1 //===-- Constants.cpp - Implement Constant nodes --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Constant* classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Constants.h" 14 #include "ConstantFold.h" 15 #include "LLVMContextImpl.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringMap.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/GetElementPtrTypeIterator.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/ManagedStatic.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <algorithm> 32 33 using namespace llvm; 34 using namespace PatternMatch; 35 36 //===----------------------------------------------------------------------===// 37 // Constant Class 38 //===----------------------------------------------------------------------===// 39 40 bool Constant::isNegativeZeroValue() const { 41 // Floating point values have an explicit -0.0 value. 42 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 43 return CFP->isZero() && CFP->isNegative(); 44 45 // Equivalent for a vector of -0.0's. 46 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 47 if (CV->getElementType()->isFloatingPointTy() && CV->isSplat()) 48 if (CV->getElementAsAPFloat(0).isNegZero()) 49 return true; 50 51 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 52 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue())) 53 if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative()) 54 return true; 55 56 // We've already handled true FP case; any other FP vectors can't represent -0.0. 57 if (getType()->isFPOrFPVectorTy()) 58 return false; 59 60 // Otherwise, just use +0.0. 61 return isNullValue(); 62 } 63 64 // Return true iff this constant is positive zero (floating point), negative 65 // zero (floating point), or a null value. 66 bool Constant::isZeroValue() const { 67 // Floating point values have an explicit -0.0 value. 68 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 69 return CFP->isZero(); 70 71 // Equivalent for a vector of -0.0's. 72 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 73 if (CV->getElementType()->isFloatingPointTy() && CV->isSplat()) 74 if (CV->getElementAsAPFloat(0).isZero()) 75 return true; 76 77 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 78 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue())) 79 if (SplatCFP && SplatCFP->isZero()) 80 return true; 81 82 // Otherwise, just use +0.0. 83 return isNullValue(); 84 } 85 86 bool Constant::isNullValue() const { 87 // 0 is null. 88 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 89 return CI->isZero(); 90 91 // +0.0 is null. 92 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 93 return CFP->isZero() && !CFP->isNegative(); 94 95 // constant zero is zero for aggregates, cpnull is null for pointers, none for 96 // tokens. 97 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) || 98 isa<ConstantTokenNone>(this); 99 } 100 101 bool Constant::isAllOnesValue() const { 102 // Check for -1 integers 103 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 104 return CI->isMinusOne(); 105 106 // Check for FP which are bitcasted from -1 integers 107 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 108 return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue(); 109 110 // Check for constant vectors which are splats of -1 values. 111 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 112 if (Constant *Splat = CV->getSplatValue()) 113 return Splat->isAllOnesValue(); 114 115 // Check for constant vectors which are splats of -1 values. 116 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) { 117 if (CV->isSplat()) { 118 if (CV->getElementType()->isFloatingPointTy()) 119 return CV->getElementAsAPFloat(0).bitcastToAPInt().isAllOnesValue(); 120 return CV->getElementAsAPInt(0).isAllOnesValue(); 121 } 122 } 123 124 return false; 125 } 126 127 bool Constant::isOneValue() const { 128 // Check for 1 integers 129 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 130 return CI->isOne(); 131 132 // Check for FP which are bitcasted from 1 integers 133 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 134 return CFP->getValueAPF().bitcastToAPInt().isOneValue(); 135 136 // Check for constant vectors which are splats of 1 values. 137 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 138 if (Constant *Splat = CV->getSplatValue()) 139 return Splat->isOneValue(); 140 141 // Check for constant vectors which are splats of 1 values. 142 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) { 143 if (CV->isSplat()) { 144 if (CV->getElementType()->isFloatingPointTy()) 145 return CV->getElementAsAPFloat(0).bitcastToAPInt().isOneValue(); 146 return CV->getElementAsAPInt(0).isOneValue(); 147 } 148 } 149 150 return false; 151 } 152 153 bool Constant::isNotOneValue() const { 154 // Check for 1 integers 155 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 156 return !CI->isOneValue(); 157 158 // Check for FP which are bitcasted from 1 integers 159 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 160 return !CFP->getValueAPF().bitcastToAPInt().isOneValue(); 161 162 // Check that vectors don't contain 1 163 if (auto *VTy = dyn_cast<VectorType>(this->getType())) { 164 unsigned NumElts = cast<FixedVectorType>(VTy)->getNumElements(); 165 for (unsigned i = 0; i != NumElts; ++i) { 166 Constant *Elt = this->getAggregateElement(i); 167 if (!Elt || !Elt->isNotOneValue()) 168 return false; 169 } 170 return true; 171 } 172 173 // It *may* contain 1, we can't tell. 174 return false; 175 } 176 177 bool Constant::isMinSignedValue() const { 178 // Check for INT_MIN integers 179 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 180 return CI->isMinValue(/*isSigned=*/true); 181 182 // Check for FP which are bitcasted from INT_MIN integers 183 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 184 return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); 185 186 // Check for constant vectors which are splats of INT_MIN values. 187 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 188 if (Constant *Splat = CV->getSplatValue()) 189 return Splat->isMinSignedValue(); 190 191 // Check for constant vectors which are splats of INT_MIN values. 192 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) { 193 if (CV->isSplat()) { 194 if (CV->getElementType()->isFloatingPointTy()) 195 return CV->getElementAsAPFloat(0).bitcastToAPInt().isMinSignedValue(); 196 return CV->getElementAsAPInt(0).isMinSignedValue(); 197 } 198 } 199 200 return false; 201 } 202 203 bool Constant::isNotMinSignedValue() const { 204 // Check for INT_MIN integers 205 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 206 return !CI->isMinValue(/*isSigned=*/true); 207 208 // Check for FP which are bitcasted from INT_MIN integers 209 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 210 return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); 211 212 // Check that vectors don't contain INT_MIN 213 if (auto *VTy = dyn_cast<VectorType>(this->getType())) { 214 unsigned NumElts = cast<FixedVectorType>(VTy)->getNumElements(); 215 for (unsigned i = 0; i != NumElts; ++i) { 216 Constant *Elt = this->getAggregateElement(i); 217 if (!Elt || !Elt->isNotMinSignedValue()) 218 return false; 219 } 220 return true; 221 } 222 223 // It *may* contain INT_MIN, we can't tell. 224 return false; 225 } 226 227 bool Constant::isFiniteNonZeroFP() const { 228 if (auto *CFP = dyn_cast<ConstantFP>(this)) 229 return CFP->getValueAPF().isFiniteNonZero(); 230 auto *VTy = dyn_cast<FixedVectorType>(getType()); 231 if (!VTy) 232 return false; 233 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 234 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i)); 235 if (!CFP || !CFP->getValueAPF().isFiniteNonZero()) 236 return false; 237 } 238 return true; 239 } 240 241 bool Constant::isNormalFP() const { 242 if (auto *CFP = dyn_cast<ConstantFP>(this)) 243 return CFP->getValueAPF().isNormal(); 244 auto *VTy = dyn_cast<FixedVectorType>(getType()); 245 if (!VTy) 246 return false; 247 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 248 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i)); 249 if (!CFP || !CFP->getValueAPF().isNormal()) 250 return false; 251 } 252 return true; 253 } 254 255 bool Constant::hasExactInverseFP() const { 256 if (auto *CFP = dyn_cast<ConstantFP>(this)) 257 return CFP->getValueAPF().getExactInverse(nullptr); 258 auto *VTy = dyn_cast<FixedVectorType>(getType()); 259 if (!VTy) 260 return false; 261 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 262 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i)); 263 if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr)) 264 return false; 265 } 266 return true; 267 } 268 269 bool Constant::isNaN() const { 270 if (auto *CFP = dyn_cast<ConstantFP>(this)) 271 return CFP->isNaN(); 272 auto *VTy = dyn_cast<FixedVectorType>(getType()); 273 if (!VTy) 274 return false; 275 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 276 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i)); 277 if (!CFP || !CFP->isNaN()) 278 return false; 279 } 280 return true; 281 } 282 283 bool Constant::isElementWiseEqual(Value *Y) const { 284 // Are they fully identical? 285 if (this == Y) 286 return true; 287 288 // The input value must be a vector constant with the same type. 289 auto *VTy = dyn_cast<VectorType>(getType()); 290 if (!isa<Constant>(Y) || !VTy || VTy != Y->getType()) 291 return false; 292 293 // TODO: Compare pointer constants? 294 if (!(VTy->getElementType()->isIntegerTy() || 295 VTy->getElementType()->isFloatingPointTy())) 296 return false; 297 298 // They may still be identical element-wise (if they have `undef`s). 299 // Bitcast to integer to allow exact bitwise comparison for all types. 300 Type *IntTy = VectorType::getInteger(VTy); 301 Constant *C0 = ConstantExpr::getBitCast(const_cast<Constant *>(this), IntTy); 302 Constant *C1 = ConstantExpr::getBitCast(cast<Constant>(Y), IntTy); 303 Constant *CmpEq = ConstantExpr::getICmp(ICmpInst::ICMP_EQ, C0, C1); 304 return isa<UndefValue>(CmpEq) || match(CmpEq, m_One()); 305 } 306 307 static bool 308 containsUndefinedElement(const Constant *C, 309 function_ref<bool(const Constant *)> HasFn) { 310 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 311 if (HasFn(C)) 312 return true; 313 if (isa<ConstantAggregateZero>(C)) 314 return false; 315 if (isa<ScalableVectorType>(C->getType())) 316 return false; 317 318 for (unsigned i = 0, e = cast<FixedVectorType>(VTy)->getNumElements(); 319 i != e; ++i) 320 if (HasFn(C->getAggregateElement(i))) 321 return true; 322 } 323 324 return false; 325 } 326 327 bool Constant::containsUndefOrPoisonElement() const { 328 return containsUndefinedElement( 329 this, [&](const auto *C) { return isa<UndefValue>(C); }); 330 } 331 332 bool Constant::containsPoisonElement() const { 333 return containsUndefinedElement( 334 this, [&](const auto *C) { return isa<PoisonValue>(C); }); 335 } 336 337 bool Constant::containsConstantExpression() const { 338 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 339 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 340 if (isa<ConstantExpr>(getAggregateElement(i))) 341 return true; 342 } 343 return false; 344 } 345 346 /// Constructor to create a '0' constant of arbitrary type. 347 Constant *Constant::getNullValue(Type *Ty) { 348 switch (Ty->getTypeID()) { 349 case Type::IntegerTyID: 350 return ConstantInt::get(Ty, 0); 351 case Type::HalfTyID: 352 return ConstantFP::get(Ty->getContext(), 353 APFloat::getZero(APFloat::IEEEhalf())); 354 case Type::BFloatTyID: 355 return ConstantFP::get(Ty->getContext(), 356 APFloat::getZero(APFloat::BFloat())); 357 case Type::FloatTyID: 358 return ConstantFP::get(Ty->getContext(), 359 APFloat::getZero(APFloat::IEEEsingle())); 360 case Type::DoubleTyID: 361 return ConstantFP::get(Ty->getContext(), 362 APFloat::getZero(APFloat::IEEEdouble())); 363 case Type::X86_FP80TyID: 364 return ConstantFP::get(Ty->getContext(), 365 APFloat::getZero(APFloat::x87DoubleExtended())); 366 case Type::FP128TyID: 367 return ConstantFP::get(Ty->getContext(), 368 APFloat::getZero(APFloat::IEEEquad())); 369 case Type::PPC_FP128TyID: 370 return ConstantFP::get(Ty->getContext(), 371 APFloat(APFloat::PPCDoubleDouble(), 372 APInt::getNullValue(128))); 373 case Type::PointerTyID: 374 return ConstantPointerNull::get(cast<PointerType>(Ty)); 375 case Type::StructTyID: 376 case Type::ArrayTyID: 377 case Type::FixedVectorTyID: 378 case Type::ScalableVectorTyID: 379 return ConstantAggregateZero::get(Ty); 380 case Type::TokenTyID: 381 return ConstantTokenNone::get(Ty->getContext()); 382 default: 383 // Function, Label, or Opaque type? 384 llvm_unreachable("Cannot create a null constant of that type!"); 385 } 386 } 387 388 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { 389 Type *ScalarTy = Ty->getScalarType(); 390 391 // Create the base integer constant. 392 Constant *C = ConstantInt::get(Ty->getContext(), V); 393 394 // Convert an integer to a pointer, if necessary. 395 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy)) 396 C = ConstantExpr::getIntToPtr(C, PTy); 397 398 // Broadcast a scalar to a vector, if necessary. 399 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 400 C = ConstantVector::getSplat(VTy->getElementCount(), C); 401 402 return C; 403 } 404 405 Constant *Constant::getAllOnesValue(Type *Ty) { 406 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) 407 return ConstantInt::get(Ty->getContext(), 408 APInt::getAllOnesValue(ITy->getBitWidth())); 409 410 if (Ty->isFloatingPointTy()) { 411 APFloat FL = APFloat::getAllOnesValue(Ty->getFltSemantics(), 412 Ty->getPrimitiveSizeInBits()); 413 return ConstantFP::get(Ty->getContext(), FL); 414 } 415 416 VectorType *VTy = cast<VectorType>(Ty); 417 return ConstantVector::getSplat(VTy->getElementCount(), 418 getAllOnesValue(VTy->getElementType())); 419 } 420 421 Constant *Constant::getAggregateElement(unsigned Elt) const { 422 if (const auto *CC = dyn_cast<ConstantAggregate>(this)) 423 return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr; 424 425 // FIXME: getNumElements() will fail for non-fixed vector types. 426 if (isa<ScalableVectorType>(getType())) 427 return nullptr; 428 429 if (const auto *CAZ = dyn_cast<ConstantAggregateZero>(this)) 430 return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr; 431 432 if (const auto *PV = dyn_cast<PoisonValue>(this)) 433 return Elt < PV->getNumElements() ? PV->getElementValue(Elt) : nullptr; 434 435 if (const auto *UV = dyn_cast<UndefValue>(this)) 436 return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr; 437 438 if (const auto *CDS = dyn_cast<ConstantDataSequential>(this)) 439 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) 440 : nullptr; 441 return nullptr; 442 } 443 444 Constant *Constant::getAggregateElement(Constant *Elt) const { 445 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer"); 446 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) { 447 // Check if the constant fits into an uint64_t. 448 if (CI->getValue().getActiveBits() > 64) 449 return nullptr; 450 return getAggregateElement(CI->getZExtValue()); 451 } 452 return nullptr; 453 } 454 455 void Constant::destroyConstant() { 456 /// First call destroyConstantImpl on the subclass. This gives the subclass 457 /// a chance to remove the constant from any maps/pools it's contained in. 458 switch (getValueID()) { 459 default: 460 llvm_unreachable("Not a constant!"); 461 #define HANDLE_CONSTANT(Name) \ 462 case Value::Name##Val: \ 463 cast<Name>(this)->destroyConstantImpl(); \ 464 break; 465 #include "llvm/IR/Value.def" 466 } 467 468 // When a Constant is destroyed, there may be lingering 469 // references to the constant by other constants in the constant pool. These 470 // constants are implicitly dependent on the module that is being deleted, 471 // but they don't know that. Because we only find out when the CPV is 472 // deleted, we must now notify all of our users (that should only be 473 // Constants) that they are, in fact, invalid now and should be deleted. 