2909     return ATy->getElementType();
2910   return cast<VectorType>(getType())->getElementType();
2911 }
2912 
2913 StringRef ConstantDataSequential::getRawDataValues() const {
2914   return StringRef(DataElements, getNumElements()*getElementByteSize());
2915 }
2916 
2917 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
2918   if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2919     return true;
2920   if (auto *IT = dyn_cast<IntegerType>(Ty)) {
2921     switch (IT->getBitWidth()) {
2922     case 8:
2923     case 16:
2924     case 32:
2925     case 64:
2926       return true;
2927     default: break;
2928     }
2929   }
2930   return false;
2931 }
2932 
2933 unsigned ConstantDataSequential::getNumElements() const {
2934   if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2935     return AT->getNumElements();
2936   return cast<FixedVectorType>(getType())->getNumElements();
2937 }
2938 
2939 
2940 uint64_t ConstantDataSequential::getElementByteSize() const {
2941   return getElementType()->getPrimitiveSizeInBits()/8;
2942 }
2943 
2944 /// Return the start of the specified element.
2945 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2946   assert(Elt < getNumElements() && "Invalid Elt");
2947   return DataElements+Elt*getElementByteSize();
2948 }
2949 
2950 
2951 /// Return true if the array is empty or all zeros.
2952 static bool isAllZeros(StringRef Arr) {
2953   for (char I : Arr)
2954     if (I != 0)
2955       return false;
2956   return true;
2957 }
2958 
2959 /// This is the underlying implementation of all of the
2960 /// ConstantDataSequential::get methods.  They all thunk down to here, providing
2961 /// the correct element type.  We take the bytes in as a StringRef because
2962 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2963 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2964 #ifndef NDEBUG
2965   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2966     assert(isElementTypeCompatible(ATy->getElementType()));
2967   else
2968     assert(isElementTypeCompatible(cast<VectorType>(Ty)->getElementType()));
2969 #endif
2970   // If the elements are all zero or there are no elements, return a CAZ, which
2971   // is more dense and canonical.
2972   if (isAllZeros(Elements))
2973     return ConstantAggregateZero::get(Ty);
2974 
2975   // Do a lookup to see if we have already formed one of these.
2976   auto &Slot =
2977       *Ty->getContext()
2978            .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
2979            .first;
2980 
2981   // The bucket can point to a linked list of different CDS's that have the same
2982   // body but different types.  For example, 0,0,0,1 could be a 4 element array
2983   // of i8, or a 1-element array of i32.  They'll both end up in the same
2984   /// StringMap bucket, linked up by their Next pointers.  Walk the list.
2985   std::unique_ptr<ConstantDataSequential> *Entry = &Slot.second;
2986   for (; *Entry; Entry = &(*Entry)->Next)
2987     if ((*Entry)->getType() == Ty)
2988       return Entry->get();
2989 
2990   // Okay, we didn't get a hit.  Create a node of the right class, link it in,
2991   // and return it.
2992   if (isa<ArrayType>(Ty)) {
2993     // Use reset because std::make_unique can't access the constructor.
2994     Entry->reset(new ConstantDataArray(Ty, Slot.first().data()));
2995     return Entry->get();
2996   }
2997 
2998   assert(isa<VectorType>(Ty));
2999   // Use reset because std::make_unique can't access the constructor.
3000   Entry->reset(new ConstantDataVector(Ty, Slot.first().data()));
3001   return Entry->get();
3002 }
3003 
3004 void ConstantDataSequential::destroyConstantImpl() {
3005   // Remove the constant from the StringMap.
3006   StringMap<std::unique_ptr<ConstantDataSequential>> &CDSConstants =
3007       getType()->getContext().pImpl->CDSConstants;
3008 
3009   auto Slot = CDSConstants.find(getRawDataValues());
3010 
3011   assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
3012 
3013   std::unique_ptr<ConstantDataSequential> *Entry = &Slot->getValue();
3014 
3015   // Remove the entry from the hash table.
3016   if (!(*Entry)->Next) {
3017     // If there is only one value in the bucket (common case) it must be this
3018     // entry, and removing the entry should remove the bucket completely.