474 // 475 while (!use_empty()) { 476 Value *V = user_back(); 477 #ifndef NDEBUG // Only in -g mode... 478 if (!isa<Constant>(V)) { 479 dbgs() << "While deleting: " << *this 480 << "\n\nUse still stuck around after Def is destroyed: " << *V 481 << "\n\n"; 482 } 483 #endif 484 assert(isa<Constant>(V) && "References remain to Constant being destroyed"); 485 cast<Constant>(V)->destroyConstant(); 486 487 // The constant should remove itself from our use list... 488 assert((use_empty() || user_back() != V) && "Constant not removed!"); 489 } 490 491 // Value has no outstanding references it is safe to delete it now... 492 deleteConstant(this); 493 } 494 495 void llvm::deleteConstant(Constant *C) { 496 switch (C->getValueID()) { 497 case Constant::ConstantIntVal: 498 delete static_cast<ConstantInt *>(C); 499 break; 500 case Constant::ConstantFPVal: 501 delete static_cast<ConstantFP *>(C); 502 break; 503 case Constant::ConstantAggregateZeroVal: 504 delete static_cast<ConstantAggregateZero *>(C); 505 break; 506 case Constant::ConstantArrayVal: 507 delete static_cast<ConstantArray *>(C); 508 break; 509 case Constant::ConstantStructVal: 510 delete static_cast<ConstantStruct *>(C); 511 break; 512 case Constant::ConstantVectorVal: 513 delete static_cast<ConstantVector *>(C); 514 break; 515 case Constant::ConstantPointerNullVal: 516 delete static_cast<ConstantPointerNull *>(C); 517 break; 518 case Constant::ConstantDataArrayVal: 519 delete static_cast<ConstantDataArray *>(C); 520 break; 521 case Constant::ConstantDataVectorVal: 522 delete static_cast<ConstantDataVector *>(C); 523 break; 524 case Constant::ConstantTokenNoneVal: 525 delete static_cast<ConstantTokenNone *>(C); 526 break; 527 case Constant::BlockAddressVal: 528 delete static_cast<BlockAddress *>(C); 529 break; 530 case Constant::DSOLocalEquivalentVal: 531 delete static_cast<DSOLocalEquivalent *>(C); 532 break; 533 case Constant::UndefValueVal: 534 delete static_cast<UndefValue *>(C); 535 break; 536 case Constant::PoisonValueVal: 537 delete static_cast<PoisonValue *>(C); 538 break; 539 case Constant::ConstantExprVal: 540 if (isa<UnaryConstantExpr>(C)) 541 delete static_cast<UnaryConstantExpr *>(C); 542 else if (isa<BinaryConstantExpr>(C)) 543 delete static_cast<BinaryConstantExpr *>(C); 544 else if (isa<SelectConstantExpr>(C)) 545 delete static_cast<SelectConstantExpr *>(C); 546 else if (isa<ExtractElementConstantExpr>(C)) 547 delete static_cast<ExtractElementConstantExpr *>(C); 548 else if (isa<InsertElementConstantExpr>(C)) 549 delete static_cast<InsertElementConstantExpr *>(C); 550 else if (isa<ShuffleVectorConstantExpr>(C)) 551 delete static_cast<ShuffleVectorConstantExpr *>(C); 552 else if (isa<ExtractValueConstantExpr>(C)) 553 delete static_cast<ExtractValueConstantExpr *>(C); 554 else if (isa<InsertValueConstantExpr>(C)) 555 delete static_cast<InsertValueConstantExpr *>(C); 556 else if (isa<GetElementPtrConstantExpr>(C)) 557 delete static_cast<GetElementPtrConstantExpr *>(C); 558 else if (isa<CompareConstantExpr>(C)) 559 delete static_cast<CompareConstantExpr *>(C); 560 else 561 llvm_unreachable("Unexpected constant expr"); 562 break; 563 default: 564 llvm_unreachable("Unexpected constant"); 565 } 566 } 567 568 static bool canTrapImpl(const Constant *C, 569 SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) { 570 assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); 571 // The only thing that could possibly trap are constant exprs. 572 const ConstantExpr *CE = dyn_cast<ConstantExpr>(C); 573 if (!CE) 574 return false; 575 576 // ConstantExpr traps if any operands can trap. 577 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { 578 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) { 579 if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps)) 580 return true; 581 } 582 } 583 584 // Otherwise, only specific operations can trap. 585 switch (CE->getOpcode()) { 586 default: 587 return false; 588 case Instruction::UDiv: 589 case Instruction::SDiv: 590 case Instruction::URem: 591 case Instruction::SRem: 592 // Div and rem can trap if the RHS is not known to be non-zero. 593 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue()) 594 return true; 595 return false; 596 } 597 } 598 599 bool Constant::canTrap() const { 600 SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps; 601 return canTrapImpl(this, NonTrappingOps); 602 } 603 604 /// Check if C contains a GlobalValue for which Predicate is true. 605 static bool 606 ConstHasGlobalValuePredicate(const Constant *C, 607 bool (*Predicate)(const GlobalValue *)) { 608 SmallPtrSet<const Constant *, 8> Visited; 609 SmallVector<const Constant *, 8> WorkList; 610 WorkList.push_back(C); 611 Visited.insert(C); 612 613 while (!WorkList.empty()) { 614 const Constant *WorkItem = WorkList.pop_back_val(); 615 if (const auto *GV = dyn_cast<GlobalValue>(WorkItem)) 616 if (Predicate(GV)) 617 return true; 618 for (const Value *Op : WorkItem->operands()) { 619 const Constant *ConstOp = dyn_cast<Constant>(Op); 620 if (!ConstOp) 621 continue; 622 if (Visited.insert(ConstOp).second) 623 WorkList.push_back(ConstOp); 624 } 625 } 626 return false; 627 } 628 629 bool Constant::isThreadDependent() const { 630 auto DLLImportPredicate = [](const GlobalValue *GV) { 631 return GV->isThreadLocal(); 632 }; 633 return ConstHasGlobalValuePredicate(this, DLLImportPredicate); 634 } 635 636 bool Constant::isDLLImportDependent() const { 637 auto DLLImportPredicate = [](const GlobalValue *GV) { 638 return GV->hasDLLImportStorageClass(); 639 }; 640 return ConstHasGlobalValuePredicate(this, DLLImportPredicate); 641 } 642 643 bool Constant::isConstantUsed() const { 644 for (const User *U : users()) { 645 const Constant *UC = dyn_cast<Constant>(U); 646 if (!UC || isa<GlobalValue>(UC)) 647 return true; 648 649 if (UC->isConstantUsed()) 650 return true; 651 } 652 return false; 653 } 654 655 bool Constant::needsRelocation() const { 656 if (isa<GlobalValue>(this)) 657 return true; // Global reference. 658 659 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this)) 660 return BA->getFunction()->needsRelocation(); 661 662 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) { 663 if (CE->getOpcode() == Instruction::Sub) { 664 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0)); 665 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1)); 666 if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt && 667 RHS->getOpcode() == Instruction::PtrToInt) { 668 Constant *LHSOp0 = LHS->getOperand(0); 669 Constant *RHSOp0 = RHS->getOperand(0); 670 671 // While raw uses of blockaddress need to be relocated, differences 672 // between two of them don't when they are for labels in the same 673 // function. This is a common idiom when creating a table for the 674 // indirect goto extension, so we handle it efficiently here. 675 if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) && 676 cast<BlockAddress>(LHSOp0)->getFunction() == 677 cast<BlockAddress>(RHSOp0)->getFunction()) 678 return false; 679 680 // Relative pointers do not need to be dynamically relocated. 681 if (auto *RHSGV = 682 dyn_cast<GlobalValue>(RHSOp0->stripInBoundsConstantOffsets())) { 683 auto *LHS = LHSOp0->stripInBoundsConstantOffsets(); 684 if (auto *LHSGV = dyn_cast<GlobalValue>(LHS)) { 685 if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal()) 686 return false; 687 } else if (isa<DSOLocalEquivalent>(LHS)) { 688 if (RHSGV->isDSOLocal()) 689 return false; 690 } 691 } 692 } 693 } 694 } 695 696 bool Result = false; 697 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 698 Result |= cast<Constant>(getOperand(i))->needsRelocation(); 699 700 return Result; 701 } 702 703 /// If the specified constantexpr is dead, remove it. This involves recursively 704 /// eliminating any dead users of the constantexpr. 705 static bool removeDeadUsersOfConstant(const Constant *C) { 706 if (isa<GlobalValue>(C)) return false; // Cannot remove this 707 708 while (!C->use_empty()) { 709 const Constant *User = dyn_cast<Constant>(C->user_back()); 710 if (!User) return false; // Non-constant usage; 711 if (!removeDeadUsersOfConstant(User)) 712 return false; // Constant wasn't dead 713 } 714 715 const_cast<Constant*>(C)->destroyConstant(); 716 return true; 717 } 718 719 720 void Constant::removeDeadConstantUsers() const { 721 Value::const_user_iterator I = user_begin(), E = user_end(); 722 Value::const_user_iterator LastNonDeadUser = E; 723 while (I != E) { 724 const Constant *User = dyn_cast<Constant>(*I); 725 if (!User) { 726 LastNonDeadUser = I; 727 ++I; 728 continue; 729 } 730 731 if (!removeDeadUsersOfConstant(User)) { 732 // If the constant wasn't dead, remember that this was the last live use 733 // and move on to the next constant. 734 LastNonDeadUser = I; 735 ++I; 736 continue; 737 } 738 739 // If the constant was dead, then the iterator is invalidated. 740 if (LastNonDeadUser == E) 741 I = user_begin(); 742 else 743 I = std::next(LastNonDeadUser); 744 } 745 } 746 747 Constant *Constant::replaceUndefsWith(Constant *C, Constant *Replacement) { 748 assert(C && Replacement && "Expected non-nullptr constant arguments"); 749 Type *Ty = C->getType(); 750 if (match(C, m_Undef())) { 751 assert(Ty == Replacement->getType() && "Expected matching types"); 752 return Replacement; 753 } 754 755 // Don't know how to deal with this constant. 756 auto *VTy = dyn_cast<FixedVectorType>(Ty); 757 if (!VTy) 758 return C; 759 760 unsigned NumElts = VTy->getNumElements(); 761 SmallVector<Constant *, 32> NewC(NumElts); 762 for (unsigned i = 0; i != NumElts; ++i) { 763 Constant *EltC = C->getAggregateElement(i); 764 assert((!EltC || EltC->getType() == Replacement->getType()) && 765 "Expected matching types"); 766 NewC[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC; 767 } 768 return ConstantVector::get(NewC); 769 } 770 771 Constant *Constant::mergeUndefsWith(Constant *C, Constant *Other) { 772 assert(C && Other && "Expected non-nullptr constant arguments"); 773 if (match(C, m_Undef())) 774 return C; 775 776 Type *Ty = C->getType(); 777 if (match(Other, m_Undef())) 778 return UndefValue::get(Ty); 779 780 auto *VTy = dyn_cast<FixedVectorType>(Ty); 781 if (!VTy) 782 return C; 783 784 Type *EltTy = VTy->getElementType(); 785 unsigned NumElts = VTy->getNumElements(); 786 assert(isa<FixedVectorType>(Other->getType()) && 787 cast<FixedVectorType>(Other->getType())->getNumElements() == NumElts && 788 "Type mismatch"); 789 790 bool FoundExtraUndef = false; 791 SmallVector<Constant *, 32> NewC(NumElts); 792 for (unsigned I = 0; I != NumElts; ++I) { 793 NewC[I] = C->getAggregateElement(I); 794 Constant *OtherEltC = Other->getAggregateElement(I); 795 assert(NewC[I] && OtherEltC && "Unknown vector element"); 796 if (!match(NewC[I], m_Undef()) && match(OtherEltC, m_Undef())) { 797 NewC[I] = UndefValue::get(EltTy); 798 FoundExtraUndef = true; 799 } 800 } 801 if (FoundExtraUndef) 802 return ConstantVector::get(NewC); 803 return C; 804 } 805 806 bool Constant::isManifestConstant() const { 807 if (isa<ConstantData>(this)) 808 return true; 809 if (isa<ConstantAggregate>(this) || isa<ConstantExpr>(this)) { 810 for (const Value *Op : operand_values()) 811 if (!cast<Constant>(Op)->isManifestConstant()) 812 return false; 813 return true; 814 } 815 return false; 816 } 817 818 //===----------------------------------------------------------------------===// 819 // ConstantInt 820 //===----------------------------------------------------------------------===// 821 822 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V) 823 : ConstantData(Ty, ConstantIntVal), Val(V) { 824 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); 825 } 826 827 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) { 828 LLVMContextImpl *pImpl = Context.pImpl; 829 if (!pImpl->TheTrueVal) 830 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1); 831 return pImpl->TheTrueVal; 832 } 833 834 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { 835 LLVMContextImpl *pImpl = Context.pImpl; 836 if (!pImpl->TheFalseVal) 837 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0); 838 return pImpl->TheFalseVal; 839 } 840 841 ConstantInt *ConstantInt::getBool(LLVMContext &Context, bool V) { 842 return V ? getTrue(Context) : getFalse(Context); 843 } 844 845 Constant *ConstantInt::getTrue(Type *Ty) { 846 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); 847 ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext()); 848 if (auto *VTy = dyn_cast<VectorType>(Ty)) 849 return ConstantVector::getSplat(VTy->getElementCount(), TrueC); 850 return TrueC; 851 } 852 853 Constant *ConstantInt::getFalse(Type *Ty) { 854 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); 855 ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext()); 856 if (auto *VTy = dyn_cast<VectorType>(Ty)) 857 return ConstantVector::getSplat(VTy->getElementCount(), FalseC); 858 return FalseC; 859 } 860 861 Constant *ConstantInt::getBool(Type *Ty, bool V) { 862 return V ? getTrue(Ty) : getFalse(Ty); 863 } 864 865 // Get a ConstantInt from an APInt. 866 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { 867 // get an existing value or the insertion position 868 LLVMContextImpl *pImpl = Context.pImpl; 869 std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V]; 870 if (!Slot) { 871 // Get the corresponding integer type for the bit width of the value. 872 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); 873 Slot.reset(new ConstantInt(ITy, V)); 874 } 875 assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth())); 876 return Slot.get(); 877 } 878 879 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { 880 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned); 881 882 // For vectors, broadcast the value. 883 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 884 return ConstantVector::getSplat(VTy->getElementCount(), C); 885 886 return C; 887 } 888 889 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) { 890 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); 891 } 892 893 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) { 894 return get(Ty, V, true); 895 } 896 897 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) { 898 return get(Ty, V, true); 899 } 900 901 Constant *ConstantInt::get(Type *Ty, const APInt& V) { 902 ConstantInt *C = get(Ty->getContext(), V); 903 assert(C->getType() == Ty->getScalarType() && 904 "ConstantInt type doesn't match the type implied by its value!"); 905 906 // For vectors, broadcast the value. 907 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 908 return ConstantVector::getSplat(VTy->getElementCount(), C); 909 910 return C; 911 } 912 913 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) { 914 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); 915 } 916 917 /// Remove the constant from the constant table. 918 void ConstantInt::destroyConstantImpl() { 919 llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!"); 920 } 921 922 //===----------------------------------------------------------------------===// 923 // ConstantFP 924 //===----------------------------------------------------------------------===// 925 926 Constant *ConstantFP::get(Type *Ty, double V) { 927 LLVMContext &Context = Ty->getContext(); 928 929 APFloat FV(V); 930 bool ignored; 931 FV.convert(Ty->getScalarType()->getFltSemantics(), 932 APFloat::rmNearestTiesToEven, &ignored); 933 Constant *C = get(Context, FV); 934 935 // For vectors, broadcast the value. 936 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 937 return ConstantVector::getSplat(VTy->getElementCount(), C); 938 939 return C; 940 } 941 942 Constant *ConstantFP::get(Type *Ty, const APFloat &V) { 943 ConstantFP *C = get(Ty->getContext(), V); 944 assert(C->getType() == Ty->getScalarType() && 945 "ConstantFP type doesn't match the type implied by its value!"); 946 947 // For vectors, broadcast the value. 948 if (auto *VTy = dyn_cast<VectorType>(Ty)) 949 return ConstantVector::getSplat(VTy->getElementCount(), C); 950 951 return C; 952 } 953 954 Constant *ConstantFP::get(Type *Ty, StringRef Str) { 955 LLVMContext &Context = Ty->getContext(); 956 957 APFloat FV(Ty->getScalarType()->getFltSemantics(), Str); 958 Constant *C = get(Context, FV); 959 960 // For vectors, broadcast the value. 961 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 962 return ConstantVector::getSplat(VTy->getElementCount(), C); 963 964 return C; 965 } 966 967 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) { 968 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 969 APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload); 970 Constant *C = get(Ty->getContext(), NaN); 971 972 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 973 return ConstantVector::getSplat(VTy->getElementCount(), C); 974 975 return C; 976 } 977 978 Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) { 979 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 980 APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload); 981 Constant *C = get(Ty->getContext(), NaN); 982 983 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 984 return ConstantVector::getSplat(VTy->getElementCount(), C); 985 986 return C; 987 } 988 989 Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) { 990 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 991 APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload); 992 Constant *C = get(Ty->getContext(), NaN); 993 994 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 995 return ConstantVector::getSplat(VTy->getElementCount(), C); 996 997 return C; 998 } 999 1000 Constant *ConstantFP::getNegativeZero(Type *Ty) { 1001 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 1002 APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true); 1003 Constant *C = get(Ty->getContext(), NegZero); 1004 1005 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1006 return ConstantVector::getSplat(VTy->getElementCount(), C); 1007 1008 return C; 1009 } 1010 1011 1012 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) { 1013 if (Ty->isFPOrFPVectorTy()) 1014 return getNegativeZero(Ty); 1015 1016 return Constant::getNullValue(Ty); 1017 } 1018 1019 1020 // ConstantFP accessors. 1021 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { 1022 LLVMContextImpl* pImpl = Context.pImpl; 1023 1024 std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V]; 1025 1026 if (!Slot) { 1027 Type *Ty = Type::getFloatingPointTy(Context, V.getSemantics()); 1028 Slot.reset(new ConstantFP(Ty, V)); 1029 } 1030 1031 return Slot.get(); 1032 } 1033 1034 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) { 1035 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 1036 Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative)); 1037 1038 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1039 return ConstantVector::getSplat(VTy->getElementCount(), C); 1040 1041 return C; 1042 } 1043 1044 ConstantFP::ConstantFP(Type *Ty, const APFloat &V) 1045 : ConstantData(Ty, ConstantFPVal), Val(V) { 1046 assert(&V.getSemantics() == &Ty->getFltSemantics() && 1047 "FP type Mismatch"); 1048 } 1049 1050 bool ConstantFP::isExactlyValue(const APFloat &V) const { 1051 return Val.bitwiseIsEqual(V); 1052 } 1053 1054 /// Remove the constant from the constant table. 1055 void ConstantFP::destroyConstantImpl() { 1056 llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!"); 1057 } 1058 1059 //===----------------------------------------------------------------------===// 1060 // ConstantAggregateZero Implementation 1061 //===----------------------------------------------------------------------===// 1062 1063 Constant *ConstantAggregateZero::getSequentialElement() const { 1064 if (auto *AT = dyn_cast<ArrayType>(getType())) 1065 return Constant::getNullValue(AT->getElementType()); 1066 return Constant::getNullValue(cast<VectorType>(getType())->getElementType()); 1067 } 1068 1069 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const { 1070 return Constant::getNullValue(getType()->getStructElementType(Elt)); 1071 } 1072 1073 Constant *ConstantAggregateZero::getElementValue(Constant *C) const { 1074 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1075 return getSequentialElement(); 1076 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 1077 } 1078 1079 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const { 1080 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1081 return getSequentialElement(); 1082 return getStructElement(Idx); 1083 } 1084 1085 unsigned ConstantAggregateZero::getNumElements() const { 1086 Type *Ty = getType(); 1087 if (auto *AT = dyn_cast<ArrayType>(Ty)) 1088 return AT->getNumElements(); 1089 if (auto *VT = dyn_cast<VectorType>(Ty)) 1090 return cast<FixedVectorType>(VT)->getNumElements(); 1091 return Ty->getStructNumElements(); 1092 } 1093 1094 //===----------------------------------------------------------------------===// 1095 // UndefValue Implementation 1096 //===----------------------------------------------------------------------===// 1097 1098 UndefValue *UndefValue::getSequentialElement() const { 1099 if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) 1100 return UndefValue::get(ATy->getElementType()); 1101 return UndefValue::get(cast<VectorType>(getType())->getElementType()); 1102 } 1103 1104 UndefValue *UndefValue::getStructElement(unsigned Elt) const { 1105 return UndefValue::get(getType()->getStructElementType(Elt)); 1106 } 1107 1108 UndefValue *UndefValue::getElementValue(Constant *C) const { 1109 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1110 return getSequentialElement(); 1111 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 1112 } 1113 1114 UndefValue *UndefValue::getElementValue(unsigned Idx) const { 1115 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1116 return getSequentialElement(); 1117 return getStructElement(Idx); 1118 } 1119 1120 unsigned UndefValue::getNumElements() const { 1121 Type *Ty = getType(); 1122 if (auto *AT = dyn_cast<ArrayType>(Ty)) 1123 return AT->getNumElements(); 1124 if (auto *VT = dyn_cast<VectorType>(Ty)) 1125 return cast<FixedVectorType>(VT)->getNumElements(); 1126 return Ty->getStructNumElements(); 1127 } 1128 1129 //===----------------------------------------------------------------------===// 1130 // PoisonValue Implementation 1131 //===----------------------------------------------------------------------===// 1132 1133 PoisonValue *PoisonValue::getSequentialElement() const { 1134 if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) 1135 return PoisonValue::get(ATy->getElementType()); 1136 return PoisonValue::get(cast<VectorType>(getType())->getElementType()); 1137 } 1138 1139 PoisonValue *PoisonValue::getStructElement(unsigned Elt) const { 1140 return PoisonValue::get(getType()->getStructElementType(Elt)); 1141 } 1142 1143 PoisonValue *PoisonValue::getElementValue(Constant *C) const { 1144 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1145 return getSequentialElement(); 1146 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 1147 } 1148 1149 PoisonValue *PoisonValue::getElementValue(unsigned Idx) const { 1150 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1151 return getSequentialElement(); 1152 return getStructElement(Idx); 1153 } 1154 1155 //===----------------------------------------------------------------------===// 1156 // ConstantXXX Classes 1157 //===----------------------------------------------------------------------===// 1158 1159 template <typename ItTy, typename EltTy> 1160 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) { 1161 for (; Start != End; ++Start) 1162 if (*Start != Elt) 1163 return false; 1164 return true; 1165 } 1166 1167 template <typename SequentialTy, typename ElementTy> 1168 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) { 1169 assert(!V.empty() && "Cannot get empty int sequence."); 1170 1171 SmallVector<ElementTy, 16> Elts; 1172 for (Constant *C : V) 1173 if (auto *CI = dyn_cast<ConstantInt>(C)) 1174 Elts.push_back(CI->getZExtValue()); 1175 else 1176 return nullptr; 1177 return SequentialTy::get(V[0]->getContext(), Elts); 1178 } 1179 1180 template <typename SequentialTy, typename ElementTy> 1181 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) { 1182 assert(!V.empty() && "Cannot get empty FP sequence."); 1183 1184 SmallVector<ElementTy, 16> Elts; 1185 for (Constant *C : V) 1186 if (auto *CFP = dyn_cast<ConstantFP>(C)) 1187 Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 1188 else 1189 return nullptr; 1190 return SequentialTy::getFP(V[0]->getType(), Elts); 1191 } 1192 1193 template <typename SequenceTy> 1194 static Constant *getSequenceIfElementsMatch(Constant *C, 1195 ArrayRef<Constant *> V) { 1196 // We speculatively build the elements here even if it turns out that there is 1197 // a constantexpr or something else weird, since it is so uncommon for that to 1198 // happen. 1199 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 1200 if (CI->getType()->isIntegerTy(8)) 1201 return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V); 1202 else if (CI->getType()->isIntegerTy(16)) 1203 return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V); 1204 else if (CI->getType()->isIntegerTy(32)) 1205 return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V); 1206 else if (CI->getType()->isIntegerTy(64)) 1207 return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V); 1208 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1209 if (CFP->getType()->isHalfTy() || CFP->getType()->isBFloatTy()) 1210 return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V); 1211 else if (CFP->getType()->isFloatTy()) 1212 return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V); 1213 else if (CFP->getType()->isDoubleTy()) 1214 return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V); 1215 } 1216 1217 return nullptr; 1218 } 1219 1220 ConstantAggregate::ConstantAggregate(Type *T, ValueTy VT, 1221 ArrayRef<Constant *> V) 1222 : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(), 1223 V.size()) { 1224 llvm::copy(V, op_begin()); 1225 1226 // Check that types match, unless this is an opaque struct. 1227 if (auto *ST = dyn_cast<StructType>(T)) { 1228 if (ST->isOpaque()) 1229 return; 1230 for (unsigned I = 0, E = V.size(); I != E; ++I) 1231 assert(V[I]->getType() == ST->getTypeAtIndex(I) && 1232 "Initializer for struct element doesn't match!"); 1233 } 1234 } 1235 1236 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) 1237 : ConstantAggregate(T, ConstantArrayVal, V) { 1238 assert(V.size() == T->getNumElements() && 1239 "Invalid initializer for constant array"); 1240 } 1241 1242 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) { 1243 if (Constant *C = getImpl(Ty, V)) 1244 return C; 1245 return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V); 1246 } 1247 1248 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) { 1249 // Empty arrays are canonicalized to ConstantAggregateZero. 1250 if (V.empty()) 1251 return ConstantAggregateZero::get(Ty); 1252 1253 for (unsigned i = 0, e = V.size(); i != e; ++i) { 1254 assert(V[i]->getType() == Ty->getElementType() && 1255 "Wrong type in array element initializer"); 1256 } 1257 1258 // If this is an all-zero array, return a ConstantAggregateZero object. If 1259 // all undef, return an UndefValue, if "all simple", then return a 1260 // ConstantDataArray. 1261 Constant *C = V[0]; 1262 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) 1263 return UndefValue::get(Ty); 1264 1265 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C)) 1266 return ConstantAggregateZero::get(Ty); 1267 1268 // Check to see if all of the elements are ConstantFP or ConstantInt and if 1269 // the element type is compatible with ConstantDataVector. If so, use it. 1270 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) 1271 return getSequenceIfElementsMatch<ConstantDataArray>(C, V); 1272 1273 // Otherwise, we really do want to create a ConstantArray. 1274 return nullptr; 1275 } 1276 1277 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, 1278 ArrayRef<Constant*> V, 1279 bool Packed) { 1280 unsigned VecSize = V.size(); 1281 SmallVector<Type*, 16> EltTypes(VecSize); 1282 for (unsigned i = 0; i != VecSize; ++i) 1283 EltTypes[i] = V[i]->getType(); 1284 1285 return StructType::get(Context, EltTypes, Packed); 1286 } 1287 1288 1289 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V, 1290 bool Packed) { 1291 assert(!V.empty() && 1292 "ConstantStruct::getTypeForElements cannot be called on empty list"); 1293 return getTypeForElements(V[0]->getContext(), V, Packed); 1294 } 1295 1296 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V) 1297 : ConstantAggregate(T, ConstantStructVal, V) { 1298 assert((T->isOpaque() || V.size() == T->getNumElements()) && 1299 "Invalid initializer for constant struct"); 1300 } 1301 1302 // ConstantStruct accessors. 1303 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) { 1304 assert((ST->isOpaque() || ST->getNumElements() == V.size()) && 1305 "Incorrect # elements specified to ConstantStruct::get"); 1306 1307 // Create a ConstantAggregateZero value if all elements are zeros. 1308 bool isZero = true; 1309 bool isUndef = false; 1310 1311 if (!V.empty()) { 1312 isUndef = isa<UndefValue>(V[0]); 1313 isZero = V[0]->isNullValue(); 1314 if (isUndef || isZero) { 1315 for (unsigned i = 0, e = V.size(); i != e; ++i) { 1316 if (!V[i]->isNullValue()) 1317 isZero = false; 1318 if (!isa<UndefValue>(V[i])) 1319 isUndef = false; 1320 } 1321 } 1322 } 1323 if (isZero) 1324 return ConstantAggregateZero::get(ST); 1325 if (isUndef) 1326 return UndefValue::get(ST); 1327 1328 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); 1329 } 1330 1331 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V) 1332 : ConstantAggregate(T, ConstantVectorVal, V) { 1333 assert(V.size() == cast<FixedVectorType>(T)->getNumElements() && 1334 "Invalid initializer for constant vector"); 1335 } 1336 1337 // ConstantVector accessors. 1338 Constant *ConstantVector::get(ArrayRef<Constant*> V) { 1339 if (Constant *C = getImpl(V)) 1340 return C; 1341 auto *Ty = FixedVectorType::get(V.front()->getType(), V.size()); 1342 return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V); 1343 } 1344 1345 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) { 1346 assert(!V.empty() && "Vectors can't be empty"); 1347 auto *T = FixedVectorType::get(V.front()->getType(), V.size()); 1348 1349 // If this is an all-undef or all-zero vector, return a 1350 // ConstantAggregateZero or UndefValue. 1351 Constant *C = V[0]; 1352 bool isZero = C->isNullValue(); 1353 bool isUndef = isa<UndefValue>(C); 1354 bool isPoison = isa<PoisonValue>(C); 1355 1356 if (isZero || isUndef) { 1357 for (unsigned i = 1, e = V.size(); i != e; ++i) 1358 if (V[i] != C) { 1359 isZero = isUndef = isPoison = false; 1360 break; 1361 } 1362 } 1363 1364 if (isZero) 1365 return ConstantAggregateZero::get(T); 1366 if (isPoison) 1367 return PoisonValue::get(T); 1368 if (isUndef) 1369 return UndefValue::get(T); 1370 1371 // Check to see if all of the elements are ConstantFP or ConstantInt and if 1372 // the element type is compatible with ConstantDataVector. If so, use it. 1373 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) 1374 return getSequenceIfElementsMatch<ConstantDataVector>(C, V); 1375 1376 // Otherwise, the element type isn't compatible with ConstantDataVector, or 1377 // the operand list contains a ConstantExpr or something else strange. 