3019     assert(Entry->get() == this && "Hash mismatch in ConstantDataSequential");
3020     getContext().pImpl->CDSConstants.erase(Slot);
3021     return;
3022   }
3023 
3024   // Otherwise, there are multiple entries linked off the bucket, unlink the
3025   // node we care about but keep the bucket around.
3026   while (true) {
3027     std::unique_ptr<ConstantDataSequential> &Node = *Entry;
3028     assert(Node && "Didn't find entry in its uniquing hash table!");
3029     // If we found our entry, unlink it from the list and we're done.
3030     if (Node.get() == this) {
3031       Node = std::move(Node->Next);
3032       return;
3033     }
3034 
3035     Entry = &Node->Next;
3036   }
3037 }
3038 
3039 /// getFP() constructors - Return a constant of array type with a float
3040 /// element type taken from argument `ElementType', and count taken from
3041 /// argument `Elts'.  The amount of bits of the contained type must match the
3042 /// number of bits of the type contained in the passed in ArrayRef.
3043 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
3044 /// that this can return a ConstantAggregateZero object.
3045 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint16_t> Elts) {
3046   assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
3047          "Element type is not a 16-bit float type");
3048   Type *Ty = ArrayType::get(ElementType, Elts.size());
3049   const char *Data = reinterpret_cast<const char *>(Elts.data());
3050   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
3051 }
3052 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint32_t> Elts) {
3053   assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type");
3054   Type *Ty = ArrayType::get(ElementType, Elts.size());
3055   const char *Data = reinterpret_cast<const char *>(Elts.data());
3056   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
3057 }
3058 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint64_t> Elts) {
3059   assert(ElementType->isDoubleTy() &&
3060          "Element type is not a 64-bit float type");
3061   Type *Ty = ArrayType::get(ElementType, Elts.size());
3062   const char *Data = reinterpret_cast<const char *>(Elts.data());
3063   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
3064 }
3065 
3066 Constant *ConstantDataArray::getString(LLVMContext &Context,
3067                                        StringRef Str, bool AddNull) {
3068   if (!AddNull) {
3069     const uint8_t *Data = Str.bytes_begin();
3070     return get(Context, makeArrayRef(Data, Str.size()));
3071   }
3072 
3073   SmallVector<uint8_t, 64> ElementVals;
3074   ElementVals.append(Str.begin(), Str.end());
3075   ElementVals.push_back(0);
3076   return get(Context, ElementVals);
3077 }
3078 
3079 /// get() constructors - Return a constant with vector type with an element
3080 /// count and element type matching the ArrayRef passed in.  Note that this
3081 /// can return a ConstantAggregateZero object.
3082 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
3083   auto *Ty = FixedVectorType::get(Type::getInt8Ty(Context), Elts.size());
3084   const char *Data = reinterpret_cast<const char *>(Elts.data());
3085   return getImpl(StringRef(Data, Elts.size() * 1), Ty);
3086 }
3087 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
3088   auto *Ty = FixedVectorType::get(Type::getInt16Ty(Context), Elts.size());
3089   const char *Data = reinterpret_cast<const char *>(Elts.data());
3090   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
3091 }
3092 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
3093   auto *Ty = FixedVectorType::get(Type::getInt32Ty(Context), Elts.size());
3094   const char *Data = reinterpret_cast<const char *>(Elts.data());
3095   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
3096 }
3097 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
3098   auto *Ty = FixedVectorType::get(Type::getInt64Ty(Context), Elts.size());
3099   const char *Data = reinterpret_cast<const char *>(Elts.data());
3100   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
3101 }
3102 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
3103   auto *Ty = FixedVectorType::get(Type::getFloatTy(Context), Elts.size());
3104   const char *Data = reinterpret_cast<const char *>(Elts.data());
3105   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
3106 }
3107 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
3108   auto *Ty = FixedVectorType::get(Type::getDoubleTy(Context), Elts.size());
3109   const char *Data = reinterpret_cast<const char *>(Elts.data());
3110   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
3111 }
3112 
3113 /// getFP() constructors - Return a constant of vector type with a float
3114 /// element type taken from argument `ElementType', and count taken from
3115 /// argument `Elts'.  The amount of bits of the contained type must match the
3116 /// number of bits of the type contained in the passed in ArrayRef.
3117 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
3118 /// that this can return a ConstantAggregateZero object.
3119 Constant *ConstantDataVector::getFP(Type *ElementType,
3120                                     ArrayRef<uint16_t> Elts) {
3121   assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
3122          "Element type is not a 16-bit float type");
3123   auto *Ty = FixedVectorType::get(ElementType, Elts.size());
3124   const char *Data = reinterpret_cast<const char *>(Elts.data());
3125   return getImpl(StringRef(Data, Elts.size() * 2), Ty);
3126 }
3127 Constant *ConstantDataVector::getFP(Type *ElementType,
3128                                     ArrayRef<uint32_t> Elts) {
3129   assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type");
3130   auto *Ty = FixedVectorType::get(ElementType, Elts.size());
3131   const char *Data = reinterpret_cast<const char *>(Elts.data());
3132   return getImpl(StringRef(Data, Elts.size() * 4), Ty);
3133 }
3134 Constant *ConstantDataVector::getFP(Type *ElementType,
3135                                     ArrayRef<uint64_t> Elts) {
3136   assert(ElementType->isDoubleTy() &&
3137          "Element type is not a 64-bit float type");
3138   auto *Ty = FixedVectorType::get(ElementType, Elts.size());
3139   const char *Data = reinterpret_cast<const char *>(Elts.data());
3140   return getImpl(StringRef(Data, Elts.size() * 8), Ty);
3141 }
3142 
3143 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
3144   assert(isElementTypeCompatible(V->getType()) &&
3145          "Element type not compatible with ConstantData");
3146   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
3147     if (CI->getType()->isIntegerTy(8)) {
3148       SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
3149       return get(V->getContext(), Elts);
3150     }
3151     if (CI->getType()->isIntegerTy(16)) {
3152       SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
3153       return get(V->getContext(), Elts);
3154     }
3155     if (CI->getType()->isIntegerTy(32)) {
3156       SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
3157       return get(V->getContext(), Elts);
3158     }
3159     assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
3160     SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
3161     return get(V->getContext(), Elts);
3162   }
3163 
3164   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3165     if (CFP->getType()->isHalfTy()) {
3166       SmallVector<uint16_t, 16> Elts(
3167           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3168       return getFP(V->getType(), Elts);
3169     }
3170     if (CFP->getType()->isBFloatTy()) {
3171       SmallVector<uint16_t, 16> Elts(
3172           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3173       return getFP(V->getType(), Elts);
3174     }
3175     if (CFP->getType()->isFloatTy()) {
3176       SmallVector<uint32_t, 16> Elts(
3177           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3178       return getFP(V->getType(), Elts);
3179     }
3180     if (CFP->getType()->isDoubleTy()) {
3181       SmallVector<uint64_t, 16> Elts(
3182           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3183       return getFP(V->getType(), Elts);
3184     }
3185   }
3186   return ConstantVector::getSplat(ElementCount::getFixed(NumElts), V);
3187 }
3188 
3189 
3190 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
3191   assert(isa<IntegerType>(getElementType()) &&
3192          "Accessor can only be used when element is an integer");
3193   const char *EltPtr = getElementPointer(Elt);
3194 
3195   // The data is stored in host byte order, make sure to cast back to the right
3196   // type to load with the right endianness.
3197   switch (getElementType()->getIntegerBitWidth()) {
3198   default: llvm_unreachable("Invalid bitwidth for CDS");
3199   case 8:
3200     return *reinterpret_cast<const uint8_t *>(EltPtr);
3201   case 16:
3202     return *reinterpret_cast<const uint16_t *>(EltPtr);
3203   case 32:
3204     return *reinterpret_cast<const uint32_t *>(EltPtr);
3205   case 64:
3206     return *reinterpret_cast<const uint64_t *>(EltPtr);
3207   }
3208 }
3209 
3210 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const {
3211   assert(isa<IntegerType>(getElementType()) &&
3212          "Accessor can only be used when element is an integer");
3213   const char *EltPtr = getElementPointer(Elt);
3214 
3215   // The data is stored in host byte order, make sure to cast back to the right
3216   // type to load with the right endianness.