1378 return nullptr; 1379 } 1380 1381 Constant *ConstantVector::getSplat(ElementCount EC, Constant *V) { 1382 if (!EC.isScalable()) { 1383 // If this splat is compatible with ConstantDataVector, use it instead of 1384 // ConstantVector. 1385 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) && 1386 ConstantDataSequential::isElementTypeCompatible(V->getType())) 1387 return ConstantDataVector::getSplat(EC.getKnownMinValue(), V); 1388 1389 SmallVector<Constant *, 32> Elts(EC.getKnownMinValue(), V); 1390 return get(Elts); 1391 } 1392 1393 Type *VTy = VectorType::get(V->getType(), EC); 1394 1395 if (V->isNullValue()) 1396 return ConstantAggregateZero::get(VTy); 1397 else if (isa<UndefValue>(V)) 1398 return UndefValue::get(VTy); 1399 1400 Type *I32Ty = Type::getInt32Ty(VTy->getContext()); 1401 1402 // Move scalar into vector. 1403 Constant *UndefV = UndefValue::get(VTy); 1404 V = ConstantExpr::getInsertElement(UndefV, V, ConstantInt::get(I32Ty, 0)); 1405 // Build shuffle mask to perform the splat. 1406 SmallVector<int, 8> Zeros(EC.getKnownMinValue(), 0); 1407 // Splat. 1408 return ConstantExpr::getShuffleVector(V, UndefV, Zeros); 1409 } 1410 1411 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) { 1412 LLVMContextImpl *pImpl = Context.pImpl; 1413 if (!pImpl->TheNoneToken) 1414 pImpl->TheNoneToken.reset(new ConstantTokenNone(Context)); 1415 return pImpl->TheNoneToken.get(); 1416 } 1417 1418 /// Remove the constant from the constant table. 1419 void ConstantTokenNone::destroyConstantImpl() { 1420 llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!"); 1421 } 1422 1423 // Utility function for determining if a ConstantExpr is a CastOp or not. This 1424 // can't be inline because we don't want to #include Instruction.h into 1425 // Constant.h 1426 bool ConstantExpr::isCast() const { 1427 return Instruction::isCast(getOpcode()); 1428 } 1429 1430 bool ConstantExpr::isCompare() const { 1431 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; 1432 } 1433 1434 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const { 1435 if (getOpcode() != Instruction::GetElementPtr) return false; 1436 1437 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this); 1438 User::const_op_iterator OI = std::next(this->op_begin()); 1439 1440 // The remaining indices may be compile-time known integers within the bounds 1441 // of the corresponding notional static array types. 1442 for (; GEPI != E; ++GEPI, ++OI) { 1443 if (isa<UndefValue>(*OI)) 1444 continue; 1445 auto *CI = dyn_cast<ConstantInt>(*OI); 1446 if (!CI || (GEPI.isBoundedSequential() && 1447 (CI->getValue().getActiveBits() > 64 || 1448 CI->getZExtValue() >= GEPI.getSequentialNumElements()))) 1449 return false; 1450 } 1451 1452 // All the indices checked out. 1453 return true; 1454 } 1455 1456 bool ConstantExpr::hasIndices() const { 1457 return getOpcode() == Instruction::ExtractValue || 1458 getOpcode() == Instruction::InsertValue; 1459 } 1460 1461 ArrayRef<unsigned> ConstantExpr::getIndices() const { 1462 if (const ExtractValueConstantExpr *EVCE = 1463 dyn_cast<ExtractValueConstantExpr>(this)) 1464 return EVCE->Indices; 1465 1466 return cast<InsertValueConstantExpr>(this)->Indices; 1467 } 1468 1469 unsigned ConstantExpr::getPredicate() const { 1470 return cast<CompareConstantExpr>(this)->predicate; 1471 } 1472 1473 ArrayRef<int> ConstantExpr::getShuffleMask() const { 1474 return cast<ShuffleVectorConstantExpr>(this)->ShuffleMask; 1475 } 1476 1477 Constant *ConstantExpr::getShuffleMaskForBitcode() const { 1478 return cast<ShuffleVectorConstantExpr>(this)->ShuffleMaskForBitcode; 1479 } 1480 1481 Constant * 1482 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { 1483 assert(Op->getType() == getOperand(OpNo)->getType() && 1484 "Replacing operand with value of different type!"); 1485 if (getOperand(OpNo) == Op) 1486 return const_cast<ConstantExpr*>(this); 1487 1488 SmallVector<Constant*, 8> NewOps; 1489 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1490 NewOps.push_back(i == OpNo ? Op : getOperand(i)); 1491 1492 return getWithOperands(NewOps); 1493 } 1494 1495 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, 1496 bool OnlyIfReduced, Type *SrcTy) const { 1497 assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); 1498 1499 // If no operands changed return self. 1500 if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin())) 1501 return const_cast<ConstantExpr*>(this); 1502 1503 Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr; 1504 switch (getOpcode()) { 1505 case Instruction::Trunc: 1506 case Instruction::ZExt: 1507 case Instruction::SExt: 1508 case Instruction::FPTrunc: 1509 case Instruction::FPExt: 1510 case Instruction::UIToFP: 1511 case Instruction::SIToFP: 1512 case Instruction::FPToUI: 1513 case Instruction::FPToSI: 1514 case Instruction::PtrToInt: 1515 case Instruction::IntToPtr: 1516 case Instruction::BitCast: 1517 case Instruction::AddrSpaceCast: 1518 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced); 1519 case Instruction::Select: 1520 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy); 1521 case Instruction::InsertElement: 1522 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2], 1523 OnlyIfReducedTy); 1524 case Instruction::ExtractElement: 1525 return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy); 1526 case Instruction::InsertValue: 1527 return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(), 1528 OnlyIfReducedTy); 1529 case Instruction::ExtractValue: 1530 return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy); 1531 case Instruction::FNeg: 1532 return ConstantExpr::getFNeg(Ops[0]); 1533 case Instruction::ShuffleVector: 1534 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], getShuffleMask(), 1535 OnlyIfReducedTy); 1536 case Instruction::GetElementPtr: { 1537 auto *GEPO = cast<GEPOperator>(this); 1538 assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType())); 1539 return ConstantExpr::getGetElementPtr( 1540 SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1), 1541 GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy); 1542 } 1543 case Instruction::ICmp: 1544 case Instruction::FCmp: 1545 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1], 1546 OnlyIfReducedTy); 1547 default: 1548 assert(getNumOperands() == 2 && "Must be binary operator?"); 1549 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData, 1550 OnlyIfReducedTy); 1551 } 1552 } 1553 1554 1555 //===----------------------------------------------------------------------===// 1556 // isValueValidForType implementations 1557 1558 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { 1559 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay 1560 if (Ty->isIntegerTy(1)) 1561 return Val == 0 || Val == 1; 1562 return isUIntN(NumBits, Val); 1563 } 1564 1565 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) { 1566 unsigned NumBits = Ty->getIntegerBitWidth(); 1567 if (Ty->isIntegerTy(1)) 1568 return Val == 0 || Val == 1 || Val == -1; 1569 return isIntN(NumBits, Val); 1570 } 1571 1572 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { 1573 // convert modifies in place, so make a copy. 1574 APFloat Val2 = APFloat(Val); 1575 bool losesInfo; 1576 switch (Ty->getTypeID()) { 1577 default: 1578 return false; // These can't be represented as floating point! 1579 1580 // FIXME rounding mode needs to be more flexible 1581 case Type::HalfTyID: { 1582 if (&Val2.getSemantics() == &APFloat::IEEEhalf()) 1583 return true; 1584 Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo); 1585 return !losesInfo; 1586 } 1587 case Type::BFloatTyID: { 1588 if (&Val2.getSemantics() == &APFloat::BFloat()) 1589 return true; 1590 Val2.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, &losesInfo); 1591 return !losesInfo; 1592 } 1593 case Type::FloatTyID: { 1594 if (&Val2.getSemantics() == &APFloat::IEEEsingle()) 1595 return true; 1596 Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo); 1597 return !losesInfo; 1598 } 1599 case Type::DoubleTyID: { 1600 if (&Val2.getSemantics() == &APFloat::IEEEhalf() || 1601 &Val2.getSemantics() == &APFloat::BFloat() || 1602 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1603 &Val2.getSemantics() == &APFloat::IEEEdouble()) 1604 return true; 1605 Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo); 1606 return !losesInfo; 1607 } 1608 case Type::X86_FP80TyID: 1609 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1610 &Val2.getSemantics() == &APFloat::BFloat() || 1611 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1612 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1613 &Val2.getSemantics() == &APFloat::x87DoubleExtended(); 1614 case Type::FP128TyID: 1615 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1616 &Val2.getSemantics() == &APFloat::BFloat() || 1617 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1618 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1619 &Val2.getSemantics() == &APFloat::IEEEquad(); 1620 case Type::PPC_FP128TyID: 1621 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1622 &Val2.getSemantics() == &APFloat::BFloat() || 1623 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1624 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1625 &Val2.getSemantics() == &APFloat::PPCDoubleDouble(); 1626 } 1627 } 1628 1629 1630 //===----------------------------------------------------------------------===// 1631 // Factory Function Implementation 1632 1633 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) { 1634 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && 1635 "Cannot create an aggregate zero of non-aggregate type!"); 1636 1637 std::unique_ptr<ConstantAggregateZero> &Entry = 1638 Ty->getContext().pImpl->CAZConstants[Ty]; 1639 if (!Entry) 1640 Entry.reset(new ConstantAggregateZero(Ty)); 1641 1642 return Entry.get(); 1643 } 1644 1645 /// Remove the constant from the constant table. 1646 void ConstantAggregateZero::destroyConstantImpl() { 1647 getContext().pImpl->CAZConstants.erase(getType()); 1648 } 1649 1650 /// Remove the constant from the constant table. 1651 void ConstantArray::destroyConstantImpl() { 1652 getType()->getContext().pImpl->ArrayConstants.remove(this); 1653 } 1654 1655 1656 //---- ConstantStruct::get() implementation... 1657 // 1658 1659 /// Remove the constant from the constant table. 1660 void ConstantStruct::destroyConstantImpl() { 1661 getType()->getContext().pImpl->StructConstants.remove(this); 1662 } 1663 1664 /// Remove the constant from the constant table. 1665 void ConstantVector::destroyConstantImpl() { 1666 getType()->getContext().pImpl->VectorConstants.remove(this); 1667 } 1668 1669 Constant *Constant::getSplatValue(bool AllowUndefs) const { 1670 assert(this->getType()->isVectorTy() && "Only valid for vectors!"); 1671 if (isa<ConstantAggregateZero>(this)) 1672 return getNullValue(cast<VectorType>(getType())->getElementType()); 1673 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 1674 return CV->getSplatValue(); 1675 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 1676 return CV->getSplatValue(AllowUndefs); 1677 1678 // Check if this is a constant expression splat of the form returned by 1679 // ConstantVector::getSplat() 1680 const auto *Shuf = dyn_cast<ConstantExpr>(this); 1681 if (Shuf && Shuf->getOpcode() == Instruction::ShuffleVector && 1682 isa<UndefValue>(Shuf->getOperand(1))) { 1683 1684 const auto *IElt = dyn_cast<ConstantExpr>(Shuf->getOperand(0)); 1685 if (IElt && IElt->getOpcode() == Instruction::InsertElement && 1686 isa<UndefValue>(IElt->getOperand(0))) { 1687 1688 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1689 Constant *SplatVal = IElt->getOperand(1); 1690 ConstantInt *Index = dyn_cast<ConstantInt>(IElt->getOperand(2)); 1691 1692 if (Index && Index->getValue() == 0 && 1693 llvm::all_of(Mask, [](int I) { return I == 0; })) 1694 return SplatVal; 1695 } 1696 } 1697 1698 return nullptr; 1699 } 1700 1701 Constant *ConstantVector::getSplatValue(bool AllowUndefs) const { 1702 // Check out first element. 1703 Constant *Elt = getOperand(0); 1704 // Then make sure all remaining elements point to the same value. 1705 for (unsigned I = 1, E = getNumOperands(); I < E; ++I) { 1706 Constant *OpC = getOperand(I); 1707 if (OpC == Elt) 1708 continue; 1709 1710 // Strict mode: any mismatch is not a splat. 1711 if (!AllowUndefs) 1712 return nullptr; 1713 1714 // Allow undefs mode: ignore undefined elements. 1715 if (isa<UndefValue>(OpC)) 1716 continue; 1717 1718 // If we do not have a defined element yet, use the current operand. 1719 if (isa<UndefValue>(Elt)) 1720 Elt = OpC; 1721 1722 if (OpC != Elt) 1723 return nullptr; 1724 } 1725 return Elt; 1726 } 1727 1728 const APInt &Constant::getUniqueInteger() const { 1729 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 1730 return CI->getValue(); 1731 assert(this->getSplatValue() && "Doesn't contain a unique integer!"); 1732 const Constant *C = this->getAggregateElement(0U); 1733 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!"); 1734 return cast<ConstantInt>(C)->getValue(); 1735 } 1736 1737 //---- ConstantPointerNull::get() implementation. 1738 // 1739 1740 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { 1741 std::unique_ptr<ConstantPointerNull> &Entry = 1742 Ty->getContext().pImpl->CPNConstants[Ty]; 1743 if (!Entry) 1744 Entry.reset(new ConstantPointerNull(Ty)); 1745 1746 return Entry.get(); 1747 } 1748 1749 /// Remove the constant from the constant table. 1750 void ConstantPointerNull::destroyConstantImpl() { 1751 getContext().pImpl->CPNConstants.erase(getType()); 1752 } 1753 1754 UndefValue *UndefValue::get(Type *Ty) { 1755 std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty]; 1756 if (!Entry) 1757 Entry.reset(new UndefValue(Ty)); 1758 1759 return Entry.get(); 1760 } 1761 1762 /// Remove the constant from the constant table. 1763 void UndefValue::destroyConstantImpl() { 1764 // Free the constant and any dangling references to it. 1765 if (getValueID() == UndefValueVal) { 1766 getContext().pImpl->UVConstants.erase(getType()); 1767 } else if (getValueID() == PoisonValueVal) { 1768 getContext().pImpl->PVConstants.erase(getType()); 1769 } 1770 llvm_unreachable("Not a undef or a poison!"); 1771 } 1772 1773 PoisonValue *PoisonValue::get(Type *Ty) { 1774 std::unique_ptr<PoisonValue> &Entry = Ty->getContext().pImpl->PVConstants[Ty]; 1775 if (!Entry) 1776 Entry.reset(new PoisonValue(Ty)); 1777 1778 return Entry.get(); 1779 } 1780 1781 /// Remove the constant from the constant table. 1782 void PoisonValue::destroyConstantImpl() { 1783 // Free the constant and any dangling references to it. 1784 getContext().pImpl->PVConstants.erase(getType()); 1785 } 1786 1787 BlockAddress *BlockAddress::get(BasicBlock *BB) { 1788 assert(BB->getParent() && "Block must have a parent"); 1789 return get(BB->getParent(), BB); 1790 } 1791 1792 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { 1793 BlockAddress *&BA = 1794 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; 1795 if (!BA) 1796 BA = new BlockAddress(F, BB); 1797 1798 assert(BA->getFunction() == F && "Basic block moved between functions"); 1799 return BA; 1800 } 1801 1802 BlockAddress::BlockAddress(Function *F, BasicBlock *BB) 1803 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal, 1804 &Op<0>(), 2) { 1805 setOperand(0, F); 1806 setOperand(1, BB); 1807 BB->AdjustBlockAddressRefCount(1); 1808 } 1809 1810 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) { 1811 if (!BB->hasAddressTaken()) 1812 return nullptr; 1813 1814 const Function *F = BB->getParent(); 1815 assert(F && "Block must have a parent"); 1816 BlockAddress *BA = 1817 F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB)); 1818 assert(BA && "Refcount and block address map disagree!"); 1819 return BA; 1820 } 1821 1822 /// Remove the constant from the constant table. 