3217   switch (getElementType()->getIntegerBitWidth()) {
3218   default: llvm_unreachable("Invalid bitwidth for CDS");
3219   case 8: {
3220     auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr);
3221     return APInt(8, EltVal);
3222   }
3223   case 16: {
3224     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3225     return APInt(16, EltVal);
3226   }
3227   case 32: {
3228     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
3229     return APInt(32, EltVal);
3230   }
3231   case 64: {
3232     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
3233     return APInt(64, EltVal);
3234   }
3235   }
3236 }
3237 
3238 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
3239   const char *EltPtr = getElementPointer(Elt);
3240 
3241   switch (getElementType()->getTypeID()) {
3242   default:
3243     llvm_unreachable("Accessor can only be used when element is float/double!");
3244   case Type::HalfTyID: {
3245     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3246     return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal));
3247   }
3248   case Type::BFloatTyID: {
3249     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3250     return APFloat(APFloat::BFloat(), APInt(16, EltVal));
3251   }
3252   case Type::FloatTyID: {
3253     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
3254     return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal));
3255   }
3256   case Type::DoubleTyID: {
3257     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
3258     return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal));
3259   }
3260   }
3261 }
3262 
3263 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
3264   assert(getElementType()->isFloatTy() &&
3265          "Accessor can only be used when element is a 'float'");
3266   return *reinterpret_cast<const float *>(getElementPointer(Elt));
3267 }
3268 
3269 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
3270   assert(getElementType()->isDoubleTy() &&
3271          "Accessor can only be used when element is a 'float'");
3272   return *reinterpret_cast<const double *>(getElementPointer(Elt));
3273 }
3274 
3275 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
3276   if (getElementType()->isHalfTy() || getElementType()->isBFloatTy() ||
3277       getElementType()->isFloatTy() || getElementType()->isDoubleTy())
3278     return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
3279 
3280   return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
3281 }
3282 
3283 bool ConstantDataSequential::isString(unsigned CharSize) const {
3284   return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize);
3285 }
3286 
3287 bool ConstantDataSequential::isCString() const {
3288   if (!isString())
3289     return false;
3290 
3291   StringRef Str = getAsString();
3292 
3293   // The last value must be nul.
3294   if (Str.back() != 0) return false;
3295 
3296   // Other elements must be non-nul.
3297   return !Str.drop_back().contains(0);
3298 }
3299 
3300 bool ConstantDataVector::isSplatData() const {
3301   const char *Base = getRawDataValues().data();
3302 
3303   // Compare elements 1+ to the 0'th element.
3304   unsigned EltSize = getElementByteSize();
3305   for (unsigned i = 1, e = getNumElements(); i != e; ++i)
3306     if (memcmp(Base, Base+i*EltSize, EltSize))
3307       return false;
3308 
3309   return true;
3310 }
3311 
3312 bool ConstantDataVector::isSplat() const {
3313   if (!IsSplatSet) {
3314     IsSplatSet = true;
3315     IsSplat = isSplatData();
3316   }
3317   return IsSplat;
3318 }
3319 
3320 Constant *ConstantDataVector::getSplatValue() const {
3321   // If they're all the same, return the 0th one as a representative.
3322   return isSplat() ? getElementAsConstant(0) : nullptr;
3323 }
3324 
3325 //===----------------------------------------------------------------------===//
3326 //                handleOperandChange implementations
3327 
3328 /// Update this constant array to change uses of
3329 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
3330 /// etc.
3331 ///
3332 /// Note that we intentionally replace all uses of From with To here.  Consider
3333 /// a large array that uses 'From' 1000 times.  By handling this case all here,
3334 /// ConstantArray::handleOperandChange is only invoked once, and that
3335 /// single invocation handles all 1000 uses.  Handling them one at a time would
3336 /// work, but would be really slow because it would have to unique each updated
3337 /// array instance.