1823 void BlockAddress::destroyConstantImpl() { 1824 getFunction()->getType()->getContext().pImpl 1825 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); 1826 getBasicBlock()->AdjustBlockAddressRefCount(-1); 1827 } 1828 1829 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) { 1830 // This could be replacing either the Basic Block or the Function. In either 1831 // case, we have to remove the map entry. 1832 Function *NewF = getFunction(); 1833 BasicBlock *NewBB = getBasicBlock(); 1834 1835 if (From == NewF) 1836 NewF = cast<Function>(To->stripPointerCasts()); 1837 else { 1838 assert(From == NewBB && "From does not match any operand"); 1839 NewBB = cast<BasicBlock>(To); 1840 } 1841 1842 // See if the 'new' entry already exists, if not, just update this in place 1843 // and return early. 1844 BlockAddress *&NewBA = 1845 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; 1846 if (NewBA) 1847 return NewBA; 1848 1849 getBasicBlock()->AdjustBlockAddressRefCount(-1); 1850 1851 // Remove the old entry, this can't cause the map to rehash (just a 1852 // tombstone will get added). 1853 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), 1854 getBasicBlock())); 1855 NewBA = this; 1856 setOperand(0, NewF); 1857 setOperand(1, NewBB); 1858 getBasicBlock()->AdjustBlockAddressRefCount(1); 1859 1860 // If we just want to keep the existing value, then return null. 1861 // Callers know that this means we shouldn't delete this value. 1862 return nullptr; 1863 } 1864 1865 DSOLocalEquivalent *DSOLocalEquivalent::get(GlobalValue *GV) { 1866 DSOLocalEquivalent *&Equiv = GV->getContext().pImpl->DSOLocalEquivalents[GV]; 1867 if (!Equiv) 1868 Equiv = new DSOLocalEquivalent(GV); 1869 1870 assert(Equiv->getGlobalValue() == GV && 1871 "DSOLocalFunction does not match the expected global value"); 1872 return Equiv; 1873 } 1874 1875 DSOLocalEquivalent::DSOLocalEquivalent(GlobalValue *GV) 1876 : Constant(GV->getType(), Value::DSOLocalEquivalentVal, &Op<0>(), 1) { 1877 setOperand(0, GV); 1878 } 1879 1880 /// Remove the constant from the constant table. 1881 void DSOLocalEquivalent::destroyConstantImpl() { 1882 const GlobalValue *GV = getGlobalValue(); 1883 GV->getContext().pImpl->DSOLocalEquivalents.erase(GV); 1884 } 1885 1886 Value *DSOLocalEquivalent::handleOperandChangeImpl(Value *From, Value *To) { 1887 assert(From == getGlobalValue() && "Changing value does not match operand."); 1888 assert(isa<Constant>(To) && "Can only replace the operands with a constant"); 1889 1890 // The replacement is with another global value. 1891 if (const auto *ToObj = dyn_cast<GlobalValue>(To)) { 1892 DSOLocalEquivalent *&NewEquiv = 1893 getContext().pImpl->DSOLocalEquivalents[ToObj]; 1894 if (NewEquiv) 1895 return llvm::ConstantExpr::getBitCast(NewEquiv, getType()); 1896 } 1897 1898 // If the argument is replaced with a null value, just replace this constant 1899 // with a null value. 1900 if (cast<Constant>(To)->isNullValue()) 1901 return To; 1902 1903 // The replacement could be a bitcast or an alias to another function. We can 1904 // replace it with a bitcast to the dso_local_equivalent of that function. 1905 auto *Func = cast<Function>(To->stripPointerCastsAndAliases()); 1906 DSOLocalEquivalent *&NewEquiv = getContext().pImpl->DSOLocalEquivalents[Func]; 1907 if (NewEquiv) 1908 return llvm::ConstantExpr::getBitCast(NewEquiv, getType()); 1909 1910 // Replace this with the new one. 1911 getContext().pImpl->DSOLocalEquivalents.erase(getGlobalValue()); 1912 NewEquiv = this; 1913 setOperand(0, Func); 1914 return nullptr; 1915 } 1916 1917 //---- ConstantExpr::get() implementations. 1918 // 1919 1920 /// This is a utility function to handle folding of casts and lookup of the 1921 /// cast in the ExprConstants map. It is used by the various get* methods below. 1922 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty, 1923 bool OnlyIfReduced = false) { 1924 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); 1925 // Fold a few common cases 1926 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) 1927 return FC; 1928 1929 if (OnlyIfReduced) 1930 return nullptr; 1931 1932 LLVMContextImpl *pImpl = Ty->getContext().pImpl; 1933 1934 // Look up the constant in the table first to ensure uniqueness. 1935 ConstantExprKeyType Key(opc, C); 1936 1937 return pImpl->ExprConstants.getOrCreate(Ty, Key); 1938 } 1939 1940 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty, 1941 bool OnlyIfReduced) { 1942 Instruction::CastOps opc = Instruction::CastOps(oc); 1943 assert(Instruction::isCast(opc) && "opcode out of range"); 1944 assert(C && Ty && "Null arguments to getCast"); 1945 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); 1946 1947 switch (opc) { 1948 default: 1949 llvm_unreachable("Invalid cast opcode"); 1950 case Instruction::Trunc: 1951 return getTrunc(C, Ty, OnlyIfReduced); 1952 case Instruction::ZExt: 1953 return getZExt(C, Ty, OnlyIfReduced); 1954 case Instruction::SExt: 1955 return getSExt(C, Ty, OnlyIfReduced); 1956 case Instruction::FPTrunc: 1957 return getFPTrunc(C, Ty, OnlyIfReduced); 1958 case Instruction::FPExt: 1959 return getFPExtend(C, Ty, OnlyIfReduced); 1960 case Instruction::UIToFP: 1961 return getUIToFP(C, Ty, OnlyIfReduced); 1962 case Instruction::SIToFP: 1963 return getSIToFP(C, Ty, OnlyIfReduced); 1964 case Instruction::FPToUI: 1965 return getFPToUI(C, Ty, OnlyIfReduced); 1966 case Instruction::FPToSI: 1967 return getFPToSI(C, Ty, OnlyIfReduced); 1968 case Instruction::PtrToInt: 1969 return getPtrToInt(C, Ty, OnlyIfReduced); 1970 case Instruction::IntToPtr: 1971 return getIntToPtr(C, Ty, OnlyIfReduced); 1972 case Instruction::BitCast: 1973 return getBitCast(C, Ty, OnlyIfReduced); 1974 case Instruction::AddrSpaceCast: 1975 return getAddrSpaceCast(C, Ty, OnlyIfReduced); 1976 } 1977 } 1978 1979 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) { 1980 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1981 return getBitCast(C, Ty); 1982 return getZExt(C, Ty); 1983 } 1984 1985 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) { 1986 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1987 return getBitCast(C, Ty); 1988 return getSExt(C, Ty); 1989 } 1990 1991 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) { 1992 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1993 return getBitCast(C, Ty); 1994 return getTrunc(C, Ty); 1995 } 1996 1997 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) { 1998 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 1999 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 2000 "Invalid cast"); 2001 2002 if (Ty->isIntOrIntVectorTy()) 2003 return getPtrToInt(S, Ty); 2004 2005 unsigned SrcAS = S->getType()->getPointerAddressSpace(); 2006 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace()) 2007 return getAddrSpaceCast(S, Ty); 2008 2009 return getBitCast(S, Ty); 2010 } 2011 2012 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S, 2013 Type *Ty) { 2014 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2015 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 2016 2017 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 2018 return getAddrSpaceCast(S, Ty); 2019 2020 return getBitCast(S, Ty); 2021 } 2022 2023 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) { 2024 assert(C->getType()->isIntOrIntVectorTy() && 2025 Ty->isIntOrIntVectorTy() && "Invalid cast"); 2026 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2027 unsigned DstBits = Ty->getScalarSizeInBits(); 2028 Instruction::CastOps opcode = 2029 (SrcBits == DstBits ? Instruction::BitCast : 2030 (SrcBits > DstBits ? Instruction::Trunc : 2031 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2032 return getCast(opcode, C, Ty); 2033 } 2034 2035 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) { 2036 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2037 "Invalid cast"); 2038 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2039 unsigned DstBits = Ty->getScalarSizeInBits(); 2040 if (SrcBits == DstBits) 2041 return C; // Avoid a useless cast 2042 Instruction::CastOps opcode = 2043 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); 2044 return getCast(opcode, C, Ty); 2045 } 2046 2047 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { 2048 #ifndef NDEBUG 2049 bool fromVec = isa<VectorType>(C->getType()); 2050 bool toVec = isa<VectorType>(Ty); 2051 #endif 2052 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2053 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); 2054 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); 2055 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& 2056 "SrcTy must be larger than DestTy for Trunc!"); 2057 2058 return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced); 2059 } 2060 2061 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) { 2062 #ifndef NDEBUG 2063 bool fromVec = isa<VectorType>(C->getType()); 2064 bool toVec = isa<VectorType>(Ty); 2065 #endif 2066 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2067 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral"); 2068 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer"); 2069 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 2070 "SrcTy must be smaller than DestTy for SExt!"); 2071 2072 return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced); 2073 } 2074 2075 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) { 2076 #ifndef NDEBUG 2077 bool fromVec = isa<VectorType>(C->getType()); 2078 bool toVec = isa<VectorType>(Ty); 2079 #endif 2080 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2081 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral"); 2082 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer"); 2083 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 2084 "SrcTy must be smaller than DestTy for ZExt!"); 2085 2086 return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced); 2087 } 2088 2089 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { 2090 #ifndef NDEBUG 2091 bool fromVec = isa<VectorType>(C->getType()); 2092 bool toVec = isa<VectorType>(Ty); 2093 #endif 2094 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2095 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2096 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& 2097 "This is an illegal floating point truncation!"); 2098 return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced); 2099 } 2100 2101 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) { 2102 #ifndef NDEBUG 2103 bool fromVec = isa<VectorType>(C->getType()); 2104 bool toVec = isa<VectorType>(Ty); 2105 #endif 2106 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2107 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2108 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 2109 "This is an illegal floating point extension!"); 2110 return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced); 2111 } 2112 2113 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { 2114 #ifndef NDEBUG 2115 bool fromVec = isa<VectorType>(C->getType()); 2116 bool toVec = isa<VectorType>(Ty); 2117 #endif 2118 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2119 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && 2120 "This is an illegal uint to floating point cast!"); 2121 return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced); 2122 } 2123 2124 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { 2125 #ifndef NDEBUG 2126 bool fromVec = isa<VectorType>(C->getType()); 2127 bool toVec = isa<VectorType>(Ty); 2128 #endif 2129 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2130 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && 2131 "This is an illegal sint to floating point cast!"); 2132 return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced); 2133 } 2134 2135 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) { 2136 #ifndef NDEBUG 2137 bool fromVec = isa<VectorType>(C->getType()); 2138 bool toVec = isa<VectorType>(Ty); 2139 #endif 2140 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2141 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && 2142 "This is an illegal floating point to uint cast!"); 2143 return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced); 2144 } 2145 2146 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) { 2147 #ifndef NDEBUG 2148 bool fromVec = isa<VectorType>(C->getType()); 2149 bool toVec = isa<VectorType>(Ty); 2150 #endif 2151 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2152 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && 2153 "This is an illegal floating point to sint cast!"); 2154 return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced); 2155 } 2156 2157 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy, 2158 bool OnlyIfReduced) { 2159 assert(C->getType()->isPtrOrPtrVectorTy() && 2160 "PtrToInt source must be pointer or pointer vector"); 2161 assert(DstTy->isIntOrIntVectorTy() && 2162 "PtrToInt destination must be integer or integer vector"); 2163 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); 2164 if (isa<VectorType>(C->getType())) 2165 assert(cast<FixedVectorType>(C->getType())->getNumElements() == 2166 cast<FixedVectorType>(DstTy)->getNumElements() && 2167 "Invalid cast between a different number of vector elements"); 2168 return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced); 2169 } 2170 2171 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy, 2172 bool OnlyIfReduced) { 2173 assert(C->getType()->isIntOrIntVectorTy() && 2174 "IntToPtr source must be integer or integer vector"); 2175 assert(DstTy->isPtrOrPtrVectorTy() && 2176 "IntToPtr destination must be a pointer or pointer vector"); 2177 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); 2178 if (isa<VectorType>(C->getType())) 2179 assert(cast<VectorType>(C->getType())->getElementCount() == 2180 cast<VectorType>(DstTy)->getElementCount() && 2181 "Invalid cast between a different number of vector elements"); 2182 return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced); 2183 } 2184 2185 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy, 2186 bool OnlyIfReduced) { 2187 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && 2188 "Invalid constantexpr bitcast!"); 2189 2190 // It is common to ask for a bitcast of a value to its own type, handle this 2191 // speedily. 2192 if (C->getType() == DstTy) return C; 2193 2194 return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced); 2195 } 2196 2197 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy, 2198 bool OnlyIfReduced) { 2199 assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) && 2200 "Invalid constantexpr addrspacecast!"); 2201 2202 // Canonicalize addrspacecasts between different pointer types by first 2203 // bitcasting the pointer type and then converting the address space. 2204 PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType()); 2205 PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType()); 2206 Type *DstElemTy = DstScalarTy->getElementType(); 2207 if (SrcScalarTy->getElementType() != DstElemTy) { 2208 Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace()); 2209 if (VectorType *VT = dyn_cast<VectorType>(DstTy)) { 2210 // Handle vectors of pointers. 2211 MidTy = FixedVectorType::get(MidTy, 2212 cast<FixedVectorType>(VT)->getNumElements()); 2213 } 2214 C = getBitCast(C, MidTy); 2215 } 2216 return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced); 2217 } 2218 2219 Constant *ConstantExpr::get(unsigned Opcode, Constant *C, unsigned Flags, 2220 Type *OnlyIfReducedTy) { 2221 // Check the operands for consistency first. 