3338 ///
3339 void Constant::handleOperandChange(Value *From, Value *To) {
3340   Value *Replacement = nullptr;
3341   switch (getValueID()) {
3342   default:
3343     llvm_unreachable("Not a constant!");
3344 #define HANDLE_CONSTANT(Name)                                                  \
3345   case Value::Name##Val:                                                       \
3346     Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To);         \
3347     break;
3348 #include "llvm/IR/Value.def"
3349   }
3350 
3351   // If handleOperandChangeImpl returned nullptr, then it handled
3352   // replacing itself and we don't want to delete or replace anything else here.
3353   if (!Replacement)
3354     return;
3355 
3356   // I do need to replace this with an existing value.
3357   assert(Replacement != this && "I didn't contain From!");
3358 
3359   // Everyone using this now uses the replacement.
3360   replaceAllUsesWith(Replacement);
3361 
3362   // Delete the old constant!
3363   destroyConstant();
3364 }
3365 
3366 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) {
3367   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3368   Constant *ToC = cast<Constant>(To);
3369 
3370   SmallVector<Constant*, 8> Values;
3371   Values.reserve(getNumOperands());  // Build replacement array.
3372 
3373   // Fill values with the modified operands of the constant array.  Also,
3374   // compute whether this turns into an all-zeros array.
3375   unsigned NumUpdated = 0;
3376 
3377   // Keep track of whether all the values in the array are "ToC".
3378   bool AllSame = true;
3379   Use *OperandList = getOperandList();
3380   unsigned OperandNo = 0;
3381   for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
3382     Constant *Val = cast<Constant>(O->get());
3383     if (Val == From) {
3384       OperandNo = (O - OperandList);
3385       Val = ToC;
3386       ++NumUpdated;
3387     }
3388     Values.push_back(Val);
3389     AllSame &= Val == ToC;
3390   }
3391 
3392   if (AllSame && ToC->isNullValue())
3393     return ConstantAggregateZero::get(getType());
3394 
3395   if (AllSame && isa<UndefValue>(ToC))
3396     return UndefValue::get(getType());
3397 
3398   // Check for any other type of constant-folding.
3399   if (Constant *C = getImpl(getType(), Values))
3400     return C;
3401 
3402   // Update to the new value.
3403   return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
3404       Values, this, From, ToC, NumUpdated, OperandNo);
3405 }
3406 
3407 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) {
3408   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3409   Constant *ToC = cast<Constant>(To);
3410 
3411   Use *OperandList = getOperandList();
3412 
3413   SmallVector<Constant*, 8> Values;
3414   Values.reserve(getNumOperands());  // Build replacement struct.
3415 
3416   // Fill values with the modified operands of the constant struct.  Also,
3417   // compute whether this turns into an all-zeros struct.
3418   unsigned NumUpdated = 0;
3419   bool AllSame = true;
3420   unsigned OperandNo = 0;
3421   for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) {
3422     Constant *Val = cast<Constant>(O->get());
3423     if (Val == From) {
3424       OperandNo = (O - OperandList);
3425       Val = ToC;
3426       ++NumUpdated;
3427     }
3428     Values.push_back(Val);
3429     AllSame &= Val == ToC;
3430   }
3431 
3432   if (AllSame && ToC->isNullValue())
3433     return ConstantAggregateZero::get(getType());
3434 
3435   if (AllSame && isa<UndefValue>(ToC))
3436     return UndefValue::get(getType());
3437 
3438   // Update to the new value.
3439   return getContext().pImpl->StructConstants.replaceOperandsInPlace(
3440       Values, this, From, ToC, NumUpdated, OperandNo);
3441 }
3442 
3443 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) {
3444   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3445   Constant *ToC = cast<Constant>(To);
3446 
3447   SmallVector<Constant*, 8> Values;
3448   Values.reserve(getNumOperands());  // Build replacement array...
3449   unsigned NumUpdated = 0;
3450   unsigned OperandNo = 0;
3451   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3452     Constant *Val = getOperand(i);
3453     if (Val == From) {
3454       OperandNo = i;
3455       ++NumUpdated;
3456       Val = ToC;
3457     }
3458     Values.push_back(Val);
3459   }
3460 
3461   if (Constant *C = getImpl(Values))
3462     return C;
3463 
3464   // Update to the new value.