2222 assert(Instruction::isUnaryOp(Opcode) && 2223 "Invalid opcode in unary constant expression"); 2224 2225 #ifndef NDEBUG 2226 switch (Opcode) { 2227 case Instruction::FNeg: 2228 assert(C->getType()->isFPOrFPVectorTy() && 2229 "Tried to create a floating-point operation on a " 2230 "non-floating-point type!"); 2231 break; 2232 default: 2233 break; 2234 } 2235 #endif 2236 2237 if (Constant *FC = ConstantFoldUnaryInstruction(Opcode, C)) 2238 return FC; 2239 2240 if (OnlyIfReducedTy == C->getType()) 2241 return nullptr; 2242 2243 Constant *ArgVec[] = { C }; 2244 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags); 2245 2246 LLVMContextImpl *pImpl = C->getContext().pImpl; 2247 return pImpl->ExprConstants.getOrCreate(C->getType(), Key); 2248 } 2249 2250 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, 2251 unsigned Flags, Type *OnlyIfReducedTy) { 2252 // Check the operands for consistency first. 2253 assert(Instruction::isBinaryOp(Opcode) && 2254 "Invalid opcode in binary constant expression"); 2255 assert(C1->getType() == C2->getType() && 2256 "Operand types in binary constant expression should match"); 2257 2258 #ifndef NDEBUG 2259 switch (Opcode) { 2260 case Instruction::Add: 2261 case Instruction::Sub: 2262 case Instruction::Mul: 2263 case Instruction::UDiv: 2264 case Instruction::SDiv: 2265 case Instruction::URem: 2266 case Instruction::SRem: 2267 assert(C1->getType()->isIntOrIntVectorTy() && 2268 "Tried to create an integer operation on a non-integer type!"); 2269 break; 2270 case Instruction::FAdd: 2271 case Instruction::FSub: 2272 case Instruction::FMul: 2273 case Instruction::FDiv: 2274 case Instruction::FRem: 2275 assert(C1->getType()->isFPOrFPVectorTy() && 2276 "Tried to create a floating-point operation on a " 2277 "non-floating-point type!"); 2278 break; 2279 case Instruction::And: 2280 case Instruction::Or: 2281 case Instruction::Xor: 2282 assert(C1->getType()->isIntOrIntVectorTy() && 2283 "Tried to create a logical operation on a non-integral type!"); 2284 break; 2285 case Instruction::Shl: 2286 case Instruction::LShr: 2287 case Instruction::AShr: 2288 assert(C1->getType()->isIntOrIntVectorTy() && 2289 "Tried to create a shift operation on a non-integer type!"); 2290 break; 2291 default: 2292 break; 2293 } 2294 #endif 2295 2296 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) 2297 return FC; 2298 2299 if (OnlyIfReducedTy == C1->getType()) 2300 return nullptr; 2301 2302 Constant *ArgVec[] = { C1, C2 }; 2303 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags); 2304 2305 LLVMContextImpl *pImpl = C1->getContext().pImpl; 2306 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key); 2307 } 2308 2309 Constant *ConstantExpr::getSizeOf(Type* Ty) { 2310 // sizeof is implemented as: (i64) gep (Ty*)null, 1 2311 // Note that a non-inbounds gep is used, as null isn't within any object. 2312 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); 2313 Constant *GEP = getGetElementPtr( 2314 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); 2315 return getPtrToInt(GEP, 2316 Type::getInt64Ty(Ty->getContext())); 2317 } 2318 2319 Constant *ConstantExpr::getAlignOf(Type* Ty) { 2320 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 2321 // Note that a non-inbounds gep is used, as null isn't within any object. 2322 Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty); 2323 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0)); 2324 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); 2325 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); 2326 Constant *Indices[2] = { Zero, One }; 2327 Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices); 2328 return getPtrToInt(GEP, 2329 Type::getInt64Ty(Ty->getContext())); 2330 } 2331 2332 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) { 2333 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()), 2334 FieldNo)); 2335 } 2336 2337 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) { 2338 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo 2339 // Note that a non-inbounds gep is used, as null isn't within any object. 2340 Constant *GEPIdx[] = { 2341 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0), 2342 FieldNo 2343 }; 2344 Constant *GEP = getGetElementPtr( 2345 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); 2346 return getPtrToInt(GEP, 2347 Type::getInt64Ty(Ty->getContext())); 2348 } 2349 2350 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1, 2351 Constant *C2, bool OnlyIfReduced) { 2352 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 2353 2354 switch (Predicate) { 2355 default: llvm_unreachable("Invalid CmpInst predicate"); 2356 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: 2357 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: 2358 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: 2359 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: 2360 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: 2361 case CmpInst::FCMP_TRUE: 2362 return getFCmp(Predicate, C1, C2, OnlyIfReduced); 2363 2364 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: 2365 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: 2366 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: 2367 case CmpInst::ICMP_SLE: 2368 return getICmp(Predicate, C1, C2, OnlyIfReduced); 2369 } 2370 } 2371 2372 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2, 2373 Type *OnlyIfReducedTy) { 2374 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); 2375 2376 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) 2377 return SC; // Fold common cases 2378 2379 if (OnlyIfReducedTy == V1->getType()) 2380 return nullptr; 2381 2382 Constant *ArgVec[] = { C, V1, V2 }; 2383 ConstantExprKeyType Key(Instruction::Select, ArgVec); 2384 2385 LLVMContextImpl *pImpl = C->getContext().pImpl; 2386 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key); 2387 } 2388 2389 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C, 2390 ArrayRef<Value *> Idxs, bool InBounds, 2391 Optional<unsigned> InRangeIndex, 2392 Type *OnlyIfReducedTy) { 2393 if (!Ty) 2394 Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType(); 2395 else 2396 assert(Ty == 2397 cast<PointerType>(C->getType()->getScalarType())->getElementType()); 2398 2399 if (Constant *FC = 2400 ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs)) 2401 return FC; // Fold a few common cases. 2402 2403 // Get the result type of the getelementptr! 2404 Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs); 2405 assert(DestTy && "GEP indices invalid!"); 2406 unsigned AS = C->getType()->getPointerAddressSpace(); 2407 Type *ReqTy = DestTy->getPointerTo(AS); 2408 2409 auto EltCount = ElementCount::getFixed(0); 2410 if (VectorType *VecTy = dyn_cast<VectorType>(C->getType())) 2411 EltCount = VecTy->getElementCount(); 2412 else 2413 for (auto Idx : Idxs) 2414 if (VectorType *VecTy = dyn_cast<VectorType>(Idx->getType())) 2415 EltCount = VecTy->getElementCount(); 2416 2417 if (EltCount.isNonZero()) 2418 ReqTy = VectorType::get(ReqTy, EltCount); 2419 2420 if (OnlyIfReducedTy == ReqTy) 2421 return nullptr; 2422 2423 // Look up the constant in the table first to ensure uniqueness 2424 std::vector<Constant*> ArgVec; 2425 ArgVec.reserve(1 + Idxs.size()); 2426 ArgVec.push_back(C); 2427 auto GTI = gep_type_begin(Ty, Idxs), GTE = gep_type_end(Ty, Idxs); 2428 for (; GTI != GTE; ++GTI) { 2429 auto *Idx = cast<Constant>(GTI.getOperand()); 2430 assert( 2431 (!isa<VectorType>(Idx->getType()) || 2432 cast<VectorType>(Idx->getType())->getElementCount() == EltCount) && 2433 "getelementptr index type missmatch"); 2434 2435 if (GTI.isStruct() && Idx->getType()->isVectorTy()) { 2436 Idx = Idx->getSplatValue(); 2437 } else if (GTI.isSequential() && EltCount.isNonZero() && 2438 !Idx->getType()->isVectorTy()) { 2439 Idx = ConstantVector::getSplat(EltCount, Idx); 2440 } 2441 ArgVec.push_back(Idx); 2442 } 2443 2444 unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0; 2445 if (InRangeIndex && *InRangeIndex < 63) 2446 SubClassOptionalData |= (*InRangeIndex + 1) << 1; 2447 const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0, 2448 SubClassOptionalData, None, None, Ty); 2449 2450 LLVMContextImpl *pImpl = C->getContext().pImpl; 2451 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2452 } 2453 2454 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS, 2455 Constant *RHS, bool OnlyIfReduced) { 2456 assert(LHS->getType() == RHS->getType()); 2457 assert(CmpInst::isIntPredicate((CmpInst::Predicate)pred) && 2458 "Invalid ICmp Predicate"); 2459 2460 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) 2461 return FC; // Fold a few common cases... 2462 2463 if (OnlyIfReduced) 2464 return nullptr; 2465 2466 // Look up the constant in the table first to ensure uniqueness 2467 Constant *ArgVec[] = { LHS, RHS }; 2468 // Get the key type with both the opcode and predicate 2469 const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred); 2470 2471 Type *ResultTy = Type::getInt1Ty(LHS->getContext()); 2472 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) 2473 ResultTy = VectorType::get(ResultTy, VT->getElementCount()); 2474 2475 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; 2476 return pImpl->ExprConstants.getOrCreate(ResultTy, Key); 2477 } 2478 2479 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, 2480 Constant *RHS, bool OnlyIfReduced) { 2481 assert(LHS->getType() == RHS->getType()); 2482 assert(CmpInst::isFPPredicate((CmpInst::Predicate)pred) && 2483 "Invalid FCmp Predicate"); 2484 2485 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) 2486 return FC; // Fold a few common cases... 2487 2488 if (OnlyIfReduced) 2489 return nullptr; 2490 2491 // Look up the constant in the table first to ensure uniqueness 2492 Constant *ArgVec[] = { LHS, RHS }; 2493 // Get the key type with both the opcode and predicate 2494 const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred); 2495 2496 Type *ResultTy = Type::getInt1Ty(LHS->getContext()); 2497 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) 2498 ResultTy = VectorType::get(ResultTy, VT->getElementCount()); 2499 2500 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; 2501 return pImpl->ExprConstants.getOrCreate(ResultTy, Key); 2502 } 2503 2504 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx, 2505 Type *OnlyIfReducedTy) { 2506 assert(Val->getType()->isVectorTy() && 2507 "Tried to create extractelement operation on non-vector type!"); 2508 assert(Idx->getType()->isIntegerTy() && 2509 "Extractelement index must be an integer type!"); 2510 2511 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) 2512 return FC; // Fold a few common cases. 2513 2514 Type *ReqTy = cast<VectorType>(Val->getType())->getElementType(); 2515 if (OnlyIfReducedTy == ReqTy) 2516 return nullptr; 2517 2518 // Look up the constant in the table first to ensure uniqueness 2519 Constant *ArgVec[] = { Val, Idx }; 2520 const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec); 2521 2522 LLVMContextImpl *pImpl = Val->getContext().pImpl; 2523 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2524 } 2525 2526 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 2527 Constant *Idx, Type *OnlyIfReducedTy) { 2528 assert(Val->getType()->isVectorTy() && 2529 "Tried to create insertelement operation on non-vector type!"); 2530 assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() && 2531 "Insertelement types must match!"); 2532 assert(Idx->getType()->isIntegerTy() && 2533 "Insertelement index must be i32 type!"); 2534 2535 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) 2536 return FC; // Fold a few common cases. 2537 2538 if (OnlyIfReducedTy == Val->getType()) 2539 return nullptr; 2540 2541 // Look up the constant in the table first to ensure uniqueness 2542 Constant *ArgVec[] = { Val, Elt, Idx }; 2543 const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec); 2544 2545 LLVMContextImpl *pImpl = Val->getContext().pImpl; 2546 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key); 2547 } 2548 2549 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, 2550 ArrayRef<int> Mask, 2551 Type *OnlyIfReducedTy) { 2552 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && 2553 "Invalid shuffle vector constant expr operands!"); 2554 2555 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) 2556 return FC; // Fold a few common cases. 2557 2558 unsigned NElts = Mask.size(); 2559 auto V1VTy = cast<VectorType>(V1->getType()); 2560 Type *EltTy = V1VTy->getElementType(); 2561 bool TypeIsScalable = isa<ScalableVectorType>(V1VTy); 2562 Type *ShufTy = VectorType::get(EltTy, NElts, TypeIsScalable); 2563 2564 if (OnlyIfReducedTy == ShufTy) 2565 return nullptr; 2566 2567 // Look up the constant in the table first to ensure uniqueness 2568 Constant *ArgVec[] = {V1, V2}; 2569 ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec, 0, 0, None, Mask); 2570 2571 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl; 2572 return pImpl->ExprConstants.getOrCreate(ShufTy, Key); 2573 } 2574 2575 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val, 2576 ArrayRef<unsigned> Idxs, 2577 Type *OnlyIfReducedTy) { 2578 assert(Agg->getType()->isFirstClassType() && 2579 "Non-first-class type for constant insertvalue expression"); 2580 2581 assert(ExtractValueInst::getIndexedType(Agg->getType(), 2582 Idxs) == Val->getType() && 2583 "insertvalue indices invalid!"); 2584 Type *ReqTy = Val->getType(); 2585 2586 if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs)) 2587 return FC; 2588 2589 if (OnlyIfReducedTy == ReqTy) 2590 return nullptr; 2591 2592 Constant *ArgVec[] = { Agg, Val }; 2593 const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs); 2594 2595 LLVMContextImpl *pImpl = Agg->getContext().pImpl; 2596 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2597 } 2598 2599 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs, 2600 Type *OnlyIfReducedTy) { 2601 assert(Agg->getType()->isFirstClassType() && 2602 "Tried to create extractelement operation on non-first-class type!"); 2603 2604 Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs); 2605 (void)ReqTy; 2606 assert(ReqTy && "extractvalue indices invalid!"); 2607 2608 assert(Agg->getType()->isFirstClassType() && 2609 "Non-first-class type for constant extractvalue expression"); 2610 if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs)) 2611 return FC; 2612 2613 if (OnlyIfReducedTy == ReqTy) 2614 return nullptr; 2615 2616 Constant *ArgVec[] = { Agg }; 2617 const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs); 2618 2619 LLVMContextImpl *pImpl = Agg->getContext().pImpl; 2620 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2621 } 2622 2623 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) { 2624 assert(C->getType()->isIntOrIntVectorTy() && 2625 "Cannot NEG a nonintegral value!"); 2626 return getSub(ConstantFP::getZeroValueForNegation(C->getType()), 2627 C, HasNUW, HasNSW); 2628 } 2629 2630 Constant *ConstantExpr::getFNeg(Constant *C) { 2631 assert(C->getType()->isFPOrFPVectorTy() && 2632 "Cannot FNEG a non-floating-point value!"); 2633 return get(Instruction::FNeg, C); 2634 } 2635 2636 Constant *ConstantExpr::getNot(Constant *C) { 2637 assert(C->getType()->isIntOrIntVectorTy() && 2638 "Cannot NOT a nonintegral value!"); 2639 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); 2640 } 2641 2642 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2, 2643 bool HasNUW, bool HasNSW) { 2644 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2645 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2646 return get(Instruction::Add, C1, C2, Flags); 2647 } 2648 2649 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) { 2650 return get(Instruction::FAdd, C1, C2); 2651 } 2652 2653 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2, 2654 bool HasNUW, bool HasNSW) { 2655 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2656 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2657 return get(Instruction::Sub, C1, C2, Flags); 2658 } 2659 2660 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) { 2661 return get(Instruction::FSub, C1, C2); 2662 } 2663 2664 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2, 2665 bool HasNUW, bool HasNSW) { 2666 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2667 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2668 return get(Instruction::Mul, C1, C2, Flags); 2669 } 2670 2671 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) { 2672 return get(Instruction::FMul, C1, C2); 2673 } 2674 2675 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) { 2676 return get(Instruction::UDiv, C1, C2, 2677 isExact ? PossiblyExactOperator::IsExact : 0); 2678 } 2679 2680 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) { 2681 return get(Instruction::SDiv, C1, C2, 2682 isExact ? PossiblyExactOperator::IsExact : 0); 2683 } 2684 2685 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) { 2686 return get(Instruction::FDiv, C1, C2); 2687 } 2688 2689 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) { 2690 return get(Instruction::URem, C1, C2); 2691 } 2692 2693 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) { 2694 return get(Instruction::SRem, C1, C2); 2695 } 2696 2697 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) { 2698 return get(Instruction::FRem, C1, C2); 2699 } 2700 2701 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { 2702 return get(Instruction::And, C1, C2); 2703 } 2704 2705 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { 2706 return get(Instruction::Or, C1, C2); 2707 } 2708 2709 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { 2710 return get(Instruction::Xor, C1, C2); 2711 } 2712 2713 Constant *ConstantExpr::getUMin(Constant *C1, Constant *C2) { 2714 Constant *Cmp = ConstantExpr::getICmp(CmpInst::ICMP_ULT, C1, C2); 2715 return getSelect(Cmp, C1, C2); 2716 } 2717 2718 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2, 2719 bool HasNUW, bool HasNSW) { 2720 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2721 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2722 return get(Instruction::Shl, C1, C2, Flags); 2723 } 2724 2725 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) { 2726 return get(Instruction::LShr, C1, C2, 2727 isExact ? PossiblyExactOperator::IsExact : 0); 2728 } 2729 2730 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) { 2731 return get(Instruction::AShr, C1, C2, 2732 isExact ? PossiblyExactOperator::IsExact : 0); 2733 } 2734 2735 Constant *ConstantExpr::getExactLogBase2(Constant *C) { 2736 Type *Ty = C->getType(); 2737 const APInt *IVal; 2738 if (match(C, m_APInt(IVal)) && IVal->isPowerOf2()) 2739 return ConstantInt::get(Ty, IVal->logBase2()); 2740 2741 // FIXME: We can extract pow of 2 of splat constant for scalable vectors. 2742 auto *VecTy = dyn_cast<FixedVectorType>(Ty); 2743 if (!VecTy) 2744 return nullptr; 2745 2746 SmallVector<Constant *, 4> Elts; 2747 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 2748 Constant *Elt = C->getAggregateElement(I); 2749 if (!Elt) 2750 return nullptr; 2751 // Note that log2(iN undef) is *NOT* iN undef, because log2(iN undef) u< N. 2752 if (isa<UndefValue>(Elt)) { 2753 Elts.push_back(Constant::getNullValue(Ty->getScalarType())); 2754 continue; 2755 } 2756 if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2()) 2757 return nullptr; 2758 Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2())); 2759 } 2760 2761 return ConstantVector::get(Elts); 2762 } 2763 2764 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty, 2765 bool AllowRHSConstant) { 2766 assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed"); 2767 2768 // Commutative opcodes: it does not matter if AllowRHSConstant is set. 2769 if (Instruction::isCommutative(Opcode)) { 2770 switch (Opcode) { 2771 case Instruction::Add: // X + 0 = X 2772 case Instruction::Or: // X | 0 = X 2773 case Instruction::Xor: // X ^ 0 = X 2774 return Constant::getNullValue(Ty); 2775 case Instruction::Mul: // X * 1 = X 2776 return ConstantInt::get(Ty, 1); 2777 case Instruction::And: // X & -1 = X 2778 return Constant::getAllOnesValue(Ty); 2779 case Instruction::FAdd: // X + -0.0 = X 2780 // TODO: If the fadd has 'nsz', should we return +0.0? 2781 return ConstantFP::getNegativeZero(Ty); 2782 case Instruction::FMul: // X * 1.0 = X 2783 return ConstantFP::get(Ty, 1.0); 2784 default: 2785 llvm_unreachable("Every commutative binop has an identity constant"); 2786 } 2787 } 2788 2789 // Non-commutative opcodes: AllowRHSConstant must be set. 2790 if (!AllowRHSConstant) 2791 return nullptr; 2792 2793 switch (Opcode) { 2794 case Instruction::Sub: // X - 0 = X 2795 case Instruction::Shl: // X << 0 = X 2796 case Instruction::LShr: // X >>u 0 = X 2797 case Instruction::AShr: // X >> 0 = X 2798 case Instruction::FSub: // X - 0.0 = X 2799 return Constant::getNullValue(Ty); 2800 case Instruction::SDiv: // X / 1 = X 2801 case Instruction::UDiv: // X /u 1 = X 2802 return ConstantInt::get(Ty, 1); 2803 case Instruction::FDiv: // X / 1.0 = X 2804 return ConstantFP::get(Ty, 1.0); 2805 default: 2806 return nullptr; 2807 } 2808 } 2809 2810 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) { 2811 switch (Opcode) { 2812 default: 2813 // Doesn't have an absorber. 2814 return nullptr; 2815 2816 case Instruction::Or: 2817 return Constant::getAllOnesValue(Ty); 2818 2819 case Instruction::And: 2820 case Instruction::Mul: 2821 return Constant::getNullValue(Ty); 2822 } 2823 } 2824 2825 /// Remove the constant from the constant table. 2826 void ConstantExpr::destroyConstantImpl() { 2827 getType()->getContext().pImpl->ExprConstants.remove(this); 2828 } 2829 2830 const char *ConstantExpr::getOpcodeName() const { 2831 return Instruction::getOpcodeName(getOpcode()); 2832 } 2833 2834 GetElementPtrConstantExpr::GetElementPtrConstantExpr( 2835 Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy) 2836 : ConstantExpr(DestTy, Instruction::GetElementPtr, 2837 OperandTraits<GetElementPtrConstantExpr>::op_end(this) - 2838 (IdxList.size() + 1), 2839 IdxList.size() + 1), 2840 SrcElementTy(SrcElementTy), 2841 ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) { 2842 Op<0>() = C; 2843 Use *OperandList = getOperandList(); 2844 for (unsigned i = 0, E = IdxList.size(); i != E; ++i) 2845 OperandList[i+1] = IdxList[i]; 2846 } 2847 2848 Type *GetElementPtrConstantExpr::getSourceElementType() const { 2849 return SrcElementTy; 2850 } 2851 2852 Type *GetElementPtrConstantExpr::getResultElementType() const { 2853 return ResElementTy; 2854 } 2855 2856 //===----------------------------------------------------------------------===// 2857 // ConstantData* implementations 2858 2859 Type *ConstantDataSequential::getElementType() const { 2860 if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) 2861 return ATy->getElementType(); 2862 return cast<VectorType>(getType())->getElementType(); 2863 } 2864 2865 StringRef ConstantDataSequential::getRawDataValues() const { 2866 return StringRef(DataElements, getNumElements()*getElementByteSize()); 2867 } 2868 2869 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) { 2870 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || Ty->isDoubleTy()) 2871 return true; 2872 if (auto *IT = dyn_cast<IntegerType>(Ty)) { 2873 switch (IT->getBitWidth()) { 2874 case 8: 2875 case 16: 2876 case 32: 2877 case 64: 2878 return true; 2879 default: break; 2880 } 2881 } 2882 return false; 2883 } 2884 2885 unsigned ConstantDataSequential::getNumElements() const { 2886 if (ArrayType *AT = dyn_cast<ArrayType>(getType())) 2887 return AT->getNumElements(); 2888 return cast<FixedVectorType>(getType())->getNumElements(); 2889 } 2890 2891 2892 uint64_t ConstantDataSequential::getElementByteSize() const { 2893 return getElementType()->getPrimitiveSizeInBits()/8; 2894 } 2895 2896 /// Return the start of the specified element. 2897 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const { 2898 assert(Elt < getNumElements() && "Invalid Elt"); 2899 return DataElements+Elt*getElementByteSize(); 2900 } 2901 2902 2903 /// Return true if the array is empty or all zeros. 2904 static bool isAllZeros(StringRef Arr) { 2905 for (char I : Arr) 2906 if (I != 0) 2907 return false; 2908 return true; 2909 } 2910 2911 /// This is the underlying implementation of all of the 2912 /// ConstantDataSequential::get methods. They all thunk down to here, providing 2913 /// the correct element type. We take the bytes in as a StringRef because 2914 /// we *want* an underlying "char*" to avoid TBAA type punning violations. 2915 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) { 2916 #ifndef NDEBUG 2917 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) 2918 assert(isElementTypeCompatible(ATy->getElementType())); 2919 else 2920 assert(isElementTypeCompatible(cast<VectorType>(Ty)->getElementType())); 2921 #endif 2922 // If the elements are all zero or there are no elements, return a CAZ, which 2923 // is more dense and canonical. 2924 if (isAllZeros(Elements)) 2925 return ConstantAggregateZero::get(Ty); 2926 2927 // Do a lookup to see if we have already formed one of these. 2928 auto &Slot = 2929 *Ty->getContext() 2930 .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr)) 2931 .first; 2932 2933 // The bucket can point to a linked list of different CDS's that have the same 2934 // body but different types. For example, 0,0,0,1 could be a 4 element array 2935 // of i8, or a 1-element array of i32. They'll both end up in the same 2936 /// StringMap bucket, linked up by their Next pointers. Walk the list. 2937 std::unique_ptr<ConstantDataSequential> *Entry = &Slot.second; 2938 for (; *Entry; Entry = &(*Entry)->Next) 2939 if ((*Entry)->getType() == Ty) 2940 return Entry->get(); 2941 2942 // Okay, we didn't get a hit. Create a node of the right class, link it in, 2943 // and return it. 2944 if (isa<ArrayType>(Ty)) { 2945 // Use reset because std::make_unique can't access the constructor. 2946 Entry->reset(new ConstantDataArray(Ty, Slot.first().data())); 2947 return Entry->get(); 2948 } 2949 2950 assert(isa<VectorType>(Ty)); 2951 // Use reset because std::make_unique can't access the constructor. 2952 Entry->reset(new ConstantDataVector(Ty, Slot.first().data())); 2953 return Entry->get(); 2954 } 2955 2956 void ConstantDataSequential::destroyConstantImpl() { 2957 // Remove the constant from the StringMap. 2958 StringMap<std::unique_ptr<ConstantDataSequential>> &CDSConstants = 2959 getType()->getContext().pImpl->CDSConstants; 2960 2961 auto Slot = CDSConstants.find(getRawDataValues()); 2962 2963 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table"); 2964 2965 std::unique_ptr<ConstantDataSequential> *Entry = &Slot->getValue(); 2966 2967 // Remove the entry from the hash table. 2968 if (!(*Entry)->Next) { 2969 // If there is only one value in the bucket (common case) it must be this 2970 // entry, and removing the entry should remove the bucket completely. 2971 assert(Entry->get() == this && "Hash mismatch in ConstantDataSequential"); 2972 getContext().pImpl->CDSConstants.erase(Slot); 2973 return; 2974 } 2975 2976 // Otherwise, there are multiple entries linked off the bucket, unlink the 2977 // node we care about but keep the bucket around. 2978 while (true) { 2979 std::unique_ptr<ConstantDataSequential> &Node = *Entry; 2980 assert(Node && "Didn't find entry in its uniquing hash table!"); 2981 // If we found our entry, unlink it from the list and we're done. 2982 if (Node.get() == this) { 2983 Node = std::move(Node->Next); 2984 return; 2985 } 2986 2987 Entry = &Node->Next; 2988 } 2989 } 2990 2991 /// getFP() constructors - Return a constant of array type with a float 2992 /// element type taken from argument `ElementType', and count taken from 2993 /// argument `Elts'. The amount of bits of the contained type must match the 2994 /// number of bits of the type contained in the passed in ArrayRef. 2995 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note 2996 /// that this can return a ConstantAggregateZero object. 2997 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint16_t> Elts) { 2998 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) && 2999 "Element type is not a 16-bit float type"); 3000 Type *Ty = ArrayType::get(ElementType, Elts.size()); 3001 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3002 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 3003 } 3004 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint32_t> Elts) { 3005 assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type"); 3006 Type *Ty = ArrayType::get(ElementType, Elts.size()); 3007 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3008 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 3009 } 3010 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint64_t> Elts) { 3011 assert(ElementType->isDoubleTy() && 3012 "Element type is not a 64-bit float type"); 3013 Type *Ty = ArrayType::get(ElementType, Elts.size()); 3014 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3015 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 3016 } 3017 3018 Constant *ConstantDataArray::getString(LLVMContext &Context, 3019 StringRef Str, bool AddNull) { 3020 if (!AddNull) { 3021 const uint8_t *Data = Str.bytes_begin(); 3022 return get(Context, makeArrayRef(Data, Str.size())); 3023 } 3024 3025 SmallVector<uint8_t, 64> ElementVals; 3026 ElementVals.append(Str.begin(), Str.end()); 3027 ElementVals.push_back(0); 3028 return get(Context, ElementVals); 3029 } 3030 3031 /// get() constructors - Return a constant with vector type with an element 3032 /// count and element type matching the ArrayRef passed in. Note that this 3033 /// can return a ConstantAggregateZero object. 3034 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){ 3035 auto *Ty = FixedVectorType::get(Type::getInt8Ty(Context), Elts.size()); 3036 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3037 return getImpl(StringRef(Data, Elts.size() * 1), Ty); 3038 } 3039 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ 3040 auto *Ty = FixedVectorType::get(Type::getInt16Ty(Context), Elts.size()); 3041 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3042 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 3043 } 3044 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ 3045 auto *Ty = FixedVectorType::get(Type::getInt32Ty(Context), Elts.size()); 3046 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3047 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 3048 } 3049 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ 3050 auto *Ty = FixedVectorType::get(Type::getInt64Ty(Context), Elts.size()); 3051 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3052 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 3053 } 3054 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) { 3055 auto *Ty = FixedVectorType::get(Type::getFloatTy(Context), Elts.size()); 3056 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3057 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 3058 } 3059 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) { 3060 auto *Ty = FixedVectorType::get(Type::getDoubleTy(Context), Elts.size()); 3061 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3062 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 3063 } 3064 3065 /// getFP() constructors - Return a constant of vector type with a float 3066 /// element type taken from argument `ElementType', and count taken from 3067 /// argument `Elts'. The amount of bits of the contained type must match the 3068 /// number of bits of the type contained in the passed in ArrayRef. 3069 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note 3070 /// that this can return a ConstantAggregateZero object. 