3465   return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
3466       Values, this, From, ToC, NumUpdated, OperandNo);
3467 }
3468 
3469 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) {
3470   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
3471   Constant *To = cast<Constant>(ToV);
3472 
3473   SmallVector<Constant*, 8> NewOps;
3474   unsigned NumUpdated = 0;
3475   unsigned OperandNo = 0;
3476   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3477     Constant *Op = getOperand(i);
3478     if (Op == From) {
3479       OperandNo = i;
3480       ++NumUpdated;
3481       Op = To;
3482     }
3483     NewOps.push_back(Op);
3484   }
3485   assert(NumUpdated && "I didn't contain From!");
3486 
3487   if (Constant *C = getWithOperands(NewOps, getType(), true))
3488     return C;
3489 
3490   // Update to the new value.
3491   return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
3492       NewOps, this, From, To, NumUpdated, OperandNo);
3493 }
3494 
3495 Instruction *ConstantExpr::getAsInstruction(Instruction *InsertBefore) const {
3496   SmallVector<Value *, 4> ValueOperands(operands());
3497   ArrayRef<Value*> Ops(ValueOperands);
3498 
3499   switch (getOpcode()) {
3500   case Instruction::Trunc:
3501   case Instruction::ZExt:
3502   case Instruction::SExt:
3503   case Instruction::FPTrunc:
3504   case Instruction::FPExt:
3505   case Instruction::UIToFP:
3506   case Instruction::SIToFP:
3507   case Instruction::FPToUI:
3508   case Instruction::FPToSI:
3509   case Instruction::PtrToInt:
3510   case Instruction::IntToPtr:
3511   case Instruction::BitCast:
3512   case Instruction::AddrSpaceCast:
3513     return CastInst::Create((Instruction::CastOps)getOpcode(), Ops[0],
3514                             getType(), "", InsertBefore);
3515   case Instruction::Select:
3516     return SelectInst::Create(Ops[0], Ops[1], Ops[2], "", InsertBefore);
3517   case Instruction::InsertElement:
3518     return InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "", InsertBefore);
3519   case Instruction::ExtractElement:
3520     return ExtractElementInst::Create(Ops[0], Ops[1], "", InsertBefore);
3521   case Instruction::InsertValue:
3522     return InsertValueInst::Create(Ops[0], Ops[1], getIndices(), "",
3523                                    InsertBefore);
3524   case Instruction::ExtractValue:
3525     return ExtractValueInst::Create(Ops[0], getIndices(), "", InsertBefore);
3526   case Instruction::ShuffleVector:
3527     return new ShuffleVectorInst(Ops[0], Ops[1], getShuffleMask(), "",
3528                                  InsertBefore);
3529 
3530   case Instruction::GetElementPtr: {
3531     const auto *GO = cast<GEPOperator>(this);
3532     if (GO->isInBounds())
3533       return GetElementPtrInst::CreateInBounds(
3534           GO->getSourceElementType(), Ops[0], Ops.slice(1), "", InsertBefore);
3535     return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
3536                                      Ops.slice(1), "", InsertBefore);
3537   }
3538   case Instruction::ICmp:
3539   case Instruction::FCmp:
3540     return CmpInst::Create((Instruction::OtherOps)getOpcode(),
3541                            (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1],
3542                            "", InsertBefore);
3543   case Instruction::FNeg:
3544     return UnaryOperator::Create((Instruction::UnaryOps)getOpcode(), Ops[0], "",
3545                                  InsertBefore);
3546   default:
3547     assert(getNumOperands() == 2 && "Must be binary operator?");
3548     BinaryOperator *BO = BinaryOperator::Create(
3549         (Instruction::BinaryOps)getOpcode(), Ops[0], Ops[1], "", InsertBefore);
3550     if (isa<OverflowingBinaryOperator>(BO)) {
3551       BO->setHasNoUnsignedWrap(SubclassOptionalData &
3552                                OverflowingBinaryOperator::NoUnsignedWrap);
3553       BO->setHasNoSignedWrap(SubclassOptionalData &
3554                              OverflowingBinaryOperator::NoSignedWrap);
3555     }
3556     if (isa<PossiblyExactOperator>(BO))
3557       BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
3558     return BO;
3559   }
3560 }
3561