3071 Constant *ConstantDataVector::getFP(Type *ElementType, 3072 ArrayRef<uint16_t> Elts) { 3073 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) && 3074 "Element type is not a 16-bit float type"); 3075 auto *Ty = FixedVectorType::get(ElementType, Elts.size()); 3076 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3077 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 3078 } 3079 Constant *ConstantDataVector::getFP(Type *ElementType, 3080 ArrayRef<uint32_t> Elts) { 3081 assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type"); 3082 auto *Ty = FixedVectorType::get(ElementType, Elts.size()); 3083 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3084 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 3085 } 3086 Constant *ConstantDataVector::getFP(Type *ElementType, 3087 ArrayRef<uint64_t> Elts) { 3088 assert(ElementType->isDoubleTy() && 3089 "Element type is not a 64-bit float type"); 3090 auto *Ty = FixedVectorType::get(ElementType, Elts.size()); 3091 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3092 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 3093 } 3094 3095 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) { 3096 assert(isElementTypeCompatible(V->getType()) && 3097 "Element type not compatible with ConstantData"); 3098 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 3099 if (CI->getType()->isIntegerTy(8)) { 3100 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue()); 3101 return get(V->getContext(), Elts); 3102 } 3103 if (CI->getType()->isIntegerTy(16)) { 3104 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue()); 3105 return get(V->getContext(), Elts); 3106 } 3107 if (CI->getType()->isIntegerTy(32)) { 3108 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue()); 3109 return get(V->getContext(), Elts); 3110 } 3111 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type"); 3112 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue()); 3113 return get(V->getContext(), Elts); 3114 } 3115 3116 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3117 if (CFP->getType()->isHalfTy()) { 3118 SmallVector<uint16_t, 16> Elts( 3119 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 3120 return getFP(V->getType(), Elts); 3121 } 3122 if (CFP->getType()->isBFloatTy()) { 3123 SmallVector<uint16_t, 16> Elts( 3124 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 3125 return getFP(V->getType(), Elts); 3126 } 3127 if (CFP->getType()->isFloatTy()) { 3128 SmallVector<uint32_t, 16> Elts( 3129 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 3130 return getFP(V->getType(), Elts); 3131 } 3132 if (CFP->getType()->isDoubleTy()) { 3133 SmallVector<uint64_t, 16> Elts( 3134 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 3135 return getFP(V->getType(), Elts); 3136 } 3137 } 3138 return ConstantVector::getSplat(ElementCount::getFixed(NumElts), V); 3139 } 3140 3141 3142 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { 3143 assert(isa<IntegerType>(getElementType()) && 3144 "Accessor can only be used when element is an integer"); 3145 const char *EltPtr = getElementPointer(Elt); 3146 3147 // The data is stored in host byte order, make sure to cast back to the right 3148 // type to load with the right endianness. 3149 switch (getElementType()->getIntegerBitWidth()) { 3150 default: llvm_unreachable("Invalid bitwidth for CDS"); 3151 case 8: 3152 return *reinterpret_cast<const uint8_t *>(EltPtr); 3153 case 16: 3154 return *reinterpret_cast<const uint16_t *>(EltPtr); 3155 case 32: 3156 return *reinterpret_cast<const uint32_t *>(EltPtr); 3157 case 64: 3158 return *reinterpret_cast<const uint64_t *>(EltPtr); 3159 } 3160 } 3161 3162 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const { 3163 assert(isa<IntegerType>(getElementType()) && 3164 "Accessor can only be used when element is an integer"); 3165 const char *EltPtr = getElementPointer(Elt); 3166 3167 // The data is stored in host byte order, make sure to cast back to the right 3168 // type to load with the right endianness. 3169 switch (getElementType()->getIntegerBitWidth()) { 3170 default: llvm_unreachable("Invalid bitwidth for CDS"); 3171 case 8: { 3172 auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr); 3173 return APInt(8, EltVal); 3174 } 3175 case 16: { 3176 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 3177 return APInt(16, EltVal); 3178 } 3179 case 32: { 3180 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr); 3181 return APInt(32, EltVal); 3182 } 3183 case 64: { 3184 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr); 3185 return APInt(64, EltVal); 3186 } 3187 } 3188 } 3189 3190 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { 3191 const char *EltPtr = getElementPointer(Elt); 3192 3193 switch (getElementType()->getTypeID()) { 3194 default: 3195 llvm_unreachable("Accessor can only be used when element is float/double!"); 3196 case Type::HalfTyID: { 3197 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 3198 return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal)); 3199 } 3200 case Type::BFloatTyID: { 3201 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 3202 return APFloat(APFloat::BFloat(), APInt(16, EltVal)); 3203 } 3204 case Type::FloatTyID: { 3205 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr); 3206 return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal)); 3207 } 3208 case Type::DoubleTyID: { 3209 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr); 3210 return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal)); 3211 } 3212 } 3213 } 3214 3215 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { 3216 assert(getElementType()->isFloatTy() && 3217 "Accessor can only be used when element is a 'float'"); 3218 return *reinterpret_cast<const float *>(getElementPointer(Elt)); 3219 } 3220 3221 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { 3222 assert(getElementType()->isDoubleTy() && 3223 "Accessor can only be used when element is a 'float'"); 3224 return *reinterpret_cast<const double *>(getElementPointer(Elt)); 3225 } 3226 3227 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { 3228 if (getElementType()->isHalfTy() || getElementType()->isBFloatTy() || 3229 getElementType()->isFloatTy() || getElementType()->isDoubleTy()) 3230 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt)); 3231 3232 return ConstantInt::get(getElementType(), getElementAsInteger(Elt)); 3233 } 3234 3235 bool ConstantDataSequential::isString(unsigned CharSize) const { 3236 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize); 3237 } 3238 3239 bool ConstantDataSequential::isCString() const { 3240 if (!isString()) 3241 return false; 3242 3243 StringRef Str = getAsString(); 3244 3245 // The last value must be nul. 3246 if (Str.back() != 0) return false; 3247 3248 // Other elements must be non-nul. 3249 return Str.drop_back().find(0) == StringRef::npos; 3250 } 3251 3252 bool ConstantDataVector::isSplatData() const { 3253 const char *Base = getRawDataValues().data(); 3254 3255 // Compare elements 1+ to the 0'th element. 3256 unsigned EltSize = getElementByteSize(); 3257 for (unsigned i = 1, e = getNumElements(); i != e; ++i) 3258 if (memcmp(Base, Base+i*EltSize, EltSize)) 3259 return false; 3260 3261 return true; 3262 } 3263 3264 bool ConstantDataVector::isSplat() const { 3265 if (!IsSplatSet) { 3266 IsSplatSet = true; 3267 IsSplat = isSplatData(); 3268 } 3269 return IsSplat; 3270 } 3271 3272 Constant *ConstantDataVector::getSplatValue() const { 3273 // If they're all the same, return the 0th one as a representative. 3274 return isSplat() ? getElementAsConstant(0) : nullptr; 3275 } 3276 3277 //===----------------------------------------------------------------------===// 3278 // handleOperandChange implementations 3279 3280 /// Update this constant array to change uses of 3281 /// 'From' to be uses of 'To'. This must update the uniquing data structures 3282 /// etc. 3283 /// 3284 /// Note that we intentionally replace all uses of From with To here. Consider 3285 /// a large array that uses 'From' 1000 times. By handling this case all here, 3286 /// ConstantArray::handleOperandChange is only invoked once, and that 3287 /// single invocation handles all 1000 uses. Handling them one at a time would 3288 /// work, but would be really slow because it would have to unique each updated 3289 /// array instance. 3290 /// 3291 void Constant::handleOperandChange(Value *From, Value *To) { 3292 Value *Replacement = nullptr; 3293 switch (getValueID()) { 3294 default: 3295 llvm_unreachable("Not a constant!"); 3296 #define HANDLE_CONSTANT(Name) \ 3297 case Value::Name##Val: \ 3298 Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \ 3299 break; 3300 #include "llvm/IR/Value.def" 3301 } 3302 3303 // If handleOperandChangeImpl returned nullptr, then it handled 3304 // replacing itself and we don't want to delete or replace anything else here. 3305 if (!Replacement) 3306 return; 3307 3308 // I do need to replace this with an existing value. 3309 assert(Replacement != this && "I didn't contain From!"); 3310 3311 // Everyone using this now uses the replacement. 3312 replaceAllUsesWith(Replacement); 3313 3314 // Delete the old constant! 3315 destroyConstant(); 3316 } 3317 3318 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) { 3319 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3320 Constant *ToC = cast<Constant>(To); 3321 3322 SmallVector<Constant*, 8> Values; 3323 Values.reserve(getNumOperands()); // Build replacement array. 3324 3325 // Fill values with the modified operands of the constant array. Also, 3326 // compute whether this turns into an all-zeros array. 3327 unsigned NumUpdated = 0; 3328 3329 // Keep track of whether all the values in the array are "ToC". 3330 bool AllSame = true; 3331 Use *OperandList = getOperandList(); 3332 unsigned OperandNo = 0; 3333 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { 3334 Constant *Val = cast<Constant>(O->get()); 3335 if (Val == From) { 3336 OperandNo = (O - OperandList); 3337 Val = ToC; 3338 ++NumUpdated; 3339 } 3340 Values.push_back(Val); 3341 AllSame &= Val == ToC; 3342 } 3343 3344 if (AllSame && ToC->isNullValue()) 3345 return ConstantAggregateZero::get(getType()); 3346 3347 if (AllSame && isa<UndefValue>(ToC)) 3348 return UndefValue::get(getType()); 3349 3350 // Check for any other type of constant-folding. 3351 if (Constant *C = getImpl(getType(), Values)) 3352 return C; 3353 3354 // Update to the new value. 3355 return getContext().pImpl->ArrayConstants.replaceOperandsInPlace( 3356 Values, this, From, ToC, NumUpdated, OperandNo); 3357 } 3358 3359 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) { 3360 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3361 Constant *ToC = cast<Constant>(To); 3362 3363 Use *OperandList = getOperandList(); 3364 3365 SmallVector<Constant*, 8> Values; 3366 Values.reserve(getNumOperands()); // Build replacement struct. 3367 3368 // Fill values with the modified operands of the constant struct. Also, 3369 // compute whether this turns into an all-zeros struct. 3370 unsigned NumUpdated = 0; 3371 bool AllSame = true; 3372 unsigned OperandNo = 0; 3373 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) { 3374 Constant *Val = cast<Constant>(O->get()); 3375 if (Val == From) { 3376 OperandNo = (O - OperandList); 3377 Val = ToC; 3378 ++NumUpdated; 3379 } 3380 Values.push_back(Val); 3381 AllSame &= Val == ToC; 3382 } 3383 3384 if (AllSame && ToC->isNullValue()) 3385 return ConstantAggregateZero::get(getType()); 3386 3387 if (AllSame && isa<UndefValue>(ToC)) 3388 return UndefValue::get(getType()); 3389 3390 // Update to the new value. 3391 return getContext().pImpl->StructConstants.replaceOperandsInPlace( 3392 Values, this, From, ToC, NumUpdated, OperandNo); 3393 } 3394 3395 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) { 3396 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3397 Constant *ToC = cast<Constant>(To); 3398 3399 SmallVector<Constant*, 8> Values; 3400 Values.reserve(getNumOperands()); // Build replacement array... 3401 unsigned NumUpdated = 0; 3402 unsigned OperandNo = 0; 3403 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 3404 Constant *Val = getOperand(i); 3405 if (Val == From) { 3406 OperandNo = i; 3407 ++NumUpdated; 3408 Val = ToC; 3409 } 3410 Values.push_back(Val); 3411 } 3412 3413 if (Constant *C = getImpl(Values)) 3414 return C; 3415 3416 // Update to the new value. 3417 return getContext().pImpl->VectorConstants.replaceOperandsInPlace( 3418 Values, this, From, ToC, NumUpdated, OperandNo); 3419 } 3420 3421 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) { 3422 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); 3423 Constant *To = cast<Constant>(ToV); 3424 3425 SmallVector<Constant*, 8> NewOps; 3426 unsigned NumUpdated = 0; 3427 unsigned OperandNo = 0; 3428 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 3429 Constant *Op = getOperand(i); 3430 if (Op == From) { 3431 OperandNo = i; 3432 ++NumUpdated; 3433 Op = To; 3434 } 3435 NewOps.push_back(Op); 3436 } 3437 assert(NumUpdated && "I didn't contain From!"); 3438 3439 if (Constant *C = getWithOperands(NewOps, getType(), true)) 3440 return C; 3441 3442 // Update to the new value. 3443 return getContext().pImpl->ExprConstants.replaceOperandsInPlace( 3444 NewOps, this, From, To, NumUpdated, OperandNo); 3445 } 3446 3447 Instruction *ConstantExpr::getAsInstruction() const { 3448 SmallVector<Value *, 4> ValueOperands(operands()); 3449 ArrayRef<Value*> Ops(ValueOperands); 3450 3451 switch (getOpcode()) { 3452 case Instruction::Trunc: 3453 case Instruction::ZExt: 3454 case Instruction::SExt: 3455 case Instruction::FPTrunc: 3456 case Instruction::FPExt: 3457 case Instruction::UIToFP: 3458 case Instruction::SIToFP: 3459 case Instruction::FPToUI: 3460 case Instruction::FPToSI: 3461 case Instruction::PtrToInt: 3462 case Instruction::IntToPtr: 3463 case Instruction::BitCast: 3464 case Instruction::AddrSpaceCast: 3465 return CastInst::Create((Instruction::CastOps)getOpcode(), 3466 Ops[0], getType()); 3467 case Instruction::Select: 3468 return SelectInst::Create(Ops[0], Ops[1], Ops[2]); 3469 case Instruction::InsertElement: 3470 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]); 3471 case Instruction::ExtractElement: 3472 return ExtractElementInst::Create(Ops[0], Ops[1]); 3473 case Instruction::InsertValue: 3474 return InsertValueInst::Create(Ops[0], Ops[1], getIndices()); 3475 case Instruction::ExtractValue: 3476 return ExtractValueInst::Create(Ops[0], getIndices()); 3477 case Instruction::ShuffleVector: 3478 return new ShuffleVectorInst(Ops[0], Ops[1], getShuffleMask()); 3479 3480 case Instruction::GetElementPtr: { 3481 const auto *GO = cast<GEPOperator>(this); 3482 if (GO->isInBounds()) 3483 return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(), 3484 Ops[0], Ops.slice(1)); 3485 return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0], 3486 Ops.slice(1)); 3487 } 3488 case Instruction::ICmp: 3489 case Instruction::FCmp: 3490 return CmpInst::Create((Instruction::OtherOps)getOpcode(), 3491 (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]); 3492 case Instruction::FNeg: 3493 return UnaryOperator::Create((Instruction::UnaryOps)getOpcode(), Ops[0]); 3494 default: 3495 assert(getNumOperands() == 2 && "Must be binary operator?"); 3496 BinaryOperator *BO = 3497 BinaryOperator::Create((Instruction::BinaryOps)getOpcode(), 3498 Ops[0], Ops[1]); 3499 if (isa<OverflowingBinaryOperator>(BO)) { 3500 BO->setHasNoUnsignedWrap(SubclassOptionalData & 3501 OverflowingBinaryOperator::NoUnsignedWrap); 3502 BO->setHasNoSignedWrap(SubclassOptionalData & 3503 OverflowingBinaryOperator::NoSignedWrap); 3504 } 3505 if (isa<PossiblyExactOperator>(BO)) 3506 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact); 3507 return BO; 3508 } 3509 } 3510